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1. INTRODUCTION

The noise generated by a jet exhaust has been studied in great detail,
both theoretically and experimentally, since the development of jet engines
thirty years ago. This work has been devoted to the prediction, understand-
ing, and reduction of jet noise. It has now become possible to predict the
noise of a jet quite accurately, and in fact, the theory to substantiate and
explain these predictions is now available for a static jet.

In recent years U. §. government regulations have made it mandatory to
control the noise of aircraft operating from U. S. airports. As a result of
these regulations, it is necessary to include aircraft noise as a design con-
straint in new aircraft projects. To emphasize the severity of the jet noise
problem for high performance jet engines, the noise of the Concorde has been
recorded as being some 20 - 25 dBA higher than that from the new generation
wide-body transport aircraft (which meet the FAA noise regulations by a
narrow margin). Assuming that these reports on Concorde noise levels are
accurate, then quite obviously the problem of noise due to jet engine opera-
tion is critical, since the Concorde may not be permitted to operate from
many of the world's major airports.

When noise is considered as an aircraft design parameter, not only are
the characteristics of the basic jet of concern, but the effects of aircraft
configuration and operation must also be properly accounted for in noise
predictions. In this regard, aircraft forward motion is found to be a sig-
nificant parameter controlling the generation of jet noise. When aircraft
forward velocity considerations were first introduced, it was assumed that
the relative velocity between the jet exhaust and the aircraft forward
velocity would be the controlling parameter for jet noise generation. Indeed,
this seems to be the case when the noise of jets is studied in ground-based
forward motion simulation facilities, such as wind tunnels. However, in the
past few years, as a result of intensive study of jet noise suppressor
performance in actual flight tests, it has been observed that jet noise does
not scale on relative velocity raised to a fixed exponent for either conical
nozzles or suppressors. In addition, jet noise trends from conical and sup-
Pressor nozzles as measured in flight simulation facilities are not observed
in actual flight tests. This is a matter of great concern since suppressors
which have been optimized in static tests or in flight simulation facilities
fall far short of expectations in actual flight tests (ref. 1).

As a result of the major significance of flight velocity on jet noise
and the apparent inconsistency between jet noise trends observed in actual
flight and in flight simulation facilities, NASA Lewis Research Laboratory
decided to embark on a study of the problems of understanding the generation,
pPropagation, and measurement of exhaust-generated noise from jets in flight.
The work described in this report represents a contracted study of the funda-
mental aspects controlling the generation, propagation, and measurement of
noise from a conical jet in forward flight.



More specifically, the primary objective of this program was to obtain
a fundamental study of the problems involved in either theoretically predict-
ing or empirically extrapolating the jet noise field (from both subsonic and
supersonic exhausts) received on the ground from an aircraft flying overhead
in typical takeoff and landing approach patterns. Such prediction or extra-
polation would be made from static ground tests both with and without
relative velocity effects on the nozzle configuration. The ultimate goal of
this program was to make detailed recommendations based on the studies
conducted under the following four specific tasks, for a possible follow-on
program.

Task 1: Literature Survey and Preliminary Investigation
Task 2: Acoustic Propagation Effects

Task 3: Source Alteration Effects

Task 4: Investigation of Verification Techniques

The first task involved a compilation and assessment of the existing
literature on jet noise flight effects and related subjects. This was com-
pleted early in the program, and a literature survey report was submitted for
NASA's internal use. The remainder of the program comprised a basic study of
the generation and radiation of noise from jets in flight. In addition, the
problems of measurement of noise from aircraft in flight were studied in some
detail.

The intent of this contract was that it act as a program definition
phase for more comprehensive work to follow. This intent has been met, and
in several areas, new data and theory are presented which lead to definitive
conclusions regarding the generation of noise of jets in flight.

This report is compiled in three major sections which describe the
technical work accomplished in this contract. A synopsis of the technical
work described in these three sections is given in Section 5.

Contributors to the work presented in this report are Robert H. Burrin,
Christopher L. Morfey, Philip J. Morris, C. Benton Reid, H. K. Tanna,
Brian J. Tester, and M. Clay Whiffen.



2, INFLIGHT SIMULATION EXPERIMENTS ON JET NOISE

2.1 OBSERVED EFFECTS OF FORWARD MOTION ON JET NOISE

During the initial period of intensive research on jet noise and the
development of jet noise suppressors in the 1950's and early 1960's, the
effect of aircraft motion on the source (the "relative velocity'' effect) was
considered, and the reduction in noise level at peak polar angle was duly
noted. Attempts were made to describe this reduction by using the relative
velocity rather than the absolute jet velocity in noise estimation proce-
dures. It was observed, however, that this did not fully agree with the
measured results, and a further term was introduced by Greatrex (ref. 5)
and Coles (ref. 6) in an attempt to allow for an increase in noise genera-
tion due to elongation of the jet mixing region which was known to take
place in flight. During this period, some theoretical work was carried out
by Ffowcs Williams which included the effects of aircraft motion (ref. 7);
however, this does not appear to have been widely used.

It is probably correct that, although many flight tests were made and
compared with static results, most of these were of a developmental nature
rather than being oriented toward engine research purposes. Hence, only
peak levels were required, and the more fundamental aspects of comparing the

directivities and spectral shapes in detail were rarely dealt with. In
these early investigations, the effects of ground reflection were certainly
not well considered, and atmospheric attenuation data were ill-defined.

Also, the standard frequency analysis system was at that time in octave
bands, which would obscure important differences that may exist between
static and flight spectra.

The corrections usually applied to static acoustic test data to theo-
retically convert the results to the moving source or inflight results
relative to a stationary observer are (a) a Doppler shift in frequency, (b)
a change in filter band level due to change in Doppler-shifted center fre-
quency, and (c) a so-called dynamic effect or convective amplification due
to source motion relative to the fixed observer.

Corrections for effects (a) and (b) have been given by Mangiarotty and
Turner (ref. 8). The source motion effect (often referred to as the dynamic
effect in the past) was derived by Ffowcs Williams (ref. 7). The effects of
relative velocity on the source strengths and on radiation efficiency through
flow/acoustic interactions have not been determined. In the SAE prediction
method (ref. 9), the noise generated by a jet in motion is simply taken to
be equal to that of a static jet with exhaust velocity equal to the relative
velocity of the moving jet (jet velocity minus forward speed of the jet).

Recent Measurements and Observations

A considerable amount of noise measurements, both from model-scale
configurations operated in the inflight simulation mode and from full-scale



flight tests, has been published, but the majority of these studies have

been concentrated on various suppressor nozzle configurations [Coles, et al,
(ref. 10); Brausch (ref. 11); Burley and Karabinus (ref. 12); Hoch and
Hawkins (ref. 13); Von Glahn, et al, (ref. 14); Burley and Johns (ref. 15);
Burley, et al, (ref. 16); Chamberlain (ref. 17); Von Glahn and Goodykoontz
(ref. 18); Burley and Head (ref. 19); Gubkina and Mel'nikov (ref. 20);

Von Glahn, et al, (ref. 21); Brooks and Woodrow (ref. 22); Bushell (ref. 1);
Cocking and Bryce (ref. 23)]. Data on the basic conical (or convergent)
nozzle are, therefore, rather scarce. Furthermore, there is considerable
disagreement between the results of various investigations, and the situation
is quite inconclusive at the present time. The use of the corrections given
above does not explain the differences measured between inflight and static
tests. Several factors can be suggested which play very important roles in
producing widely varying and misleading conclusions in such experimental
programs. In particular, these are internal or extraneous noise sources in
the rig or the engine under test; geometry of the configuration under test
(which must influence the flow properties in the shear layer of the jet);
improper account of the effects of environmental factors; and finally,
inaccurate and/or inadequate techniques for the acquisition and analysis of
the noise data.

The discovery of the importance of internal core noise or ''tailpipe"
noise under static conditions on many of the test vehicles gave an explana-
tion of why the expected relative velocity effects may not be observed in
flight. This was that the tailpipe noise sources would dominate the in-
flight noise and there is no obvious reason why noise from these sources
should fall with forward velocity. As a result, many of the earlier measure-
ments carried out to study the effects of forward motion on jet noise, from
both conical and suppression nozzles, have been invalidated.

However, further investigation has shown that in the jet velocity
regimes where internal noise would not be thought to dominate even in flight,
the changes of the measured noise characteristics (in particular, the field
shape) with jet and aircraft velocity, are not consistent. Even the shock-
associated noise level at 90° to the jet axis is found to be increased in
flight, contrary to the theoretical suggestion that dynamic effects or con-
vective amplification due to aircraft motion should be zero or negligible at
this angle. Therefore, it is clear that further understanding of the
characteristics of jet noise is required under flight conditions.

Inspection of the more recent full-scale flight results [Hoch and
Hawkins (ref. 13), Brooks and Woodrow (ref. 22), ard Bushell (ref. 1)] and
comparison with static test data reveal that, although a '‘relative veloci ty"
reduction in turbulent mixing noise is observed close to the downstream jet
axis in flight, no general reduction is observed around the complete field.
Indeed, the observations range from small reductions in the rear arc to
actual amplifications of the noise in the forward guadrant; the level in the
forward arc rises with aircraft speed instead of falling as a simple rela-
tive velocity effect would predict. In contrast, results from the inflight
simulation experiments at model scale conducted by NGTE (ref. 23) and NASA-
Lewis (ref. 21), indicate that noise reductions with forward velocity are



present around the complete field, and in general, the magnitude of the
relative velocity effect increases as the observer moves from the forward
arc towards the downstream jet axis. This fundamental discrepancy between
the inflight simulation results and the full-scale flight experiments is
illustrated qualitatively in Figure 2.1. The changes in OASPL with forward
motion can also be displayed conveniently as a relative velocity (jet
velocity minus forward speed) dependence. This is shown in Figure 2.2,
where the inflight effects are expressed quantitatively in terms of the
relative velocity exponent, m.

To summarize, it is clear that there are significant differences be-
tween the inflight effects as observed from flight tests and those from
model-scale inflight simulation experiments. These discrepancies need to be
resolved before the flight simulation techniques can be used as a long-term
research tool to obtain a fundamental understanding of forward velocity
effects on jet noise. A significant effort in the present program has been
directed toward this problem, as will become apparent in the later parts of
this report.

2.2 FLIGHT SIMULATION TECHNIQUES

In the preceding section, published inflight effects on jet noise,
derived from facilities which simulate forward motion, were briefly intro-
duced without mentioning any specific simulation concept. The purpose of
this section is to present brief descriptions of various flight simulation
methods that are either in use or gaining increasing interest at the present
time. But before this is done, it is perhaps worthwhile to summarize the
problems involved with actual flight tests.

2.2.1 Full-Scale Flight Testing

Full-scale flight testing is a direct method giving the required noise
measurements with no intermediate steps or recourse to theory. However, the
cost associated with any comprehensive flight test program is prohibitive,
and there are several disadvantages which are difficult to overcome:

(1) The internal noise sources are almost always significant in a full-
scale engine, and their contribution to the total sound field must be
established and, if necessary, adequately suppressed to levels well below
the unsilenced jet noise so that no significant contamination occurs when
the magnitudes of turbulent mixing noise decrease in flight.

(2) The envelope or test window of jet operating conditions (exhaust
velocity and temperature) and flight speed is usually restricted in a flight
test program.

(3) The sound generated by the jet exhaust flow has to propagate
through a complex inhomogeneous environment on its way to the ground-based
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observer, and many of the phenomena associated with propagation of sound
through a real atmosphere have yet to be understood and properly quantified.

(4) The acquisition of flyover noise data and the correction procedure
necessary to yield free-field data is extremely complicated. It involves
statistical averaging of nonstationary acoustic data, accurate determination
of aircraft position and speed, proper account of ground reflection, and
accurate atmospheric absorption corrections. These aspects of flyover data
acquisition are discussed in detail in Appendix 2A of this report.

In view of the above difficulties associated with flight testing,
several methods for investigating inflight effects on jet noise have evolved
in recent years. The four most promising types of flight simulation facili=-
ties are:

(1) jet mounted on a ground based moving vehicle
(2) jet mounted at the end of a rotating arm (a spinning rig),

(3) stationary jet in a large-scale acoustically-treated wind
tunnel, and

(4) stationary jet immersed in a larger surrounding jet (a free-jet
facility).

Each of these has its own merits as well as facility oriented problems, and
these are discussed briefly below.

2.2.2 Ground-Based Moving Vehicle

Investigation of inflight effects on jet noise by mounting the engine
configuration on a ground-based vehicle, which can be translated at
constant speed, appears attractive at first sight since the relative motion
between a moving source and a stationary observer can be simulated exactly.
Two examples of such a facility are the high speed train and the rocket
powered sled. However, these facilities are accompanied by problems which
are similar to those encountered in aircraft flyover noise measurements.

2.2.3 Spinning Rig

The use of a spinning rig, where the model-scale jet exhaust is
mounted at the end of a rigid arm that rotates at constant speed, also pro-
vides an exact relative motion simulation. The main advantages of this
method are that the costs involved are much smaller than flyover testing
and the atmospheric propagation effects are diminished by an order of
magnitude since the propagation distances are smaller. However, there are
severe technical problems associated in operating such a facility. In
particular, because the angular position of the moving jet source relative
to fixed microphones is changing rapidly, the problems associated with
noise data acquisition and reduction are very complicated. |t should also
be noted that even if the contamination from internal noise sources and



rig-generated self noise can be reduced to acceptable levels, the undesirable
effects of centrifugal forces in producing distortion of the jet flow have
yet to be established.

2.2.4 Large-Scale Anechoic Wind Tunnel

The step from static testing in relatively idealized test facilities to
full-scale flight testing is large. Therefore, a very useful intermediate
step can be provided by operating the jet configuration under examination in
a wind tunnel, in which the effect of forward motion is produced by the
tunnel air fiow.

A comprehensive review of the use of wind tunnels for acdustic and
aerodynamic measurements in the inflight simulation mode, and current re-
search aimed at the design and operation of large wind tunnels, has been
published recently by AGARD (ref. 24, 25, and 26). ”

Aerodynamic measurements on a moving configuration do not appear very
practical, but can be achieved relatively easily in a wind tunnel environ-
ment. The acoustic measurements can be achieved by making the test section
anechoic, although the costs required to modify any large-scale tunnel, such
as the NASA-Ames 12.2 m x 24.4k m facility, to obtain acceptable background
noise levels and to minimize wall reflections, are high. In addition,
operating costs are considerable for comprehensive evaluation of inflight
effects on jet noise.

Simulation of aircraft motion in such a manner is attractive in that a
model rig free from internal noise can be set up and tested in a controlled
anechoic environment. The jet operating conditions and the tunnel speed
can be controlled independently. In addition, the measurements are carried
out in essentially a static (steady state) environment. However, the
quality of acoustic measurements is highly dependent upon having a quiet
means of propulsion for the tunnel and in developing microphones which are
insensitive to the air flow across them. The noise levels induced by air
flow over the microphones placed within the tunnel flow are usually high,
and therefore preclude any meaningful measurements at reasonably high
tunnel velocities of interest.

A minor disadvantage of this technique is the lack of a true relative
velocity effect between source and observer, unless the microphone is
traversed past the nozzle at the moving stream velocity. However, the
effects of forward motion on jet structure as well as changes in noise
characteristics for an observer moving with the jet can be established. The
translation of acoustic data from a wind tunnel facility to the fly-over
situation can be achieved far more readily within the bounds of existing
theoretical expertise.

2.2.5 Free-Jet Anechoic Wind Tunnel

This flight simulation method removes many of the limitations of con-
ventional wind tunnels for acoustic testing. The aircraft forward motion in



a free-jet or open-jet facility is simulated by immersing the primary jet
exhaust configuration in a larger surrounding jet. The microphones are
placed in the far field outside the free jet flow, and the complete test
section is enclosed in an anechoic chamber to provide a free-field environ-
ment. In addition to retaining other advantages of a large-scale wind
tunnel, a carefully designed free-jet facility is also capable of providing
low background noise levels. Furthermore, the cost associated with opera-
ting these facilities is minimal in comparison to the large wind tunnels.

However, since the sound generated by the model jet has to propagate
through the shear layer of the free jet before it reaches the microphones,
this facility does introduce additional problems which have to be overcome.
These are (1) refraction by mean velocity gradients, and (2) scattering by
turbulence in the free-jet mixing layer. The refraction phenomenon gives
rise to a change in the amplitude of the incident wave as well as a modifi-
cation in the raypath angle. Corrections for these amplitude and angle
changes therefore need to be established, and these can be obtained theo-
retically and/or experimentally. Detailed description of the correction
procedure, derived during the present program, is given in Section 3.1.3. As
regards the effects of turbulence scattering in a free-jet facility, all
qualitative evidence available to date suggests that this is not an impor-
tant effect. However, further work is required to produce quantitative
results on this phenomenon. This scattering effect is discussed in some
detail in the later parts of this report.

Having presented an overview of the various flight simulation facili-
ties that can be utilized to study the effects of forward motion on jet
noise, the inflight simulation experiments that were conducted in the
present program are described in the following subsections. The experiments
were conducted in the Lockheed Anechoic Free-Jet Facility, which is
described next.

2.3 ANECHOIC FREE-JET FACILITY

2.3.1 Facility Description

An existing anechoic chamber was modified utilizing as many other
existing pieces of hardware as possible. Prior to the construction of the
full scale facility, a one-fifth scale model was built to confirm various
aerodynamic performance concepts and to aid in the design of the free-jet
working section as well as the shape of the collector.

The basic anechoic room was 3.4 m (long) by 3.4 m (wide) by 5.2 m (high)
between wedge tips. The interior was lined with fiberglas anechoic wedges
which provided a 99% echo-free environment at all frequencies above 100
Hertz. The chamber was completely isolated from the rest of the acoustics
laboratory since it was mounted on massive springs. A spring-tensioned



cable floor, suspended from the walls, provided easy access to the interior
of the chamber for instrumentation calibration and test section changes.

A planview schematic of the complete facility is shown in Figqure 2.3,
Starting from the left, air was drawn into the intake, through the honeycomb
and screens to the contraction, across the anechoic room to the collector,
through the diffuser, the two right angle corners with turning vanes, through
the duct silencers to the transition section. The facility was powered by the
jet ejector, whose exhaust and entrainment flows were diffused through the
17.1 m long muffler/diffuser section on the right of Figure 2.3.

The intake/contraction section was an existing part of a research smoke
tunnel, and the ejector/diffuser section formed the major part of a now de-
activated inlet noise absorption test facility adjacent to the research
complex. The ready availability of this power source prompted its incorpo-
ration into the free jet facility design rather than a fan.

Because of the high noise levels generated by the 8.6 cm diameter jet
ejector, being operated at pressure ratios up to 8 in order to induce flows
through the working section of up to 75 m/s, a significant amount of acoustic
treatment was necessary between the ejector and the anechoic room. The design
criterion adopted was to assume that the total noise generated by the ejector,
propagated upstream to the collector and then radiated spherically to the
microphone measuring stations within the room. The amount of attenuation
provided by the duct was required to be sufficient to reduce the ejector noise
at the microphones to levels at least 10 dB below the lowest noise levels to
be measured in the test program over the entire frequency range of interest.
Of course, this acoustic treatment had to be traded off against aerodynamic
performance, the aim being to achieve at least 60 m/s free jet velocity.

To achieve this noise criterion, the tunnel between the collector inside
the room and the ejector intake was constructed from 1.27 cm plywood inner and
outer walls separated by wooden studs. The cavities in the floor, walls, and
roof were all filled with a total of 21,000 kg. of dry sand to minimize the
flanking (or structure borne) transmission of sound from the ejector. The
duct was lined throughout with 15.2 cm. of 32 kg/m3 density polyurethane foam.
Acoustically treated turning vanes were installed in both right angle bends
and 2.1 m long, low aerodynamic loss, IAC (Industrial Acoustics Company) quiet
duct silencers were installed downstream of the second turn.

The intake shown in Figure 2.4 is approximately 2.03 m x 2.84 m and the
contraction provides a working section area 0.76 m x 1.07 m, the latter dimen-
sions being vertical. In order to perform adequate directivity measurements
of noise generated by the model jets placed inside the free jet, a minimum
working section length of 2.9 m was required. This allowed measurements to be
made in the range 30° - 90° from the downstream jet axis. The microphone arc,
centered at the nozzle exit plane, had a radius of 2.74 m (54 nozzle diameters
for 5.08 cm. diameter nozzles) and was placed outside the free jet flow.

10
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Figure 2.4

Anechoic free-jet intake and model jet air supply.



The free jet centerline was oriented at an angle of 10° from the closest
room wall to allow for free jet spread without having to trim existing room
wedges. The tunnel diffuser entrance was 1.12 m x 1.42 m and diffused to
1.52 m x 1.83 m in a length of almost 6.10 m. The distance between the turns
was about 3.05 m and the total length of lined duct from collector to ejector
intake was about 15.5 m. The total installation was aligned axially using a
low power laser.

The air supply to the jet ejector originated from the main 2.07 x 106
N/m2 compressor which supplied air to all research center facilities. Ejector
air was controlled by a 15.2 cm. Fisher valve, with a 5.1 cm. Annin valve in
parallel for low free jet velocities and fine tuning at higher velocities.
The ejector ducting was 25.4 cm. pipe over the majority of its length but re-
duced to 20.8 cm just prior to the pylon mount. The ejector air supply
ducting and diffuser are shown in Figure 2.5,

For each of installation and minimum blockage (and therefore minimum flow
disturbance) in the working section, the air supply ducting for the model jet
was installed axially in the intake/contraction section rather than through a
swept pylon mounted on the anechoic room wall. The ducting was designed to
avoid any flow separation within the accelerating free jet flow in the con-
traction section, a totally welded construction being adopted for this
purpose. The ducting was aligned by using a low power laser, placed at the
end of the collector/diffuser and aimed along the free jet centerline, thus
ensuring that the model jet flow would exhaust axially in the free stream.

The cold air supply was requlated by a 5.1 cm. Annin automatically controlled
valve. A Lockheed-built muffler, and an IAC (Industrial Acoustics Company)
PRV2 muffler, were connected in series to reduce upstream valve noise to suffi-
ciently low levels so as not to contaminate any measurements to be made in the
room. The |AC muffler is shown in Figures 2.3 and 2.4. Downstream of the
muffler was a 20.3 cm. diameter plenum 6.1 m. long, followed by a 1.8 m length
of 15.2 cm pipe, and finally, approximately 0.91 m of 10.2 cm pipe faired with
the 15.2 cm. section to preclude any outer flow separations. The nozzles were
attached to the end of the 10.2 cm. pipe, setting the exit plane approximately
30 cm. beyond the end of the free jet contraction.

Four nozzles were specially made for use in this facility, and in the
wind tunnel (described in paragraph 4.2.2): A convergent nozzle and three
convergent-divergent nozzles designed by the method of characteristics, to
operate nominally at Mach numbers of 1.4, 1.7, and 2.0. They were turned
from aluminum bar stock, the external shape being a straight taper from 11.4
cm. 0/D to 5.1 cm. 0/D over a length of 27.9 cm. to mate smoothly with the
faired 10.2 cm. 1/D air supply pipe, once again to preclude the possibility
of flow separation. The nozzles were attached with six countersunk screws
around the circumference at the 10.2 cm. end. The four nozzles are shown in
Figure 2.6, together with the cross-sectional drawing of the M=1.7 nozzle.

Nozzle performance was evaluated by a simple shadowgraph system.
Unfortunately, the facility used in these tests could not be operated at the
‘ressure ratio required for the Mach 2.0 nozzle, but the M=1.4 and 1.7

rzles were tested to determine the pressure ratios for optimum shock-free

13



Figure 2.5 Anechoic free-jet facility ejector diffuser
and air supply ducting.
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performance. Figure 2.7 shows a series of three shadowgraph photographs for
each of these nozzles, indicating that the nozzle Mach numbers for optimum

performance were 1.37 and 1.67 at pressure ratios of 3.06 and 4.73,
respectively.

2.3.2 Aerodynamic Performance Evaluation Tests

2.3.2.1 Flow visualization tests. Initial tests were performed in the
anechoic chamber using a smoke generator and a tufted wand to ascertain
visually several important characteristics of the free jet flow in the work-
ing section and flow induced in the surrounding areas of the room.

These tests indicated that the jet appeared to be stable throughout its
length. There was no discernable snaking or deflection due to the proximity
of the closest wall or the ceiling. The jet had no tendency whatsoever to
attach to either of these areas, presumably due to the effectiveness of the
uneven surface of the anechoic wedges. Stagnation on the collector bell-
mouth was regularly disposed around the periphery, and no separation was
detected inside the diffuser,

In the chamber itself, outside of the free jet flow, the induced veloc-
ities were quite small, everywhere a good deal less than 10% of the tunnel
velocity. The highest velocities, approaching 10% of the tunnel velocity,
were noted in the standing vortex around the collector bellmouth. The only
microphone likely to be affected by this flow was located beneath the
collector at 30° to the downstream axis.

2.3.2.2 Flow surveys using a specially built pressure probe rake. A
series of initial calibration tests were carried out using a specially de-
signed pressure probe rake. This rake could be positioned at any axial
station between the free jet exit plane (at the end of the contraction) and
the collector bellmouth. |t was an easy task to manually perform vertical
traverses with the rake at selected axial stations.

The rake itself was made from a 1.22 m length of 7 cm x .12 ¢cm stream-
lined steel tube. It was supported by brackets at its extremities and
drilled at 2.54 cm intervals along its entire length to accommodate 3.18 mm
probes. In this way, the pressure probes could be arrayed differently for
each axial station as necessary. Up to 16 total pressure probes and 5 static
pressure probes were utilized during the test surveys. A second order curve
was fitted to the readings of the five static pressure probes, distributed
along the rake, and the room static pressure at the edges of the free jet to
determine the static pressure at each of the total pressure probe locations.

Surveys were made at the exit plane of the contraction and then at 0.56,
1.12, 1.67, and 2.24 m downstream. The surveys at each station were made
from the upper to the lower extremities of the free jet, and the spacing of
the measurements was chosen accordingly. The rake, positioned at 0.56 m
axially, is shown in Figure 2.8. In addition, piezometer pressures were
recorded in the settling chamber of the intake prior to the contraction, and
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Figure 2.8 Rake for aerodynamic

calibration of free-jet.



10.2 cm upstream of the exit plane. (The static measurement points were
located one in each side and one in top and bottom surfaces connected to the
same manometer tube with identical lengths of tubing.) The measurements
were made using a portable multitube manometer especially made for the pur-
pose. The rake probes were connected in such a way as to display the jet
shape on the manometer. A 35mm camera was set up in front of the manometer
and a photograph taken at each measurement position. A typical print of the
manometer display is shown in Figure 2.9.

Figure 2.10 shows a three-dimensional plot of the potential core edge
(defined here as the 98% velocity point) for a tunnel velocity of 61 m/s.

The mean dynamic pressure at the jet exit-plane was computed for the
potential core. The mean excluded the boundary layer areas of the contrac-
tion section and the centrally-positioned model jet nozzle air supply duct-
ing. The area included in the averaging is shown cross hatched in Figure
2.11, which also shows the positions of the total and static pressure
probes.

HP-65 computer programs were written for on-the-spot evaluation of
tunnel conditions from piezometer, temperature and barometric data, and
conversely, the piezometer differential necessary for a required tunnel
velocity to facilitate test condition setup.

Figure 2.12 shows curves of variation of free jet nominal velocity,
ejector weight flow, and the ratio of tunnel to ejector weight flow, with
ejector pressure ratio.

2.3.2.3 Conclusion. The aerodynamic performance evaluation tests
carried out showed that the facility could be confidently used for model
scale investigations of the effects of aircraft motion on jet noise. There
were no problems associated with free jet stability, collector/diffuser
performance, flow separation in the intake/contraction or excessive air flow
circulation in the room. Continuous tests could be carried out at free jet
velocities up to 70 m/s. Although free jet velocities up to 75 m/s were
possible, limitations of available supply air mass flow precluded the
simultaneous operation of the 5.08 cm model jets.

2.3.3 Acoustic Performance Evaluation Tests

In order to confirm the acoustic design criteria and to ensure the
accuracy of the subsequent jet noise measurements, the anechoic free-jet
facility was subjected to rigorous performance evaluation tests, and the
results are presented below.

2.3.3.1 Anechoic quality of facility. The first series of calibration
tests were designed to evaluate the anechoic quality of the facility and to
ensure that the proposed microphone distance of 2.74 m (54 nozzle diameters)
was in the acoustic far field. An audio driver unit placed at the nozzle
exit location was used as the sound source (i.e., point source) and the
intensity vs. distance plots were obtained with a traversing microphone

19
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arrangement. The microphone was traversed along three different directions
(30°, 60° and 90° to the downstream jet axis), and for each of these tra-
verses, measurements were made of the SPL fall-off as a function of distance,
both for a pure tone noise source and for a one-third octave filtered white
noise source. Along each of these traverses, the results for discrete
frequency excitation were slightly inferior to the results for filtered one-
third octave excitation. However, the results along the three directions
from the sound source were essentially similar. A typical set of the inten-
sity-distance plots at various frequencies is presented in Figure 2.13. It
can be seen from this figure that the anechcic quality of the facility was
acceptable down to a frequency of approximately 200 Hz, and that at a
distance of 2.74 m, the microphone was in the acoustic far field at all
frequencies (above 200 Hz) of interest.

2.3.3.2 Background and electronic instrumentation noise. The back-
ground (or ambient noise in the anechoic room was measured with a 12.7 mm.
BEK microphone (Type 4133), which had, a dynamic range of 32 to 160 dB. The
microphone was located in the center of the room, directly under the free-jet
test section at a distance of approximately 3 m from the test section center
line, which corresponded roughly to the 60° measurement position in the jet
noise test program. The resulting background-plus-instrumentation noise
spectra at various free-jet (or tunnel) velocities, VT, are presented in
Figure 2.14,

It should be noted that the total noise floor in the subsequent experi-
,mental program also contains a contribution from the complete instrumentation
system used in the data acquisition and reduction process. The magnitude of

this instrumentation (electronic) noise contamination unfortunately varies
from one spectrum to another, depending upon the settings selected. The
results from the test program (raw data) should therefore be scrutinized
carefully, and all spectra or parts of spectra, which are obviously seen to
be contaminated by the total background and measuring instrumentation system
noise, should be rejected in the analysis of the results. This important
aspect is elaborated further in Section 2.4.

2.3.3.3 Rig internal noise tests. The "acoustic cleanliness' or
internal noise tests were conducted to produce evidence for the lack of any
significant contamination, in the measurement arena, from noise sources
which are normally present upstream of the nozzle exit plane. In the first
instance, the tests described below were conducted with only the IAC muffler
in position. |t was found that the internal noise contamination was rather
high, and further silencing of upstream valve noise was necessary. This was
achieved successfully by connecting the Lockheed-built muffler (used in
other research programs) in series with the IAC muffler. The tests de-
scribed below refer to this configuration, which was used in the subsequent
jet noise experimental program.

The internal noise tests, with zero tunnel velocity, were carried out
with the basic instrumentation system, consisting of 12.7 mm. B&K micro-
phones, a 1/3-octave analyzer and a level recorder, so that the instrumenta-
tion noise was kept to a minimum. In order to establish the magnitude of
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the internally generated noise at a low value of jet exit velocity ratio
(VJ/ao==0.32, cold), a systematic study was carried out and a typical set of
results at approximately 60° to the jet axis is presented in Figure 2.15,
The background/instrumentation noise is given by spectrum A in this figure.
Spectrum B represents the turbulent mixing noise for the 5.08 cm diameter
cold jet at VJ/a =0.32. The internal noise for this jet operation condi-
tion was estimated by increasing the nozzle diameter to 10.2 cm and keeping
the mass flow through the pipework constant. The jet velocity was therefore
reduced by a factor of four, and from the relationship

?

« 42y .8
| « d2v,

for the turb. ent mixing noise, it could be calculated that the mixing noise
would be 42 dB down in this case, while the internal noise would be essen-
tially uvnaltered. The resulting spectrum C shown in Figure 2.15, therefore
represents the combined background/instrumentation/internal noise contribu-
tion and it can be seen that it is much lower in magni tude than the corre-
sponding mixing noise spectrum B. Further indirect evidence for the absence
of internal noise contamination is presented in Figure 2.16, where it can be
seen that the spectra at four values of jet velocity in the range from
Vy/ag=0.32 to 0.6 do conform to a clean stacking pattern relative to one
another as expected.

In conclusion, it can be safely stated that the internally generated
noise from the facility was not significant at least down to Vy/ag =0.32,
All data for Vj/ag >0.32 obtained from this jet noise rig represented true
turbulent mixing noise, unaffected by internal noise. The low velocity data
would, however, be influenced by background and instrumentation noise as
discussed previously, and this should be taken into account in the data
selection process.

2.3.4 Point Source Tests

In theory, a tremendous amount of information can be gained from point
source tests. In particular, in the anechoic free-jet facility, point
source tests can be very useful in both calibration and basic research test-
ing. For the purpose of calibration, the point source is useful in locating
room reflections and in determining the limits of the absorption qualities
of the anechoic room for no flow testing. In evaluating the effects of the
free-jet on the acoustic characteristics of the room, the point source tests
are necessary for determining changes in basic source directivity, source
efficiency and shear layer reflection characteristics. From a more funda-
mental viewpoint, point source tests are quite useful jn a free-jet facility,
in particular, for determining (1) the effects of the shear layer on source
directivity and amplitude in the far field, (2) the effects of free-jet
mixing region turbulence scattering, and (3) the change in ray angle result-
ing from transmission through the shear layer (by determining the phase
front normal direction).

All of the above mentioned tests should be conducted prior to or in
conjunction with jet noise tests to aid in interpretation of the test

27
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results and to provide experimental values or confirm theoretical values for
the amplitude and angle corrections. However, a fairly major effort is re-
quired to conduct some of the more useful tests and no provision was made
for extensive point source testing in this proaram.

Some preliminary point source tests were conducted with the goal of
determining basic source directivity in the flow, amplitude of source reflec-
tion at the free-jet shear layer, the far-field amplitude and directivity,
and the effect of the free-jet mixing region turbulence on scattering of
sound from the source. The ‘'point" source is shown in Figure 2.17. The
sound was generated by a commercially available 100-watt audio driver unit
and propagated through an inverse conical horn section through the right
angle bend to the 0.64 cm diameter opening. Output levels of approximately
115 dB at 1 m from the opening could be obtained from 1 KHz to 5 KHz. The
source exit point was located as shown in Figure 2.18 at an axial location of
20.3 cm. from the free-jet exit plane.

The first test conducted was a near-field radial traverse for the
purpose of determining the order of magnitude of internal reflections from
the shear layer at 90°. Because of differences between the free-jet results
and inflight data, especially at 90°, it was hypothesized that free-jet
corrections at 90°, which assume no internal reflections for waves normal to
the mixing layer, might be incorrect due either to free-jet divergence or
finite axial velocity gradients in the mixing region.

The traverse mechanism is shown in Figure 2.17. The microphone was
equipped with a probe with a right angle bend. The sound signal was sensed
through static pressure ports. Microphone position was detected by a poten-
tiometer which drove the X-axis of an X-Y recorder. A typical output is
shown in Figure 2.19 for four frequencies. The measured amplitude vs.
distance from the source shown in Figure 2.19 is compared with inverse
square law for discrete frequency excitation. It is obvious that near the
source, direct radiation is dominating the sound pressure signal and an in-
verse square law behavior is observed. However, at a distance some 25 cm.
from the source, reflections from the exposed free-jet lip have a consider-
able influence. This problem was not given further consideration since, as
stated in section 2.3.3, it did not exist for broadband noise and also it
did not preclude determination of internal reflections from the free-jet
shear layer, which was the primary objective of this particular test.
However, because of the strong reflections near the lip line, the source was
positioned at 10.2 cm. from the lip line in order to change the angle of the
unwanted reflection and increase the source amplitude at the mixing layer
interface. A typical result is shown in Figure 2.20 for 2500 and 3150 Hz.
The solid line is for no-flow, the dashed line for 30.5 m/s and the dotted
line for 61.0 m/s. The source amplitude remained unchanged during these
tests. While at 61.0 m/s there were minor perturbations near the free-jet
lip line, these perturbations were linked to a measurement problem rather
than a reflection. In the mixing region, the probe microphone sensed high
broadband turbulent pressure fluctuations, and as a result of non-normal un-
steady impingement on the static ports, self-noise was generated. The
ability of the narrow band filters to remove this broadband component of
noise was inadequate in the mixing regions; thus the measurement was a sum
of discrete plus random.
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If, however, the data were examined on either side of the mixing
region, some general observations could be made. First, no detectable in-
ternal reflections were observed. On the outside, some small variations
in level, admittedly influenced by a reflected wave field, were detected.
Due to the surface reflection problem, no specific conclusion could be de-
rived for this region. Thus, the only significant conclusion gleaned from
this test was that internal reflections at the 90° angle were not a
problem, as expected from the vortex sheet model.

Another potential problem with free-jet forward flight effects testing
is the scattering of sound, generated within the potential flow region, as
it propagates through turbulent eddies in the mixing layer. This problem
has been analyzed by Mani (ref. 27), who looked at the change in directivity
for a highly directive source. He showed considerable diffusion in the far
field sound pressure directivity for frequencies as low as worg/ag =4 where
in this case r. was the radius of the source region. The magnitude of dif-
fusive scattering was controlled by the parameter DR where R was the far-
field radius and D was a diffusion constant which is defined as 1/4 of the
mean square angular deviation of the ray, per unit length of the ray path,
due to scattering. The diffusion constant is shown, for high frequency, to
be approximately represented by .

DR = M2 (woR/ay) fluwL/a,)

where My is the turbulent Mach number and flugl/ay) is inversely related to
the length scale of turbulence.

For values of DR==10-2 and 5 x1072 at frequencies wors/ao==h and 8, the
calculated diffusion is very significant and in some cases a very peaky angu-
lar distribution is diffused to the extent that it nearly appears to have
originated from a point monopole. Thus, the diffusion or turbulent scatter-
ing problem is one which deserves attention in free-jet acoustic studies.

Another approach at examining the turbulent scattering problem con-
siders spectral broadening of an original discrete frequency signal. As the
discrete tone wavefront propagates through the turbulent eddies, the speed of
propagation of the wave varies. This random variation in propagation speed
along the wavefront results in a narrow-band random modulation in the ampli-
tude and phase of the signal which manifests itself as spectral broadening.
Many studies have been conducted in this area of research [Rudd (ref. 28),
Brown and Clifford (ref. 29)]; however, experimental data on free-jet facili-
ties have not been available until recently. Foley and Paterson (ref. 30)
discuss a test in the United Aircraft anechoic free-jet facility. They dis-
play a test result for a 24,000 Hz signal propagating through the shear
layer of their free-jet facility for 61.0 m/s tunnel velocity. Spectral
broadening in this instance appears to be fairly significant although no
quantification is given. They state that the effect is not significant
until the wavelength is less than the integral scale of turbulence.

Because of source limitations it was not possible to conduct scattering

tests above 5000 Hz. The source directivity was essentially spherical at
that frequency, thus an examination of angular diffusion was not possible.
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However, an examination of the frequency spectrum in the far-field was under-
taken with and without flow. The spectrum was examined through a 2 Hz narrow
band filter. A typical result at 5000 Hz and 52.5° angle to the jet axis is
shown in Figure 2.21, first for no flow and then at 61.0 m/s tunnel velocity,
for a source positioned 10.2 cm above the lip line and 20.3 cm downstream.
At 20.3 cm. in this facility, the integral scale of turbulence corresponded
approximately to wavelengths of 1.3 cm to 3.8 ¢m or frequencies of 8000 Hz
to 24,000 Hz at the position where the ray propagated through the mixing
layer. Examination of the two narrow band spectra shows that there is no
detectable difference and in fact further examination shows that the spectral
shape is that of the 2 Hz filter.

Thus, it can be confirmed that at wavelengths greater than the scale of
turbulence, spectral broadening is not a problem in free-jet facilities.
Further work is required, however, for higher frequencies.

2.4 EXPERIMENTAL PROGRAM AND PROCEDURE

The influence of forward motion on unheated jet exhaust noise was
examined in the present program by measuring the turbulent mixing noise in
the far field from three 5.08 cm diameter nozzles, operated in the anechoic
free-jet facility. The free jet to nozzle area ratio was 400. The nozzles
employed were the M=1 convergent nozzle, and the M=1.4 and 1.7 convergent-
divergent nozzles. In order to avoid the contamination of data from shock-
associated noise, these latter were operated at their design pressure ratios
only. Nine microphones were placed on an arc of radius 2.74 m (R/d =54),
centered at the nozzle exit plane. The measurement angles were 6y =30°(74°)
90° relative to the downstream jet axis.

The experimental program was carefully planned to yield results at (1)
constant jet efflux velocity (V;/ap) with varying tunnel velocity (VT/ao),
and (2) constant tunnel velocity with varying primary jet velocity. Forty
test conditions (combinations of Vj/a, and Vy/ap) were initially chosen. The
nominal values of jet exit velocity and tunnel velocity were

VJ/aO = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.17 and 1.345 (8 values);
Vy/ag, = minimum, 0.05, 0.10, 0.15 and 0.20 (5 values).

The minimum tunnel velocity, Vyg, is defined as the tunnel velocity which
is provided by the ejector action of the primary jet in the absence of any
additional velocity supplied by the facility ejector itself. [ts magnitude,
therefore, increases as Vj/a, increases.

For each combination of V;/a, and Vy/a,, the static pressure ratio
Pr/PT was determined by using the analysis developed in Appendix 2B. The
values of various parameters defining the test conditions are tabulated in
detail at the beginning of Appendix 2C.
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2.4.1 Test Procedure

The quantities to be measured in setting up the test conditions are
defined in the sketch shown in Figure 2.22. In order to set the experiment
at the desired combination of V,;/a, and Vy/a, (for the convergent nozzle) or
Mj and Vi/a, (for the two con-div nozzles), the following sequence was
adopted:

Tunnel:

1. Specify Vy/ag
2 Read pg,, Tg,
3. Calculate a, (= a7)
L. Calculate Vg
5

Compute (p; - py) using tunnel calibration computer program
on HP-65

6. Set tunnel at (p; -py) to obtain desired Vi/a,

Jet:
Specify Vj/ag or My

7
8. Compute pR/pT using relationships derived in Appendix 2B
9 Read pt

0

1
11. Set jet at pp to obtain desired Vy/ag or My

Calculate pg

12. Check if (p; -pT) has altered, and adjust if necessary.

During each test, all pressure and temperature measurements were re-
corded; subsequent to the test program, these measurements were used to
compute the exact jet and tunnel operating conditions, which are tabulated
in Appendix 2C, for every test conducted.

2.4.2 Data Acquisition

In the present experimental program, nine 12.7 mm. B&K microphones Type
4133 with FET cathode followers Type 2619 were mounted on the microphone arc
at 73° intervals from 30° to 90° to the downstream jet axis. The responses
were recorded simultaneously on a 14-channel Honeywell FM tape recorder at
305 cm/s. In order to obtain the 1/3-octave spectrum from 200 Hz to 40O KHz
using a Hewlett-Packard real time 1/3-octave audio spectrum analyzer, the
tape speed was reduced to 76.25 cm/s on playback. The 1/3-octave levels
were then recorded on an incremental tape recorder for subsequent detailed
analysis using a data reduction program developed for use on the Univac 418
digital computer. This program incorporated the microphone frequency
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response corrections and atmospheric absorption corrections. The results
were finally displayed in the form of tabulated one-third octave band sound
pressure levels over the frequency range from 200 Hz to 40 KHz, and the
overall levels were also computed over this frequency range.

2.4.3 Data Quality

All acoustic data acquired in the present experimental program were
carefully scrutinized in order to ensure that the results which are selected
for detailed analysis would not be contaminated to any significant extent by
contributions from any other noise sources. The data from the entire test
program are given in Appendix 2C for future reference. In using these
data, the following points must be considered at all times:

(1) There is no significant contamination from rig internal noise
sources, as established in Section 2.3.3.

(2) The two major sources of extraneous noise are the tunnel background
noise and the measuring instrumentation electronic noise. As expected, the
influence of these sources is maximum for low Vj/a,, high Vy/ag test condi-
tions. In general, when present, the effect of background noise is noticea-
ble at low frequencies, whereas the presence of instrumentation noise
results in a slight 1ift in the spectrum levels at the high frequency end.

(3) Although the supersonic nozzle calibration tests (shadowgraph tests)
revealed no significant shock pattern in the jet flow at design pressure
ratios for all nozzles, close examination of the acoustic data indicates that
in the case of the M=1.4 nozzle, the spectra are slightly contaminated by
shock-associated noise at the higher frequencies. This indicates slight
imperfections in the machining of the nozzle contour.

(4) At high tunnel velocities, the spectra measured by the @y =30°
microphone are affected by the air-flow generated noise over this microphone
as described in Section 2.3.2.1.

(5) The spectra measured at 8y =75° contain a slight ripple due to
room reflection, which was not detected in the earlier acoustic calibration
tests. However, this effect is consistently present, and therefore it does
not influence the final conclusions derived from the data analysis.

The results which are presented in the rest of this report are essen-
tially free from any of the above limitations; hence, any conclusions or
scaling laws derived from them are considered to be accurate.

One further point regarding data presentation needs to be made here.
Although the measured spectra contain minor variations in level about the
mean variation from one 1/3-octave band to the next, the spectra presented
in this report are shown as continuous spectra, purely for convenience. A
typical example, showing the actual measured 1/3-octave band levels and the
corresponding continuous spectrum, is presented in Figure 2.23. It can be
observed that the presentation of data in this fashion takes no unjustifi-
able liberty, and indeed it simplifies the spectrum plot considerably,
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L2

especially when it is necessary to plot several closely spaced spectra on
the same figure.

2.5 MEASURED (OR UNCORRECTED) RESULTS

The turbulent mixing noise results from the inflight simulation experi-
ments, conducted in the anechoic free-jet facility, are first presented
without applying any facility corrections. These corrections were mentioned
briefly earlier, and their magnitudes as well as the correction procedure
are derived in the present program in Section 3.1. The corresponding cor-
rected results will be presented and discussed in the next section. The
major effects of forward motion on the directivity and spectral characteris-
tics of turbulent mixing noise, derived from the uncorrected results are
discussed below.

2.5.1 Overall SPL Results

The influence of tunnel velocity (VT/a ) on the directivity of overall
SPL at various jet efflux velocities (Vy/ag) in the wide range from VJ/a0=
0.4 to 1.345 is shown systematically in Figure 2.24. It should be noted
that the angle 8, is the measurement angle relative to the downstream jet
axis, and not the emission angle. For a fixed measurement angle 8., the
angle at which sound was emitted from the jet, &g, varies as the tunnel
velocity is varied. Conversely, in order to examine the changes in noise
radiated at a fixed emission angle 0, with increasing tunnel velocity, the
measurement angle 6 must be varied appropriately. The relationships be-
tween these two angles form a part of the correction procedure that will be

described in section 3.1.

The directivities shown in Figure 2.24 contain remarkably little
scatter. For a fixed value of jet velocity VJ/aO, the directivities at in-
creasing tunnel velocities appear virtually parallel at first sight. This
observation agrees qualitatively with the results of the free-jet experi-
ments conducted at NASA-Lewis (ref. 21). However, a closer examination also
reveals that, in general, the reductions in OASPL with forward velocity are
slightly angular dependent, being a little higher as the measurement angle
approaches the jet axis.

In order to provide a quantitative description of the reductions in
OASPL at all measurement angles considered, the results were correlated on

the relative velocity (VREL.=VJ -VT) basis, as follows.

The overall intensity of turbulent mixing noise at measurement angle 6,
can be written to scale according to

1(0n) = VopL V' o (2-1)

where the exponents m and n are functions of 6. The corresponding OASPL is
therefore given by
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OASPL(6_) = 10 log, [VReL V1. (2-2)

From the above scaling relationship, the reduction in OASPL from minimum
tunnel velocity (Vo) to any other tunnel velocity (Vi) can be written as

(2-3)

VJ'VTOlm

The relative velocity exponent m is simply the slope of a graph which dis-~
plays values of measured AOASPL as a function of the velocity parameter

The measured overall noijse reductions at all angles are plotted against
the velocity parameter in Figure 2.25, and the relative velocity exponent
line is drawn through the experimental points at each angle Ome The magni-
tude of the scatter is well within the bounds of the experimental accuracy,
except at 6 =30°, where, as mentioned previously, the air flow over the
microphone produced undesirable pressure fluctuations in some cases.

Finally, the variation of the relative velocity exponent m with
measurement angle 8, is presented in Figure 2.26. Also shown in this
figure are the values obtained from the free-jet experiments reported by
Von Glahn, et g (ref. 21). It should be noted that the concept of relative
velocity exponent does not provide any physical insight into the inflight
effects on jet noise, except at 90° to the jet axis. It is used here merely
to illustrate the good agreement between the present results and those from
other free-jet experiments. The small differences seen in the figure are to
be expected in view of the differences in the two facilities used.

2.5.2 1/3-0Octave Spectral Results

The influence of tunnel velocity on the one-third octave spectra at
three measurement angles (6, =90°, 60° and 37.5°) throughout the Jjet velocity
range are shown in Figures 2.27, 2.28, and 2.29. The number of spectra pre-
sented in these figures is sufficient to provide a complete picture. It is
recalled that some of the spectra do not span the entire frequency range
from 200 Hz to 40 KHz due to reasons outlined earlier; that is, only those
parts of the spectra which are not contaminated to any significant extent by
background and/or instrumentation noise are considered.

At the measurement angle of 90°, the reductions in sound pressure levels
with increasing tunnel velocity throughout the frequency range are consistent,
resulting in virtually parallel spectra at a fixed value of Vy/ag. It will
be shown later that at this measurement angle, the values of corresponding
emission angles at various tunnel velocities are not very different. There-
fore, the observed reductions in the spectrum levels at Om =90° provide a
good indication of the changes in equivalent source strength with forward
velocity. This reduction in source strength appears to be fairly independent
of frequency. 0On the other hand, it is misleading to derive any conclusions
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at this stage from the measured spectra at angles other than 90° to the jet
axis, since the emission angle corresponding to a fixed measurement angle
could vary significantly with varying tunnel velocity. The spectra at

8m =60° and 37.5° are presented here purely for future reference. As a
general observation, however, we may note in passing that at small measure-
ment angles, the reduction in sound pressure levels with increasing tunnel
velocity is frequency dependent, and the magnitudes of these reductions
decrease progressively as the observed frequency increases beyond the peak
frequency.

It remains to be seen how the spectral characteristics observed above
from the uncorrected results are modified by the facility corrections. This
aspect is examined in the following section.

2.6 CORRECTED RESULTS

In the previous section, the effects of forward motion on the direc-
tivity and spectral characteristics of jet mixing noise were examined in a
a preliminary manner where the measured results were not corrected for any
of the complications introduced by testing the model jet in a larger co-
flowing stream, with the microphones placed outside in a stationary medium.
An adequate understanding and accurate quantification of these facility
corrections are vital to the success of a free-jet facility in simulating
forward velocity effects on Jjet noise. Considerable effort in the present
program was directed towards this aspect of inflight simulation, and the
complete details of various phenomena involved, together with a systematic
data correction procedure, are given in section 3.1 of this report. In
essence, the correction procedure takes proper account of source distribu-
tion effects in a jet flow, the downstream convection of sound waves by the
tunnel flow, and the refraction of sound caused by the free-jet shear layer.
The refraction effect causes a change in the ray path angle and a change in
the sound pressure amplitude as the sound waves propagate through the shear
layer. The correction procedure incorporates all these effects in a
realistic manner, and using the measured or uncorrected results at fixed
measurement angles, 8y it yields results corrected to constant emission
angles, 6e» for an observer moving with the jet.

In the present program, the measured results at three jet exit
velocities (V;/ag=0.6, 0.9 and 1.345) were subjected to the correction pro-
cedure, and the corresponding corrected results at fixed emission angles are
presented in this section. The spectral results are examined first.

2.6.1 Corrected 1/3-Octave Spectra

The corrected one-third octave spectra corresponding to the measured
spectra discussed in the previous section are presented in Figures 2.30,
2.31, and 2.32, for VJ/a°==0.6, 0.9, and 1.345, respectively. In order to
obtain the corrected spectrum at some emission angle, 6,, the measured
spectra have to go through an interpolation procedure, both in frequency and
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Figure 2.30 Effect of tunnel velocity on corrected spectra

at low jet velocity (Vj/ag = 0.6).
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in angle, as will be described in section 3.1. At low frequencies and low
8e, this procedure requires measured values at angles 6p smaller than those
used in the experimental program, and hence, the corrected spectra at low Be
have a lower limiting frequency; it is not possible to obtain corrected
levels at frequencies lower than this limiting frequency. In the spectra
presented in the figures, the lower limiting frequency, when present, is
identified by a vertical line in most cases.

The general features exhibited by the corrected spectra at constant
emission angles (8,) are qualitatively similar to those exhibited by the
measured spectra at constant measurement angles (6y) - However, there are
some quantitative differences. At ee==9o°, the flow (or refraction) correc-
tions at all tunnel velocities and frequencies are found to be negligible.
The reductions in 1/3-octave levels with increasing tunnel velocity are vir-
tually identical to those noted previously at 8m==90°, although the absolute
levels at all tunnel velocities are a little higher due to the source loca-
tion corrections. In contrast, at smaller emission angles, the shear layer
refraction corrections do become significant. Their magni tudes increase as
the tunnel velocity increases. The consequence of this effect is that the
reductions obtained from corrected spectra at constant B are larger than
the reductions observed in uncorrected spectra at the same value of constant
Bp. In other words, at low emission angles, the relative velocity effect is
larger for the corrected results than for the corresponding uncorrected
results at the same values of measurement angles. The reductions in correct-
ed noise levels with tunnel velocity were scaled on the relative velocity
basis, as done previously for the uncorrected results, and the findings are
described in the following section.

2.6.2 Corrected Overall SPL Results

The overall sound pressure levels for the corrected spectra were ob-
tained by summing the levels in various 1/3-octave bands. The summation was
carried out over the frequency range from 1 KHz to 40 KHz due to the lower
frequency limit imposed by the correction procedure, as mentioned above.

The effect of tunnel velocity Vy/ag on the directivity of corrected
overall SPL at VJ/ao==0.6, 0.9 and 1.345 is shown in Figure 2.33. It should
be remembered that the effect of forward motion is examined here at constant
emission angles, and therefore represents a true static-to-flight comparison
for an observer moving with the jet nozzle. The effect of forward motion
is seen to provide a significant noise reduction at all emission angles con-
sidered here. The magnitudes of the reductions increase slightly as the
observer moves from 8 =90° towards the downstream jet axis.

In order to obtain the relative velocity exponent m for the corrected
results, the OASPL reductions at all emission angles were plotted against
the velocity parameter 10 log;p [(v 'VTO)/VREL] as described before, and
the results are shown in Figure 2.3ﬂ. Since the amount of data subjected to
the facility corrections was limited within the scope of the present program,
the number of data points in the figure, through which the slope representing
exponent m is plotted, is unfortunately limited. Nevertheless, the final
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results are considered to be fairly accurate. At 90° to the jet axis, the
overall intensity is proportional to 5.5 powers of the relative velocity, a
result which is closely in agreement with the scaling laws derived from

jet flow measurements in Section 4.

Finally, the variation of resulting relative velocity exponent m with
emission angle 8_ is plotted in Figure 2.35. For comparison, the exponent
values obtained in Section 2.5 from uncorrected data are also shown in this
figure. In order to compare the forward velocity effects on jet noise ob-
tained from the present experiments with the results of other investigations,
the latter are also included in the figure. |In particular, the published
inflight effects studies considered here are (1) the free-jet experiments
conducted by NASA-Lewis (ref. 21), (2) the wind tunnel experiments conducted
by NGTE (ref. 23), and (3) the full-scale flight results reported by Rolls-
Royce (ref. 1). Figure 2.35 thus provides a simplified overview of the
inflight effects on jet noise on the relative velocity basis from all types
of facilities. The major facts and implications can now be discussed in some
detail.

(1) The first major observation can be derived by comparing the rela-
tive velocity exponents obtained in the present experiments from the
corrected data and the uncorrected data. The facility corrections, designed
to convert results from a free-jet simulation to a corresponding wind tunnel
simulation, are negligible at 90° to the jet axis, but produce a significant
difference at lower angles in the rearward arc.

(2) In the NGTE wind tunnel experiments, the procedure for deriving
the relative velocity exponent m included the so-called dynamic effect
correction (i.e., an amplification due to relative motion between tunnel
flow and stationary jet), which was not included so far in the present
data manipulations. In order to obtain a true comparison with the NGTE
results, this correction was also applied to the present results by
using

1 + MycosBe
ASP = - 109% — -
AOASPL(6,) AOASPL(8¢) 10 Yog; T+ Hrgeos, (2-4)
with wi thout
dynamic dynamic
correction correction
where
Vg -V1o |™
AGASPL(8g) = 10 log, vj—:v;f'} (2-5)
wi thout
dynamic

correction

The overall SPL reductions with dynamic corrections are therefore lpwer than
the overall SPL reductions without dynamic corrections. They were correlated

69



12 T T T T Y Y T T | T Y T T
QO REFERENCE [23]
- (J PRESENT (UNCORRECTED)
ok /\ PRESENT (CORRECTED N
WITHOUT DYNAMIC EFFECT)
" ——— PRESENT (CORRECTED i
\ WITH DYNAMIC EFFECT)
8t a A i
N STATIC
5 //X N J
\v
N
6 - -
REFERENCE [21]
(UNCORRECTED)
N 4
RELATIVE
VELOCITY i
EXPONENT
m 2k FULL SCALE -
FLIGHT
- 7 -
I /%———“-
_2— -(
-4 1 1 1 i 1 1 1 ) i 1 1 1 1
20 40 60 80 100 120 140
EMISSION ANGLE 6, - DEGREES
OR

MEASUREMENT ANGLE 6, - DEGREES (FOR UNCORRECTED RESULTS)

Figure 2.35 Comparison of relative velocity exponents from various
inflight simulation experiments and flight tests.

70



on the relative velocity basis at each emission angle Bes and the resulting
relative velocity exponent values are given by the broken curve in Figure
2.35. It can be seen that the effect of this dynamic correction is zero at
e =90°, and the magnitude of the effect increases as fe decreases.

Comparison of these modified exponents with the corresponding NGTE
results in Figure 2.35 shows that the agreement is good at all emission
angles. The small differences are perhaps to be expected for two reasons:
(a) the present results were corrected to take proper account of realistic
source location, whereas no such correction was applied to the NGTE results
(where the sources were assumed to be located at the nozzle exit plane);
(b) the microphones in the NGTE tests were placed at a sideline distance of
twenty-two nozzle diameters from the jet axis, which is not large enough to
provide results that approach true far-field radiation characteristics.

The good agreement between the results of the present free-jet experi-
ments, carefully corrected to yield results which would be expected from a
corresponding wind tunnel simulation, and the results from the NGTE wind
tunnel experiments, which utilized a large test section to nozzle area ratio
(~5000), provides three important implications: (a) the effect of turbu-
lence scattering in a free-jet mixing layer, which was not included in the
data correction procedure, does not appear to be significant; for if it was
significant, then the agreement between the free-jet experiments and the wind
tunnel experiments, where the scattering problem does not arise, would not be
as good as we see here; (b) the free jet to nozzle area ratio of 400 used in
the present experiments appears to be adequate for accurate evaluation of in-
flight effects on jet noise characteristics; (c) a free-jet facility is capa-
ble of simulating many of the inflight effects on jet noise, providing ade-
quate and accurate facility corrections are applied to the measured results.

(3) Finally, the comparison of relative velocity exponents from in-
flight simulation experiments with the envelope of exponents obtained from
full-scale flight results is rather discouraging. At low angles to the jet
exhaust, it appears that the flight simulation results are in reasonable
agreement with the actual flight results. At larger angles, however, the
reductions in noise levels with forward motion observed in the model simula-
tion experiments are larger than those measured in flight tests. At fe = 90°,
there is little or no change in the flyover noise levels, whereas the free-
jet experiments indicate significant noise reductions which scale on the 5.5
powers of the relative velocity.

The obvious question to be raised at this stage is, what is the reason
for this discrepancy between the flight simulation results and the full-
scale aircraft flyover results? The first possibility stems from the fact
that in the present experiments, although the jet velocity regime was simu-
lated adequately, the effect of jet heating was not considered; in contrast,
all flyover results are obtained from heated jet flows. Hence, an exact
comparison for matching jet operating conditions should be carried out after
obtaining results from heated flight simulation experiments. Having stated
this, however, the acoustic scaling laws from heated jets, derived in
Appendix 4C, suggest that although this possibility will bridge the gap
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between model simulation and flight results considerably, it might not be
able to provide the complete explanation.

In attempting to resolve this discrepancy further, it is readily admit-
ted that there are subtle differences in the two sets of experiments: in
the flight simulation tests, there is no relative motion between the source
and the observer, whereas in the flyover tests, the noise source is being
convected relative to a stationary observer. However, further considerations
also show that none of the features associated with source motion (for
example, eddy convection velocity effects, source acceleration effects, etc.)
will affect the results at 90° to the direction of motion. It must therefore
be concluded that the flight results considered so far may not represent pure
turbulent mixing noise, and are likely to be contaminated by engine internal
or other noise sources.

2.6.3 Prediction of Static-to-Flight Noise Reduction

We have previously alluded to the point that although the concept of
relative velocity exponent is very convenient in semi-empirical correlation
schemes, it does not provide any physical explanation of static to flight
noise reductions, except at 90° to the jet axis where it is a measure of the
changes in equivalent source strength. Hence, an attempt was made to
correlate the measured (with facility corrections) OASPL reductions at all
emission angles in terms of a theoretical result for convective amplification
due to eddy convection, derived in Section 3.

The starting point for the theoretical correlation formula is that the
intensity at 8o =90° is proportional to v2:5. The intensity at any other
emission angle 8, is then given by adding the eddy convective amplifica-
tion and jet motion amplification (resulting from the relative motion
between tunnel flow and stationary jet) to this basic dependence, which is
the source alteration effect. The overall SPL can therefore be expressed as

___—_—_’ -
1 +MTcosee|]’ (2-6)

where CA is the eddy convective amplification given by

OASPL(8) = 10 Togyq [ (Vy=V)° > (CAy -y )

(1 -M_cosg,)®
CA = — o (2-7)
{1 -Mccosee)2 + a2M.2) /2

and the subscript Vj - V7 denotes the velocity at which the eddy convection
Mach number Mc is to be evaluated. This convective amplification result is
derived from geometric acoustics in Section 3, and is valid outside the
zone of silence. The reduction in OASPL from minimum tunnel velocity, VTQ,
to any other tunnel velocity, VT, can be written as
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VJ - VTO 5:5 CAVJ - VTO 1 +MTCOSBe

In using equations (2-7) and (2-8), the eddy convection velocity was assumed
to be 0.67 times the applicable relative velocity, and o was taken to be 0.3.
Although these values are consistent with the values obtained from static jet
flow measurements by several investigators, their magnitudes for jets in a co-
flowing stream need to be derived experimentally.

For all measured (with facility corrections) OASPL reductions, the corre-
sponding theoretical OASPL reductions were calculated, and the comparison of
results at all emission angles 6e (including 900) greater than the cone of
silence angles 6., where 6. is given by

! ! (2-9)

v, vr]’
1+ 0.67 ;i-sl‘
[0} o]

is shown in Figure 2.36.

The calculated noise reductions are in close agreement with the measured
(with facility corrections) noise reductions, the majority of the points
agreeing within +1/2 dB.

The good agreement observed here provides an important indirect impli-
cation. The calculation formula used here is basically similar to the formula
used by NGTE; although there are significant physical differences between the
two, the numerical differences over the range of VJ/ao considered here are not
significant. The fact that both the wind tunnel results and the free-jet
results correlate well with the prediction formulae suggests that the corrected
results from the present free-jet experiments are compatible with the results
obtained from the wind tunnel experiments. This provides further indirect
evidence to our previous conclusion that a free-jet facility is very suitable
for a fundamental study of forward motion effects on jet noise.

2.7 SUMMARY AND CONCLUSIONS

The effects of forward motion on the characteristics (both directivity
and spectral) of turbulent mixing noise from jet exhausts were examined by
conducting inflight simulation experiments in the Lockheed anechoic free-jet
facility. The highlights of the experimental program and the major con-
clusions are as follows:

(1) The facility was capable of providing tunnel velocities up to 75 m/s
with a test section of 0.76 m x 1.07 m. Prior to the jet noise experiments,
the facility was subjected to detailed aerodynamic and acoustic performance
evaluation tests.
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(2) The aerodynamic performance tests revealed that there were no
problems associated with free-jet stability, and the air flow circulation
velocities in the anechoic chamber were acceptable.

(3) The acoustic performance tests established that (a) the facility
was anechoic for frequencies down to 200 Hz, (b) the facility background noise
in the measurement arena was low, and (c) the jet noise results would not be
contaminated by rig internal noise at least down to Vj/agp=0.32.

(4) Limited calibration experiments using a point source established
that in the frequency range from 1 KHz to 5 KHz, no detectable internal re-
flections in the free-jet test section were observed for tunnel velocities
up to 61.0 m/s. |t was also confirmed that at these frequencies, the effect
of turbulence scattering in a free-jet facility was not significant. These
point source experiments need to be extended to higher frequencies.

(5) In the jet noise experimental program, the free-jet to nozzle area
ratioT was 400. The nozzles (diameter =5.08 cm.) employed were M=1 conver-
gent nozzle, and M=1.4, 1.7 convergent-divergent nozzles. The measurement
angles were 8, =30° (7%°) 90° relative to the downstream jet axis, and the
microphones were placed at 54 nozzle diameters. Acoustic measurements were
conducted at forty different test conditions (combinations of Vj/ag and
VT/ao); eight values of jet exit velocity were chosen in the range
0.4 <Vy/ay <1.345, and the tunnel velocity was varied up to Vy/ag=0.2. All
acoustic data were carefully scrutinized prior to detailed analysis, and all
data likely to be contaminated by extraneous noise sources (background/
instrumentation/shock noise) were not utilized.

(6) The uncorrected results (i.e., data to which no facility correc-
tions were applied) were found to be in good agreement with the results from
published free-jet experiments.

(7) The measured results were subjected to a systematic data correction
procedure, which was derived in the present program, and which convertedthe
results from a free-jet facility to the corresponding results that would be
obtained in a large-scale wind tunnel simulation. In essence, the correction
procedure took proper account of source distribution effects in a jet flow,
the downstream convection of sound waves by the tunnel flow, and the refrac-
tion of sound caused by the free-jet shear layer. Using the measured or
uncorrected results at fixed measurement angles, 8,, the procedure finally
yielded results corrected to constant emission angles, 6o, for an observer
moving with the jet nozzle.

(8) In general, the magnitudes of the facility corrections were negli-
gible at 90° to the jet axis, but produced a significant effect at low
angles in the rearward arc.

{(9) At 6_=90°, the effect of tunnel velocity on the corrected spectra
was virtually independent of frequency, and the spectra at various tunnel
velocities were nearly parallel. This implied constant reduction in equiva-
lent source strength at all frequencies. At smaller angles to the downstream

tSee Footnote on page 76.
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jet axis, the noise reductions with forward velocity were slightly frequency
dependent; at 8, ~ 40°, the magnitudes of these reductions decreased slightly,
but consistently, as the frequency increased.

(10) The corrected overall SPL results indicated that the magnitudes
of the inflight noise reductions increased as the observer moved from Be =90°
toward the downstream jet axis. The reductions at all emission angles were
scaled on the relative velocity (jet velocity minus tunnel velocity) basis.
At ee==90°, the overall intensity was found to be proportional to 5.5 powers
of the relative velocity, a result which agreed closely with the theoretical
velocity dependence, "‘VEE , that is derived purely from source alteration
considerations in Appendix 4C.

(11) Comparison of the relative velocity exponents m, obtained from
the present corrected results, with the exponent values obtained in the NGTE
wind tunnel experiments (where the test section to nozzle area ratio was
5000), showed that the agreement was good at all emission angles.” From this
comparison, it is concluded that (a) the effect of scattering caused by
turbulence in the free-jet mixing layer did not appear to be significant;
(b) the free jet to nozzle area ratio of 400 used in the present experiments
was adequate for accurate evaluation of inflight effects on jet noise, and
(c) a free-jet facility is capable of simulating most of the inflight
effects on jet noise, providing adequate and accurate facility corrections
are applied to the measured results.

(12) The comparison of results from inflight simulation experiments
with full-scale flight results shows that although the agreement is reason-
able at low angles to the jet exhaust, there are significant discrepancies
at larger angles. At 8,=90°, there is little or no change in the flyover
noise levels, whereas the free-jet experiments indicate significant noise
reductions. All attempts to explain this discrepancy in terms of source
motion (relative to a fixed observer) effects lead to the conclusion that
the flyover results at 90° will not be affected. It is therefore concluded
that the flight results considered here may not represent pure turbulent
mixing noise, but are likely to be contaminated significantly by engine
internal or other noise sources. It is recommended that the "acoustic
cleanliness' of all flight results be examined thoroughly, both for existing
flight data as well as any future flight test results.

(13) Finally, a theoretical formula for the prediction of inflight
noise reductions at emission angles outside the so-called zone of silence
was presented, and the correlation between calculated and measured OASPL
reductions was obtained to an accuracy of *+1/2 dB.

TThe area ratio of 400 in the present free-jet experiments 18 based on the
nozzle extt area for the 5.08 cm. diameter primary jet, and is not based on
the cross-sectional area of the 10.2 cm. upstream air supply pipe. This is
Justified, since there is no flow separation over the outer surface of the jet
nozzle. For a suppressor nozzle configuration, however, it may not be possible
to consider the area ratio in this manner. In particular, for highly segmented
nozzgles, the area ratio should not be based on the effective area at the
nozzle exit plane. In such cases, 1t is necessary tc examine the spread rate
of the jet flow in order to ensure correct aeroduvamic simulation.
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3. ACOUSTIC PROPAGATION THEORY

In a scientific investigation of the effects of forward motion on jet
exhaust noise from aircraft, the many-faceted role of acoustic propagation
theory is crystallized in the central problem of flight simulation; that is,
to specify the features required of fljght simulation facilities and then to
relate acoustic measurements from real flight simulation facilities with
those taken under flight test conditions.

In order to do this it is necessary, first, to define idealized models
of the facilities and flight test conditions. With highly idealized models,
basic features can be identified and fundamental relations can be established
in a straightforward way; then the models can be made progressively more
realistic, in a step~by-step fashion, so that the influence and significance
of each real effect can be assessed in a logical manner.

An "overview' type investigation that would assess the influence of all
known, real sound propagation effects under flight and simulated flight con-
ditions (e.g. turbulence scattering, ground reflections) is clearly desirable.
However, when the investigation js severely limited by temporal and/or finan-
cial constraints, a choice should be made between a necessarily superficial
"overview' study and an ''in depth"! investigation focused on one or two of the
more important aspects of the problem. The investigation described in this
chapter is of the latter type.

In section 3.1 the most basic idealized models of a flight test condi-
tion and a flight simulation facility are defined and the acoustic propaga-
tion features of two (static) practical realizations of the ideal flight
simulation facility are described. In one of these, the free-jet facility,
acoustic propagation through the free-jet shear layer is studied in consider-
able detail with the aid of geometric acoustics theory. This, in conjunction
with a semi-empirical model of axial source distributions in the primary jet,
leads to a simple correction Procedure that converts free-jet measured
acoustic data to estimated flight data. Most of the detailed aspects of this
work is described in Appendices 3A through 3F.

In section 3.2 attention is focused upon the influence of forward motion
on the so-called flow-acoustic interactions; that is, the interactions that
occur as sound escapes from a source region in a highly sheared mean flow
field and the diffraction, or refraction, of the sound wave as it propagates
out of the primary jet flow into the radiation field. The most realistic
description of those effects are provided by numerical solutions to the
Lilley equation; the interpretation of those solutions is extended to include
forward motion effects. Some numerical solutions to the Lilley equation are
presented to illustrate how flow-acoustic alteration effects outside the cone

analytic expression. The flow-acoustic interaction effects are incorporated
into an overall jet noise model which includes the so-called dynamic effect
and the Doppler factor that is a function of the eddy convection velocity
relative to the stationary observer under flight conditions.

77



3.1 ACOUSTIC THEORY FOR FLIGHT SIMULATION FACILITIES

3.1.1 The ldeal Flight (1F) Condition

The ldeal Flight condition is shown in Figure 3.1. The acoustic source—
the aircraft exhaust — moves with a uni form speed, Vp, along a straight and
level flight path in an infinite atmosphere, i.e. the ground surface or re-
flections and scattering from the ground surface are absent. (similariy, the
aircraft itself is assumed to be acoustically transparent.) The speed of
sound and mean density ag, 0g» of the atmosphere are uniform everywhere and
the atmosphere is entirely at rest (apart from the motion due to the sound
wave itself). The atmosphere is also ideal in the sense that the sound wave
is not attenuated except through spherical divergence.

In Figure 3.1 the aircraft is shown in two positions; the first, in
Figure 3.1a, corresponds to a time t=tg, at which a partiuclar sound pulse
(or small portion of the pressure-time history of the actual, continuously
radiated signal) is emitted. At this emission time the observer/aircraft
angle and distance are denoted 8, and Rp. The second position, in Figure 3.1b,
is at a later time, when that pulse has travelled the distance Ry to the cb-
server at the speed of sound, ag- At this reception time the observer/
aircraft angle and distance are denoted ¥ and Ry.

The relation between 8, and y can be derived by working in terms of the
pulse travel time, t, where

t = Re/ag (3-1)
as indicated in Figure 3.2. The result

VA + aocosee MA + cosee

cot ¥ = ag Sinfe T sinBg (3-2)
is equivalent to that given by Ribner (ref. 31), i.e.
cosy - Mp {1 -M‘Z\sinzlp}42
cosf, = 5 : (3-3)
{1 - MAsinzxp}I - Mpcosy
or
§_ = (1 - Misin? 12 - Mysin? (3-4)
cosb, = cosy ASTD Y pASin Y.

The difference between the emission and reception angles, fe - ¥, is shown as
a function of ¢ in Figure 3.3a, for five values of Ma- The maximum difference
occurs when the reception angle is equal to 90°.

The relation between emission and reception distances R, R¢ follows
from the geometry sketched in Figure 3.2
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Figure 3.1b Ideal flight condition at reception time.
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Figure 3.2a ldeal flight condition geometry at emission time.

L. Va t I agt cosee..I
S2 S

~

RECEPTION TIME, t=t, + t DISTANCES: $10 = agt
(t = Rr/ao) 5152 = VAt

SQSO Vp + a5cosge
Locoty= =
SOO

a, sunee

Figure 3.2b Ideal flight condition geometry at reception time.
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Re/Ry = {1 + MK + 2Mp cosee}_% (3-5)
or equivalently, according to Ribner (ref. 31)
Rr/R¢ = (1 -Misinzw)%/(l-fMAcosee) . (3-6)

This ratio is evaluated in Figure 3.3b for the range of parameter values
used in Figure 3.3a.

In the next section this ldeal Flight condition is transformed to a
frame of reference in which both the aircraft and observer are at rest.

3.1.2 The Ideal Wind Tunnel (IWT)

The transformation of the ldeal Flight condition, described in the pre-
vious section, to a frame of reference in which both acoustic source and
observer or microphone are at rest, is carried out in two steps. Starting
with the IF condition at reception time, as shown in Figure 3.ka, the first
step is to set the microphone in motion so that it occupies the same
position at reception time but is moving with the same speed and direction
as the aircraft, as shown in Figure 3.4b. The moving microphone measures
the same acoustic pressure amplitudes as the stationary one but over a modi-
fied time period; a pulse detected over a time period Aty by the stationary
microphone is detected by the moving microphone over the modified time
period At = Aty Dy where

Do = {1 + Va cosee/ao}—l. (3-7)

Hence, in general, the microphones measure the same mean square pressures and
the same proportional bandwidth mean square pressures — at different fre-
quencies related by the Doppler factor Do That is, if the stationary
microphone measures a pressure power spectral density (psd) P, at frequency
Wy and the moving microphone measures a pressure psd P at frequency w then

wo.Po(wo) = w.P(w) (3-8)

where

wy = wDy. (3-9)

The second step is simply a Galilean coordinate transformation to the frame
of reference that moves with the aircraft and microphone. This does not
change the stationary-moving microphone measurement relations given above.
However, it does mean that the atmospheric medium now moves with a uniform
speed Vp in this new reference frame, as shown in Figure 3.4c. This is
referred to here as the ""Ideal Wind Tunnel" (IWT): '"Ideal' because the
"'cross section" is infinite and the flow velocity is absolutely uniform and
parallel (equal in magnitude to the uniform aircraft speed). Also, of
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(a) 1deal flight condition
at reception time.

(b) deal flight condition at
reception time with co-moving
microphone (velocity - Vp) so
that it occupies position 0
at the reception time
t = te + R/a,.

(¢) 1deal flight condition at

reception time in a co-moving
reference frame such that both

source and microphone are at
rest; now atmospheric medium

moves, with uniform velocity
Vp - "ldeal Wind Tunnel."

|
Va

Figure 3.4 The three stages in the transformation from the
ideal flight condition to the ideal wind tunnel.
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course, the ideal properties of the atmosphere in the IF condition carry
over to this new reference frame.

In the IWT the sound pulse emitted by the source at position S, propa-
gates along the ray path $20. The direction and speed of the pulse are
still given by 8e and ag relative to the flow as shown in Figure 3.4c. The
angle 8¢ is now the wavenormal angle and Ry is the distance travelled by
the ray in the wavenormal direction; y is the ray angle. These quantities
are denoted by g+, ReT and YT in the real wind tunnel or free-jet context.
However, it shoqu be emphasized that in principle they are identical, i.e.
Be =07, Rr =RrT, ¢:=¢T except that it will be necessary to define more
careful ly the origin of the polar coordinates ReTs 6T in the free-jet
configuration.

3.1.3 The Real Wind Tunnel and Free-Jet Flight Simulation
Facilities: Data Correction to IWT Conditions

free-jet facility as one in which the microphones are located outside the
flow. Both facilities differ, in principle, from the desired IWT facility
in that the outer boundary of the uniform flow is a finite distance from

the source. The presence of that boundary may influence the source if suf-
ficiently close on the wavelength scale (ref. 23). This effect is not
considered here in detail; for the Present it is assumed that over the
frequency range of interest (1 - 40 KHz) and with the source-boundary separa-
tion distance of ~20" in the Lockheed facility, this effect can be
neglected.

phone locations in the real wind tunnel. In the free-jet facility, the
direct radiation undergoes transmission, refraction and scattering effects
as it propagates through the free-jet shear layer. The resulting radiation

from the (required) direct radiation existing within the flow, Internal
reflection in either type of facility are not thought to be important, in
fact, it will be argued that usually conditions are such that sound propaga-
tion within the free-jet shear layer can be described by geometric acoustics.
Then, by definition there are 7o reflections and the transmission and re-
fraction processes can be calculated with fairly well established analytical
models. Turbulence scattering effects are not considered here since the
limited experimental results presented in Section 2 suggest that this is an
unimportant effect in the present context.

One other problem in flight simulation is that a restriction can arise
on the maximum source-microphone distance(s) such that consistent scaling
of this distance is not possible. Thus, for example, a separation distance
of one hundred jet nozzle diameters or more may be used in a flight test,
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but only twenty diameters might be possible in a real wind tunnel due to
its finite cross-section. Since the jet mixing noise source is distributed
axially, reduction in the microphone-jet nozzle separation will result in
a progressive distortion in the measured directivity pattern relative to
that measured at large or true far-field distances.

in what follows the emphasis is upon the free-jet facility and how
theoretical and empirical models have been utilized to estimate corrections
that convert measured data to estimated, true far-field IWT data. The
actual corrected or estimated IWT data is given in Section 2 along with the
basic free-jet measured data.

A detailed description of the models and correction procedures is given
in Appendices 3A-3F. In Appendix 3A theoretical expressions are developed,
based upon geometric acoustics, for the radiation from various types of
source distributions (simple, quadrupole; volume acceleration, volume dis-
placement; at rest, convected; compact, noncompact) when the source distri-
bution is immersed in a parallel, stratified, sheared flow. Appendix 3B
deals with the more general case of wave acoustics propagation in an infi-
nite, parallel, stratified sheared flow, mainly in connection with the
Lilley equation solutions described in section 3.2. Thus, Appendices 3A and
3B are not exclusively concerned with the correction procedure and models,
but they provide a general introduction and lay the foundation for the theo-
retical work in this section.

The mean flow model used in Appendices 3A and 3B is stratified; that is,
the mean flow properties vary only with the transverse coordinate. Thus, a
ray may propagate a significant distance in the flow direction, but the
axial mean velocity, for example, is not allowed to vary in that direction
as it does in a real jet flow. Appendix 3C describes an investigation in
which that restriction is relaxed, but it is shown that axial variations
and gradients have a negligible influence on the refraction of sound rays by
the free-jet shear layer. That is, a stratified flow model is adequate for
present purposes and the ray paths may be drawn as if the shear layer has
been replaced by a vortex sheet at the free-jet lip-line. On the other
hand, the theory of Appendices 3A - 3C rests entirely on the assumption that
the sound propagation is governed by the laws of geometric acoustics (GA).
A qualitative justification of that assumption is given in Appendix 3C;
detailed quantitative information on the accuracy of GA for infinite strati-
fied sheared flow models of the primary jet are being obtained from Lilley
equation solutions under an on-going USAF/DOT contract. A complete
Lilley equation study should be undertaken of radiation from quadrupole
sources at realistic locations in a primary jet that is surrounded by a
(finite cross section) free-jet, in order to assess the accuracy of the
present geometric acoustics approach.

With the results of Appendix 3C the rest of the GA correction procedure
is straightforward. In Appendix 3D, a simple but adequate model is given
for the effective axial location of the jet noise sources as a function of
frequency or Strouhal number. In Appendix 3E the GA energy conservation law
is used to relate measured acoustic pressures outside the free-jet with the



(required) acoustic pressures inside the uniform, potential core region of
the free-jet. The actual correction procedure is then described in Appendi x

3.2 THEORETICAL FLIGHT ALTERATION EFFECTS
ON FLOW-ACOUSTIC INTERACTIONS

Theoretical flight alteration effects on flow-acoustic interactions in
the geometric acoustics limit can be calculated outside the cone of silence
from the analytic expressions given in Appendix 3A. For example, equation
(3A-15) with equation (3A-26) can be written as

woPo (wy) = DoDz re|/D,?‘ rel (volume acceleration source, (3-10)
’ ’ denoted in subsequent analysis
by v=1)
if
- ap/ (ag 'Vs,rel) < cosf, < ao/(as'+vs,rel) (3-11)
where
Vs,rel = Vg - Vp (3-12)
Os,rel = 1 - Vs, rel cos./a, (3-13)
D, = [{1 - (v, -v,) lagh? + {(V2, - v2.)/a2 2
m,rel c "~ VA) cosb./a, {(Vey et//85} COS“0e
2 2 ,.2.4
* Dg rel Ver/as] (3-14)

Do = {1 + v, cosee/ac,}_1

and Vg s the mean axial fluid velocity at the typical source position; that
is, the directivity of the IF (or IWT) proportional bandwidth mean square
pressure radiated by a volume acceleration quadrupole distribution is altered
by forward motion in three ways, through:

(a) the dynamic effect (Dy factor),

(b) the eddy convection alteration effect (Vo +Ve-Vva), and

(c) the flow-acoustic alteration effect (Ds'*Ds,rel)

The first two effects are well established features of Ribner's (ref.
31) or Ffowcs Williams' (ref. 7) extension of the Lighthill jet mixing noise
analogy model. It should be noted that the so-called dynamic effect can also
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appear in the ldeal Wind Tunnel directivity expression where the observer is
stationary with respect to the nozzle. (Here VT has been replaced by va).
In general, flow-acoustic alteration effects are described by numerical
solutions to Lilley's equation which, in effect, replace the geometric
acoustics analytic result (given above, for example); essentially this means
that the flow-acoustic_interaction factor Dg rei 1S replaced by the so-
called flow factor Fref(wo), as outlined in Appendix 3B. Lilley's equation
solutions are regarded as more realistic than GA results in describing flow-
acoustic interactions although in many practical cases differences between
the two are small. This is indeed the case, outside the cone of silence,
when axial source locations are chosen according to the model described in
Appendix 3D, and this will be illustrated with examples given below.

The GA result given by equation (3-10) refers to a volume acceleration
source distribution; the corresponding volume displacement result is

6 9 .
wP.{w,) =D, D /D (volume displacement (3-15)
orore o “s,rel’"m,rel source denoted by v =3)

In a recent paper (ref. 32) Tester and Morfey have presented arguments in
favor of the displacement type of source, at least for modeling jet mixing
noise with Lilley's equation. Thus numerical solutions given before are
confined to this type of source [the flow factor has the superscript

(v) = (3)] although throughout Appendices A and B and elsewhere in this
section analytical results are given for both types of source since the
volume acceleration source has the same frequency dependence as that of
classical Lighthill quadrupole source distribution and therefore remains of
considerable interest.

To summarize the utilization of Lilley equation results, the numerical
solutions to that equation define a value for the flow factor Frel(wo) or
F(w), the ratio of the far-field radiation intensity to its value wi thout
the mean flow (e.g. Vg=Vp or V ==VA==0) the source strength being held
constant. The flow factor Frellwg) is used in the IF reference frame
context,

2v + 3
woP o (wo) = Fiz%(wo) Do/Om, rel” (3-16)

and F(w) in the IWT reference frame contexts

2v + 3

#w) = FO w2yt (3-17)

Thus, although the proportional bandwidth mean square pressures are identi-
cal, the modified Doppler factors representing convective amplification due
to source motion are different in each case and the dynamic effect factor is
excluded from the IWT expression; hence the flow factors are not identical.
The IWT modified Doppler factor Dm==wm/w is given by equation (3A-19) or
(38-1) (in which the transverse wavenumber scaling velocities,

Ve, =Ve3 =Vet» are neglected)
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oy = w2l (3-18)

wm = (w=ky V)2 + k2 V2

m
The wavenumber ky is first defined in the IF frame

ky = (wp/ay) cose, (3-19)

and is invariant under the Galilean transformation to the IWT frame. Thus
Dp can be written as

Dy = {(1 = Dy Ve cosbg/ag)? + D2 (velcosee/ao)Z}* (3-20)
The appropriate modified Doppler factor for the IF frame,Dm’re],is simply

D D /D

m,rel = Uy/bg

[{1 = (Vey ~Vg) costy/agl? + Vg, cosbg/a, )2} (3-21)

where now the eddy convection velocity appears in a "relative to observer
form" [as it does in the Ribner (ref. 31) or Ffowcs Williams (ref. 7)
results].

In the following section the relation between the two different flow

factors is given and the choice of reference frame (in which the Lilley
equation has been solved) is discussed.

3.2.1 Choice of Reference Frame for Lilley Equation Solutions

In Appendix 3B the relation between the Lilley equation flow factor in
the ideal flight and wind tunnel reference frames, Freil» F is given as

F(3)(m) = FiZZ(uO) Déo (volume displacement source) (3-22)
(1), 4 - (1) 6 : -
F''li(w) Frel(wo) D3 (volume acceleration source) (3-23)

where

Dy = wy/w = (1 + VAcosee/ao)'l.
In the IWT reference frame the flow factor F(w) is modified by the presence
of the co-flowing stream (see Figure 3.5) of velocity V=Va. In the IF
reference frame, Frel(uwg) changes in response to the reduction in the mean
velocity, e.g. from Vy to Vyj-Va=Vy re]. With the simple relation given
above conversion from one reference frame to the other is straightforward
and flow factor results can be generated in either reference frame. Here
the IF frame is chosen since the flow profile is identical to that in the
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a Va = Va = Va,rel

(a) !deal wind tunnel. (b) ldeal flight.

Figure 3.5 Typical mean flow profiles for the Lilley equation
in each reference frame: (a) ideal wind tunnel,
(b) ideal flight.
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static case, for which the Lilley equation solution method was originally
developed, but with the velocity profile reduced by the forward speed, Vj.

N a recent paper by Tester and Morfey
(ref. 33), which also includes a selection of numerical results and some
comparisons with measured statijc jet noise directivity data.

3.2.2 Definition of Parameters

However, the results given in references (32) and (33) are not in a
sufficiently complete or suitable form for the present investigation. Of
major interest here is the variation of calculated flow-acoustic interaction
effects with forward motion, i.e. with, say, variation of centerline veloc-
ity, Vi rel =V, - Va; the absolute centerline velocity is denoted V, since
solutions for the ully developed region of the jet flow where Va#Vy are
included in this study.

The frequency parameter is the modified Strouhal number Sm where

Sm =S D rel (3-24)

S = fod/Vy e (fo =w/2m) (3-25)

Om,rel = (05, rer [1+a3(V, e1/ag)2] + (82 - o2) (V,, re1c0s80/a0) 21 (3-26)
Ds,rel = {1 + (Vg -Vp) coseg/a )" (3-27)

ay = 0.2, 8; = 0.4 (3-28)

(Vs =Va) = 0.6 (v, -vp). (3-29)

This isothermal form of the modified Doppler factor follows from equation
(3A-23) (in Appendix 3A) and the assumption that the wavenumber scaling
velocities Ve1, Vet are proportional to Va rels the values of a1, B were
obtained by Szewczyk and Morfey (ref. 34) ’from their purely geometric
acoustics analysis of Lockheed sctatic jet mixing noise data (refs. 35, 36).
They also deduced that VexVg20.6 Vy and this result, together with the
@), By results, have been used here for the flight case without any quanti-
tative justification. Actually it has been established in further work, as
yet incomplete, that the precise form of this modified Doppler factor is
not critical in this theoretical exercise and that Ds,rel could be used in
place of Pm,rel in equation (3-24). The exact value of Ve =V itself is
also not critical provided that the wavenormal angle 64 within the primary
jet is held constant where

Cosbe = cosbg * Dy oy. (3-30)
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In the following numerical results, error function velocity profiles
have been used which correspond, nominally, to actual profiles at the axial
locations of 1 and 4 diameters in the intial mixing region of an axisymmetric
jet. _In addition, an inverse exponential squared' profile has been used to
represent the transition and fully developed regions. Each profile is de-
fined by the ratio of its vorticity thickness, 5., and the radius, rp,
at which the mean velocity is 66.3% of its center line value.

3.2.3 Numerical Results

At the nominal one diameter axial location (5,/r =.26), Lilley equation
flow factor results are shown in Figure 3.6 for 6, =60° and modified Strouhal
numbers S =1.0, 2.0 and k.0. According to the simple law described in
Appendix 3D, the one diameter location is equal to the effective axial loca-
tion for Su=5 radiation. Thus, radiation at Strouhal numbers less than this
tend to originate further downstream. The results in Figure 3.6 show quite
clearly that radiation at Strouhal numbers greater than Sm==h differ from the
geometric acoustics limit by less than 1/2 dB.

At the nominal four diameter axial location for &g =60° and Sp=0.5, 1.0
and 2.0, the flow factor results shown in Figure 3.7 obey a similar trend.
This axial location corresponds to the effective one for Sp=1.0 radiation
and here the difference between wave and geometric acoustics is less than 1
dB. However, the major trend of interest in these results is that the rate
of change of flow factor with Vg re} OF slope of the curves in Figures 3.6
and 3.7 is almost identical to that of the analytic geometric acoustics limit
over a wide range of Strouhal numbers. Therefore, unless the semi-empirical
law for effective axial source location variation with Strouhal number is
grossly in error for both static and flight conditions, any change in Vg rel
(e.g. by a change in aircraft speed, Vp) will bring about a change in the
Lilley equation flow factor, Frg](wo) which can be closely predicted by the
change in the GA limit. That limit is given by

(3) _ b . -
Fr (“’O) !GA = D(s,r'e! ’ (3 31)

its derivation is briefly described in reference (32). This feature is also
exhibited by the results shown in Figure 3.8 for a fully-developed mean
velocity profile. In this case, a different Strouhal number is utilized,
Sm» Where

Sm = (Dm,rel fo) (2 rl)/Va,re\

s (2 ry/d) (V) re1/Vy ral) (3-32)

Since 2rp is approximately equal to ¢, for this profile, Sy is roughly the
local modified Strouhal number.

S (D, rel fo) Su/Va,rel (3-33)
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Figure 3.6 Variation of the flow-acoustic interactions factor, F£3%, with
the relative centerline velocity, Va,relv from Lilley equation
solutions and from geometric acoustics theory. Profile: One
diameter axial location, 8,/ry = 0.26; Vo 8V,. Source emission
angle, 8, = 60°.
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Figure 3.7 Variation of the flow-acoustic interactions factor, Frgl’ with
the relative centerline velocity, V5 rel» from Lilley equation
solutions and geometric acoustics theory. Profile: Four
diameter axial location, 8,/ry = 1.05; V5=V, . Source emission
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Figure 3.8 Variation of the flow-acoustic interactions factor, F}:I’ with
the relative centerline velocity, Va,rel, from Lilley equation
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i.e. one based on the local shear layer thickness and the local centerline
mean velocity. This takes a value of order unity so that the difference be-
tween the Lilley equation flow factors and that given by the GA limit for
all S, values less than unity are small and the slopes are nearly identical.

The main influence of the wavenormal angle 8, is to modify the differ-
ences between Lllley equation and GA flow factors as illustrated in Figure
3.9 for es-30 the slopes, however, remain very similar. The variation of
8e With 85 is given in Table 3.1.

(Va,ret/a0)/8s° 0 30 60 120
.25 29.6 40.0 62.3 122.7

.50 39.7 46.6 6L4.2 126.0
.75 h6.4 51.4 65.9 130.2
1.00 51.3 55.2 67.4 135.6
1.25 55.2 58.3 68.7 143.1

Table 3.1 Emission angle values, d%, as a function of
source emission or wavenormal angle 8¢ and
/ag with V =0.6 V,
a rel’“o rel = rel
(cds6, = cos /(1+VS rel cosBS/ao))

3.2.4 The Geometric Acoustics Result for Data Correlation
Outside the Cone of Silence

It is clear from the preceding results (including Table 3.1) that for
moderate changes in Va,rel or A, at constant 65 or B,, the GA limit can be
used, to a good approximation, to calculate estimated forward motion altera-
tion effects on flow-acoustic interactions. From equation (3B-12) (Appendix
3B) and equation (3-31) it follows that changes in directivity at constant
Strouhal number in the IWT reference frame can be estimated from the
expression

6

Ds,rel Do

/Dm rel (3-34)
where

Ds,rel = 1 - (Vs -Va) coss/a,

Do = (1 + vy c:osé)e/ao)-l

and Dm re]l can be evaluated with equation (3-26). An alternative form for
Dm rel’ used in Section 2 for data correlation purposes, is

Dm,rel = {Dg’re] + GZ(VC’re]/ao)z}% (3'35)

(¢ = 0.3) .
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angle 84 = 30°.
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There the Doppler factor D_ ..} s calcolated

(3-36)

\/ = {Y i
S, iTe b JJ,re]'

Equation (3-36) is based upen (h sssumption that the eddy convection
velocity, V., and the wean tlow colov:i. at the oftective source location,

Vg, are identical. Alsoc, it implees That the ooy convection velocity
changes with forward motion sinee 10 T~ rerirpiien as

TP T E IR (3-37)
Neither equation {3-36) nor equat «w - ¢/t &:i¢ Ra-cd on any solid evidence,
experimental or theoretical; they ciw o 4 fy - iuwrzions which are conven-

ient to use and appear Lo e regsonaliio gl chiis T e

The expression {3-24) abuve has e cveloaced and the results compared
with overall directivity alteration i+ e measwrec data as shown in Figure
2.2. The excellent agreencnt provides =leyuale inientive to extend the
present investigation to the foron o f . s oles anside the cone of silence

and to non-isothermal jet-.

Detailed conclusions lor cach ot the aa:n - svestigation areas have been
given in the appropriate subscctions i anpencices: they can be summarized
as follows:

(1) It is necessary to detine idealized, concoptual models of flight
and simulated flight conditions v order Lo hi ; the important acoustic
features and interrelationships to specify the basic acoustic features
required of flight simulation facil:tics 1 the fdeal Flight (IF) condition
emission and reception angles and disiances mu-t 2¢e distinguished; here their
functional relations have also been defined and inted. In the ldeal Wind
TJunnel (IWT), IF data cain be acquired if the diztance travelled by the sound
wave in the wavenormal direction und the vavencr:: angle are both held

constant. Then only a Boppler ficguenc whito needs 1o be applied to convert
data from the IWT to the IF condition. Auplitaie “corrections' are not re-
quired for the mean siqusie pressove no. for the prepoctional bandwidth mean

square pressure.

(2) In a real wind tunnel ifionr = o ) ‘acility, unwanted reflec-
tions and scattering from the outer bauviedary reqgisn of the uniform tunnel
flow are probably unimportant. tHowever, the lnioe area ratio effect and the
axial distribution of the turbulenl jet mixing noise source should be inves-
tigated. The finite area ratio effect should Le sxamined with the aid of
Lilley equation solutions for the complets fiow ficid.  The axial source
distribution effect can be modeled cwpi-ic a1l o v oid distance and angle
corrections for the measured data. Otheiwise 1oe ideal and real wind tunnel
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are acoustically equivalent if "atmospheric’ attenuation effects in the real
wind tunnel can be estimated accurately,

(3) Acoustic propagation in the fiee-jetr flight simulation facility
has been studied in considerable detail in the geometric acoustics approxima-

tion. The approximation can be justified, s/ i7"/, for the present
application by an analysis of the Lilley equation in relation to the
equation governing geometric acoustics propagation. However, the accuracy of

Geometric Acoustics (GA) should be assessed in future work with a quantita-
tive study based upon Lilley equation solutions,

The position and angle of ray paths through the free-jet shear layer
have been calculated; the mean flow within the shear layer was allowed to
vary axially in a realistic way. The results are nearly identical to those
that are calculated with a vortex sheet model of the free-jet flow, over a
wide range of parameters. However, the amplitude of the sound along a ray
path is governed by the ray tube geometry amud the law of energy conservation
in a ray tube, not the transmission of a sound ray by a vortex sheet. Hence,
angle and distance corrections that convert free-jet data to estimated ldeal
Wind Tunnel data can be based on a standard vortex sheet model while trans-
mission-amplitude corrections should he calculated with the analytic formula
derived here.

The compiete correction proccdure also uses an empirical model of the
turbulent mixing noise source axial distribution {as a function of Strouhal
number) to calculate additional angle and distance corrections,

(4) The influence of forward wotion on flow-acoustic interactions
(within the primary jet flow alone) has been examined in the Ideal Flight
condition through a re-interpretation of the Y'static' numerical solutions to
the Lilley equation and with geometric acoustics. |t has been demonstrated
that outside the cone of silence Lhe Lilley equatinn radiation levels change
with forward motion in a way that can he calculated, to a good approximation,
with the analytic, GA result. When this GA flow-acoustic alteration effect
was combined with the standard, theoratical, dynamic and convective amplifi-
cation alteration effects, the predicted directivity alteration with forward
motion was found to be in excellent agreement with measured free-jet data-
outside the cone of silence. This successful correlation of directivity
data justifies an extension of the present work to include forward arc
angles, angles inside the cone of silence and non-isothermal primary jet flow.
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4. EFFECT OF FORWARD VELOCITY ON THE
STRUCTURE OF A TURBULENT JET

4.1 INTRODUCTION

In this chapter of the report, the changes in structure of a round jet
caused by variation of free stream velocity will be examined. The work to
be described is in three sections. The first section is an experimental
investigation, and turbulence measurements of a round jet in a wind tunnel
are presented. These measurements are used to provide scaling laws for
various characteristic lengths and velocities as functions of velocity
ratio and jet Mach number. The second section is a numerical study of the
development of a turbulent jet in a moving stream. The results of this
analysis are compared with experimental measurements. The third section
makes use of the scaling laws derived from the experiments to predict the
changes in radiated noise with changes in velocity ratio brought about by
alteration of the turbulent jet structure. Several appendices associated
with this chapter are also included. These provide a complete tabulation
of the velocity measurements and a discussion of the data processing tech-
niques used to analyze the laser velocimeter measurements. A simple
analysis is also available to describe the decay of the jet center-
line velocity. Finally, an original method, based on the velocity at
the dividing streamline, of noise radiation scaling with changes in forward
velocity is given.

Before the investigations are described in detail, it is necessary to
discuss to what extent the experiments performed simulate the case of a
full-scale jet moving through stationary air at a uniform forward velocity.
There are two questions which need to be considered. Firstly, whether the
stationary jet in a moving stream simulates a moving jet in a stationary
stream from the point of view of turbulent structure? Secondly, can the
measurements made at model-size be used to predict full-size structure?

The answer to the first question is based simply on a change in
reference system. A control volume is considered which surrounds the dis-
turbed flow region around the jet and the axes are fixed relative to the
jet exit. So long as the boundary conditions in the jet reference frame
are unchanged, the only difference that can exist is due to changes in the
equations which govern the fluid motion due to motion of the reference
frame. So long as the motion of this reference frame is given by a uniform
linear velocity, the forces on a fluid particle remain unchanged. Clearly,
this would not be true if the frame of reference fixed with the jet were
moving with some angular velocity or a uniform acceleration. Thus, uniform
translation of the axes fixed with respect to the jet will not change the
fluid motion in that reference frame. !t was noted, however, that the
boundary conditions must not be changed by motion of this reference frame.
This leads to two points. Firstly, the flow is not simulated by a jet into
stationary air whose jet exit velocity is equal to the difference in
velocity between the original jet and free stream since this transformation
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has not moved the jet nozzle itself with the appropriate uniform motion of
the reference axes. Secondly, the jet development for a jet moving in an
infinite quiescent medium is only simulated by a stationary jet in a moving
medium if the moving medium is also infinite in extent. This condition was
referred to as the ''ideal wind tunnel" in section 3. Clearly the real wind
tunnel will not satisfy this criterion completely due to the presence of

the tunnel walls. This change in boundary conditions manifests itself in a
deceleration of the medium and hence the creation of an adverse pressure
gradient. However, the degree to which the real wind tunnel changes the
flow is a function of the relative dimensions of the tunnel cross-section
and the jet. The magnitude of the free-stream pressure gradient will be
considered in the experimental study given in section 4.2. It should also
be noted that a reference frame fixed with respect to the jet is the obvious
choice for a description of the fluid motion since, once the operating con-
ditions have been set, the motion is stationary in this frame. Clearly, the
motion is not stationary for a frame of reference moving with the surround-
ing air.

The second question to be discussed is whether the model size experi-
ments may be scaled to full-size? It has already been noted that the
equations for the fluid motion are unaltered by the choice of reference
frame, subject to the conditions given above. Thus, in an ideal case the
two situations may be scaled with the appropriate use of nondimensional
quantities such as the Reynolds number and Mach number, etc. However, the
situation is not ideal and a number of factors may influence the scaling.

If the question is confined to scaling of a cold model scale air jet to

full scale, the changes in the fluid composition or nozzle geometry which
would be encountered in a real jet engine do not apply. However, certain
conditions are likely to not scale. The wind tunnel free-stream turbulence
has a particular amplitude and length scale. This turbulence will influence
the jet development tending to enhance the mixing process if the amplitude
is large and the scales small. If the atmosphere through which the aircraft
is assumed to be flying were completely at rest and the aircraft structure
did not create any turbulence in the flow surrounding the jet, there would
be an obvious difference between the wind tunnel simulation and the flight
case. However, the atmosphere is not still and the aircraft surfaces may
influence the air surrounding the jet, though relative levels and scales of
the atmospheric turbulence are unlikely to be duplicated in the wind tunnel.
Another feature which is unlikely to scale exactly is the turbulence at the
jet exit, being a function of the flow configuration upstream of the jet
exit. The initial turbulence level is known to influence the jet
development.

It can be seen that those factors which prevent identical scaling are
in each case due to non-scaling of the boundary conditions. The degree to
which these changes may influence the flow in this situation needs examina-
tion; however, in gross terms their influence is likely to be overshadowed
by the alterations expected when a real jet engine is considered. It is to
be concluded then that the turbulent structure of a full-scale jet with
forward velocity moving through stationary air may be well simulated by a
wind tunnel model jet experiment.

101



In the next section an experimental study of the effect of a secondary
stream on the development of a turbulent jet will be described.

4.2 EXPERIMENTAL INVESTIGATION OF THE EFFECT OF A SECONDARY
STREAM ON THE STRUCTURE OF A TURBULENT JET

in the following section an experimental investigation will be described.
Measurements of turbulent velocities were made, using a laser velocimeter, in
a turbulent jet mounted in a low speed wind tunnel. The variation of the jet
development with the change in velocity ratio and jet exit Mach number were
examined. Before describing the experimental study, previous investigations
of two-stream mixing problems will be discussed,

4.2.1 Summary of Previous Work

There have been few experimental investigations of the mixing of two
streams of finite velocity. This has been mostly due to the difficulties in
constructing adequate experimental facilities. Those experiments which have
been conducted can be divided into five classes. These are:

(i) two-dimensional mixing layer,

(ii) the two-dimensional or plane jet in a moving stream,
(iii) the round jet in a wind tunnel,

(iv) the round jet in a free jet facility, and

(v) coaxial round jets.

4.2.1.1 The two-dimensional mixing layer. The two-dimensional mixing
layer is perhaps the simplest two-stream flow to be examined. Analytically,
convenient similarity solutions for the mean velocity have been obtained
using an eddy viscosity assumption and this has prompted several experimen-
tal investigations. Sabin (ref. 37) used a water channel with movable side
walls to examine the effect of pressure gradient on the development of the
mixing layer. Velocity ratios between .47 and .66 were obtained for very
low flow velocities. Measurements of mean velocity were made and it was
concluded that the dimensionless velocity profiles in a similarity coordi-
nate could be expressed as functions of the velocity ratio alone. Yule (ref.
38) made an extensive study of the mixing layer. Two velocity ratios, .3 and
61 were examined. Measurements were made of mean axial velocity, three
components of the velocity fluctuations, shear stress and longitudinal and
lateral space correlations. The variation of the measured spreading parame-~
ter agreed with the measurements of Miles and Shih (ref. 39) and was given by

9_=(l')\) L=
9o (1+A)° (h=1)

where o is the spreading parameter defined by Gortler (ref. 69) and oo is the
value of o for A, the velocity ratio between the two streams, equal to zero.
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It should be noted that the data of Sabin (ref. 37) gave a relationship of
the form,

= {1-2)
g;'— R (4-2)

Yule (ref. 38) also noted that the peak value of the nondimensionalized
total turbulence intensity, 62/(Va -Vp)2, increased with A. Jones et al
(ref. 40) also made spatial cross-correlations and calculated the variation
of convection velocity across the layer for a primary stream velocity of
30.5 m/s and a secondary velocity of 9.14 m/s. Measurements of intermit-
tency were also made. Brown and Roshko (ref. 41) made measurements using
air, nitrogen, and helium. Use of these various gases allowed the effects
of velocity ratio and density ratio to be examined separately. 1t was con-
cluded that a relationship of the form of equation (4-2) could be used to
describe the rate of growth of the shear layer. It will be shown in section
4.4 that the behavior of this spreading parameter for small values of A is
important to the prediction of noise radiation. Brown and Roshko (ref. 41)
gave a very careful discussion of possible descriptions of this behavior;
however, the scatter in the data did not enable one relationship to be pre-
ferred over any other. Brown and Roshko (ref. 41) also showed that the
change in the growth of the mixing layer due to density differences in two
streams of different gases was less than the change due to density differ-
ences caused by high speed flow. This latter effect was interpreted as
being due to compressibility rather than density difference.

4.2.1.2 The plane jet. The plane jet exhausting into a moving free-
stream was examined experimentally by Bradbury (ref. 42). It was shown that
departures from self~preservation for small velocity ratios of .07 and .16
were of no significance. Bradbury and Riley (ref. 43) considered a wider
range of velocity ratios and concluded that the flow changed from a pure jet
flow near the nozzle exit to a self-preserving wake flow far downstream.
Weinstein (ref. 44) also examined the plane jet and made mean axial velocity
measurements for velocity ratios between .5 and 2.

4.2.1.3 The round jet in a wind tunnel. Curtet and Ricou (ref. 45)
and Antonia and Bilger (ref. 46) made measurements of the structure of a
round jet in a wind tunnel. The former investigation was principally made
to study the effect of the ratio of wind tunnel radius to jet radius on the
free stream and jet development. Clearly measurements of this type do not
simulate the 'ideal wind tunnel' with an infinite moving stream and the
results cannot be used for prediction of forward flight effects. However,
the resuits were used for an experimental comparison by Hill (ref. 47) whose
analytical work enables the influence of the turinel walls to be estimated.
Antonia and Bilger's (ref. 46) experiments were for low velocity (28 and
42 m/s) round jets at velocity ratios of .22 and .33. The investiga-
tion concentrated on whether assumptions of turbulence similarity could be
made far downstream of the jet exit where the flow approached a small
deficit wake. They concluded that the flow far downstream depends strongly
on the complete past history of the flow and that no turbulence similarity
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assumption was possible. Forstall and Shapiro (ref. 2) also made measure-
ments of a round jet in a wind tunnel. Their results will be of consider-
able interest in this current investigation. Measurements of mean velocity
and mass concentration (helium was used in a tracer in the primary jet)

were made for low speeds with velocity ratios in the range .2 to .75. On
the basis of these measurements the following empirical formulae were
proposed.
=8 + 24 2, (4-3)
Va-)\ -C
T-1 % (4=4)
- -,= y1=2
Fos = (x/x.)" ", (4-5)
V- -
1 =<% 1 + cos —L }. (4-6)
Va - 2 2r ¢

Landis and Shapiro (ref. 48) and Pabst (ref. 49) considered the development
of a heated air jet exhausting into a moving stream. The measurements by
Landis and Shapiro (ref. 48) were of the mean axial velocity and were made
for velocity ratios of .333 to .852. Pabst's (ref. 49) measurements are
reported in detail by Szablewski (ref. 50). The primary jet velocity in
these measurements was 400 m/s and the jet temperature was 300°C

Velocity ratios in the range .045 to .47 were examined. The measurements
of mean axial velocity and temperature showed good collapse radially when
plotted as (Vl -A)/(V - 1) and T/Ta against F/X, downstream of the potential
core. Von Glahn et aZ (ref. 51) made pitot-static surveys for various
nozzle configurations, including a convergent circular nozzle, in a wind
tunnel. Primary jet Mach numbers between .45 and 1.02 were used and Mach
number ratios of between .1 and .75 were examined. It was concluded that
the centerline velocity could be correlated for the various Mach number
ratios by plotting (V3-1)/(1-1) as a function of [X/(2C,V 1-+MJ)] where
Ch was the effective nozzle coefficient and b was an emp|r|cally developed
exponent given by,

(4-7)

4.2.1.4 Coaxial Jets. Alpinieri (ref. 52) made measurements of
axial mean velocity and concentration for coaxial jets. Hydrogen and
carbon dioxide were used as the inner jet gases and the outer jet was of
air at 198 m/s. Velocity ratios in the range .8 to 2.13 were considered.

The hydrogen temperature
was 254 +5.5°C  (Coaxial
(ref. 53) using hydrogen
and nitrogen and Zawacki
Velocity ratios in these
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was 270 +5.5°C and the carbon dioxide temperature
jet flows have also been studied by Peters et al
and air, Fricke and Schorr (ref. 54) using helium
and Weinstein (ref. 55) using freon and air.
experiments ranged from .12 to 39.5. In each case



axial mean velocity and concentration were measured. Zawacki and Weinstein
(ref. 55) also measured the axial turbulence intensity and the mean density.
Eggers and Torrence (ref. 56) made pitot static traverses in a coaxial jet
with the outer jet exit velocity always greater than the primary jet
velocity. Measurements were made for supersonic outer jet velocities and
slightly subsonic inner jet velocities.

4.2.1.5 Summary. Several points emerge from this review of previous
experimental studies. Because of the relative ease of measurement, the
mean axial velocity is the most often measured quantity. Measurements of
turbulence intensity have been made in relatively few experiments and these
have been limited, by available instrumentation, to low velocities. The
main interest in round jets in moving streams appears to have been concen-
trated in two distinct areas. Firstly, the rate of the decay of the jet
centerline axial mean velocity, has been studied. Secondly, the assumptions
of similarity and self-preservation have been examined. This has, for the
post part, involved measurements downstream of the end of the potential core.
Clearly, the following areas are in need of attention:

(1)  the effect of the secondary stream on the initial development of a
round jet,

(2) the variation of turbulence intensity with velocity ratio, and
(3) the variation of turbulence intensity with jet Mach number.

The progress made toward understanding in these areas will be described
in the subsequent sections.

4.2.2 Description of Experimental Facilities

In this section the facilities used for the measurement of the effect
of velocity ratio and Mach number on the flow properties of an axisymmetric
jet are described.

The wind tunnel used in the experiments, shown in Figure 4-1, was a
closed-circuit, single-return, low-speed facility located in the Research
Laboratory. The test section was approximately .76 mx1.09 m with a lenqth
of '1.22 meters. The flow was driven by a 1.83 m diameter, 10-bladed, single-
stage axial flow fan. The fan was driven by a 3 x10% Watts, 1200 rpm,
synchronous speed induction motor. The fan speed could be varied over the
range from 0 to 1150 rpm by means of an eddy-current, coupling-type variable
speed unit. Steady state speed regulation was 1/8 of 1 percent. A standard
friction brake rated at 1017 Joule braking torque could bring the fan to
rest from full speed in less than 15 seconds. The tunnel provided an empty
flow velocity capability of 0 to 94.5 m/s.

A nozzle installation is illustrated in the photograph in
Figure 4-2. An air duct 20.3 cms. in diameter was installed to supply air
through a 5.08 cm. automatically controlled value to the 5.08 cm. diameter
nozzles which exhausted axially down the center of the wind tunnel working
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Figure 4.2 Pylon, plenum and nozzle installation.
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section. As a result of the proximity of the tunnel screens (shown cross
hatched in the schematic) to the metal contraction section just upstream of
the working section, access for the air duct and pylon mount system was
extremely limited. A rectangular duct was designed with a cross-sectional
area equivalent to a 15.2 cm. round duct. This rectangular duct, made from
.95 cm. steel plate, formed the basis of the pylon mount which was fitted
with wooden leading and trailing edge fairings and contoured with aluminum
fill. The airfoil section was a 21% thick zero 1ift design. A 20.3 cm.
diameter nacelle made from standard pipe was mounted on top of the pylon
with a wooden bullet upstream fairing as shown. A 5.08 cm. thick section
of .32 cm. cell honeycomb was installed in the 20.3 cm. plenum as a flow
straightener. A 20.3 cm. to 10.2 cm. reduction was attached to this plenum
and smoothly faired to the end of a short length of 10.2 cm. pipe to which
the model jet nozzles were attached. This air supply ducting was aligned
axially in the tunnel! by use of a low power laser mounted at the downstream
end of the working section. The nozzle exit plane position was governed by
the extent of the optical glass wall through which the laser beams were
passed. Because of the limited extent of this glass panel a 22.9 cm. long,
10.2 cm. /D spacer pipe was made to be inserted just upstream ot the
nozzle so that a total of 17 diameters of the jet flow could be explored by
removal or insertion of the extension. The laser velocimeter, shown
schematically in Figure 4.3 and described in detail below, was mounted on a
hydraulic table outside the wind tunnel working section providing vertical
positioning. Axial positioning was achieved with a lead-screw and way
system, similar to that of a center lathe, aligned parallel to the tunnel
centerline. Lateral traversing capability was provided in a similar
manner.

Slots in the tunnel wall just downstream of the working section were
provided to vent the working section to ambient. Since a considerable amount
of extra air was to be injected into the tunnel via the jet nozzles, some
means of preventing a pressure build-up was needed. This was achieved by
providing a '"bleeder' door just upstream of the fan as shown in Figure 4.1.
The opening or closing of this door was achieved by means of a cable and
winch system controlled from the test stand.

The measurement of the mean properties of a turbulent flow has a practi-
cal importance, but it is only by measuring the fluctuating components of the
flow that it is possible to obtain a better understanding of the mechanism of
the turbulent flow and provide justification for any mathematical hypothesis
used in representing the motion. Measurements of the time averaged pro-
perties of the flow may be achieved by total and static pressure surveys in
high velocity and temperature flows. However, measurements of turbulent
fluctuations have normally been limited to fairly low speed flows since in
these velocity regions the conventional measuring devices, the hot-wire or
film anemometer give uncontaminated velocity measurements and are structurally
sound. It is only with the development of optical measurement techniques
that accurate measurements have been viable in hot or high speed turbulent
flows. There are two main advantages in using optical techniques. Firstly,
there is no need to insert a probe in the flow which might disturb the flow
regime or be physically incapable of withstanding stresses exerted by the
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flow. Secondly, an unambiguous measurement of velocity is obtained and

measurements can be carried out in regions where the density and tempera-
ture may fluctuate.

There are a number of optical techniques for remotely detecting the
velocity of particles and these methods are well documented (ref. 67). The
approach to be described here, which has been developed by Lockheed-Georgia
Company, is based on an interference pattern of light formed in the measure-
ment volume by the intersection of two coherent monochromatic light beams.
As a microscopic particle passes through this fringe pattern, light is
scattered and detected by a photo-sensor. The detector output signal burst
has a frequency depending on the spacing of the interference pattern
and the velocity component of the particlie normal to the fringes. Since the
fringe spacing is set by the geometry of the optics, the normal particle
velocity is readily derived from the detector signal frequency.

A detailed account of much of the optics, electronics and data process-
ing used in the current laser velocimeter system is given in references 58
and 59. However, a brief description of the configuration used in these
experiments and some modifications that have been made will be described
here.

A plan view of the optical configuration is sketched in Figure 4.3 and
a photograph of the complete unit is shown in Figure 4.4 . A L4-watt argon
laser is mounted beneath the optics platform. The beam splitter/color filter
assembly separates the two predominant lines of the argon laser into four
beams; two blue and two green. These beams are turned through a dove prism,
which allows rotation of the fringe patterns, and are then simultaneously
focussed and caused to cross by the transmitting lens. This creates two
coincident ellipsoidal measurement volumes. Light scattered by the particles
passing through the measurement volume is collected by the receiving optics,
mounted beside the transmitting optics, and is fed to a photomultiplier
assembly. This assembly filters the collected back-scattered light into blue
and green components which are sensed by two photomultiplier tubes. The
resulting signals are subsequently processed to provide the particle compo-
nent velocities.

In this configuration the laser velocimeter is able to provide measure-
ments of two orthogonal components of turbulent velocity as long as the
deviation of the instantaneous velocity vector from the axial direction is
sufficiently small. Since the angular criterion is not met by the expected
velocities in a turbulent jet, these fringe patterns were rotated 45° for the
current measurements and only the set of fringes normal to the jet axis were
used. This meant that measurements of axial velocity only were made. The
angular restriction can be alleviated by movement of the fringes in the
measurement volume. This can be achieved by use of a Bragg cell in the beam
splitter optics which frequency shifts one color light beam with respect to
the other. This optical device has been incorporated in a current laser
velocimeter system by Lockheed-Georgia.
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A most important aspect of the electronic processor is the data valida-
tion circuitry. The original design, described in reference 58, was based on
a digital comparison of the time for the first four fringe crossings with the
time for the second four as well as an odd ratio comparison, three to five,
of the fringe-crossing time count. Because of the digital nature of the com-
parison, the acceptable time difference varied up to 3% of the period and at
higher frequencies (velocities), where the fringe crossing period is very
small, the accepted error was an increasing percentage of the period. This
error window was found to be unacceptable and a new analog validation system
was constructed. This error window is constant at *1% over a variable
velocity range of thirty to one. This system was used in the current
measurement program.

In order to obtain satisfactory particles, the flow must be seeded arti-
fically. It was found to be convenient to use different particles in the jet
flow and the wind tunnel air. The jet air was seeded by introducing aluminum
oxide particles, coated with CAB-0-SiL to reduce agglomeration, into the jet
plenum. The particle size probability distribution peaked at 1 micron with
an upper limit of 3 microns. The wind tunnel flow was seeded using an
aerosol of 1010 hydraulic oil generated by a Laskin nozzle (ref. 60).

4.2.3 Experimental Program and Summary of Measurements

The test conditions were designed to provide the maximum amount of use-
ful data within the limits of the facility and instrumentation. The effects
of two major changes were of interest. Firstly, how does the secondary
stream velocity affect the jet development at fixed jet exit velocity, and
secondly, how does the jet exit Mach number affect the jet development? In
order to answer these two questions the experiments were divided into two
sections. In the first the jet exit velocity was held constant and the wind

tunnel velocity varied. |In the second the jet exit Mach number was changed
and the velocity ratio was kept constant. The test program is shown in
Figure 4.5, In order to achieve a large range of velocity ratios and limit

the spacing between the jet operating Mach numbers, the first series of
measurements were carried out at Mj=.47 and nominal velocity ratios of .1,
.2, .3, .4 and .5. The second series of measurements were performed at a
fixed velocity ratio of .1 and jet exit Mach numbers of .47, .9, 1.37 and
1.67. The jet air was unheated in all the experiments.

It was anticipated that the general effect of increasing both velocity
ratio and Mach number would be to stretch the jet fiow in the axial direc-
tion. In order to obtain a representative set of turbulence measurements in
series | (My=.47 for various velocity ratios), the following procedure was
adopted. First a jet centerline traverse was carried out to give an indica-
tion of the potential core length, x.. Radial traverses were then performed
at axial locations Xeo xc/Z and xc/b. Radial traverses were also made at
x=81.3 cm. and x=0.51 cm. These two locations were close to the limits
ot the measurement range set by the size of the LV optics and the dimensions
of the working section window described in section 4.2.2.

In order to reach the correct operating velocities in as short a time
as possible, the following procedure was adopted. The correct values of
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static pressure ratio and tunnel dynamic pressure were calculated in the
manner described in Appendix 2B. The jet and tunnel were simultaneously run
up to their correct operating conditions on the assumption of a working sec-
tion pressure equal to the ambient pressure. A door in the return section
of the wind tunnel pressure, which was left open at the beginning of the
run-up procedure to prevent pressure build-up in the tunnel as a result of
excess mass flow injected by the jet, was then progressively closed until
the static pressure in the working section was equal to ambient pressure.
Minor adjustments to the tunnel speed and door position then enabled the
correct test conditions to be quickly reached.

At the time that a measurement was taken, a magnetic tape was written
which recorded each individual velocity and its time of occurrence. Before
analyzing the data, it was necessary to process this recorded data. The
processing was required to correct for the natural biassing of the velocity
data. Since the amount of fluid passing through the measurement volume was
proportional to the local fluid velocity then, even if particles were uni-
formly distributed in the fluid, a bias towards higher velocities occurred.
It can be shown (ref. 61) that if there is no dependence between the
particle velocity and the particle number density then the true mean veloc-
ity is found by taking the reciprocal of the arithmetic mean of the particle
periods (time for the particle to cross eight fringes) multiplied by a
constant of proportionality. |t can also be shown that this biassing effect
leads to a weighting of the velocity probability distribution function which
is inversely proportional to the velocity. An example of the correction of
a sample set of data is given in Appendix 4D. A correction for this weight-
ing of the probability function was made in the data processing, and the
moments of the corrected distribution function were calculated giving the
mean, standard deviation, skewness and kurtosis. At the same time any
obvious noise points which had been validated by the LV processor were
removed. A typical example of this procedure is also given in Appendix LHR
The effects of particle size distributions are also discussed in Appendix Lp.

There are two characteristic parameters of the flow which were calcu-
lated numerically from the mean velocity profile: the vorticity thickness
and the dividing streamline radius. These two parameters as well as the jet
half-width, the dividing streamline velocity, and the potential core radius
were calculated at the same time. The calculation of the vorticity thickness
involved finding the radial derivative of the mean velocity. In order to
avoid unrealistic values of this derivative, the velocity profiles were
smoothes prior to the calculation.

Since no measurement of temperature in the flow was made, an approxi-
mate relationship had to be used between the local mean density and velocity

in order to calculate the dividing streamline radius. The dividing stream-
line radius is defined as the radius at which

ds

F

Yy
J p V; rdr = N rJ2,
o
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assuming that the velocity and temperature are constant acress the jet exit.
Using Crocco's relationship based on a Prandtl number of unity, it can be
shown that the local mean density is given by

-

Assuming constant total temperature, the jet/tunnel temperature ratio is
given by

T (1-v,) - . - -
] +(%_ ]> ey (Yz]) M2 (-0 (-

T
L (y -1) 2 -2
TJ 1 + 5 M, (1 -22).

With the density defined in this manner, the dividing streamline radius was
readily calculable.

The velocity measurements will now be described. The analysis of these
measurements using various scales will be carried out in section 4,24,
However, before describing these measurements the influence of the tunnel
walls, if any, on the development of the jet will be examined.

The wind tunnel experiment was aimed at reproducing the flow conditions
in and around a jet in an infinjte stream of constant velocity. However,
since the tunnel working section had only finite cross-sectional area, the
tunnel walls were expected to influence the jet development. When a jet is
confined in a duct, there will be a region in the flow, before the jet
boundary reaches the duct walls, where the entrainment of air from the duct
flow into the jet is rapid enough to decelerate the freestream and establish
a positive axial pressure gradient. The magnitude of this pressure gradient
depends on both the ratio of the jet velocity to the duct velocity and the
ratio of the jet diameter to the duct diameter. Hill (ref. 47) showed
analytically that the behavior of Jjets confined in constant area ducts can
be expgessed as a function of only two independent variables, x/r1 and
m/{Mo)?, where rr is the radius of the duct, m is the total mass flow per
unit area and M is twice the average sum of momentum and pressure forces per
unit area (obtained by integrating the momentum equation across the duct and
axially). Assuming uniform flow inthe jet and duct in the exit plane of the
nozzle, the value of m/(Mp)Z in the jet exit plane is given, in the notation
of this report, by

m At (1-3) (rJ/FT)Z
M) (32 + 2(1-22) (r,/rp? )2

In the present experiments the equivalent duct radius to jet radius
ratio was 20 to 1. The range of values of m/(Mp) % was between .84 for the
lowest velocity ratio and .995 for the case of A=.5. Hill's (ref. 47) cal-
culations based on an integral approach show that in the first duct diameter
there are some small changes in the duct velocity near the wall for values of
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(m/Mp)% of this order. The larger the value of m/(Mp)%, the smaller will be
the pressure gradient.

Static pressure measurements were made in the tunnel wall for each
velocity ratio and jet Mach number (measurements are not available for
Mj=.9, A=.1 due to a computer malfunction). These wall pressure measure-
ments are shown in Figure 4.6 as differences from ambient pressure. Their
relative location is a function of the accuracy with which the working
section pressure was adjusted to ambient using the method described
previously in this section. The maximum static pressure gradients are shown
in Figure 4.7. 1t can be seen that there is little effect on the pressure
differences when the jet plenum extension, mentioned in section h.2.2, is
removed. The trend of increasing axial pressure gradient with tunnel veloc-
ity is contrary to Hill's predictions. However, the pressure differences
are small and Hill dealt with the problem of a circular duct with no wall
boundary layers. Also, in the wind tunnel used in these experiments, slots,
open to ambient conditions, are found in the tunnel walls at the end of the
working section. This would also be expected to vary the pressure gradient
from that predicted by Hill. The change in wall pressure was equivalent to
a 2% variation in free-stream velocity at the highest tunnel speed and a 1%
variation at the lowest tunnel speed. Thus, it can be concluded that for
the range of experimental conditions covered, the wind tunnel free stream was
a close approximation to an infinite uniform secondary flow.

The variations of the jet centerline axial mean velocity and turbulent
intensity for fixed jet Mach number and various velocity ratios are shown in
Figures 4.8 and 4.9, respectively. Some basic trends in the data are
immediately seen. As the velocity ratio X increases, so the potential core
length of the jet increases, and the rate of decay of the centerline velocity
with axial distance decreases. The development of the jet has been slowed
with respect to time and since the jet exit velocity is constant the jet
development occurs over a region of increased axial extent. The maximum
turbulence intensity along the jet centerline also decreases with increasing
velocity ratio and the location of the peak moves downstream. All the in-
tensity traverses show a secondary, smaller peak, closer to the jet exit
which may have been due to a regular vortex shedding from the jet lip.

The variations of mean velocity and turbulence intensity on the jet
centerline for fixed velocity ratio and various jet Mach numbers are shown
in Figures 4.10 and 4.11, respectively. Again some basic trends are immedi-
ately seen. Increasing the jet Mach number increases the potential core
length and decreases the rate of decay of the jet centerline velocity. There
also appears to be a clear division between the centerline behavior of the
subsonic and supersonic jets. This difference is also seen in the axial
behavior of the turbulence intensity. For the subsonic jets, there is very
little change in the peak intensity level and only a slight downstream move-
ment of the peak. The maximum turbulence intensity levels for the supersonic
jet exit velocities is lower than the subsonic peak values and the location
of the peak is further downstream. The secondary peak in the M= .47
intensity data has disappeared for the higher jet exit velocities. This
suggests another possibility, i.e., that the peak was caused by separation at
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the main air supply valve, where the pressure drop for Mj=.47 was from
2x10% N/m2 to 1.6 x 10* N/m?, causing regular pulsations in the air supply.

It was indicated above that radial traverses were made at various
multiples of the estimated potential core length. For the series | tests,
(MJ =.47, variable 1) the axial locations at which the radial traverses were
made are shown in Table I.

My A (NOMINAL)  AXIAL LOCATIONS OF RADIAL TRAVERSES (RADII)

Y 1 3.25 6.5 15 32

47 2 3.50 7.0 14 32

.47 .3 3.75 7.5 15 32

47 4 4.50 9.0 18 32

47 5 5.25 10.5 21 32
TABLE |

The mean velocity profiles and turbulence intensity profiles in the
annular mixing region of the jet for Mj=.47 and five velocity ratios are
shown in Figure 4.12 through 4.21. The corresponding radial mean velocity
and turbulence intensity profiles at X =32 are shown in Figures 4.22 and
4.23. Initial profiles of mean velocity and turbulence intensity at x=.2
for My=.47 and 1 =.384 and .480 are shown in Figures 4.24 and 4.25,
respectively. These measurements of mean velocity and turbulence intensity
for a fixed jet Mach number and various velocity ratios will be examined in
some detail in section 4.2.4. However, several points of explanation and
comment will be made here:

(1) The measurements for a velocity ratio of .1 are expected to be the
least accurate for several reasons. Firstly, the tunnel speed was hard to
keep constant at that low velocity. Secondly, the LV processor, in particu-
lar the error circuitry, had to be readjusted for this case to enable
velocity measurements to be made at the low speed. From the velocity proba-
bility distribution functions, it could be seen that instantaneous veloci-
ties well below the tunnel speed were encountered. It is possible that some

truncation of the lowest velocities may have occurred.

(2) The radial traverse, for M =.47 and A =1, was made at X =15 rather
than X =13 due to a positioning error.

(3) The initial velocity profiles were made at X =.2 rather than X =0
for two reasons. Firstly, the two laser beams, which intersect at the
measurement point to create a fringe pattern, approach this point at a small
but finite angle. The closest location of the jet exit at which a traverse
could be made was set by this angle. This is sketched below.
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Secondly, since particles only reach a location in the flow from inside the
jet or in the wind tunnel, seeding is very uneven in the stagnation region
at the lip.

Since the lengths of the potential cores for the series |l measurements
(fixed velocity ratio, variable Mach number) were expected, in some cases, to
stretch beyond the length of the working section, radial traverses in this
measurement series were made at fixed distances from the jet exit. The
locations were at x=4, 8, 16, and 32. The mean velocity and turbulence in-
tensity profiles for XA =.1 and three jet exit Mach numbers are shown in
Figures 4.26 through 4.31. The velocity measurements are tabulated in
Appendix 4A.

In the next section the data is reduced on the basis of several scaling
parameters.

4.2.4 Characteristic Dimensions and Scaling Parameters

in this section the measured mean velocity and turbulence intensity
distributions, described in section 4.2.3, will be used to calculate the
variation of several characteristic properties of the flow. These parameters
will be subsequently used as scaling parameters for the velocity distribu-
tions.

It was noted in the previous section that the effect of increasing the
free-stream velocity was to stretch the mixing region in the axial direction.
In Appendix 4B the decay of the centerline velocity is shown to follow the
relationship

V=2
1-2

v

where £y = LOoh (1 - .92 A) x - .35, (4-2)

The data reduced in this manner is shown in Figure 4,32. This leads to an
expression for the potential core length, X, of
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Xe = 8.77/(1 - .92 2). (4-3)

The empirical form for the variation of ic with A given by Forstall and
Shapiro (ref. 2) was

X. = 8 + 24 ). (4-14)

This expression was obtained by fitting an expression of the form
v, - A
1-2X

(o4

’ (L*'S)

> | —

to their measurements. The same method has been applied to the present
measurements and this is shown in Figure 4.33. It can be seen that even for
the limited axial extent of the present measurements an expression of the
form (4-5) fits the data adequately once a transition from the annular mix-
ing region has been passed. Comparison of the expressions (4-1) and (4-5)
shows that the former exhibits no discontinuity in the derivative of the
centerline velocity at the end of the potential core whereas the latter does.
When X =%, (Va -2)/(1-x) =1, the exponential term in equation (4-1) can be
written as exp{-A(A)/(X -%.)}, where A(A) is readily obtained from equations
(4-2) and {4-3). For a fixed velocity ratio the exponential may be expanded
for large values of (X -Xx_) giving,

V, =2

- (4-6)

-2 =_= ?
1 X = Xe

which is significantly different from expression (4-5). The variation of
potential core length as a function of velocity ratio, found by these vari-
ous methods is shown in Figure 4.34. There is a considerable scatter in
Forstall and Shapiro's measurements. However, if equation (4-1) is compared
with their measurements of the centerline velocity, there is fair agreement.
This is shown in Figure 4.35. Since the empirical constants in equation
(4-1) are dependent on the Mach number of the jet, some differences are to
be expected.

The variation of the potential core length with Mach number is shown in
Figure 4.36. Witze (ref. 3) made use of a two-region turbulence model to
predict the development of subsonic and supersonic free jets. The empirical
relationships he derived from a large number of experiments are shown in
Figure 4.36. Clearly, there is some problem with the predictions for
slightly supersonic jet exit velocities. However, the general trends of the
current measurements for A =.1 and these predictions are in good agreement.

The rate of spreading of the jet is also defined at the axial variation
of the jet width. In the present investigation the width of the jet is de-
fined as the vorticity thickness, §,, which is given by

Vy - A

= — 4-7
(8V1/3F)max ( )

w
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Brown and Roshko (ref. 41) point out that this definition of thickness is
appropriate since the growth of the turbulent jet is governed by the un-
stable motion induced by the vorticity. It has been found convenient for
the purposes of presentation to consider the jet in two separate regions:
the annular mixing region up to the end of the potential core and the flow
region downstream of the potential core.

It is to be expected that for sufficiently small ratios of vorticity
thickness to potential core radius the initial mixing region will spread in
the same manner as the two-dimensional mixing region. In fact, the spread
rate of the axisymmetric jet agrees closely with that of the two-dimensional
mixing region up to the end of the potential core. The variation of §, /%
for the two-dimensional mixing region is compared with the present measure-
ments in Figure 4.37. It can be seen that the variation of mixing region
thickness with axial distance agrees well for the two flows and can be

simply related by

§, = const.-%%i%%—i (4-8)

where Brown and Roshko (ref. 41) give the constant in equation (4-8) a value
of .181. Equation (4-8) is also shown in Figure 4.37.

A second parameter which describes the rate of spread of the jet is the
dividing streamline radius. This radius was defined in section 4.2.3. The
location of the dividing streamline is shown in Figure 4.38 for the annular
mixing region for the series I, My = .47 measurements. The value of the
virtual origin of mixing, Xos was found to vary between -.5 and 1.5. The
calculated location of the dividing streamline as given by Korst and Chow
(ref. 67) is also shown. It can be seen that these calculations for the
two-dimensional mixing layer indicate a much slower divergence of the divid-
ing streamline. The dividing streamline velocity is shown in Figure 4.39
and is compared with Korst and Chow's calculations. In all cases, except
A=.1, there is some agreement between the measured values of Vds and the
+ calculations for small values of X -io. In the axisymmetric jet case, the
dividing streamline velocity decreases with axial distance. It should be
remembered that, in the two-dimensional case, the mean velocity is similar
whereas, in the axisymmetric jet case the mean velocity profile is not
similar.

In order to examine the effect of velocity ratio on the rate of growth
of the jet downstream of the potential core, it is convenient to examine
first the shape of :he mean velocity profiles in this region. The local
velocity difference normalized by the difference between the centerline
velocity and the tunnel velocity is plotted in Figure 4.40 as a function of the
radial distance divided by the half-velocity radius. It will be shown that
there is a linear relationship between the half-velocity radius and the
vorticity thickness so either can be used as the nondimensionalizing quan-
tity. However, it is convenient to use the half velocity radius in the
momentum equation below. It can be seen that there is good collapse of the
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Figure 4.40 Mean flow profiles at Xx=32, Mj=.47.
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data except for the lowest velocity ratio, A =.096. Two analytical functions
have been shown for comparison. The first is the cosine profile
V1 -

(4-9)

il
tA

(%)

bt

1
— {1 + cos
2 2F

<1

a A

This is the representation used by Squire and Trouncer (ref. 68). The second
function is the error curve

V-2 (F/7 )2

- 12
- = exp l— 69315 | | |= %‘ (4-10)
Vy -2 175

It can be seen that both representations are a good fit to the data over most
of the jet. The cosine curve, equation (4-9), will be used in the subse-
quent analysis.

An expression for the variation of the jet half width as a function of
axial distance can now be obtained from a simplified form of the momentum
equation. If it is assumed that the tunnel wall radius is sufficiently large
in comparison to the jet radius so that there is no induced pressure gradient
and the tunnel velocity is constant, then the momentum equation can be inte-
grated to obtain

5 V.2 Fdr = const = {EJ + AZ(FT?- Y. (4-11)

1
2

(o]

Assuming the mean velocity takes the form,

Vy = a+ (V,-2) F(F/F ) (4-12)

and letting F/F o =nm, (4-13)

then for the incompressible case, equation (4-11) can be written,

_(1-22)

Pl 2(Ua =208y + (Vg -2)28,) = (4-14)
where nT
8, = j £(n) ndn
O
and (4-15)
T
By = J f2(n) ndn
(o]
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For a mean velocity profile of the form of equation (4-9), these integrals
are given by, B; =.595 and B, = .345. The corresponding values for the
profile (4-10) are B, =.721, Br =.361. Hill (ref. 47) used measured free
jet velocity profiles to evaluate the integrals and obtained the values:
By =.788 and B, =.369. (The exact values depend on the ratio of the half
velocity radius to the radius at the '"edge'' of the jet). Use will be made
in this analysis of the first result corresponding to the cosine profile,
equation (4-9). The axial dependence of (V,-2) is given by equation
(4-1) so that equation (4-14) becomes,

P2 = %_ fli-k) , (4-16)
2)B1g(x) + (1 -1)8,92(x)
where 9(X) = 1 - exp {-1/2¢,}, (4-17)

and £, is defined in equation (4-2). The axial variation of ¥ 5, given by
equation (4-16), is shown in Figure 4.41. |t was shown earlier in equation
(4-6) that (V5 -2)/(1-2) =g(X) =« A(A)/ (X -%c)™! for large values of (x - &.)
where A()A) was defined above equation (4-6). For large values of % - X,
equation (4-6) shows that g(x) « (x-%.)"1. This leads to an interesting
result for the asymptotic form of (4-16). For A equal to zero the half-
velocity radius is linearly proportional to (X - Xc). For A not equal to zero
and sufficiently large values of (x -Xxc), F.5 is proportional to the square
root of (X -X.). Close examination of the asymptotic form of (4-16) shows
that the function deviates from a linear growth with (X - X.) and approaches
the square root dependence depending on the relative magnitudes of

2381 (X = %) /(1 =1)B2A(X) and unity. The approach to these two limits is shown
in Figure 4.41 and the present measurements are also shown to agree with the
prediction. Szablewski (ref. 50) used a similar method to that used here.
However, the asymptotic dependence is somewhat different, being F s« x1/3
This result was found by solving a first order differential equation in %
for the centerline velocity which was obtained from an integral form of the
mechanical energy equation with the mean velocity described by a shape
function. In fact, Szablewski's asymptotic dependence is more reasonable
since it does correspond to the axisymmetric wake flow value. However, for
small values of (X -X.), particularly close to the end of the potential core,
equations (4-16) and (4-17) describe the jet growth more accurately since
the expression for g(x), the centerline velocity, is more accurate than

that used by Szablewski. Clearly the accuracy with which the jet width is
predicted depends on the accuracy of the centerline velocity prediction.

Since the mean velocity profiles in the developed region of the jet
have been shown to have a similar form, the vorticity thickness is to be
expected to be linearly proportional to the half velocity radius. The
vorticity thickness is plotted against the half velocity radius in Figure
4-42. Also_shown are the relationships given by equations (4-9) and (4-10),
which give 6, =4F s/n and &n-l.QOOF,s, respectively. The good agreement
between the measurements and the ratio predicted by the error curve indi-
cates that the slope of this function is closer to the measured slopes.
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in the annular mixing region the mean velocity profiles can also be
collapsed with the appropriate choice of coordinates. This does not apply
to the mean profiles which occur in a region of flow establishment, where
the wake velocity defect downstream of the jet lip still_exists. The mean
velocity data in the annular mixing region in the form (V1 -A)/(V -2) as a
function of (F -F_s)/8, are shown in Figure 4.43. Though Vy is equal to one
in most cases, some data just downstream of the lip of the potential core
has been included. The collapse is seen to be very good. A good fit to
the data is given by the expression,

Vi~ A _ 1 (1 - si . _ T Ul 4-18
- =3 sin2n); - ¢ <n sy (4-18)
where
FoF
n = -—1:-;5 (4-19)
84

The simple expression (4-18) has a derivative of -1 at n=0 which is a con-
dition enforced on the data by the choice of the vorticity thickness as the
local characteristic length.

if the mean velocity profile is described in terms of a shape function
and there is no pressure gradient, then two characteristic dimensions of
the flow are required to specify the profile locally. These two parameters
can be related through the momentum integral equation. Downstream of the
potential core the centerline velocity and the half-velocity radius or
vorticity thickness are the obvious choices. From equation (4-19) it can
be seen that in the annular mixing region, the half-velocity radius and the
vorticity thickness have been used. Either of these parameters could have
been replaced by the potential core radius. The variation of the half-
velocity radius and potential core radius with velocity ratio and axial
distance is shown in Figure 4.4k, The potential core radius was defined as
the radius at which (Vl -A)/(1-21) = .98. An analysis of the axial varia-
tion of P 5 and Fc, the core radius, can be easily carried out in the same
manner as for the developed jet. It is interesting to note that the half-
velocity radius appears to decrease with axial distance at some axial
locations. This is not inconsistent with the prediction of the half-
velocity radius at the end of the potential core given by equation (4-16)
as,

S22 _ 1|1+ . i
rs = 2 ZABI + (] -)‘562 y X Xec ("' ]9)

The solution to this equation is also shown in Figure 4.44. The measure-
ments at the end of the potential core also indicate that for the higher
velocity ratios the half-velocity radius does lie within the jet lip line.
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The effect of change in jet Mach number for a fixed velocity ratio is
now examined. Equation 4.8 gives the effect of velocity ratio on the growth
rate in the annular mixing region for uniform density. In Figure 4,45 the
vorticity thickness is plotted as a function of axial distance for A
nominally equal to .1 and various jet Mach numbers. The slope of the lines
drawn in Figure 4.45 is called the spreading rate and, following Brown and
Roshko (ref. 41), will be denoted by §,'. For the two-dimensional shear
layer the spreading rate is related to Gortler's (ref. 69) parameter ¢ by
the relation,

5,0 = ni/s. (4-20)

Brown and Roshko (ref. 41) used an order of magnitude estimation to arrive
at the dependence of the spreading angle on the Mach number. This depen-
dence was of the form,

- _1 1

5,0 =M (1 -)2, (4-21)

for high Mach numbers. In Figure 4-45 the variation of spreading rate 8y’
has been plotted as a function of jet Mach number. Clearly an inverse
dependence of the spreading rate on Mach number is evident for both
measurements of A =0 and A=.1. The data collected by Birch and Eggers
(ref. 70) indicates that for subsonic Mach numbers the spreading rate is
constant. Thus, it is concluded that the expressions for the spreading rate
of the annular mixing region of the jet are:

8, = (1=2)/(1+1) My <1
(4-22)

8, « MyTl (1=2)/(1+2) My > 1

The variation of vorticity thickness at x =32 for various Mach numbers
is shown in Figure 4-47. Both these results and the measurements in the
annular mixing region suggest that for A=, the Mach number affects the
spreading rate like M;~! for values of M, greater than .7. However, the data
points are too few to suggest any empirical relationship for this breakpoint
and in the developed jet the vorticity thickness will be assumed to have the
same Mach number dependence as in the annular mixing region, namely

S - ML, My > 1. (4-23)

The dividing streamline radius, defined in section 4.2.3, is shown in
Figure 4.48. The dividing streamline radius is seen to decrease with in-
creasing axial distance in the supersonic cases in the annular mixing
region. The half-velocity radius and the potential core radius are shown
in Figure 4.49. The potential core lengths have been calculated using the
constants given in Table |1l and equation (4B8-22) of Appendix L4B. Clearly,
the initial conditions are varying as a function of Mach number. No
corrections for changes in virtual origin have been made.
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In Figure 4.50 the mean velocity profiles for A =.1 and various Mach
numbers have been plotted. The profiles for Mj=.47 and Mj=.9 agree closely
and follow a form similar to the prcfile obtained for various velocity ratios
and My= .47 in Figure 4.42. The corresponding function fit given by equation
(4-18§ is also shown. However, the data corresponding to the supersonic jet
exit conditions, though they agree closely with each other, do not follow the
subsonic profiles. This is also the case downstream of the potential core,
as is showr in Figure 4.51. The centerline Mach number for M;=.47, .90, and
1.37 is locally subsonic whereas that for M; =1.67 is locally supersonic.
Anderson and Johns (ref. 75) have proposed a turbulence mixing model where
the eddy viscosity in the supersonic region was different from that in the
subsonic regime. Brown and Roshko (ref. 41) also noted that at high Mach
numbers a different model for the eddy viscosity could be used. The value of
the eddy viscosity in a model used by Witze (ref. 3) was also found to take
different values in subsonic and supersonic regions. This would lead to
different profiles depending on the local conditions.

The change in the turbulence level with velocity ratio and Mach number
will now be examined. Two possible scaling velocities will be considered.
The first is the usual velocity difference and the second is the difference
between the jet centerline velocity and the dividing streamline velocity. In
Figure L.52 the maximum axial turbulence intensity is plotted as a function
of both these velocity differences. A greater amount of scatter is to be
expected in the dividing streamline velocity difference due to the extra com-
putations. A good fit to the data plotted as a function of velocity
difference (V5 -1) is given by

Vipax - .053 + .118 (Va A). (4-24)

The effect of Mach number on the maximum axial turbulence intensity is
shown in Figure 4.52. It can be seen that the jet Mach number has little
effect on the value of Vv, . This confirms Brown and Roshko's supposition
that the value of V1ax i?%% function of the velocity difference only.

For the case of an axisymmetric jet the variation of v; with velocity
. . . - max
difference for small velocity differences can be inferred from measurements
of axisymmetric jets into still air far downstream of the jet exit where the
jet centerline velocity is very small. The measurements by Wygnanski and
Fiedler (ref. 4) show that by 40 diameters downstream of the jet exit the
value of vlmax is a constant fraction of the centerline velocity, namely

= .3 (V=2 (Vy-n) < .163. (4-25)

v
Imax

In Figure 4.54, Wygnanski and Fiedler's and the present measurements of
Vimax Nave been plotted as a function of (V3-1). It can be seen that the

curve can be divided into two regions. The first given by Equation (4-25)
and the second given by,

=175 (V-2 "7 (Ug-2) > .163. (4-26)

Vimax
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The slope of the linear portion of the curve, equation (4-29), and hence the

crossover between the two regions will be a function of the shape of the wake
generating body. Various asymptotic values of V;/(V,-1) have been noted by
Antonia and Bilger (ref. 46).

No measurements have been made of the radial and azimuthal velocity
components in the present study. However, it will be assumed that the
radial velocity fluctuation is proportional to the rate of spread of the jet
and the jet velocity. This assumption is based on obtaining an estimate of
the order of magnitude of the covariance Vv, from the momentum and continu-
ity equations using, as we have shown above, the relationship between v, and
the velocity difference. It will be further assumed that the azimuthal
velocity fluctuation is related to the other two components by [ Townsend,

ref. (76)]
v32 = (V12 + v22)/2. (b-27)

Thus, the total mean square turbulent velocity is given by,

q2 = 3 (vi2 + vy2)/2. (4-28)

Using the expressions (4-22) for the spreading rate, it can be shown that

=3 .2 (-2° -
q2—2v1 {|+(1+>\)2 , MJ<1, (4-29)

and

1+ 11—:3):6

Q2 =2 -
2 M2 (1 +1)2

viZ, My 2 1. (4-30)

In the next section a numerical method for describing the structure of a jet
in a moving stream will be discussed.

4.3 NUMERICAL STUDY OF THE EFFECT OF A SECONDARY
STREAM ON THE STRUCTURE OF A TURBULENT JET

In this section a well-established numerical technique is applied
to the problem of the jet flow in a moving stream. The various analyti-
cal and numerical solutions that have been previously used will first be
briefly reviewed.

4.3.1 Summary of Previous Work

There are four main classes of approach which have been used to analyze
the jet boundary-layer problem. They are:
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(i) similarity analyses,
(ii) integral methods,
(iii) eddy viscosity models, and

(iv) turbulent kinetic energy models.

In most cases these techniques, particularly the more simple analytical
methods, have been used to treat special cases of free-shear flow such as the
two-dimensional mixing layer or the free jet. However, some of the basic
assumptions of each method can be considered to be relevant to the problem of
a round jet in a moving stream.

The first method, the similarity analysis, makes the assumption of jet
similarity. This does not imply that all components of the flow conform to
the rigid definition of self-preservation but simply that the mean flow be
similar. These methods have been widely used and are described in the works
of Abramovich (ref. 77), Pai (ref. 78), and Schlichting (ref. 79). The mean
flow properties are described in terms of a single similarity coordinate
which grows with the developing flow. This technique does imply that the
local flow has no dependence on the initial conditions and as such, is only
applicable in fully-developed regions of the flow where, in the case of jet
flow, for example, the conditions at the jet exit no longer affect the jet
development. A virtual origin of the flow may also be identified and
measured experimentally which accounts for changes in the initial flow
conditions.

The second approach, the integral method, has been applied to the case
of jets in a co-flowirg stream. This general class of analysis uses a form
of the boundary layer equation integrated across the jet. This method is
used to calculate the downstream development of certain jet scaling parame-
ters, such as the jet width, defined in a number of ways, or the jet center-
line velocity. The equations of motion are usually written in terms of a
similarity variable, and the shape of the mean velocity profile must be
provided. As such, this method has limited usefulness since it is only
applicable in regions where the mean flow is similar and it does not
calculate the mean velocity profile but rather requires it as an input.
Squire and Trouncer (ref. 68) integrated the momentum equation between the
jet centerline and a radial location within the flow. The shear stress at
this location was evaluated using the mixing length theory. Hill (ref. 47)
used a moment-of-momentum integral equation which was obtained, for the
axisymmetric jet by multiplying the momentum equation throughout by the
square of the similarity coordinate and integrating across the flow. The
resulting integrals were evaluated using measured mean velocity profiles of
a jet exhausting into still air. Szablewski (ref. 50) also used an integral
approach to describe the motion of a heated jet into still air. He assumed
that the mean velocity and temperature profiles could be represented by the
function, (1 -n3/2)2, where the definition of n was different for the two
properties. Integral methods have also been used by Patel and Newman (ref.
80), Gartshore (ref. 81), Vogel (ref. 82), Bradbury (ref. 42), Bradbury
and Riley (ref. 43), and Antonia and Bilger (ref. b6). Except in those
works where the shear stress is measured, an assumption is made as to the
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relationship between the shear stress and the local mean shear. This is
achieved by the adoption of a hypothesis for the eddy viscosity or the turbu-
lent Reynolds number which will be described below. Peters and Phares (ref.
83) used a hybrid integral approach where the integrated turbulent kinetic
energy equation was solved simultaneously with the integral equations of the
mean flow. The turbulent shear stress was linearly related to the turbulent
kinetic energy. It can be seen that though integral methods provide a simple
way of determining the development of the shear flow they cannot describe the
whole flow region and do not permit calculation of radial flow profiles. An
integral approach has been used in section 4.2.4 to describe the relationship
between the jet width and the jet centerline velocity downstream of the
potential core.

The third class of analytical approach concerns the use of an eddy
viscosity model. In the time-averaged boundary layer equations, the terms
which present the greatest problems are the time-averaged products of turbu-
lent fluctuations such as the Reynolds shear stresses and the product of
velocity and temperature fluctuations which occur in the thermal energy equa-
tion. Unless these products are evaluated experimentally, some hypothesis is
required which relates them to the mean properties of the flow. Such an
hypothesis is that originally proposed by Boussinesq (ref. 84) which is now
commonly referred to as the eddy viscosity hypothesis. The eddy viscosity
was used to relate the turbulent shear stresses to mean shear in the same
manner as the shearing stress in a laminar flow is related to the local rate
of strain through the dynamic viscosity of the fluid. However, it is still
necessary to relate the eddy viscosity coefficient to properties of the flow.
An attempt to do this was made by Prandtl (ref. 85) in his mixing length
theory. This relates the kinematic eddy viscosity to the square of a length,
whose value must be established for the particular flow problem, multiplied
by the modulus of the local mean shear. This meant that the shear stress
would be zero at points in the flow where the local mean shear was zero. A
second hypothesis was proposed by Prandt] (ref. 86) which stated that the
kinematic eddy viscosity was proportional to the width of the mixing region
and the maximum difference in the mean velocities of the flow.

Gartshore (ref. 81) used Townsend's (ref. 76) large eddy hypothesis to
compute local values of the eddy or turbulent Reynolds number. This method
related the change in turbulent Reynolds number from a self-preserving jet
to a wake flow through the ratio of the strain rate of the mean flow at some
typical station in the outer region of the jet.

There have been many proposed eddy viscosity models of this type for
both compressible and incompressible flows. These include those of
Kleinstein (ref. 87), Warren (ref. 88), Alpinieri (ref. 89), Ferri et 4l
(ref. 90), Witze (ref. 3), and Zelazny et al (ref. 91). The solutions
obtained using this method agree very well, in each specific case, with the
experimental results for the equivalent problem. However, no satisfactory
universal constant has been found which binds together all the models. This
method is simple to use and does give good agreement with experiments if the
appropriate eddy viscosity model can be found for each flow region.
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The fourth class of analytical approach is that involving the use of the
turbulent energy equation. The use of this equation is once again for the
purpose of describing the turbulent shear stresses. It is hypothesized that
the turbulent kinetic energy controls the magnitude of the eddy viscosity.
This suggestion was originally also due to Prandtl and has since been con-
sidered by Glushko (ref. 92), Harlow and Nakayama (ref. 93) Beckwith and
Bushnell (ref. 94), Mellor and Herring (ref. 95), and Spalding (ref. 96). In
these models the eddy viscosity becomes proportional to the square root of
the turbulent kinetic energy. Townsend (ref. 76) made an alternative sug-
gestion in which the shear stress was assumed to be proportional to the
turbulent kinetic energy. Bradshaw et al (ref. 97) used this hypothesis
successfully in the two-dimensional boundary layer. This hypothesis was also
the one used in the integral approach of Peters and Phares (ref. 83) described
above. The introduction of the turbulent kinetic energy equation does re-
quire the specification of a number of relationships which describe the
diffusion and dissipation of Reynolds stresses (this is described in detail
by Nash and Patel (ref. 98). Harsha and Lee (ref. 99) and Lee and Harsha
(ref. 100) have shown that the constant relating shear stress to turbulent
kinetic energy applies over a very wide range of jet flows. However, the use
of this equation does give the local shear stress a dependence on the up-
stream history of the flow. The solution of the equations derived can be
achieved using a finite difference approach and downstream marching since the
equations are parabolic and form an initial value problem. The most compre=
hensive study of this approach for compressible jets has been carried out by
Heck and Ferguson (ref. 101) and Heck and Merkle (ref. 102) which also allows
for the presence of shocks in the flow.

The numerical method on which Heck and Merkle (ref. 102) based the tur-
bulent mixing solution was that originated by Patankar and Spalding (ref.
103). The GENMIX programs have been used extensively to solve many turbulent
mixing problems. The method is based on the simultaneous solution of a para-
bolic system of equations and the number of equations used is not limited.
Various multiple equation models have been proposed and equations for all the
Reynolds stresses uju; (ref. 104), the decay rate of turbulence energy and
the turbulence energy (ref. 105, 106) .

In the next section a two equation model of the turbulence which uses a
transport equation for the dissipation rate is described.

4.3.2 Description of the Numerical Method

In a turbulence model which makes use of a conservation equation for
the turbulent kinetic energy, it is necessary to provide several empirical
relationships. Among these is the definition of the dissipation length
which is required to enable the dissipation term in the T.K.E. equation to
be evaluated. This length is usually linearly related to the local width of
the shear flow and the constant of proportionality varies depending on
whether the flow is plane or axisymmetric. The measurements of Antonia and
Bilger (ref. 46) indicated that for the axisymmetric jet-wake, there were
large changes in the ratio of the dissipation length to local thickness.
This suggests that a turbulence model based simply on the kinetic energy
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equation is not adequate for the problem of a turbulent jet into a moving
stream. For this reason a system of equations is solved which includes an
equation for both the turbulent kinetic energy and the turbulence energy
decay rate.

The analysis and the numerical technique used have been described in
great detail by Pantakar and Spalding (ref. 103) and Launder et al (ref.
107) and no reiteration will be given here. However, it has been found that
the method of defining the initial conditions influences the solution. The
method for obtaining these initial conditions from measurements will be dis-
cussed here.

In many cases all the initial values of the dependent variables will
not have been measured. The parameters to be described are the axial mean
velocity, the stagnation enthalpy, the turbulence kinetic energy and the
turbulence dissipation rate. Measurements of axial mean velocity are
usually available and the stagnation enthalpy can be calculated from these
measurements and temperature measurements or by use of a Crocco's relation to
obtain the temperature. If measurements of the covariance <v1vo> are not
available, they can be estimated from the relation

VVo> = g 3V/3r (4-31)

where ut is an assumed eddy viscosity. The turbulence kinetic energy can
then be estimated from the relation

k = |<viv,>]/.3. (4-32)

The energy dissipation rate is used in the definition of the eddy viscosity
and this relationship can be inverted to estimate the dissipation rate as

£ = cu ;—t_' (‘*-33)

where C, and the remaining empirical constants required for the solution
are given by Lauder et al (ref. 107).

Using these definitions of the initial values for the dependent vari-
ables, the flow field can be obtained by numerical integration of the con-
servation equations. In the next section some solutions are described and
it will be seen that some expertise is required in the choice of initial
conditions.

4.3.3 Numerical solutions and data comparisons

In this section two numerical tests will be described. The first is a
test case [case 9, (ref. 108)] where the definition of the initial condi-
tions has been given by the authors of the numerical technique. The second
case is a use of the solution with the starting conditions taken directly
from the current measurements.
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In the first test case the mean velocity profile was measured. Helium
was added as a tracer to the jet flow. The measurements were made by
Forstall {(ref. 109). The initial turbulent kinetic energy was calculated
from the mean velocity data using equations (4-31) and (4-32). The dissipa-
tion rate was then found from equation (4-33). The value of uy used in the
calculation of the initial profile was that used by Launder et al (ref. 107)
and was given by

we =3.2 x 1077 pry avy, (4-34)

where AV] was the velocity difference between the jet exit velocity and the
minimum velocity and the freestream velocity and the minimum velocity in the
inner and outer initial boundary layers, respectively. The initial grid
values of Vi, k and £ are shown in Figure 4.55. Using these starting condi-
tions the distribution of mean parameters in the jet was calculated. The
centerline velocity decay of the mean velocity and the mass concentration of
helium is shown in Figure 4.56. The agreement between the predictions and
the measurements of Forstall (ref. 109) was good.

The second test case used starting conditions taken from the current
measurements for Mj= .47 and A =.382. in order to examine the effect of
initial grid spacing on the solutions, two sets of starting conditions were
used. The turbulence kinetic energy and energy dissipation rate were calcu-
lated from the initial mean velocity profile in the same manner described
above for the first case. The initial mean velocity profile for a 20-point
grid and a 27-point grid are shown in Figure L.57. The extra 7 points have
given greater definition to the region of rapid velocity variation. The
predicted variation of jet centerline velocity is shown in Figure 4.58. It
can be seen that the decay is over-predicted by the finer initial grid
whereas the agreement between the 20-point grid calculation and the measure-
ments is good. Similar trends are shown in Figures 4.59 and 4.60 for radial
mean velocity profiles at X =18 and 32, respectively. The agreement between
the measurements and the more widely spaced finite difference grid is quite
good in all cases. The variation of the turbulence kinetic energy along the
jet centerline is shown in figure 4.61. The prediction has been compared
with the measured values of 3 012/2, the turbulence kinetic energy for
isotropic turbulence. Agreement between the absolute magni tudes cannot be
expected because of the known anisotropy of the flow; however, the prediction
of the axial location of the peak turbulence kinetic energy is seen to agree
well.

In this section it has been shown that the prediction of the time-
averaged properties of a round jet in a moving stream may be numerically
predicted using the method of Spalding and Patankar. However, it is clear
that considerable expertise is required in the choice of initial boundary
conditions if a good prediction is to be obtained.
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4.4  ACOUSTIC SCALING LAWS

In this section the relationships between the flow parameters and the
velocity ratio derived in section 4.2.4 will be used to estimate the varia-
tion of the radiated noise due to alteration in the noise source magnitude
and distribution. In Appendix 4C another model of this kind has been
developed based on the properties of the dividing streamline. |In this
section attention will be paid to the more usually used scale of the velocity
difference. One major objection to attempts to scale the measurements with
the difference between the jet centerline velocity and the freestream veloc-
ity has been the apparent unrealistic prediction of zero turbulence level
and spreading for zero velocity difference. The existence of a mixing
process for equal freestream and jet velocities in a realistic situation is
due to the boundary layers on the inner and outer surfaces of the jet nozzle
and the finite thickness of the jet lip. In the absence of these real
phenomena, there would be no mixing for zero velocity difference. Thus, in
theory, the turbulence level in the jet and the spreading rate could be
related to the velocity difference between idealized freestream and jet
velocities. In section 4.2.4 it is shown that for zero velocity difference
a finite turbulence level and a finite rate of spread are predicted from
data for lower velocity ratios. However, when dealing with a mean velocity
profile where the minimum mean velocity is less than the freestream velocity
such as that which exists in the vicinity of the jet exit, the real velocity
difference, which governs the mean shear and hence the vorticity in the
inner and outer flow regions, is not V; -VT but the difference between the
maximum and minimum velocities. From the initial velocity profiles shown in
Figures 4.24 and 4.25, values of vlmax of .14l and .154 are found for maxi-
mum velocity differences of .76 and .83, respectively. Using equation
(4-30) values of V., of .144 and .15k exactly are fortuitously predicted.
If the prediction had been made on the basis of the velocity difference be-
tween the jet and the freestream values of v, of .125 and .111 would have

. . imax . : s .
been obtained. Clearly the use of the maximum velocity difference Vjy -~ Vnin
is more appropriate.

The method to be used for noise estimation is based on the original
dimensional analysis of Lighthill (ref. 110) and follows the same lines as
that used by Cocking and Bryce (ref. 23) though the scaling laws for the
flow variables will be those derived in section 4.2.4. It will be assumed
that the effect of freestream velocity on the radiated noise will be typi-
fied by its effect on the initial development of the jet not too far down-
stream of the potential cone. This limitation, which may still be repre-
sentative of conditions further downstream, should include the major noise
source region.

The noise per unit volume of the jet is given by

T Ve (4-35)

[~
po aO.J

noise/unit volume ~
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where w is a typical sound frequency, and Vo is the volume of an assumed. eddy.
The stress term T can be related to the total turbulence level by

T ~ 0o Apax?- (4-36)

Assuming that the velocity difference is not too small so that Vlmax is given
by equation (4-26), equation (4-29) can be used to give

.6
2 (1-2) L4 2
~ 11+ Ll 1=-2A v Y-
Smax (1”)2} (1= v, (4-37)
The volume of a typical eddy will be assumed to be related to the local
thickness of the shear layer so that
3
Vo ~ 6, (4-38)

It will also be assumed that the characteristic frequency of an eddy noise
source is given by,

v .7 '
Imax . (1 ')\) (4_39)

5 S

Substitution of these relationships into equation (4-35) leads to

8
L (=26 2 (1-2)56 vy
noise/unit volume ~ p, {1 + —. (4-40)
© [ (1+3)2 | 8y ags
The cross-sectional area of the mixing region will be approximated by
2nr )8, so that the noise per unit length of the jet is given by
N (=282 (1 -2 ;
noise/unit length ~ p,r, Il + ()2 o v,8. (4-41)

If the total noise producing length of the jet is characterized by the
potential core length, then the total noise radiated is given by

. (I _)\).6 2 (] _)‘)5.6 -
total noise ~ p.r;2 {1 + vV,8 X.. (4-42)
oJ l (1+2)2 ag J° %
Equation (4-3) can be used to obtain
2 612 5.6
Polr - - .
total noise - —2 1+ U A)z (]{3 A) v,8. (4-43)
ap (142) .92 1)

Since the noise measurements at 90° to an isothermal jet are practically free
from any convective or refractive effects, the predicted variation of total
noise with velocity ratio can be compared with the measurements at this loca-
tion. The change of the noise level relative to the level when A =0 is
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plotted as a function of velocity difference in Figure 4.62. The prediction
given by equation (4-43) tends to slightly over predict the effect of velocity
difference on the radiated noise at small velocity differences. The exponent
of the velocity difference from the noise measurements was 5.5. The exponent
given by equation (4-43) is readily calculated from equation (4-43) and is
shown in Figure 4-63. The exponent rapidly approaches the measured value of
5.5 from its value at X =0 of 7.28. The difference between the prediction and
the measurements never exceeds 1.5 dB and, since the exponent is less than
5.5, the measured value for values of A greater than one half,

the di fference becomes smaller at higher velocity ratios. However,

since the relative velocity effect is only of the order of a few dB, the
prediction could be improved.

The most probable cause of the inaccurate prediction is the form chosen
for the variation of the turbulence level with velocity ratio. More speci~
fically, the estimated variation of the radial and azimuthal turbulence
intensities with velocity ratio appears to be too great at small values of A.
These variations are the only ones for which adequate experimental informa-
tion was not available. It is of interest to note that if variation of
spreading rate, and hence radial velocity fluctuation, of the form suggested
by Yule (ref. 38) is used, namely,

5 '~ (1 -2)

, L=l
Y (1+a)? (h=hd)

a better fit to the data is obtained. Use of equation (4-44) results in a
noise prediction of the form,

2
Pory '1 . (] _)\).6 2 (1 __)\)5.6

total noise ~

V8. (4-45)

ac (1+21) 1- .92 1)

The result for this prediction is also shown in Figure 4.62. The variation
of the corresponding velocity difference exponent with velocity difference is
shown in Figure 4.63. The small change in the expression for the variation
of the spreading rate clearly has a significant effect on the resulting noise
prediction. The variation of spreading rate and radial and azimuthal turbu-
lence levels with velocity ratio for small values of velocity ratio is thus
seen to be very important.

4.5 SUMMARY AND CONCLUSIONS

An experimental investigation of the effect of a secondary stream on the
turbulent structure of a round jet, and the noise radiated by the jet, has
been performed. The major highlights and conclusions are given below.

(1) A two-inch diameter jet was mounted on an aerodynamically faired

plenum and support in a 0.76 m x 1.09 m low-speed wind tunnel. Tunnel
velocities of up to 76.2 m/s could be achieved. Static pressure
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Figure 4.62 Predicted variation of radiated noise with
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tappings were located along one wall of the working section. A window in the
opposite working section wall allowed observation of the jet flow up to 0.86 m
from the jet exit. The static pressure in the tunnel was controlled by a door
in the tunnel return section.

(2) Wall static pressure measurements indicated a maximum variation of
two per cent in the working section tunnel velocity.

(3) A laser velocimeter system was used to perform the velocity
measurements. The velocimeter optics were mounted on two lathe guides and
a hydraulic table which allowed traversing in three directions. The system
operated in single-channel back-scatter mode enabling measurements of instan-
taneous axial velocity to be made. The jet supply air was seeded with one
micron aluminum oxide particles and the wind tunnel air was seeded with a
hydraulic oil aerosol.

(4) Two series of test points were considered. The first were for
fixed jet exit Mach number of .47 and velocity ratios of .1, .2, .3, .4, and
-5. The second series were for a fixed velocity ratio of .1 and jet exit
Mach numbers of .47, .9, 1.37, and 1.67. All experiments used unheated air.

(5) For the fixed jet exit Mach number measurement series, radial
velocity traverses were performed at axial locations of x./4, xc/2, x. and
x/ry = 32, the potential core length being determined by a centerline axial
traverse. |In the second measurement series for variable Mach number, radial
traverses were performed at x/rj=4, 8, 16, and 32.

(6) The jet centerline velocity was found to decay as,

(Vg =2) [ -1
exp

(ED o8 (T-.920% - .7 |’

downstream of the end'of the potential core.

(7) The potential core length for M= .47 is given as a function of A
as,

Xe = 8.77/(1-.921).

(8) For fixed velocity ratio, .1, and variable jet Mach number, the
potential core length followed the same variation as a jet exhausting into
stationary air, being almost constant for Mj<1.

(9) In the annular mixing region of the jet, the rate of spread of the
mixing layer agreed closely with that of a two-dimensional shear layer.

(10) For supersonic jet exit velocities, the rate of spread was in-
versely proportional to the Mach number.
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(11) The axial mean velocity radial profiles in the annular mixing
region could be described by a shape function whose dimensions were fixed by
the half-velocity radius and the vorticity thickness. This only applied
after the region of flow establishment where the effects of the initial
boundary layers and the finite jet lip thickness were no longer present.

(12) The radial distribution of axial mean velocity downstream of the
potential core could also be described by a shape function and the local
vorticity thickness and centerline velocity.

(13) The growth of the jet downstream of the potential core region was
related to the centerline velocity decay through the momentum integral equa-
tion. The resulting relationship showed that the width of the jet was
linearly proportlonal to axial distance for A =0 and large values of X, but
was proportional to x% for A not equal to zero. It was noted that in
reality the asymptotic limit would give an x!/° relationship.

(14) 1t was observed that the mixing characteristics of locally super-
sonic flow were different from that for locally subsonic flow. This was
evident from axial and radial mean velocity profiles.

(15) The peak axial! turbulence intensity at any axial location was
found to be given by,

- = .7
Vigax ~ (Va AN
except at small values of (V4 -1)) where the peak intensity was Yinearly

proportional to the relative velocity.

(16) The axial turbulence intensity was found to be independent of the
jet exit Mach number.

(17) Using a simplified model of the noise generation mechanism, the
radiated noise at 90° to the jet axis was found to be given by,

. . o _ (1 -2) {(1-2) 48 2
Radiated noise at 90 [l + 177;77- 7Tfr~§ixy' rJ

This agreed closely with the acoustic measurements obtained in the anechoic
free-jet facility.

(18) The relative velocity exponent at 90° predicted by the expression
above rapidly approached the measured value of 5.5 from a value of 6.3 at
A=0.

(19) The turbulence measurements indicated that the measured relative
velocity reduction in noise at 90° to the jet axis, which is observed in
free-jet and wind tunnel measurements, may be attributed to changes in the
source level due to alteration of the turbulence structure by the secondary
stream.
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5. SYNOPSIS OF TECHNICAL WORK






5.1 INFLIGHT SIMULATION EXPERIMENTS ON JET NOISE

5.1.1 Anechoic Free-Jet Facility

A new anechoic free-jet facility, funded by Lockheed, has been designed and
constructed for investigating forward motion effects on jet noise. The
facility was subjected to rigorous aerodynamic and acoustic performance
evaluation tests prior to the inflight simulation experiments on jet noise.

The facility was powered by a jet ejector and was capable of providing
tunnel velocities up to 75 m/s with a test section of .76 m by 1.07 m. Prior
to the construction of the full-scale facility, an exact one-fifth scale model
was built to confirm various aerodynamic performance concepts and to aid in
the design of the free-jet working section as well as the shape of the collec-
tor. A planview schematic of the complete facility is shown in Figure 5.1.

In order to provide low background noise levels, the tunnel ducting between
the anechoic room and the jet ejector incorporated several sound absorbent
sections. For minimum blockage (and therefore minimum flow disturbance) in
the working section, the air supply ducting for the primary jet was installed
axially in the intake/contraction section. The ducting was carefully designed
to avoid any flow separation within the accelerating free-jet flow in the con-
traction section. The upstream internal noise levels were minimized by the
two mufflers connected in series. The microphone arc was at 54 nozzle diame-
ters, and was placed outside the free-jet flow. Noise data were normally taken
in the range 30° <6, <90°, but forward arc measurements could be accomplished
by moving the primary jet downstream.

in order to confirm the design criteria and to ensure the accuracy of the
subsequent jet noise measurements, the facility was subjected to rigorous
performance evaluation tests, and the major findings were as follows:

Flow visualization tests using a smoke generator established that the
free jet was stable throughout its length, and the air-flow circulation veloc-
ities in the anechoic room were negligible. The mean flow properties of the
free-jet working section were examined quantitatively by using a specially
designed pressure probe rake. The mean velocity profiles were mapped in
detail, and the tunnel calibration was derived from these tests.

The acoustic performance tests were designed to examine the anechoic
quality of the facility, the background noise levels, and the rig internal
noise levels. |t was established that (1) the facility was anechoic down to
200 Hz, (2) the facility background noise in the measurement arena was low
(see Figure 5.2), and (3) the jet noise results would not be contaminated by
internal noise at least down to Vj/ag=0.32. (A1l symbols are defined in
Appendix 5.)

Limited calibration experiments using a point source established that in
the frequency range from 1 KHz to 5 KHz, no detectable internal reflections in
the free-jet test section were observed for tunnel velocities up to 60 m/s.

It was also confirmed that at these frequencies, the effect of turbulence
scattering in the facility was not significant.
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5.1.2 Jet Noise Experiments

The effects of forward motion on the characteristics (both directivity and
spectral) of turbulent mixing noise from jet exhausts vere examined by con-
ducting inflight simulation experiments in the anechoic free-jet facility.
The resulting scaling laws, after applying facility corrections, were found
to be in close agreement with the scaling laws derived from theoretical and
semi-empirical congiderations.

In the jet noise experimental program, the free-jet to nozzle area ratio
was 400. The nozzles (d=5.08 cm.) employed were a convergent nozzle, and
M=1.4 and 1.7 convergent-divergent nozzles. Acoustic measurements were con-
ducted at forty different test conditions (combinations of Vj/a, and Vi/a);
eight values of jet exit velocity were chosen in the range 0.4 <Vy/lag <1.345,
and the tunnel velocity was varied up to Vi/ay,=0.2. All acoustic data were
carefully scrutinized prior to detailed analysis, and all data likely to be
contaminated by extraneous noise sources (background/instrumentation/shock
noise) were not utilized. ’

The uncorrected results (i.e. data to which no facility corrections were
applied) were found to be in good agreement with the results from published
free-jet experiments.

The measured results were subjected to a systematic data correction pro-
cedure, which was derived in the present program, and which converted results
from a free-jet facility to the corresponding results that would be obtained
in a large-scale wind tunnel simulation. In essence, the correction proce-
dure took proper account of source distribution effects in a jet flow, the
downstream convection of sound waves by the tunnel flow, and the refraction
of sound caused by the free-jet shear layer. Using the measured results at
fixed measurement angles, 8h it finally yielded results corrected to constant
emission angles, Bes for an observer moving with the nozzle. In general,
the magnitudes of the facility corrections were small at 90° to the jet axis,
but produced a significant effect at lower angles in the rearward arc.

At 8e==90°, the effect of tunnel velocity on the corrected spectra was
virtually independent of frequency, and the spectra at various tunnel veloc-
ities were nearly parallel. This implied constant reduction in equivalent
source strength at all frequencies. A typical example for Vj/ag=0.9 is
presented in Figure 5.3.

The corrected overall SPL results indicate that the magnitudes of the
inflight noise reductions increase as the observer moves from 6, =90° toward
the downstream jet axis (Figure 5.4). The reductions at all emission angles
were scaled on the relative velocity basis. At 6e==90°, the OASPL is found
to be proportional to 5.5 powers of the relative velocity, a result which
agrees closely with the theoretical and semi-empirical scaling laws, derived
purely from source alteration considerations.
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The results from the present free-jet experiments are in very good agreement
with published wind tunnel results. However, there are large differences
between the inflight effects as observed from model simulation experiments
and full-scale flight tests. These discrepancies are tentatively attributed
to the doubtful validity and accuracy of the flight data.

The relative velocity exponents, obtained from the present corrected
results, are compared with the exponent values obtained in the NGTE wind
tunnel experiments (where the test section to nozzle area ratio was 5000) in
Figure 5.5. The agreement is good at all emission angles. From this compari-
son it is concluded that (1) the effect of scattering caused by turbulence
in the free-jet mixing layer does not appear to be significant; (2) the free
jet to nozzle area ratio of 400 used in the present experiments was adequate
for accurate evaluation of inflight effects on jet noise; and (3) a free-jet
facility is capable of simulating many of the inflight effects on jet noise
providing adequate and accurate facility corrections are applied to the
measured results.

The comparison of results from inflight simulation experiments with
full-scale flight results (Figure 5.5) shows that although the agreement is
reasonable at low angles to the jet exhaust, there are significant discrep-
ancies at larger angles. At 8o =90°, there is little or no change in the
flyover noise levels, whereas the simulation experiments indicate significant
noise reductions. All attempts to explain this discrepancy in terms of source
motion (relative to a fixed observer) effects lead to the conclusion that the

flyover results at 90° will not be affected. It is therefore concluded that
the flight results considered here may not represent pure turbulent mixing
noise. It is recommended that the '"acoustic cleanliness'' and the measurement

accuracy of all flight results be examined thoroughly, both for existing
flight data as well as any future flight test results.

Finally, a theoretical formula for the prediction of inflight noise
reductions at emission angles outside the so-called zone of silence has been
derived, and the correlation between calculated and measured OASPL reductions
is obtained to an accuracy of +1/2 dB, as shown in Figure 5.6.
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5.2 ACOUSTIC PROPAGATION THEORY

5.2.1 An Acoustic Model of the Free-Jet Flight Simulation Facility

A geometric acoustics model of sound propagation through the free-jet shear
layer has been evaluated. The model yields analytic formulae for angle and
amplitude corrections that convert the measured free-jet data to estimated
flight data. The recommended correction procedure takes into account the
axtal distribution of the jet mixing noise source as a function of Strouhal
number.

In the Lockheed flight simulation facility, sound waves radiated from
the primary jet are convected and refracted by the mean flow in the potential
core and in the shear layer of the free-jet. The change in angle and ampli-
tude of the direct radiation across the shear layer must be measured or cal-
culated in order to convert the free-jet measured data to estimated flight
data. A theoretical approach has been chosen, based upon Geometric Acoustics
(GA) or "ray-tracing.'" The GA model has been partially justified with an
order of magnitude study of the terms in the homogeneous Lilley equation
which are neglected in the geometric approximation.

Results from the GA model indicate that axial variations and axial
gradients of the mean flow velocity in the free-jet shear layer have a negli-
gible effect on sound refraction and that the change in angle can be calcu-
lated with the analytic, stratified flow equation to a very good approximation
(better than 1° accuracy). Examples of ray paths on the x-r plane (cylindri-
cal coordinates, origin at free-jet nozzle) are shown in Figure 5.7, before
and after propagation through the free-jet shear layer; 61 is the wavenormal
angle within the uniform flow and corresponds to the flight emission angle
8e- The angle 6 is the measured polar angle based on a microphone arc of
radius 54 d centered on the primary jet nozzle at x=6d (d is the primary
nozzle diameter). The ray origin or source location (X=Xg) is determined
from an empirical model in which the effective center of the turbulent mixing
noise source in the primary jet flow can be calculated as a function of the
modified Strouhal number, Sm- In Figure 5.7 the source location corresponds
to S, = 1. Ray paths inside the shear layer, although calculated, have been
replaced by an extrapolation to the "lip-line' of the entry and exit ray
paths. In general extrapolated ray paths, as in Figure 5.7, intersect the
"Tip-line'" at almost exactly the same point and therefore, to a good approxi-
mation, ray paths can be drawn as if the shear layer were replaced by a
vortex sheet at the ''lip-line'" as indicated in Figure 5.8.

However, this vortex sheet model is not used to calculate amplitude
changes across the shear layer, only ray paths and changes in angle. The
sound amplitude, according to GA, varies smoothly through the real shear
layer and the total change in amplitude is calculated from an analytic ex-
pression based upon (i) the law of energy conservation in a ray tube and (ii)
the change in ray-tube cross section across the shear layer which is defined
by the ray paths as shown in Figure 5.8.
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5.2.2 The Influence of Forward Motion on Flow-Acoustic Interactions
as Described by the Lilley Equation

The influence of forward motion on flow-acoustic interactions has been ex-
amined through a re-interpretation of the "static" numerical solutions tc the
Lilley equation. Outside the cone of silence, the Lilley equation radiation
levels change with forward motion in a way that can be calculated, to a good
approximation, with the geometric acoustics analytic result.

The influence of forward motion (simulated or actual) on the theoretical
directivity of isothermal jet mixing noise can be summarized as follows. The
expression for the proportional bandwidth mean square pressure in the static
case is a product of two factors

(Flow-acoustic interactions: V;) x (Eddy convective
amplification: V¢)

and, in the flight case, three factors

(Flow-acoustic interactions: V5 -Vp) x (Eddy convective

amplification: V. -Va) x (Dynamic effect: Vp),

where Vp is the (uniform) aircraft flight speed. The eddy convection velocity,
Ve, controls the static convective amplification (e.g. |1 -VccosBe/ag|=%); in
the flight case it is the eddy convection velocity relative to the observer,
V. -Vp, that determines the amplification (e.g. |1 - (V¢ -Va)cosb./ag|~3).
Both this effect and the dynamic effect are well established results.

Similarly, the static flow-acoustic interaction effects are described by
Litley equation solutions based upon a mean velocity profile with a center-
line velocity V5 and that is reduced to V5 o) =V -Vp for the flight case
although it is still a ''static'" profile. Hence, forward motion effects can
be examined through a re-interpretation of the ''static' numerical solutions
to the Lilley equation. Some typical numerical results outside the cone of
silence for the variation of the flow-acoustic interactions factor, Fiq),
with V5 re1 are shown in Figure 5.9; the Strouhal number, S;, takes two
values that are appropriate for the four diameter axial station profile used
in this example. This emission angle 6 varies with V5 re) in these results
since a source emission angle, 6, is held constant; 6, lies between 50° and
60° over the range 0.75 <V, rel/ag s 1.25.

The geometric acoustics analytic result is also shown for comparison in
Figure 5.9. While there are significant absolute differences between it and
the Lilley equation numerical results, the slopes are very similar. There-
fore, outside the cone of silence, the Lilley equation flow factor variation
with forward motion can be calculated, to a good approximation, with the
geometric acoustics analytic result.
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5.3 EFFECT OF FORWARD VEtLUCLIY ON THE
STRUCTURE OF A TURBULENT JET

5.3.1 Turbulence Measurements

Velocity measurementes are made in a Jet in a wind tunnel, with a laser velo-
cimeter, to describe the effect of veloeity ratio and jet exit Mach number on
the development of a jet in a moving stream.

The aim of this work has been to describe the structure of a turbulent
jet, in the presence of a secondary stream, in relation to the noise-
producing properties of the jet.

A 5.08 cm. diameter jet was mounted on an aerodynamically faired plenum
and support ina .76 m x 1.09 m low-speed wind tunnel. The experiments were
conducted for a range of wind tunnel and Jet exit velocities shown in Figure
5.10. One series of measurements, at fixed jet exit Mach number, examined
the effect of velocity ratio on the jet development and the second series,
at fixed velocity ratio examined the effect of jet exit Mach number on the
jet structure.

Measurements of wall static pressure in the tunnel working section
showed the axial pressure gradient to be less than an equivalent freestream
velocity change of 2% at the highest tunnel velocity. Measurements of the
instantaneous velocities in the jet were made with a laser velocimeter system
mounted outside the tunnel working section.

The variation of jet width with axial distance in the annular mixing
region of the jet was found to agree with the variation in a two-dimensional
mixing layer. The variation of potential core length with velocity ratio was
found to be given by, X =8.77/(1-.92 A). This variation is shown in Figure
5.11, where it is compared to the linear variation of potential core length
with velocity ratio proposed by Forstall and Shapiro (ref. 2 ). The method
used by Forstall and Shapiro to determine the potential core length variation
was applied to the present measurements and was found to overestimate the
potential core length. The variation of potential core length with jet exit
Mach number for a velocity ratio of 0.1 was found to be in agreement with the
two region model prediction of Witze (ref. 3 ) for free jets. The radial
mean velocity profiles in the annular mixirng region of the jet and downstream
of the end of the potential core were found to be represented well by shape
functions using the half velocity radius and vorticity thickness and the jet
centerline velocity as the characteristic properties of the flow. The
collapse of the radial mean velocity profiles in the annular mixing region is
shown in Figure 5.12,

For the most velocity ratios of practical interest the axial turbulence
intensity was found to follow a relationship of the form, axial turbulence -
(relative velocity)®7. This is shown in Figure 5.13. For small velocity
differences the turbulence level s expected to be proportional to the
relative velocity. The axial turbulence intensity was found to be independent
of the jet exit Mach number.
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5.3.2 Jet Noise Scaling

The variation in radiated noise, at 90° to the jet axis, with velocity ratio
18 predicted using turbulence measurements and a simplified Lighthill noise
radiation model.

The measurements of jet turbulence made in the subsonic wind tunnel
experiments may be used to estimate changes in the radiated noise with
velocity ratio.

The Reynolds stress sources in a subsonic jet are assumed to be propor-
tional to the ambient density and the total turbulence intensity. In order
to calculate the total turbulence level, three components of velocity fluc-
tuations are required. The axial turbulence intensity is obtained directly
from the measurements. The radial velocity fluctuations are assumed to be
proportional to the rate of spread of the jet and the azimuthal velocity
fluctuation is assumed to be the average of the other two components. The
source frequency is related to the axial velocity fluctuation and the local
shear layer thickness. The eddy volume is taken as proportional to the cube
of the local thickness. The variation in the noise producing volume is
considered to be described by variations in the mixing layer thickness and
the potential core length.

Two prediction formulae are obtained depending on the description of the
variation of local thickness with velocity ratio. Best agreement is obtained
if the spreading rate of the mixing layer is assumed to be proportional to
(1-2)/1+2)%. In this case the radiated noise at 90° to the jet axis, where
convection and refraction effects are at a minimum and changes reflect source
alterations, is given by

2 8
Po Ty Vy

1+

.6]2
- - 5.6
Radiated noise at 90° -~ (1-2) } (1-2)

(1+2) (1-.92 )

5
o}

a
This prediction is compared with the free-jet noise measurements in Figure
5.14. The predicted variation of relative velocity exponent is shown in
Figure 5.15. It can be seen that, except at small values of velocity ratio,
the agreement between the predicted exponent and the measured value of 5.5
is good.
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6. RECOMMENDATIONS FOR FUTURE WORK

The work conducted during the present program has examined many impor-
tant aspects of forward velocity effects on turbulent jet mixing noise from
a fundamental viewpoint. Several important recommendations for future work,
necessary to achieve the ultimate goal of this research program (described
in Section 1), have emerged during the course of this study. These recom-
mendations are now discussed in detail.

The recommendations, essentially fall into two categories. The first
category is centered on the problem that significant differences exist be-
tween the inflight effects as observed from the full-scale flight tests and
those obtained from model-scale inflight simulation experiments conducted in
static facilities like a wind tunnel or a free-jet facility. These discrep-
ancies need to be resolved in a systematic manner, since the basic concept of
predicting inflight noise levels from flight simulation tests becomes mean-
ingful only when there is a good correlation between the flyover results and
the corresponding forward velocity simulation results. The second category
or set of recommendations form the continuation of the fundamental study
that has been conducted in the present phase. These fundamental studies on
the effects of forward velocity on jet noise are considered to be vital in
achieving the long-term goal of being able to predict the sound field of a
jet exhaust in flight without actually flying the jet configuration.

It is strongly recommended that in order to reach the ultimate
objective of this research effort in an efficient manner, the two categories
of recommendations described above should be implemented with equal emphasis.
That is, both sets of recommendations should be followed concurrently if
possible, and it could be detrimental if one set of recommendations is ex-
ecuted at the expense of the other.

6.1 FIRST CATEGORY RECOMMENDATIONS

The recommendations necessary to reconcile the differences between
flight results and model simulation results are discussed first. From the
present study, it can be concluded that the observed discrepancies may have
arisen due to one of the following two reasons: (1) a relative source
motion effect, which is present in the flyover tests, but which is absent in
the simulation tests where the observer is effectively moving with the jet
nozzle; (2) the doubtful validity of the cleanliness of flight data, which
may give rise to inflight effects that may differ considerably from those
that are associated with pure turbulent mixing noise. The basic philosophy
behind future work on this aspect lies in the assessment of the relative
roles played by these two possible reasons in producing the currently ob-
served differences. This can be achieved by conducting a carefully
controlled experiment where the two phenomena can be isolated. To do this,
it is recommended that an experiment involving the measurement of the noise
field, by stationary microphones, from a moving jet should be conducted.
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The jet configuration to be used in .his experiment should be free from in-
ternal noise, and the experiment should be conducted at model scale in a
carefully controlled environment where the measurements and corrections can
be obtained accurately. The same jet configuration should then be tested in
a flight simulation facility, for example, in an anechoic free-jet facility,
and the results from the two sets of experiments should be compared in
detail.

The outcome of this comparison will establish the exact nature of subse-
quent research as follows: (1) If the results from the moving jet experiment
agree with the corresponding results from the flight simulation experiment,
then it can be concluded once and for all that the currently observed dis-
crepancies arise due to some problems associated with a full-scale engine
(e.g. internal noise, measurement problem, propagation effects), and are not
related to any relative source motion phenomenon. {2) On the other hand, if
the results from the simple moving jet experiment do not agree with the simu-
lation data, but are found to be in reasonable agreement with the trends
observed from existing full-scale flight data, then it will become clear that
the currently observed differences are associated with some relative motion
effects which have not been accounted for correctly in translating static
simulation data to the flight results. Subsequent research can therefore be
directed towards a re-examination of various phenomena associated with source
motion relative to a fixed observer. In this manner, it will be possible to
define the most fruitful avenues of approach for reconciling the flight data
with model simulation results in the long-term research efforts.

6.2 SECOND CATEGORY RECOMMENDATIONS

Regardless of the outcome of the fundamental investigation, described
above, of the noise of a pure jet in flight and in the flight simulation
facility, it is necessary to continue the basic work of defining the effects
of forward velocity on jet mixing and shock-associated noise, especially for
heated jets. Preliminary aspects of this work have been completed during
the current contract; however, considerably more detail must be obtained in
all aspects of the work recommended below.

The specific technical objectives of the proposed fundamental study of
flight effects on jet noise should be:

(1) to define the limitations of the anechoic free-jet facility tech-
nique for measuring flight effects on jet noise, using experimental informa-
tion from current facilities in conjunction with appropriate theory;

(2) to further develop a methodology for using such facilities, in
particular, to determine theoretically the proper transformation for convert-
ing facility data to the corresponding in-flight case;

(3) to measure the appropriate jet flow quantities for the in-flight

condition, such as mean and turbulence velocity distributions, convection
speeds and turbulence spectra, for input to a jet noise source alteration
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model, and to define, by utilizing the data and available theoretical tech-
niques, jet noise source alterations resulting from aircraft forward motion;

(4) to extend the acoustic inflight simulation experiments on turbulent
mixing noise and shock-associated noise, in particular, to examine and quanti-
fy the effects of forward velocity on heated jets; and

(5) to calculate the noise field of a jet in flight and compare with
experimental results.

The following recommendations are designed to meet the specific
technical objectives.

6.2.1 Phase | - Methodology and Corrections for Transformation of
Free-Jet Data to the Equivalent In-flight Condition

This phase of the program should be directed toward further development
of the appropriate corrections and calibrations to convert noise measurements
from a free-jet anechoic facility to equivalent linear measurements (parallel
to direction of flight) for a jet in flight. The effort should use a combi-
nation of theoretical and experimental approaches as outlined below.

6.2.1.1 Theoretical program. Effects of the free-jet on the sound
field of the model jet should be studied with the aid of appropriate flow-
acoustic interaction models. Charts and calculation procedures should be
produced which relate free-jet facility results to the corresponding in-
flight noise levels.

(i) The effect of transmission through the mean flow field of the
combined primary and secondary jets should be calculated by numerically
solving the Lilley equation. This will provide a standard of comparison for
the approximations below (ii, iii).

(ii) The effect of transmission through the outer mean shear layer
alone should also be studied using the Lilley equation. In this way the
effect of neglecting the primary jet flow field can be assessed.

(iii) The applicability of the geometric acoustics (GA) approximation
for transmission through the combined (primary + free-jet) jet flow field
should be assessed by comparing GA results with the full Lilley equation
results, for realistic mean flow profiles.

(iv) The above calculations could be performed using a mean flow model
which neglects spreading of the inner and outer shear layers. Growth of the
outer free-jet shear layer in the downstream direction may significantly
affect the interpretation of free-jet facility data. This possibility should
be assessed using a geometric acoustics model of the acoustic-mean flow
interaction process.
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(v) The items listed above refer to interaction of sound with the mean
flow field in a free-jet facility. The effect of turbulent scattering in
the outer free-jet shear layer should also be examined in order to determine
its importance.

(vi) Based on the results of the above studies, charts and calculation
procedures should be developed and presented for converting jet noise measure-
ments obtained in an anechoic free-jet facility to the corresponding in-flight
situation.

6.2.1.2 Experimental program. Experiments should be performed in an
anechoic free-jet facility to investigate the following aspects of its
acoustic performance.

(i) Prior to any other testing, azimuthal symmetry of the jet noise
field, after transmission through the rectangular free-jet boundary, should
be experimentally investigated. If the jet noise field proves to be azimuth-
ally asymmetric, the free-jet exit shape should be modified so as to give
azimuthal symmetry for the jet noise field.

(ii) Refraction of sound by the mean flow field of the free-jet should
be studied, using a single-frequency source placed in the jet flow. Phase
measurements should be used to determine the orientation of the refracted
waves.

(iii) Scattering of sound by turbulence in the free-jet shear layer
should also be studied in more detail using a single-frequency source placed
at various locations in the jet. Information in this case can be obtained
by measuring the frequency spreading effect at different angles outside the
free-jet.

(iv) The validity of in-flight jet noise data obtained from the free-
jet facility should be checked empirically by means of a scaling test, in
which results are compared from different primary nozzle sizes under the
same test conditions. This will reveal the limitations imposed by having a
finite area ratio (secondary/primary jet exit area).

6.2.2 Phase |l - Mean Flow and Source Alteration Effects

This effort should be primarily experimental but should utilize previ-
ously developed theoretical results in conjunction with experimental results
obtained under the current program to develop a source alteration model.

6.2.2.1 Experiment. Using a four-channel, two-point laser velocimeter
system (or other acceptable instrumentation), extensive measurements should
be made in the jet mixing and fully-developed regions for a cold jet mounted
in a low-speed wind tunnel. The range of test parameters should be
0.45 <My <2 and 0.05 5VT/VJ <0.5. In the supersonic experiments both conical
and convergent-divergent nozzles should be tested so that the effect of shock
containing flows can be determined. The following quantities should be
determined.
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(i) Mean velocity and turbulence intensity distributions for both the
axial and radial components should be measured throughout the jet.

(ii) Spectra, cross-spectra and phase speeds (comparable to convection
speed) should be determined from the two-point measurements for u', v' and
u' -v' combinations.

(iii) Fourth-order cross-correlations and cross-spectra should be
determined for the equivalent source function (Vi vi). This will provide all
the information necessary to substantiate and/or empirically modify the
source alteration model.

6.2.2.2 Theory. Theoretical programs are required to provide predic-
tion of (a) the mean velocity and turbulence intensity distribution, (b) the
turbulence jet noise source function distribution, and (c) the large-scale
coherent turbulence structure source function (or more appropriately, the
noise radiated from the large-scale turbulence structure in the presence of a
relative velocity).

6.2.3 Phase Ill - Determination of Relative Velocity Effects on Jet Noise

In this phase, the effort should be primarily experimental, but should
utilize previously developed theory to obtain a method of calculating the
noise field of a jet in the forward flight condition.

6.2.3.1 Experimental program. An extensive set of noise measurements
for both hot and cold jets should be made as follows:

(i) In the current exploratory program, cold jet noise measurements
were taken at forty test conditions which consisted of combinations of five
free-jet velocities and eight jet exit velocities. The range of this test
program should be extended, including forward arc measurements if feasible
in the available facility,.

(ii) Shock associated noise measurements should be made over a range of
free-jet and jet-exit velocity conditions.

(iii) The free-jet anechoic facility model jet air supply should be
capable of delivering heated air up to 800°C. |In this series of tests,
approximately 200 combinations of jet velocity, jet temperature and free-jet
velocity should be tested. The data should be examined in conjunction with
the cold jet data to determine the appropriate scaling parameters.

(iv) Limited shock-associated noise measurements should be made for
the heated jet case to validate the results on temperature effects from
static jet tests.

6.2.3.2 Calculation of forward motion effects on jet noise from source
alteration data. The information on source alteration effects associated
with jet mixing in flight obtained from the Phase || program could be used
to predict forward motion effects on far-field jet noise. For this purpose
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the source alteration data should be combined with the jet noise radiation
model, based on Lilley's equation, which has already been developed for
static jets under Air Force/DOT contract (Contract F33615-C-2032).

6.2.3.3 Comparison of theory and experiment. The experimental jet
noise data acquired under 6.2.3.1 should be corrected by the techniques
developed under 6.2.1 and should be compared with the calculated result of
6.2.3.2 and with available full-scale in-flight data, as appropriate.
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APPENDIX 2A

FLYOVER DATA ACQUISITION CONSIDERATIONS






The measurement of noise received on the ground from flying aircraft
is very complicated and expensive. In order to ensure the accuracy of the
measured data, and the subsequent comparison with static results, it is
necessary to examine various aspects of data acquisition and correction
procedures. In particular, detailed consideration should be given to the
following five aspects of flyover noise tests:

) acquisition and analysis of non-stationary data,
) aircraft position and attitude,

) ground reflection effects,

) atmospheric attenuation corrections, and

) real atmosphere effects.

Furthermore, a study of each of the above aspects should consider (a) the
procedure to be adopted, (b) the instrumentation requirements, and finally
(¢) the statistical accuracy of the measured data.

The problems associated with the acquisition and analysis of non-
stationary flyover noise data are discussed in this Appendix.

ACQUISITION AND ANALYS!S OF NON-STATIONARY DATA

The acoustic signal received by a fixed far-field microphone from a
static jet exhaust is random, but with stationary properties in the statis-
tical sense. The accuracy of the measured data can therefore be increased
to any desired level, simply by increasing the length (or time) of the data
record. In contrast, in the case of a flying aircraft, the sound emission
angle seen by a fixed ground-based observer is constantly changing with
time. The sound pressure signal recorded by the microphone is thus non-
stationary in nature, and the statistical accuracy of the measurements is
limited.

To illustrate this feature, consider the sketch shown in Figure 2A.1,
which shows the relationship between the sound reception time, t, and the
reception angle ¢ (i.e. the source-to-observer angle relative to the down-
stream jet axis at the time of reception). |If the reception time is
referenced to the time when the aircraft is directly above the microphone
(t =0 when y=90°), then this relationship is

tan ¢ = W':-t—, (2A-1)

where H is the normal height or distance of the flight path from the micro-
phone, and V, is the aircraft velocity. A sketch showing the variation of
reception angle y with reception time t is also included in Figure 2A.1.
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Figure 2A.1 Relationship between reception time (t)
and reception angle (y).
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From data acquisition considerations, the quantity of interest is the
rate of change of angle y. Differentiation of equation (2A-1) with respect
to time gives

dt (H/VR)2 + t2° (2A-2)

Clearly, for fixed values of H and V4, the rate of change of angle is
maximum when t=0. That is, the worst case is presented when the aircraft
Is directly above the microphone location.

In the study of inflight effects on jet noise, however, the com-
parison between static and flight results must be conducted at constant
emission angles. It is therefore necessary to establish the relationship
between the emission angle, 8e» and the reception time, t. This can be
obtained by deriving an expression which gives reception angle ¥ as a
function of emission angle 6,. With reference to the geometry between
these two angles defined in Eigure 2A.2, the required result is obtained as

sinee

tany = Mp + cosBg

(2A-3)

Combining equations (2A-1) and (2A-3), for a pressure-time history recorded
by a microphone, the time scale is related to the sound emission angle e

by

t = 6%-(MA cosec 8, + cot 0,). (2A-4)

In order to obtain the inflight result at a specified emission angle
8e from the non-stationary pressure-time history recorded by the microphone
during a flyover test, the result has to be extracted from the continuous
record. This is done by dividing the complete record into several smaller
records, and the time-dependent pressure fluctuations within each of these
records are assumed to possess locally stationary statistical properties.
The length (or time At) of each of these records is clearly governed by the
angular resolution (tolerable range of angular variation about a fixed
value of 6, under consideration) specified; as the resolution is increased,
the available record length reduces.

Let us consider some typical examples. For an aircraft flying over-
head at a height of M=152.4 m and at a Mach number of 0.2 (Vp=68.6 m/s)
simple arithmetic, using the above equations, shows that in the worst
cases, the record lengths (At) for various angular resolutions (A8,) are
ABg: 4o (+2°) 6° (+3°) 10° (+5°)

At: 0.155 sec. 0.25 sec. 0.4 sec.
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Figure 2A.2 Relationship between reception angle (y)
and emission angle (8¢).
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It is clear that for tolerable angular resolution, the typical record
length is rather small, usually of the order of 1/4 second. The accuracy of
the frequency analysis of such small records is now examined.

The statistical quality of the data can be evaluated, at first in a
preliminary manner, by examining the mean square error. For frequency
analysis in constant percentage bands (for example, one-third octave
analysis), the mean square error €2, where

2 = mean square error
true mean square value

€ ’

can be expressed by the well-known result

(2a-5)

2 .1
£ BT
in the above equation, B is the bandwidth of the ideal filter under consid-

eration, and T is the record length in seconds. For one-third octave
analysis, the result can be written as

2 21 ___ -
e Te 3T (2A-6)

where f_ is the center frequency of the one-third octave band. It is clear
that for a fixed record length of time T, the mean square error increases as
the frequency decreases. For a typical flyover test (T =0.25 second), the
mean square percentage errors are

fo = 50 Hz, e2 ~ 35%

fo = 10 KHz, €2 -~ 0.2%,

The statistical accuracy can further be expressed in terms of the con-
fidence limits as determined from standard Chi-square distributions. The
results can be obtained from any standard textbook on statistical analysis
of stationary data.

For samples with n equivalent number of statistical degrees of freedom,
where n=2 BT, the measured mean square value s2 and the true mean square
value 02 are related by

S2

2
Z =4 (2A-7)

where the value of x2 (Chi-square) for various confidence intervals may be
obtained from standard statistical tables.

For the typical flyover test considered previously, the number of

degrees of freedom at the lowest and highest one-third octave bands of
interest are
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f. =50 Hz, B=11.5 Hz, n~6
for T=0.25 second
fe =10 KHz, B =2300 Hz, n~ 1150

The value of n at low frequencies is therefore rather small, and examina-
tion of statistical tables for chi-square distributions shows that the
confidence level in the measured values of mean-square sound pressure at low
frequencies is not high.

The statistical accuracy of the analysis at low frequencies can be
improved by increasing the number of samples, and computing the arithmetic
mean after analyzing all samples (record lengths). A description of the
improvement in the statistical accuracy of the results derived from N
samples can be obtained from any standard textbook on statistics, and the
final result is that the standard deviation is inversely proportional to N%.
Thus, for large N, the measured (or sample) mean value approaches the true
mean value.

In a flyover test, the required number of samples, for some specified
statistical accuracy, can be obtained during a single aircraft flyover by
utilizing a line of microphones set in the direction of the flight path. If
the microphones are sufficiently far apart from each other to record uncor-
related (and hence necessarily independent) signals, and if each is analyzed
and compared with the others after suitable time delays, a significant
improvement in measurement accuracy can be achieved.
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APPENDIX 2B

CALCULATIONS OF JET OPERATING CONDITIONS






In the experiments performed in the free jet facility and the low-speed wind
tunnel, two factors alter the operating conditions from those used in a
normal static jet test facility. Firstly, due to aerodynamic considerations,
the plenum-to-jet area ratio is not large so that there is a finite velocity
in the plenum or reservoir. Secondly, the jet is exhausting into a non-
stationary stream so that the total pressure in the surrounding air does not
equal the static pressure. The following analysis has been used to calculate
the jet operating conditions. |t is assumed that the static pressure in the
plane of the primary jet exit is constant and, since the jet is unheated, the
total temperature is also assumed to be constant. A sketch of the typical
test setup is shown in Figure 2B.1, From the energy equation it is found
that,

V2 V2 2

R™ _ J V1 _
so that,
T 1y V2
Lo ED 2y, (2B-2)
T a-r

where x = Vy/V.

From the assumption of constant total temperature,

Ty 1+ (y-1) v 2A2/2aq?

-~ = . (28-3)
TT 1+ (y-1) My2/2
Combining equations 2.B.2 and 2.B.3, we get
V. .2/a 2
M)2 = J T (2B-4a)
1+ (y-1) v 2 (a2 - 1)/2a72
or
2
v M2
J_ . J ) (2B-4b)

ar® 1+ (v-1) M2 (1-22)/2

In order to calculate the velocity in the reservoir, the continuity of mass
flow condition is used to give

Letting the area ratio A;/Agp = o (¢ < 1) then
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Figure 2B.1 Diagram of typical free-jet or wind tunnel facility.
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(28-5)

Since the total temperature is constant, the jet and reservoir temperatures
are related by,

Ty _ 2+ (y-1) Mg? (2B-6)
TR 2+ (y-1) MJ2

so that from (2B-6) and (2B-5) we obtain

+1
Ty (v-1) . 2 2 (y=1) , 2 (TJ)sy-I; -
(T—R-){l+ M2} -1 -a -(JZ—LMJ Ty = 0. (28-7)

For a given value of Mj (or V;/at from equation (2B-4)), the value of (TJ/TR)
can be calculated from equation (2B-~7) by an iterative technique.

The static pressure ratio is given by
pe/py = (Ta/1 )Y/ (71 (28-8)
and the total pressure ratio is given by,

PR _ PR 2 + (y-1)Mg? Y/(y-1) (28-9)

X
PT Pr |2+ (y-12V%/ap?

Consider the following example. We need to find the static and total pres-
sure ratios for the following conditions,

A= .25, a = .25 and My = .9.
From equation (2B-4b) (V /ay) = .838157.

Iteration of equation (2B-7) using Newton-Raphson two times gives
(Ty/TR) = .86334, so that Mg = .14518 from equation (2B-5)

Thus, finally: pr/Py = 1.667921

and Pr/Pr = 1.641591.

Clearly the required jet operating conditions can be set using a measurement
of either total or static pressure, whichever is experimentally more
convenient.
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APPENDIX 2C

TEST CONDITIONS AND MEASURED
(UNCORRECTED) TURBULENT MIXING NOISE DATA






Run
Number

—t —
— O\ o~

13
14
15
16

17
18
19
20
21

22
23
24
25
26

27
28
29
30
31

32
33
34
35
36

[N eNe o) (e NwNeNeNe! [eNeNeoNeoNe OCO0OO0OOOo [eNoNeNoNa)

[>NeNe NN

.hoo
.hoo
.hoo
.4oo
.hoo

.500
.500
.500
.500
.500

.600
.600
.600
.600
.600

.700
.700
.700
.700
.700

.801
.800
.800
. 800
.800

.901
.900
. 900
.900
.500

[eNeNoNoNo) [oNeNeo oo [=N e NoleNe) COOo0OO00O OO0 O0OO0OO0

[eReNeoNoNa

1
3o

.019
.051
.100
.150
.200

.025
.051
.100
.150
.200

.030
.051
.100
.150
.200

.036
.051
.100
.150
.200

.042
.051
.100
.150
.200

.048
.051
.100
.150
.200

TEST CONDITIONS

M=1.0, CONVERGENT NOZZLE

o

.hoy
.4oé
.4oé
.hos
504

A

[= =N ool [oNoNoNoNe [eNe NN Nl [=NeNeoNoNo]l [eNeoNoNeoNol

[oNoNoNeNe

VT
v

.047
127
.251
.376
.500

.049
.101
.200
.300
.399

.050
.085
.167
.250
-333

.052
.072
143
.215
.285

.052
.063
.125
.188
.250

.054
.056
L1
167
.222

)

OO0 O0OO0 OCOO0OOO OO0 O [oNeNeoNeNe] OO0 OO

[>NeoNeoNoNe

.513
.513
.513
.512
.51

.623
.623
.622
.621
.620

.738
737
737
.736
.734

.858
.857
.856
.855
.853

.985
. 984
.983
.981
.980

vy

a

Ty
T

[oNeNoeNeNol [oNeoNeNeoNol

[eNoNeoNoNa

o

(-7

.969
.970
-970
.970
-970

.952
.952
952
.952
.952

930
.931
.931
931
931

.905

0.905

OO0 OO [=NeNe]

[=NeNoNoNe

.905
.905
.905

.875
.875
.875
.875
.876

.840
841
841
.84
.842

— b oh b — — b w—h ead — — o omb ah —t d o b — — —h b

e e e

PR
PT

L1143
.1139
L1139

1135
.1128

1870
.1867
.1865
.1860
.1855

.2858
.2851
.2847
.2837
.2823

4176
173
4163
.h151
ROKL

5951
-5934
.5921
.5903
.5873

.8344
.8313
.8291
.8259
.8216
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Run
Number

37
38
39
Lo

Run
Number

L2
43
Ly
b5

234

M

= 1.4, CONVERGENT-DIVERGENT NOZZLE
v v
L)
a5 vy J
0.063 0.054 1.380
0.100 0.085 1.381
0.150 0.128 1.380
0.200 0.170 1.380
= 1.7, CONVERGENT-DIVERGENT NOZZLE
v v v
Y1 )‘(=V_T') MJ(=_J_
% J
0.077 0.057 1.683
0.100 0.075 1.682
0.150 0.112 1.683
0.200 0.148 1.683

_w
Tr

0.725
0.725
0.725
0.725

0.638
0.638
0.638
0.638

Ty (.= Ty
TR

Ty (. Ty
= (-5

TR

)

)

PR
Pt

3.0610
3.0640
3.0611
3.0596
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APPENDIX 3A

GEOMETRICAL ACOUSTICS FOR PARALLEL, SHEARED FLOW






The notes in this Appendix describe the derivation of analytic, geomet-
ric acoustics results for the radiation from various types of acoustic source
distribution surrounded by a parallel sheared flow.

The notation in this Appendix and Appendix 3B differs in some respects
from that used elsewhere in the report. The main difference is that here the
external flow speed or flight speed is 'V,' as opposed to '"Wi' or 'Vp' used
elsewhere; in general, external flow conditions are referred to here by sub-
script '0'. This means that 8o here is equivalent to 81 in, for example,
Appendix 3C and not 85- Notation in general is explained with the aid of
Figure 3A.1.

3a.1 SOURCE IN SHEAR FLOW — GA LIMIT
(FIXED FRAME ANALYSIS)

The stationary-fluid result, in terms of the (k, ) cross power spectral
density (cpsd) of the acoustic source distribution q(x, t), would be (with
Vg =0)
2 2
R P() g =5 o5 @ (wag/ag, ) (3A-1)

where P(w) is the psd of the far-field pressure in the source-region fluid,

w is the fixed-frame frequency, and the functional form of the source (k, w)
. - 2
cpsd is Q(k, w) =p5 ¢ (k, w).

Provided q contains no 3/3t operators, the Doppler transformation gives
the corresponding moving-fluid result —in terms of fixed-frame frequencies—
as

2 2 2
Rr P(w)[s = 3 ps @ (usag/ag, w) D (3A-2)
where
~1
ws/(ﬂ = DS = {1 + Qg 'ys/as}
= {1 + Vgcos6 /ag) ! (3A-3)
and wsag/ag is the radiation wavenumber in the source-region fluid. In

equation (3A-2) and elsewhere, R, denotes the distance travelled by the
wavefronts in the wavenormal direction.

To go from the source region to far outside the jet, we assume that the

external radiation pattern is axisymmetric. It then follows from energy
conservation that
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WAVENORMAL
UNIT VECTOR o
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SOURCE
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V R/a POSITION

SOURCE POSITION (FIXED)

Figure 3A.1 Definition sketch.
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R P(©)}g _ polo"

{R? P(w)}g  pgDs"

(3A-4)

where
Do = {1 + g, - yc‘/aa}'1 = {1+ Vacos(-),alac,}-1 = wo/w (3A-5)

is the Doppler factor wo/w relating frequencies relative to the external
flow to frequencies in the fixed frame.

Combining equations (3A-2) and (3A-4) gives the radiation psd in the
external flow as

(Re P())o = 0o b5 7 olusas/ag, u) Dy D52 - (3a-6)

3A.1.1 Compact Volume Acceleration Source at Rest
If we put Q(k, w) = p;Z ¢(k, w) and assume ¢ compact, we get

2 -
{Rr P(w)}g * 06 pg 5 (0, w) DS Dg2 (3A-7)
compared with

Ry Pylw)l, = o2 7000, w) (3A-8)

if the entire flow field were replaced by fluid (pq, ao) at rest.

Thus for the same emission direction and distance, the effect of the
flow field on the radiation from a specified compact volume acceleration
distribution at rest is given by

P -
: Sl = BE-DJ' Dg 2 (stationary point volume- (3A-9)
o' o acceleration source).

This result is not to be confused with any effects which arise from having
a convected source pattern; only the fluid is moving here.

3A.1.2 Compact Volume-Acceleration Quadrupole at Rest
If q=op (stij/ax;axj), so that

ks w) = o k; kj kg ky @) jan(ks w) (3A-10)
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is the functional form of the source (k,w) cpsd, then (3A-6) is replaced by

2 _ PoPs 1
Rr Plw) ], = T 3 %si 9sj Osp ®sm ¢; jam(wgag/ag, )
a
s

x wgt D' Dg72,

and if ¢ is compact, we get (using wg = wDg)

2 PoPs 7
Re Plw)lo = 57 * 9si 9sj 9sp %sm 2ijam(0, w)
S

x w'* Dyt DZ . (3A-11)

For a given emission direction ag and distance R, the effect of the flow
field on the radiation from a specified Sij(5’ ty compact distribution is

ps {3 Y
%i%%7'= —E-(gi) Dé’ D: (stationary point volume- (3A-12)
o Po \% acceleration quadrupole).

3A.1.3 Compact Volume-Displacement Quadrupole at Rest
If q = ps(azlatz)(azeij/axiaxj) relative to the flow, so that

Qlk, w) = p;z w* ki kj ke km ®jem (k, w)

is the functional form of the source (k, w) cpsd, then the compact-source
result is (in the GA limit)

PoPs

2 m
Ry P(w)lo = y 72 *%si Osj Osg Osm ®jem (0, w)
s

8 L [
x w® Dy Ds .

Thus, the effect of the flow field, for a given Bij(§, t) distribution, is
given by

-4

0 a
g(w = = (f) Dol' DS6 (stationary point volume
o' Po o displacement quadrupole),

if ag and R, are held constant.
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3A.2 NON-COMPACTNESS EFFECTS AND
SOURCE CONVECTION

The simplest estimate of non-compactness effects in aerodynamic noise

is obtained by assuming isotropy of ¢ (or ¢ij£m) with respect to the direc-
(For

tion of the vector argument (ki Vej, ky Ves, k3 Ves, w=ky V.1).
convenience a convection velocity (Vey, 0, 0) is assumed, i.e. parallel to

the mean flow velocity). Thus, we put

w = klvcl
convected frame
frequency) ;

Ak, w) = p2 ok, w') (w0

o(ky w') = 00, {(kyVe1)2 + (kpVep)2 + (k3Vos)2 + w'2}Y)
(isotropic function assumption) . (3A-13)

Putting k =wgag/ag in (3A-13) gives the required value of ¢ as

¢ (wsas/ag, w-wgag; Ve /as) = ¢(0, wy), say, (3A-14)

which defines the modified frequency w_ and the modified Doppler factor
Dm = wy/w. Note that wsag,/ag = woaOITao (for k; matching).

Thus, the stationary compact-source result (3A-11) is modified to

Rr P(w) o = o 7 {asiogj agy agp 27 j2m (0, wp)ug' }
s
"
x Dot DZD,}
(non-compact convected volume-acceleration quadrupole). (3A-15a)

Also,

2 PoPs n (3) 8
Ry P(w)|o = —;1:-3'{as; asj Gsy Ggm ¢ij£$°’ W) O } .y
s m

(non-compact convected volume-displacement quadrupole) . (3A~15b)

Note that in (3A-15), ¢§Yi is a kinematic quantity, i.e. it contains no
density factors. J
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3A.2.1 Recovery of Lighthill Radiation Model

in the Lighthill radiation model, the sources radiate directly into the
surrounding fluid (density pg, sound speed, a,, velocity Vo). The foregoing
results may be converted to the Lighthill radiation model by simply putting
Ps > Po
3s > o
Vg + Vo (3A-16)
0g > Qg

and Dg + D,

Further details are given below, in sections 3A.2.2 and 3A.2.3.

3A.2.2 Evaluation of Dy (GA Limit)

From (3A-13) and (3A-14),

w2 = (woto;/a0) 2 Vzl + kg Viz + ki V§3
+ [u - (wg80,/30) Ver1” (3A-17)
where
K2+ k3 = (wg/ag)? - ki
= (w/ag)? Di - (woo1/a0)?
= (w/ag)? Di - (w/ag)? DF cos?8,
(ao1 = coseo) . (3A-18)

Thus if we make the simplifying assumption that Vg2 = Ve3 = Vet, say, the
modified Doppler factor follows from (3A-17) and (3A-18) as

2 _y2
vZ, -v 2 Var\2
D = wp/w = {DF cos2@q _9_1__2__e_t_ + Ds(-—e-g)
ag a
1

v
+ (1 = Do ;El coseo)z"‘r (3A-19)
o

The following special cases of (3A-19) are of interest.

(a) Vo = 0 (source region at rest relative to external fluid): then

Do=1. Also,
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-1
Ds = (1 + Vgcos8g/ag) = (1 - Vgcos8,/a0) (3A-20)
from consideration of phase speeds in the axial direction.

(b) Lighthill radiation model: all s subscripts in (3A-19) are
changed to 0. Thus,

v 2 Vv 2 v
D = Dg {(;2l> coszeo + (EEE) sin260 + (DO"1 - ;Ei-coseo)z}%; (3A-21)
o o o
Note that
-1 Vey _ Ver ~ Vo _
D, - ” cosfy = 1 (——:;:——- cosf, (3A-22)

from the definition of Dy in equation (3A-5).

(c) General GA modified Doppler factor with Ve; = Vg:  If the convec-
tion velocity is set equal to the local flow velocity in the shear layer,
equation (3A-19) simplifies to

2
2 Vél B Vét 2 Vet 3
Dy = Do §cos28 [ ———) + 05 rei| =5+ 1) %, (3A-23)
ao as

where the relative motion Doppler factor is defined by

Ve =V
Dg,re1 =1 - ( > °> cosfg (3A-24)
» ao
V_ -V -
s Yo
= ‘1 + » cosfg (3A-25)
w D
s s
= S =5 (3A-26)
“s Do

Equations (3A-25) and (3A-26) follow from the phase-speed relationship
across the shear layer, Vg + ag/cosfg = Vg + ag/cosbg.

3A.2.3 Check on the Ffowcs Williams (ref. 7) result obtained using
Lighthill radiation model

Changing all s subscripts to 0 in equation (3A-15) gives the radiation
from a Lighthill-type convected quadrupole distributon in a completely
uniform moving medium (velocity Vo parallel to the convection direction).
Thus, in proportional bandwidth form,
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D6

2
2 P 1 5
{Ry P(w)wly = ;9;- {aoi 20j @0l %om d>i(j)]m(0,wm}wm} X Egé (3A-27)
(o] m

To convert from source-region frequency w to the frequency w, relative to
the uniform flow, no change in the proportional-bandwidth mean square
pressure is involved, but simply a frequency shift by a factor wg/w=Dg, as
given by equation (3A-5). The frequency wy corresponds to the frequency
heard by an observer on the ground, as the source region is moved past with
velocity -Vu (assuming the atmosphere is at rest).

The factor DOG/Dm5 follows from (3A-21) and (3A-22) above as

V.. -V V., \ 2
1 - _.C..l___g) COSBO 2 4 (__f_.l.) COSZG
3o = o

Vet \? l~5/2
+ (————) sinZg, , (3A-28)

ag I

which is the same as the factor obtained by Ffowcs Williams (ref. 7) for a
homogeneous source model with a Gaussian space-time correlation function.
The Ffowcs Williams form of source distribution is a special! case of the
more general form assumed in (3A-13), which was first proposed by Crighton
(ref. 111).

v -1
(1 + == cosby)

a

)
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APPENDIX 3B

GENERAL RESULTS FOR PARALLEL SHEAR FLOWS
(SOURCE DISTRIBUTIONS WITH AXIAL COHERENCE ONLY)






These notes describe the framework in which the Lilley equation flow
factor solution can be used to estimate flow-acoustic alteration effects due
to forward motion.

The notation used here and in Appendix 3A differs in some respects from
that used elsewhere in the report. The main differences are described in
the introduction to Appendix 3A.

3B.1 THE MODIFIED DOPPLER FACTOR

When only axial source coherence effects are retained, the modified
frequency, wp, defined in section 2 of Appendix 3A, reduces to

w
w; = (sg-coseo Vel)2 + (m - gﬁ-cose v )2

o o o ‘¢
i.e v )
- - p £l 2 . p2( ZeL 2l%
Wy w‘(l Do 2 coseo) + D0 ( % cos8 ) }
= wbp,, say (3B-1)
In (3B.1),
")
o -1 Wo
Do = (1 + sg-coseo) =— (38-2)

3B.2 EQUIVALENT STATIONARY POINT VOLUME-ACCELERATION
OR VOLUME-DISPLACEMENT QUADRUPOLE

The quadrupole cross-power spectral density in axial wavenumber and
frequency, evaluated at the actual frequency wt and the actual wavenumber
ky = (0/ag) Docosby required for radiation at 8o to the x; axis, is assumed to
be the same as the cross-power spectral density at the modified frequency
wm and at zero wavenumber, k; =0. Coherence of the quadrupole distribution
in the transverse plane (x;, x3) is assumed to be negligible

Thus, if P(») is the far-field pressure psdt radiated by a stationary
point volume acceleration/displacement quadrupole of the same instantaneous
total strength, the radiation at the same distance from the actual non-
compact quadrupole distribution is given by

TRelative to coordinates fixzed in the source region, i.e. fized
with respect to the nozzle.

*Azimuthally averaged.
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—
[

e
"

B um) Dy (v =1

or

P(w) = P(wy) Dp8 (v =3) (3B-3)

The Dm'“ or Dm'8 factor arises from the w* or w® frequency dependence of
P(w). If proportional frequency-bandwidth values are required, the factor
becomes Dm'5 or Dy~?; thus,

Plw)w = ﬁ(wm)wm Dy~ 3 (v

1)

or

L]
#

P(w)w = Pup)uy Dp~° (v = 3) (38-4)

which is a more convenient form for scaling purposes.

3B.3 SCALING OF RADIATED PRESSURE
POWER SPECTRAL DENSITY

In a uniform fluid at rest, the radiation from the stationary point
quadrupole described above would be given by

2 +
2 & _m Po (v) 2v+3 (38-5)
Rr Plo)w = E';gr %i %0j %ot “om¢ijléo’w)w

Here, for example,

o{ (00w = (V)2 ¢%)2

(3) 10 -
¥ (00w = d (38-6)
since @%}im(O,m) is the cross-power spectral density (in w) of the total
integrated quadrupole strength, fvj'v;'dx or fg;'€;'dx, and it is assumed
in this example that v;' scales on Vj or that £;' scales on Vy(vy/d)-t =d,
the nozzle diameter. Also,

w = Vy/d; (38-7)
50
R2 P(w) vy\8
_r_(ﬂ_“i_ m(_J_> (38-8)
dzpozaol-{ 30
t (v)

Note ¢ij£m(o’w) 18 the w-spectral demsity of the quadrupole strength.
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Thus if F(v) is the factor by which the point volume-acceleration/displace-
ment quadrupole radiation intensity is multiplied, due both to finite Mach
numbers in the flow and to departures of (p, a) from (po, a,), the scaling
law derived from (3B-4) and (3B-8) is

2
Rr P(w)m ‘x (V_J)8 F(\)) (w) D _(2\)+3)
m

2,244 I
dpo ao

(for given wmd/VJ) (38-9)

3B.4 EFFECT OF EXTERNAL STREAM. OF SPEED Vos ON
FLOW RADIATION FACTOR F(w)

The flow factor F(V)(w) refers to the situation (a) sketched in Figure
3B.1 in which a stationary point quadrupole is placed in a shear layer with
(in general) a non-zero external velocity.

I f th? low factor in the situation (b) sketched in Figure 3B.1 is de-
noted by Frg (w), where the flow velocities are reduced everywhere by Vg to
bring the external stream to rest, then F(V)(w) is given by

FO) () = ﬁéfg (wDo) Do*"**  (for same ag) (38-10)

since (a) is equivalent to having a convected point quadrupole of frequency
w moving upstream at V, as in (c). The fixed-frame frequency corresponding
to (c) is wp=wDy, since (c) is simply (a) with a velocity -V, superimposed;
this is the reason for having wDy as the argument of ﬁ&:?.

The factor Dy2V*" in (3B-10) represents the basic effect of a com-
pletely uniform flow of velocity Vo on the point quadrupole radiation; once
this has been allowed for the F(V?(mDo) factor accounts for departures

. . . r
from this uniform flow as described above.

Note that the combination Dy2V+* Dm“(2V+3) which appears in the
radiation scaling law when (3B-10) is substituted into (3B-9), may be
written as

-(2 -(2
Do (D/0g) ~(2V*3) - D, DmfrzT3) (38-11)
where Dy re) is the modified Doppler factor as in equation (3B-1), but with

Vc1 replaced by V., -Vg. Thus, the scaling law may be written in the more
useful form

e follows from the Doppler transformation.
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(a)

POINT
QUADRUPOLE Yt
(w)

(b)

POINT
QUADRUPOLE Y
(w)

Vy = Vo

POINT (c)
QUADRUPOLE

(w)

-

Vo

Vy = Vo

Figure 3B.1 Flow factor —velocity profile situations.
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2
Ry Plw)w V. \8
J ) (v) Do
[ — —a—— « F -
d2 pf ag! (ao rel(woo) 2v+3 (38-12)
m,rel
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APPENDIX 3C

A GEOMETRIC ACOUSTICS INVESTIGATION INTO THE
INFLUENCE OF FREE-JET MEAN VELOCITY AXIAL VARIATIONS
(NON-STRATIFIED FLOW) ON SOUND REFRACTION BY THE
SHEAR LAYER (RELATIVE TO THE STRATIFIED FLOW CASE).






The simple, analytic relationships used elsewhere in this report, be-
tween ray and/or wavenormal angles inside and outside an axisymmetric
cylindrical sheared flow field are results which are valid only for the
special case of a parallel or unidirectional, stratified’ mean flow field.
These terms are used occasionally to mean that such properties persist at all
locations upstream and downstream of the local flow region under considera-
tion. Here that unrealistic flow field model would be referred to as an
infinite stratified, parallel flow field model and is thereby distinguished
from the more realistic (locally) parallel, stratified flow field model. The
latter is a fairly realistic model of the initial mixing region of an axi-
symmetric jet flow, since the mean velocity vector varies in direction by
only 2 or 3° from the axial direction and its magnitude is only a weak
function of the axial coordinate compared with its strong dependence on the
transverse or radial coordinate

Here the restriction that the flow be stratified is removed so that the
magnitude of the axial mean velocity vector is allowed to vary with axial
position in a realistic way. With that dependence specified, the refraction
or bending of sound rays as they propagate through a parallel, but non-
stratified, shear layer is examined and emerging ray angle results are
compared with those calculated for the parallel stratified shear layer case;
ray displacement effects are also studied.

In a sense this non-stratified flow model may be more unrealistic than
the stratified one; for example, if the flow is incompressible, then the
continuity equation can be written as

v a(r ve) 3V
L S IR SRS B ) -
IX r ar r 9¢ (3¢-1)

where Vi, Vg are the mean velocity components in the radial (r) and azimuthal
(¢) directions. Thus, when Vy =Vx(x,r), the continuity equation requires, in
general, a non-zero radial mean velocity V¢, i.e. the flow is non-parallel
which is in conflict with the flow model as specified. In principle then,
when the stratified flow restriction is removed, non-axial mean velocity
components should be included in the mean flow model, in particular (for
non-swirling flows) the component V¢ = Vi(x,r) with Vg =0. This would be a
useful extension of the present work.

3C.1 A JUSTIFICATION FOR UTILIZATION OF THE GEOMETRIC
ACOUSTICS EQUATIONS TO DESCRIBE SOUND PROPAGATION
THROUGH THE FREE-JET SHEAR LAYER

According to Morse and Ingard (ref. 112) the geometric approximation is
'""...appropriate when a and V vary slowly and 'smoothly' (i.e. when the

tDefined as the flow properties being a function of the transverse coordinate
onty.
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wavelength times the Laplacian of a and V are negligible compared to their
gradients) ....'"" The geometric acoustics equations used below are obtained
by assuming a solution for the acoustic pressure, p', of the form

p'(x,t) = A(x,w) exp[-jko(x) + juwt] (3¢-2)

to the convected wave equation

-.l_ .5—2_2'_. = VZ U c_
2 bez P (3C-3)
(D/Dt = 3/3t + V; 3/3xi).

® is the so-called eikonal function which defines the surfaces of equal
phases and A(x) is the amplitude function. The eikonal equation

a

|grade| = —= (3c-4)
a+\!°ﬁ

(n = grade/|grado|) (3€-5)

is derived by substituting the solution (3C-2) into equation (3C-3) and neg-
lecting all but the highest powers of k (=w/aj). However apart from the
trivial case of a completely uniform flow, V(x) = constant, equation (3C-3) is
itself an approximation: if V=(V,(r),0,0), a=a(r), p=p(r), then the exact
equation is simply the left hand side of the Lilley equation set equal to
zero (since sources within the free-jet shear layer are not considered here,
only sound propagation through it), that is,

D |1 8% o), 1de D |2p! i".&)éﬁﬂ'_= ]
Dt {52 pt2 M B p dr Dt | 3r *2 dr / 3xar 0. (3¢-6)

In this particular kind of flow field, an infinite, parallel, strati-
fied flow, the geometric approximation is valid, in the first instance, when
the last two terms can be neglected in equation (3C-6) thereby reducing it
to a form closely resembling that of equation (3C-3); clearly, the geometric
acoustic solutions of equation (3C-3) also satisfy this reduced form of the
Lilley equation.

By considering the solution of equation (3C-6) at a particular frequency
and for a certain radiation angle, it is not difficult to show that the mean
velocity gradient term is of order 1/Sst relative to the two leading terms,
for a given mean velocity profile shape. The Strouhal number Sgy is based
upon the vorticity thickness of the free-jet shear layer, §,7» and the
centerline or exit mean velocity, Vy.

In the free-jet configuration § Twill be typically an order of magni-
tude larger than that in the primary jet for a given ''ray path" at 90° or
in the rear arc. The ratio of the tunnel or free-jet exit velocity, Vy, to
the primary jet centerline velocity varies over a wide range of values (for
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a given ray path) but is less than unity so that

SeT 2 10 Sgp

where S is the Strouhal number based on primary jet quantities. It can be
evaluated by linking it with the axial location of maximum radiation in the

primary jet and is found to be (empirically) of order unity. Hence, in the

present problem, the gradient term in the homogeneous Lilley equation is at

least an order of magnitude smaller than the two leading terms that form the
basis for the geometric approximation.

The Lilley equation solutions presented in section 3.2 for sound radia-
tion from the primary jet alone do exhibit significant deviations from the
geometric acoustic solutions but that represents, in principle, a combina-
tion of source-flow interactions and propagation effects. That is, sources
are located within the shear layer and the sheared flow modifies the
emission process as well as that of propagation. In any case the corres-
ponding free-jet Strouhal numbers would be an order of magnitude larger than
the values adopted there and the trends in those results indicates a rapid
approach to geometric acoustics with increasing Strouhal number.

3C.2 BASIC EQUATIONS FOR A GEOMETRIC ACOUSTICS STUDY
OF REFRACTION IN A PARALLEL NON-STRATIFIED MEAN
FLOW MODEL OF THE FREE-JET

The equations governing the propagation and refraction of acoustic rays
in an otherwise time independent mean flow field can be written as three
second order, ordinary differential equations [Ugincius (ref. 113)]:

d_(y dr dr
_— —_— |+ - -
as (Vg JF o x (T x W) =UN (3¢-7)
Later Ugincius (ref. 114) corrected these to
d {, dr d?r dr
TN =) -(—.¢)w+= = 9N -
ds ds d52 Y w ds X (Y X w) y (3C 8)

where r = r(s) is the position vector of the ray as a function of arc length
s and

v
W=y 3 (3¢-9)
f=—o (3c-10)
a+V .n
N =y V/a (3C-11)
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cos@. (3c-12)

R R

V= ej 3/oxj and V' = é;a/ax; where
xj = dr/ds. (3¢-13)

The speed of sound a(r) and velocity vector V(r)are arbitrary, well-behaved
functions of the position vector, r; the speed of sound ag is a reference
value. The relationship between V, n, a, V., and 8is indicated in Figure
3C.1. The vector n is the unit normal to the wavefront (a surface of
constant phase); it is the direction of the sound ray only if there is no
flow, V = 0. With flow the ray direction is given by the vector V, where

vr= aﬁ + V (BC-]I')

i.e. the direction of the ray, dr/ds, is given by
dr/ds = Vr = Vp/Vp .

The angle between the wavefront normal direction and that of the mean flow
velocity is designated 6 and that between the ray direction and the mean flow
direction, V.

Equations (3C-7) and (3C-8) differ by the term

d2£
-f —— ¥V W
<ds2 - > -
which Ugincius (ref. 114) argues is negligible for low Mach number flows. The
present investigation is based on equation (3C-7), since typical Mach numbers

of the jet flows of interest are less than 0.25. However, the influence of
that extra term should be considered in future work [by solving equation

(3¢-8) 1.

Equation (3C-7) simplifies considerably when the mean velocity vector is
defined to be every where parallel to the x axis and axisymmetric, i.e.

v ={v,(x,r), 0, 0} (3c-16a)
with a = a(x,r) (3C-16b)
so that

W = {uw,/a, 0, 0} (3¢-17)
)

u m (3c-18)

v

— =1+ (V,/a)? + 2(V,/a) cose . (3¢-19)
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Figure 3C.1 Definition sketch.
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Ve

|vx + cos6, a sing, 0 | (3c-20)

d

ds

L

) ‘Vx-+a cosf

a sind
Cc-21
7 TS ,ol (3 )

With equations (3C-16) through (3C-21) the x component of equation (3C-7)
reduces to

d cos® _ 1 |§E. aVy )
ds | a+V,cosb V.(a+V,cos8) | 3x + cosf 3= |- (3€-22)

When a stratified flow field is assumed [Vy =V, (r), a=a(r)], equation
(3€-22) can be solved immediately to give

cost

———r—— = constant.
a+Vycosf

It follows that if (i) 6 =67, Vx=VT, a=ay and (ii) 6=85, V4x=0, a=a, at

o
two points on the ray path then

aT a0

— =
cosOy T cosbg

a relation that also can be obtained by '"'matching axial phase velocities' on
both sides of a stratified shear layer (a vortex sheet being a special case).

Equation (3C-22) was adopted by Schubert (ref. 115) for his 'Numerical
Study of Sound Refraction by a Jet Flow,' based on ray or geometric acoustics

With the following relations

d: _§_ 1 _3- -
5o os¥ 5+ siny —= (3C-24)
Vyx +a cosf a cos6
cosy = v y siny = = (3C-25)
r r
Schubert (ref. 115) reduces equation (3C-22) to
o _ 1 [_. . da _ da . Vx avx)l
rral sing == - cosB 7= + cos® (sune o - Cos® == (3c-26)
and then by differentiating
tany = a sin8/(V, +a coso) (3¢-27)

to obtain
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dv_ a2 . de _ d -
ds " y2 (1+ vy/ascose) 4o - Sine 4 (vy/a) (3c-28)

Schubert (ref. 115) finally obtains the following equation for the ray
curvature dy/ds

v I} v
ap o I iy 22 in2y - 2 )ia__r 3y —X
ds "V, I 3 siny ™ + (2 Msin<y v, cosy 5T 3 Msin3y ™
2 vV oV
-8 L - M3 1 X -
V2 [I + M( 5 cosy M> ]ar (3c-29)

where M=V,/a. The ray speed can be expressed in terms of
V./a = Mcosy + (1 -Mzsinzw)i (3¢-30)
so that the right-hand side of equation (3C-29) is a function of the mean

flow properties and is only an algebraic function of the angle between the
ray and mean velocity vectors, .

In order to solve equation (3C-29) numerically, the following identities
are substituted

- A2 2
%% - d4x/dr (3¢-31)
[1 + (dx/dr)2]3/2

siny = ' : (3¢-32)
[1 + (dx/dr)?2]

il

cosy = dx/dr ] (3c-33)
[1 + (dx/dr)?]

dx/dr)

1l

(coty

so that equation (3C-29) is a nonlinear, second-order, ordinary differential
equation of the form

d2x _ f<%, x, r) (3¢-34)

Equation (3C-34) is reduced to two first order equations, in the usual way,
by denoting dx/dr by Y;:

dy
5= f1(Yy, x, 1)

X (Y, x, 1) =Y (3c-35)
dr 2Y71r 1
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The mean flow model described below is isothermal (a=constant=ag) and the
mean velocity gradients are specified with respect to coordinates non-
dimensionalized by r; —an effective free-jet nozzle radius. In these
coordinates the equations to be solved are

ﬁ— = Fl (Yl’ X, R) aT + Fz(x, R) 'a—x'— (3c-36a)
dX _ -
X o=y (3c-36b)

where X = x/rq, R=r/ry,

'} a~y 3 Vp _ ,V v
_ 213/2 _T.)<_.9_ [ 0 _r LI 3”
Fi(Y1, X, R) = {1 + Y2} x' (ao Vr) o U (ao cosy - o vx) .

and

vr\2.
Fa(X, R) = P Vg - (3¢-37)

The trigonometric functions have been retained here, although they are
evaluated with
sinp = [1 + Y12]'* (3¢-38)
cosy = Y, = siny; (3¢-39)

the ray speed, V., is evaluated with equation (3C-30).

3C.3 MEAN FLOW FIELD MODEL

The free-jet is assumed to be isothermal and axisymmetric with an
effective nozzle radius, rr- The axial mean velocity profile, V;, is given

by

- Vx 1
Vx = -v—— = i {1 - erf (X)} (3C"l0)
T
where
r ‘I'T
x =ol—=) -bg (3c-41)
The constant by =.297 is chosen to yield a Vx value of 0.663 at r =rg; that
is, at the "lip-line' the mean velocity is chosen to be 66.3% of the center-

line value. A nominal value of the spreading parameter, o, is 13.5. Rewriting
equation (3C-41) in terms of nondimensional coordinates
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x = - by (3c-42)

the required radial and axial derivatives with respect to R and X can both
be expressed in terms of dV,/dx:

av aVyx 3
-a—R-)-(- = dx—x-a%, (3C-!'3)
oV, dV
il & (3¢-44)
and from equation (3C-40)
av —x2
a.x_’s:-_‘;ex , (3¢-45)
L
and equation (3C-42),
(x + by)
%é.:i;—; %xs-._Lx_T—' (3C‘!06)
The mean velocity gradients can be written as
v o1 —y2
_BTRLP%.,,%.EX, (3¢-47)
3V, (R-1) dVx (X+ by) d V,
3 "X dR T T % R (3¢-48)

3C.4 ACOUSTIC MODEL AND SOLUTION METHOD

The flow-acoustic model is sketched in Figure 3C.2. A point source is
located on the free-jet centerline, at an axial position, Xg (X has its
origin at the free-jet nozzle exit). This idealized point source represen-
tation of the turbulence noise source distribution within the primary jet
is discussed in Appendix 3D. An acoustic ray radiated from the point source
intercepts the inner edge of the free-jet shear layer at a point (X;, Ry).
The angle between the ray and the downstream jet axis, y7, is related to its
wavenormal angle, 687, by

cos 61 + Vy/ag X; = Xg
sin 67 "7R '

cot 61 = (3C-49)

1
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Centerline

Figure 3C.2

302

The flow-acoustic propagation model showing a typical
ray path on the X-R plane before and after refraction
through the free-jet shear layer (X=x/ry, R=r/ry).
Code: - ray path; --- extrapolated ray path (from
entry or exit ray).



The ray path through the parallel but non-stratified shear layer is deter-
mined from a numerical solution of equations (3C-36) with the initial
conditions

Yi(R) = & = cotyy (3¢-50)

and
X(Ry) = X, (3¢c-51)

Numerical integration of equations (3C-36) from R=R; to R=R, (the outer
edge of the shear layer) then gives the ray angle Yo Or 85 as it enters the
ambient medium

Y5(Ry) = coty, = cot, (3Cc-52)

and its axial position
X(Rz) = X2. (3C'53)

The initial and final values R=R;, R, are determined from values of X that
define the inner and outer edges of the shear layer, i.e.

(1~ Vx) < AV when x < x,

Vx < AV when x >, (3C-54)

where AV is a small number, e.g. 107",

3C.5 SUMMARY OF RESULTS: COMPARISON OF NUMERICAL
SOLUTIONS TO THE GEOMETRIC ACOUSTIC EQUATIONS
WITH STRATIFIED FLOW RESULTS

Numerical results are presented for four axial source locations
X =0.6, 1.1, 1.6 and 2.1 for six ray paths corresponding to the wavenormal
angles (within the uniform flow) 81 =30°, 45°, 60°, 75°, 90° and 105°. The
numerical solutions are compared with the analytic, stratified flow results.

The isothermal, axisymmetric mean flow model of the free-jet is
characterized by the jet exit velocity, VT, or the Mach number, Vr/ag, and
the spreading parameter, 0. |In view of the Mach number limitation in the
basic equations [according to Ugincius (ref. 114)], the value of Vi/ag in the
following results is limited to values less than or equal to 0.2, which is
the highest value of immediate interest in the present investigation. Further
work is required to determine the significance of this Mach number limita-
tion, but it is not expected to have any serious bearing on the Mach 0.2
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results given below. The spreading parameter is not varied here but is held
constant and equal to a nominal value of 13.5. Preliminary results, not in-
cluded here, indicate that variations in the value of this parameter (which
encompass effective values for the free~jet) have tittle or no effect on the
numerical solutions.

The solution method was partially verified by solving equations (3C-36)
with axial variations suppressed and the axial gradient term omitted; the

numerical solutions for say, 65, should agree with values calculated from the
equation based on a stratified flow model, that is, from equation (3c-23)

8o = cot ! {cosey [(ag/ag + V7/ap cosey)? - coszeT]-%} (3¢-55)
or since at=2a,,
8o = cot {cosey [(1 +M7 coseT)2 - coszeT]_%}. (3€C-56)

A set of 8, results are shown for comparison in Table 3C.I; the numerical
and analytic results agree to four significant figures. For reference
purposes Yt values are included in Table 3C.I.

oT° 8o° (NUMERICAL) 85° (ANALYTIC) y1°
105 105.84 105.84 93.48
90 90.00 90.00 78.69
75 75.75 75.75 64.59
60 62.96 62.96 51.05
45 51.72 51.72 37.94
30 L2.42 h2.42 25.13

Table 3C.l. Verification of Numerical Solution Method: Comparison
of stratified flow 65 values given by numerical solu-
tion with values given by equation(3C—56k Vi/ag=0.2,
g = 13.5.

When equations (3€-36) are solved with axial variations and the axial
gradient of V. is included, the resulting 8, values for this non-stratified
case (N.S.) differ by less than %° from the corresponding stratified flow
(s.) values, as shown in Table 3C.II.

With reference to equations (3C-36) and (3C-37) the superficial reasons
for the almost negligible influence of axial variations in Vy are that (i)
the axial gradient term is of order Vy/ag smaller than the (leading) shear
gradient term and (ii) it changes sign at the lip-line, making a positive
contribution to d(coty)/dR in the first half of the interval Ry sR<1 and a
negative contribution in the remaining interval 1 <R <R,. These observa-
tions do not concern axial variations in Vx which are present in the
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67° 00° (N.S.) 8o° (S.) £6°

105 105.76 105.84 -.08
90 89.99 90.00 -.01
75 75.82 75.75 .07
60 63.12 62.96 .16
45 52.00 51.72 .28
30 42 .88 42 42 b6

Table 3C.1I1. Comparison of Non-Stratified and Stratified Flow

80 Values: Vy/ag = 0.2, 0 = 13.5.

leading term as well. It follows from (i) that the non-stratified flow
effects at Mach numbers lower than Vr/ag = 0.2 can be also safely ignored.

In the results so far, no mention has been made of the influence of Xg
the point source or ray origin position on the jet centerline. lts value
determines, with the ray angle Y7, the point at which the ray enters the
shear layer (X;, R;). However, it can be shown that this has no influence
on the magnitude of the refraction (eo -wT), as follows.

Equation (3C-36) may also be expressed in terms of x (in place of R):

dv
‘—37(9‘&)— = Fleoty, x) g (3¢-57a)
dX _ (coty)x -
P (3C-57b)
where
(X +b7)
F(coty, x) = Fy(coty,y) + Folx) § - T l (3¢-58)

a

Hence the equations are decoupled; that is, equation (3C-57a) could be inte-
grated separately between X=X1 and X2, given the initial value coty, to
yield local ray angles and the emerging ray angle, Bos @t X =X,; since the
limits X=Xy, X, define the inner and outer edges of the shear layer at any
axial location, 8o - %1 is independent of Xs. The ray displacment informa-
tion is contained in the solution to the second equation.

Equation (3C-57) demonstrates that the refraction or bending of acoustic
rays by the shear layer is independent of axial location in the present flow
model and depends only upon the initial ray angle, y1, the profile shape, Vy,
expressed in terms of the similarity coordinate, X, and VT/aO.

It follows that results such as those given in Table 3C.11are valid for
any axial source position.

305



Finally, solutions for the axial displacement of the refracted ray,
X, - Xy, (see Figure 3C.2) are considered in the following way. The ray paths
within the uniform flow and ambient medium are extrapolated without change in
direction to the "'lip-line," R=1, as shown, for example in Figure 3C.2, the
axial intercepts being denoted respectively by Xg, Xy. The numerical results
for Xy, Xy indicate that, to a very good approximation, these points are
coincident. A set of results is given in Table 3C.I111 for the four source
positions. These numerical results are consistent with the analytical result
indicated by equation (3C-57b) that the ratio X,/X; is independent of axial
location and, in particular, of the source position Xg.

To summarize, numerical solutions to the geometric acoustic equations
indicate that to a good approximation two simple rules govern sound refrac-
tion by a parallel, non-stratified free-jet mixing region.

Rule (a) The sound ray refraction (or angle change) can be
calculated to a good approximation with the analytic
formulae for refraction by stratified flow, and

Rule (b) the ray path (or axial displacement) can be calculated
as if the stratified flow refraction all takes place
abruptly at the “lip-line."

Xg = 0.6 Xg = 1.1
0T Xg Xu AX Xy Xu AX
105 0.5k 0.54 .00 1.04 1.04 .00
90 0.80 0.80 .00 1.30 1.31 .01
75 1.08 1.08 .00 1.58 1.58 .00
60 1.1 1.42 .01 1.91 1.92 .01
4s 1.88 1.90 .02 2.38 2.4 .03
30 2.73 2.77 .04 3.23 3.28 .05

X = 1.6 Xg = 2.1
105 1.54 1.55 .01 2.04 2.05 .01
90 1.80 1.81 .01 2.30 2.3 .01
75 2.80 2.09 .01 2.58 2.59 .01
60 2.1 2.43 .02 2.91 2.93 .02
45 2.88 2.91 .03 3.38 3.42 .04
30 3.73 3.79 .06 4,23 4.30 .07

Table 3C.111.Axial displacement of acoustic rays: 'lip-line' intercepts

Xg, X, of extrapolated ray paths for axial source positions
Xg = 0.6, 1.1, 1.6 and 2.1. (V1/ag = 0.2,0= 13.5).
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Rule (a) is not an unexpected result; it justifies the utilization of
results from Appendices 3A and 3B which are based upon a parallel stratified
flow for free-jet model calculations. It is also an encouraging indication
that wave acoustic models based upon infinite, parallel stratified flow
models, such as Lilley's equation, may be good approximations, particularly
as they are often utilized for conditions approaching the GA limit. Finally,
Rule (a) justifies the use of the vortex sheet model for sound refraction
calculation since there is no distinction between the model and one consist-
ing of a finite thickness stratified shear layer in this immediate context.

Rule (b) is consistent with and provides the justification for models
developed and used elsewhere (ref. 116 and 117) in which the free-jet shear
layer is replaced by a vortex sheet. However, in those models both the ray
paths and shear layer transmission effects on the sound amplitude are calcu~
lated on the basis that the shear layer is replaced by a vortex sheet. Rule
(b) only confirms that ray paths can be calculated on that basis. Transmis-
sion effects on the sound amplitude are analyzed in Appendix 3E.

The application of these two rules to the calculation of the angle By in
the present free-jet configuration (8, is the polar angle based upon
an origin at Xg = 0.6) vyields results which are in very close
agreement with those calculated with axial variations and gradients of Vy
included in the basic GA equations. In Figures 3C.3 through 3C.6, the ray
paths outside the free-jet shear layer are shown for the four source posi-
tions; these have been derived from the full numerical solution to the axial
variation/gradient equations. Inside the shear layer rather than show the
exact ray paths, the rays have been extrapolated to the "lip-line'" to illus-
trate the magnitude of the error involved if Rule (b) is applied. Also, in
Figures 3C.3 through 3C.6, values of 8, are shown; values from a calculation
based on rules (a) and (b) give results that agree with those to the nearest
degree. Exact figures are given in Table 3C.I1V.
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o (o] o o o]
or Bm ®mab Om Omab
105 103.47 103.56 98.32 98.L4
90 87.83 87.88 82.48 82.55
75 73.47 73.48 68.28 68.32
60 60.17 60.15 55.38 55.40
45 47.63 47.60 43.37 43.42
30 34.93 34.97 31.20 31.35
Xg = 1.6 Xg = 2.1
o o o o (o}
ot Om Omab m Bmab
105 93.11 93.26 87.79 87.97
90 77.07 77.16 71.53 71.65
75 63.03 63.09 57.66 57.76
60 50.54 50.60 45.60 k5.7
45 39.07 39.18 34.69 34.87
30 27.43 27.68 23.59 23.94

Table 3C. 1V, Comparison of values of 6; calculated from numerical
solutions to axial variation/gradient GA equations
wi th values B;ab calculated by Rules (a) and (b):
Vi/ag = 0.2, o = 13.5.
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APPENDIX 3D

A MODEL FOR THE EFFECTIVE POINT SOURCE — AXIAL
LOCATIONS OF PRIMARY JET TURBULENCE MIXING NOISE
AS A FUNCTION OF STROUHAL NUMBER






The recent measurements by Grosche (ref. 118) and Laufer et al (ref.
119) provide quantitative information on apparent or effective axial distri-
butions of the turbulence mixing noise source in subsonic and supersonic jets
as a function of the Strouhal number, fd/v;.

The utilization of this information is necessary in the present problem
because measurements in Flight Simulation Facilities are usually taken rela-
tively close to the jet, as close as 20 jet nozzle diameters (see Figure
3D.1), while flight data is usually acquired at much larger distances of the
order of a hundred jet nozzle diameters or more. Suppose it is assumed that
radiation at a particular Strouhal number originates mainly from a region 10
diameters down: tream of the jet nozzle and the radiation level at a particu-
lar polar angl 6, is under investigation. Then with the origin at the jet
nozzle, fligh. lata (i.e. Ry >100d) at angle O will be a good measure of the
radiation from the source region at angle 6. If the distance is reduced to
Rm =80 diameters, then in the example shown in Figure 3D.1, the measured data
would correspond to radiation at an angle em-+6°, while at a distance of
Rm =20 diameters it corresponds to 8m+30°. Furthermore, the ray path length,
the distance between the measurement point and the effective point source
location, differs, in general, from the 'measured radius'' R,. Clearly, a
correction procedure is required if “near-field" flight simulation data is to
be extrapolated and compared with true far-field flight data.

Morfey (ref. 120) has proposed a simple model in which the real axial
source distribution for each Strouhal number is replaced by a point source
located at the axial position xs't where the apparent distribution reaches
a maximum. An empirical law for the variation of the point source axial
position, x¢'/d, with Strouhal number is derived from the Grosche and Laufer
(ref. 118, 119) data on the following basis. The radiation at a particular
frequency is associated with a shear layer thickness and a centerline
velocity. In the initial mixing region the centerline velocity is a constant
and equal to the jet exit velocity, Vj, whereas the shear layer thickness is
proportional to the distance from the jet exit. Consequently, the empirical
law for the initial mixing region is of the form

xSl/d a ';—-

in the fully developed region the reciprocal of the centerline velocity is
also proportional to the distance from the jet exit (at large distances) and
hence the law takes the form

1
xg'/d a —.
st

The Strouhal number, S, is now replaced by the modified Strouhal number (to
allow for the convected nature of the source), Sy, which is defined below.

TThe prime is used to distinguish this x coordinate, which has its origin at
the primary jet exit plane, from that used elsewhere within Chapter 3 which
has its origin at the free-jet exit plane.
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Figure 3D.1 Illustration of near and “'almost far-field' measurement locations
(Rp = 20d and 80d) with effective source location at xg'/d = 10.
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Morfey (ref. 120) obtains the constants of proportionality from the Grosche
and Laufer data (ref. 118, 119) and finds that, to a good approximation,

xg'/d = -§5;

for the initial mixing region and

xg'/d = —E;
Sm
for the fully developed region. In Figure 3D.2 those empirical expressions

are compared with some of Laufer's (ref. 119) data. The agreement is parti-
cularly good in the important low Strouhal number range, .15<Sp < .6,
(leading to the largest angle corrections) whereas the discrepancies at high
Strouhal number are of little significance for the present application. The
'"eross-over' point between the two empirical laws should be, according to
the physical basis for these laws (ref. 120), in the region of xg'/d~ 4-5.
Here it is chosen to be the point Sm=1.5, i.e. xS/d = 3.3 to achieve a
smooth '""transition."

The modified Strouhal number is defined in this exercise as
(Sp = S Dm).

Dy ={(1 - MccoseT)2 + uchz}i
(Mc = 0.67 Vy/ay, o = 0.3)

Therefore, given d, f and V; in consistent units, and 81» the axial source
location, xs'/d, is calculated via the following steps:

S = fd/v,
D = {(1 = Mccoseq)? + achz}ir
(Mg = 0.67 Vy/a,, o = 0.3)
Sm = S D
Sm 2 1.5: xg'/d = 5/,

In the Lockheed free-jet facility the measurement radius, Ry, is 54d,
where d is the primary nozzle diameter (d=2'") or 5.4 rr where ry is the
effective free-jet nozzle radius (to a good approximation ry=20"). The
primary jet nozzle protrusion beyond the free-jet exit plane, Xns is 6d or
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0.6 ry. The effect of the extended axial source distribution on the values
of the measurement polar angle, Oms which correspond to specified polar
radiation angles, 81, is illustrated in Figures 3D.3 through 3D.6 for the
case of zero free-jet velocity, Vr. That is, Xs has its origin at the free-
Jet exit plane so that the first value of Xg corresponds to a source
location at the primary jet nozzle, succeeding values correspond to 5d
increments. The first value (Figure 3D.3) represents the ideal case where
the measured and actual polar radiation angles 6, 8T and distances Ry, R,
coincide. A source location of 5d downstream (Figure 3D.4) gives rise to
angle differences of up to 5°, of 10d to 11° and of 15d to 16°. The
effect of forward motion on the co-flowing stream (the uniform potential core
of the free-jet) is not included in this source location model. A prelimi-
nary study has indicated that this effect is unlikely to be important in the
present correction procedure.
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APPENDIX 3E

FREE-JET-TO-IWT TRANSMISSION AMPLITUDE CORRECTIONS
FROM A STRATIFIED FLOW — GEOMETRICAL ACOUSTICS MODEL






The main result of the investigation described in Appendix 3C is that
(in the geometric acoustics limit) the direction and position of rays emerg-
ing from a parallel non-stratified model of the free-jet shear layer can be
accurately calculated with the stratified flow analytic expressions together
with the condition that the rays are refracted abruptly at the lip-line.
The result is illustrated by Figure 3E.1; for ray path calculation purposes
the realistic situation depicted in (a) can be replaced by the conceptual
model shown in (b).

Clearly the flow model is now a cylindrical region of uniform flow
bounded by a vortex sheet. However, emphasis on this aspect of the result
has been deliberately avoided since in one other important respect the
vortex sheet feature is not utilized. In the analysis given below, the
finite width stratified shear layer is retained for the purposes of
deriving a relation between the amplitude of the direct radiation from
the primary jet inside the free-jet uniform flow region and the radiation
amplitude outside the free-jet in the ambient medium.

The basis for this relation is the law of energy conservation in a ray
tube. This law applies to the geometric acoustics limit; in the same limit
the energy flux associated with a particular ray in the uniform flow region
is completely determined by the amplitude of the direct radiation, since, by
definition there are no reflections, single or multiple, from the shear
layer. In a vortex sheet model [for example, see Amiet (ref. 116)], there
are reflections and the corresponding relation between the transmitted and
incident pressure amplitudes at the vortex sheet, in effect, replaces the
energy conservation law that will be used here. While the results from each
method may not differ drastically, the arguments presented in Appendix 3C in
support of a GA model apply equally well here and therefore this approach
will be used in preference to that associated with a vortex sheet flow model.

The principles employed and the end result are identical to those
described by Schubert (ref. 115) — see his Appendix B: ''Ray acoustics for
nonspreading jet'' — although with the results of Appendix 3C it will be
argued that the result Zs also valid for the real, spreading, free jet.

In the geometric acoustics limit the law of energy conservation in a
ray tube holds, however complex the mean flow field within the free-jet
shear layer. On the other hand the analytic relations between angles and
distances used below rest upon the stratified flow assumption. Conceivably,
a more realistic flow model than that investigated in Appendix 3C might lead
to results that are significantly different from those given by the strati-
fied flow expressions. For the present, this possibility is set aside,
pending further work in that direction.

With reference to sketch (b) in Figure 3E.1, the law of energy
conservation along a ray tube, given by Blokhintsev (ref. 121) is

| dA = constant (3E-1)

or

Iry dAp, = Iy dA,,
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where | is acoustic intensity and dA the cross section area element of the
ray tube or conical sector {the direction of the intensity, |, is identical
to the ray direction). The subscript "T' denotes evaluation at some point
along the ray tube in the uniform free-jet flow and subscript ''¢y' denotes
the conical sector (wT, Y + dwT); subscript ''0"" denotes, as usual, evalua-
tion in the ambient medium. It is preferable to rewrite the equation as

lpy Ay = g dApg =14 dA, (3£-3)

where I1g is the intensity component normal to the wavefront; dArg is the
elemental wavefront cross section area element formed by the intersection
of the ray tube and the wavefront.

Morfey (ref. 122) has expressed Blokhintsev's (ref. 121) acoustic
intensity definition in terms of the wavenormal component, Ij:

ln = plup + (Vy/0a2) p'2 + (V,/a)2 prup +0V, up2 (3e-4)

where overbar denotes time average, p,a are the local density and speed
of sound and u,, V, denote the components of the fluctuating and mean
velocity normal to the wavefront. With the GA relation

p' =pa up (3E-5)

the expression reduces to

_p'2 Vo |2 i
- |1+ . (3E-6)

a

In

Thus, in the present problem the intensities lyg, 1o are given by

p'TZ

g = oo {1 + (vg/ag) cose7}?, (3e-7)
2

_Po (3E-8

lo = Po Ao 3E-8)

The corresponding area elements (see figure 3E.1b) are

dAg = (27Rp7 singy) Ryr doy, (3e-9)

dA,

(2nR,, singy) R, do_. (3E-10)

where R.,, the distance from the apparent source location, is derived as
follows.
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Writing Rp5 as the sum (see Figure 3E.1b)

Rra = bc + ce
= (bd - cd) + ce
= (Rro - cosech,) + ce (3E-11)
and noting that
. dxc . d
ce = - sinfg EE; = - sind EE; (cotyt) (3E-12)

where X. is the axial location of the point ¢, an analytic expression for
Rra can be found if the stratified flow relation

cotyg = {(Vy/ap) (ag/at) + Bzcoseo}/KT (3e-13)
(82 = 1 - (vr/an)?)

is used to determine the derivative d(coth)/deo. Equation (3E-13) has been
derived from the definition

VT + ay coséy

cotyT = a7 sinos (3E-14)
and the stratified flow relations (from 'phase velocity matching'')
cosoy = (ag/a,) cos8o/Dt (3E-15)
and
sindp = (aT/aO) k7/Dg (3E-16)
where
Dy =1 - (Vi/ag) cosg, = T3 (V;/aT) Cos87 (3E-17)
and
e = {(ag/ap)2 D - cos28,1? . (3E-18)
Differentiating equation (3E-13) with respect to &, gives
g—%%i—gl = - sinf, (ao/aT)Q/KT3 (3E-19)
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so that from equation (3E-12)
ce = sin29o (ao/aT)Z/KT3 (3E-20)
and hence
Rra = Rpo + coseco {(sinB /ks)3 (ag/at)? - 1}, (3e-21)

Substituting the intensity expressions, given by equations (3E-7) and
(3E-8), into the energy conservation law, equation (3E-3), leads to an
expression relating the pressure amplitudes PT' and p.':

—_— (e a1)/(Pg ap) dA
pr'2/pg 2 = —I—L—9 o “o (3e-22)
{1 + (vy/a7) cosBy}? 6
From equations (3E-9) and (3E-10) the last factor can be written as
dA, Rro Rra d(cosb) Rro Rra 2
dAtg R .2 d(cosby) 2 (a5/2y) Or s (3€-23)
rT ReT

equations (3E-15) and (3E-17) have been used to evaluate d(cos6,)/d(coseT).
Combining equations (3E-22) and (3E-23) the final result is

PT 2/pg 2 = (o7 D1*/0g) (Reo Rpa/R27). (3E-24)

The isothermal forms (py = pg, a7 = ag) of equations (3E-21) and (3E-24) are
used in Appendix 3F to correct free-jet measured data to that which would be
measured under IWT conditions. There the distance ReT is replaced by Rr, a
specified "emission radius'' at which pT-2 is required. This may take any
value, that is, an estimate of pT'Q can be made at any distance, since it
simply varies as R?% under IWT conditions [as indicated by equation (3E-24)].
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APPENDIX 3F

FREE-JET-TO-IWT DATA CORRECTION PROCEDURE






The free-jet SPL measurements are taken at a number of evenly spaced
polar angles 6,;, i=1, 2 ... on an arc of radius Ry centered at the primary
jet nozzle (see Figure 3F.1). The primary objective of the correction pro-
cedure outlined below is to convert free-jet data to that which would be
measured under IWT conditions for any value of the emission radius, Ry, and
at specified emission angles 8gj, i=1, 2 .

| ]

As a secondary objective, corrections are included to allow for the
finite distance between the effective center of the turbulent mixing noise
source distribution and the nozzle exit. This minimizes the errors in-
volved in the extrapolation of small Ry, flight simulation data to a large
Ry or R, IWT conditions.

PROCEDURE OUTLINE: FREE-JET TO IWT CONDITIONS

Step
1. Given ggi =067, Vy/ag, calculate YTs 8¢°
cosyt + V1/a
cotyr = wT 1'%
snneT
- 2 _ 24 1%

cotf, = cosoy/{(1 +Vy/a, cosby) cos“61}% .

2. Given f*, d*, Vjﬂ Mc and x, calculate xg'/d with procedure given in
Appendix 3D.

3. Given Ry/d, rr/d, x,/d calculate X5, Xy and hence Rros &m:

Xp = (xp/d)/(ry/d)

>
w
|

=X + (xs'/d)/ (ry/d)
XQ = XS + COth

Rpo = {RZ - lesinzfio}"L - % cos8g

O
©
]
D
3
]

- 2 -
(RZ + 22 = Rpg) /28R

*Congistent units.
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where _ (Rm/d)
Rm = Tro7ay

=
L}

(xy - Xn) - cotfy,.

Interpolate for SPLI(em) at frequency f:

SPLI(68p) = (1-h) SPLM(0p;) + h SPLM(s, ., )
where Omi = Om S Opi
h = Om ” Omi
mi+1 ~ Omi

Given Rr/d calculate Rra and apply amplitude correction given in
Appendix 3E:

Rra = Rpg + cosecty {(singy/xy)3 - 1}
SPLC(Ry, 07) = SPLI(6p) + 10log;y Cf Cp,

where

1
{(1 - Vi/a, coseo)2 - coszeo}I

kT

CF = DTL‘

- 1
bt = 1 +(VT/ao)coseT

=1 - (VT/ao) cos8,

= 5 2
CR - Rro Rra/Rr

pdl
I

e = (R/d)/(ry/d) .
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APPENDIX 4A

TABULATED VELOCITY MEASUREMENTS
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RADIAL TRAVERSES

HJ b -"7 MJ - -1‘7
A o= L1 A= 101
X = 3.25 X = 6.5
U, 48 1,000 0,034 Va02 1.000 0,047
v,62 0.997 0,039 v,23 1,002 0,049
v,68 0,980 0,090 U, 43 0.976 0,077
v,82 0.922 0,128 U,57 0,958 0,092
v, 00 0,779 0,155 0,63 0e902 0.122
v,03 0,781 0,154 v,82 0.709 0,152
1.02 0,601 0,149 1.12 0,441 0,142
1,03 0,588 0.151 1,23 0,374 0.1386
1,08 0,516 0,146 1,32 0,309 0.117
1,28 V241 0,094 1,43 0,262 0,106
1,38 0,182 0,083 1,52 0,221 0,087
1,48 0,153 0,047 1,62 0.178 0,067
1.58 0,138 0,037 1,73 0.15%8 0,062
1,82 0,139 0,043
2,02 Ue109 n,026
2.52 0.101 0,008
My = 47 My = .47
A= 102 A = 096
X =15 x =32
r v, v, 7 Vi V1
VAT 0.904 0.120 U.04d 0,501 0.104
v.2u 0,891 0.121 V.21 0,495 0.10%
V.4V 0,839 0,144 V,46 0,482 0.105
V.5V 0.786 0.152 V,54 0,479 0.,10R
Y60 0,758 0,160 V71 0,469 0,105
v,8u U.681 0.162 U,96 0,445 0,105
1.0“ 0.562 0,165 l,U‘ 0,425 0,110
1,0u 0,545 0,162 1,46 0.381 0.107
1.2v 0,465 0.156 1,54 V.368 0,108
1.4y 0,365 0,137 1,96 Vo321 0.104
1,50 0.306 0.124 2,04 U316 0,103
1.80 0,241 0.104 2,46 0.268 0,094
2,00 0,204 0,088 2,96 0,214 0,072
2,2y 0,166 0,06% 3,46 0,185 0,080
2.4y 0.142 0.052 3,96 0,158 0,052
2,60 0.120 0,035 4,46 0e131 0,043
2,80 0,108 0.011 4,96 0.109 0,026
3,00 0,102 0.007 5.96 0,096 0,004
J. 20 0.100 0,008
3,40 0,099 0,008
3, 60 0.102 0,004
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RADIAL TRAVERSES

My = 47
yo= .2
v My = .47
r v )‘ :
. : | : .20%
yeu UeQ08 0 t r .
U.?\) o.gqa 0.020 r v
U.‘V 0.997 O.nzo hat 1 v
U du 0,998 O.OZG i3 H l
S 0.997 0.022 o3 b o.o‘o
U.bu i 0.023 uede 0.997 0,050
a 5 0'026 T 1,000 0,049
Y 7V 0,997 0.031 a6y niz i
i 0197 0.03‘ U, 6u 0,978 0,058
o 0190 0'030 U758 0,977 0.070
UV U.975 0'052 uloy i 5
1,00 0.919 0'057 it i 5
& B loss Va5 0.813 0,126
1.2 0872 ARTE: 15 i i
1.3v 0,377 0o138 o3t i i
1.4y 0.275 o'136 18y Y i
0,211 0'087 L5, 15 i
i 2 0,384 0.130
ooy 0,295 g.oos
e 0,298 .008
B 0,239 0.068
158 0.208 0,020
T 0,018
— 0.012
A o= .193
r x =14 o
v,24 2 - 2 =
V36 0,959 0 l F .
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V.78 0,829 107 M 0.6‘2 01168
V.04 0,767 0,139 et 0.600 oo
1,04 0.721 0,138 142 s i
1.16 0,579 0,147 1,42 ot o.lg:
1.24 0,561 0.144 208 a1 0.1
1,44 0,486 0,147 2,08 02383 o.og‘
1,56 0,414 0.129 2,42 be3e7 0.096
1,64 0,366 0.117 2,92 01287 0.0.5
‘.a‘ V380 oe 108 3.‘2 3'267 0.07§
1.56 0,298 0,106 e 0.2‘3 e
2,04 0,200 0,089 4,42 120 o.oz
i i i 442 0,208 040 -
2.“ Bt e 8 e 0,206 O. 10
= i e 0,206 o.goe
o 0,208 0.026 .0‘
died 0,197 0.014
Seias | oio0s
200!




RADIAL TRAVERSES

My = .47 My = .47

A = ,286 A o= 279

X =15 X = 7.5

r \71 ‘—’l r vl \71

v,u4 U.9R4 2.060 U u6 1,002 0.03%
v,24 0,971 0,069 V.24 1,002 0,040
U, 3£ V.9%3 0.07% TR 1. 0.995 0,042
v,44 Ve916 0,088 v,51 V987 0,050
U..O.‘ 1),8K2 0118 U,68 0,982 0.063
v,76 0.811 0,124 V.81 0,89) 0.103
v,84 V754 0,133 v,84 0,846 0.116
1,04 0,6%2 0,132 l.11 Ve600 0.136
1,16 0s604 0,129 1.14 V.548 0,138
1,24 0.559 0,125 1.26 Vo440 0,109
1,44 V.48 0.112 1.41 U.3%8 0,089
1,56 0,448 0,104 1.44 0,355 0,089
1,54 Vo421 0,101 1,86 0,301 0,082
1,84 Vo370 0,086 1,71 0,279 0,02%
1,94 Vo346 0,074 1.36 04279 0.017
2,04 Vo327 0,067
2,24 0290 0,028
2,44 0,286 n,013
2,64 Ve2R6 0.009

HJ L .1!7 MJ = -‘07

A = ,283 A = .305

X = 3.75 X =32

r Vl \71 l-' V1 \-11

Ueud U.998 0,019 U 0% 0,713 0,008
V.18 04997 0,019 v,42 0.681 0.100
v,24 1,001 0,022 1,08 0.594 0.108
u,34 1,004 0,022 1,42 U530 0,098
u,34 0.998 04021 1,92 0,447 0.087
u,44 1.003 0,022 2,00 0,421 0,082
u,54 l1.un3 0,024 2.42 V379 0,068
u,56 0,994 0,027 2,92 t,328 0,041
v,64 Ve999 n.N32 3.42 1,307 0.014
Y,24 0,995 0,041 3,92 Ue305 0,007
W, 7h U.982 0,041
Vo4 0e947 N,N64
u,n4 v.824 D114
v,94 VeR1S 0,113
1,v4 1,644 0,141
1,14 0.4%0 Ne137
1,24 Vel14 0,074
1,34 14275 0,035
1,44 0,273 n,024
1.54 Ue276 0,017
1,94 1,282 n,011
2,u4 Je223 0,000
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RADIAL TRAVERSES

"J - -‘.7 HJ = ."7
A = .383 A = ,389
x = 4.5 X =9
r Vi r Vi
U.u? 1.uu2 0.017 UL 03 U.99¢ 0,043 |
U112 102 0,017 u,18 0.998 0.04¢
UglR a396 0,017 V.27 0,996 0,043
v.32 1.001 0,018 V.33 0.996 0,048
U IR 1eu01 0,019 v, 48 v.991 0,081
0,52 0,998 0,022 4,57 U.978 0,036
)58 0,998 0.02% V.53 U.9487 0,065
u,72 04995 0,032 V.78 U907 0,087
U, 7R 0,976 0,039 Ha87 0,848 0,108
V87 Ue947 n.,070 Ue93 0,801 0,111
u,3? Ue376 N 102 1.uB 0,681 0.124
11,97 1,818 .10 1,17 0.608 0,122
1.02 U|7‘4 U-lla 1023 00562 0.‘1‘
1,07 U642 N,128 1.3A8 1,483 0,090
1,12 UeBA2 n,122 1,47 0,432 0,078
1.17 0.4R8 n,104 1,53 0,404 0,048
1.22 V.429 0,084 1.58 0,387 0.028
11,27 U393 0,059 1,83 UeINS 0,018
1,32 Ue3F9 0.040 2,02 U, 3P8 0,012
1,42, ).3686 n,nN29 2,23 UeIRG 0,009
1.52 Ued72 N,n23 3,03 Ve 389 0,008
1,77 Ve 3R2 Ve012
2,2 Ue323 n,NOR
My = .47 My = .47
A o= ,392 A o= a3
x = 18 x = 32
r Vi vy [3 v v
Uaull Ue970 0.06% i} ouf V.807 0,092
u,28 U214 N,Nn81% U, 42 0e790 0,091
v,.3? 0,931 0,083 Ueb7 Ve742 0,098
v,48 U.902 0,099 1,uR Ue682 0,101
1468 VeA30 Ng1NA 1,17 0.642 0,098
W72 o773 0,112 1,42 ).%598 0,092
y,.88 Ve751 0.111 1,67 v.347 0,081
1.98 0e572 D111 2,Uk VedA9 N,0664
1,12 Ueb641 0117 2.17 V486 0,060
1,28 yehN7 0,106 2,42 0,441 0,044
1,49 1,546 0,096 2,67 Ve.421 N,02%
1,52 VeS17 0,061 2,92 u.s41 V.N13
1,68 11,408 0.083 3,42 Ved13 0,008
1,88 Uedd? 0,060
1,92 1)ed28 0.N62
2,00 u.d8 0,039
2.2% Vo395 0,020
2,47 0¢322 0,012
J,ud U 392 0,007




RADIAL TRAVERSES

"J = .‘07 HJ - .‘07
A = 481 A= 479
X = 5,265 X =10.5
P W 2 F vy Y
Vedy 14000 0,021 Veus 0,988 0,034
V.60 0.999 0,028 u,ld 04990 0,036
V7V 0,998 0,03% v, 2F Je989 0,037
U8y 0,981 0.050 Ve3d Ve9A8 0,040
v,88 0,986 0,071 V.35 0,990 0,040
V.9V 0,904 Q.097 V.46 0.987 0,044
V.98 0e840 0,112 V.56 04977 0,047
1400 0,788 0.112 V.66 0,961 0,057
1,08 Ue?12 0,116 V.74 Vo934 0,078
1.1v 0,636 0,111 U,76 0,923 0.07%
1.15 0,589 0,108 u,84 0,83 0,094
1.2v V.53 0,087 v,94 0.800 0.105%
1,25 Ued91 0,069 u,96 U787 0,103
1.3y 06470 0,060 T Vo718 0.103
1,38 Ved85 nN.047 1.14 Ve654 0,108
14y LY 0,038 1,16 0638 0,099
1.5v 0,456 0,031 1,26 04587 0.n092
1.75 Ved72 0,019 1,34 ve538 0,079
2,0y 0.477 0,013 1,36 0.534 0,072
2,25 0,481 0,000 1,46 Ue504 n,n58
2,5v Ved81 0,009 1,54 Ved?7 N, 039
1,54 UedR2 0,046
1,66 U.474 0.n34
1,08 0,475 0,01
il V.479 0,013
My = 47 My = 47
A o= 496 A = 497
X =21 X =32
r vy V) T v, v
Vo1l V.975 0,057 T Ue879 0,080
V.19 0,976 0,056 U 15 UoB64 0,083
TR | Vo955 0,964 Vodvy 0,836 0,088
u,39 0,952 NeN72 U, 8% 0,792 0,091
V.51 Ue905 0,088 TN Ve?37 0,089
V.59 Ve8R0 0,091 1,1y 0700 0,088
V71 0,825 0,100 1,15 0,685 0,086
U.79 0,790 0,103 1,4V 0637 0,079
v,91 Ue756 0,097 1.65 0,589 0.071
2,99 Ue721 0,092 1.9u U548 0,058
1,11 Ve 690 0,090 2.1v U.527 N.043
1.19 U555 0,088 2,159 0,529 0,043
t. 31 U629 01,086 2.4y 0,499 0.,01%
1,39 V.58 0,076 2.55% Uedt8 0,012
1,51 Vo576 0.074 2,9v Yed97 0,009
1,56 UeS4} 0,054 3,18 U,.498 0,009
1.71 0,529 0,051 3, dv Ued97 0,008
1,91 Ue506 0,030
2,11 0,497 0,019
2.1 0,495 0,013
2,51 0,496 0.011
2.’1 U496 0,010
2.91 Ued96 0,009
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RADIAL TRAVERSES

My = .90 My = .90
A= 104 A o= 104
x =4 X =8
r vy V1 F Vi 1
TITE) Ue908 N.,014 U ud 1.000 0.,02%
V.23 V999 0.014 U,24 0,998 0,027
y,4) U.996 N,N16E Uu,28 04999 0,029
VeS7 U.999 h,020 T Y] U998 0,037
11,63 0,996 H,N2K V.46 Ue999 0,037
.73 Ua.985% 0.057 Ue54 0.999 0,044
V.77 U,953 0,093 u,54 0,922 0,113
V.78 Ue940 Ne104 y,66 Ue907 0,124
U,83 (0eB874 0,140 y,74 D,817 0,147
v.87 04798 0,182 U,84 Vo766 0,154
V.98 0,772 0,162 v,88 0e734 0,150
V,93 ve697 0,159 1,04 0.557 0,142
U,97 V525 0,149 1,08 V.547 0,148
u,98 0.5%0 0,150 1,14 0,482 0,136
1.u3d 0.513 0,148 1,24 Ue3R4 0,130
1,u8 0,448 0,138 1,34 0e321 0.118
1,13 0395 0,131 1,44 Ve260 0,106
1,18 VeJ12 0.1186 1,54 Ve212 0,098
1,23 U263 0,108 1,64 U147 n,058
1,28 U208 0,092 1,84 0.113 0,019
1.33 U148 0.054 2,ud UelNd Vv,009
1,43 0e117 N.0214 2,24 V.104 0,007
1,53 Uuel108 0,012
1,73 Uel05 0,007
1,83 ve1nd 0,008
HJ = 90 MJ - .90
A o= .102 X = .102
x =16 X = 32
r Vi \./1 r v,y \71
U U6 0957 0,087 Uoud 04629 0,119
v,24 Vv.9M 0,109 4,21 U625 0,119
u.28 Ved26 0,110 V.46 U,.595 0,122
v, 44 U RAG 0,135 .54 U.578 0,127
v,46 n,R42 0.141 V71 U562 0,123
V.64 U.,753 0,152 v,96 Ve.497 0,128
U866 u,744 0.151 1,04 0,468 0,123
yv,84 Jeb635 0,147 {468 Ued9S 0.118
Y aé Veh20 n,148 1,54 Ve384 0,121
1,04 UeB51 0,143 1,96 0,371 0,104
1,vE U.549 0,144 2,u4d 06305 0.106
1026 00476 0’135 2.‘6 0-260 0.091
1,48 Uel77 0.122 2,9% 0,204 0,077
1,64 0.311 n.111 3,48 0.138 0.047
1,08 va282 2,100 3,94 Uell4 04020
2,06 Ve179 0,076 4,46 0.106 0.081
2.26 Ueld?7 0,05A 4,968 Ue103 0,007
2,46 vel124 0,035 5,46 04103 0,004
2,65 Uel1? 0,020 5,96 Uel02 0,003
2,86 Uel1u6 0,011
J U8 U103 N.M08
3,26 Ve103 0,008
3,4 0,102 0,005
3. 66 Vel102 0,004




RADIAL TRAVERSES

My =1.37 My = 1.37

A = 100 A o= 101

X = “ X = 8

¥ Vi Vi r v v

U.UG 0.938 Ne0M13 u.u‘ tsund 0.015
V.26 0.998 n,014 v,24 1,001 0,014
V,34 0,991 N,01% u,3% 1.093 0,ny7
U, 46 1.000 N.018% v, 44 0,997 0,022
V.54 0,994 0,014 U,54 0,998 N.027
U 56 0,998 9,015 u,h4 Ue979 0,041
v, 68 0.997 N.,017 V.74 Ve94d1 0,066
v, 74 0,993 0,019 Ue.nd V.8A51 t.122
V.76 0.996 0,024 U,89 Ue?270 0,163
v,81 0,974 N,05% v,94 Ue672 N,180
U, 83 0,949 0,088 v,99 V.585 1,160
v, 86 0,876 0,134 l,v4 V.50t (14180
.88 0,818 0,15% {.v9 UedS0 0,122
V.94 V608 0,169 1,14 Ve360 0.104
y,.94 U.614 0,157 1.19 0,344 0,103
v,96 0,545 0,154 1,2¢ UedN4 01,092
1.0 0.446 0,125 1,44 Velf0 0,081
1,03 Ved12 0.120 1.54 Vel?2} N,035%
1,08 0,308 N.107 1.64 Uel1906 0,020
1.09 0,317 Ne10K 1,74 Vel 0,012
1.11 Vo291 2,107
1.16 0,239 0,089
1.21 0,186 N,07%
1.28 0.127 0,037
1,38 Vel04 0.,01%
1,48 Vo100 0,009
1,66 0,100 N 00%
1,868 0100 )eNOX

My =1.37 My =1.37

A = 099 X = .098

X =16 X = 32

T vl ‘.’1 T ‘71 ‘71

[]Y] 0.904 0.027 Ueuy Ue?7% 0.111
V2V Ve 9R9 0,030 U,2% U728 N,119
V.40 Ue974 0.N4S u,5%y U690 9.126
U6y V944 N,061 U,7% U,e593 N.137
u,8v 0,8R2 0,094 Tauv v.527 74134
Vo9V V835 0,117 {5y 04?29 0,116
l,uo 0740 0,15% 2.0v Ved22 0,091
1e1v 0.074 0,147 2,00 Vo314 N,004
1.2V V0,532 0,159 2,5V Ve225 0,078
130 Vedd9 0.12% 3.0y U.1%4 0,083
1,4 0,368 Ne112 3.5¢ Vel22 0,038
1,80 0,224 0.n84 4,5y 04008 0,009
2,29 Jel26 N,042
2.4y Uel08 6,024
2.6V Uael191 0.103
2,00 0,099 N.0n08
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RADIAL TRAVERSES

My = 1.67 My = 1.67
A = .096 A o= .099
X =4 x =8
l-' \71 \-Il F \71 \71
TR 1,un7 n,013 v, ul Ve987 0,014
Vel 1,006 0.015% U.23 v.9%7 0,045
v,23 1,001 0,013 u,3% U.990 0,014
V.33 Vo998 0.013 U, 45 V990 0.017
TIRY 0,924 0,015 U,.5% Ve991 0.019
v, 43 0,995 0,013 u,.88 0.994 0.019
u.53 0,992 0,015 u.5% V.979 0,028
.57 1,989 0,014 Uu.7% 0,947 0,048
V.63 Ue9R9 0,014 V7" 0979 0,034
V.73 U.9R6 0,017 V.8 0,942 0,063
u,77 U.984 0,01% V,8% ve.912 0,083
u,83 0,978 0,02% U9y v.882 0,109
U.ee U.962 0.0‘? Ul95 0.7“5 0.183
,88 U983 0,048 1.9 0,623 0.162
0,90 U928 0,064 1,08 0.484 0.138
V.93 0,871 0,116 1,05 V.499 0.138
0,95 Ue771% 0.158 1.1V 0,444 0.129
ue9? 0.742 0.173 1,13 Ue350 0,108
y,98 U.644 0,177 1.2V 0.332 0,099
1,01 0475 0,142 1,28 v.239 0.084
1,93 0,478 0,121 1.35 0e2N8 0,072
1,086 0e33d 0.102 1.45 Ve160 0.088
1,uf 0,301 0,098 1.,5% 0,126 0,039
1,13 0e.247 0,083 1,68 06107 0,021
l.le 001‘3 f).ﬂﬁ. ln7q 0.100 0.0!2
1,23 Uel?? 0,040 1,85 V.099 0,009
1.28 Uel01 0,018
1.3 UeV96 0.013
1,43 0,096 7,009
M = 1.67 My = 1.67
A = .099 A = .098
x =16 X =32
F vl \-Il F Vl Vl
U 1k 1,000 0,024 Uelv U,h34 0.102
U, 2F U995 0.028 U 4y U.BN2 0.114
.44 Ve 9R5 0,041 (1T U,734 0,136
V.46 1,978 0,042 u,9%v V.648 0,139
V68 0.920 0,087 1.6V v.350 0.107
N 7k V.863 0,123 2.1V U.2R4 0,090
V-1 U.7R9 0,149 2.1v Us269 0,085
v, 94 Ue6687 0.169 2,6V Ve 179 0,068
v,98 ve649 0,164 3.ty Ve140 0,049
1,uF 0540 0,14R 3, 5v n.108 0.02%
1.1% Ued78 0,133 4,1y vel98 0.012
1,24 Ued77 0.110
1,46 Ue270 0,08%
1,66 u.218 0,073
2,6 0,126 0,037
2.2F UelN7 n,023%
2.56 v.099 0,010
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RADIAL TRAVERSES

My = .47 My = .47

A = .384 A = 480

X = .2 x o= .2
').9‘1 e991 0.017 ”.9] 1,000 0.027
Ue94 Ue991 0eN25% V.93 1,000 0,025
u,9% ve.5A1L 0.032 v,.%4 1,004 0,023
1,96 0995 N,029 v,9% U.904 0,025
U,9A 0.958 0,052 V.97 Ue973 N,039
1 uv 0838 0,107 v,98 Ue940 0,067
1.ul Ve568 0,144 n,00 0.R76 0,083
1,02 0.507 N,144 l.ul Ve315 N.138
1,03 Vedld 0.107 1,02 0,376 0.114
1.v4 VUe3J1 0,004 1,02 Ve330 0,154
1,u% 06277 0,072 1.0l Ve236 0,083
1.u8 0,237 D,NA4 1,03 0.312 0,078
1,u6 0,243 0,047 1.,ud 0.216 0.070
107 0,216 0,040 L,Lé Vel?3 0.078
1,09 Ve?39 0,032 1,06 0e277 0,039
.11 Ve235 0,030 1,19 0e322 0,041
1,14 U.2%8 0,031 1,29 Ue3A0 0,039
1,18 U.246 0,029 1,39 0.391 0,040
1,24 Ve.288 (0,032 1.59 0.437 0,033
1.26 Ve270 0,029 1,79 Uedh2 0,021
1,36 0,295 N,031 1,00 0,471 0,014
1,56 ve337 0,027 2,19 0,476 0,009
1,74 0360 0,020 2,39 0.479 0,007
1,96 V.374 1,012 2,59 0e4RQ 0,006
2.16 v.381 0,008
2,34 0,383 0.006
2,56 Ve3R4 0,N0%
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APPENDIX 4B

MEAN VELOCITY DECAY ANALYSIS






The analysis of this section is based on that by Kleinstein (ref. 123)
who obtained solutions for mixing the turbulent axisymmetric free jets using
the '"modified Oseen method." In this method the conservation equations are
linearized in the plane of the von Mises variables resulting in a system of
equations of the heat-conduction type.

The equations of continuity, momentum and energy are, neglecting the
axial pressure gradient (though the experiments to be considered were per-
formed in a wind tunnel, the axial pressure gradient was small since the
ratio of tunnel areca to jet exit area was large):

3(pVvyr) R alpVar) -

X or ' (48-1)
v oV Vv
1 1 3 1
PV, e + oV, rraie -'!_-5_- l(pe)r BT‘ » and (4B-2)
M, ., oM _ 13 |(ee) oM _
PV, ax * oV ar r ar l Pr r ar (48-3)

Equations (4B-2) and (4B-3) have an identical form, as would the equation
for conservation of chemical species in a nonreacting turbulent fluid. This
general form may be written,

BPk aPy P

=123 —k -
PV, W+ PV, 3F T or [Ak(pe)l" ar | (4B-4)

A dimensionless stream function ¢ is introduced in the form

2 - 2 -
3(/2)° _ o5 a2 Spc (48-5a)

aF Y
where = (v/2)2, (48-5b)
and overbars indicate dimensionless variables.

The von Mises transformation with independent variables ¥ and X is
applied to equation (4B-4) giving,

P =2 3P
k _ b3 — - r2 %k
ﬁ"n—wl’*k”""l T (4B-6)

The term [Ag(pe)f V172] is written in a series expansion in ¥2 about a
point X on the axis yielding:

[Atpe)s 117215, = [A(oe) I | ¥2/2 + 0(¥"). (48-7)
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Neglecting terms of fourth order and higher in this expression and
substituting into equation (4B-6) yields

oP aP
k 2 3 k
37 = vy | (A 15 oY 59

Finally, equation (4B-8) may be written

where,

& ¥ ay oY
X
E = 2 J [Ageely o dx
o

(48-8)

(48-9)

(48-10)

Equation (4B-9) is the well-known heat conduction equation and solutions to

this equation are available.

We note that in the form of equation (48-9) a

constant shift of the dependent variables P, does not effect the solution in

the £, ¥ plane.

Thus, a step function boundary condition in velocity

equal to the velocity difference for r <1 and zero for ¥ <1 is permissible.
The boundary conditions on Py are, Py(¥,0) =gy (¥) and P, (=, £x) =0 with

gk(?) bY.

P = Pio Os¥cyy

g (¥) =

0 WJ <y

Subject to these conditions, the solution to equation (4B-9) is equivalent
to the heat conduction equation solution for an instantaneous cylindrical

source of heat at t =0, Carslaw and Jaeger (ref. 124), and is

and along the axis

where the subscript 'a' refers to jet centerline conditions.
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k=Pk'Pko S I [ 1
Pd “Pko 28 2%

¥y

(o]

Pka = 1 - exp (- WJZ/hEk)

J exp {- %é%l 'o [%%i p' dy!

(4B-11a)

(4B-11b)



Clearly, from equation (4B-11b) the variation of Ex with X Is given by

E(X) = - wy2/4 1501 =P, (R)], (4B-12)

and experimentally obtained centerline distributions of the function P can
be used to determine Ek-

We will seek a form for pe which will be regarded as a function of X
and X only. To this end pe is assumed to take the form

FE =k Fus [(p V1)y - (6 V)] (48-13)

in a manner analogous to the formulation due to Ferri, Libby and Zakkay
(ref. 90) for VJ =0. T,5 is the half-width of the jet. given by the point
at which the momentum is given by

5 \71 fa =% [(5 \71)3 + (5 ‘71)01- (48~14)

In order to obtain the form of pe the behavior of the varlables as
Ey > is examined.

The solution, P(v, gk). given by equation (4B-11a) is convenuently
divided into an axial variation and a radiation variation viz.

P(¥, &) = Pa[wJ/(zgk)*;o]P* [wJ/(zgk)*; W/(zgk)*].
Now as £ +e
Palvy/(2£,)%,0] = v 2/4g, (48-15a)
and p* [WJ/(ng)i; w/(zEk)*] = exp (- ¥2/4g) (48-15b)

Also the density at large axial distances becomes uniform so that from
equation (4B-14) '

01(9’.5, EV) = 3 [‘78 + \-’O]

*
or Pa Plg =X Pas

thus P*[WJ/(ng)i, w.s/(zav)*] =3 . (4B-16)

The form of r 5 as g, >« is thus given by
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‘l’.s
'._z_j ¥ dy _
.5 = —_ =

oV

o P

5

I

o1

w.
J ¥ dy
1 ° o PaP#(Vy - Vo) +¥,

For convenience in this case all quantities are nondimensionalized with re-
spect to jet exit conditions, so that Vyj=1, fy=1, etc. and more importantly,

WJz/h = %,
Denoting Vo = Vo/Vy by X the expression for ¥ 5 becomes:

¥

2
-2 1 J y dy
rg =c
Po > g, exp(- ¥2/hg,) (1 -1) +2
2
_Z%y [(1-3) + 2¢, exp(y g /bg,)]
Mo [(1=2) + 26,3]

and finally using equations (4B-15b) and (4B-16) this becomes:

2 2, [(1=2) + 4ga]

r.s = -A_F-); ]n I(I-A) + zgv}‘] (hB—17a)

Using L'Hopital's rule, it can be shown that

I 2
Lim (F ) = v (48-17b)

Ao p0

which is the expression obtained by Kleinstein (ref. 123) for A=0. Thus,
the expression for FE, equation (4B-13), becomes,

—__ = 2% | (1-2)
pE = klpo ~ In .(I'A) T ZEV)\ zgv
o
—_ 1 (1-3) + ligv)\
= kip (1-2) In (48-18a)
7o 2g,,\ { (1-3) + 2e 2
as >0, 7€ = kjpg 1. (48-18b)

The variation of g, with X can be found from equation 12. The values
of £, as a function of X are tabulated in Tables 4B-1 and 4B-~11 and &, is
plotted as a function of X in Figures 48-1 and 4B-2. The straight lines in
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A=.096 A =.,206 A=.305 A=.413 A= 497

X wy=.47 My = .47 My = .47 My = .47 My = .47
16 .2312 -—- --- --- -
18 .2916 .2460 -—- -— -——
20 .3701 .3263 .2312 -— -—-
21 --- -—- --- --- ---
22 4317 .3680 .2793 .1999 -—
23 --- -—- - -— -—
24 .5296 . 4400 .3361 .3162 .1553
25 -—- --- --- --- ---
26 .5973 -4989 --- === ---
28 .6596 .5608 L4498 .3213 .2589
30 7172 .6279 .5043 .3862 .3136
32 8414 .6948 .5655 4498 .3514
34 .9093 . 7469 L6244 .1868 .3906

.09 = = +35+ .0362 X
5.206 = - -35 + .0328 X
€.305 = - 35+ .0287 X
E.,3 = - -35 + .0245 %

E yg = - -35+ .0217 X

Table 4B.| Variation of Ey with velocity ratio for Mj=.47.
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5 A= .096 A= .102 X = .098 A = .098
MJ = .47 MJ = .9 MJ = 1.37 MJ = 1.67
16 L2312 --- --- ---
18 .2916 .2133 --- ---
20 .3701 --- --- ---
21 —— .2897 -— -—-
22 4317 --- --- ---
23 -—- .3638 - ———
24 .5296 --- 1702 -—-
25 --- 4199 --- ---
26 .5973 -—— .2086 1777
28 .6596 L4948 .2469 2096
30 7172 .5427 .2963 .2321
32 .8414 .5924 .3617 .2831
34 .9093 .6350 . 4096 3116
E.L.7 = - -35 + .0362 X
£ g = - .35+ .0302 x
Ey 47 = - -35+ .0218 %
Elg7 = = -35+ .0198 X
Table 4B.11 Variation of £, with Mach number for A=.1.
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Figure 4B.1 Variation of g, with axial distance M= .47.
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i 1 ]
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Figure 4B.2 Variation of g, with axial distance, X =.1.




Figure 4B-1, which are seen to fit the data well, are given by the equation,
g, = f(A)x - .35, (48-19)

where f(X) is the slope of the straight lines for each value of A. The
slope of f()X) is plotted as a function of A in figure 4B-3, for My=.47. A
good fit to the measurements is given by

f(x) = .0399 (1 - .9223)). (4B-20)

It is interesting to note that the value of f(r) for A=1, that is equal
jet exit and moving stream velocities, is non-zero. This implies that a
mixing process is taking place for equal velocities and the turbulent shear
stresses produced give rise to a finite eddy viscosity. This mixing is due
to the boundary layers which exist on the inner and outer surfaces of the
jet nozzle upstream of the jet exit. If no such boundary layers existed
and the jet lip was of zero thickness, then the form of equations (4B-18)
and (4B-20) would suggest that f(A) be given by

FO/F(0) = (1-2). (4B-21)

It is also of interest to note that in spite of the dependence of the term
under the square root sign in equation (4B-18) on both A, Pg, and X the
eddy viscosity P% is independent of X for the developed region of the jet
flow. However, the eddy viscosity is clearly a function of velocity ratio
and density ratio. ;

Since the exact value of the constants in the expression for f(A) will
have a direct dependence on the jet and free stream initial profiles, a
more general form is given by equation (4B-21) and this form will be used.
Making use of this expression in equation (4B-16) leads to:

(Vg - 1) |

oyt - Sp— 48-22)
EVRE expl VRS ™ (

where k is a function of E; and X and, from equation (4B-19), Xc.=.70. This
equation is identical to that given by Witze (ref. 3) for x=0 except that no
T, dependence has been given in equation (4B-22). For the case of A =0
Witze correlated a large amount of experimental data and was able to derive
expressions for the dependence of « on My and 5. Since the current
measurements only considered three cases at a flxed velocity ratio for
different Mach numbers, there is insufficient data to provide the variation
of k with 3, My and B;Z The values of K calculated from the present
measurements are listed in Table 4B.I1I1.

The value of k for Mj= .47 in Table 4B.111 is taken from the analysis by
Witze (ref. 3) for A=0 and My=.47. Using this set of values for K the
measured centerline velocities were plotted as a function of k(1=A)X in
Figure 4B-4. The general agreement is fairly good since the experiments
were carried out in a wind tunnel with a small, but finite, pressure
gradient and there existed boundary layers at the jet exit.
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VELOCITY RATIO A

Figure 4B.3 Variation of div/dx with velocity ratio, My =.47.




MJ A

47 .096, .206, .305, .413, .497
.9 .102

1.37 .098

1.67 .098
Table 4B. 111

Po
1.045
1.163

1.378
1.562

K

075
.0673
.0483

.0439

Variation of decay coefficient x with A and M.
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APPENDIX 4C

JET NOISE IN FORWARD FLIGHT — SOURCE
ALTERATION EFFECTS






INTRODUCTION: LIGHTHILL'S MODEL FOR
JET NOISE SOURCE SCALING

The basic source of jet noise is taken to be the volume-acceleration
quadrupole density v}v}. In the absence of the flow-acoustic interaction
(i.e. for radiation in"a uniform medium of density pgy and sound speed cg),
the acoustic intensity per unit volume of turbulent flow is predicted
[Lighthill (ref. 110) equation 13] to scale according to

« — q*. (4c-1)

Here V., is the correlation volume for v}vh'fjuctuations; Te is a character-
istic time scale, and the covariance of vivj has been assumed proportional
to the fourth power of the rms turbulent velocity q (= <vi2>%). Source
non-compactness and convection effects are disregarded for the time being;
they will be discussed later, when the source alteration effects implied by
equation (4C-1) have been studied.

QUADRUPOLE CORRELATION VOLUME AND TIME SCALE

The quantities V, and 1 are assumed to scale on the local shear layer
thickness § and the local rms velocity fluctuation q. Thus

Ve « 63, (4c-2)
Te = 8/q (4C-3)

and hence from equation (4C-1)

-, (4C-4)

lyol = q® 8
Alternatively, the intensity radiated per unit area of shear layer is inde-
pgndent of 8§ (and hence streamwise position), and proportional simply to

qmax‘

INTENSITY RADIATED BY THE ENTIRE JET

The quantity of interest is not lyo1» but the intensity radiated by the
whole volume of turbulent flow. We introduce for this purpose the axial
scale parameter o (as used to scale mixing layer profiles, where the trans-
verse coordinate is written as oy/x). The parameter ¢ is used to indicate
the axial extent of the initial region of the jet; thus the total intensity
contributed by this region (up to the end of the potential core) is expected
to scale according to
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|« qoax O (4C-5)

where q . is the maximum value of q across the shear layer.

FREQUENCY SCALING

in a truly two-dimensional mixing layer, the relation (4C-5) would
apply not only to the overall intensity but to the proportional-band inten-
sity at any frequency, since the radiation at any frequency f would be
associated with a typical shear layer thickness qg x/f. However, the jet
exit diameter d sets an upper limit to the value o? § for which the shear
layer can be modelled as two-dimensional. The corresponding frequency
scale qpax/d sets a lower limit to f, if (4C.5) is to remain valid.

For this reason, the intensity scaling prediction (4C-5) should be

applied to corresponding frequency bands on the non-dimensional frequency
scale

Sy = 49—, (4C-6)

Imax

with a lower limit on Sy set by the end of the jet potential core. Sound
radiated predominantly from the region downstream of the potential core is
expected to scale differently (uut is not considered here) .

FLOW PARAMETERS

In order to predict forward flight effects on jet noise at various
temperatures on the basis of (4C-5), we require the variation of qgaxo with
the following parameters.

(a) Shear layer velocity ratio, A

(b) Shear layer density ratio, po/ej

(c¢) Mach number (in case compressibility effects are important) .
Subscripts (i,o) refer to the inner (or high-speed) and outer (or low-speed)
sides of a two-dimensional shear layer. For the case of a round jet in

forward flight, V; is identified with the jet exit velocity Vj, and Vg with
the forward flight velocity.
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EMPIRICAL CORRELATIONS FOR (q,0)

Reliable measurements of q over a combined range of A and p,/p; are not
available, although LV measurements may provide the missing information
before long. For constant-density mixing, however, the data of Yule (refs.
125, 126) are sufficient to show that the simple scaling law q «(Vj - Vg) is
inadequate; an alternative relation is proposed below.

For the axial scale parameter 0, a limited amount of data — not
entirelyself-consistent — does exist on the combined effects of A and
polpi variations, but there is no generally accepted prediction method. The
situation is summarized in a useful review by Birch and Eggers (ref. 70).

The following empirical'relations are offered as a provisional fit to
the published data; they make use of the dividing-streamline velocity Vgyg
as a correlating parameter (see following section).

(a) For the rms velocity fluctuation, the relation

Amax * (Vi - Vds) (4c-7)

is proposed. The actual profile of q across the shear layer is assumed to
be a universal function of the mean-velocity profile variable (V) =vg)/
(v. -v ).

i o

(b) For the axial scale parameter, a simple relation which roughly
predicts the observed trends with all three flow parameters listed above
(velocity ratio, density ratio and Mach number) is

vds 2
°" (Vi ‘Vds) o (he-8)

A somewhat better fit to the published data is given by

Vds ) L/3 ( 0 ) 1/3
o | — — , Le-
? (Vi ~Vgs Pds (he-9)

but the simpler relation (4C-8) has been used for preliminary prediction
purposes.

Note that the predicted intensity given by (4C-5) is much more sensitive
to qpax Variations than to o variations.

CALCULATION OF DIVIDING STREAMLINE

In a self-preserving two-dimensional free shear layer between two
parallel streams, the dividing streamline is defined by the property that
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there is no mass transport across it, on average. Thus, the dividing
streamline separates the mass flows of the two streams; it also locates the
position of maximum turbulent shear stress, and thus has a physical signi-
ficance which makes the choice of (Vds’ pds) for correlation purposes appear
somewhat less arbitrary.

The position of the dividing streamline, in terms of the mean velocity
ratio Vds/vi = Agg» Can be deduced from the mean profiles of density and
velocity in the shear layer. Values of Agg» for various combinations (A,
po/pi), have been calculated by Korst and Chow (ref. 67) using the following
assumptions.

(a) For incompressible mixing, the mean profiles of specific volume
o~1(y) and velocity V(y) are the same shape.

(b) For compressible gas mixing with y constant across the shear
Jayer, the mean profiles of stagnation temperature Teot(y) and velocity V{y)
are the same shape.

(c) The profile shapes in each case are represented by an error-
function curve.

Values of Agg obtained in this way were used in equations (4C-7) and
(4c-8) to predict (qmax,o) variations relating to the standard case (A =0,
pi/po=1, incompressible flow), and the results are shown in Figures 4C .1
and 4C.2. Figure 4C.1 shows reasonable agreement between the predicted qmax
variation (for constant-density mixing) and the measurements of Yule (refs.
125, 126). In Figure 4C.2 experimental spreading-rate ratios oo/ (where oq
refers to the standard case above) are shown from the results of Sabin (ref.
37), Baker and Weinstein (ref. 127), Abramovich et al) (ref. 128), Johnson
(ref. 129), and Brown and Roshko (ref. 41). The scatter is considerable,
but the predicted o variation is roughly consistent with the observed trends.

JET NOISE PREDICTION

Combining (4C-7) and (4C-8) with (4C-5) gives the prediction that

i = (Vj-V4s)® Vds?,

|« Vi8 (1-1gs)® Age? (4€-10)

The frequency parameter St defined by (4C-6) may be replaced, in view of
("‘c-7) » b\/

_ _ fd -
Sds = V(T -age) " (4c-11)
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(l = Ads)

0.2p

Amax
vds

O REFERS TO UPPER SCALE (1 -Ads)
O REFERS TO LOWER SCALE (1 -2)

(1-2)

Figure 4C.1 Variation of turbulence intensity with velocity ratio
in two-stream mixing (low Mach no., po/P; = 1).
Data from Yule (ref. 125, 126).
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BAKER AND WEINSTEIN (REF. 127)
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O YULE (REF. 125, 126)

(] BROWN AND ROSHKO (REF. 41)
—— (A =0, .2, .4, .6) PREDICTION BASED ON (4C-8)

ao

Figure 4C.2 Spreading rate variation with velocity and density
ratio, in incompressible two-stream mixing



EFFECT OF INCREASING JET TEMPERATURE
AT ZERO VELOCITY RATIO

The effect on jet noise intensity of raising the jet temperature can be
predicted from (4C-10); as noted at the outset, what is being predicted is a
source alteration effect, and any flow-acoustic interaction effects must be
allowed for subsequently. We denote the isothermal-jet intensity at the
same jet velocity by lo (in the corresponding normalized frequency band).
Then (4C-10) gives

{(1-245)8 2y
%__= ds) ds thot ’ (4C-12)

O {(1-xg45)" *dsz}isothermal

e.g. for Ty/Ty = 2, 1/1g = 1.5 dB;

for Ty/Ty = 10, /1 = 3.8 d8.7

These increases in effective source strength are in fact small compared with
the reductions in intensity expected from flow acoustic interaction effects.

EFFECT OF INCREASING VELOCITY RATIO
FOR GIVEN JET CONDITIONS

The intensity radiated from a jet in a surrounding stream can be
related, using (4C-10) to the intensity radiated by a jet of the same exit
velocity and temperature mixing with fluid at rest. The result, shown in
Figure 4C.3, is a prediction of the forward flight effect on jet noise,
purely from the source alteration viewpoint. It should be noted that Figure
LC.3 is calculated for jet exit Mach numbers of order 1, but by specifying
the remaining parameters as A and Ttot,J/To the effect of Mach number varia-
tions is kept small. Moreover, inclusion of flow-acoustic interaction
effects at 90° to the jet axis [by inserting a factor (T,/T;)3 on the
radiated intensity] makes a negligible difference (less than } dB) to the
predicted intensity reduction factor, over the range of parameters covered
by Figure 4C.3.

teateulated from the X34 values of Korst and Chow (ref. €7), using a main-
stream Crocco number C;=0. There is no significant change in these
figures if C;2=0.2 is used.
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SOURCE NON-COMPACTNESS AND CONVECTION EFFECTS

A reasonable hypothesis for the source convection velocity under various
conditions of jet density and velocity ratio would be to assume

Vc = Vds (l‘c—]3)

For the standard jet (A=0, p /pi =1), for example, this gives V=0.62 Vi
using Korst and Chow's value $or Adg*

The scaling velocities Vg which appear in the source wavenumber-
frequency spectrum model may be taken as proportional to Apax» and hence to
(Vi - vgs).
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APPENDIX 4D

VELOCITY SAMPLING CALCULATION
AND LV PROCESSING EXAMPLE






In reference 1 it is argued that if there is no dependence of particle
number on particle velocity, that is, there is no uniform particle distri-
bution in the flow, then the true mean velocity is given by the reciprocal
of the arithmetic mean of the particle periods (the time taken for the
particle to cross a fixed number of fringes), multiplied by a proportion-
ality constant.

If the particle velocity sample V; is related to the period sample T;
by Vi =K/T;, then the true mean velocity V is given by

This is equivalent to the harmonic mean of the velocity samples since that
is given by

1

1 i

e~
<<

1
N .
i

<i|—

It can also be shown that the biasing effect leads to a weighting of the
velocity probability density function by a factor proportional to the
velocity. Thus, by dividing the measured probability density function by
the velocity and normalizing, the true velocity probability density function
can be obtained. The measured velocity p.d.f. is denoted by Pvg: in a
discrete form. The mean value of Vg is given by

If a new p.d.f. is generated in the manner outlined above, the new p.d.f.
can be given by

and the mean value is

- Vs py
V = 1 - 7 S
s Vs

zﬂ’ﬂ
n V"

This last term is unity and the remaining expression represents the harmonic
mean of V, the true velocity. A simple example will now be given to demon-
strate this equivalence.

381



Consider the following samples of velocity; 11, 10, 12, 15, 11, 12, 13,
13, 12, 13, 14, 14, 15, 14, 14, 16, 14, 15, 13, 17. The arithmetic mean is
found to be 13.40 and the harmonic mean is 13.18. The discrete probability
density function is,

Vg 10 [ 12 13 14 15 16 17

Pu .05 Ny .15 .2 .25 .15 .05 .05

Then following the analysis above:

Vg 10 11 12 13 14 15 16 17
Ps .0659 .1198 .1647 .2027 -2353 .1318 L0412 .0388

Using the modified probability density function, the mean value of Vg
is given by

V= 2 VsPs
s

and is found to be V = 13.18.

The procedure for processing the recorded LV data will not be given.
The unprocessed data is printed out in the form shown in Figure 4D.1. The
histogram, taken from the computer print out, is shown in Figure 4D.2. The
validated points for axial velocities of 225.4 m/s and 709.3 m/s have a
considerable effect on the higher order moments. In view of their high
values, the jet exit velocity being 161.5 m/s, they may be justifiably
regarded as incorrectly validated noise. The velocity data is therefore
limited to the range 45.7 -173.7 m/s. Having bounded the data in this manner,
it is reprocessed and weighted by the inverse of the velocity. The resulting
histogram is shown in Figure 4D.2 with the corresponding computer printout
given in Figure 4D.3. It can be seen that the true velocity distribution
found in this manner is very nearly Gaussian, having a skewness of -.0101 and
kurtosis of 2.7956. (The Gaussian distribution has corresponding values of 0
and 3.)

If the flow velocity changes very rapidly the particles may lag behind
the flow. This would lead to low instantaneous velocity reading for rapid
flow acceleration and a high reading for rapid flow deceleration. Some
slight particle lag was expected and observed close to the jet exit at the
highest Mach numbers where the flow has been rapidly accelerated. For a
particle already accelerated to the local mean flow velocity, the frequency
of fluctuations in flow velocity it observes will be Tower, in its moving
frame, than that seen by the stationary observer, such as at the measurement
volume. For the particle size distribution used in the present measurements,
there is no observable amplitude or phase lag for frequencies in the moving
frame less than 1 KHz (ref. 58). Since the expected dominant observed fre-
quencies at the stationary frame were never more than an order of magnitude
greater than this particle size distribution was expected to have a negligible
effect on the measurements. Thus, no correction for particle size was applied
to the data.
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X MEAN
NO BLK

JET PO

VEL (M

46.
52.
58.
64.
70.
76.
82.
88.
94.
100.
106.
111.
117.
123.
129.
135.
141,
147.
153.
159.
165.
171.
225.
709.

AXIAL

MEAN R

Figure 4D

4562 PJM 3 12

22 ST 310 280 500K 100 CLO

= 117.9 M/S XSTD =
= 178
SITION: AXIAL= 61 CM.
HORI Z= 00
VERT= 00
AXIAL
/S) COUNT PERCENT
2 2 0.02
2 3 0.03
2 4 0.04
1 24 0.27
1 74 0.83
] 132 1.48
1 284 3.19
0 346 3.89
0 485 5.45
0 749 8.42
0 973 10.93
9 1498 16.83
9 1271 14.28
9 946 10.63
8 585 6.57
8 537 6.03
8 466 5.24
8 354 3.98
7 124 1.39
7 30 0.34
7 8 0.09
8 3 0.03
4 1 0.0t
3 1 0.01
MEAN VEL= 117.95 M/S
TURB INT= 19.55 M/S
SKEWNESS= 4.1861
KURTOS IS= 130.1180
ATE 184. PPS
1 1500 5700

18.0 M/S

.1 Unprocessed velocity data.
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CORRECTED H!STOGRAMS

AXIAL

VEL (M/S)

123.
129.
135.
141,
147.
153.
159.
165.

AXIAL MEAN VEL
TURB INT
SKEWNESS
KURTOS IS

Figure 4D.3 Processed velocity data.

COUNT PERCENT
5 0.05
6 0.06
8 0.09
Ly 0.47
124 1.32
204 2.18
Lo8 4.35
463 4.9k
608 6.49
883 9.42
1082 11.55
1577 16.83
1271 13.56
900 9.60
531 5.67
466 4.97
387 k.13
282 3.01
95 1.01
22 0.23
5 0.05
1 0.01
= 114.7 M/S
= 18.9 M/S
= -0.0101
= 2.7956
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APPENDIX 5
LIST OF SYMBOLS

local, ambient speed of sound

speed of sound in primary jet, tunnel flow
primary jet, plenum cross-sectional area
velocity profile constant

filter bandwidth

volume displacement quadrupole source strength
effective nozzle coefficient

specific heat at constant pressure

free-jet data correction factor for flow effects
free-jet data correction factor for distance effects
eddy convective amplification

primary jet nozzle diameter

area of ray tube cross-section

Doppler factor

modified Doppler factor

frequency

center frequency of one-third octave filter

flow factor

stagnation enthalpy; or normal height or distance of
aircraft flight path from microphone

acoustic intensity
turbulent kinetic energy
wavenumber vector

exponent of relative velocity; or
total mass flow per unit area [Hill (ref. 47)]



LIST OF SYMBOLS (cont'd)

ma mass concentration on jet centerline

M nozzle Mach number; or axial flow Mach number, V,/a; or
twice the average sum of momentum and pressure forces per
unit area [Hill (ref. 47)]

Mc axial eddy convection Mach number, V. /a,
Ma aircraft Mach number, Vp/a,

My jet Mach number, V;/a;

MR reservoir or plenum airflow Mach number
My tunnel or free-jet Mach number, VT/aO
MTo0 minimum tunnel or free-jet Mach number

wavenormal unit vector

o B3

OASPL overall sound pressure level

P static pressure

p' acoustic pressure

Po ambient pressure in anechoic room

Py free-jet intake static pressure

PR reservoir or plenum static pressure

PT tunnel or free-jet test section static pressure
P total pressure

P(w) power spectral density of acoustic pressure

P, Prandtl number

PR reservoir or plenum total pressure

Pr tunnel or free-jet test section total pressure
q total turbulence intensity

q(x, t) acoustic source distribution
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LIST OF SYMBOLS (cont'd)

Q(k, w) cross-power spectral density of source distribution

r radial distance; or (cylindrical) radial coordinate

r ray path position vector

r (cylindrical) radius at which axial mean velocity is 66.3%

of centerline value

r.s half-velocity radius

re potential core radius

ry primary jet nozzle radius

rT tunnel equivalent radius

R normalized (cylindrical) radial coordinate, r/ry
R, Rm microphone, measurement radius (spherical)

Rp (spherical) radial coordinate

R¢ source-observer separation at reception time
Ry radius of duct

RN run number in free-jet experimental program

s distance along ray path

S Strouhal number

S modified Strouhal number

Sij volume acceleration quadrupole source strength
SPL sound pressure level

t time

t pulse travel time, R./a,

T temperature; or flyover noise record length

To free-jet intake temperature

Ta temperature on jet centerline
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Vl, Vo, Vi

v

Vi, V2

Va

Vp
Vero Vo
Vds

Ve

Ve1s Vezs Ves

LIST OF SYMBOLS (cont'd)

primary jet exit temperature

reservoir or plenum flow temperature

tunnel or free-jet test section temperature
acoustic particle velocity

axial, radial, azimuthal velocity fluctuation
mean flow velocity vector

axial, radial mean velocity

axial mean velocity on jet centerline; or
lower stream velocity in 2-D mixing layer

upper stream velocity in 2-D mixing layer

eddy convection axial mean velocity

dividing streamline velocity

eddy volume

wavenumber scaling velocity components

transverse wavenumber scaling velocity, = Ve, = Vo3
ray propagation speed

axial mean velocity of fluid at source position
mean flow velocity components in x, r, ¢ directions
velocity profile, e.g. V,/Vt

aircraft speed

primary jet exit axial mean velocity

relative velocity, (V; -Vy) or (vy-vp)

tunnel or free-jet velocity

minimum tunnel or free-jet velocity

axial distance or axial coordinate



Xn

Xs

§]

a1
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LIST OF SYMBOLS (cont'd)

virtual origin of mixing
potential core length

axial protrusion of primary nozzle downstream of
free-jet exit plane

axial distance between effective source location and
primary nozzle

normalized axial coordinate, x/ry

scaling parameter in a modified Doppler factor

wavenormal unit vector

axial wavenumber scaling velocity constant, a1V, rel =Vel

transverse wavenumber scaling velocity constant,
B1 Va,rel = Vet

ratio of specific heats

vorticity thickness of shear layer, Va»rellldvx/drlmax
axial derivative of vorticity thickness, spreading rate
angular resolution in aircraft flyover tests

noise record length corresponding to A8,

turbulence energy dissipation rate; or
kinematic eddy viscosity (Appendix 4B)

wavenormal angle (except 8,) relative to downstream jet axis
cone of silence angle

polar angle, relative todownstream jet axis, at emission
time

measured polar angle
radial wavenumber
velocity ratio, VT/VJ

index of refraction



[ES—

LIST OF SYMBOLS (cont'd)

U eddy viscosity

p fluid mean density

Po density in surrounding flow

o primary jet exit density

o jet flow spreading parameter; or spread rate defined by Gdrtler

[ref. (69)] such that similarity of mean profiles were obtained
by plotting against (oy/x)

Jo o for A=0

¢ (cylindrical) azimuthal coordinate

) eikonal function

¢(k, w) source function cross power spectral density

X similarity coordinate for velocity profile

' ray angle relative to downstream jet axis; or polar angle,

relative to downstream jet axis, at reception time; or
stream function

w source frequency; or radian frequency

Subscripts

a jet centerline value

e at emission time

i, J denote Cartesian coordinate directions (i, j=1, 2, 3)
J primary jet exit value

m measured value; or modified value

rel, REL relative to velocity Vp or Vr

R reservoir or plenum value

s refers to source conditions within the primary jet flow
T wind tunnel or free-jet uniform test section value

391



LIST OF SYMBOLS (cont'd)

o ambient value; or stationary observer reference frame in
flyover case; or external flow conditions (Appendices 3A
and 3B)

Overbars denote non-dimensionalized quantities
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