FR-7746 JULX-1976

INFLUENCE OF GASEOUS HYDROGEN ON THE MECHANICAL PROPERTIES OF HIGH TEMPERATURE ALLOYS

FINAL REPORT

Contract NAS8-30744 Exhibit B and C National Acronautics and Space Administration George C. Marshall Space Flight Center

AUG 1976 RECEIVED NASA STI BAGILITY

INPUT BRANCH

PRATT& WHITNEY AIRCRAFT GROUP

Government Products Division

P. O. Box 2691 West Palm Beach, Florida 33402

PRATT & WHITNEY AIRCRAFT GROUP

GOVERNMENT PRODUCTS DIVISION

P. O. Bux 2691 West Palm Beach, Florida 33402

31 July 1976

In reply please refer to: GOB:lsf:Cont. Adm. 1

National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

Attention:	Mr. W. B. McPherson, EH23
Subject:	Contract NAS8-30744; Final Report Exhibit B and C

Gentlemen:

In accordance with the requirements of paragraph 3, "Reports Requirements" of Contract NAS8-30744, modified, we herewith forward 25 copies of our Final Report, entitled "Influence of Gaseous Hydrogen on the Mechanical Properties of High Temperature Alloys". This report is the final report for Exhibit B and C of the subject contract. Work being performed under D of this contract will be documented in a future Final Report.

Very truly yours,

UNITED TECHNOLOGIES CORPORATION Pratt & Whitney Aircraft Group

· d. an

G. O. Dayer Contract Administrator Government Products Division

Enclosures (25)

cc: See attached list

National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 Attention: Mr. W. B. McPherson

cc: National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812 Attention: AP13-K (1 enclosure)

AS21-D (5 enclosures) AT01 (1 enclosure)

EM34 (1 enclosure)

Naval Plant Branch Representative Office Pratt & Whitney Aircraft Group West Palm Beach, Florida 33402 (1 enclosure) -2-

FR-7746 JULY 1976

INFLUENCE OF GASEOUS HYDROGEN ON THE MECHANICAL PROPERTIES OF HIGH TEMPERATURE ALLOYS

FINAL REPORT

Contract NAS8-30744 Exhibit B and C National Aeronautics and Space Administration George C. Marshall Space Flight Center

J. Mucci Responsible Engineer

J. A. Harris, Jr.

Program Manager

PRATT & WHITNEY AIRCRAFT GROUP

P. O. Box 2691 West Palm Beach, Florida 33402

ş

ł

1

CONTENTS

-

١

Í

ł

;

• •

7, m

I

.

SECTION			PAGE
I	INTRODUCTION	۱	I-1
II	CONCLUSIONS.		II-1
	A. General		II-1
	B. Exhibit B Te	ensile Properties	II-1
	C. Exhibit C		H -3
	D. Discussion		II-4
III	MATERIALS AN	ND SPECIMENS	III- 1
	A. Test Materia	al	III-1
	B. Test Gases	1	III -1
	C. Test Specime	ens	III -1
IV	TENSILE PROP	PERTIES	IV-1
	A. Introduction		IV-1
	B. Results and	Conclusions	IV-1
	C. Test Procedu	ure	IV-34
v	LOW-CYCLE FA	ATIGUE	V-1
	A. Introduction	L	V-1
	B. Results and	Conclusions	V -2
	C. Test Proced	ure	V-3
VI	CREEP-RUPTU	RE	VI- 1
	A. Introduction	1	VI-1
	B. Results and	Conclusions	VI-1
	C. Test Proced	lure	VI-5

ł

1

L

ILLUSTRATIONS

Ì

1

FIGURE		PAGE
Ш-1	Typical Microstructure of Materials Used to Determine the Susceptibility of Various Alloys to Environmental Degradation (Magnifications in- dicated are prior to a 50% reduction for printing purposes)	III-4
III-2	Typical Test Specimens Used to Determine the Effect of High-Pressure Gaseous Environments on Mechanical Properties of Materials	Ш-5
Ш-3	Stress-Strain/Modulus Tensile Specimen	JII-6
III-4	Notched Tensile Specimen	III-6
III-5	Smooth Tensile Specimen	III-7
III-6	Notched Tensile Specimen	III-7
III-7	Creep-Rupture Specimen	III-8
III-8	Creep-Rupture Specimen	III-8
9	Constant Strain Low-Cycle Fatigue Specimen	III-9
III-10	Load-Control Low-Cycle Fatigue Specimens	III-9
IV-1	Effect of Temperature and Environment on the Tensile Properties of Forged TMP WASPALOY® at 34.5 MN/m ² (5000 psig)	IV -3
IV-2	Effect of Temperature and Environment on the Tensile Properties of Conventionally Cast (CC) MAR M-246 (Hf Modified) at 34.5 MN/m ² (5000 psig)	IV-3
IV-3	Effect of Temperature and Environment on the Tensile Properties of Directionally Solidified (DS) MAR M-246 (Hf Modified) at 34.5 MN/m ² (5000 psig)	IV-4
IV-4	Effect of Temperature and Environment on the Tensile Properties of Inconel 625 Plate at 34.5 MN/m² (5000 psig)	IV-4
IV-5	Effect of Temperature and Environment on the Tensile Properties of Cast Inconel 625 at 34.5 MN/m ² (5000 psig)	IV -5
IV-6	Effect of Temperature and Environment on the Tensile Properties of Haynes 188 Plate, With Inconel 718 STA Heat Treatment, at 34.5 MN/m ² (5000 psig)	IV-5
IV-7	Effect of Temperature and Environment on the Tensile Properties of Inconel 718 Plate at 34.5 MN/m² (5000 psig)	IV-6
IV-8	Effect of Temperature Upon Environmental Degradation of TMP WASPALOY®, Haynes 188 (Inconel 718 STA) and Inconel 718 Tensile Ultimate Strength	IV-6
IV-9	Effect of Temperature Upon Environmental Degradation of MAR M-246 (H) Modified) Tensile Ultimate Strength	f IV-1
IV-10	Effect of Temperature Upon Environmental Degradation of Inconel 625 Tensile Ultimate Strength	5 . IV-'
IV-11	Effect of Temperature Upon Environmental Degradation of Inconel 62: Tensile Ductility	5 . IV-1

ч м

Ī

į

ł

l

ILLUSTRATIONS (Continued)

1

i.

FIGURE		PA
IV-12	Effect of Temperature Upon Environmental Degradation of TMP WASPALOY, Haynes 188 (Inconel 718 STA) and Inconel 718 Tensile Elongation	IV
IV-13	Effect of Temperature Upon Environmental Degradation of TMP WASPALOY, Haynes 188 (Inconel 718 STA) and Inconel 718 Tensile Reduction of Area	IV
IV-14	Effect of Temperature Upon Environmental Degradation of MAP. M-246 (Hf Modified) Tensile Ductility	IV
IV-15	Effect of Temperature on Tensile Stress-Strain of Forged TMP WASPALOY®	IV
IV-16	Effect of Temperature on Tensile Stress-Strain and Modulus of Elasticity of TMP WASPALOY [®]	I۷
IV-17	Effect of Temperature on Tensile Stress-Strain of Conventionally Cast (CC) MAR M-246 (Hf Modified)	N
IV-18	Effect of Temperature on Tensile Stress-Strain and Modulus of Elasticity of Conventionally Cast (CC) MAR M-246 (Hf Modified)	IV
IV-19	Effect of Temperature on Tensile Stress-Strain of Directionally Solidified (DS) MAR M-246 (Hf Modified)	I
IV-20	Effect of Temperature on Tensile Stress-Strain and Modulus of Elasticity of Directionally Solidified (DS) MAR M-246 (Hr Modified)	Г
IV-21	Effect of Temperature on Tensile Stress-Strain of Inconel 625 Plate	Г
IV-22	Effect of Temperature on Tensile Stress-Strain and Modulus of Elasticity of Inconel 625 Plate	I
IV-23	Effect of Temperature on Tensile Stress-Strain of Cast Inconel 625	I
IV-24	Effect of Temperature on Tensile Stress-Strain and Modulus of Elasticity of Cast Inconel 625	I
IV-25	Effect of Temperature on Tensile Stress-Strain of Haynes 188 Plate With Inconel 718 STA Heat Treatment	I
IV-26	Effect of Temperature on Tensile Stress-Strain and Modulus of Elasticity of Haynes 188 Plate With Inconel 718 STA Heat Treatment	I
IV-27	Effect of Temperature on Tensile Stress-Strain of Inconel 718 Plate]
IV-28	Effect of Temperature on Tensile Stress-Strain and Modulus of Elasticity of Inconel 718 Plate	Ι
IV-29	Effect of Temperature on Modulus of Elasticity of Various Alloys]
IV-30	Macrographs of Failed Directionally Solidified MAR M-246 (Hf Modified) Internal Hydrogen Embrittlement Tensile Test Specimens	1
IV-31	Micrographs of Directionally Solidified MAR M-246 (Hf Modified) Internal Hydrogen Embrittlement Tensile Test Specimens	

ţ

1

٤

ILLUSTRATIONS (Continued)

(

Ì.

FIGURE	
IV-32	Tensile Machine, Test Environmental Controls and Data Acquisition Equip- ment
IV-33	Setups of Tensile Test Vessel
IV-34	Averaging Type LVDT Extensometer System
IV-35	Typical Load-Deflection (Stress-Strain) Curve
IV-36	Load-Deflection (Stress-Strain) Curve for IHE Tensile Test SCC-5
IV-37	Load-Deflection (Stress-Strain) Curve for IHE Tensile Test SCC-6
V-1	Typical Load-Strain Hysteresis Curve Obtained During a Specimen Low- Cycle Fatigue Test
V-2	Typical Load-Control Low-Cycle Fatigue Test Cycle
V -3	Low-Cycle Fatigue Life of Directionally Solidified (DS) MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig) Helium and Hydrogen at 1033°K (1400°F)
V-4	Low-Cycle Fatigue Life of Directionally Solidified (DS) MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig) Helium and Hydrogen at 1144°K (1600°F)
V -5	Effect of Temperature and Strain-Range on Hydrogen Degradation of Directionally Solidified (DS) MAR M-246 (Hf Modified) Strain- Control Low-Cycle Fatigue Life
V-6	Load-Control Low-Cycle Fatigue Life of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig) Helium and Hydrogen at 1033°K (1400°F)
V-7	Load-Control Low-Cycle Fatigue Life of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig) Helium and Hydrogen at 1144°K (1600°F)
V-8	Effect of Temperature and Maximum Stress on Hydrogen Degradation of Conventionally Cast MAR M-246 (Hf Modified) Load-Control Low- Cycle Fatigue Life
V-9	Macrographs and Micrograph of Fractured Load-Control LCF Specimer LLDS-3, Tested in Helium, Which Has an Internal Fatigue Origin.
V-10	Open Extensometer Head Assembly and Strain-Control Low-Cycle Fatigue Specimen
V-11	Low-Cycle Fatigue Test Machine Environmental Controls and Data Acquisi tion Equipment
V-12	Setups of Low-Cycle Fatigue Test Vessel
V-13	A Typical Series of Hysteresis Loops Generated During an Actual Strain Control Low-Cycle Fatigue Test
V-14	A Typical Series of Load-Cycles Generated During an Actual Load-Contro Low-Cycle Fatigue Test

3

!

PAGE

ILLUSTRATIONS (Continued)

1

١

FIGURE		ł
VI-1	Stress Rupture of Directionally Solidified (DS) MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig) Helium and Hydrogen at 1033°K (1400°F) and 1144°K (1600°F)	
VI -2	Effect of Temperature on Hydrogen Degradation of Directionally Solidified (DS) MAR M-246 (Hf Modified) Stress-Rupture Life	
VI -3	Creep Stress-Rupture of Directionally Solidified (DS) MAR M-246 (Hf Modified) in 1033°K (1400°F) 34.5 MN/m ² (5000 psig) Gaseous Environment at 758.4 MN/m ² (110 ksi) Stress	
VI-4	Creep Stress-Rupture of Directionally Solidified (DS) MAR M-246 (Hf Modified) in 1033°K (1400°F) 34.5 MN/m ² (5000 psig) Gaseous Environment at 792.9 MN/m ² (115 ksi) Stress	
VI-5	Creep Stress-Rupture of Directionally Solidified (DS) MAR M-246 (Hf Modified) in 1144°K (1600°F) 34.5 MN/m ² (5000 psig) Gaseous Environment	
VI-6	Creep Stress-Rupture of Directionally Solidified (DS) MAR M-246 (Hf Modified) at 1144°K (1600°F) in 34.5 MN/m ² (5000 psig) Gaseous Environment	
VI-7	Stress-Rupture of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig) Helium and Hydrogen at 1033°K (1400°F) and 1144°K (1600°F)	
VI-8	Creep Stress-Rupture of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig) Helium at 1033°K (1400°F)	
VI-9	Creep Stress-Rupture of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 1144°K (1600°F) 34.5 MN/m² (70 ksi) Stress	
VI-10	Creep Stress-Rupture of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 1144°K (1600°F) 34.5 MN/m² (5000 psig) Gaseous Environment at 413.7 MN/m² (60 ksi) Stress	
VI-11	Creep-Rupture Machine, With Pressure Vessel Installed, Located in Test Cell	
VI-12	Setups of Creep-Rupture Pressure Vessel	
VI-13	Creep Extensometer Systems	•
VI-14	Creep vs Time Chart Record for MAR M-246 (Hf Modified) Specimen in High Pressure Environment	1

ť

1

5

,

÷

TABLES

;

1

i

TABLE		PAGE
I-1	Exhibit "B" Experimental Smooth Tensile Test Program for Various Alloys in 34.5 MN/m² (5000 psig) Gaseous Environments	I-2
I-2	Exhibit "C" Experimental Test Outline for MAR M-246 (Hf Modified) in Air and 34.5 MN/m ² (5000 psig) Gaseous Environment	I-3
II- 1	Degree of Environmental Degradation on Exhibit B Smooth Tensile Proper- ties of Various Alloys in 34.5 MN/m ² (5000 psig) Hydrogen	II-2
II-2	Degree of Environmental Degradation of Exhibit C MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig) Gaseous Hydrogen	II -2
III-1	Government Furnished Materials Used to Determine the Susceptibility of Various Alloys to Environmental Degradation	III-2
III-2	Chemical Composition of Materials Used to Determine the Susceptibility of Various Alloys to Environmental Degradation	III -3
III-3	Specimens Used to Determine the Susceptibility of Various Alloys to Environmental Degradation	Ш-3
IV-1	Degradation of Smooth Tensile Properties of Various Alloys in 34.5 MN/m ² (5000 psig) Hydrogen	IV-2
IV-2	Tensile Properties of Various Alloys in 34.5 MN/m ² (5000 psig) Gaseous Environments	IV-11
IV-3	Individual Specimen Stress-Strain Parameters of Forged TMP WASPALOY in 34.5 MN/m² (5000 psig) Gaseous Environment	IV-19
IV-4	Individual Specimen Stress-Strain Parameters of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig) Gaseous Environment	IV-21
IV-5	Individual Specimen Stress-Strain Parameters of Directionally Solidified (DS) MAR M-246 (Hf Modified) in 34.5 MN/m² (5000 psig) Gaseous Environment	IV-23
IV-6	Individual Specimen Stress-Strain Parameters of Inconel 625 Plate in 34.5 MN/m ² (5000 psig) Gaseous Environmen	IV-25
IV-7	Individual Specimen Stress-Strain Parameters of Cast Inconel 625 MN/m ² (5000 psig) Gaseous Environment	IV-27
IV-8	Individual Specimen Stress-Strain Parameters of Haynes 188 Plate, with Inconel 718 STA Heat Treatment, in 34.5 MN/m ² (5000 psig) Gaseous Environment	
IV-9	Individual Specimen Stress-Strain Parameters of Inconel 718 Plate in 34.5 MN/m² (5000 psig) Gaseous Environmen	IV-31
IV-10	Degradation of Ambient Air Tensile Properties of MAR M-246 (Hf Modified) After 8-Hour 1144°K (1600°F) 34.5 MN/m² (5000 psig) Gaseous Hydrogen Exposure	5

) T

ł

÷.

TABLES (Continued)

1

÷

TABLE		PAGE
IV-11	Tensile Properties of MAR M-246 (Hf Modified) After 8-Hour 1144°K (1600°F) 34.5 MN/m² (5000 psig) Gaseous Environment Exposure	IV-37
V-1	Degradation of MAR M-246 (Hf Modified) Low-Cycle Fatigue Life Due to 34.5 MN/m² (5000 psig) Hydrogen Environmen	V-2
V-2	Strain-Control Low-Cycle Fatigue Properties of Directionally Solidified (DS) MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig) Helium and Hydrogen	V-5
V-3	Load-Control LCF Properties of MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig) Helium and Hydrogen	V-7
VI-1	Degradation of Stress-Rupture Life of MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig) Hydrogen Environment	VI-1
VI-2	Creep-Rupture Properties of MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig) Gaseous Environments	VI-8

SECTION I INTRODUCTION

This report is submitted in accordance with the requirements of Contract NAS8-30744 and represents a final report covering work performed under Exhibit B - "Tensile Properties of Several Nickel Alloys in Hydrogen at Elevated Temperatures," and Exhibit C - "Mechanical Properties of a Nickel Alloy in Hydrogen at Elevated Temperature." Additional work is being performed on several nickel-base alloys under a modification to this contract; Exhibit D -"Mechanical Properties of Several Nickel Alloys In Hydrogen at Elevated Temperatures." The work under this modification will be discussed in a subsequent final report. The Exhibit A effort of this contract, covering properties of Incoloy 903 in various heat-treat and welded conditions was documented in Pratt & Whitney Aircraft Report FR-7175, "Influence of Gaseous Hydrogen on the Mechanical Properties of Incoloy 903," September 1975.

Experimental efforts under Exhibit B have consisted of a total of i12 tensile tests of six nickel-base and one cobalt-base alloy in 34.5 MN/m² (5000 psig) helium and hydrogen environments at temperatures from 297°K (75°F) to 1088°K (1500°F). For the Exhibit C efforts 77 mechanical properties tests of the nickel-base alloy MAR M-246 (Hf modified), in two cast conditions, were conducted in gaseous environments at temperatures from 297°K (75°F) to 1144°K (1600°F) and pressures from one atmosphere to 34.5 MN/m² (5000 psig).

The objective of this program was to obtain the mechanical properties of the various alloys proposed for use in space propulsion systems in a pure hydrogen environment at different temperatures and to compare with the mechanical properties in helium at the same conditions.

The overall Exhibit B and C test programs, including types, conditions, and numbers of tests conducted, are outlined in tables I-1 and I-2, respectively. The primary goal of these tests was to document, rather than define, the hydrogen phenomenon and provide limited engineering data for use in designing structures exposed to pressurized gaseous hydrogen environments.

All testing was conducted on solid specimens exposed to external gaseous pressure. Specific mechanical properties determined and the testing methods used are summarized below:

- 1. Tensile Smooth and notched tensile properties were determined using ASTM tensile testing techniques.
- 2. Low-Cycle Fatigue Low-cycle fatigue life was established by constant total stain and constant stress testing using smooth specimens and a closed-loop test machine.
- 3. Creep-Rupture Creep-rupture life was determined using ASTM creeprupture techniques.

This report is arranged in sections that cover the program conclusions, material tested, and results and conclusions of the individual property tests. It includes and centralizes the nickelbase alloys information covered in the monthly progress reports previously issued under the contract.

The International System of Units (SI) is used as the primary system of units for reporting specimen and test parameters and results. Customary English units are included in parenthesis following the SI units, or in separate columns in data tables. The customary system of units was used for the principal measurements and calculations and results converted to SI units for reporting purposes.

į

1

÷

Material	Form	Test °K	Temp. °F	Environment	Number of Tests
TMP WASPALOY ⁸	Forged	297	75	He	1
		297	75	H ₂	3
		589	600	He	1
		589	600	H ₂	3
		755	900	He	1
		755	900	Η,	3
		922	1200	He	1
		922	1200	H,	3
MAR-M-246	Conventionally	297	75	He	1
(Hf Modified)	Cast (CC)				
(m) Montien)	Cast (CC)	297	75	H ₂	3
		755	900	He	1
		755	900	Н,	3
		922	1200	He	1
		922	1200	H,	3
		1088	1500	He	I
		1088	1500	H,	3
MAR-M-246	Directionally Solidified	297	75	He	1
(Hf Modified)	Cast (DS)	297	75	Н,	3
		755	900	He	1
				H,	3
		755	900		
		922	1200	He	1
		922	1200	Η,	3
		1088	1500	He	1
		1088	1500	H ₂	3
Inconel 625	Plate	297	75	He	1
	Thate				3
		297	75	H ₂	
		589	600	He	1
		589	600	H_r	3
		755	900	He	1
		755	900	H.	3
				•	
		$\frac{922}{922}$	$\frac{1200}{1200}$	He H,	1
T base	0			·	
Inconel 625	Cast	297	75	He	1
		297	75	Н,	3
		589	600	He	1
		589	600	Н,	3
		755		He	., 1
			900		
		755	900	Н,	3
		922	1200	He	1
		922	1200	H ₂	3
Haynes 188	Plate	297	75	He	1
(Inconel 718		297	75	H,	3
STA)					1
31/0		589	600	He	
		589	600	H ₂	3
		755	900	He	1
		755	900	Н,	3
		922	1200	He	1
		922	1200	H,	å
Inconel 718	Plate	297	75	He	1
Incongrate	i latte				
		297	75	н,	3
		589	600	He	1
		589	600	Н,	3
		755	900	He	1
		755	(XX)	H,	3
		922	1200	He	1
		922	1200	H,	

Table I-1.	Exhibit "B" Experimental Smooth Tensile Test Program for
	Various Alloys in 34.5 MN/m ² (5000 psig) Gaseous Environ-
	ments

ORIGINAL PAGE IS OF POOR QUALITY

ì

ł

:

FR-7746

					Nu	mber of Te	ests	
Material Form	Test Temperature °K °F		Test Environment	Creep Rupture	Low-Cycle Fatigue Strain Load Control Control		Smooth Tensile	Notch Tensile
Directionally								
Solidified (DS)	297	75	Air ¹				\$ 2	3 2
	297	75	Air ²				° 2	3 2
	297	75	Air ¹				•1	•1
	297	75	Air ²				•1	41
	1033	1400	Helium	2	2	1		
	1033	1400	Hydrogen	4	4	1		
	1144	1600	Helium	3	2	1		
	1144	1600	Hydrogen	4	4	1		
Conventionally								
Cast (CC)	297	75	Air ¹				°2	3 2
	297	75	Air ²				* 2	* 2
	297	75	Air ¹				•1	•1
	297	75	Air ²				•1	•1
	1033	1400	Helium	2		2		
	1033	1400	Hydrogen	4		4		
	1144	1600	Helium	2		2		
	1144	1600	Hydrogen	4		4		

Table I-2.	Exhibit "C ' Experimental Test Outline for MAR-M-246 (Hf Mod-
	ified) in Air and 34.5 MN/m ² (5000 psig) Gaseous Environment

¹Tested in air, one atmosphere, immediately after opening vessel.

² Tested in air, one atmosphere, 24 hours after opening vessel. ³ Specimens exposed to 34.5 MN/m² (5000 psig) hydrogen at 1144°K (1600°F) for 8 hours prior to air test.

* Specimens exposed to 34.5 MN/m² (5000 psig) helium at 1144°K (1600°F) for 8 hours prior to air test.

This program was conducted using the Program Manager - Project Group System by the Pratt & Whitney Aircraft Group, Government Products Division, Materials Development Laboratory, under the cognizance of Mr. W. B. McPherson, Metallurgy Branch, Materials & Process Laboratory, Marshall Space Flight Center. John A. Harris, Jr. was the Pratt & Whitney Program Manager for the effort.

Acknowledgement is given to the following personnel of the Project Group.

J. Mucci	-	Technical Supervision and Report Efforts
J. A. Doyle	-	Tensile and Creep Testing
A. F. Kirkpatrick	-	Proposal and Report Efforts
M. W. Shiell	-	Proposal and Report Efforts
C. B. Stevens	-	Metallurgical Investigations
J. R. Warren	-	Low-Cycle Fatigue Testing
M. Zaccagnino	-	Proposal and Report Efforts

ORIGINAL PAGE IS OF POOR QUALITY

¹ R-7746

SECTION II CONCLUSIONS

A. GENERAL

The efforts in this program have consisted of conducting various tests to determine the mechanical properties of one cobalt-base and six nickel-base alloys in various forms and/or heat-treat condition that are proposed for use in a high-pressure hydrogen environment. Properties determined in the hydrogen environment were compared to properties in a helium environment at the same conditions to establish environmental degradation.

The following system was established to determine the degree of degradation and serve as an aid in comparing the various alloys:

- 1. Extremely Degraded (ED) Hydrogen environment reduced the property or life (in helium) greater than 50° ?
- 2. Severely Degraded (SD) Hydrogen environment reduced the property or life (in helium) greater than 25%, but less than 50%.
- 3. Degraded (D) Hydrogen environment reduced the property or life (in helium) greater than 10%, but less than 25%.
- 4. Negligible Degradation (ND) Hydrogen environment reduced the property or life (in helium) less than 10% or had no detrimental effect.

Using this rating system, table II-1 displays the degree of degradation for the Exhibit B alloys. The degree of degradation for the MAR M-246 (Hf Modified), in both the conventionally cast (CC) and directionally solidified (DS) forms, covered under the Exhibit C effort, is shown in table II-2. In the case of the tensile tests, if any property (yield strength, smooth or notched ultimate strength, elongation and reduction of area) was degraded, the degradation rating was that of the most severely degraded property.

Detailed conclusions are presented in the various sections pertaining to types of tests. General conclusions are presented below.

B. EXHIBIT B TENSILE PROPERTIES

Tested were:

TMP WASPALOY® MAR M-246 (Hf Modified) CC MAR M-246 (Hf Modified) DS Inconel 625 cast Inconel 625 plate Haynes 188 (Inconel 718 STA heat treatment) Inconel 718

The prime effect of hydrogen upon tensile properties was the degradation of ductility. The elongation and reduction of area were affected for most of the alloys. No alloy's yield strength was affected. The degradation ratings and the discussion below are therefore based primarily upon ductility effects.

1

FR-7746

		-	'est	
			perature	
Material	Form	° <i>K</i>	<u>°F</u>	Degradatior
TMP WASPALOY*	Forged	297	75	ED
		589	600	ED
		755	900	ED
		922	1200	SD
MAR M-246	Conventionally Cast	297	75	ED
(Hf Modified)	(CC)	755	900	ED
		922	1200	SD
		1088	1500	ED
MAR M-246	Directionally	297	75	ED
(Hf Modified)	Solidified (DS)	755	900	SD
		922	1200	ED
		1088	1500	SD
Inconel 625	Plate	297	75	D
		589	600	ND
		755	900	ND
		922	1200	ND
Inconel 625	Cast	297	75	SD
		589	600	D
		755	900	ND
		922	1200	ND
Haynes 188	Plate	297	75	ED
(Inconel 718		5 89	600	SD
STA)		755	900	ND
		922	1200	ND
Inconel 718	Plate	297	75	D
		589	600	ED
		755	900	SD
		922	1200	D

Table II-1. Degree of Environmental Degradation on Exhibit B Smooth Tensile Properties of Various Alloys in 34.5 MN/m² (5000 psig) Hydrogen

Table II-2. Degree of Environmental Degradation of Exhibit C MAR M-246 (Hf Modified) in 34.5 MN/m² (5000 psig) Gaseous Hydrogen

						Low Cyc	ie Fatigue
	Ť	est	Creep	Internal Hydroger	n Embrittlement	Load	Strain
	Temp	erature	Rupture ¹	Smooth Tensile	Notch Tensile	Control	Control
Material Form	°K	°F	(C- R)	(ST)	(NT)	(LCF)	(LCF)
Directionally Solidified (DS)	1033 1144	1400 1600	SD ND to ED*	SD ² ,ED ³	ND ² ,D ³	ED ED	ND ND
Conventionally Cast (CC)	1033 1144	1400 1600	ED ED	ED ² ,ED ³	SD^{2},D^{3}	SD ED	

¹ Degradation based on average of percent changes in rupture life at stress levels shown in table VI-1. ² Degradation in 297°K (75°F) air properties after 8-hour 1144°K (1600°F) hydrogen exposure (degradation

based on helium exposed material).

³Degradation in 297°K (75°F) air properties after 8 hour 1144°K (1600°F) hydrogen exposure and subsequent 24 hour ambient air set time (degradation based on helium exposed material also with 24 hour ambient air set time).

*Degradation may be stress/time dependent. (See Section VI.B.)

FR-7746

The alloys most susceptible to hydrogen degradation were the CC and DS MAR M-246 (Hf Modified) and TMP WASPALOY. They exhibited severe to extreme degradation in tensile properties at all the temperatures evaluated.

The nickel-base alloy Inconel 625 was the least degraded alloy tested. In fact, in the wrought form (plate) relative immunity to hydrogen degradation was exhibited. The cast Inconel 625 was negligibly degraded at the higher test temperatures $\{755^{\circ}K (900^{\circ}F) \text{ and } 922^{\circ}K (1200^{\circ}F)\}$ and degraded up to the severe degree at the lower temperatures $\{297^{\circ}K (75^{\circ}F) \text{ and } 589^{\circ}K (600^{\circ}F)\}$. A similar trend was exhibited for the cobalt-base alloy Haynes 188, except that at the lower temperatures generally greater degradation occurred.

Inconel 718 was degraded to a certain extent at all temperatures tested with the maximum reduction in tensile properties occurring at 589°K (600°F).

The materials exhibited the previously noted trend of lessening degradation with increasing temperature, with the greatest degree of degradation generally occurring at the lower test temperatures.

C. EXHIBIT C

Tested were:

MAR M-246 (Hf Modified) CC MAR M-246 (Hf Modified) DS

1. Internal Hydrogen Embrittlement (IHE)

Severe to extreme degradation was exhibited in the $297 \,^{\circ}$ K ($75 \,^{\circ}$ F) smooth tensile properties of both the CC and DS materials due to 8-hr 1144°K ($1600 \,^{\circ}$ F) 34.5 MN/m² (5000 psig) hydrogen exposure. The notch tensile strength of both materials was degraded from negligible to severe due to the same exposure.

2. Low-Cycle Fatigue

The DS material did not exhibit any significant degradation in strain control LCF life at 1033° K (1400°F) and 1144° K (1600°F) due to the hydrogen environment. However, the load control LCF life was extremely degraded at both test temperatures. (See Section V.)

Load control LCF life of the CC material was severely and extremely degraded at 1033°K (1400°F) and 1144°K (1600°F), respectively, due to hydrogen environment.

3. Creep-Rupture (CR)

The CC material rupture life was extremely degraded at 1033° K (1400° F) and 1144° K (1600° F) due to 34.5 MN/m^2 (5000 psig) hydrogen environment. For the DS material, rupture-life was werely degraded at 1033° K (1400° F). At 1144° K (1600° F), CR testing of the DS material indicated extreme degradation in life at the higher stress level. At the lower stress level greater rupture life in hydrogen than in helium was exhibited, indicating no degradation due to the hydrogen environment, or possibly some unique helium interaction at this temperature. It appears that at 1144° K (1600° F), degradation of this cast alloy is stress/time dependent (See Section VI).

FR-7746

D. DISCUSSION

This program was established to determine selected material properties and to enable general observations in regard to the susceptibility of the various alloys to hydrogen degradation. We have observed that all seven alloys were degraded in some properties to a certain extent for the test conditions evaluated. However, testing conducted was of necessity very limited, and conclusions as to the degree of degradation may be determined to be incorrect by additional investigations. These efforts were designed primarily to obtain specific information for select materials and conditions occurring in space vehicle propulsion systems. As such, the information contained herein will enable component design and evaluation with a greater degree of confidence. While answering questions concerning specific applications, many more questions, such as elevated temperature helium interactions, have been raised. Continued programs, including basic research, will be required to explain the mechanisms at work in environmental degradation of materials.

SECTION III MATERIALS AND SPECIMENS

A. TEST MATERIAL

The purpose of this program was to determine the susceptibility of six nickel-base alloys and one cobalt-base alloy to environmental degradation. Testing evaluated the mechanical properties of the materials in various forms and heat-treat conditions. All test materials were supplied in the fully heat-treated condition, where applicable, in specimen blank configuration by the Marshall Space Flight Center. Table III-1 lists the various materials, their as-received forms and heat-treat conditions, and the types of tests performed. Chemical compositions are listed in table III-2 and typical microstructures are shown in figure III-1.

B. TEST GASES

Helium and hydrogen were used during the testing of specimens, and nitrogen was used as a preliminary purge gas. Propellant grade hydrogen was provided under Military Specification P-27201, which requires the gas to have an oxygen content of less than 1 part per million. Analysis verified gas to be of this purity. The helium and hydrogen gases were used directly to provide the test environments.

Gas handling systems, supplying the test vessels, were equipped to enable sampling before and after specimen tests. The hydrogen was sampled extensively. Samples were analyzed using a gas chromatograph with accuracy in the parts per billion range. No appreciable difference was noted between pretest and post-test samples, indicating no gas contamination by the test rig and/or test itself.

C. TEST SPECIMENS

All specimens were machined by the Pratt & Whitney Aircraft Group, Materials Laboratory Machine Shop and finished to an average roughness of $16 \cdot \mu in$. rms, or less. The notch used for the tensile specimen to obtain a stress concentration of 8.0 conforms with Peterson¹ and was machined by grinding.

A typical set of specimens is listed in table III-3 and shown in figure III-2. Specimen prints are shown in figures III-3 through III-10.

R.E. Peterson, "Stress Concentration Design Factors," John Wiley & Son, Inc., New York, 1974.

 Table III-1. Government Furnished Materials Used to Determine the Susceptibility of Various Alloys

 to Environmental Degradation

ľ

				As Tested Condition	E
Material	Form	Vendor	Heat No.	(Heat Treatr ent)	Types of Tests
TMP WASPALOY® Forged	Forged	Special Metals 92721	92721	1283°K (1850°F), 2 hr, WQ+ 1116°K (1550°F), 4 hr, AQ+ 1033°K (1400°F), 16 hr, AC+ 922°K (1200°F), 24 hr, AC	ST
MAR M-246 (Hf Modified)	Conventionally Cast Conventionally Cast Conventionally Cast	Austenal Austenal Austenal	167B 2649 L99-HPN L99-HBE	As Cast As Cast As Cast	ST.IHE.CR LCF LCF
MAR M-246	Directionally Solidified Austenal	Austenal	DE-002	1494°K (2230°F), 2 hr, FC+	ST
(Hf Modified)	Directionally Solidified Austenal	Austenal	DE-003	Same as DE-002	IHE,LCF.CR
Inconel 625	Plate	Picco/Teledyne DF-2	DF-2	1255°K (1800°F), 2 hr, AC	ST
Inconel 625	Cest	Reisner Metals NX9052A	NX9052A	1422°K (2100°F), 2 hr, FC	ST
Haynes 188	Plate	Stellite	1880-1-0167	1880-1-0167 Same as Inconel 718	\mathbf{ST}
Inconel 718	Plate	Special Metals 83148-1	8:3148-1	1311°K (1900°F), 1 hr. AC+ 1033°K (1400°F), 10 hr. AC+ 922°K (1200°F), 10 hr. AC	sT
Types of Tests: ST	- Smooth Tensile - Internal Hydrogen Embrittlement	Emhrittlement			
CR					

Pratt & Whitney Aircraft Group FR-7746

Chemical Composition of Materials Used to Determine the Susceptibility of Various Alloys to Environmen-	tal Degradataion
Table III-2. Chen	tal L

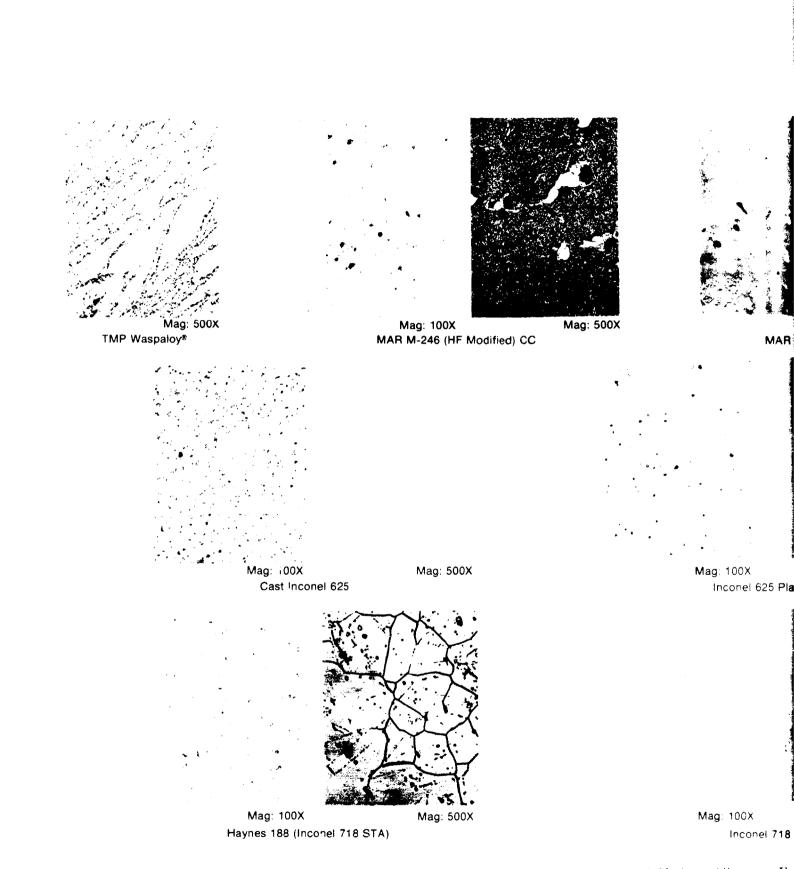
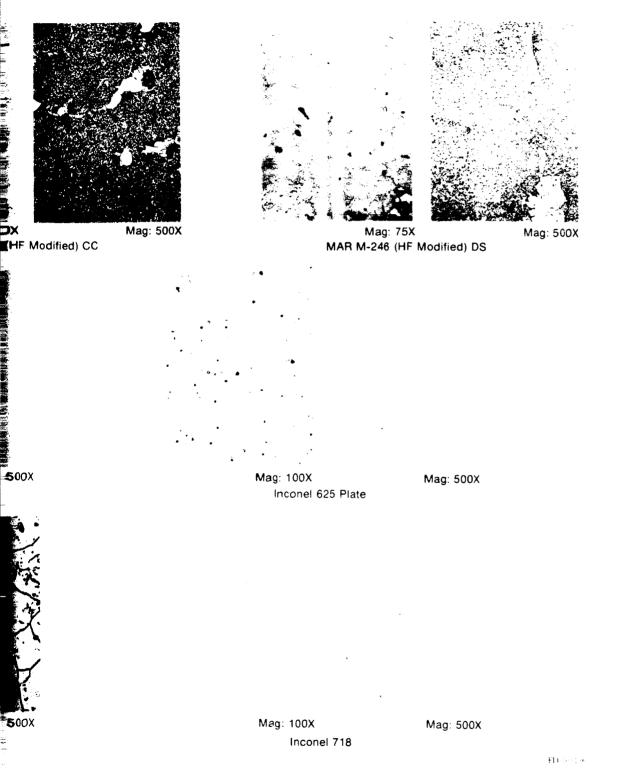

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										5	o u o u o u o		DOLLION		WELKAG							
rial Form Her: No A I Ca N Mo A I Ca I													ŀ		С, Г,	5		20	M		В	Hf La
ALOVA Forged 92721 0.041 0.06 0.061 0.081 19.55 Bal 4.14 1.20 2.99 0.01 0.84 1.381 0.07 ALIOYA Forged 92721 0.041 0.06 0.013 8.85 Bal 2.30 5.68 1.57 <0.1 0.08 1.69 10.66 9.45 0.07 ed) Cast L99-HBC 0.14 <0.01 0.0013 8.89 Bal 2.30 5.68 1.67 0.10 0.03 9.45 0.07 ed) Cast L99-HBC 0.14 <0.05 0.01 0.0013 8.89 Bal 2.31 5.50 1.68 1.60 10.0 9.29 0.07 ed) DE-002 0.14 <0.05 0.01 0.0013 8.99 Bal 2.34 5.50 1.68 1.40 10.0 9.29 0.07 ed) DE-002 0.14 <0.04 0.01 0.002 8.61 8.	Matarial	Form	Heat No.		2	Mn	a.,	x	Ŀ	Ñ	M0	A (-								000	
i Conventionally 167B 2649 0.14 <0.05 0.01 0.0013 8.85 Bal 2.30 5.68 1.67 <0.0 1.69 10.66 9.45 0.07 ed) Cast L99-HPN 0.14 <0.01 <0.01 0.0013 8.94 Bal 2.34 5.50 1.55 <0.1 0.13 1.40 10.0 9.20 0.07 ed) Use-HPN 0.14 <0.01 <0.01 0.0013 8.94 Bal 2.34 5.50 1.55 <0.1 0.13 1.40 10.0 9.20 0.07 bed DE-002 0.14 <0.05 0.01 0.0018 8.90 Bal 2.34 5.50 1.55 <0.1 0.13 1.40 10.0 9.20 0.07 ed) DE-002 0.14 <0.04 0.01 0.002 8.61 Bal 2.27 5.74 1.61 <0.05 0.01 9.04 0.05 9.64 0.05 Plate DF-2 0.04 0.01 0.007 0.002 8.13 0.24 0.24 </td <td>WD WASPALOY</td> <td>Forged</td> <td>92721</td> <td></td> <td>0.06</td> <td>0.03</td> <td>0.005</td> <td>0.003</td> <td>19.55</td> <td>Bal</td> <td>4.14</td> <td>1.20</td> <td>2.99</td> <td>0.01</td> <td>0.84</td> <td></td> <td>, -</td> <td>13.81</td> <td>0</td> <td></td> <td>0.006</td> <td></td>	WD WASPALOY	Forged	92721		0.06	0.03	0.005	0.003	19.55	Bal	4.14	1.20	2.99	0.01	0.84		, -	13.81	0		0.006	
i Conventionally 167B 2649 0.14 < 0.00 0.000 0.00 <th0.00< th=""> 0.00 0.00<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6000</td><td>0 00</td><td>100</td><td>06.6</td><td>5, G2</td><td>191</td><td>107</td><td>0.08</td><td></td><td></td><td></td><td></td><td>-</td><td>_</td><td>.94</td></th0.00<>								6000	0 00	100	06.6	5, G2	191	107	0.08					-	_	.94
ed) Tast L39-HF 0.14 < 0.1 < 0.01 0.0018 8.90 Bal 2.60 5.50 1.68 < 0.1 0.10 9.20 0.07 c) Directionally DE-002 0.14 < 0.01 0.0018 8.90 Bal 2.27 5.74 1.61 < 0.05 0.10 9.29 0.06 ed) Solidified DE-002 0.14 < 0.04 0.01 0.002 8.61 Bal 2.27 5.74 1.61 < 0.05 1.40 10.78 9.64 0.052 ed) Solidified DE-003 0.14 < 0.01 0.002 8.61 Bal 2.48 5.51 1.72 0.01 0.078 9.64 0.052 ed) Plate DF-2 0.048 0.01 0.007 0.007 21.42 Bal 2.48 5.51 1.72 0.01 1.70 10.78 9.64 0.052 reat DF-2 0.048 <th0.01< th=""> 0.007 21.42<td>AAR M-246</td><td>Conventionally</td><td>167B 2649</td><td>0.14</td><td>40.0 V</td><td>10.0</td><td></td><td>0.0013</td><td>00.0 70.0</td><td>Bal</td><td>200</td><td>5.50</td><td>1.55</td><td><0.1</td><td>0.13</td><td></td><td></td><td></td><td></td><td>-</td><td>0.014 1</td><td>8</td></th0.01<>	AAR M-246	Conventionally	167B 2649	0.14	40.0 V	10.0		0.0013	00.0 70.0	Bal	200	5.50	1.55	<0.1	0.13					-	0.014 1	8
i Directionally DE-002 0.14 <0.05 0.01 0.025 8.91 Bal 2.27 5.74 1.61 <0.05 0.07 1.70 10.38 9.50 0.066 0.06 0.002 8.61 Bal 2.48 5.51 1.72 0.01 0.28 1.40 10.78 9.64 0.052 0.05 0.05 0.07 1.40 10.78 9.64 0.052 0.05 0.06 0.078 9.51 1.72 0.01 0.28 1.40 10.78 9.64 0.052 0.052 0.05 0.05 0.07 1.72 0.01 0.078 9.64 0.052 0.053 0.056	(Hf Modified)	(ast	L99-HBE	0.16	-0.1 	<0.01 <0.01		0.0018	8.90	Bal	2.60	5.50	1.68	< 0.1	0.18					-		6
³ Directionally DE-002 0.14 < 0.05 0.01 0.002 8.61 Bal 2.48 5.51 1.72 0.01 0.28 1.40 10.78 9.64 0.052 ed) Solidified DE-003 0.14 < 0.04 0.01 0.006 0.002 8.61 Bal 2.48 5.51 1.72 0.01 0.28 1.40 10.78 9.64 0.052 ed) Plate DF-2 0.048 0.01 0.01 0.006 0.004 21.42 Bal 9.0 0.34 0.24 0.01 4.17 3.85 0.01 C (3 c) (3								000.0	0.01	١°٦	10.0	5 T.A	1.61	< U 05	0.07			10.88		-	0.014 1	.60
Plate DF-2 0.048 0.01 0.006 0.004 21.42 Bal 9.0 0.34 0.24 0.01 4.17 3.85 0.01 rest NX9052A 0.03 0.015 0.04 0.007 21.73 Bal 8.93 0.26 0.24 2.60 3.55 Plate 1880-1-0167 0.08 0.31 0.7 0.01 0.005 22.4 22.1 1.61 Bal 14.05 plate 1880-1-0167 0.08 0.31 0.7 0.01 0.005 22.4 22.1 1.61 Bal 14.05	AAR M-246 (He Modified)	Directionally Solidified	DE-002 DE-003	0.14 0.14	<0.0^ <0.0 4	0.0		0.002	8.61	Bal	2.48	5.51	1.72	0.01	0.28			10.78			-	.75
Plate DF-2 0.048 0.01 0.006 0.004 21.42 Bal 9.0 0.34 0.24 0.01 4.11 3.50 0.01 Cast NX9052A 0.03 0.015 0.04 0.007 0.007 21.73 Bal 8.93 0.26 0.24 2.60 3.55 Plate 1880-1-0167 0.08 0.31 0.7 0.01 0.005 22.4 22.1 1.61 Bal 14.05 Plate 1880-1-0167 0.08 0.31 0.7 0.01 0.005 22.4 22.1 1.61 Bal 14.05 Diate 1880-1-0167 0.08 0.31 0.7 0.01 0.005 22.4 22.1 1.61 Bal 14.05 Diate 0.00 0.01 0.005 22.4 22.1 1.61 5.3 0.10											:			10 0	L .	9 GE		0.01				
Cast NX9052A 0.03 0.015 0.04 0.007 0.007 21.73 Bal 8.93 0.26 0.24 2.60 3.55 Plate 1880-1-0167 0.08 0.31 0.7 0.01 0.005 22.4 22.1 	nconel 625	Plate	DF-2	0.048	0.01	0.01	0.006	0.004	21.42	Bal	0.0	0.34	0.24	10.0	4.17	0.00		10.0				
Plate 1880-1-0167 0.08 0.31 0.7 0.01 0.005 22.4 22.1 1.61 1.61 Bal 14.05 Plate 1880-1-0167 0.08 0.31 0.7 0.01 0.005 22.4 22.1 1.61 0.55 0.97 0.10 17.7 5.3 0.10	100	,,	NIX ODE 9 A	0.03		0.04	0.007	0.007	21.73	Bal	8.93	0.26	0.24		2.60	3.55						
Plate 1880-1-0167 0.08 0.31 0.7 0.01 0.005 22.4 22.1 1.01 1.01 1.01 1.01 1.01 1.01 1.01	620 19000N														5				14.05			0.03
	Javnes 188	Plate	1880-1-0167	0.08		0.7	0.01	0.005	22.4	22.1					10.1							I
		Diete	81148.1	0.04	010	0.10	0.01	0.003	18.3	54.0	3.0	0.55	0.97	0.10	17.7	5.3		0.10			0.003	

Table III-3. Specimens Used to Determine the Susceptibility of Various Al-loys to Environmental Degrada-tion

11011		
Name	Print No. Figure	Figure
Stress-Strain/Modulus Tensile FML 96311	FML 96311	III-3
Notched Tensile, Variable K.	FML 96312	111-4
Smooth Tensile	FML 95226M	III-5
Notched Tensile, K ₂ = 8	FML 96462	111-6
Creen-Runture	FML 96470	111-7
Creen-Runture	FML 96407	8-III
Constant Strain LCF	FML 95716C	6-III
Load Control LCF	FML 96504	III -10

ORIGINAL PAGE IS OF POOR QUALITY

i



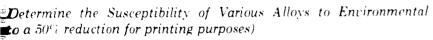
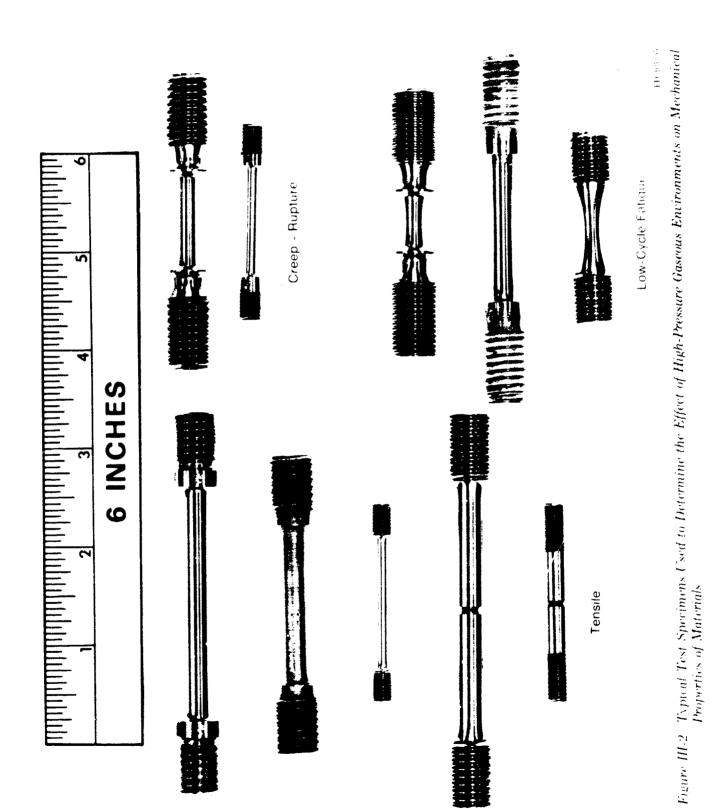

١

Figure III-1. Typical Microstructure of Materials Used to Determine the Susceptibility of Various Alloys to En Degradation (Magnifications indicated are prior to a 50% reduction for printing purposes)

FOLDOUT FRAME /


FR-7746

FOLDOUT FRAME

Pratt & Whitney Aircraft Group FR-7746

-

FR-7746

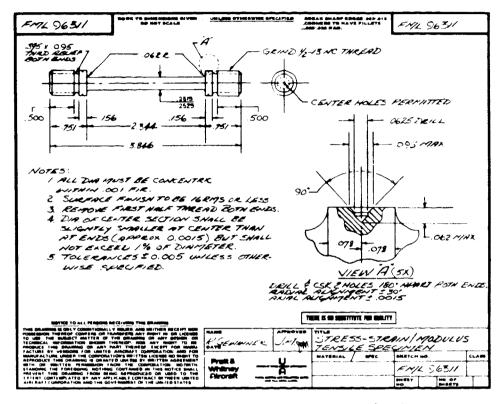


Figure III-3. Stress-Strain/Modulus Tensile Specimen

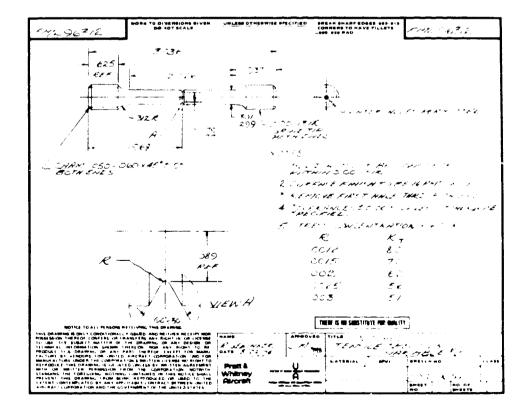


Figure III-4. Notched Tensile Specimen

ORIGINAL PAGE IS

ī.

FR-7746

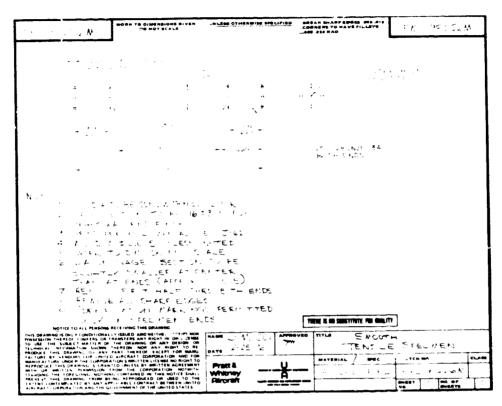
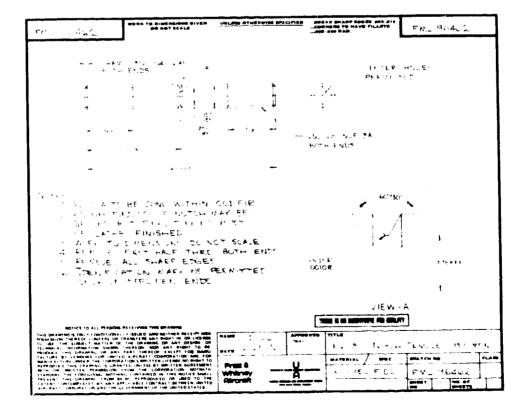
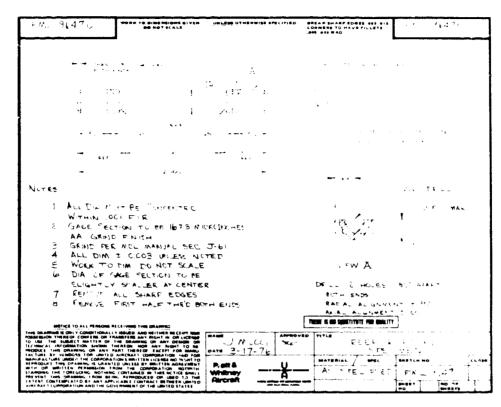
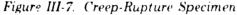
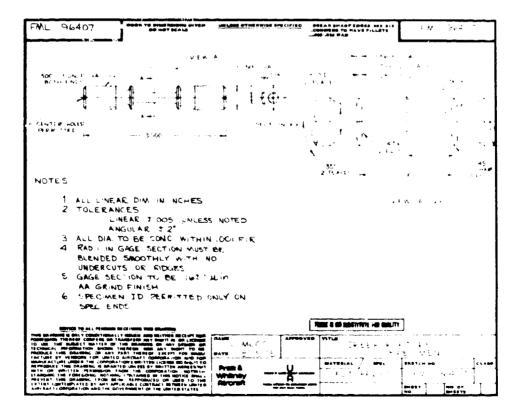
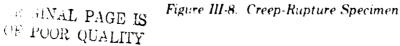


Figure III-5. Smooth Tensile Specimen


Figure III-6. Notched Tensile Specimen


ORIGINAL PAGE IS OF POOR QUALITY

FR-7746

Pratt & Whitney Aircraft Group

FR-7746

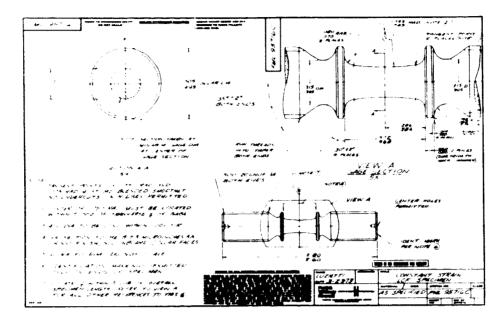


Figure III-9. Constant Strain Low-Cycle Fatigue Specimen

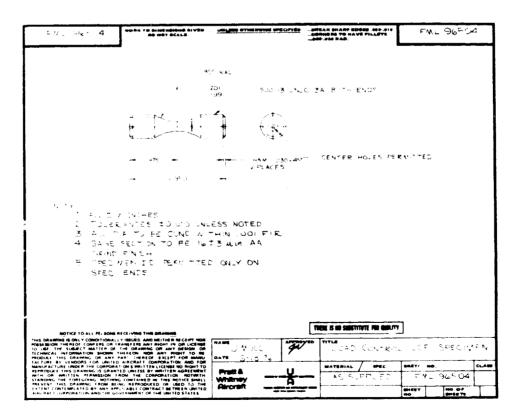


Figure III-10. Load-Control Low-Cycle Fatigue Specimens

ORIGINAL PAGE IS OF POOR QUALITY

FR-7746

SECTION IV

A. INTRODUCTION

The smooth tensile properties of six nickel-base alloys and one cobalt-base alloy were investigated in 34.5 MN/m² (5000 psig) helium and hydrogen at temperatures of 297 °K (75 °F) to 1088 °K (1500 °F) under Exhibit B of this contract. Tensile tests established stress-strain parameters, 0.2° yield and ultimate strengths, elongation, reduction of area, and modulus of elasticity. Results of tests in hydrogen were compared to those in helium to determine property degradation.

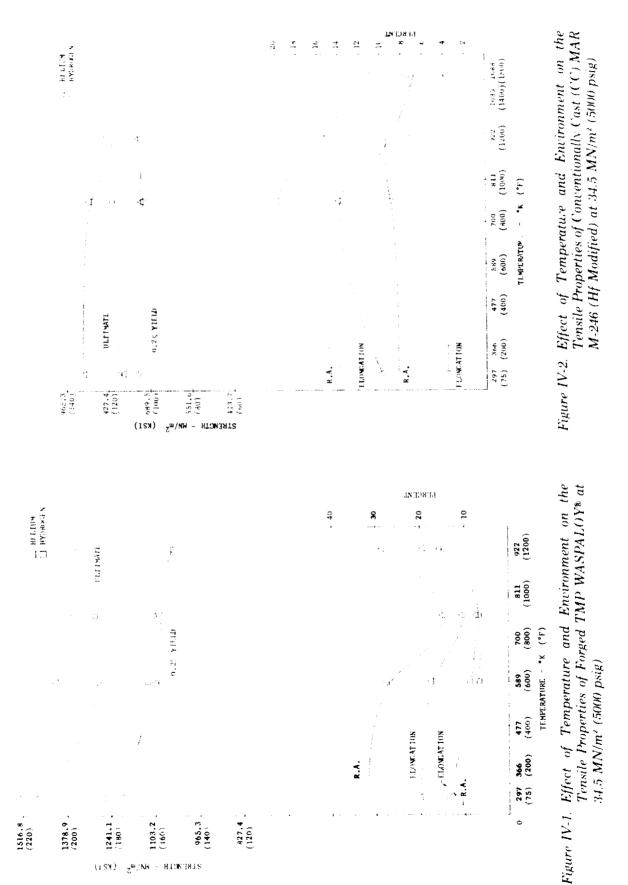
In the Exhibit C effort, tensile properties of the nickel-base alloy MAR M-246 (Hf Modified), in two cast conditions, directionally solidified (DS) and conventionally cast (CC), were determined in ambient temperature and pressure air for helium and hydrogen exposed (34.5 MN/m^2 [5000 psig] at 1144°K [1600°F] for 8 hours) specimens to determine the materials susceptibility to internal hydrogen embrittlement (IHE). Testing was conducted both immediately after exposure and 24 hours later to determine the extent of material internal hydrogen charging and possible property degradation. Smooth tensile tests established 0.2% yield and ultimate strengths, elongation, reduction of area, and modulus of elasticity. Notched ($K_T = 8.0$) tests established the ultimate strength.

B. RESULTS AND CONCLUSIONS

The tensile test data were subjected to a statistical analysis to determine if the measured mechanical properties of the various alloys reflected true environmental degradation or simply data scatter. The results of these analyses were used as the basis for the conclusions herein. In some cases, the experimental test matrix did not have sufficient tests to enable determination of degradation on a statistical basis. This does not mean that there was no degradation; only that it could not be established from a statistical approach.

1. Exhibit B Tensile

The individual tensile properties $(0.2^{c_{\ell}} \text{ yield and ultimate strengths, elongation and reduction of area) of the alloys tested did not reflect the influence of hydrogen environment to the same degree. The relative degree of environment degradation is summarized in table IV-1. None of the alloys tested exhibited degradation in the <math>0.2^{c_{\ell}}$ yield strength. Differences in yield strengths obtained in the two environments did occur. However, with the limited number of tests conducted, one in helium and three in hydrogen for each test condition per alloy, normal specimen-to-specimen scatter, especially for the cast materials, precludes drawing any firm conclusions when the property differences were less than $10^{c_{\ell}}$.


The effects of temperature and environment upon the tensile properties of the one cobaltbase alloy, Haynes 188, and six nickel-base alloys are shown in figu res IV-1 through IV-7. The mean values for three tests conducted in hydrogen environment at each temperature are plotted.

Degradation in ultimate strength for the wrought materials - TMP WASPALOY⁸, Haynes 188 (Inconel 718 STA) and Inconel 718 - over the temperature range investigated was less than 10° with the exception of the Haynes 188 at 297°K (75°F) where degradation of 19.7% was indicated (figure IV-8). For the CC and DS MAR M-246 (Hf Modified), and the plate and cast Inconel 625 materials, ultimate strength degradation of less than 25% over the temperature ranges investigated was indicated. Degradation vs temperature curves for the MAR M-246 and Inconel 625 materials are shown in figures IV-9 and IV-10, respectively.

•

					Degradation e from Hel	ium, c	0	Ratio of
		Tempe	rature	Stren		Duct	ility	Ultimate Strength
Material	Form	°K	°F	0.2° Field	Ultimate	EL	RA	H ₂ /He
TMP WASPALOY®		297	75	ND	ND	27.5	59.0	0.97
IMP WASFALOT*	roigeu	589	600	ND	ND	14.3	67.9	0.91
		755	900	ND	ND	36.5	50.1	0.95
		922	1200	ND	ND	19.7	45.1	0.98
NA 10 NE 040	Constantionally	297	75	ND	15.4	63.3	39.1	0.85
MAR M-246	Conventionally Cast (CC)	755	900	ND	ND	64.3	54.6	0.91
(Hf Modified)	Case(CC)	922	1200	ND	ND	ND	38.7	1.05
		1088	1500	ND	ND	54.2	38.7	0.96
	D	297	75	ND	13.8	83.3	59.7	0.86
MAR M-246	Directionally Solidified (DS)	755	900	ND	12.5	43.3	31.8	0.87
(Hf Modified)	Solidined (DS)	922	1200	ND	ND	44.4	58.1	0.99
		1088	1500	ND	ND	46.7	42.6	0.95
	DI A.	297	75	ND	ND	ND	13.1	0.94
Inconel 625	Plate	589	600	ND	ND	ND	ND	0.97
		755	900	ND	ND	ND	ND	0.94
		922	1200	ND	ND	ND	ND	0.98
1.005	Cast	297	75	ND	22.1	32.5	11.6	6 0.78
Inconel 625	ast	589	600		10.7	ND	ND	0.89
		755	900		ND	ND	ND	0.98
		922	1200		ND	ND	NE	0.96
11 100	Plate	297	75	ND	19.7	62.8	3 9 .7	7 0.80
Haynes 188	Plate	589	600		ND	26.3	25.3	3 0. 9 3
(Inconel 718		755	900		ND	ND	NI) 0.99
STA)		922	1 200		ND	ND	NI	0.94
I	Plate	2 9 7	75	ND	ND	ND	18.	
Inconel 718	LIMIC	589	600		ND	53.5	58.	
		755			ND	19.3	43.	
		922			ND	ND	11.	9 0.99

Table IV-1. Degradation of Smooth Tensile Properties of Various Alloys in 34.5 MN/m² (5000 psig) Hydrogen

1

ţ

.....

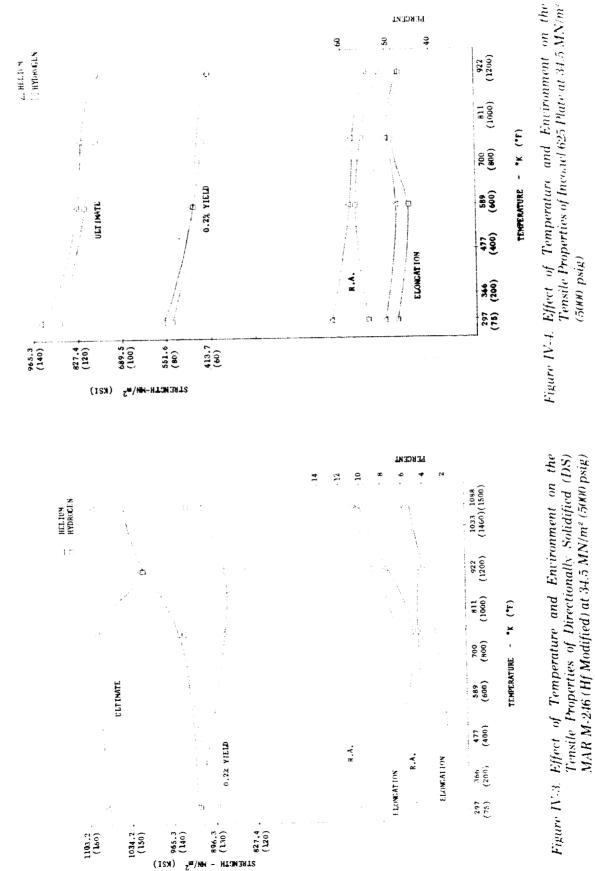
ì

1

1

ł

ļ


ŝ

Pratt & Whitney Aircraft Group FR-7746

ł

(

i

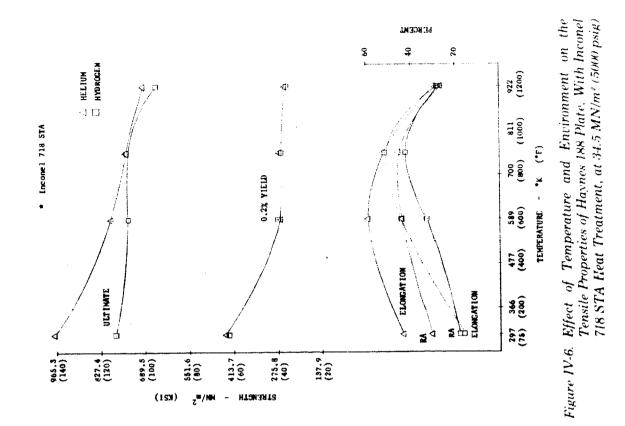
ł

I

I

1

1 + +


-

. .

. .

IV-4

Pratt & Whitney Aircraft Group FR-7746

「ます」「大学のないない」のころ

I

I

I

1

4

...

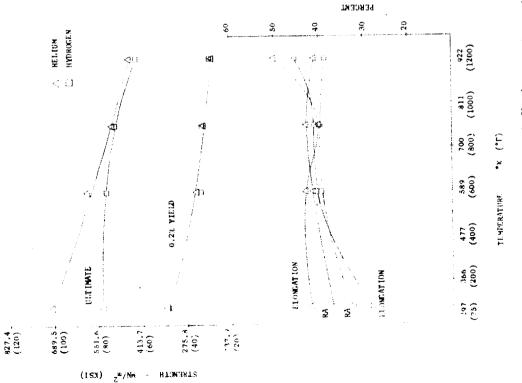
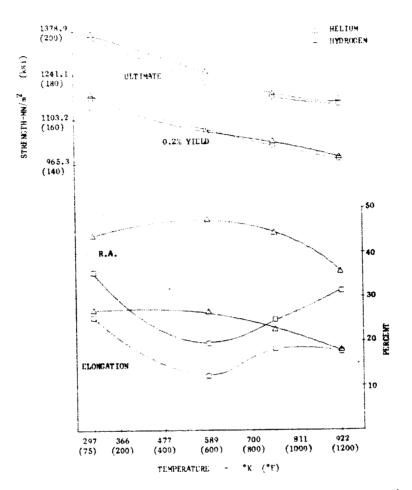
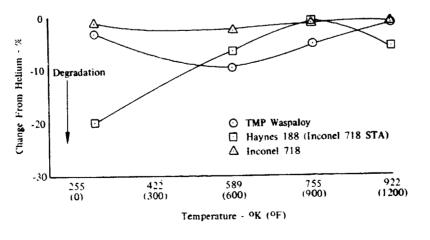



Figure IV-5. Effect of Temperature and Environment on the Tensile Properties of Cast Inconel 625 at $34.5 \ MN/m^2$ (5000 psig)


Pratt & Whitney Aircraft Group

FR-7746

HARTHAN MALANTING

Figure IV-7. Effect of Temperature and Environment on the Tensile Properties of Inconel 718 Plate at 34.5 MN/m² (5000 psig)

DE 10.58

Figure IV-8. Effect of Temperature Upon Environmental Degradation of TMP WASPALOY*, Haynes 188 (Inconel 718 STA) and Inconel 718 Tensile Ultimate Strength

Pratt & Whitney Aircraft Group

DF 102386

FR-7746

ĵ

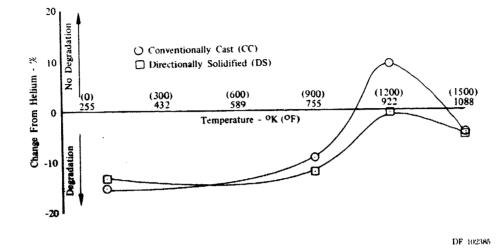


Figure IV-9. Effect of Temperature Upon Environmental Degradation of MAR M-246 (Hf Modified) Tensile Ultimate Strength

1

.....

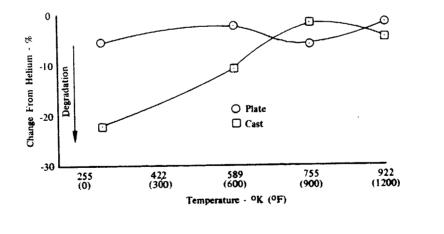


Figure IV-10. Effect of Temperature Upon Environmental Degradation of Inconel 625 Tensile Ultimate Strength

FR-7746

As previously reported in PWA FR-5768¹, FR-6709² and FR-7175³, loss of ductility (elongation and/or reduction of area) was the most prominent indicator of hydrogen degradation. In the case of some alloys, ductility was extremely degraded, while the ultimate strength showed negligible degradation, if any. The elongation and reduction of area were degraded for most of the alloys, with the Inconel 625 (both cast and plate conditions) the alloy least degraded by the hydrogen environment. With the exception of elongation at 297°K (75°F) for the cast material, degradation in ductility of less than 15% up to 922°K (1200°F) was indicated for the Inconel 625 alloy (figure IV-11).

For the wrought alloys, TMP WASPALOY, Hyanes 188 and Inconel 718, degradation in ductility up to approximately 70% was indicated. Elongation and reduction of area degradation vs temperature curves are shown in figures IV-12 and IV-13.

With all test temperatures considered for a given material, the alloy most severely degraded in ductility was the MAR M-246 (Hf Modified). For both the CC and DS material forms, degradation generally ranged from 30 to 70% for the temperatures investigated (figure IV-14).

Test results of each specimen tested for the seven alloys are listed in table IV-2.

The effects of temperature upon the stress-strain parameters and modulus of elasticity for the various materials are shown in figures IV-15 through IV-28. Data analyses indicated that stress-strain parameters and modulus of elasticity were not affected by environment (helium or hydrogen). Therefore, for each material, the mean values for all tests conducted at each temperature were plotted. The stress-strain parameters of each individual test for the seven alloys are listed in tables IV-3 through IV-9. In the case of the CC and DS MAR M-246 materials where low ductility occurred (low strain values at failure), not all tests at each temperature were used to plot their respective stress-strain curves. Test data used in plotting the CC and DS material curves for each test temperature are indicated by an underscored specimen number in tables IV-4 and IV-5, respectively.

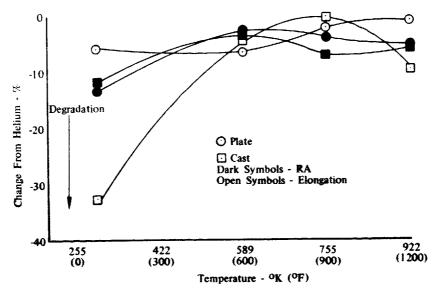
A comparison of modulus of elasticity for seven alloys over the temperature ranges investigated is illustrated in figure IV-29.

2. Exhibit C Internal Hydrogen Embrittlement (IHE)

This test effort was designed to determine the effect of internal hydrogen charging upon property degradation (IHE) of CC and DS MAR M-246 (Hf Modified), that is, the effect of hydrogen within the material's metal lattice as opposed to external hydrogen environment embrittlement (HEE).

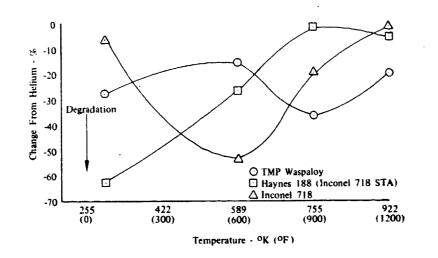
The effect of 8-hour 34.5 MN/m² (5000 psig) hydrogen exposure at 1144°K (1600°F) on the ambient air smooth and notched tensile properties is summarized in table IV-10.

Testing of both the CC and DS materials at 297°K (75°F) indicated considerable degradation in smooth and notched strength and ductility, due to the 8-hour exposure. The effect of air set time on the properties of the hydrogen exposed CC material was minimal, if any.


¹ "Properties of Materials in High Pressure Hydrogen at Cryogenic, Room, and Elevated Temperatures," Final Report. Contract NAS8-26191, 31 July 1973.

³ "Influence of Gaseous Hydrogen on the Mechanical Properties of AISI 304 Stainless Steel," Final Report, Contract NAS8-29883.

[&]quot;Influence of Gaseous Hydrogen on the Mechanical Properties of Incoloy 903," Final Report Exhibit A. Contract NAS8-30744, September 1975.

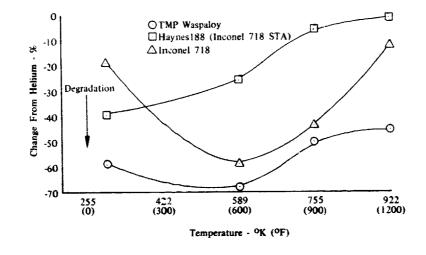

Pratt & Whitney Aircraft Group

FR-7746

DF 102387

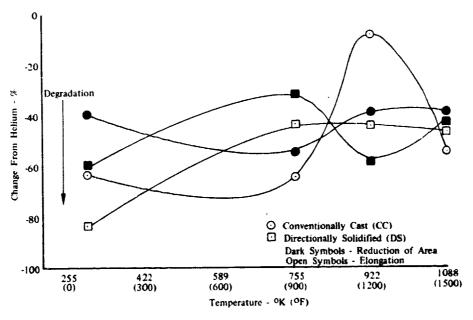
Figure IV-11. Effect of Temperature Upon Environmental Degradation of Inconel 625 Tensile Ductility

÷.


ì.

DF 102388

Figure IV-12. Effect of Temperature Upon Environmental Degradation of TMP WASPALOY, Haynes 188 (Inconel 718 STA) and Inconel 718 Tensile Elongation


Pratt & Whitney Aircraft Group

FR-7746

DF 102389

Figure IV-13. Effect of Temperature Upon Environmental Degradation of TMP WASPALOY, Haynes 188 (Inconel 718 STA) and Inconel 718 Tensile Reduction of Area

DF 162390

Figure IV-14. Effect of Temperature Upon Environmental Degradation of MAR M-246 (Hf Modified) Tensile Ductility

Table IV-2. Tensile Properties of Various Alloys in 34.5 MN/m² (5000 psig) Gaseous Environments

į

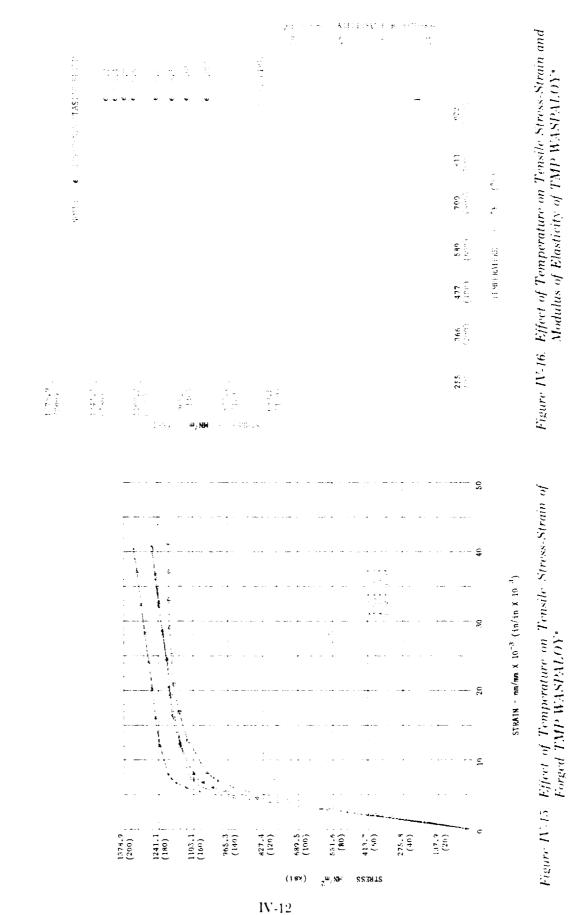
			L L	est Con	Test Conditions			1	Test Results	lts		
		t	Test	t.		St or Villa	Strength	gth Fileimoto	1	Duct	M BA M	Ductility Modulus of E1 & PA Elasticity
Material	Form	Spec S/N	<u>emperature</u>		Environment	l≥		MN/m ³		- 1	88	psi×10
TMP WASPALOY Forred	Forged	WF1	297		Helium	1266.6	183.9	1530.6	222.0	20.0	32.1	30.1
		WF2	297	75	Hydrogen	1126.6	163.4	1431.3	207.6		12.6	2.62
		WF3	262	6 F	Hydrogen Hydrogen	11811	171.3	1492.0	216.4		13.8	29.4
		WF5	283	009	Helium	1097.6	159.2	1412.7	204.9	17.5	27.6	28.3
		WF6	589	009	Hydrogen	1.161.1	108.4	1370.7	198.8		0.6	28.2
		WF7 WE9	589 589	99 g	Hydrogen Hydrogen	1161.1	152.7	1188.0	172.3	0.0 2.0	- 6.2	28.0
		wro WF9	755	88	Helium	1088.7	157.9	1359.6	197.2		14.9	127.0
		WF10	755	006	Hydrogen	1130.7	164.0	1320.3	191.5	7.5	0. a	26.5 196.7
		WF11 WF13	755 755	<u> </u>	Hydrogen Hydrogen	1095.6	158.9	1270.7	184.3	6.0 9	. 80	127.0
		WF12 WF13	922	1200	Helium	1050.1	152.3	1340.3	194.4	19.5	28.7	24.5
		WF14	922	1200	Hydrogen	1053.5	152.8	1334.1	193.5	17.0	16.1 11 6	24.0 24.2
		WF15 WF16	922 922	1200	Hydrogen	1017.0	147.5	1252.1	181.6	19.0	19.6	24.0
		MCA	707	75	Helium	1.977	113.0	0.908.0	131.7	10.0	13.9	27.3
MAK M-246 Hf Modified)	Cant. (CC)	MC2	297	35	Hydrogen	762.6	110.6	790.1	114.6	3.0	9.3	25.1
		Ю МС	297	22 12	Hydrogen	726.7	105.4	769.5 745.3	111.6	4 .0	5.0	9.93 87.93
		MCS	755	006	Helium	7.717	104.1	888.7	128.9	14.0	19.9	23.9
		MC6	755	806	Hydrogen	744.6	108.0	817.0	118.5	40,4	11.2	22.4
		MC7	755	88	Hydrogen	659.8 759.0	95.7	0.087	114.0	0.0	4 - C	21.0
		S M C R	60 60		Helium	728.1	105.6	807.4	117.1	80.0	15.5	18.2
		MC10	922 922	1200	Hydrogen	726.0	105.3	866.0	125.6	6.0	8.0	20.4
		MC11	922	1200	Hydrogen	759.8	110.2	908.0	131.7	6.0	9.2 7	22.4
		MC12	922	1200	Hydrogen Halium	706.7 798.8	105.5	874.3 874.3	126.8	0.0 8.0	11.2	119.2
		MC14	1089	1500	Hvdrogen	728.8	105.7	801.9	116.3	3.0	6.3	18.2
		MC15	1088	1500	Hydrogen	776.3	112.6	795.7	115.4	3.0	6.9 6.9	21.0
		MC16	1068		nyarogen	0.011	0.111	1.616				
MAR M-246	Directionally	IQM MD	297	75 25	Helium Hvdrogen	895.6 939 1	129.9	1072.8 939.1	155.6 136.2	10.0 2.0	12.4 4.7	117.7
(Hf Modified)	Cast (DS)	MD3 MD3	297	15	Hydrogen	13.	ē,	890.8	-	1.0	4.0	17.6
		MD4	297	75	Hydrogen	939.1	136.2	944.6		5 0 1 1 1 1 1	6.3 7	17.3
		MD5	755	88	Helium Hudmen	947.3	137.4	1086.6	142.5	3.5	9.0 20.0	16.4
		MD	155	38 8	Hydrogen	908.7				2.5	4.7	'16.3
		MD8	755	86	Hydrogen	835.0			• • •		4 a	14.9
		MDIO	922 922	1200	Hydrogen	6.50.U 874.9					4.7	14.4
		MD11		1200	Hydrogen	868.7			138.4		3.6	14.3
		MD12	-	1200	Hydrogen Halium	888.0		1063.2				12.9
		MD14		1500	Hydrogen	986.6						12.9
		MD15	1088	1500	Hydrogen	922.5 008.0	133.8	1048.7	152.1	5.5 6.0	5.9 7.0	13.5 13.3
	i	4ICIM	-	10001	Halium	0.000	-	-				
Inconel 625	Plate	5P2	297	с К	Hydrogen	541.9	78.6	895.6	129.9	46.5		
		5P3	297	7.5	Hydrogen	525.4						
		5P4	297 580	75 00	Hydrogen Helium	543.3 472.3		826.0	119.8			27.0
		5 P 6	583 289		Hydrogen	458.5			115.			
		5 P 7	589		Hydrogen	487.5		821.		-		
		5P8	583 775	88	Hydrogen	448.8	65.1 63 6	796.4 815.0	118.2	6.0 200		-
		645 0145	66) 755		Hvdrogen	475.0						
		5P11	755		Hydrogen	444.7						
		5P12 6D13	755 022	yee.	Hydrogen Halium	450.9 415.1	65.4 60.2	760.5	110.3	40.0	00.3 54.4	22.9

ł

ORIGINAL PAGE IS OF POOR QUALITY

CIDOUT FRAME /

297 75 Helium 561.2 81.4 940.4 136.4 50.5 62.5 28.5 297 75 Hydrogen 541.9 78.6 895.6 129.9 46.5 58.1 28.4 297 75 Hydrogen 55.4 76.2 877.7 127.3 50.0 52.9 27.8 297 75 Hydrogen 52.5 76.2 87.7 127.3 50.0 52.9 27.8 589 600 Hydrogen 487.5 70.7 821.9 119.2 46.5 57.1 26.3 589 600 Hydrogen 487.5 70.7 821.9 119.2 46.5 57.7 26.4 755 900 Hydrogen 43.16 62.6 815.0 119.2 46.5 57.7 26.4 755 900 Hydrogen 43.16 65.4 74.3 115.2 46.5 57.7 26.4 755 900 Hydrogen 43.16 65.4 74.3 112.3 49.5 56.1 25.6 755	338.5 49.1 695.0 100.8 42.0 312.3 45.3 513.7 74.5 25.0 312.3 45.3 513.7 74.5 25.0 322.7 46.8 566.1 82.1 29.0 308.9 44.8 566.1 82.1 29.0 308.9 44.8 566.1 82.1 29.0 244.8 35.5 583.3 94.6 43.0 224.1 32.5 528.8 76.7 42.0 224.1 32.5 521.9 75.7 42.0 224.1 32.5 521.9 75.7 42.0 224.1 32.5 552.3 74.3 39.5 221.3 32.1 505.4 73.3 45.0 221.3 32.1 47.2 75.3 45.0 221.3 32.1 47.2 75.3 45.0 221.3 32.1 47.2 75.3 45.0 231.3 33.4 47.2 75.2 41.0 231.3 231.4 420.6 61.0 <td< th=""><th>297 75 Helium 440.6 63.9 974.2 14.1.3 43.5 30.6 93.0.1 297 75 Hydrogen 434.4 63.0 750.8 108.9 16.0 17.5 31.1 297 75 Hydrogen 434.4 63.0 750.8 108.9 16.0 17.5 31.1 297 75 Hydrogen 433.0 62.8 750.2 109.1 16.5 16.1 190.9 589 600 Hydrogen 429.5 62.3 842.5 122.2 16.0 21.8 31.1 589 600 Hydrogen 273.8 30.6 73.5 30.4 43.5 23.5 23.5 34.5 23.5 34.5 23.5 34.5 23.6 30.1 17.5 50.8 50.6 44.2 29.6 55.5 54.4 27.5 30.1 77.6 30.1 77.5 59.3 54.5 26.6 10.7 56.5 54.6 27.5 50.6 77.5 59.6 66.1 30.7 77.5 59.6 66.6 77.5</th><th>297 75 Helium 1181.1 171.3 1370.7 198.8 27.0 43.7 27.3 297 75 Hydrogen 1174.2 170.3 1355.2 198.0 26.5 41.3 27.6 297 75 Hydrogen 1163.8 168.8 1346.6 195.6 23.0 28.4 27.6 297 75 Hydrogen 1169.3 169.6 1351.4 196.0 26.5 41.3 27.6 589 600 Hydrogen 111.63.5 154.5 1256.7 181.4 26.5 36.8 27.3 25.6 589 600 Hydrogen 111.2 14.7 123.5 177.7 13.0 19.6 26.5 589 600 Hydrogen 104.2 14.7 123.5 177.7 13.0 19.6 26.5 589 600 Hydrogen 101.4.2 14.7 128.3 176.7 12.9 19.3 25.6 555 900 Hydrogen 103.3.5 149.9 1182.4 71.5 26.6 26.4 2</th><th>timrate. dartd. (1,000 incchtor 4D.</th></td<>	297 75 Helium 440.6 63.9 974.2 14.1.3 43.5 30.6 93.0.1 297 75 Hydrogen 434.4 63.0 750.8 108.9 16.0 17.5 31.1 297 75 Hydrogen 434.4 63.0 750.8 108.9 16.0 17.5 31.1 297 75 Hydrogen 433.0 62.8 750.2 109.1 16.5 16.1 190.9 589 600 Hydrogen 429.5 62.3 842.5 122.2 16.0 21.8 31.1 589 600 Hydrogen 273.8 30.6 73.5 30.4 43.5 23.5 23.5 34.5 23.5 34.5 23.5 34.5 23.6 30.1 17.5 50.8 50.6 44.2 29.6 55.5 54.4 27.5 30.1 77.6 30.1 77.5 59.3 54.5 26.6 10.7 56.5 54.6 27.5 50.6 77.5 59.6 66.1 30.7 77.5 59.6 66.6 77.5	297 75 Helium 1181.1 171.3 1370.7 198.8 27.0 43.7 27.3 297 75 Hydrogen 1174.2 170.3 1355.2 198.0 26.5 41.3 27.6 297 75 Hydrogen 1163.8 168.8 1346.6 195.6 23.0 28.4 27.6 297 75 Hydrogen 1169.3 169.6 1351.4 196.0 26.5 41.3 27.6 589 600 Hydrogen 111.63.5 154.5 1256.7 181.4 26.5 36.8 27.3 25.6 589 600 Hydrogen 111.2 14.7 123.5 177.7 13.0 19.6 26.5 589 600 Hydrogen 104.2 14.7 123.5 177.7 13.0 19.6 26.5 589 600 Hydrogen 101.4.2 14.7 128.3 176.7 12.9 19.3 25.6 555 900 Hydrogen 103.3.5 149.9 1182.4 71.5 26.6 26.4 2	timrate. dartd. (1,000 incchtor 4D.
				Failed in gage mark. Failed hefore 0.2% yield. Modulus not obtained, yield strength approximate. All cast Inconel 625 specimens were substandard.
Plate	Cast	Plate	Plate	Failed in gage mark. Failed hefore 0.2% yield. Modulus not obtained, yield strength approximate. All cast Incorel 625 specimens were substandard.
Inconel 625	Inconel 625	Haynes 188 (Inconel 718 STA Heat Treated)	Inconel 718	Failed in gage mark. Failed before 0.2° y Midulus not obtain All cast Inconel 625


Ģ

IV-11

Ð

Pratt & Whitney Aircraft Group FR-7746

ţ

1

÷

i

;

114

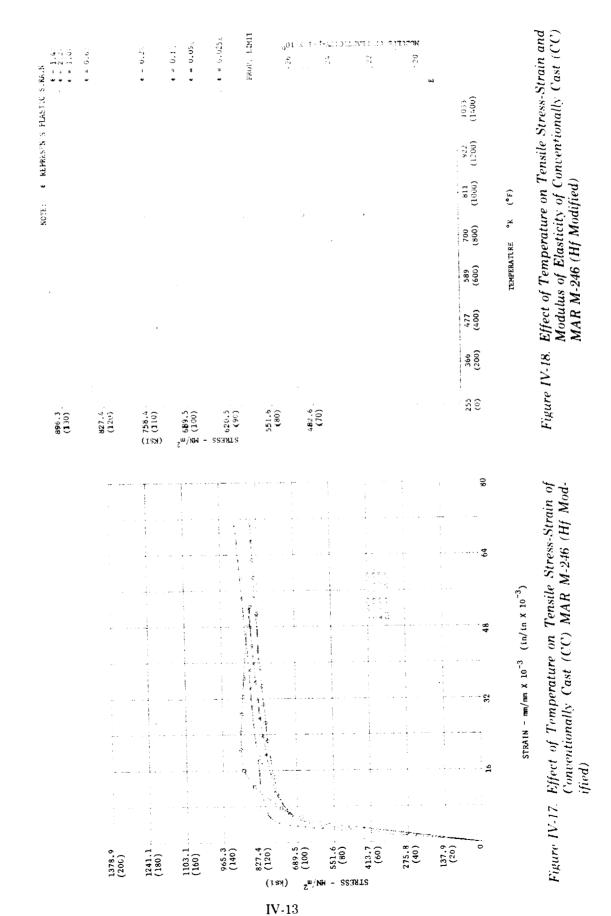
7 4

:rf

7

1

4

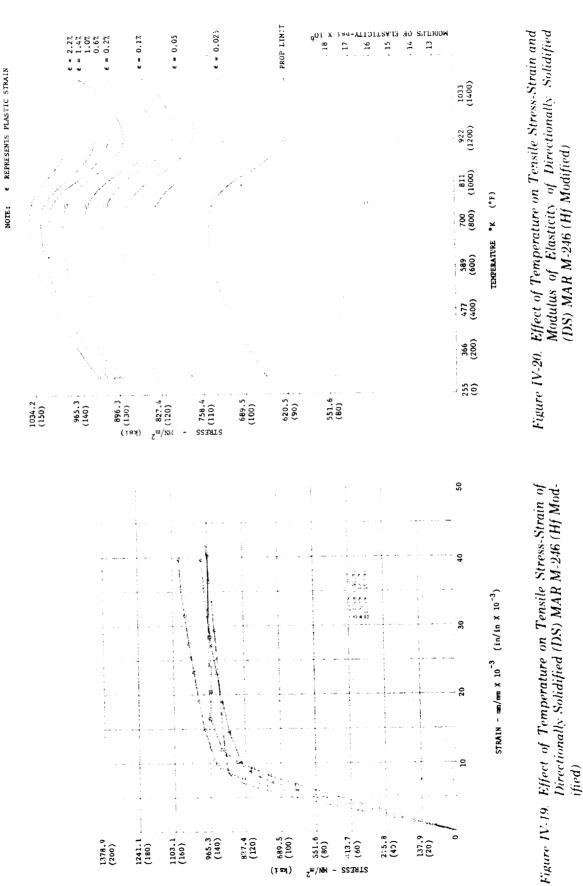

-

.

į

į

1


÷

Ī

1

7

ĺ

-

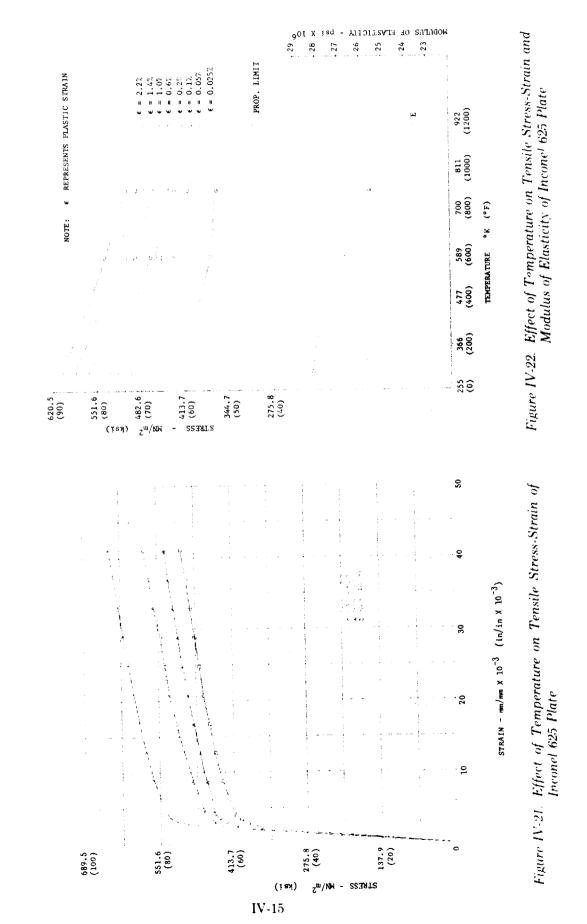
¥

-

. * =

• •

* *

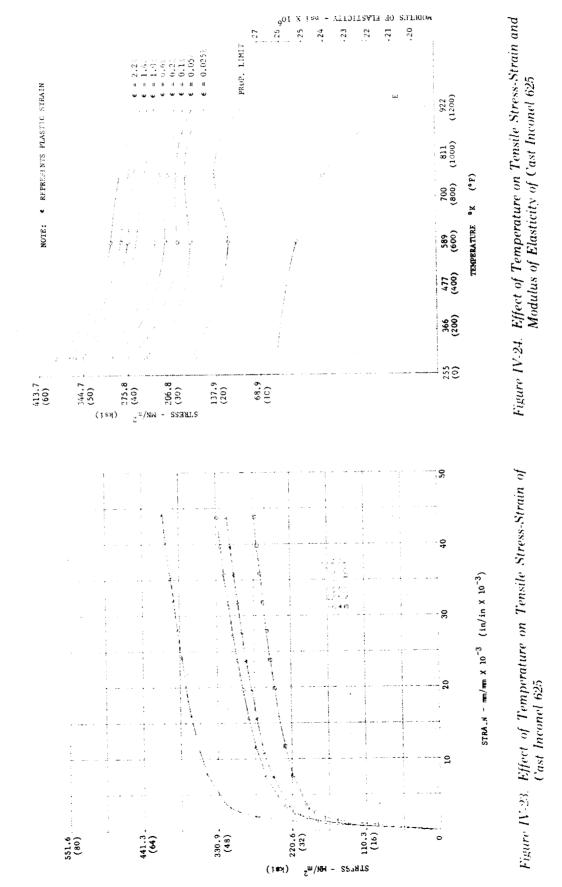

a 4

,

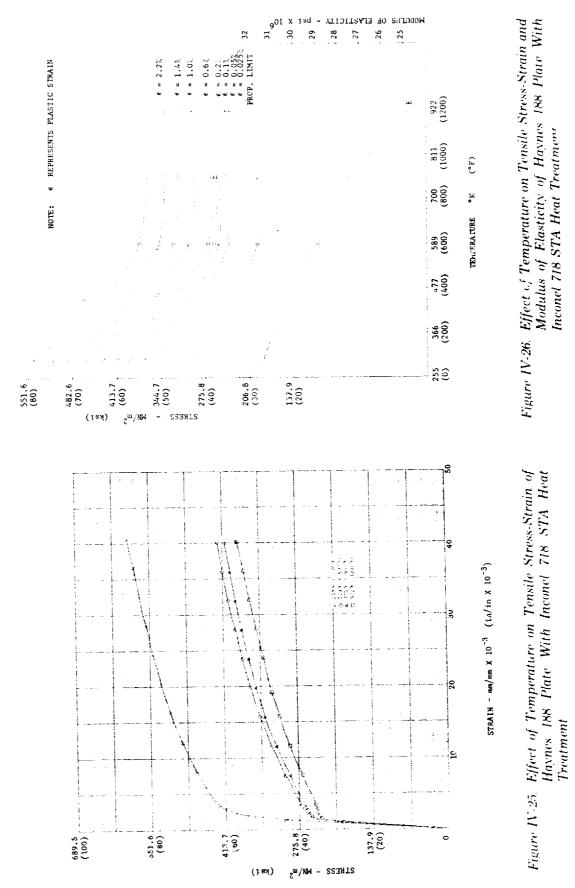
Pratt & Whitney Aircraft Group FR-7746

ł

į.

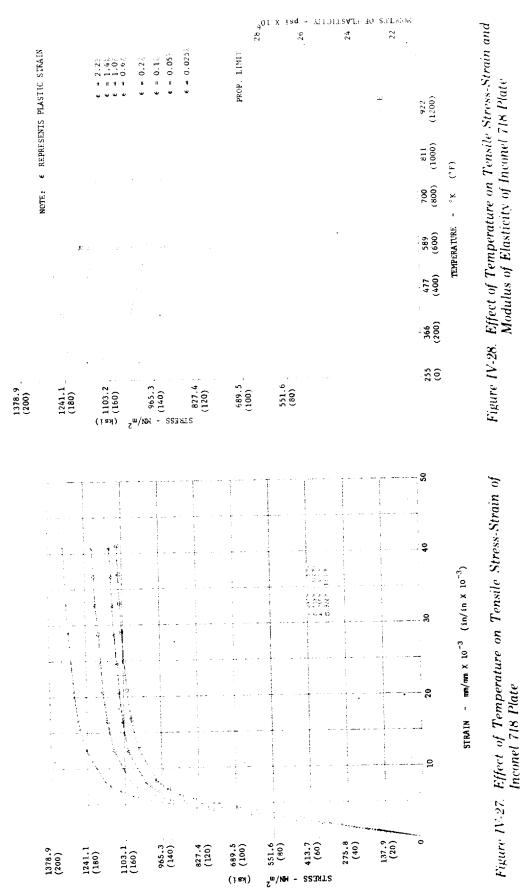

- -

.


.

Pratt & Whitney Aircraft Group FR-7746

Ĺ



Ŷ

2

Ĩ

;

Ţ

а.

-

.,

њ.,

• •

* • • •

• *

• ---

3 æ

Pratt & Whitney Aircraft Group FR-7746

a hand a

ŝ

178 M

ł

0FFSET (PCT)				CTC AIN	116 5 5 5	STKAIN	STAESS	STAAIN
	STRESS (KSI)	STKAIN IN/IN+LO-5	SIKESS (KSI)	11/11*10-5	(KS1)	1N/1N#10-3	(KSI)	IN/ IN= Ic-o
					UN 163 2976	7K (75F)	SN WFL7 2	(1421) ALVS
	5000 PS1	297K (75F) PSIG HELIUM	5000 PS	N WEZ ZYTA VIELY 5000 PSIG HYDRUGEN	5000 PSI		50UC PS1	SOUC PSIC HYEKUGEN
							3	4
	154 9	5.14	125.2	4-24	132.4	4.51	0.001	
1	170.3	2.8.6	134.2	5.05	160.6	5 • 6 6	1001	
0.002	176.4	6.34	146.3	5.66	168.6	6.17		
	180.4	14.9	157.3	6.4£	174.6	0.00		
	162.9	7.54	161.4	7.14	176.7			7.71
0.1.0	183.9	8.11	163.4	7.66	1.871		1755	
0.600	187.4	12.23	171.4	12.00	1.201	110 22	178.1	15.94
000	164.4	16.23	174.4	16.06	10401	40462	174.5	20.00
400	+.191	20.24	176.5	20-11	1001	24.34	181.7	90° 47
1.600	193.5	24.40	178-5	24.17	- 001	07.80	184-1	26.17
2 200	195.7	28.46	180.5	28.23		23 44	1661	32.23
600	198.0	32.57	182.5	32.25	0.4341	24.51	188.1	39.14
3.000	200.4	36.63	184.5	10.J4		10-07 10-57	190.1	40.04
.400	202.6	•0•63	180.5	+1204				
				TTT LOOK I LOOF	IS ST NS	589K (600F)	SN MF7 50	MF7 585K (600F)
	SN NF5 5	589K (600F)	COLE 20	N WFO 3045 10001	5000 PS		5000 PS	SCOU PSIG HYCKDGEN
	5000 PS	5000 PSIG HELIUM	c. 000c					1
	•	· · · · · · · · · · · · · · · · · · ·	132.0	42.74	120.2	4.29	135.8	4.80
۔ ۲	1-411		154.2	5.66	134.4	5.03	152.1	09.4
0.025	1+0.0	2000	160.2	6.11	140.5	5.54	158.2	0.11
0.050	1•4•7		145.3	6-86	147.7	6.23	103.7	000
0.100	199.4		147.5	64.6	150.7	6.86	106.6	54.6
0.150	0.7 CT		140-4	47.6	152.7	7.43	166.4	\$5.1
0.200	159.2			12.17	157.2	11.60	172.4	12.11
0.600		11,000	175.5	16.17	162.9	15.83	176.0	10.17
1.000	10101	10.00	178.5	20.24	165.0	17.03	178.0	
		24-00	181.1	24.40	167.4	23.84	190.5	
1.800			182.6	28.46	169.0	28.00	183.1	****
2.200		20.02	185.6	32.51	170.1	32.00	184.5	
2.600		26. 26	187.6	36.63	0.0	0•0		n : n :
3.000			1001	10.04	0.0	0.0	0.0	0.0

noid) Gaspou 2001

* *

. . . • •

÷ -. . .

. . .

Į

1

ORIGINAL PAGE IS OF POOR QUALITY

Table IV-3. Individual Specimen Stress-Strain Parameters of Forged TMP WASPALOY in 34.5 MN/m ² (5000 psig) Gaseous Environment (Continued)	STRESS STRAIN
LOY in 34.5 .	STRATN
MP WASPA	CTRECC CTRAIN
ers of Forged Ti	CTPATN
strain Parameto	MINGES STORES
cimen Stress-S Continued)	
Individual Specim Environment (Con	
Table IV-3.	

İ

I

• • •

> ÷ . .

		F-OIANI/NI	(KSI)	11/ 11#10-3	11031	C-DIANT INT	/ TCM)	
	SN NF9 7	×	SN NFLO	SN MF10 755K (500F)	SN HF11 755K	5K (900F)	SN WF12 7	SN WELZ 755K (900F)
н - -	5000 PS16	IG HELIUN	S4 0005	5000 PSIG HYDRUGEN	ALCA DODE	NUMBER NUMBER		
	116.7		127.3	4.80	125.1	4.69	123.2	4.57
0.025	136.0	16.4	147.1	5.89	140.6	5.44	141.3	5+49
040	2.44	2.89	153.1	6.34	148.1	6.06	146.3	6.06
	151.9	6443	156.6	7.03	153.1	6.74	153.5	0.74
		7.26	162.0	7.66	156.4	7.31	156.9	16.7
	157.0		164-0	8.23	158.4	7.94	158.9	24.1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		12.17	171.9	12.57	166.5	12.23	166.9	12.23
	190.0	14.26	175.8	16.64	<b>č.011</b>	10.40	170.9	10.34
1.000		20.24	177.8	20.74	172.3	20.46	172.3	20.40
			7-04-1	24.80	172.4	24.46	173.1	24.40
	1.0.1		1011	26.65	7.47	28.57	177.8	28.57
2.200	1.021	1 6 • 0 7					176.2	12.05
2.600	179.5	32.64	183.0	14.26		37 70 S	190.4	20.00
3.000	160.5	36.63	185.9	50.15	0*6.1			
3.460	163.1	40.69	186.4	41.03	181.0	+/ · / +	102.04	N0 • N+
						1200E1	CN JEIA GOOK	425K 11200F
•	SN WF13	422K (1200F)	SN MF14	SN WF14 922K (1200F)	STAN NO	SN NP15 4228 1120011	COTLM NO	- 2
	5000 PS16	- F	5000 PS	5000 PSIG HYDROGEN	5000 PS10	5000 PSIG HYDROGEN	54 0005	5000 PSIG HTUKUGEN
	C.8.2	4 . 00	106.4	4.40	117.1	4.80	100.2	4.17
1	126.3		129.3	5.60	134.4	5.17	123.8	5.43
	1.951	6-17	137.5	6.23	143.2	6.40	132.7	<b>9.00</b>
	146.1	6.91	145.6	7.05	149.5	2.09 C	140.3	<b>6.</b> 8U
	149.7	7.60	149.7	7.71	153.2	7.71	144.5	し。ケン
0.200	152.3	6-17	152.7	8.40	155.6	8.40	147.5	
0.460	163.3	12.69	163.5	12.86	166.4	12.80	158.5	12.63
	16.94	16.66	167.0	16.97	172.1	17.03	164.3	16.86
	1.74.1	21.09	168.0		175.2	21.14	167.3	14.02
	176.8	25.20	167.8	25.03	176.6	25.20	166.7	24.47
	9.92	24.26	167.8	28.97	177.2	29.20	109.4	29°C3
007 0	180.2	33.31	168.0	32.97	177.4	33.20	170.3	20.60
2			167.6	36.97	177.8	37.26	170.3	20°16
00000								

ORIGINAL PAGE IS OF POOR QUALITY

Pratt & Whitney Aircraft Group FR-7746

1

ł

Table IV-4. Individual Specimen Stress-Strain Parameters of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 34.5 MN/m² (5000 psig) Gaseous Environment

Ŧ

÷...

• -1

----ĥ. - -

• •

•

ч. **.** .

.

• •

. .

A.44

	STRESS (KSI)	STRAIN In/In+10-3	STRESS (KSI)	STRAIN IN/IN#10-3	STRESS (KSI) 1	STRAIN IN/IN+10-3	STRESS (KSI) I	SIKAIN N/IN+IU-3
	HC4	297K (75F)	5N MC2 2	97K (75F) 16 hydrogen	SN MC3 29	TK (75F) G HYDROGEN	SN MCI 2971 5000 PSIG	57K (75F) Ig hydrogen
	5 i.	- 	67. F		74.4	2.90	4.53	2.60
<b>ч</b> (	80.1	• •	105.7	4.60	68°0	4.30	64.6	3.70
• !		0,	104.1	4.80	\$5.5	06.4		00°•4
	112.4	5.00	109.3	5.40	100.4	5.60	7.16	
	1	5.60	110.2	5,50	102.5	6.20	0 • <del>6</del> 6	
0.120	15	6.10	110.6	•	105.4	6.70	101.0	0.00
0.400	118.7	10.20	112.2	10.50	107.4	00.1.	100.0	14.50
000	201	14.30	113.4	•	٠	00.61		19 40
	170-8	18.30	113.8	5	110.3	01.91		
			114.6		111-2	23.10		
		26.30	0.0	0.0		27.10		
2 4 00	23.		0.0	0.0	0			•
1.660	1	:	0.0		0.0	0.0		•
3.400	1.1		0.0	•	۰ì	0.0		•j -
1.600	125.8	4	0.0		0	0.0		•
	126.7	46.40	<b>0</b> •0	0.0	0	0•0		
•	127.5	50.50	0.0	0.0		0.0		
•	128.3	54.50	0.0	0*0	0	0.0		
	154.2	•	0.0		0.0	0.0		
	150-0		0.0	••	0.0	0.0	<b>0</b> •0	<b>.</b>
•	10007	22	0.0	0	•	0.0	0.0	
007.0	131.7	-02	0.0	•	0.0	0.0		0.0
		1		. •	E E UN	-	SN MC8 75	55K (900F)
	SN MCS	755K (500F) Sig Helium	5000 P	SIG HYDROGEN	2	IG HVDRDGEN	000 PS	HYDROG
						02.0	84.0	4.00
ገ	21.9	'n	A	<b>n</b> .	0,00		45.8	4.40
0.025			1.46	<b>*</b> •	70 70	•	100.4	5.40
0.050			100.0	<b>.</b> .		• •	105-0	•
0.100	5	• <b>•</b> •	10+•2	•	4 0 A	0 4	108.0	
0.150	o.		106.3	0	1 <b>1 1 1</b>	. (	109.2	
0.2.00	\$	•		-	100	10.30	115.1	11.50
0.600	50	•0•	0.011		104.5	14.40	117.6	-0
1.000	~	*	14611		106.2	18.40	119.3	19.70
1.400	÷	1.4.	٥ ۵		107.4	•	120.2	
1.800	- 1	ч с ;	3 344				0.0	0.0
2.260	<b>1</b> 6.	0 3 Na 1			104.4	5		0.0
2.600		<b>D</b> . 1	•	5.3	110.7	34.60	0.0	<b>0</b> •0
3.600	2	<b>1</b> - 1	•			- 30	0.0	0.0
3.400		5		• •	•	42.70	0.0	0.0
3 • F 60	5	8 44.80	•	o c	10	40-70	0.0	0.0
4.200		- + - + C		o c	1		0.0	0°0
4.600	ċ					5	0.0	0•0
٠						0.0	C. C.	<b>0.</b> 0
4	4						0.0	0.0
5.600		5 <b>6 4 9</b> 0				0.0	0.0	0.0
ه، ژ زار	•	• • • •	•	5 c			0.0	•
C. • C	16.5.	16.06	•••	•	**>	•		

÷

Pratt & Whitney Aircraft Group FR-7746

Quere.

ORIGINAL PAGE IS OF POOR QUALITY

ì

54

ŝ.

* * ŝ.

* 4

••• ÷ --

•

w. --

**z** ?

.

> • • .....

> > -s -sto

I

	OFFSET (PCT)	STRESS (KS1)	STRAIN IN/ IN+10-3	STRESS (KSI)	STRAIN IN/IN+10-3	STRESS (KSI)	STRAIN IN/IN+LO-3	STRESS (KSI)	STRAIN IN/IN+10-3
Soud Pale Hill         Soud Pa		SI HCS	: لها :	SN HCIO	322K (1200F)	SN MCTT	422K (1200F	MC12 000 PS	ZZK (IZUČE) 16 HYDROGEN
91.8         4.40         91.8         4.70         90.9         4.70         90.9         4.70         90.9         4.70         90.9         4.70         90.9         4.70         90.9         4.70         90.9         4.70         90.9         4.70         90.9         4.70         90.9         4.70         90.9         4.70         100.4         1.40         112.4         5.00         190.4         111         4.70         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4 </td <td></td> <td>0000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>76.0</td> <td>- A</td>		0000						76.0	- A
Ward         S.40         Work         S.40         S.40 <ths.4< th="">         S.40          S.</ths.4<>		83.8	4.60	9.18				88-4	4, 30
102.6         5.00         103.7         5.00         103.7         5.00         103.7           105.4         7.10         112.6         112.6         112.6         112.6         112.6           105.4         7.10         112.6         112.6         112.6         112.6         112.6           105.4         7.10         112.6         112.6         112.6         112.6         112.6           115.4         25.00         122.7         31.90         127.3         31.90         127.3           115.4         56.00         122.7         33.90         127.3         31.7         32.40         112.4           115.4         56.00         122.7         33.90         127.3         31.7         32.40         127.3           115.4         56.00         122.7         30.0         127.3         31.7         32.40         127.3           117.1         57.10         122.4         53.10         132.7         35.40         127.3           0.0         0.0         0.0         122.4         53.10         132.7         35.40         127.3           0.0         0.0         0.0         0.0         0.0         127.3         35.40	0.025	1.36	5.40	6°06	2.4			0.00	4.70
102.4         7.00         101.7         7.00         102.4         7.00         102.4         7.00         102.4         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115.0         115	0.050	9.99	2.90	1.05	0.4	101		97.9	5.50
100.1         7.10         100.4         7.10         100.4         111.0         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         100.4         1	0.100	102.6	6.50	101	3.			100.4	6.10
105-6         7.60         105-7         1.10         105-6         115-3         15-20         115-3           112-8         115-4         115-5         115-5         115-5         115-5         115-5           112-8         115-5         115-5         115-5         115-5         115-5         115-5           115-4         23.40         115-5         23.50         123-5         23.50         123-5           115-4         44.10         127-5         35.50         120-1         122-5           117-1         57.10         127-5         35.50         123-5         125-5           117-1         57.10         127-5         44.00         127-5         35.50         125-5           117-1         57.10         127-5         44.00         126-5         126-5         126-5           0.0         0.0         0.0         0.0         0.0         126-5         126-5         126-5           0.0         0.0         0.0         0.0         0.0         126-5         126-5         126-5           0.0         0.0         0.0         0.0         0.0         126-5         126-5         126-5         126-5           0.0 <td>0.150</td> <td>104.3</td> <td>7.10</td> <td>104.1</td> <td>0.0</td> <td></td> <td></td> <td>102.5</td> <td>7.70</td>	0.150	104.3	7.10	104.1	0.0			102.5	7.70
100:3         113:0         112:0         113:4         13:50         113:4         13:50         113:4         13:50         113:4         13:50         113:4         13:50         113:4         13:50         113:4         13:50         113:4         13:50         113:4         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50         13:50 <th< td=""><td>0.200</td><td>105.6</td><td>7.60</td><td>105.4</td><td>7.10</td><td>2.011</td><td></td><td>106.1</td><td>11.00</td></th<>	0.200	105.6	7.60	105.4	7.10	2.011		106.1	11.00
110.3         15.80         114.5         15.00         117.4         117.4         117.4           1115.4         23.40         118.5         23.40         119.5         33.50         113.5           115.4         55.00         127.5         33.50         127.5         31.50         127.5           115.4         55.00         127.5         35.40         127.5         35.40         127.5           115.4         55.10         127.5         55.10         127.5         35.40         127.5           115.4         55.10         127.5         55.10         127.5         35.40         127.5           117.1         57.10         127.5         55.10         131.7         55.60         127.5           117.1         57.10         127.5         55.10         131.7         55.60         127.5           0.0         0.0         0.0         0.0         0.0         126.5         126.5           0.0         0.0         0.0         0.0         0.0         126.5         126.5           0.0         0.0         0.0         0.0         0.0         126.5         126.5           0.0         0.0         0.0         0.0	0.600	105.4	11.80	112.0	05.11	110.5	11.20	112.8	15.20
117.0     19.40     116.5     19.40     116.5     23.40     117.5       113.7     28.40     119.8     21.70     122.4     117.5     23.40     117.5       115.6     40.10     122.7     40.00     127.5     35.40     127.5       115.6     40.10     127.7     35.40     127.5     35.40     127.5       117.1     40.10     127.4     41.00     127.5     35.40     127.5       117.1     40.10     127.6     55.10     127.5     35.40     127.5       0.0     0.0     127.6     55.10     127.5     35.40     127.5       0.0     0.0     0.0     0.0     127.6     127.4       0.0     0.0     0.0     0.0     127.4       0.0     0.0     0.0     0.0     127.4       0.0     0.0     0.0     0.0     127.4       0.0     0.0     0.0     0.0     127.4       0.0     0.0     0.0     0.0     127.4       0.0     0.0     0.0     0.0     127.4       0.0     0.0     0.0     0.0     127.4       0.0     0.0     0.0     0.0     127.4       0.0.0     0.0     0.0 </td <td>1.000</td> <td>110.3</td> <td>15.80</td> <td>114.5</td> <td>15.60</td> <td></td> <td>02.01</td> <td></td> <td>10.30</td>	1.000	110.3	15.80	114.5	15.60		02.01		10.30
112.8     23.40     118.2     23.50     123.6     215.6     215.6     215.6     215.6     215.6     215.6     215.6     215.6     215.6     215.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     225.10     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6     122.6	1.400	0-211	19.90	116.5	19.70	C•121	06.41	4 6 4 4	0.4 . 6 6
113.7     28.00     120.5     31.50     120.5     31.50     120.5       115.6     52.00     121.5     31.50     127.5     31.50     127.5       115.6     55.00     127.5     31.50     127.5     31.50     127.5       115.6     55.00     127.5     55.00     127.5     34.50     127.5       117.1     55.10     127.5     55.10     130.5     57.60     127.5       117.1     55.10     127.5     55.60     127.5     55.60     127.5       0.0     0.0     0.0     0.0     0.0     131.7     55.60     127.5       0.0     0.0     0.0     0.0     0.0     127.5     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0	1.800	112.8	23.40	118.2	23.80	123.0			77 40
115.4     35.00     120.7     31.60     127.3     35.60     121.5       115.4     55.00     127.5     44.10     127.5     34.60     127.5       115.1     46.10     127.5     44.10     127.5     34.60     127.5       117.1     55.00     127.5     44.10     127.5     34.60     127.5       0.0     0.0     0.0     130.5     55.80     128.5       0.0     0.0     0.0     0.0     130.5     55.80     128.5       0.0     0.0     0.0     0.0     0.0     128.1     128.5       0.0     0.0     0.0     0.0     0.0     128.5       0.0     0.0     0.0     0.0     0.0     128.5       0.0     0.0     0.0     0.0     0.0     128.5       0.0     0.0     0.0     0.0     0.0     128.5       0.0     0.0     0.0     0.0     128.1       0.0     0.0     0.0     0.0     128.5       0.0     0.0     0.0     0.0     128.5       0.0     0.0     0.0     0.0     128.7       111.1     111.5     12.5     128.5     128.5       1111.1     111.5     111.		113.7	28.00	114.8	27.70	124.8	27.40	0.411	
115.4     56.00     721.5     55.60     121.5     55.60     121.5       117.1     55.10     125.5     55.10     125.5     55.10     125.5       117.1     57.10     125.5     55.10     125.5     125.5       10.0     0.0     0.0     127.5     55.60     126.5       0.0     0.0     127.5     55.10     127.5     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     128.5       0.0     0.0     0.0     0.0     128.5       0.0     0.0     0.0     0.0     128.5       0.0     0.0     0.0     0.0     128.5       0.0     0.0     0.0     0.0     128.5       111.1     5000     516     47.6     4.50     500       111.1     111.5     5.55     4.56     5.56     5.56       100.4     111.5     111.5     5.56     4.56       100.5	2 4 00	114.5	32.00	120.7	31.80	126.0	31.50	120.2	51.50
115.8         40.00         127.5         49.10         127.5         47.70         127.5           117.1         57.10         127.5         57.10         127.5         57.50         125.5           117.1         57.10         127.5         57.10         127.5         57.50         125.5           0.0         0.0         0.0         0.0         0.0         125.5         55.60         125.5           0.0         0.0         0.0         0.0         0.0         125.5         55.60         125.5           0.0         0.0         0.0         0.0         0.0         128.1         128.1           0.0         0.0         0.0         0.0         0.0         128.1         128.5           0.0         0.0         0.0         0.0         0.0         128.1         128.5           0.00         0.0         0.0         0.0         0.0         128.5         128.5           9.000         9500         9516         47.6         4.20         128.5         128.5           9.15         5000         9516         10.6         0.0         10.5         114.5           9.15         5000         9516         1			14.00	121.9	35.90	127.2	35.60	c.121	00.00
III     45.10     125.6     44.00     126.1     126.0       117.1     55.10     125.6     55.60     126.0       0.0     0.0     0.0     0.0     130.4     57.30     126.5       0.0     0.0     0.0     0.0     0.0     126.5     126.5       0.0     0.0     0.0     0.0     0.0     131.7     55.80     127.5       0.0     0.0     0.0     0.0     0.0     127.5     126.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       0.0     0.0     0.0     0.0     0.0     127.5       10     111.5     106.7     7.10     112.6     900       90.7     110.5     7.10     112.6     9.00     92.9       91.5     5.5     5.5     92.5     92.5       91.5     5.5			-0-10 -0-10	122.7	40.00	128.0	34.60	122.3	34.00
117.1     57.10     125.2     130.1     47.70     125.4       0.0     0.0     130.4     55.80     126.5       0.0     0.0     0.0     0.0     131.7     55.80     125.5       0.0     0.0     0.0     0.0     0.0     126.5       0.0     0.0     0.0     0.0     136.7     55.80     126.5       0.0     0.0     0.0     0.0     0.0     128.1       0.0     0.0     0.0     0.0     0.0     128.1       0.0     0.0     0.0     0.0     0.0     128.1       0.0     0.0     0.0     0.0     0.0     128.1       0.0     0.0     0.0     0.0     0.0     128.1       0.0     0.0     0.0     0.0     0.0     128.1       0.0     0.0     0.0     0.0     0.0     128.1       10.0     10.0     0.0     0.0     128.1     128.1       84.6     4.40     76.4     4.20     74.7     5.00       910.5     5.60     91.5     5.00     91.5     91.5       910.5     5.60     91.5     5.60     105.7     106.7       105.7     105.7     105.7     105.7 <td>3.400</td> <td></td> <td></td> <td>173.6</td> <td>74.00</td> <td>129.3</td> <td>43.70</td> <td>123.6</td> <td>09-64</td>	3.400			173.6	74.00	129.3	43.70	123.6	09-64
1117.1     52.10     125.6     56.10     126.6     126.6       0.0     0.0     0.0     0.0     0.0     126.5       0.0     0.0     0.0     0.0     0.0     126.5       0.0     0.0     0.0     0.0     0.0     126.5       0.0     0.0     0.0     0.0     0.0     126.5       0.0     0.0     0.0     0.0     0.0     126.5       0.0     0.0     0.0     0.0     0.0     126.5       0.0     0.0     0.0     0.0     0.0     126.5       0.0     0.0     0.0     0.0     0.0     126.5       0.0     0.0     0.0     0.0     0.0     126.5       0.0     0.0     0.0     0.0     0.0     128.5       0.0     0.0     0.0     0.0     0.0     128.5       10.5     10.5     10.6     10.6     128.7       10.5     5.60     91.5     5.60     92.9       10.5     10.5     10.5     10.5     10.5       10.5     10.5     10.5     10.5     10.5       10.5     10.5     10.5     10.5     10.5       10.5     10.5     10.5     10.5	3.800			124.0	48-10	130.1	47.70	124.4	47.70
11.0.1         55.10         125.6         56.10         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0         126.0 <t< td=""><td>4.200</td><td>1.1.1</td><td></td><td></td><td></td><td>130.9</td><td></td><td>125.2</td><td>51.70</td></t<>	4.200	1.1.1				130.9		125.2	51.70
0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <td>1.600</td> <td>117.1</td> <td>01.20</td> <td>104.10</td> <td>54.10</td> <td>131.7</td> <td></td> <td>126.0</td> <td>55.80</td>	1.600	117.1	01.20	104.10	54.10	131.7		126.0	55.80
0.0         0.0         0.0         0.0         0.0         127.3           0.0         0.0         0.0         0.0         0.0         128.5           0.0         0.0         0.0         0.0         0.0         128.5           0.0         0.0         0.0         0.0         0.0         128.5           0.0         0.0         0.0         0.0         0.0         128.5           5000         PSIG HELIUM         5000         PSIG HYRUGEN         5000         PSIG W(1500F)         5000         PSIG SURVERS	5.000					111	59.80	126.4	54.70
0.0         0.0         0.0         0.0         0.0         128.1           0.0         0.0         0.0         0.0         0.0         128.5           5000         510         5000         510         5000         510         5000           5100         510         5.0         510         5000         510         510         510           5100         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         510         512.5         510         512.5         510         510         510         512.5         510         512.5         510         512.5         510         512.5         512.5         512.5         512.5         512.5         512.5         512.5         512.5         512.5         512.5         512.5	5.400	0.0				0.0		127.3	63.80
0.0         0.0         0.0         0.0         0.0         0.0         128.5           5000         PSIG HELIUM         5000         PSIG HURLOOF         SN MCIS 1500F         SN MCIS 1500F         SN MCIS 1500F         5000         PSIG HURLOOF         5000	5.800		<b>0.0</b>			0-0	0	128.1	-
0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <td>e - 200</td> <td>0.0</td> <td><b>.</b></td> <td></td> <td></td> <td>0-0</td> <td>· C</td> <td>ø</td> <td>71.80</td>	e - 200	0.0	<b>.</b>			0-0	· C	ø	71.80
SN MCI3         Ibbek(1500F)         SN MCI4         Iobek(1500F)         SN MC14         Iobek(1500F)         SN MC14         SO00         Fsic         SN MC14         SN MC14 <td>6.600</td> <td>0°0</td> <td><b>D</b>.</td> <td></td> <td></td> <td></td> <td>1</td> <td>÷</td> <td></td>	6.600	0°0	<b>D</b> .				1	÷	
5000     PSIG     #4.6     #.40     F6.4     #.20     FSIG     #VORUGEN     5000     PSIG     MOU     PSIG     PSIG <td>ł. </td> <td></td> <td>21</td> <td>SN HC14</td> <td>1088K(1500F)</td> <td>SN MC15</td> <td></td> <td></td> <td>1088K11500F</td>	ł. 		21	SN HC14	1088K(1500F)	SN MC15			1088K11500F
84.6       4.40       76.4       4.20       92.7         91.5       5.50       96.2       96.4       4.80       91.5         91.5       5.50       96.4       4.80       91.5       5.80       91.5         97.7       5.50       96.4       96.4       4.80       91.5       5.50       91.5         97.7       5.50       96.4       96.4       4.80       91.5       5.50       91.5         97.7       7.10       105.7       7.10       105.7       5.50       91.5       91.6         105.7       7.10       105.7       7.10       110.5       7.10       105.1       91.5         105.7       7.60       115.4       17.2       9.90       104.5       91.6         118.7       12.36       115.4       112.20       1127.2       127.2       127.2         125.6       24.00       111.2       24.10       111.2       24.00       127.2       132.4         125.6       24.00       111.2       24.00       113.2       27.00       132.4         125.6       111.4       28.00       111.2       28.400       1117.4       28.400       117.4       28.400		5000 PS	19	5000 PS	IG HYDRUGEN	•	AH 919	5000 PS	IG HYDRUGEN
84.0       9.20       92.7       4.30         97.7       5.50       96.4       92.7       4.30         97.7       5.50       96.4       92.7       4.30         97.7       5.50       96.4       90.0       96.4         97.7       5.50       96.4       90.0       96.4         97.7       5.50       96.4       4.30       105.7         97.7       7.10       103.7       7.10       105.7         97.00       105.7       7.80       112.6       6.30         105.7       7.60       115.7       7.80       111.1         125.6       115.7       112.3       111.20       112.7         125.6       26.00       116.3       111.20       132.1         125.6       27.00       118.7       19.50       132.1         126.8       24.00       111.7       23.10       133.5         126.6       24.00       113.8       27.00       133.5         126.0       117.4       28.00       0.0       0.0       133.5         126.6       24.00       113.8       27.00       133.2       133.2         126.6       24.00       0.0 </td <td></td> <td></td> <td>  •</td> <td>7 76</td> <td>4.20</td> <td>7.97</td> <td>3.80</td> <td>82.9</td> <td>4.20</td>			•	7 76	4.20	7.97	3.80	82.9	4.20
91:5       5.50       96.4       4.60         97:7       5.50       96.4       4.60         96.4       7.10       105.7       5.60       46.8         105.7       7.10       105.7       7.80       106.7         105.7       7.60       105.7       7.80       106.7         105.7       7.60       105.7       7.80       106.7         105.7       7.60       115.4       12.30       111.20         105.7       7.80       115.4       12.30       111.20         125.6       115.4       12.30       111.20       111.20         126.8       20.70       115.0       20.70       112.7         125.6       24.00       115.0       20.20       111.2         126.8       24.00       111.2       23.10       113.8         126.0       111.4       28.00       113.8       27.00         126.0       111.4       28.00       113.8       27.00         127.5       111.23.8       27.00       1332.1       1332.1         125.6       5.5       5.5       5.5       1332.1         125.5       5.5       5.5       5.5       5.5	. 1d	9••R				42.7	•	91.5	4.80
97.2       9.40       9.80       105.7       5.60       104.5         105.7       7.16       105.7       7.10       105.7       7.10         105.7       7.16       105.7       7.10       105.7       7.10         105.7       7.16       105.7       7.10       112.6       6.30       104.5         105.7       7.60       105.7       7.80       112.6       5.60       111.4         125.4       12.36       115.0       115.0       118.7       111.20       127.2         125.6       20.70       116.30       116.30       116.3       152.20       1332.4         125.6       20.70       111.6       28.00       116.3       1332.4       1332.4         126.6       111.6       20.70       111.6       28.00       1332.4       1332.4         126.6       111.6       28.00       111.6       28.00       1332.4       1332.4         126.6       126.0       0.0       0.0       0.0       0.0       1332.4       1332.4         126.6       126.0       111.6       0.0       0.0       0.0       1332.4       1332.4         127.0       127.5       117.6	0.025	91•5 	07.4				• 4	46.B	5.50
1000000 $1000000000000000000000000000000000000$	0.050	2.1.2	5.60					104.5	6.20
103.7       7.10       103.4         105.7       7.60       105.7       7.80         118.7       7.60       115.4       115.4         125.6       15.30       116.3       116.3         125.6       20.70       115.4       12.36         125.6       20.70       116.3       110.5         125.6       20.70       115.0       132.1         125.6       24.10       117.1       23.10       132.1         125.6       24.60       111.4       28.00       133.3         125.6       54.60       111.4       28.00       133.3         125.6       54.60       111.4       28.00       133.3         125.6       54.60       111.4       28.00       133.3         125.6       54.60       111.4       28.00       133.3         124.4       0.0       0.0       0.0       133.4         125.0       123.6       113.6       132.4       132.4         125.0       123.6       0.0       0.0       0.0       133.4         125.0       123.6       113.6       0.0       0.0       133.4         125.7       123.4       0.0	0.1(0	100.4	6 • 4 ()				:	106.1	6.40
105.7 $7.60$ 105.7 $7.60$ 116.7       125.6       15.36       115.4       12.36         125.6       125.6       116.3       15.30       116.3         125.6       20.70       115.4       20.20       132.4         125.6       24.10       117.1       23.10       132.4         125.6       24.10       111.4       28.40       132.4         125.6       24.60       111.4       28.40       132.4         125.6       24.60       111.4       28.40       132.4         126.6       111.4       28.40       113.8       23.10         126.6       24.0       111.4       28.40       132.4         126.6       0.0       0.0       0.0       133.4         126.6       0.0       0.0       0.0       133.4         126.6       0.0       0.0       0.0       0.0         126.6       0.0       0.0       0.0       0.0       133.1         126.6       0.0       0.0       0.0       0.0       133.1         126.6       0.0       0.0       0.0       0.0       133.1         126.7       0.0	0.150	103.7	1.10	5°501				111.4	7.60
118.7       12.36       115.0       24.10         125.6       24.00       116.3       115.0       23.10         125.6       24.00       111.2       24.10       117.1       23.10         125.6       24.00       111.2       24.10       113.8       23.10         125.6       27.00       111.2       24.10       113.8       23.10         125.6       27.60       111.2       24.10       113.8       23.10         125.6       27.60       111.2       24.10       113.8       23.10         125.6       26.0       0.0       0.0       0.0       132.1         125.6       27.60       113.8       27.00       132.1         125.6       27.60       113.8       27.00       132.1         125.6       0.0       0.0       0.0       0.0       133.1         124.4       0.0       0.0       0.0       0.0       131.3         125.6       123.2       0.0       0.0       0.0       133.1         124.4       0.0       0.0       0.0       0.0       131.3         125.7       0.0       0.0       0.0       0.0       131.3	0.200	105.7	7.60	101				127.2	12.40
125.4       16.60       116.3       20.20         126.8       20.70       115.0       20.20         126.8       20.70       115.0       20.20         126.8       24.00       114.2       24.10       117.1         126.6       28.00       111.1.4       28.00       133.5         126.0       27.00       111.4       28.00       133.5         127.0       26.0       0.0       0.0       0.0       133.5         125.0       111.4       28.00       0.0       133.6       133.6         125.0       124.0       0.0       0.0       0.0       131.3         125.0       124.0       0.0       0.0       0.0       131.3         125.0       124.0       0.0       0.0       0.0       130.9         125.0       122.3       0.0       0.0       0.0       133.9         125.0       128.0       0.0       0.0       0.0       130.9         125.0       128.0       0.0       0.0       0.0       130.9         122.0       128.0       0.0       0.0       0.0       129.7         122.0       128.0       0.0       0.0 <t< td=""><td>0.600</td><td>I16.7</td><td>12.30</td><td>****</td><td>00.11</td><td></td><td></td><td>132.1</td><td>15.50</td></t<>	0.600	I16.7	12.30	****	00.11			132.1	15.50
126.8       20.70       111.0       29.00         126.8       24.00       111.4       28.00         126.6       28.00       111.4       28.00         126.0       28.00       0.0       0.0         126.0       35.60       0.0       0.0         126.0       52.00       113.8       27.00         126.0       0.0       0.0       0.0       132.1         126.0       124.0       0.0       0.0       131.3         126.0       1.0       0.0       0.0       0.0       131.3         126.0       0.0       0.0       0.0       0.0       131.3         126.0       126.0       0.0       0.0       131.3         127.0       0.0       0.0       0.0       133.0         127.0       127.0       0.0       0.0       130.9         127.0       0.0       0.0       0.0       130.9         127.0       127.0       127.0       130.9       130.9         127.0       0.0       0.0       0.0       130.9         127.0       0.0       0.0       0.0       0.0         127.0       128.9       0.0 <t< td=""><td>1.000</td><td>125.2</td><td>16.60</td><td>110.3</td><td>10.30</td><td></td><td></td><td>133.3</td><td>20.60</td></t<>	1.000	125.2	16.60	110.3	10.30			133.3	20.60
600     126.6     24.60     111.4     28.60     1137.5       200     176.0     28.60     111.4     28.60     137.5       600     125.6     22.60     111.4     28.60     137.5       600     125.6     22.60     10.0     0.0     137.5       600     124.4     36.60     0.0     0.0     131.3       600     124.4     36.60     0.0     0.0     131.3       600     125.6     44.50     0.0     0.0     130.9       700     125.6     44.50     0.0     0.0     130.9       700     122.5     44.46     0.0     0.0     130.9       700     122.5     44.46     0.0     0.0     129.9       700     127.9     52.30     0.0     0.0     129.9	1.400	126.8	20.70	115.0	20.20			122.6	24.40
200     28.00     111.4     28.00       600     125.6     52.60     0.0     0.0       125.6     52.60     0.0     0.0     131.3       600     124.4     36.60     0.0     0.0       125.6     124.4     36.60     0.0     131.3       600     125.6     124.4     50.0     0.0       700     125.6     14.50     0.0     0.0       700     125.6     14.45     0.0     0.0       700     120.5     4.8.46     0.0     0.0       700     120.5     4.8.46     0.0     0.0       700     120.5     0.0     0.0     129.5	1.600	126.5	24.60	114.2	24.10		•		, 8. 6U
125.6       32.64       0.0       131.7         174.4       36.60       0.0       0.0         400       124.4       0.0       0.0         125.6       125.6       0.0       0.0         125.6       124.4       0.0       0.0         125.6       140.6       0.0       0.0         125.6       140.6       0.0       0.0         127.5       140.6       0.0       0.0         117.6       120.7       0.0       0.0         117.6       127.5       127.7       127.7		0.921	28.50	5"III" 4	È.	9°571			32.60
	2.600	125.6	52.60	<b>n</b> •0	٠				36.50
	000 - E	124.4	36.60	<b>0.</b> 0	٠	0 · 3	5		04-04
12.6 44.50 0.0 0.0 0.0 1.30.5 120.5 44.40 0.0 0.0 1.30.5 117.5 52.36 0.0 0.0 1.24.7 2.0 0.0 1.24.7 2.0 0.0 1.28.4	3 60.0	123.7	10-04	0.0	3 <b>*</b> 3	3 3	c	C•ICI	
120.5 44.40 0.0 0.0 150.5 117.5 52.30 0.0 0.0 124.7 117.5 52.30 0.0 124.7 2.0 0.0 128.4				0.0	0.6	<b>J</b> •0	c	130.9	
	<b>0.00</b>		07 D7	0	0.0	0.0	0	130.5	48.40
	50 N				0.0	0.0	Ö	3	52.50
	4.600	Y•211	?.				0	ŝ	٠

Pratt & Whitney Aircraft Group FR-7746

ţ

f

ż

PL 5000 PC 500	Т 50 000 00 00 00 00 00 00 00 00 00 00 00		E-CI#NI/NI	STRESS (KS1)	STRAIN Inzin+lu-b	SIRESS (KSI)	SIXAIN IN/IN#IL=2
SN         SO         A           5         0         0         0           133         1         1         1         1           133         1         1         1         1         1           133         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Z COM ND Z	- - -				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		297K (75F)	SN MDZ 24	297K [75F]	SN MD4 247K (75F)	7K (75F)
			SCOC PSIG HYDROGEN	5000 PS	SCOO PSIG HYDRCGEN	154 DDD4	SLOL PSIG HYDRUGEN
		102.6	5.63	97.0	5.43	47.1	5.60
		121.1	7.14	121.3	7.05	115.4	6.Je
		127.0	11.1.	128.4	7.06	126.7	7.17
		127.4	8.24	133.5	3••C	132.3	8.57
	2 H 2 M	129.2	3.69	135.4	G. 57	135.2	9.20
		0.0	0°0	136.2	9.54	136.2	11.4
	• •	0.0	0.0	135.2	11.60	135.8	11.77
	•	3°0	0.0	0	اد د	0 0	۔ • د • د
134 135 136 137		0.0	<b>D</b> •0	0.0	0.0	0	ي در • د ت
135 136 137	.1	0.0	0.0		0 °	، ر د	
130		0°0.	<b>ں۔</b> 0	0.0	0.0	0	0.0
137		0.0	0.0	0.0	ے۔ ت	ن د ر	) 0
961	•	<b>D</b> • <b>D</b>	0°C	0.0	0 0	0°0	0.0
701	4	0.0	C•0	0.0	0°0	ບ ເບິ່ງ ເບິ່ງ	ວ ວ
140		0.0	0.0	0.0	0°0	0.0	3 0
					•		
SN MO	755K	-	SN MOB 755K (400F)	LON NS	SN MD7 755K (900F)	МU¢	755K (90CF)
2000	PSIG HE		IG HYDROGEN	5000 45	IG HYDROGEN	Scou PSI	G HYDRCGEN
	:	101.4	6•23	105.5	6.4C	95.6	5.83
171	77.7	110.3	7.03	119.5	7.54	113.1	7.09
128		115.2	7.60	123.7	8.60	119.7	7.11
	9.31	119.5	8.29	128.0	B.HO	125.6	TC. 8
		121.7	8.97	130.0	9.43	123.6	9.20
LEI .	1	- 123.1	10.8	131.6	10-00	130.2	4.64
142	Ŷ	127.8	13.89	136.3	14.29	136.0	14.24
1.000 145.	.7 19.03	3-3	0.0	139.9	13.46	139.0	14.51
.400	ŝ	ر. ن	C•0	142.0	22.57	141.2	14.22
.600 1	-	0.0	0.0		، د د	N • 1 + 1	×4•07
.800	•1 27.43	0	0.0		ن د د	2× 2×	<b>)</b> (
		ມ•ມ ມ	ם•נ	ม ย เ	•	ບ ບ	. ر •
2.600 155	•2	<b>د</b> ن	ر• د ر	0 0	<b>0</b>	، ر. د	، ر ، ر

ORIGINAL PAGE IS OF POOR QUALITY

ł

I

.

**-** ·· ÷.

ti da na Manada

and the second s

· · · ·

- -. . . . .

• •

•••

. .

• •

• •

•

OFFSET (PC1)	STRESS (KSI) 1	STRAIN IN/INCLO-3	STRESS (KS1) ]	STRAIN In/Intig-3	STAESS (KSI)	STRAIN IN/INFIC-3	51KE 55 (KS1)	STKAIN IN/IN#IC-3
	SH HD9 922K 5000 P516	K (IZCCF)	5000 PS16	SN MUTT 922K (1200F) SOCO PSIG MYDRUGEN	SCOU PS	SN MDIO 922K (I24CF) 500C PSIG HYDROGEN	SN MULZ 9 5000 PSI	SN MUIZ 422K (121CF 5010 PSIG HYDRCGEN
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	· · · · · · · · · · · · · · · · · · ·	6.74	0.601	7.14	104.5	<b>F</b> 0. <b>F</b>
PL 2016	40 • 0 • • 0 • • • •	7.20	109.7	8.06	113.9	0.11	120.3	5.47
0.062	6.111	9-60	115.7	8 . 74	113.0	· · · · · · · · · · · · · · · · · · ·	124.3	11.4
0,100	117.1	8.80	E 121		125.3	16.17	127.2	10.40
0.150	120.5	9.54	1 4 4 4 4	10.01	126.9	10.74	128.8	11.03
0.200	122.1	10.17	132.0	15.31	133.5	15.20	14240	10.01
0.600	128.8		8.461	19.54	139.2	19.60	140.5	
1.000	136.0	E0 51	136.8	23.71	143.2	23,83	153.1	28.51
1.400	4.361	27.20	0 ° C	0°C	147.4		154 - 2	32.74
1.800	1.001	31.37	0.0	0.0		י י ס	C . C	0°0
2.200	1.041	35.49	0.0	<b>0</b> •0				0.0
3.000	143.7	39.60	0.0	0.0	נ • נ			
	MOLA		SN MD14 1	SN MD14 1096K(1540F)	SN MD15	088K č	SN MULE	SN MULE ICBBK(ID00F
	500C PS1C	C HELTUM	5000 PSI	G HYDROGEN	0000			
•				7 4 7	43.6		46.2	7.26
٦d	82.8	6.40			100.4		104.4	0
0.025	163.0	8•1×	129-0	10.63	116.1		113.4	
c.c50	113.1	10 22	136.6	11.71	124.7		3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
0.100	123.2	11 43	140 8	12.57	136.8			
c.156			1 1	13.20	132.8			
0-200	1.53.61	10.6(	148.5	17.05	140.8			20.02
C.6CU	7-121.		I46.4	-21.54			130-7	
000.1		24.74	145.0	25.44	0. HE I		1.55	
	146.6	24.74	145.7	24.43			38.5	
	141.44	32.80	145.7	53.43	2•201 2 - 201		135.7	
	141 8	36.80	145.7	37.37			138.7	
010°2			1 - 1.	0.L	• • • • •	r		

Table IV-5. Individual Specimen Stress-Strain Parameters of Directionally Solidified (DS) MAR M-246 (Hf Modified) in 34.5 MN/m² (5000 nsiz) Gaseous Environment (Continued)

I

. .

6 6

1

ORIGINAL PAGE IS OF POOR QUALITY

IV-24

Pratt & Whitney Aircraft Group FR-7746

•

(PCT)	STRESS (KSI)	STRAIN IN/IN+10-3	STRESS (KSI) 1	STRAIN IN/IN#16-3	STRESS (KSI) 1	STRAIN IN/IN+LO-3	STRESS (KSI) ]	STRAIN IN/IN+10-3
8 	5000 PS16	297K (75F) SIG HELIUM	XL52 245 NS	2 297K (75F) Psig hvordgen	5000 PSIG HYDRDG 5000 PSIG HYDRDG	1 297K (75F) PSIG HYDROGEN	SN 5P4 2978 5000 PSIG	297K (75F) Sig hydrogen
٩٢	66.7	2.34	61.7	2.17	57.1	2.06	64.2	2.24
0.625	75.2	2.86	73.5	2.80	68.5	2.63	72.7	2.80
0.050	78.8	3.20	75.8	3.14	72.3	3 • 69	0.61	***
0.100	80.2	3.17	17.2	3.71	74.5	3.65		3 • 7 T
G.150	80.8	4.29	78.0	4.23	15.4	4•17		
0.200	81.4	4.86	78.6	4.74	76.2	4/4	18.8	
0.400	84.4	8.97	81.4	8.86	78.8	8.80		
1.000	86.9	12.97	83.4	12.91	80.6	12.86	83.4	12.91
	1.88	E0.11	85.0	16.97	82 • 2	16.91	1.08	10.91
1.800	1.09	21.09	86.6	21.03	83.8	20.97	86.5	20.91
2.200	- 91.5	25.14	81.8	25.03	85.2	24.74	87.1	50.62
• 600	93.1	29.20	89.0	29.09	86.4	29.03	88 9	29.09
3.000	94.5	33.26	2*06	33.14	87.4	•	٠	7.
3.400	95.8	37.31	91.4	Ň	•	37.14	6.06	37.14
3.800	0.16	41.31	1.26	41.14	0.06	41-14	61.6	41.14
		589K (600F)	SN 5P6 589	K (600F)	SN 5P7 58	5P7 589K (600F)	SPE	9K (600F)
	2000 0	Ξ.	5000 PSIG	DOD PSIG HYDROGEN	2000 PS1	5000 PSIG HYDROGEN	5000 PSIG	G HYDRŪGEN
ā	52.5	1-94	54.1	2.06	56.6	2.06	52.7	2.00
0-025	62.8	2.57	61.5	•		2.63	60.7	2.51
0.050	1.64	2.91	0.9.0	2.47	67.7	2.97	62.5	2.86
0,000	66.7	3.43	65.1	3.54	69.5	3.49	64.1	3.43
0.150	67.3	3.94	66.1	4.06	69.9	4.00	64.7	4.00
0-200	68.5	4.46	66.5	15.7	1.01		65.1	4.40
0.400	71.7	8.64	6.49	8.69	73.7	8.69	68.7	8.63
.000	73.9	12.69	1.21	12.74	76.4	12.74	70.7	12.09
1.400	76.4	16.74	74.1	16.86	77.8	16.74	72.9	16.74
800	77.8	20.86	76.2	20.86	79.8	20.86	74.1	0
2.200	19.2	24.85	77.2	24.91	80.8	24.86		24.80
2.600	80.8	16.82	78.2	- 79.85	92.0	16.85	76.4	28.86
3.000	82.2	32.91	79.6	32.91	83.8	32.97	78.4	32.91
3.400	63.2	36.97	8C.8	37.09	82.3		19.2	36.91
	•				C			

Table IV-6. Individual Specimen Stress-Strain Parameters of Inconel 625 Plate in 34.5 MN/m² (5000 psig) Gaseous Environment

. .

. .

ORIGINAL PAGE IS OF POOR QUALITY

IV-25

:

Pratt & Whitney Aircraft Group FR-7746

ł

1

ţ

,

	STRESS (KS1)	STRAIN IN/IN+10-3	STRESS (KSI)	STRAIN IN/IN+10-3	STRESS (KS1)	STRAIN IN/IN+10-3	STRESS (KSI)	STRAIN IN/IN+10-3
	<u> 1557   645</u> 115 –	55K 1900F1	2 01 <u>45</u> NS	SH 5P10 755K (900F)	L IIds NS	755K [900F]	SN 5P12 755K (900F)	55K (900F)
	5000 PSIG	T (	5000 PS1	5000 PSIG HYDROGEN	5000 PSI	PSIG HYDROGEN	5000 PSI	5000 PSIG HYDROGEN
	5.94	1.89	58-6	2.34	50.1	1.94	51.3	2.00
0.025	57.6	2.40	61.8	2.74	58.7	2.46	59.0	2.46
0.050		7.7	65.5	1.03	60.7	2.80	61.8	2.80
0.100	61.4	3.26	67.1	3.66	62.3	3.37	63.4	3.43
0.150	62.0		E 89 -	4.17	63.9	3.94	9.92	3.94
0.200	02.6	4.34	68.9	4.74	64.5	4.40	65.4	4.51
0.600"	64.8	8.46	70.5	8.86	66.3	8.57	66.6	8.57
1.000	66.7	12.46	72.5	12.86	67.9	12.57	64.0	12.63
1.400	-1.80. ··		73.9	16.51	1.07	16.63	6.63	16.69
1.800	69.7	20.57	75.4	20.91	1.17	20.69	72.2	20.74
2.200	7.5	24.57	76.4	24.97	72.5	24.80	73.0	24.74
2.600	72.7	28.69	77.6	29.03	74.1	28.80	74.0	28.80
3.000	73.5	32.69	18.87	33.03	75.4	32.86	•	32.86
3.400	75.4	36.80	80.0	37.14	76.2	36.86	76.5	36.91
3.800	12.8	40.74	81.0	41.14	2.11	16.04	1.11	40.86
L	ELDE NS	922K (1200F)	SN 5P14 922K	322K (1200F)	SN 5P15 9	922K (1200F)	SN 5P16 9	N 5P16 922K (1200F
	54 000	H SI	L2000 PS1		IS4 0005	SOOD PSIG HADROGEN	5000 PSI	G HYDROGE
14	48.5	2.11	47.5	1.94	42.3	1.83	38.5	1.60
C.025	54:4		35.6	2.51	52.3	2.46	50.7	2.29
0.050	57.0	2.91	58.0	2.86	55.3	2.86	54.8	2.74
6.100	58.*6	. <u>6</u> 7°E.	8.92	3.49	57.3	3.43	57.2	3.31
C.150	59.6	4.06	61.2	4.00	58.4	4.00	58.4	58°E
0.200	2.09	4.63	<b>61.8</b>	4.57	24.0	4.57	26.0	4.40
0.600	<b>0.6</b> 2	8.69	0 <b>4</b> •0	8.69	61.8	8.63	62.1	8.51
1-000	65.3	12.74	66.5	12.74	63.6	12.74	64°I	12.21
1.400	66.9	16.91	68.1	16.74	0.00	10.80		10.04
1.800	68.5	20.91	69.3	20.80	*•00	20-80	<b>6.</b> 00	
2.200	69.7	24.97	10.1	24.86	0.7.0	24-85	2.80	
2.600	1 - 22 -	· 29,03° · · ·	1.11	28.86	68.6	28.86	4 - 6 9 - F	28.00
3.000	6.21	33.03	72.1	32.41	70.0	32.97	20.02	32.80
3.407	5.67	37.14	73.9	37.03	10.8	37.03	71.4	36.86

2

I

والإنداقة ومنجوف ومعتكان فالمتعاطية والمتكرية

1

1

ł

IV-26

WE TOOR QUALITY

OFFSET (PCT)	STRESS (KSI)	STRAIN IN/IN#10-3	STRESS (KSI)	STRAIN IN/IN+LO-3	STRESS (KS1)	578.AI N IN/ IN+1 0-3	STRESS (KSI)	STRAIN IN/IN+10-3
	SN 5C1 247 5000 PS16	247K (75F) >Sig Helium	SN 5C2 2 5000 PS	N 5C2 297K (75F) 5000 PSIG HYDROGEN	SN 5C3 29 5000 PS1	SN 5C3 297K (75F) 5000 PSIG HYDROGEN	SN 5C4 2	N 5C4 297K (75F) 5000 PSIG HYDRUGE
i	4	45 0	24-4	0.96	25.1	0.95	24.4	<b>54</b> .0
	C•07	04.0		1.66	35.7	1.58	34.4	1.58
0.025	1.20	00 I		2.10	39.8	2.03	38.7	1.96
0.050	2.54	1.44	1.07 1.04	2.74	43.5	2.66	42.2	2.59
0.100					45.6	3.23	43.64	3.16
0.150			6-5-4	3.89	40.8	3.80	<b>11.</b> 8	3.61
0.200			48-7	7.96	51.1	7.85	48.7	1.78
0.600	7.65		505	12.04	53.2	11.96	50.5	11.8
1.000	7•66 5		51.6	16.11	0.75	16.01	51.7	15.8
1.400	0.70			20.19	55.6	20 . 00	52.7	19.8
1.600	2.96			24.20	56.7	24.05	53.4	23.9
2.200	1.92				5.7.5	28.04	54.2	27.9
2.600	60.1			97.02 97.02	5.6.1	32.03	55.0	31.9
3.000	61.1			25.25		17.09	55.4	35.9
3.400	61.6			20°21		40-04	56.2	39.95
3.800	62.9		0.00				5.4.8	43.9
4.200	63.7		57.1	44.33	• no			
	SN 5C5	- <del>5</del>	SN 5C6 3	SN 5C6 589K (600F)	SN 5C7 589K	89K (600F)	SN SCB 5	N 5C8 589K (600F)
	000	516	5000 P3	SIG HYDROGEN	20005	PSIG HTUKUGEN		
ä			15.5		13.1	0.57	20.1	0.62
۲. ۲.			24.7		22.1	1.27	27.3	1.3
0.025					25.7	1.71	29.7	1.5
0.050	C•D6		10.0		29.1	2.34	31.9	2.0
0.100	0.00 4 40		4.26		31.1	2.97	32.9	2.6
0.1.0			C. F.F.		32.5	3.42	33.5	3.1
0.200			36.95		37.1	7.66	36.9	7.2
0.600			100		39.6	11.71	38.6	11.3
1.000			40.4		41.2	15.82	0.04	15.4
1.400			4-14		42.4	19.94	40 <b>•</b> 8	19.4
1.800			42.5		43.8	23.92	41.8	23.4
2.200			5 - E 4		4.0	26.01	42.6	27.4
2.600			2 77		45.4	31.96	43.6	4•1E
3.000	46.2	31.15		35.70	46.2	35.95	4 • 4 4	35.5
3.400			0-97		47.0	39.87	45.0	39.4

ol 625 MN/m² (5000 psig) Gaseous Environment t In Č, ĥ

÷.,

.

- -

-

------

1

]

いたたいのない

t

ORIGINAL PAGE IS OF POOR QUALITY

IV-27

Pratt & Whitney Aircraft Group FR-7746

ţ

1

Pratt & Whitney Aircraft Group FR-7746

ł

;

FIL         STA         SUA         SUA         TASK         (900F)         SUA         TASK         (900F)           9000         9156         MULUM         5000         9156         MULUM         9000         9156         MULUM <t< th=""><th>(PCT)</th><th>STRESS (KS1)</th><th>STRAIN IN/IN+10-3</th><th>STRESS (KSI)</th><th>STRAIN IN/IN+10-3</th><th>STRESS (KS1)</th><th>5TR AI N IN/ IN+10-3</th><th>STRESS (KSL)</th><th>STRAIN IN/ IN+1 0-3</th></t<>	(PCT)	STRESS (KS1)	STRAIN IN/IN+10-3	STRESS (KSI)	STRAIN IN/IN+10-3	STRESS (KS1)	5TR AI N IN/ IN+10-3	STRESS (KSL)	STRAIN IN/ IN+1 0-3
Z7.8     0.93     20.4     0.45     27.3     0.93       Z7.4     1.03     20.5     1.04     27.3     20.4       27.4     1.03     20.5     2.44     1.13     22.5       27.4     1.03     2.77     31.5     2.73     31.5       27.4     1.03     2.64     1.04     2.73     31.5       27.4     1.03     2.64     1.04     2.73     31.5       27.4     1.03     2.64     1.04     2.73     31.5       27.4     3.64     1.15     3.64     1.13     2.73       37.4     115.7     3.64     11.64     31.6     37.6       37.4     11.1     21.64     44.3     37.64     41.1       37.4     11.1     31.6     44.3     37.64     41.1       41.0     27.64     44.3     31.64     44.3     37.64       41.1     27.64     44.3     31.64     44.3     37.64       41.1     31.64     44.3     31.64     44.3     37.64       41.1     31.64     44.3     31.64     44.3     37.64       41.1     31.64     44.3     31.64     44.3     37.64       41.1     31.64     44.3			I	SN 5C10 5000 PS	755K (900F) IG HVDRDGEN	SN 5011 7 5000 PSI	55K (900F) G HYDROGEN	SN 5C14 5	PSK (900F) Ig hydrogen
72.6     72.6     7.9     71.1     72.6     7.9     7.1     72.6     7.9     7.1     72.6     7.1     72.6     7.1     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.6     72.7     72.7     72.7     72.6     72						7.7	0.89	16.4	0.70
Z713     133     Z6.4     113     Z6.4     113     Z6.4     113     Z6.4     113     Z6.4     213     Z6.4     2013     Z6.4     2014     Z6.4		22.6	0.95	19.0	20+0V			25.8	1.39
7:0     1:71     28:5     1:71     28:5     1:71     28:5     1:71     28:5       32:0     7:21     21:5     7:21     31:5     7:21     31:5       32:0     7:21     31:5     7:31     32:6     7:71     31:5       32:0     7:21     31:5     7:41     31:5     31:5     31:5       33:0     7:21     31:5     7:41     31:5     31:5     31:5       33:0     7:21     31:5     7:41     31:5     31:5     31:5       33:0     7:21     31:5     40:6     11:45     31:5     31:5       33:0     7:21     31:5     40:6     11:5     31:5     31:5       41:0     7:25     31:7     41:0     31:5     41:1     31:5       41:0     7:25     31:7     41:0     31:5     41:1     41:1       41:1     39:65     41:6     41:1     41:1     41:1     41:1       41:1     7:25     31:71     41:1     41:1     41:1       41:1     39:65     41:1     41:1     41:1     41:1       41:1     39:65     41:1     41:1     41:1     41:1       41:1     39:65     41:1     39:65		27.3	1.33	26.4	1.39				
37.6     37.5     37.5     37.5     37.5     37.5       37.6     11.5     37.6     37.5     37.5     37.5       37.6     11.5     35.3     1.47     30.6     11.35       37.6     11.5     36.3     1.47     30.6     11.35       37.6     11.5     30.6     11.5     30.6     11.5       37.6     11.5     30.6     11.5     30.6     11.3       37.6     11.5     30.6     11.5     30.6     11.3       37.7     31.71     40.4     13.5     31.6     40.4       41.1     23.5     40.4     13.5     40.4     40.1       41.1     23.5     41.1     23.5     41.1     23.5       41.1     23.5     41.6     31.7     41.7     23.5       41.1     23.5     41.6     43.5     41.7     41.7       42.0     43.6     43.5     41.6     43.5     41.7       43.6     43.5     43.5     43.5     41.7     41.7       44.1     33.5     43.5     43.5     41.7     41.7       45.0     43.5     43.5     43.5     41.5     41.5       45.0     43.5     43.5     43.5	C20.0		1-71	28.5	1.71		1.07		
37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.6     37.7     37.6     37.7	000			30.5	2.41			2	
31.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0     5.0 </td <td>.100</td> <td></td> <td></td> <td>31.5</td> <td>2.65</td> <td></td> <td></td> <td>31.5</td> <td></td>	.100			31.5	2.65			31.5	
37.0     7.47     5.3     7.47     5.3     7.47     5.3     7.47     5.3     7.47     5.3     7.47     5.3     7.47     5.3     7.47     5.3     7.47     5.3     7.47     5.3     7.47     5.3     7.47     5.3     7.47     5.3     7.41     7.43     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41     7.41 <td>0.150</td> <td></td> <td></td> <td>3.2.4</td> <td>35.35</td> <td>33.4</td> <td>3.29</td> <td>32.3</td> <td>n</td>	0.150			3.2.4	35.35	33.4	3.29	32.3	n
35.5     1.441     36.4     11.56     39.4     11.56       36.6     15.57     42.1     23.57     41.6     39.4       36.6     15.57     42.1     23.57     41.6     39.4       41.1     22.65     42.1     23.57     41.6     39.4       41.1     22.65     42.1     23.57     41.4     40.4       41.1     22.65     42.1     23.57     42.7     41.1       41.2     23.67     42.7     35.76     41.4     40.4       42.5     33.65     41.6     43.3     31.57     42.7       43.5     33.65     43.5     43.5     42.7     42.7       44.1     33.65     43.5     43.5     42.7     42.7       44.1     33.65     43.5     43.5     43.5     42.7       44.1     33.65     43.5     43.5     43.5     42.7       44.1     33.65     43.55     43.5     44.6     43.5       44.1     34.65     43.55     43.5     44.6     44.6       5000     51.6     43.57     44.6     50.6     51.6       5000     51.6     44.7     50.6     51.6     50.5       51.6     11.71 <t< td=""><td>0.200</td><td>32.0</td><td>3.44</td><td></td><td></td><td>36.9</td><td>7.34</td><td>35.6</td><td>7.47</td></t<>	0.200	32.0	3.44			36.9	7.34	35.6	7.47
37.4     11.4.6     30.4     15.53     40.4     15.51     30.1       39.4     19.65     30.4     15.63     40.4     15.51     30.1       41.0     27.56     30.4     15.63     40.4     15.51     30.1       41.1     27.56     30.4     15.63     40.4     15.51     30.1       41.1     27.56     31.71     45.2     35.54     41.4     30.51       42.5     31.71     45.2     35.61     45.2     35.54     41.1       43.5     45.6     39.68     45.6     39.54     41.1       44.1     39.67     45.2     39.68     45.6     39.54       44.1     39.67     45.2     39.68     45.6     39.54       44.1     39.66     45.2     39.68     45.6     39.54       44.1     39.68     45.6     39.54     44.0       44.1     39.68     45.6     39.54     44.0       45.0     45.1     39.68     45.68     39.54       5000 PS16 HELUH     5000 PS16 HW00000     40.5     50.57     50.56       51.6     27.3     27.3     2.41     2.61     27.3       26.4     11.3     2.61     27.3     2.61		35.5	14-1			10.01	96.11	37.6	8.42
38.8     15.57     39.6     15.57     39.6     15.57     41.1     23.75       41.1     23.75     42.1     23.75     41.4     19.45     41.1       41.1     23.75     42.1     23.75     42.7     42.7       41.1     23.75     42.1     23.75     41.4     19.45       41.1     23.75     42.1     23.75     43.54     41.1       41.1     23.75     42.7     43.54     41.1     42.7       41.1     39.65     43.56     43.54     43.54     41.1       44.1     39.65     43.56     43.54     43.54     41.1       45.0     43.56     43.56     43.54     43.57     43.54       45.0     45.6     43.56     43.56     43.55     44.0       45.0     45.6     43.56     43.56     43.57     45.0       5000     516     410005     58     50.57     43.57     45.0       5000     516     41.10     5000     51     43.5     50.56       51.6     41.1     20.55     11.70     50.57     50.56     50.56       21.6     11.33     20.57     2.41     2.41     24.25       21.6     11.33	-000	37.4	11.46	38.4				39.1	15.63
39.8       19.68       41.0       19.73       27.47       41.1         41.1       23.67       42.1       31.77       43.5       71.1       41.1         41.1       23.67       42.1       31.77       43.5       71.1       41.1         41.1       27.56       42.1       31.77       45.2       35.57       41.1         41.1       37.67       45.2       39.68       45.6       45.5       39.57       41.1         42.5       35.67       45.6       39.68       45.6       45.5       44.0       44.0         44.1       39.67       45.6       45.6       45.6       45.5       44.0       44.0         44.1       39.67       45.6       45.6       45.6       45.6       44.0       44.0         44.1       39.67       45.6       45.6       45.6       45.6       44.0       44.0         44.1       39.66       45.6       45.6       45.6       45.6       44.0       44.0         45.0       45.6       45.6       45.6       45.6       45.6       45.6       44.0       44.0         5000       51.6       47.6       50.6       51.6       47.6 <td>L. 400</td> <td>38.8</td> <td>15.57</td> <td>39.8</td> <td>60.61</td> <td></td> <td></td> <td>40.1</td> <td>19.68</td>	L. 400	38.8	15.57	39.8	60.61			40.1	19.68
41.7       23.67       42.9       27.67       41.9       27.67       41.9         41.8       31.75       42.9       31.76       43.5       27.67       41.9         42.9       31.76       43.5       35.76       44.7       41.9       42.9         43.5       35.65       44.7       35.76       45.6       45.6       45.6       44.3         44.1       39.65       45.6       45.6       45.6       45.7       44.0       44.0         44.1       45.6       45.6       45.6       45.6       45.6       45.7       44.0         44.1       45.6       45.6       45.6       45.6       45.6       45.6       44.0         5000 FS16 HELIUM       5000 FS16 HYDROGEN       500 FS16 HYDROGEN </td <td></td> <td>39.8</td> <td>19.68</td> <td>41.0</td> <td>19.75</td> <td></td> <td></td> <td>41.1</td> <td>23.67</td>		39.8	19.68	41.0	19.75			41.1	23.67
41.9       27.59       42.9       27.66       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       44.3       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4       44.4 <t< td=""><td></td><td>41.1</td><td>23.67</td><td>42.1</td><td>23.73</td><td>1.24</td><td></td><td></td><td>27.66</td></t<>		41.1	23.67	42.1	23.73	1.24			27.66
45.5       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.77       44.3       31.07       44.3       31.04       44.0       31.04       44.0       31.04       44.0       31.04       44.0       31.04       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0       44.0		41.0	27.50	42.9	27.66	6.64			14 15
44.7       35.76       45.2       39.03       44.4       35.75       45.6       39.05       44.0       39.05       44.0       39.05       44.0       39.05       45.6       39.05       45.6       39.05       45.6       39.05       45.6       39.05       45.6       39.05       45.6       39.05       45.6       45.6       39.05       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       45.6       4			31.71	43.9	31.77		24.15		35.75
44.1       39.62       45.6       39.68       45.6       39.54       49.54       39.54       49.54         55.0       43.67       45.6       43.67       45.6       43.54       49.64       49.54         5000       PSI6       HYDROGEN       SN 5C12       922K (1200F)       SN 5C15       922K       41.200F)       SN 5C16       922K         5000       PSI6       HYDROGEN       SN 5C12       922K (1200F)       SN 5C16       922K         5000       PSI6       HYDROGEN       SN 5C15       922K       1200F)       SN 5C16       922K         5000       PSI6       HYDROGEN       5000       PSI6       HYDROGEN       5000       PSI6       92.85         21.6       1.71       20.5       1.71       23.67       2.71       21.5       22.41       22.61       22.55         21.6       1.71       23.6       1.71       23.6       2.61       27.5       21.5       22.61       22.61       22.61       22.61       22.65       22.61       22.65       22.61       22.65       22.61       22.65       22.65       22.65       22.65       22.65       22.65       22.65       22.65       22.61       22.65       22.			24.42	44.7	35.76	45.2	10.00		12.22
\$5.0       \$3.67       \$6.2       \$3.67       \$6.2       \$3.67       \$6.6       \$3.54       \$4.6       \$3.54       \$4.6         \$5000 PSIG HELIUM       \$000 PSIG HEVDROGEN       \$5000 PSIG HEVD	0.400		30.42	45.6	39.68	9.54	39.49		
50.0       51.1       52.2K       (1200F)       5N 5C15       57.2K       12700F)       5N 5C16       92.2K         5000       PSIG       HUIN       5000       PSIG       HYOROGEN       5N 5C15       92.2K       112.00F)       5N 5C16       92.2K         5000       PSIG       HELLUN       5000       PSIG       HYOROGEN       5N 5C16       92.2K       12.00F       5N 5C16       92.2K         5000       PSIG       HELLUN       5000       PSIG       HYOROGEN       5N 5C16       92.2K       12.00F       5N 5C16       92.2K         15.3       0.76       11.33       20.5       11.33       23.5       1.71       22.5       22.5       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6       22.6	5.500			44.2	43.67	40.6	ŝ		10.04
SN 5C13 922K (1200F)         SN 5C12 922K (1200F)         SN 5C16 922K           5000 PS1G HELIUM         5000 PS1G HYDROGEN	• 200	0.04				!	and a management of the second se		
SN 5C13 922K (1200F)       SN 5C12 922K (1200F)       SN 5C12 922K (1200F)       SO 0 PSIG MUNDOGEN       SO								SN 5016	
5000 PSIG HELIUM       21.6     1.71     20.5     1.71     23.2     1.71       21.6     1.71     20.5     1.71     23.2     1.71       21.6     1.71     20.5     1.71     23.2     1.71       21.6     1.71     20.5     2.41     23.2     1.71       21.6     1.71     26.7     2.15     2.15     2.15       21.6     1.71     26.7     2.15     2.15       21.6     1.71     26.7     2.15     2.15       21.6     7.47     2.01     3.42     2.91       21.6     1.71     26.3     2.41     2.91       21.6     11.56     3.44     3.42     3.42       31.4     11.56     3.44     3.42     3.42       31.4     11.65     3.44     3.42     3.42       31.4     11.65     3.44     3.42     3.42       31.4     11.65     3.44     3.42     3.42       31.4     11.65     3.44     3.42     3.42       31.4     11.65     3.44     3.42     3.42       31.4     11.65     3.45     3.42     3.44 </td <td></td> <td>SN 5013</td> <td>922K (1200F)</td> <td>SN 5C12</td> <td>922K (1200F)</td> <td>C130 M0</td> <td>TO MURACEN</td> <td>5000 65</td> <td>IG HYDKDGE</td>		SN 5013	922K (1200F)	SN 5C12	922K (1200F)	C130 M0	TO MURACEN	5000 65	IG HYDKDGE
15.3       0.76       11.3       0.57       13.5       0.72         21.6       1.33       20.5       1.33       23.5       1.71       23.5         27.4       1.71       23.5       1.33       23.5       1.71       24.5         27.5       2.85       2.85       1.43       2.85       2.85       2.85       2.85         27.5       2.85       2.85       2.95       2.95       2.95       2.95       2.95         27.5       2.85       2.85       2.95       2.95       2.95       2.95       2.95         28.5       2.95       2.95       2.95       2.95       2.95       2.95       2.95       2.95         28.5       2.95       2.95       3.46       3.65       3.65       2.95       2.95         28.5       3.95       3.95       3.95       3.95       3.95       3.95         39.6       11.56       3.95       3.95       3.95       3.95       3.95         39.6       11.56       3.95       3.95       3.95       3.95       3.95         39.7       39.57       39.57       4.05       3.95       3.95       3.95         39.		5000 PS	IC HELIUM	5000 P	SIG HYDROGEN				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								15.5	0.7
21.6       1.33       20.5       1.445       20.5       2.45         24.6       1.71       20.5       1.71       20.5       2.45         26.5       2.35       2.41       20.5       2.65       2.65         26.5       2.35       2.41       20.5       2.65       2.65         26.5       2.35       27.3       2.61       31.6       3.42       2.65         27.5       2.85       27.9       3.42       2.61       3.42       2.65       27.4         27.5       3.35       27.6       31.6       31.6       31.6       3.61       2.65         31.0       11.56       30.6       11.65       31.6       3.61       30.1         31.6       11.56       33.6       11.65       37.2       12.33       32.6         31.6       15.63       33.6       19.65       39.6       20.4       34.2         31.7       35.7       40.7       27.72       31.6       34.2         31.7       35.7       40.7       28.4       34.2         31.7       35.7       40.7       28.4       34.2         31.7       35.7       40.7       40.7 <td< td=""><td>14</td><td>-</td><td>0.76</td><td>11.3</td><td></td><td></td><td></td><td>22.5</td><td></td></td<>	14	-	0.76	11.3				22.5	
24.4       1.71       23.6       1.71       23.6       1.71       23.6         26.5       2.34       2.34       2.41       2.91       2.91       2.91         27.5       2.35       2.41       2.63       2.41       2.91       2.91       2.91         28.3       2.35       2.73       2.41       2.91       31.0       3.42       2.91         28.3       3.35       2.79       3.40       31.0       3.92       31.0       31.0       3.92         33.0       11.56       33.0       37.2       12.22       31.5       30.1         34.4       15.63       33.0       19.75       37.2       12.22       31.5         35.4       15.63       33.0       19.75       37.2       12.22       31.5         35.4       19.65       34.7       23.73       39.6       20.44       35.1         36.5       27.72       35.3       31.77       41.5       28.44       35.1         37.0       35.76       40.77       24.46       35.3       35.1         37.0       35.76       40.77       24.46       35.1       35.1         39.5       35.76       42.9 </td <td>0.055</td> <td>21.6</td> <td>1.33</td> <td>20.5</td> <td></td> <td></td> <td></td> <td>24.2</td> <td></td>	0.055	21.6	1.33	20.5				24.2	
26.5       2.34       26.3       2.41       29.8       2.41         27.5       2.85       27.3       2.41       2.94       3.42         26.3       2.85       27.3       2.91       31.0       3.42       27.4         26.3       2.73       2.79       3.42       2.42       2.44       31.0       3.42       2.44         31.4       7.47       30.6       7.49       37.3       12.22       31.5       30.1         33.4       11.58       33.0       11.65       33.0       31.6       31.5       27.4       30.1         34.4       15.63       33.0       11.65       33.0       31.6       31.5       27.4       31.5         35.4       19.68       33.1       19.75       39.6       20.44       33.6       31.5         36.5       23.73       39.6       19.77       24.49       35.7       35.7         37.0       35.7       40.7       24.49       35.7       35.7         38.7       35.7       40.7       24.49       35.1         38.7       35.7       40.7       24.49       35.1         39.4       35.7       40.7       40.5		24.4	1.71	23.6		20.2			
27.5       2.85       27.3       2.91       31.0       3.99       2.95         28.15       2.85       27.9       3.46       31.0       3.99       27.4         28.15       3.35       3.35       3.74       30.6       7.59       31.6       3.99       27.4         31.4       7.47       30.6       7.59       31.6       31.6       30.1         33.0       11.56       32.0       31.65       38.4       12.22       31.5         34.4       15.63       33.0       11.65       38.4       12.22       31.5         35.4       19.65       33.0       11.65       38.4       10.35       32.6         35.4       19.65       34.7       23.73       37.0       37.6       37.6         36.5       27.72       35.77       41.5       28.4       35.1         37.0       35.76       42.9       37.5       35.7         38.7       35.76       42.9       36.5       36.1         38.7       35.76       42.9       36.5       36.1         38.7       35.76       42.9       36.5       36.1         39.45       35.76       42.9       36.5 <td></td> <td>2.46</td> <td>2.34</td> <td>26.3</td> <td></td> <td>2.9.8</td> <td>74.97</td> <td></td> <td></td>		2.46	2.34	26.3		2.9.8	74.97		
26.0     3.99     3.99     2.0       31.0     3.95     3.40     31.0     3.99     2.0       31.0     11.56     3.0.5     7.59     3.40     30.1     30.1       31.0     11.56     30.6     7.59     3.40     31.2     30.1       31.0     11.56     32.0     11.65     37.2     12.22     30.1       34.4     15.63     33.0     11.65     39.6     20.44     34.2       35.4     19.68     33.0     19.65     39.6     20.44     34.2       35.4     35.7     39.6     20.44     34.2       37.3     27.72     31.7     40.7     24.49       37.0     35.7     40.7     24.49     35.1       37.0     35.7     40.7     28.48     35.1       37.0     35.7     41.5     28.48     35.1       37.0     35.7     42.9     36.51     35.1       39.5     39.56     47.9     35.7     40.57     35.1       39.6     30.45     35.7     42.9     36.51     36.1       39.6     39.65     47.9     39.56     36.1       39.6     39.45     35.7     42.8     36.1       39.5	0.100			57.3		31.0	34.6		
26.3       35       35       35       35       301         31.4       7.47       306       759       35.3       816       301         31.4       156       330       1165       372       1222       315         34.4       15.63       331       1563       384       1633       328         35.4       1968       331       1563       384       1633       328         354       1963       396       2044       336       336         365       2373       347       2373       407       2449       342         373       27.72       357       3177       423       351       351         379       3171       357       415       2849       351         379       3171       357       415       2849       351         387       357       415       285       351         387       357       429       365       351         395       357       405       405       361         395       357       429	0.150	C•12		0 4 6		31.8	3.99	21.4	
31.4       7.47       30.0       11.65       31.5         33.0       11.58       32.0       11.65       37.2       12.22       31.5         34.4       15.63       33.0       11.65       33.0       31.6       32.8         34.4       15.63       33.0       19.75       39.6       20.44       33.6         35.4       19.68       33.0       19.75       39.6       20.44       34.2         35.4       19.68       33.0       19.75       39.6       20.44       34.2         36.5       23.73       34.7       23.73       34.6       34.2       34.6         37.3       27.72       35.7       41.5       28.48       35.1         37.9       31.77       42.9       32.53       35.1         38.7       35.76       42.9       35.53       35.1         38.7       35.76       42.9       36.51       36.1         39.5       35.76       42.9       36.51       36.1         39.43       35.76       42.9       36.51       36.1         39.43       35.76       42.8       36.51       36.1         39.43       35.76       42.9	0.200	28.3	0.0.0			35. 3	8.16	30.1	
33.0       11.58       32.0       11.60       32.0         34.4       15.63       33.1       15.63       33.1       15.63       33.6         35.4       15.63       33.1       15.63       33.1       15.63       33.6         35.4       15.63       33.9       19.75       39.6       20.44       33.6         35.4       19.65       33.9       1975       39.6       20.44       34.2         36.5       23.73       34.7       23.73       34.2       34.2         37.3       23.73       35.7       40.7       24.49       35.1         37.3       35.7       35.7       40.7       24.49       35.1         37.3       35.7       35.7       40.7       24.49       35.1         37.0       31.77       42.3       32.53       35.7         38.7       35.76       42.9       36.5       36.1         38.7       35.76       42.9       36.5       36.1         39.3       39.43       35.76       42.8       36.5       36.1         39.43       39.43       35.76       44.56       36.1       36.1         39.43       39.43 <t< td=""><td>0.600</td><td>- 31.4</td><td>7.47</td><td>0.05</td><td></td><td></td><td>12.22</td><td>31.5</td><td></td></t<>	0.600	- 31.4	7.47	0.05			12.22	31.5	
34.4       15.63       33.0       19.63       39.6       20.44       33.6         35.4       19.68       33.9       19.75       39.6       20.44       33.6         35.4       19.68       33.9       19.75       39.6       20.44       34.2         36.5       23.73       34.7       23.73       40.7       24.49       34.2         37.3       27.72       35.3       27.72       41.5       28.48       35.1         37.9       31.77       41.5       28.48       35.1       35.1         37.9       31.77       42.3       32.53       35.1         38.7       35.76       31.77       42.9       36.1       36.1         38.7       35.76       42.9       36.3       36.1       36.1         39.3       39.43       35.76       42.9       36.1       36.1         39.3       39.43       35.76       42.9       36.1       36.1         39.3       39.43       35.76       42.8       36.1       36.1         39.3       39.43       37.0       39.45       36.1       36.1	000 1	33.0	11.58	32.0				32.8	
35.4     19.68     33.9     19.75     39.6     20.04       35.5     23.73     34.7     23.73     34.2       37.3     27.72     35.3     27.72     41.5     28.48     35.1       37.9     31.71     35.3     27.72     41.5     28.48     35.1       37.9     31.71     35.3     31.77     42.3     32.53     35.1       38.7     35.76     35.76     31.77     42.3     32.53     35.1       38.7     35.76     35.76     42.3     32.53     35.1       38.7     35.76     35.76     42.9     36.1     36.1       39.3     39.43     35.76     42.4     36.5     36.1       39.3     39.43     35.76     42.4     36.5     36.1       39.3     39.43     37.0     39.45     44.56     36.1		34.4	15.63	33.1		1+00	77 CC	3.55	
36.5     23.73     34.7     23.73     34.7     23.73     35.1       37.5     27.72     35.3     27.72     41.5     28.48     35.1       37.9     31.71     35.3     27.72     41.5     28.48     35.1       37.9     31.71     35.3     31.77     42.3     32.53     35.1       38.7     35.76     35.76     42.9     31.77     42.9     36.51       38.7     35.76     35.76     42.9     30.57     36.1       39.3     39.43     35.76     42.9     36.57     36.1       39.3     39.43     37.0     39.68     44.56     36.7       39.3     39.43     37.0     39.68     44.56     36.7		35.6	19.68	33.9		0.40		0 7 6	
37.3     27.72     35.3     27.72     35.4     35.1       37.3     27.72     35.3     27.72     35.7     42.3     35.7       37.9     31.71     35.9     31.77     42.3     32.53     35.7       38.7     35.76     42.9     36.1     36.1     36.1       38.7     35.76     42.9     36.57     36.1       39.3     39.43     37.0     39.68     43.7     40.57     36.7       39.3     39.43     37.0     39.68     44.56     36.1       39.3     39.43     37.0     39.68     44.56     36.1		36.5	23.73	34.7		1.04			
31.0     31.71     35.9     31.71     42.3     32.53     35.1       31.7     35.7     35.7     35.7     35.7     36.1       38.7     35.7     35.7     35.7     36.1       38.7     35.7     35.7     35.7     36.1       38.7     35.7     35.7     35.7     36.1       39.3     39.4     37.0     39.68     43.7     40.57     36.7       39.3     39.4     37.0     39.68     44.5     44.56     37.1	2.200		01.10	35.3		41.5	26.48		
31.9 31.1 35.76 42.9 36.58 35.74 42.9 36.58 36.1 35.4 38.7 35.76 36.3 35.76 43.7 40.57 36.7 39.4 39.63 37.0 39.68 43.7 40.57 36.7 36.7 39.4	2.600			25.0		42.3	32.53	35.7	
38.7 35.70 30.68 43.7 40.57 36.7 39.4 39.63 37.0 39.68 43.7 40.57 36.1 39.4	3.000	31.4		2.45		42.9	36.58	36.1	30.4
.800 39.3 39.43 37.0 37.00 37.00 43.4	3.400	38.7				42.7	40.57	36.7	9°6E

ia) Gassous Environment 100021 .

á e

窥 2

-* -

• < - e

-4

1

Ī

I

ŝ i. t

OFFSET (PCT)	516655 (K51)	SIRAIN In/In*10-3	5 I K E S S ( K S I )	STRAIN IN/IN*l(-3	57k£\$\$ (KS1)	STRAIN IN/IN#10-3	STKESS (KSI)	SINAIN IN/IN+10-5
		ç	C CHH NY	(75F) VT+	SN HE3 2	SN HE3 297K (75F)	5N H64 25	247K (75F)
i i	SCOU PSIG HEL	IG HELIUM	50.001	LULO PSIG HYDRUGEN	ISADDUC	SUUCPSIG HYDRUGEN	50CC P51	SOCC PSIG HYDRUGEN
		15.1	4-4-	1 .43	42.4	1.37	t • <del>5</del> *	64.1
ר ר				5.3 - 1	52.4	t 5 • 1	53.1	2.00
0.025	1.00		12 ° C	2.24	56.8	2.24	56.4	2.24
0.656	<b>TT4</b> 2			2.66	60.4	2.86	9.54	2.80
0.100	5°.5	00•7	3.00	3.43	61.6	3.43	6 <b>0.8</b>	54.0
6.150	6 ° 7 °			30.6	62.8	4.00	62.2	1.00
0.200	V.00		57.7		61.5	8.17	66.4	8.11
0.600	2 • 2 Q				71.17	12.23	70.7	12.17
1.000				16.36	74.3	16.34	73.5	16.34
1.400	10.2				76.6	20.34	76.0	20-40
1.800	76.6				78.8	24.46	76.0	24.46
2.260	6 U - B		10.01			28.51	79.8	28.46
2.600	82.0		80.8				A 1 - 4	7 c. 2 c
9.060	84.6	32.51	5.2 to	32.51		36.24		26.57
019	86.2		84.0	36	<b>†</b> 1 i	00.00		59-07 59-07
. 600	67.6	40.57	<u> </u>	74.02	82.4			
			CN 1114	CN 11614 584K 1600F)	SN H615	SN HEIS SBUK (600F)	SN HB16	589K (600F)
	PUDD PSIG HE		5 000 P	5000 PSIG HYDROGEN	500C P	SOUG PSIG HYDROGEN	5000 PS	5000 PSIG. HYUKUGEN
		19 0	5.75	1.0	28.3	1.03	24.2	14.0
P۲			0.40		33.9		35 c	1.43
0.025		1.5		1	36.4		37.4	1.71
050.	0 • C • C • C • C • C • C • C • C • C •				37.8		36.6	2.24
0.100	31.5			•	36.0		34.5	2.40
0.150	5.15				34.2			
0.200					43.64		1.44.1	5 <b>5</b> • ~
0.600		-		-	47.1	-	47.8	11-54
1.600					50.5		50.1	12.41
1.400			1.5.5		52.4		5.54	11.41
1.800					5.43	24.00	55.1	23.11
	1.40	4.7			ð a d c		-U-14	27.11
		ļ			58.4		56.7	51.69
		-) (°			4	36.17	60.1	

I

-

* -

I

ORIGINAL PAGE IS OF POOR QUALITY

Pratt & Whitney Aircraft Group FR-7746

SN H65 755K (YUGF)         SN H65 755K (YUGF)         SN H66 755K           5000 PSIG HELIUM         5000 PSIG         50,000 PSIG           28.9         1.64         35.6           37.5         2.40         37.0           37.5         2.40         37.0           37.5         2.40         37.0           37.5         2.40         37.0           36.5         1.65         37.0           36.5         2.41         37.0           36.5         2.40         37.0           36.5         2.40         37.0           36.5         2.40         37.0           36.5         2.41         37.0           36.5         2.41         37.0           36.5         2.41         7.44           57.2         24.00         51.4           57.2         24.00         51.4           57.2         24.00         51.4           57.2         24.00         51.4           57.2         24.00         51.4           57.4         32.11         56.6           58.6         51.4         55.6           58.6         51.4         32.4           36.		STRESS (KST) IN	STRAIN IN/IN+10-3	STRESS (KSI)	STEALN IN/IN#LU=3
28.9 1.09 28.9 1.09 34.6 1.54 34.5 1.69 34.1 35.5 2.40 34.1 3.41 34.1 3.41 53.4 24.00 57.2 28.06 57.2 28.06 57.2 28.06 57.2 28.06 57.2 28.06 57.1 40.00 57.5 28.06 51.1 40.20 50.5 10.00 35.9 2.00 35.9 2.00 35.9 1.77 36.1 3.09 36.1 3.09 36.1 3.09 35.9 1.77 51.5 2.00 51.1 40.00 47.1 20.00 47.1 20.00 47.1 20.00 47.1 20.00 47.1 20.00 47.1 20.00	( 900F )	SN H67_755K	(9605)	SN H68 7	SN. H68 755K (500F).
28.9 1.09 34.6 1.54 34.5 2.40 37.5 2.40 38.5 1.89 37.9 11.71 53.4 22.00 53.4 22.00 53.5 22.00 53.5 22.00 34.5 1.49 34.5 1.49 34.5 2.00 55.5 2.00 55	HYDROGEN	5000 PSIG HYDROGE	HYDROGEN	5000 PS	5000 PSIG HYDRUGEN
34.6     34.6     1.64       34.6     1.65     2.40       35.1     2.65     2.40       35.1     3.65     2.640       35.4     47.9     11.71       47.9     11.71     3.65       53.4     20.00     1.65       53.4     20.00     2.640       55.4     20.00     2.640       57.2     28.06     2.600       57.2     28.06     2.611       50.6     34.9     1.71       50.6     34.9     26.17       50.6     34.9     26.17       50.6     1.47     36.17       50.6     1.47     36.17       50.6     1.47     36.17       50.6     1.47     36.17       50.6     1.47     36.17       50.6     1.47     36.17       50.6     1.47     36.1       50.6     2.00     2.00       55.6     1.17     3.07       55.6     1.17     3.07       55.6     1.17     3.07       55.6     1.17     3.07       55.6     2.010     2.010       55.6     2.010     2.010       55.6     2.010     2.010       55	1.03	28•5 	1.02	28.1	0.80
36.5     1.85       37.5     2.40       38.5     2.40       38.5     2.40       38.5     2.41       47.9     11.71       53.4     20.00       53.4     20.00       55.4     24.00       55.4     24.00       55.4     24.00       55.4     24.00       55.4     24.00       56.4     32.11       60.3     32.11       50.01     52.17       50.01     52.17       50.01     52.17       50.11     40.25       50.12     50.17       50.11     50.17       50.12     50.17       50.13     50.17       50.14     1.00       50.5     2.00       55.5     2.00       55.5     2.00       55.5     2.00       55.5     2.00       55.5     2.00       55.5     2.00       55.5     2.00       55.5     2.00       55.5     2.00       55.5     2.00       55.5     2.00       55.5     2.00       55.5     2.00       55.5     2.00       54.17	1.45	35.6	1.54	35.8	1.20
37.5 2.40 39.1 3.41 47.9 11.71 47.9 11.71 59.4 20.00 57.2 28.06 57.2 28.06 57.2 28.06 57.2 28.06 57.2 28.06 57.2 28.06 57.2 28.06 57.2 20.00 57.2 28.06 53.4 24.00 53.5 52.1 50.1 1.77 36.1 3.07 36.1 3.07 36.1 3.07 36.1 3.07 36.1 3.07 36.1 3.07 36.1 3.07 36.1 20.06 47.1 20.06 47.1 20.06	1.11	26.2	1.63	35.4	<u>1.49.</u>
38.5 2.91 39.1 3.43 43.8 7.66 53.4 20.00 57.2 28.06 57.2 28.06 53.4 24.00 57.2 28.06 56.1 50.01 56.1 52.11 61.1 40.23 50.1 50.11 34.9 11.71 55.6 11.71 55.6 11.71 55.6 11.71 55.6 11.71 55.6 11.71 55.6 11.71 55.6 11.71 55.6 10.00 47.1 20.06 47.1 20.06	2.29	37.1	2.25	37.3	2.00
39.01     5.43       43.0     53.4     5.43       53.4     20.00       53.4     24.00       57.2     28.00       57.2     28.00       57.2     28.00       58.4     24.00       57.2     28.00       58.4     24.00       57.2     28.00       58.4     24.00       58.4     24.00       58.4     24.00       58.4     28.00       58.4     32.11       60.3     56.11       50.6     1.44       34.5     1.44       34.5     1.44       34.5     1.44       36.1     3.00       36.1     3.00       36.1     3.00       36.1     3.00       36.1     3.00       36.1     3.00       36.1     3.00       36.1     3.00       36.1     3.00       36.1     3.00       36.1     2.00       44.17     2.0.00       45.5     2.00       44.17     2.0.00       44.17     2.0.00       44.17     2.0.00       44.17     2.0.00       44.17     2.0.00    <	2.60		494	C+/0 2 F 0	16.7
51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5 5	10.0			0 - 2 - 2 	
50.4 53.4 53.4 53.4 53.4 53.4 54.00 54.00 54.00 54.0 52.11 61.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.0 50.1 50.0 50.1 50.0 50.1 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50	11.54		11.66	40.4	11.26
53.4 24.00 53.4 24.00 55.4 24.00 58.9 32.11 58.9 32.11 61.1 52.17 61.1 40.25 50.00 PSIG HELIUM 34.9 1.77 55.5 1.44 36.1 3.09 36.1 3.09 36.1 3.09 36.1 3.09 55.6 11.77 55.6 11.77 55.6 10.00 47.1 20.00 45.6 10.00 45.6 10.00 45.6 10.00	15.66	48.5	15.71	46.5	15.21
57.2 28.06 57.2 28.06 58.9 32.11 60.3 56.17 61.1 40.23 50.00 PSIG HELIUM 34.5 1.49 34.5 1.49 35.9 2.00 35.9 2.00 35.6 11.89 45.6 10.00 47.1 20.00 47.1 20.00 47.1 20.00 47.1 20.00	19.71	50.9	19.83	5.05	19.43
57.2 28.06 58.9 32.11 60.3 32.11 60.3 32.11 50.05 92K (1200F) 50.05 1.49 34.5 1.49 34.5 1.49 34.5 2.05 35.5 2.05 35.5 2.05 35.6 11.89 45.6 10.05 47.1 20.06 47.1 20.06 47.1 20.06	23.77	52.5	23.83	52.5	23.43
58.9 32.11 61.1 40.25 61.1 40.25 50.05 50.17 5000 PSIG HELIUM 34.9 1.77 55.5 2.05 55.5 2.05 55.5 2.05 35.5 2.05 35.6 11.69 47.1 20.06 47.1 20.06 47.1 20.06	27.63	54.0	27.94	9**4	27.49
60.3 56.17 61.1 40.25 500C PSIG HELIUM 500C PSIG HELIUM 34.9 1.77 35.9 2.00 35.9 2.00 35.6 11.69 45.6 11.69 47.1 20.00 47.1 20.00 47.1 20.00 47.1 20.00 47.1 20.00	31.69	9° 55 . 6	31.94	5.6+0	31.54
61.1 40.23 SN H89 922K (1200F) 500C PSIG HELIUM 34.9 1.77 34.9 1.77 35.9 2.00 35.9 2.00 35.6 11.67 45.6 11.67 45.6 10.00 47.1 20.06 47.1 20.06	35.84	57.2	36.00	57.6	•
SN H89 Y22K (1200F) 500C PSIG HELIUM 34.9 1.77 34.9 1.77 35.9 2.00 55.9 2.00 55.9 2.00 35.9 2.00 35.0 11.89 47.1 2.4.17 47.1 2.4.17 47.1 2.4.17	40.00	58.9	40.06	.6•84	39 a 60.
SUUC PSIG HELIUM 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 35.5 36.3 36.3 36.0 36.0 36.0 36.0 36.0 36.0 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.77 36.0 10.05 36.0 10.05 36.0 10.05 36.0 10.05 36.0 10.05 36.0 10.05 36.0 10.05 36.0 10.05 36.0 10.05 36.0 10.05 47.1 20.05 36.05 10.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.	K (1200F)	SN H811 922K (1200F)	K (1200F)	SN HB12	422K (1200F
34.5 1.44 28.5 34.5 1.44 28.5 55.5 2.00 332.6 55.5 2.00 32.6 35.6 32.8 33.1 32.6 34.0 33.1 35.7 35.8 33.4 33.4 33.4 33.4 33.4 33.4 33.6 33.6	HYDROGEN	5000 PSIG	HYDROGEN	5000 PS16	IG HYDRUGEN
34.9 1.77 32.4 55.9 2.06 32.6 55.9 2.06 32.6 35.1 3.07 32.8 36.1 3.07 33.1 36.1 3.60 33.4 33.1 3.60 33.4 45.6 11.67 40.7 47.1 20.06 45.0 47.1 20.06 45.0 47.0 45.0	1.14	26.4	1.03	30 <b>.</b> 5	1.20
55.5     2.06     32.6       55.4     2.57     32.8       35.4     2.07     32.8       36.1     3.05     33.1       36.1     3.60     33.1       36.1     3.60     33.4       36.2     1.05     33.4       45.6     11.85     40.5       45.6     10.00     43.0       45.6     24.17     45.0       51.5     26.27     45.0	J • 5 4	32.3	1.43	36.4	1.66
55.9 2.67 52.8 36.1 3.09 32.8 36.1 3.09 33.1 37.1 3.50 33.4 45.6 11.89 45.6 10.00 43.0 47.1 20.00 45.0 47.1 20.00 45.0 47.0 47.0	1.77	32.4	1.77	36.6	5 J
36.1     3.00     33.1       30.3     3.60     33.4       30.3     3.60     33.4       30.3     3.60     33.4       45.6     1.187     40.3       45.6     16.00     43.0       47.1     20.00     45.0       47.5     24.17     47.0       51.5     26.27     46.7	2.29	34.1	2.34	5.00 5.00	
30.3     3.600     33.4       39.6     7.71     36.7       42.6     11.84     40.3       45.6     10.60     43.0       47.1     20.40     45.0       45.5     24.17     45.0       51.3     26.29     45.7	2.66	194 - 19 19 - 19 19 - 19	2.000	0.15	
-7.00     -7.1     -7.00       +2.60     11.64     +0.0       +5.60     10.00     +3.0       +7.1     20.00     +5.0       51.3     26.29     +5.0       51.3     26.29     +5.1	3.37	24.67	1 C 4 C	316	2442
45.6 16.00 43.0 47.1 20.00 43.0 49.9 24.17 47.0 51.3 26.29 45.7	11.60		11-60	44-2	11-66
800 47.1 20.00 45.0 200 49.9 24.17 47.0 • 600 51.3 26.29 46.7	12.41	4 4 4	17.01	1.04	15.77
-200 49.9 24.17 47.0 •600 51.5 26.29 46.7	19.77	40ª 4	16.91	40.7	14.65
•600 <u>21.5</u> <u>26.29</u> <u>46.7</u>	23.69	5.45	23.65	1.05	46.03
	27.44	20.4-	27.85	- 43 24	26.06
C*NC	32.60	52.5	32.60	1.42	11.25
3.400 <u>55.60 36.46</u> 52.5 36.	36.00	54.0	36 <b>•</b> 0¢	4-44	56.17

**NA KU** 

CAR SET UN

í.

ž.a

**- 4** ... ** %

> a christeri A

á 74

....

	SS STRAIN [] IN/IN#10-3	SN 8P4 297K (75F) 5000 PSIG HYDRDGEN	·7 4.46							• •			•			-
	STRESS (KSI)	••	121.7	145.			101	100	269.	177.	IA3.			186.	1.1.7.	
	STRAIN IM/IN+10-3	SN 8P3 297K (75F) 5000 PSIG HYDROGEN	4.34	5.49			00.0	7.60	6.17	12.57	14.40		- I - DZ	24.80	38 85	
	STRESS (KSI)	SN 8P3 2 5000 PS	121.4	146.1		4.061	164.3	169.0	172.2	T.C.R.I			2*991	189.4		
-	STRAIN IN/IN+10-3	SN 8P2 297K (75F) 5000 PSIG HYDROGEN	4.29	5.40		0.0	6.74	7.49	8.11	10 44		10.01	20.63	24.49		
	STRESS (KSI)	SN 8P2 2 5000 PS	119.2	1 2 2 1		154.1	162.3	167.1	170.3				186.4	187.6		
	STRAÍN IN/IN+10-3	SN 8P1 297K (75F) 5000 PSIG HELIUM	47-4		1 n n	6.17	6.91	7.60	1 C 0		12.03	16.69	20.80			
node innniginite . e- a l'anon	STRESS (KSI)	SN 8P1 2 5000 PS		20021	140.9	155.7	163.1	1.021			<b>e•1</b> 21	165.4	187.8		107+6	
nors 1 2-00	OFFSET (PCT)		i	ے ا	6.025	0.050	0.100		001-0	0.200	0.600	1.000	100	3	1.800	

1

Table IV-9. Individual Specimen Stress-Strain Parameters of Inconel 718 Plate in 34.5 MN/m² (5000 psig) Gaseous Environment

7

5 19

...

а**,** ъ

I

Pratt & Whitney Aircraft Group

FR-7746

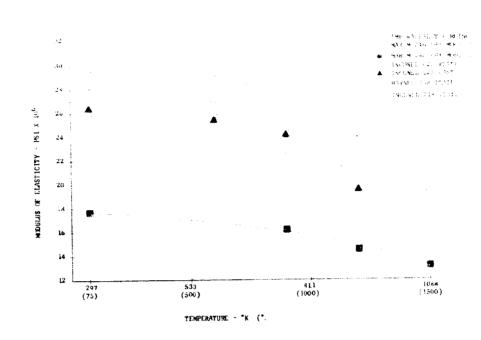
ł

L

SN 8P6 589K (600F) 5000 PSIG HYDROGEN 36.91 111.1 132.5 140.6 147.5 157.1 167.1 167.1 170.3 177.9 177.9 177.9 177.9 189.7 189.7 SN 8P7 589K (600F) 5000 PSIG HYDROGEN 36.86 36.86 40.86 109.2 131.3 131.3 140.3 140.3 140.3 154.3 167.3 167.3 174.3 174.7 191.4 192.2 192.9 SN 8P6 589K (600F) 5000 PSIG HYDROGEN 4.74 5.71 6.97 6.97 7.66 8.29 8.29 7.65 7.4 7.65 3.27 7.4 7.63 3.27 40.80 80.80 32.74 36.80 40.80 189.4 190.2 190.6 121.2 140.8 140.8 154.5 154.5 158.6 154.5 173.9 173.9 173.6 173.6 175.6 175.6 175.6 175.6 175.6 SN 8P5 589K (600F) 5000 PSIG HELIUM 32**.8**6 36**.9**1 40**.**91 191.4 192.4 193.0 116.2 135.7 143.7 143.1 149.9 149.9 156.5 156.5 156.5 177.3 177.8 177.8 177.8 177.8 177.8 177.8 177.8 177.8 177.8 177.8 177.8 177.8 177.8 177.8 177.5 177.8 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 177.5 PL 0.025 0.100 0.100 0.100 0.110 0.000 11.000 0.110 0.000 33.000 33.000 33.000 33.000 2.600 3.600 3.400 300000mm



I STRES	TRESS (KSI)	STRAIN IN/IN+10-3	STRESS (K SL )	STRAIN IN/IN+10-3	STRESS (KSI)	STRAIN IN/IN+LO-3	STRESS (KSI)	STRAIN IN IN+10-3
0005	_ <b>_ _</b>	755K (900F) 9516 Helium	SN 8P10 755K 5000 PS1G HE	N 8PIO 755K (900F) 5000 PSIG MELIUM	5000 PSI	SN 8P11 755K {900F} 5000 PSIG HYDROGEN	SN 8P12 7 5000 PSI	SN 8P12 755K 1900F) 5000 PS1G HYDRDGEN
107	9.5	04**	107.2	4 • 40	107.2	04.4	106.2	4.23
Ň	. é .	5-54	125.3	5.31 5.89	127.5	5.43 6.00	126.1	5 <b>.89</b>
	137.4	9 <b>1</b> 1 0	140.5	6.69	141.9	6 <b>.</b> 8 6	142.3	6.63 
	147.3	7.54	144.5	7.37	145.7	5*°L	146.1	7.20
1	149.7	11.0	147.1	00 8	148.5	11°8	1-841	12.23
15	59.4	12.51	156.3	12.40			140.3	16.29
16	162.2	16.57	158.9	10.40	162.5	20.69	162.1	20.34
16		20.05	141.9	24.57	163.5	24.69	162.7	24.40
	102.1	20°22	1.631	26.57	164.9	28.69	163.7	28.46
97	167.3	32.74	163.7	32.63	165.3	32.74	164.3	32.46
168		36.86	164.5	36.69	165.7	36.74	10401	
16	9.7	40.80	165.3	40.69	166.3	41.04	1.001	
		1300E1	ALDE US	CN 8014 032K (1200F)	SN BP15	SN 8915 922K (1200F)	5 9148 NS	SN 8P16 922K (1200F)
005	5000 PSIG	HELIUM	5000 P	5000 PSIG HYDROGEN	5000 PS	5000 PSIG HYDROGEN	5000 PS1	5000 PSIG HYDROGEN
ć	ç	76 7	4-40	62.4	94.6	4.29	106.6	4.69
			120.1		122.5	5.66	124.5	5.66
			127.8		129.2	6.23	132.0	6.34
	1 4 7 4		124.8		135.8	7.03	138.4	7.03
			138.6	7.54	139.4	1.7.1	142.1	7.71
			141.4	A.23	141.9	8.29	144.7	8.29
002-0		19 40	150.7	-	151.3	12.74	154.1	12.74
	C . 721	10°27	154.3		155.1	16.91	157.9	16.91
			156.3		157.1	20.97	160.4	20.97
		14.02	157.5		158.6	25.03	161.6	25.03
	2.00				159.4	29.03	162.8	29.03
	101.4		150.7		160 -	E0.EE	163.4	33.09
•600 Ie	7.20	c).cc				37 14	144-4	37.14


: .

•

Ş

FR-7746

İ



**

. . .

-

• •

• •

Figure IV-29. Effect of Temperature on Modulus of Elasticity of Various Alloys

Table IV-10.	Degradation of Ambient Air Tensile Properties of MAR M-246 (Hf Modified) After 8-Hour 1144°K (1600°F) 34.5 MN/m ² (5000 psig)
	Gaseous Hydrogen Exposure

<u> </u>	Stress		ent Air me (hr)	Degrad Helium	ation (Decr Exposed M	ease fro aterial,	mi ()
	Concentration	After E	xposure	Stren			tility
Material Form	Factor	$\frac{-1}{0}$	24	0.2° Yield	Ultimate	EL	RA
Directionally Solidified	Smooth	X		ND	ND	42	25
Directionally Solidined	Smooth		х	ND	20	68	32
	8.0 8.0	X	x		ND D		
Conventionally Cast	Smooth	x		ND	12	73	NE
conventionally case	Smooth		X	ND	ND	82	17
	8.0 8.0	Х	х		$\frac{27}{23}$		

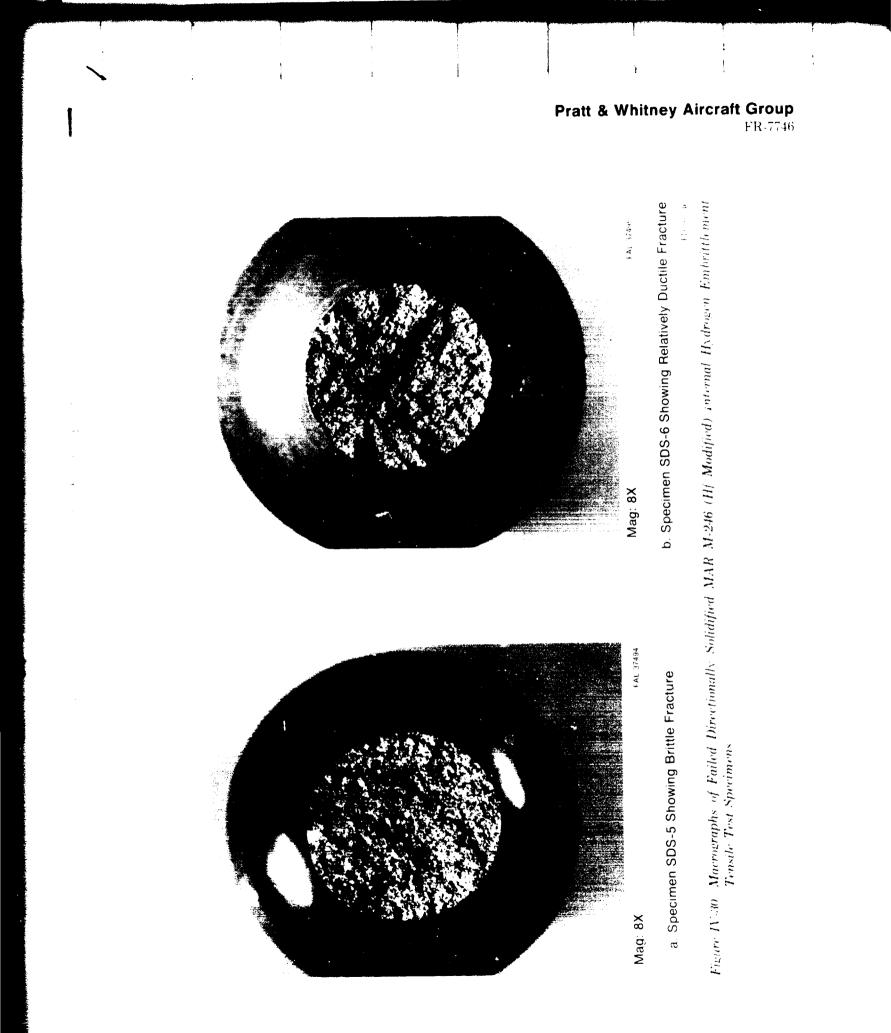
FR-7746

However, for the hydrogen exposed DS material, increased property degradation was indicated with increased air set time. To aid in explaining this behavior a metallographic investigation was conducted. Through optical and electron metallography, no correlation of test condition with fracture appearance was apparent, except for a more ductile fracture appearance evident in those specimens with higher ductility values (figure IV-30). No evidence of overtemperature or material anomalies were observed at the fracture faces. All specimens had similar microstructure with exception of SDS-4 which showed colonies of unsolutioned large  $\gamma'$  associated with alloy-rich areas with eutectic  $\gamma'$ . These colonies were not evident in the other specimens (figure IV-31). This discrepancy in microstructure of one specimen does not explain the material behavior.

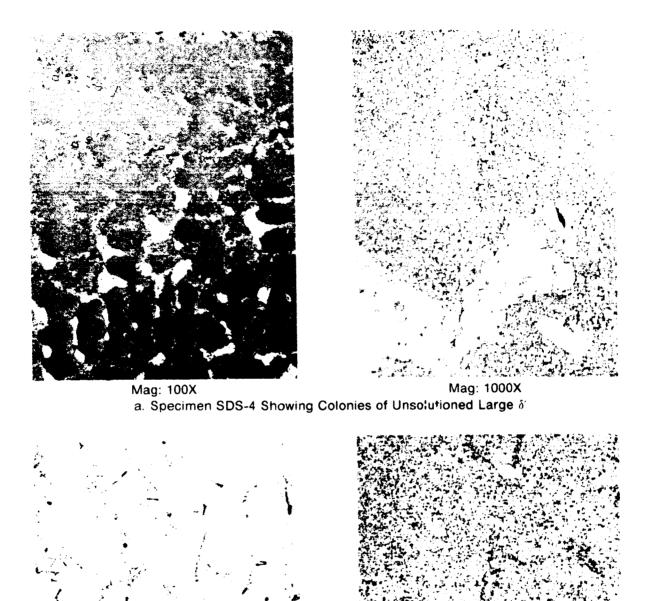
Due to the limited number of specimens tested and data scatter, characteristic of cast materials, these conclusions are tenative.

Test results for each specimen tested are listed in table IV-11.

#### C. TEST PROCEDURE


All tensile tests were conducted per ASTM E8-69, "Tension Testing of Metallic Materials," using five specimen designs. The test specimen utilized depended upon the type of test conducted (smooth or notched) and the size of the furnished raw materials. In the Exhibit B effort, only smooth tests were conducted. The test specimen (FML 96311), shown in figure III-3, was used for the majority of the materials with the exception of the cast Inconel 625 and the CC MAR M-246 (Hf Modified). A cast-to-size specimen (figure III-2) was used for the cast Inconel 625 tests and specimen FML 95226M, shown previously in figure III-5, for the CC MAR M-246 (Hf Modified). For the Exhibit C IHE tensile tests, both smooth and notched ( $K_T$ =8.0) specimens were tested. The DS material was evaluated utilizing FML 96311 (figure III-3) and FML 96312 (figure III-4) for smooth and notched tests, respectively. For the CC material, FML 95226M and FML 96462 (figure III-6) were used. All test specimens are described previously in Section III and shown in figure III-2.

For the IHE tensile testing all specimens were exposed to either 34.5  $MN/m^2$  (5000 psig) helium or hydrogen environment at 1144°K (1600°F) for 8 hours. After exposure and cooling of test specimens to 297°K (75°F), the test vessel was opened and specimens were tested in ambient air immediately and/or 24 hours later.


Smooth specimens were tested at a strain rate of 0.005 mm/mm/min (in./in./min) to yield and a crosshead speed of 1.27 mm/min (0.05 in./min) from yield to fracture. Notch specimens were tested at a crosshead speed of 1.27 mm/min (0.05 in./min) to fracture.

All tensile testing was conducted on a Tinius Olsen 266.8-kN (60,000-lb) capacity tensile machine, equipped with a P&WA-designed and developed pressure vessel. All controls and instrumentation readout equipment are located inside an adjacent blockhouse. This equipment is shown in figures IV-32 and IV-33.

Various views of the pressure vessel showing specimen, extensometer, and furnace setup are presented in figure IV-33. The vessel is made of AISI 347 stainless steel and incorporates a highpressure GrayLoc connector. A compensating device built into the base of the vessel eliminated the effect of loads resulting from differential specimen and adapter cross-sectional areas.



FR-7746



Mag: 100X Mag: 1000X b. Specimen SDS-5 Showing Typical DS Material Structure

ED 00145

Figure IV-31. Micrographs of Directionally Solidified MAR M-246 (Hf Modified) Internal Hydrogen Embrittlement Tensile Test Specimens

İ

Ambient AirAm		st Res	uno	
Set Time (hr) Strengt	th	Duct		Modulus of
Spec Exposure After Exposure 0.2° Yield	Ültimate	EL ²	RA	Elasticity
	IN/m² ksi	<u>°;</u>	- <i>e</i> ;	psi×10*
Directionally SDS-1 Hydrogen X 943.2 136.8 10	.028.0 149.1	5.3	6.7	18.6
Solidified SDS-2 Hydrogen X 926.0 134.3	985.9 143.0	4.5	9.4	18.4
SDS-3 Helium X 894.2 129.7 S	945.3 137.1	8.5	10.8	19.2
SDS-4 Hydrogen X 875.6 127.0 S	961.1 139.4	4.5	8.9	
SDS-5 Hydrogen X 916.3 132.9 9	955.6 138.6	3.9	7.1	18.4
	192.1 172.9	13.0	11.8	18.0
NDS-1 Hydrogen X 1	381.7 200.4			
	1289.3 187.0			
	283.1 186.1			
	1183.8 171.7			
NDS-5 Hydrogen X 1	1415.5 205.3			
NDS-6 Helium X 1	1439.6 208.8			
Conventionally SCC-1 Hydrogen X 835.0 121.1	852.2 123.6	0.7	4.0	27.3
	875.6 127.0	0.5	4.0	28.2
	983.9 142.7	2.2	4.2	29.6
	887.4 128.7	0.4	4.0	) 27.4
	852.2 123.6	0.7	4.0	) 29.8
	902.5 130.9	3.0	4.8	3 24.4
NCC-1 Hydrogen X 1	1020.4 148.0			
NCC-2 Hydrogen X	931.5 135.1			
NCC-3 Helium X 1	1339.6 194.3			
NCC-4 Hydrogen X 1	1008.7 146.3			
NCC-5 Hydrogen X	1009.4 146.4			
NCC-5 Hydrogen X I NCC-6 Helium X I	1314.8 190.7			

#### Table IV-11. Tensile Properties of MAR M-246 (Hf Modified) After 8-Hour 1144°K (1600°F) 34.5 MN/m² (5000 psig) Gaseous Environment Exposure

•

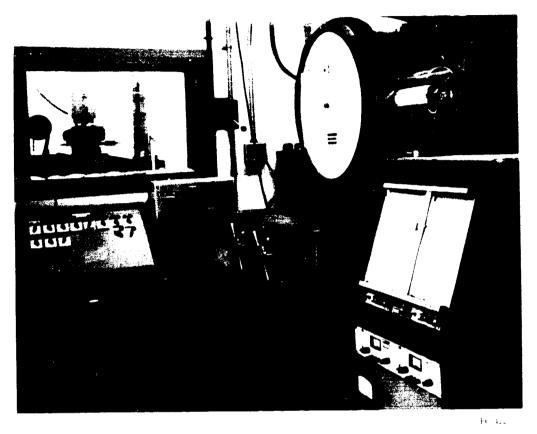
¹NDS and NCC are Notch specimens, K_t=8.0 ²Elongation based on gage length of 4D. For the CC material elongation was measured off load-deflection curve (plastic portion).

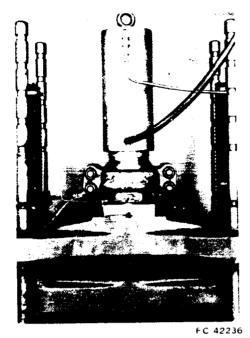
## ORIGINAL PAGE IS OF POOR QUALITY

t

FR-7746

1



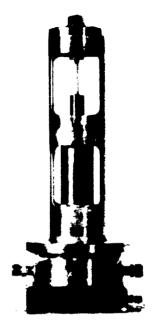


Figure IV-32. Tensile Machine, Test Environmental Controls and Data Acquisition Equipment

# OF POOR QUALITY

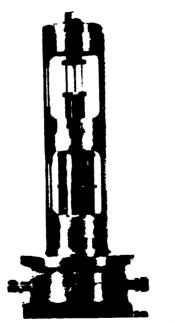
1

1

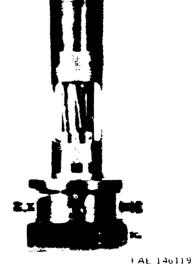
FR-7746




¥


對毒豆 非误计

. .


a) Test Vessel Installed on Tensile Machine Located In Remote Test Cell

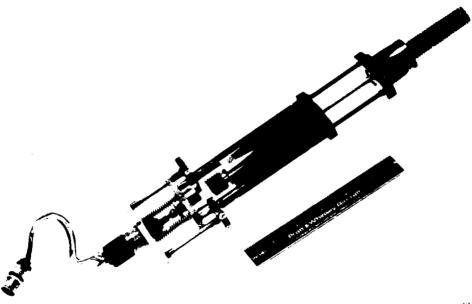


b) Test Vessel Open With Notch Tensile Specimen in Place



c) Test Vessel Open With Smooth Specimen In Place and Extensometer Attached




d) Test Vessel Open With Furnace Attached

FD 9255

Figure IV-33. Setups of Tensile Test Vessel

FR-7746

To measure specimen strain for both room temperature and elevated temperature tests an averaging-type linear variable displacement transducer (LVDT) extensometer system was used (figure IV-34). Specimen load was determined by both the tensile machine load measuring system and an internal strain-gage-type load cell: thus, absolute specimen load was known and friction at the pressure vessel sears was of no consequence. Electrical connections to the internal load cell, extensometer, thermocouples, and furnace were made through the bottom of the pressure vessel via high-pressure bulkhead connectors.



FE 144126

Figure IV-34. Averaging Type LVDT Extensioneter System

To conduct elevated temperature tests, a two-zone turnace with separate control systems for each zone was used that minimized any heat gradient due to the high thermal conductivity of the gases. The furnace fits within the pressure vessel load frame (figure IV-33d). Thermocouples looped around the specimen gage section (or notch) were used to control and monitor specimen temperature during each test. Temperature variation over the gage length of the smooth specimens was minimal, less than  $2^{6}c_{c}$ 

Prior to test, specimens were rinsed with trichloroethylene, wiped dry, rinsed with acetone, wiped dry, and inserted into the test fixture. All handling of specimens was done with clean gloves.

Periodic checks of hydrogen test environments revealed oxygen levels less than 1 ppm. This purity level was obtained using the following test procedure:

- 1. Secure pressure vessel.
- 2. Pressurize to 0.345 MN m² (50 psig) with nitrogen gas, leak check, and vent.
- 3. Evacuate to 0.101 MN m² (30 in, Hg) and fill with nitrogen gas two times.
- 4. Evacuate pressure vessel, gas supply and sampling system to an indicated vacuum of 0.101 MN/m² (30 in, Hg).

FR-7746

- 5. Pressure purge to 3.45 MN/m² (500 psig) with hydrogen gas three times, obtain pretest gas sample.
- 6. Pressurize to 34.5 MN/m² (5000 psig) with hydrogen gas and conduct test.
- 7. Reduce pressure to obtain post-test gas sample, vent to atmospheric pressure, flow and pressure purge with nitrogen gas, open pressure vessel and remove failed specimen.

For the helium tests, the procedure was as follows:

- 1. Secure pressure vessel.
- 2. Pressurize to 0.345 MN/m² (50 psig) with nitrogen gas; leak check, and vent.
- 3. Evacuate pressure vessel and gas supply to an indicated vacuum of 0.101 MN/m² (30 in, Hg).
- 4. Pressure purge to 3.45 MN/m² (500 psig) with helium three times.
- 5. Pressurize to 34.5 MN/m² (5000 psig) with helium and conduct test.
- 6. Vent to atmospheric pressure, open pressure vessel and remove failed specimen.

Tensile properties, including  $0.2^{c_i}$  offset yield strength, ultimate strength, percent elongation, reduction of area, modulus of elasticity and stress-strain parameters were obtained for all smooth specimen tests. For notched tests, only ultimate strength was determined. For smooth tensile tests, the stress strain and static modulus of elasticity information was obtained from the load-deflection curves. A typical test curve is shown in figure IV-35.

In determining specimen elongation, the standard, most often used, method (fitting together the fractured specimen and measuring the distance between gage marks with dividers and scale) was used. However, because of the low ductility of the conventionally cast MAR M-246 (Hf Modified), and the fact that for the IHE tensile tests a substandard specimen with a short 12.7 mm (0.5 inch) 4D gage length, had to be utilized, inherent error in the standard method measuring technique precluded measurement for values of elongation less than  $2^{\circ}c$ . Therefore, elongation of the CC specimens was measured from the plastic portion of the load-deflection curves. This approach yielded values less than  $2^{\circ}c$  to within approximately  $0.1^{\circ}c$  accuracy. Typical load-deflection curves for hydrogen and helium exposed CC material IHE tensile tests are shown in figures IV-36 and IV-37.

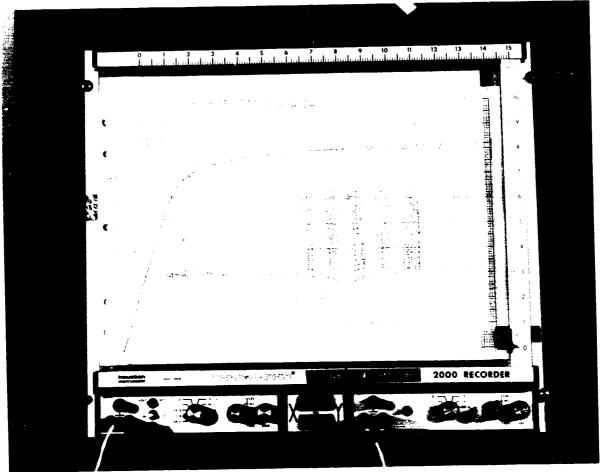



Figure IV-35. Typical Load-Deflection (Stress-Strain) Curve

1

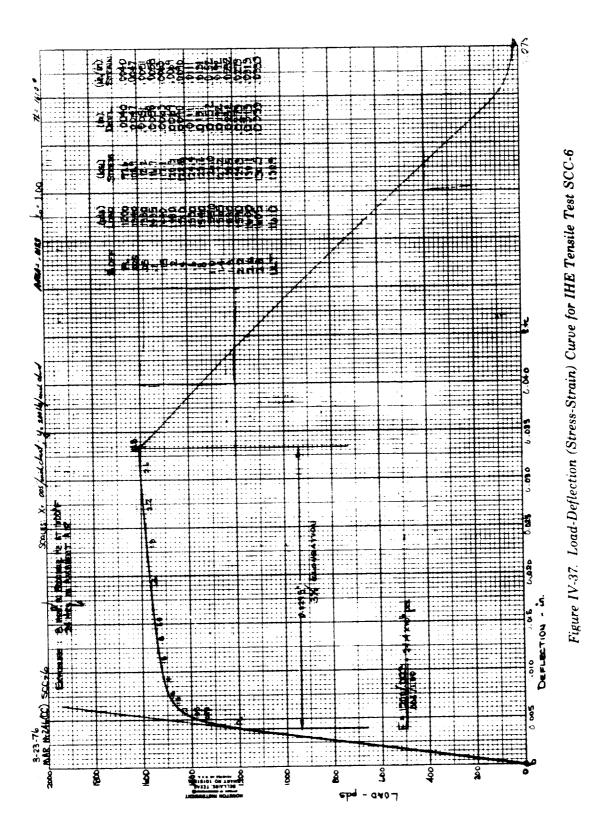
FE 151300

IV-43

#### 152046 R Figure IV-30. Load-Deflection (Stress-Strain) Curve for IHE Tensile Test SCC-5 ::: 0111 ----ä 222 0.040 e R 0 035 <u> 1</u>= 201 1900009 H N 1 0.030 İΕ. 1 ł 0.025 DEFLECTION - IN 0.020 i i E Z 2.181.0 ł 튁 S R 010 ---o-WEL Ġ. 500 31-76 MAR A lo ء H .... -----٥ 400 8 0 å 8 8 ĝ 82 8 1040 - pds

ł

#### Pratt & Whitney Aircraft Group


ţ

FR-7746

----

Pratt & Whitney Aircraft Group

FR-7746



IV-44

#### SECTION V LOW-CYCLE FATIGUE

#### **A. INTRODUCTION**

Low-cycle fatigue (LCF) tests were conducted under Exhibit C of this contract to establish the LCF life of MAR M-246 (Hf Modified) in two cast conditions, conventionally cast (CC) and directionally solidified (DS), in 34.5 MN/m² (5000 psig) helium and hydrogen environments at 1033°K (1400°F) and 1144°K (1600°F). Comparison of results in hydrogen environment to results of similar tests in helium environment established degradation in cyclic life due to the hydrogen environment.

The LCF tests were of both the strain-control and load-control type. It was intended that all LCF tests be in the strain-control mode. However, the limited size of the CC material, supplied by NASA in the form of cast-to-size specimens (figure III-2), necessitated the use of the load-control fatigue test in lieu of strain-control as used in the DS material tests. Upon completion of the CC material tests several load-control DS material tests were conducted for a material comparison.

The strain-control LCF tests consisted of a compressive start with the material cycling through a constant total strain range (elastic plus plastic) until specimen fracture. The tensile and compressive portions of the strain cycle were of equal magnitude, resulting in a mean strain of zero. This cycle is shown in figure V-1. Test strains were selected to establish LCF life between 100 and 1000 cycles.

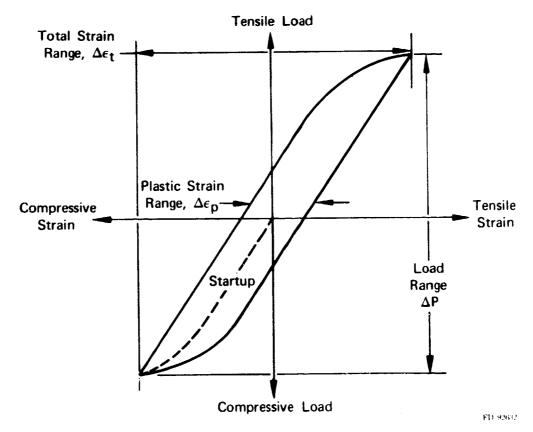



Figure V-1. Typical Load-Strain Hysteresis Curve Obtained During a Specimen Low-Cycle Fatigue Test

The load-control LCF tests, consisted of a tension-to-tension cycle with load (stress) varying about a constant tensile preload at a cyclic rate of 9 cpm. All specimens were tested at an R ratio (minimum stress/maximum stress) of 0.1 (figure V-2), with a sawtooth wave form. Test stress levels were selected to obtain specimen failure within 1000 to 10,000 cycles.

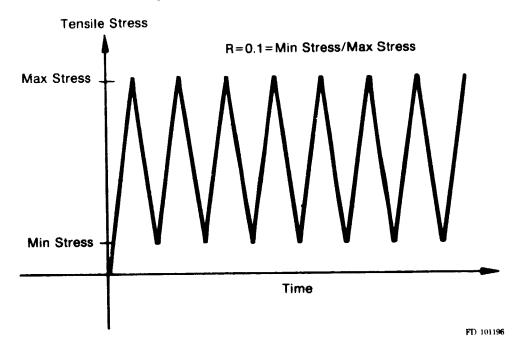



Figure V-2. Typical Load-Control Low-Cycle Fatigue Test Cycle

#### **B. RESULTS AND CONCLUSIONS**

Ţ

1

The MAR M-246 (Hf Modified) material in the DS form exhibited negligible degradation, in strain-control LCF life. However, the CC material exhibited considerable degradation in loadcontrol LCF life. The material forms evaluated, the test types and the degradations observed are listed in table V-1.

	Type of	Te Tempe		Degradation (Decrease From Helium, %) in Life at Mean of Strain Ranges or Stre		
Material Form	Test	°K	°F	Range Tested		
Directionally Solidified	Strain Control	1033	1400	ND		
Directionally contained	(Mean Strain=0)	1144	1600	ND		
Conventionally Cast	Load Control	1033	1400	35		
	(R, min stress/max stress=0.1)	1144	1600	57		
Directionally Solidified	Load Control	1033	1400	65		
Directionally condition	$(\mathbf{R}=0.1)$	1144	1600	61		

Table V-1. Degradation of MAR M-246 (Hf Modified) Low-Cycle-Fatigue Life Due to 34.5 MN/m² (5000 psig) Hydrogen Environment

FR-7746

1

No degradation in the DS material strain-control LCF life was indicated at  $1033^{\circ}K$  (1400°F) due to the hydrogen environment. At 1144°K (1600°F) a slight reduction of  $12^{\circ}c$  in life was indicated at the higher strain range of  $2.8^{\circ}c$ . Strain-control LCF cyclic strain vs cycles to failure curves for the DS material in 34.5 MN/m² (5000 psig) helium and hydrogen at  $1033^{\circ}K$  (1400°F) and 1144°K (1600°F) are shown in figures V-3 and V-4, respectively. The effect of temperature and strain range upon degradation is illustrated in figure V-5. The strain-control LCF test results for each specimen tested are listed in table V-2.

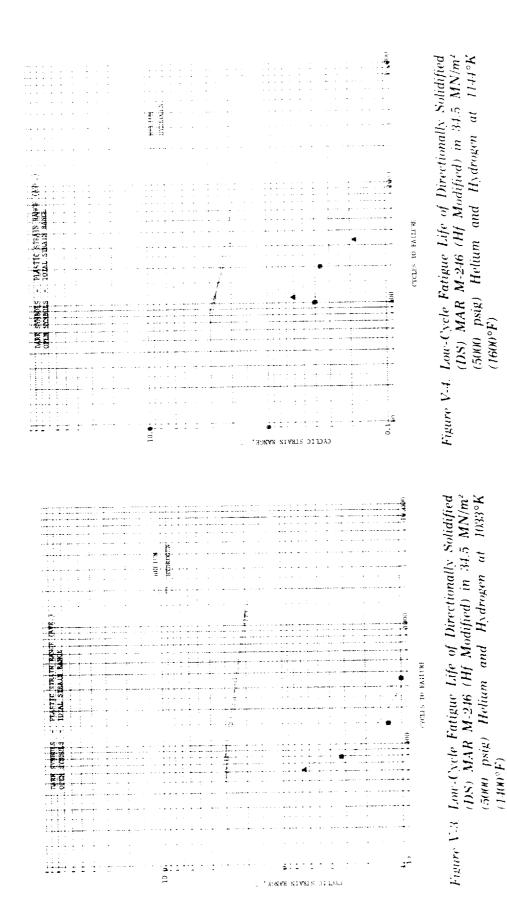
The CC material exhibited considerable degradation in load-control LCF life at 1033°K (1400°F) and 1144°K (1600°F) due to the hydrogen environment. Maximum stress vs cycles to failure curves in helium and hydrogen at 1033°K (1400°F) and 1144°K (1600°F) are shown in figures V-6 and V-7, respectively, which also show approximate strain range scales. At both test temperatures, increased hydrogen degradation resulted with increased maximum stress. The effect of temperature and maximum stress on hydrogen degradation of the CC material load-control LCF life are illustrated in figure V-8. Complete load-control LCF test results are listed in table V-3.

Four DS material load-control LCF tests were conducted to enable a comparison between the two cast materials in 34.5  $MN/m^2$  (5000 psig) hydrogen. Based on minimal testing, a single helium and hydrogen test at each temperature, the DS material load-control LCF life was degraded 65 and 61%, at 1033°K (1400°F) and 1144°K (1600°F) respectively, due to the hydrogen environment. This reduction in load-control LCF life was greater than that of the CC material as shown previously in table V-1.

The extreme degree of degradation obtained in the DS material load-control LCF test results is contrary to that obtained for the strain-control tests. In the strain-control mode negligible degradation, if any, resulted due to the hydrogen environment. This occurrence was similar to that noted for MAR M-200 DS material reported in PWA FR 5768, (Contract NAS8-26191) where strain-control tests indicated negligible degradation and load-control tests indicated extreme degradation in fatigue life. A CC material, IN-100, tested at that same time indicated more consistant degradation results between the two types of test. The initial inclination, based upon the limited number of DS material tests was to attribute this difference in degradation to data scatter associated with the load-control test. However, it has occurred for two different DS materials and it appears there may be some mechanism unique to the DS material that is influencing degradation results.

Metallurgical examination of the failed specimens indicated no significant differences which could account for the variations in degradation between tests. One specimen, LLDS-3, did have an internal origin from a hafnium rich carbide inclusion, shown in figure V-9. This alone will not account for the difference in degradation between the two tests, and further mechanistic studies are required to explain that occurrence.

#### C. TEST PROCEDURE


Smooth, round, solid specimens were used for the LCF tests conducted under this contract. The strain-control test specimen used is described in Section III and detailed in figure III-9. The specimen configuration incorporates integral machined extensometer collars (figure V-10). A calibration procedure has been established to relate the maximum strain-to-collar-deflection during both the elastic and plastic portion of the strain cycle. The specimen design and calibration procedure were verified both experimentally and analytically. Two load-control specimens were used in this program. The CC material load-control specimens were furnished by NASA in the cast-to-size configuration shown previously in figure III-2. The DS material loadcontrol specimen is also shown previously in figure III-2 and detailed in figure III-10.



FR-7746

,

ł



V-4

s

FR-7746

!

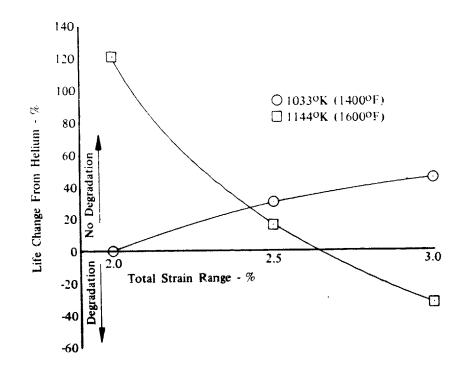


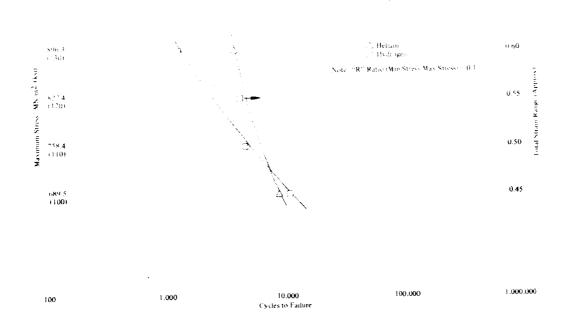

Figure V-5. Effect of Temperature and Strain-Range on Hydrogen Degradation of Directionally Solidified (DS) MAR M-246 (Hf Modified) Strain-Control Low-Cycle Fatigue Life

Strain-Control Directionally So		
ified) in 34.5 Hydrogen		

		Test (	`onditions		Test Results					
Test Specimen Temperatu		ire		Totai Strain ( Range:	ycles I to	Nastic Rang				
SN	K	$\overline{F}$	Environme	nt 👘	Failure	Min	Max	Ace		
LDS-1	1033	1400	Hydrogen	3,00	78	0.27	0,39	0,33		
LDS-2	1033	1400	Hydrogen	2,00	1074	0.06	0,08	-0,07		
LDS-3	1033	1400	Hydrogen	2.50	35 <u>2</u>	0.08	0.11	0.10		
LDS-4	1033	1400	Hydrogen	2.75	148	0.08	0.17	-0.13		
1.08.5	1033	1400	Helium	3,00	62	0.51	0.82	0.67		
LDS-6	1033	14(8)	Helium	2,00	1249	0.03	0,04	0,04		
LDS-7	1144	1600	Hydrogen	2,00	220	0,30	0,30	0,30		
1.08.8	1144	1600	Hydrogen	2.40	201	$\{0, 3\}$	0,34	-0.30		
LDS 9	1144	1600	Hydrogen	1,60	1861	0.05	0,04	-0.00		
LDS-1		1600	Hydrogen	2,80	5474	0,35	0.41	0.40		
LDS-1		1600	Helium	2.80	111	0.53	0.67	0.60		
1.08-1		1600	Helium	2.00	331	0.15	0.22	$\Theta$ D		

Mean Strain 0

ŧ


· Cyclic Rate, 4 cycles min

Test ng maltunction, specimen overloaded.

3

FR-7746

:



1

ł

Figure V-6. Load-Control Low-Cycle Fatigue Life of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 34.5 MN/m² (5000 psig) Helium and Hydrogen at 1033°K (1400°F)

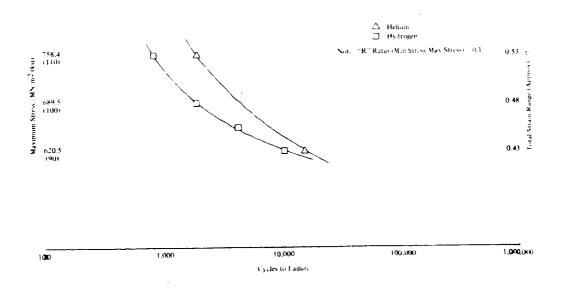
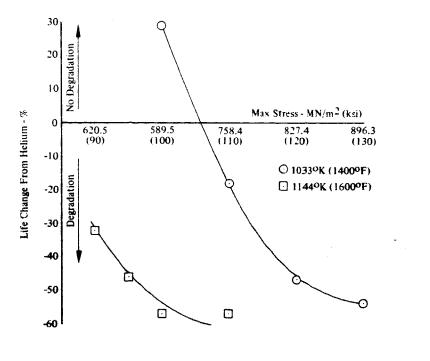




Figure V-7. Load-Control Low-Cycle Fatigue Life of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 34.5 MN/m² (5000) psig) Helium and Hydrogen at 1144°K (1600°F)

FR-7746



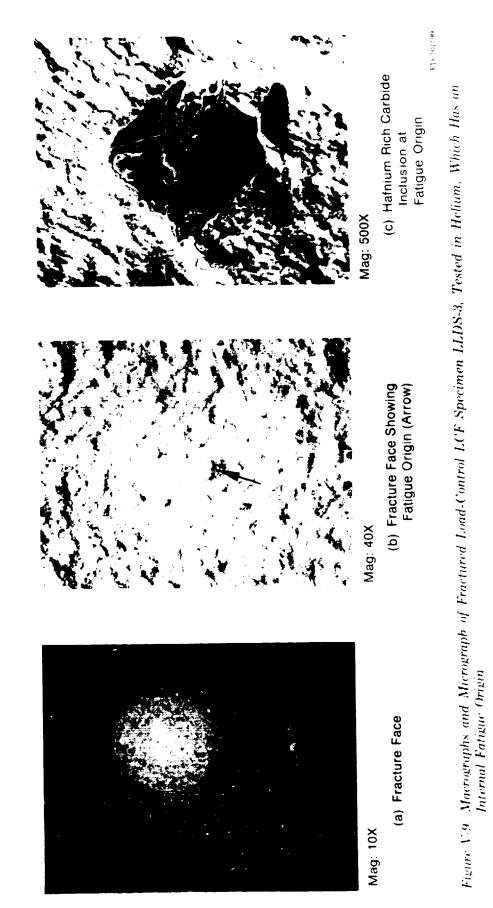
DF 102400

Figure V-8. Effect of Temperature and Maximum Stress on Hydrogen Degradation of Conventionally Cast MAR M-246 (Hf Modified) Load-Control Low-Cycle Fatigue Life

Table V-3.	Load-Control LCF ¹ Properties of MAR M-246 (Hf Modified) in 34.5 MN/m ²
	(5000 psig) Helium and Hydrogen

				Test Condition	s		Test Resi	elts	
Material Form	Specimen S/N	Test <u>Temperature</u> °K °F Environmen			Maximum Stress MN/m' ksi		Approximate Total Strain Range		
Conventionally Cast	LCC-2	1033	1400	Hydrogen	758.4	110	0.50	4,631	
	LCC-3	1033	1400	Hydrogen	827.4	120	0.54	-4,230	
	LCC-4	1033	1400	Hydrogen	896.3	130	0.59	1,341	
	LCC-5	1033	1400	Hydrogen	689.5	100	0.45	10,661	
	LCC-11	1033	1400	Helium	896.3	130	0.59	3,904	
	LCC-12	1033	1400	Helium	689.5	100	0.45	8,698	
	LCC-6	1144	1600	Hydrogen	689.5	100	0.48	1,935	
	LCC-7	1144	1600	Hydrogen	620.5	90	0.43	10,450	
	LCC-8	1144	1600	Hydrogen	758.4	110	0.53	863	
	LCC-10	1144	1600	Hydrogen	655.0	95	0.40	4.283	
	LCC-13	1144	1600	Helium	620.5	90	0.43	15,398	
	LCC-14	1144	1600	Helium	758,4	110	0.53	1.989	
Directionally	LLDS-3	1033	1400	Helium	896.3	130	0.87	40,375	
Soliditied	LLDS-1	1033	1400	Hydrogen	896.3	130	0.87	14,022	
	LLDS-4	1144	1600	Helium	758.4	110	0.83	32,958	
	LLDS-2	1144	1600	Hydrogen	758.4	110	0.83	12,993	

""R" ratio (min stress max stress) of 0.1, cyclic frequency 9 cpm


² Premature specimen fracture due to power failure.

制制

. .

. .

.



ŧ

V-8

FR-7746

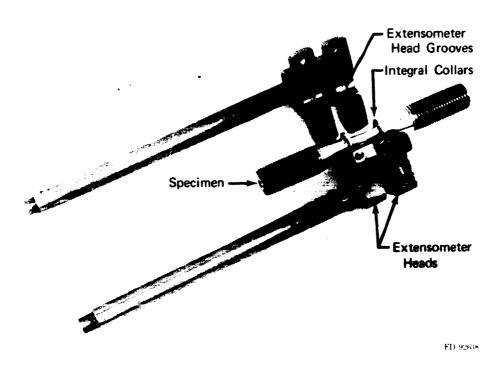
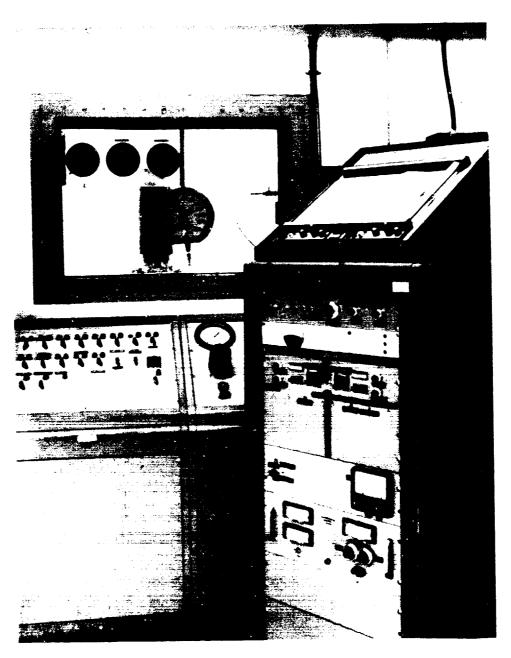
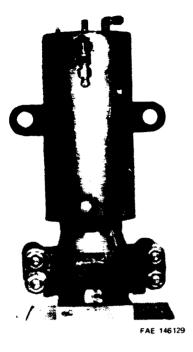




Figure V-10. Open Extensometer Head Assembly and Strain-Control Low-Cycle Fatigue Specimen

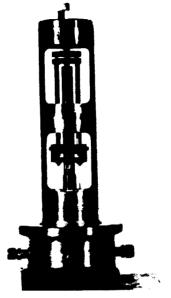
All tests were conducted on a P&WA/Florida designed and fabricated, closed-loop type, hydraulically actuated test machine capable of operation in both the strain-and load-control mode. The test machine is located in an isolated test cell with all controls and instrumentation located in an adjacent blockhouse (figure V-11). A pressure vessel similar to the one used for tensile testing (Section IV-C) was mounted on the upper platen of the test machine. The vessel also incorporated a GrayLoc-type high-pressure flange connector; however, unlike the tensile vessel where a compensating piston device was used to counteract load in the specimen due to pressure acting over differential specimen adapter areas, this test system compensated for that load through the servosystem. A pressure transducer provided a feedback signal, proportional to chamber pressure, to the servocontroller. This signal was used in controlling a mean load applied to the linkage so zero strain in the specimen gage was maintained when the vessel assembly was pressurized. This same load was then superimposed on the cyclic load during testing.


Both internal (to the pressure vessel) and external load cells were used to obtain cyclic load; thus, the effect of friction at the load rod seals was known and accounted for. Electrical connections to the load cell, extensioneter system (for strain control tests), furnace (for elevated temperature tests), and thermocouples were made through the vessel wall via high-pressure bulkhead connectors. Setups of the pressure vessel showing the extensioneter system for the strain-control tests and furnace arrangement are shown in figure V-12.

For elevated temperature testing, a two-zone resistance furnace with separate control systems for each zone was used. The furnace surrounds the specimen and fits within the frame of the pressure vessel (figure V-12c). Thermocouples looped around the specimen gage section were used to monitor and control temperature during test.

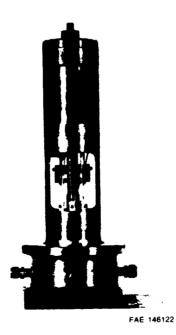


ì


Figure V-11. Low-Cycle Fatigue Test Machine Environmental Controls and Data Acquisition Equipment



(a) Test Vessel Closed


1

Ĩ



FAE 146121

(b) Test Vessel Open Showing Extensometer System Used in the Strain Control Tests



(c) Test Vessel Open Showing Furnace in Place

FD 92640A

Figure V-12. Setups of Low-Cycle Fatigue Test Vessel

FR-7746

For the strain-control tests, strain, as sensed by the extensometer, was recorded on the "X" axis of an "X-Y" recorder, and load (sensed by the internal load cell) was recorded on the "Y" axis, thus providing hysteresis loops, as desired, during the cyclic life of all tests. A typical series of LCF hysteresis loops is shown in figure V-13. In the load-control tests, load (stress) was recorded on the "Y" axis and time on the "X" axis of the "X-Y" plotter. This enabled monitoring of the load cycle at various intervals throughout the duration of all tests. A typical series of load-control LCF cycles is shown in figure V-14. During setup of each load-control test, the load cycle was monitored as the load (stress) limits were being set. They can be seen at the start of the load cycle record illustrated in figure V-14.

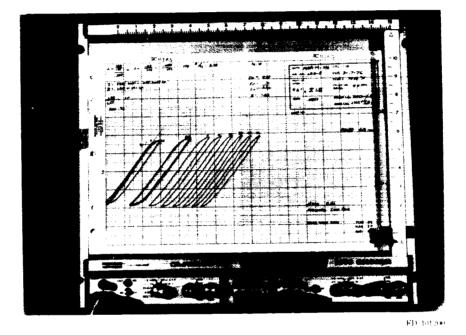
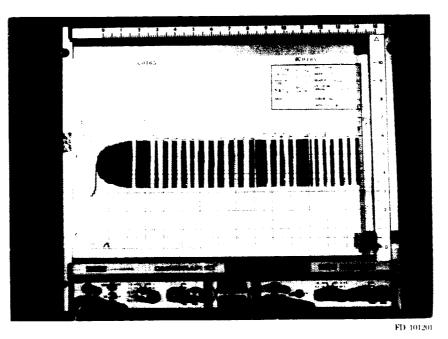




Figure V-13. A Typical Series of Hysteresis Loops Generated During an Actual Strain-Control Low-Cycle Fatigue Test

The test and gas handling procedures used for the LCF tests were similar to those used for the tensile tests performed under this contract (Section IV-C).



4

ä,

Figure V-14. A Typical Series of Load-Cycles Generated During an Actual Load-Control Low-Cycle Fatigue Test

#### SECTION VI CREEP-RUPTURE

#### A. INTRODUCTION

Under Exhibit C of this contract, creep-rupture properties of the nickel-base alloy MAR M-246 (Hf Modified), in two cast conditions, directionally solidified (DS) and conventionally cast (CC), were determined in 34.5 MN/m² (5000 psig) helium and hydrogen at 1033°K (1400°F) and 1144°K (1600°F). Testing established creep rate, rupture life, elongation, and reduction of area. Results of tests in hydrogen were compared to those in helium to determine property degradation.

#### **B. RESULTS AND CONCLUSIONS**

Degradation was determined at given stress levels from the percentage reduction in life for hydrogen, compared to the helium environment. Using this method, some extrapolation of the stress vs time curves was necessary to obtain equivalent stress levels. In previous work¹, degradation was based upon stress for a given life. MAR M-246 (Hf Modified) exhibited such a range of lives in the different environments that a comparison of this nature would require extensive extrapolation. With the limited amount of data, extrapolations of this type would be unrealistic. Because of the limited data, the degradation values should be considered as indicators of a trend, not absolute.

The MAR M-246 (Hf Modified) material, in the DS and CC forms, exhibited degradation in creep-rupture life at both 1033°K (1400°F) and 1144°K (1600°F). Degradation in stressrupture life up to 80° c occurred due to the hydrogen environments. Degradations for the specific test conditions are listed in table VI-1.

<u>vel</u> ksi 115.0 110.0	in Rupture Life at Indicated Stress Level
	50
110.0	
11010	) 48
105.0	) ¹ 32
85.0	) 66
75.0	$\mathbf{N}\mathbf{D}^2$
70.0	) ND ³
100.0	0 80
90.0	0 ND ³
70.0	0 78
<b>6</b> 0.0	0 60
	70.

#### Table VI-1. Degradation of Stress-Rupture Life of MAR M-246 (Hf Modified) in 34.5 MN/m² (5000 psig) Hvdrogen Environment

¹"Properties of Materials in High Pressure Hydrogen at Cryogenic, Room and Elevated Temperatures." PWA FR-5768. Final Report, Contract NAS8-26191, 31 July 1973.

FR-7746

Stress vs time curves for the DS material at  $1033^{\circ}$ K ( $1400^{\circ}$ F) and  $1144^{\circ}$ K ( $1600^{\circ}$ F) in helium and hydrogen environments are shown in figure VI-1. They indicate reductions in rupture life from 32 to  $50^{\circ}$  over the stress range investigated at  $1033^{\circ}$ K ( $1400^{\circ}$ F) and approximately  $66^{\circ}$ at 736.1 MN/m² (85 ksi) for the  $1144^{\circ}$ K ( $1600^{\circ}$ F) tests. At  $1144^{\circ}$ K ( $1600^{\circ}$ F), testing at the lower stress level indicated lower rupture life in helium environment t³, in in hydrogen. Metallographic examination of specimen CDS-12 revealed microstructure not consistant with the others (Section IV, B.2). A repeat test in helium at the same stress level was conducted and similar low rupture life resulted. Examination of this specimen (CDS-13) indicated microstructure consistant with the majority of the specimens. At the present time, no explanation can be given for the lower than anticipated helium environment rupture life.

The effect of temperature and stress level on hydrogen degradation of the DS material stress-rupture life is shown in figure VI-2. Creep-to-rupture data are plotted for the DS material tests in figures VI-3 through VI-6.

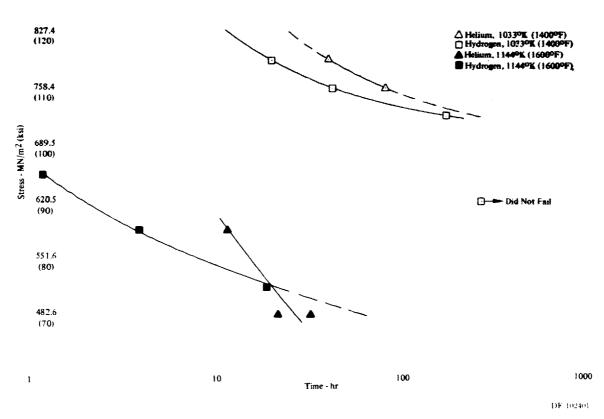
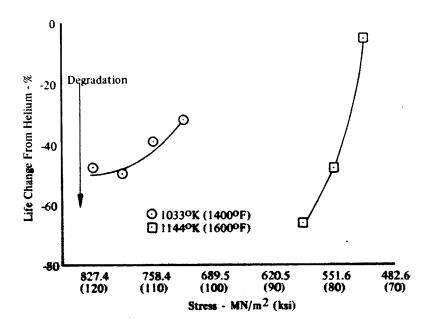
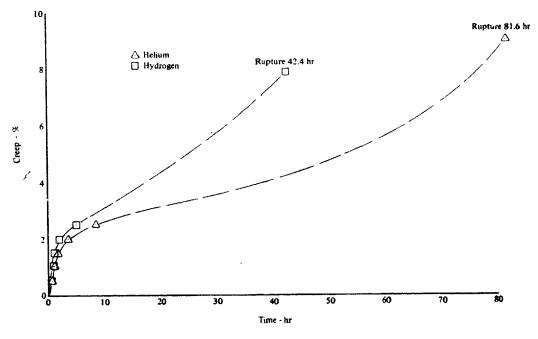




Figure VI-1. Stress-Rupture of Directionally Solidified (DS) MAR M-246 (Hf Modified) in 34.5 MN/m² (5000 psig) Helium and Hydrogen at 1033°K (1400°F) and 1144°K (1600°F)


Pratt & Whitney Aircraft Group

FR-7746



DF 102402

Figure VI-2. Effect of Temperature on Hydrogen Degradation of Directionally Solidified (DS) MAR M-246 (Hf Modified) Stress-Rupture Life



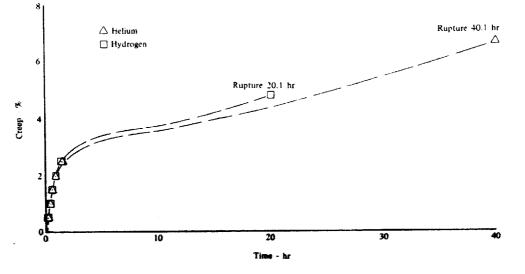

DF 192463

Figure VI-3. Creep Stress-Rupture of Directionally Solidified (DS) MAR M-246 (Hf Modified) in 1033°K (1400°F) 34.5 MN/m² (5000 psig) Gaseous Environment at 758.4 MN/m² (110 ksi) Stress

Pratt & Whitney Aircraft Group

ŝ

FR-7746



DF 102404

Figure VI-4. Creep Stress-Rupture of Directionally Solidified (DS) MAR M-246 (Hf Modified) in 1033°K (1400°F) 34.5 MN/m² (5000 psig) Gaseous Environment at 792.9 MN/m² (115 ksi) Stress

I

1811 AND 1813

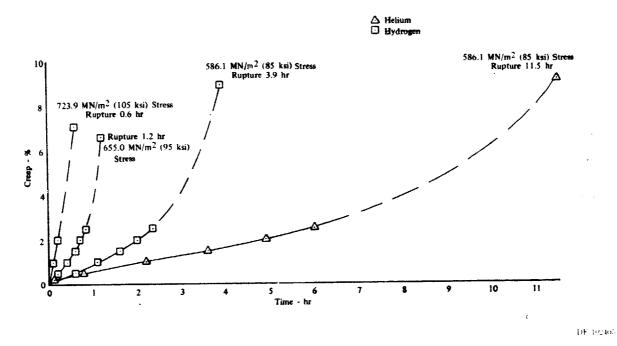



Figure VI-5. Creep Stress-Rupture of Directionally Solidified (DS) MAR M-246 (Hf Modified) in 1144°K (1600°F) 34.5 MN/m² (5000 psig) Gaseous Environment

FR-7746



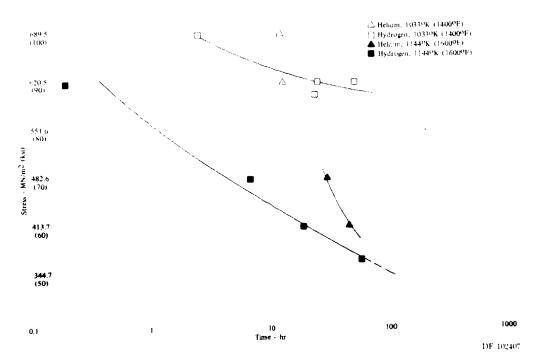
DF 102496

Figure VI-6. Creep Stress-Rupture of Directionally Solidified (DS) MAR M-246 (Hf Modified) at 1144°K (1600°F) in 34.5 MN/m² (5000 psig) Gaseous Environment

Stress vs time curves for the CC material at both  $1033^{\circ}$ K ( $1400^{\circ}$ F) and  $1144^{\circ}$ K ( $1600^{\circ}$ 0F) are illustrated in figure VI-7. They indicate degradation in rupture life up to approximately  $80^{\circ}$  for both test temperatures. As stated previously, these degradation figures must be viewed as trends. The somewhat erratic behavior of the helium tests at  $1033^{\circ}$ K ( $1400^{\circ}$ F), and the slope of the helium stress-rupture curves at  $1144^{\circ}$ K ( $1600^{\circ}$ F) (figures VI-1 and VI-7) make comparisons difficult. The distinct change of slopes between the helium and hydrogen stress-rupture curves at  $1144^{\circ}$ K ( $1600^{\circ}$ F) reinforces the observation from earlier programs that there may be some mechanism unique to helium atmospheres at elevated temperatures. Studies of materials exposed to nuclear radiation in helium at elevated temperatures have observed an effect on materials peculiar to helium environments. An extensive study comparing properties in vacuum and helium at temperatures above  $1144^{\circ}$ K ( $1600^{\circ}$ F) would be required to establish and document this phenomena.

Creep-to-rupture data plots for the CC material tests are illustrated in figures VI-8 through VI-10.

Individual creep-rupture test data for each DS and CC specimen tested are listed in table VI-2.


#### C. TEST PROCEDURE

Creep-rupture tests were conducted per ASTM E139-70, "Conducting Creep. Creep-Rupture, and Stress-Rupture Tests of Metallic Materials," were applicable, using round externally pressurized specimens. The test specimens used for the CC and DS materials are described in Section III and detailed in figures III-7 and III-8, respectively.

Pratt & Whitney Aircraft Group

FR-7746

ŧ



****

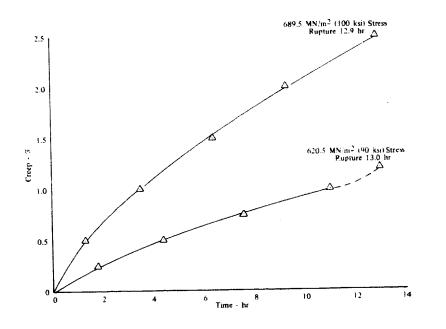
Barra Star

Statistics.

2

÷.

**

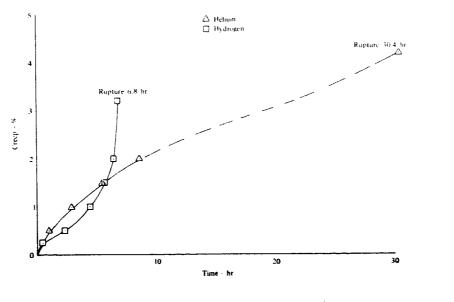

-

-

<u>*</u>***

1

Figure VI-7. Stress-Rupture of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 34.5 MN/m² (5000 psig) Helium and Hydrogen at 1033°K (1400°F) and 1144°K (1600°F)




DE OLANS

Figure VI-8. Creep Stress-Rupture of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 34.5 MN/m² (5000 psig) Helium at 1033°K (1400°F)

Pratt & Whitney Aircraft Group

FR-7746




DF 102409

Figure VI-9. Creep Stress-Rupture of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 1144°K (1600°F) 34.5 MN/m² (70 ksi) Stress

Contraction of the

Sector Sector

I



DF 402404

Figure VI-10. Creep Stress-Rupture of Conventionally Cast (CC) MAR M-246 (Hf Modified) in 1144°K (1600°F) 34.5 MN/m² (5000 psig) Gaseous Environment at 413.7 MN/m² (60 ksi) Stress

FR-7746

				Test Condition	ıs				Test F	Results		
Specimen		Test Temperature			Stress Level		Time_to Creep_(hr)		-	Tíme to Rupture		RA
Material Form	S/N	°K	°F	Environment	$MN/m^2$	ksi	0.5	10	2.0	hr	- C;	<u> </u>
Directionally	CDS-1	1033	1400	Hydrogen	620.5	90.0	1			260.2	0	0
Solidified	CDS-2	1033	1400	Hydrogen	758.4	110.0	0.3	0.6	1.9	42.4	7.8	11.8
	CDS-3	1033	1400	Hydrogen	7 <b>9</b> 2.9	115.0	0.2	0,4	1.0	20.1	4.8	6.5
	CDS-4	1033	1400	Hydrogen	723.9	105.0	0.6	1.2	15.9	170.0	8.4	12.2
	CDS-5	1033	1400	Helium	792.5	115.0	0.2	0.3	0.9	40.1	6.7	11.8
	CDS-6	1033	1400	Helium	758.4	110.0	0.5	1.0	3.6	81.6	9.0	10.9
	CDS-7	1144	1600	Hydrogen	723.9	105.0	< 0.1	0.1	0.2	0.6	37.1	13.5
	CDS-8	1144	1600	Hydrogen	655.0	95.0	0.2	0.4	0.7	1.2	•6.6	13.5
	CDS-9	1144	1600	Hydrogen	586.1	85.0	0.6	1.1	2.0	3.9	8.9	12.5
	CDS-10	1144	1600	Hydrogen	517.1	75.0	2.2	4.9	9.8	18.6	8.0	15.3
	CDS-11	1144	1600	Helium	586.1	85.0	0.8	2.2	4.9	11.5	9.1	13.2
	CDS-12	1144	1600	Helium	482.6	70.0	3.7	7.6	14.4	•31.7	17.6	39.2
	CDS-13	1144	1600	Helium	482.6	70.0	2.8	6.4	11.7	21.1	11.5	31.0
Conventionally	CCC-1	1033	1400	Hydrogen	689.5	100.0	1.6	2.6		2.6	¢1.2	4.8
Cast	CCC-2	1033	1400	Hydrogen	620.5	90.0				26.0	0.4	-1.2
Casi	CCC-3	1033	1400	Hydrogen	620.5	90.0				52.1	0.4	1.5
	CCC-4	1033	1400	Hydrogen	603.3	87.5	23.4			24.1	0.8	1.5
	CCC-5	1033	1400	Helium	689.5	100.0	1.3	3.5	9.3	12.9	2.5	3.0
	CCC-6	1033	1400	Helium	620.5	<b>90</b> .0	4.4	11.0		13.0	1.2	3.0
	CCC-7	1144	1600	Hydrogen	620.5	90.0	$\sim 0.1$	0.1	0.2	0.2	*2.1	5.5
	CCC-8	1144	1600	Hydrogen	482.6	70.0	2.3	4.4	6.4	6.8	*3.2	7.0
	CCC-9	1144	1600	Hydrogen	413.7	60.0	5.0	10.9	16.3	18.4	3.1	4.9
	CCC-10	1144	1600	Hydrogen	365.4	53.0	17.8	10		57.0	3.3	4.9
	CCC-11	1144	1600	Helium	482.6	70.0	1.0	2.9	8.6	30.4	4.2	4.9
	CCC-12	1144	1600	Helium	413.6	60.0	6.0	14.4	30,0	46.5	4.0	9.1

Table VI-2.	Creep-Rupture Properties of MAR M-246 (Hf Modified) in 34.5 MN/m ² (5000 psig)
	Gaseous Environments

¹ Negligible creep

² Test discontinued; did not fail

³0.03175 mm (0.00125 inch) or 0.125% elongation on loading

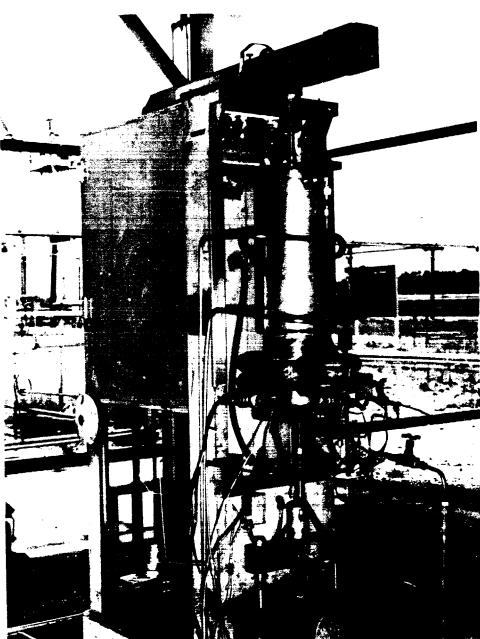
*0.01524 mm (0.00060 inch) or 0.060% elongation on loading

⁸ Metallographic examination revealed microstructure not consistent with other specimens. Material appeared to be solution heat treated at a lower temperature than the other specimens or not solution heat treated at all. (See Section IV.B.2.)

 $^{\circ}$  0.00510 mm (0.0002 inch) or 0.02  $^{\circ}$  elongation on loading

20.01524 mm (0.0006 inch) or 0.06% elongation on loading

*0.01524 mm (0.0006 inch) or 0.06% elongation on loading


*0.00254 mm (0.0001 inch) or 0.01% elongation on loading

¹⁰ Extensometer readout system malfunction, time to 1.0 and 2.0^e creep not obtained.

All tests were conducted on a modified 53.4-kN (12,000-lb) capacity Arcweld Model JE creep-rupture machine. The test machine was explosion-proofed and located in a test cell open to the atmosphere (figure VI-11). Controls and data recording equipment were located in an adjacent blockhouse. A high-pressure test vessel (figures VI-11 and VI-12), similar in design and operation to the vessels used for the tensile and LCF tests, was suspended in the test machine and counter-balanced to maintain the load lever arm in a level position.

The design of the test specimens included integral collars or pin holes for positive location and gripping of creep-measuring extensioneter heads. Load rods and adapters incorporated pin joints, which, in effect, formed universal joints at the ends of the specimen to eliminate alignment errors and resulting bending stresses upon the specimen.

ţ



t. İ

1

1

FD 2245

Figure VI-11. Creep-Rupture Machine, with Pressure Vessel Installed, Located in Test Cell

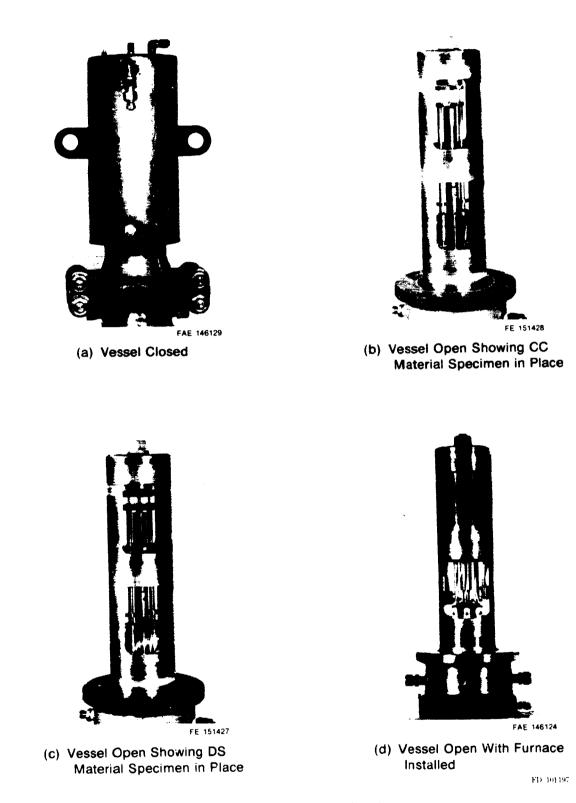
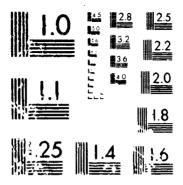
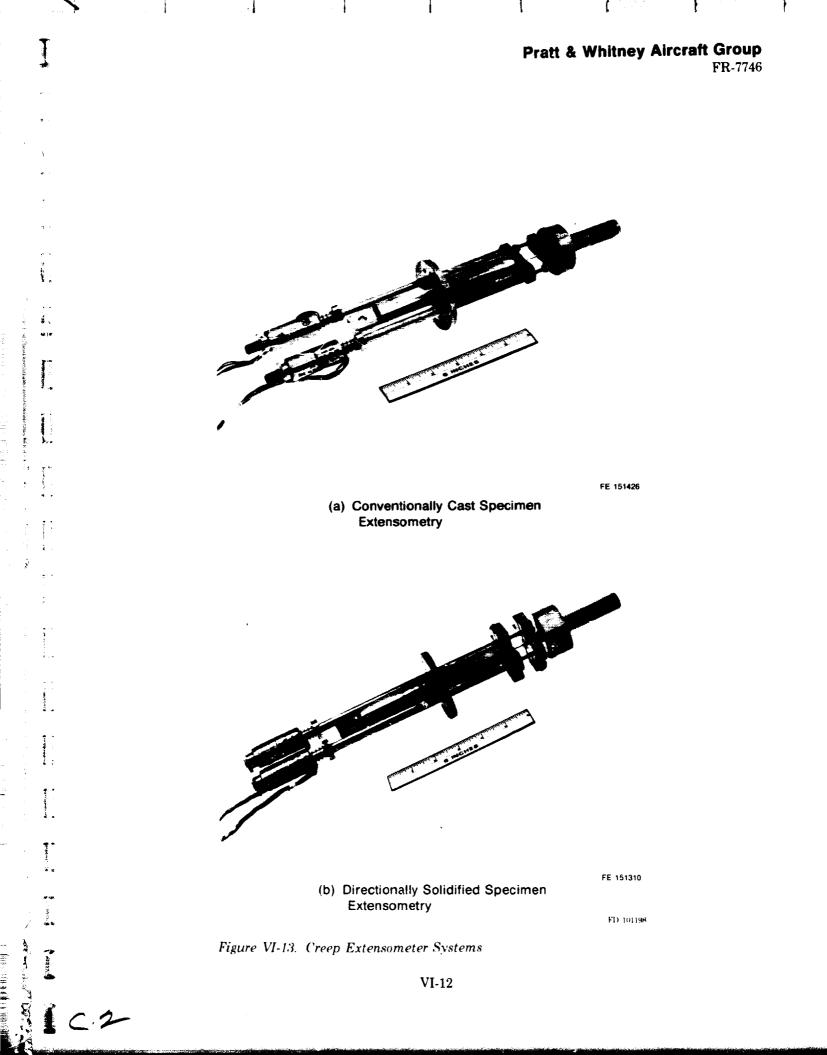



Figure VI-12. Setups of Creep-Rupture Pressure Vessel

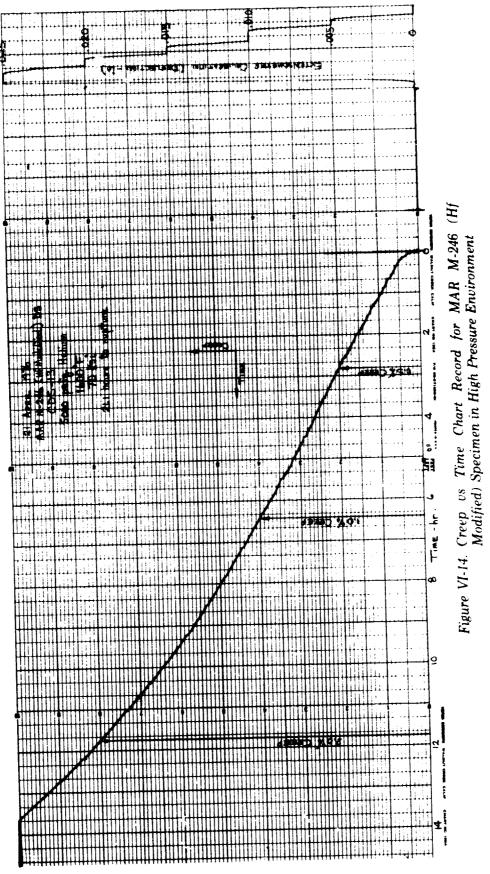

Ĵ

The extensioneter system was a dual LVDT averaging-type and was located inside the high pressure vessel. The extensioneter output was recorded in the adjacent blockhouse as elongation vs time records for all creep-rupture tests. The extensioneter systems are shown in figures VI-12b&c and VI-13. A typical chart record is shown in figure VI-14. This record is for specimen CDS-13, tested in 34.5 MN/m² (5000 psig) helium at 1144°K (1600°F).


Elevated temperatures were obtained using a two-zone resistance-type furnace with individual zone temperature control and monitoring. The independent zone control provided even temperature over the specimen gage length. Temperature was monitored and controlled by three thermocouples looped around the specimen gage section. The furnace system was contained within the pressure vessel (figure VI-12d). In figure VI-12d, the thermocouples and furnace leads can be seen extending in to the base of the furnace.

The test and gas handling procedures used for the low-cycle fatigue and tensile tests were also used for the creep-rupture tests.






MICROCOPY, RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-4



in the second south a second to the

والمراجع والمعاول



FR-7746

VI-13

## 

# 

### 

## OCT 5 1976