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SECTION 1

SUMMARY

This document is Task Report 3. TR-3. of the Simulation Verification

Techniques Study, Contract NAS 9-13657. Specifically, th1% report presents

system level self test concepts and requirements for simulator Self Test.

Testing techniques for training simulators are discussed in Section 3.

Three categories of testing are covered: Readiness Tests, Fault Isolation

Tests. and Incipient Fault Detection Testing. Readiness Tests are generally

end to end functional tests. Fault Isolation Tests are performed at a lower

level df hardware detail and therefore point out the faulty LRU when a failure

occurs. Various techniques for Incipient Fault Detection are discussed in

light of their applicability to various simulator subsystems. Incipient Fault

Detection Testing was found to be most useful in decreasing unscheduled maintenance

of the Motion Base System, Visual Simulation, both video and model components.

and servo driven instruments. Readiness Tests are intended to be performed

on a daily basis.

Self'Test software requirements are discussed in Section 4. The proposed

software structure is based on an executive that controls test operations, includ-

ing test software loads for various subsystem tests, checks test results to

s	 determine the next test step, and assembles test results for output to the

r	 operator, to hardcopy devices for permanent records or to mass storage files

for updating of the incipient fault detection data base. The executive is a

s	 batch program that allows the subsystems test software to establish data L rates

T	 and sampling rates. Accurate timing data is obtained by time tagging data

words at the time they are sampled.

The total hardware requirements for implementation of the Self Test System

are listed in Section S. Largest test hardware requirements in terms of cost

r.	 is in the Visual Simulation CCTV subsystem. In terms of numbers, the instru-

mentation for the various controls and displays on-the Crew Station and IOS

are most demanding.

1-1
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Section 6 discusses changes and modifications. primarily in the vehicle and

payload complemente and the impact that these changes will have on Simulator

Configuration. Self Test System. and Data Base make up. Changes discussed here

are only those that would take place after installation-and acceptance of the

simulator.

Rel'itive cost data of the Self Test components to the basic simulator

subsystems and to each other are presented in Section 7. Self Test of Visual

Simulation CCTV subsystem and the Crew Station and IOS were found to represent

the most significant portions of the total Self Test System cost. Conclusions

and recommendations, as they pertain to the overall Self Test System Requirements

and implementation are documented in Section S.



1	
,

MDC El 149
20 September 1974

SECTION 2

INTRODUCTION .

This report presents software and hardware requirements for implementing

hardware self test as defined during the Simulation Verification Techniques

Study being conducted for NASA's Johnson Space CeAter under Contract NAS9-13651.

This study is being performed by McDonnell Douglas Astronautics Company - East

at its Houston Operations facility. Keith L. Jordan. Simulation Development

Branch, FSD. is Technical Monitor of the contract for the NASA.

The Simulation Verification Techniques Study is one of a number of studies

being conducted by NASA-JSC in support of the development of training and pro-

cedures-development simulators for the Space Shuttle Program. The other studies

consist of the following: Shuttle Vehicle Simulation Requirements, NAS9-12836;

Space Shuttle Visual Simulation System Design Study. NAS9-12651, performed by

McDonnell Douglas Electronics Company; Development of Simulation Computer

Complex, NAS9-12882; and Crew Procedures Development Techniques.,NAS9-13660;

both of the latter were performed by McDonnell Douglas Astronautics Company -

East at its Houston Operations facility.

The present study is concerned with the development of self test techniques

for simulation hardware and the validation of simulation performance. A pre-

liminary report for the Hardware Verification Task has already been published.

The present report presents the results of an analysis of the requirements of

an integrated simulator self test system. This system consists of the additional

hardware and software required for a training simulator in order to provide

maximum reasonable self test capability. The results in this report will be

Incorporated in the final version of the "Simulation Self Test-Hardware Design

and Techniques Report" to be published shortly.

2-1
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SECTION 3
4

INTEGRATED SYSTEM TEST DESCRIPTION

Testing of the simulator as an integrated system involves the sequential,

and sometimes concurrent verification of simulator subsystems and functions.

There are three hierarchical classifications of tests determined by the level

of detail to which the test is performed and the level of confidence obtained

.	 after successful completion of the test. These classifications are Readiness

Tests, Fault Isolation Tests, mil, Incipient Fault Detection Tests.

3.1 READINESS TESTS

Readiness Tests are used to verify the readiness of simulator subsystems

to perform according to design and operational requirements. Generally these

tests check each of the simulator subsystems and, whenever possible, use

already verified subsystems to check other subsystems , of the simulator. Ideally

readiness tests are and to end tests. They are primarily concerned with test-

ing a complete string of hardware.

The sequence of subsystem testing developed in the course of this study

r	 is based on the "building block" approach of establishing the operational

readiness of a system element before that element can be used to test other

portions of the system under test, in this case the simulator: Figure 3.1-1

shows the sequential and parallel arrangement for test execution during the

Readiness Test. Individual tests shown at the same horizontal level can be

executed simultaneously by the various relatively independent processors in

the simulator. Checkout of the HOST computer is required prior to commencing

with simulator checkout.

Each of the vertical strings indicate dependence of tests, lower on the

chart, on successful completion of previous tests. For example, the simulator

interface minicomputer must pass successfully its readiness self test prior to

z executing the routines for . DCE self test. Failure of the minicomputer to pass

this test would return information to the HOST regarding the point or function

at which the test failed. On the other hand, a failure in the DCE would prevent

3-1
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Crew Station or visual Simulation system checkout; and it would be up to HOST

computer software to determine what automatic fault isolation tests should

be run on the OCE.

The self test software is, initially in mass • storage elements of the HOST

computer complex, and is laded into the system under control of and

through the interface facilities of the HMP` computer. At the conclusion of

the load, each processor returns to the HOST a message indicating that the

lad has been completed, and some other information such as a checksum which the

HOST can then use to verify that a successful, accurate load has been accomplished.

After the loading process is completed, and the HOST has verified that all

went well, each processor is commanded by the HOST to execute the subsystem

Self Test programs.

The simulator processing elements that receive this self test software

lad are the Flight Equipment Interface Device processors; the simulator inter-

face for the OCE, crew station, visuals, and motion base; and the IOS Graphics

minicomputer. Testing of the Flight Computers is not performed until after

the FEID is thoroughly checked out; therefore, loading of the Flight Computer

self test software does not take place until after completion of FEID Sell Test.

This particular sequence is necessary because FC Self Test requires correct

performance of FEID hardware not only during the load, but also in checking

FC capability to communicate with avionic components external to the FC and

-simulated by the FEID.

Completion of each level of Readiness Tests results in control being returned

to the HOST, which then logs any subsystem operational data gathered during the

test, issues appropriate messages to the Test Operator, and determines the next

logical step in the test sequence.

The following sections discuss briefly the nature and extent of the

Readiness test for each of the major simulator subsystems.

3-3

MCO0I14VtLL QONOLAS A8TRONAW"00 COMAftNI



r

MDC El 149

20 September 1914

3.1.1 FEID Readiness Tests

The major elements of the FEID tested during the Readiness Test are the

processors • or*the vario>n interfaces. The types of tests perforwed on these

elementse as well as the Central Buffer Storage, are swch that thorough and

progressive checks are made on each portion of the FEID. Failure to pass one

of.those tests Immediately points to a fault In the LRU being tested, and

therefore these tests, by their thoroughness and level of detail, obviate the

need for fault isolation tests.

At the completion of FEID Readiness Test, the HOST is inforwed of which

LRU's, if any, have failed and require repair or replacement action. The HOST

can then report this information to the test operator, together with possible

diagnostic information that would aid the maintenance personnel in repatring

faults detected.

3.1.2 FC Readiness Tests	 '

The Flight Computer elements, as Is the case with the FEID, will be

thoroughly checked during the Readiness Tests. The subsystem level self test

analysis indicated that. automatic testing of the FC's should rely on using

vendor supplied diagnostic software. This software will be available, and

will yield a higher level of confidence on readiness of'the flight hardware

than would be likely to be achieved by software developed especially for

simulator application.

Use of test software supplied by the FC manufacturer will provide an adequate

level of fault isolation. For the FC's, therefore, no additional fault isola-

tion tests are recommended.

3.1.3 Simulator Interface Computer and IOS Graphics Minicomputer Readiness Tests

The simulator interface computer and the graphics computar are commercially

available computer systems. These computers will be * dly procured for the

specific simulator applications. As part of that procurement, it will be necessary

to assure that these computers have available adequate software for accomplishing

functional checks of the basic computer elements. In implementing these functional

tests, the faults which may be detected are immediately related to the LRU level.

3-4
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Consequently no special fault isolation tests are required for these computers.

The test capabilities required for the functional test software are discussed

.as part of the analyses of the ancillary computer y for the simulator configurations

considered for this study.

3.1.4 DCE Readiness Test

The OCE Readiness Test, as developed during the subsystem analysis portion

of the study, consists primarily of switching output bllevel and analog channels

on to input channels. Generation of predetermined outputs is followed by

measuring corresponding inputs and then determining that input patterns, for

bilevel DCE, or valuess for analog DCE, agree with the outputs. This type of

test adequately verifies the health status of each individual channel, and if

a failure occurst can point to or isolate the pair of channels, input and outputs

where a fault might exist.

3.1.5 Crew Station/IOSReadi_

The crew station contains a variety of display, control, and instrumentation

components. These are both digital and analog devices, and within these cate-

gories there are significant differences in the physical, electrical and

performance characteristics of the many components used. This variety prevents

the use of functional performance testing of groups of components and requires

that each individual meter or switch be tested individually to ascertain

Readiness. This component by component test approach during the Readiness

Test leads directly to fault isolation and identification of the faulty components

without any additional Crew Station Fault Isolation Test.

3.1.6 Motion Bast Readiness Tests

The motion base readiness testing consists of two basic elements. The first

of these is the monitoring of sensor levels during power on and power off static

checks. The second element is the analysis of dynamic test data to assess motion

base dynamic performance adequacy. The dynamic test data may be obtained either

from specially executed motions as part of the readiness test or it may be

data accomulated on-line during the previous operational period.

The sensor data directly identifies faults in the systems since it monitors

specific parameters such as hydraulic fluid level or pressure drop across a filter.

There 1s no additional . requlrement for fault isolation with respect to these parameters.

3-5
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However, the dynamic data obtained for a synergistic motion base can be

chocked for proper performance without any insight being obtained into the likely

sources of out of specification performance for the actuator servo systems. Fault

isolation analyses may be applied to obtain the desired insight.

I	 . 3.1.7 Visual Simulation Readiness

End to and testing can be used successfully in establishing operational

readiness of the Visual Simulation System. Enough information can be gathered

by inserting a test signal at the CCTV camera and taking measurements at CRT grids

to determine whether performance of the video equipment is acceptable to

proceed with normal simulator operations. The servo systems that control probe*

cameraq and model motion can also be checked using functional end to and

testing. As in the other subsystems, fault isolation testing is only initiated

when a fault is detected during the-Readiness Test. Failure data is furnished

to the fault isolation software to determine which tests to run, and which strings

of hardware to test during the ' fault isolation process.

3-6
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3.2 FAULT ISOLATION TESTS 	 •

Fault isolation tests are performed following a failure during normal

operation or after detecting a fault during the Readiness Tests, in order to

localise the fault or source of failure to a line replaceable unit (LRU).

This localization is requi red to permit prompt repair by replacing the failed

LRU. Whereas Readiness Tests can be performed at the functional level (the

ability to generate ai audio tone with the Aural Cues System), the Fault

Isolation Tests are performed at the hardware LRU level (verifying that the

analog signal output from a DAC corresponds to the digital pattern input to

it). Fault Isolation Tests, because they go to a lower level of hardware

detail, are more exhaustive, take more time to run on any particular subsystem,

and achieve a higher level of confidence on the health of the hardware than

achieved by Readiness Tests.

There are subsystems that because of their characteristics, must be tested

in detail in order to ascertain an acceptable level of readiness. These subsystems

are not addressable by higher level, functional testing as part of the daily

Readiness Test. 'these subsystems inusude tho Flight Equipment Interface Device,

FEID, the Flight Uimputers, the computers for the Simulator and graphics inter-

faces, and the Crew Station and IDS instrumentation, displays and controls.

The readiness tests for these subsystems, as discussed in the previous section,

effectively isolate faults to the LRU level required.

There are, hoMever, several subsystems that are suitable for extended

testing for fault isolation or in fact, require quite extensive additional

tasting in order to achieve identification of defective LRU's. These consist

of the Data Conversion Equipment, the Motion Base, the Visual Simulation

Subsystems, and the Aural Simulation subsystem. The Fault Isolation Test

requirements for these subsystems are discussed fi the following paragraphs.

3.2.1 DCE Fault Isolation Tests

At the end of the Readiness Test, the HOST is informed of the pairs of

&-h•,nnels, if any, where faults were detected. The Test Operator is given this

`ormation and the o ption to terminate DCE testing or to command the HOST

initiate the DCE Fault Isolation Test. It is possible that the channels

3-7
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that failed readiness testing are spare channels, not in use, and therefore

no further fault isolation is required. On the other hand, if the channel is

in use, the operator may patch around the faulty channel by making the necessary

hardware and software data base changes to permit the use of alternate channels.

This course of action may expedite activation of the simulator and obviate the

need ftr fault isolation and maintenance operations, which would then be deferred

to a more convenient, lower interference time.

If the Test Operator chooses to perform automatic fault isolation, he

notifies the HOST and initiates loadinq and execution of the DCE Fault Isolation

Tests. The objective of these tests is to determine which LRU in the DCE is

faulty and therefore s l-ould be replaced or repaired.

'nw first step in the DCE fault isolation process is to determine whether

the faulty channel in the suspected pair is the output or the input. This

can be accomplished, as discussed in previously documented DCE Self Test

analysis. If the fault is determined to be in an output bilevel channel, the

fault isolation process continues to determine whether the faulty LRU is the

digital output routing and address decoding logic, or the memory and drive

circuitry. If the fault is in the bilevel input channel, then the isolation

process will localize the fault in the input multiplexer and address decoder

logic, or the bilevel signal receiver circuit. Problems in a pair•of analog

channels will cause the fault isolation testing procedure to determine whether

the faulty LRU is the DAC or analog driver in the output, or the Buffer Amplifier

or ADC in the input. The 'fault isolation process for both bilevel and analog,.

channel LRU ' s has already been documented in the Self Test Design and Techniques

analysis portion of the study.

3.2.2 Motion Base Fault Isolation

Although many of the components that may require periodic servicing can

be measured by direct sensing, the isolation of faults based on dejradation of

hydraulic actuator system performance is a factor that may be amenable to

--^lysis. Fault Isolation Tests for the motion base require consideration

the frequeoicy response of the servo systems or servo loops of which the

•	 3-8
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hydraulic actuators are the major components. Definition of the frequency

response enables comparison of breakpoint data with fault dictionary information

which is established by simulation of the motion base actuator servo systems.

Analysis of this data then permits identification of the particular components

or likely components which are causing the degraded performance.

3.2.3 Visual Simulation Fault Isolation

In the Visual Simulation System there are two major types of hardware:

one is the primarily electronic elements which make up the Closed Circuit

Television system and include camera, camera control, video processing, display

switching and the displays themselves. The other type is the electromechanical,

servo controlled elements used to move and position the various components of

the camera/model based simulation. This type includes the spherical earth

models, the camera gantry and its driving system, and the probe pointing

attitude control servo systems. The fault isolation approach for the CCTV

components is based on a progressive test of succeeding LRU's in the video

string until the failed LRU is switched in and unusual performance degradation

is detected. On the other hand, fault isolation for the model drive components

concentrates on analyzing that control string which exhibited unacceptable

performance during the Readiness Test. Characteristic parameters of each

LRU in that string are measured in order to ascertain operational status of

each LRU and determine which is the one that has failed. The actual sequence

of fault isolation tests for each string-of hardware has alrr;dy been documented

r:	 in the Visual Simulation System Self Test Analysis part of the study.
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3.3 INCIPIENT FAULT DETECTION

This section covers incipient fault detection testing techniques and their

applicability to simulator hardware. First of all, a set of criteria to determine

which components can profit from this third class of testing is discussed.

Then various methods to perform incipient fault detection are presented with

emphasis on the one selected, that of gathering historical operational data

and looking for trends that point to eventual failure of a component. The

applicability criteria were applied to all the simulator subsystems, and a

set of relevant parameters, along with processing techniques were defined for

each of the subsystems that could benefit from incipient fault detection.

These parameters and techniques are documented for each subsystem at the end

of this section.

3.3.1 Incipient Fault Detection Criterii

The primary objective of incipient fault detection testing is to identify

potential failures before they occur. This objective becomes quite important

in components that require extensive simulator downtime to repair or replace.

For example, an electronic module can be replaced in seconds, and if it fails

during simulator operation, only a few minutes would be lost from the training

schedule. On the other hand, if a hydraulic fluid accumulator ruptures, it

would take hours to replace, if a spare were available, and even longer to

repair, reassemble the plumbing, and recharge the hydraulic system to replace

the lost fluid. In the first case, the payoff from incipient fault detection

implementation is measured in minutes saved when the weakening module is

replaced during non operational time. In the latter case, incipient fault

detection analysis can point to the sticky.valve, the surging pump, or the

clogged filter that could eventually result in rupture of the accumulator.

This information could be used to replace or repair the faulty component during

a more convenient maintenance shift, instead of having to face the situation

described above that would cause the loss of one or several training shifts,

following rupture of the accumulator.

0
This example illustrates the primary criterion used in determining which

subsystems should be analyzed for possible application of incipient fault

detection techniques: if an LRU in a system requires more than one hour for

i
	

3-10

#IQOONNLLL OOYaLA! AsvwoNAm"es COAItANr- tAir



r

I

•	 MDC El 149
•	 20 September 1974

The second criterion in determining applicability of incipient fault

detectiorr is the physical and functional nature of the LRU involved. Some

components, notably solid state electronic circuit elements, do not exhibit

degradation characteristics that can point to eventual failure. These devices

usually fail as a result of a single overstress condition that causes fusion

or breakage of the delicate semiconductor material, thereby changing•the

electronic characteristics of the unit. It is not possible to predict a

failure in this type of circuitry, and even though it may be desirable to do

so because of maintainability considerations, no known incipient fault detection

technique can be effectively applied here.

On the other hand, there are LRU's, notably electromechanical devices,

that do age and wear out either because of mechanical function or by chemical

changes within the device. For example, an electrical motor may exhibit

erratic starting characteristics. This condition may be an indication that

the bearings or seals have worn down, or that capacitors in the starting

circuitry have aged to the point that eventually a failure might occur that

could require extensive overhaul of the motor. Early detection of the•incipient

fault permits scheduling of overhaul as part of normal maintenance operations.

However, this early detection can only be effected on components that degrade

or age to the point that may eventually result in a failure. '

To summarize then, the two basic criteria for determining applicability

of incipient fault detection techniques to a particular subsystem are:

•	 1. Maintainability characteristics of the LRU must be such that repair

or replacement time would exceed one hour.

3.11

MCOONNtLL OOLJOLAS ASTR0NA&MC8 COMrAIVY • CAST



►

MOC El 149

•	 20 September 1974

2. Physical, functional and aging characteristics of the LRU are such

that unit integrity degrades with time to an unacceptable or failure

level, rather than failing a tastrophictlly and unpredictably.

F	 3.3.2 Incipient Fault Detection Technidue	 .

Various techniques for performing incipient fault detection were analyzed

during Subtask 1.2 of the study, and are documented in more detail in the

c	 previously published Self Test Techniques Report. They are reviewed here for

reference. The four techniques analyzed were:

1. Overstt•-,s Testing. The LRU is operated at the high end or beyond

the high ;stress limit of the operational band. This overstress

operation should be within the safety margin normally encountered

in hardware design. If operation is faulty, it may be a symptom of

possible future failure. Examples of this type of testing are fre-

quency response tests it higher frequencies than required 	 in normal

operation, or testing of electrical components at higher voltage than

the maximum specified for normal performance. The greatest disadvantage

to this technique is that it may force a failure at a time when main-

tenance would impact simulator operational schedule. If properly

'	 scheduled, however, this technique could be a useful tool to detect

e	 weaknesses in some simulator components.

2. Marginal Testing. The LRU is operated at the low end or beyond the

f-	 low stress limit of the operational band. This technique, like

overstress testing can be used to detect degradations in components

that may lead to a failure. Examples of marginal testing would be

running the motion base with lower than normal hydraulic fluid system

pressure, or slewing a camera gantry slowly enough to find sticky

points along the range of travel that indicate a possible accumulation

of dirt on the track, or flaws in the driving mechanism that can

lead to a future failure.
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3. Grey Area Performance Dbtection. The LRU is tested within its normal

band of operation. but a warning is issued when performance drops

below a predefined level. This technique assumes progressive per-

formance degradation which becomes a failure below a predefined level.

If a higher level is defined to create a warning or "grey" area, then

performance within this area, although acceptable, is an indication

that the unit has degraded to such a point that a failure will soon

occur. Simulator operations personnel should then schedule maintenance

of the LRU in order to preempt thi actual occurance of the failure.

4. Rate of Degradation. Measure and record historical data on a parameter

that indicates degradation of performance in a particular LRU, and

use this data to compute rate of degradation. If this rate increases

or changes markedly, it may,point to an imminent failure of the unit.

The amount of time during which historical data is recorded depends

on the nature of the component and the slope of tho normal or average

degradation function for that type of component.

If degradation.takes place very fast, as in the case of a slightly

ruptured hydraulic filter that through usage might enlarge the rupture

and eventually break down, then there is no need to store data for

months. Information gathered for the last five days may be enough to

indicate that something has happened to the device, and that its

performance is fast degrading and that soon a failure will occur. On

the other hand, a slowly degrading component such as an electrolytic

capacitor may require processing of data acquired for a period of

weeks to indicate that the component has reached its "last leg" in

the degradation function, and that soon it will fail totally.

Techniques number 3 and number 4 are the ones that offer the greatest value

for simulator incipient fault detection testing. Their advantages lie in that

no unusual operational conditions have to be created, and therefore, normal

•	 operation or readiness testing exercises can be used to gather the necessary

data to detect incipient faults. Therefore, these techniques do not need

additional test hardware or control software beyond that which is required to

perform the Readiness Tests or Fault Isolation Tests.
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3.3.3 Incipient .Fault Detection Implementation

Using the Incipient Fault Detection Applicability Criteria in analyzing

simulator subsystems. it was determined that incipient fault detection tech-

niques would benefit the operational utility of the following subsystems:

- Hydraulic Motion Base System

- Visual Simulation Video Components

- Visual Simulation Model Drives and Controls.

- Servo Driven Instrumentation

These are the system elements that exhibit progressive degradation character-

istics and would require the simulator to be out of service a substantial period

while maintenance takes place. Table 3.3-1 summarizes the use of incipient

fault detection techniques on each subsystem. Integration of these techniques

is a part of recommended self test procedures.

TABLE 3.3-1 INCIPIENT FAULT DETECTION TECHNIQUES APPLICABILITY

SYSTEM ELEMENT

INCIPIENT'FAUI.T DETECTION TECHNIQUES

Overstress	 Marginal	 Gray Area	 Rate of
Testing Performance Degradation

Hydraulic Motion Base System X X X X

Visual Simulation Video X X X
Components

Visual Simulation Model X X X
Drives And Controls

Servo Driven Instrumentation X X X
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3.4 TEST SEQUENCING

The three types of testing discussed above have been integrated into a

recommended simulator self test concept. This self test approach is based

on several assumptions and on the above description of-the basic nature of

these tests when applied to specific simulator subsystems. The general test

approach and test sequencing are most evident in the discussion of the Simulator 	 s
Self Test Software Description presented in Section 4. 'In this section, we will

review the rationale for test sequencing and distribution of test operations as

it relates to the three types of testing involved.

The readiness tests are intended to be overall functional tests for the

various simulator subsystems and as such should require only a limited amount 	
t

of time to execute. It is assumed that the readiness tests would nominally be

executed every day or at the beginning of each training shift. In the event

that a failure or fault is detected by the Readiness Test, it may be necessary
to execute a Fault Isolation Test in order to identify more precisely the LRU

which is the source of the problem. As previously discussed, this is only

necessary in the case of the DCE, the motion base, the visual system and the
W I.	 aural simulations.

If the fault isolation test is required, then a question arises as to

whether it should be executed automatically or whether the operator should

be required to initiate the additional test by further positive action. In

design of the test software, Section 4, automatic execution is assumed since

this establishes the necessary basic sequence elements. The introduction of

pauses or overriding interrupt logic is a relatively minor and optional problem

when the software is implemented.	 i

Figure 3.4-1 illustrates the operational sequencing of Readiness, Fault

Isolation, and Incipient Fault Detection Testing. The basic data for the

Incipient Fault Detection Test can be obtained in most cases during the

readiness test execution- as shown in this Figure. However, if a fault is

detected during the readiness test, then the data obtained should not be

entered into the Incipient Fault Detection data base. Tests for this contingency

are shown in the software flows.
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FIGURE 3.3-1 DAILY SELF TEST SEQUENCE
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In summary, then, if the Fault Isolation Tests are initiated automatically. 	 a
the operator will be provided with an output which identifies the following:

0 Subsystems tested that have successfully completed the readiness check

o Sybsystems tested that have failed the readiness.check

o Results of Fault Isolations Tests for faulty subsystems

o Results of analyses of'Incipient Fault Detection Test data, including

the following:

o LRU's that have moved into a gray area and are approaching

an unsatisfactory level of performance 	 ••

o Projected failure dates/times for near term critical LRU's

The operator must then decide whether to constrain the type of activities

allowed in simulator usage, or to initiate maintenance or replacement of,the

components identified as failed. The output from self tests then is an indi-

cation • of the readiness status of the system, including information helpful

in trouble shooting or restoring any faulty functions or components of the

Simulator.
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SECTION 4	 .

SIMULATOR SELF TEST SOFTWARE DESCRIPTION

The simulator self test software has been designed and structured so as

to implement the test sequences discussed in Section 3 with respect to both

the order of subsystem testing and the order in which the various types of

tests are executed. Since the simulators of interest don't exist currently

but are expected to be multi-computer systems with satellite processors available

to handle input/output processing, data reformatting, and other miscellaneous

operations, it is impossible to predict with much certainty the amount of

computing power available in these peripheral processors. Therefore, it is

also impossible to rationalize, at this point, the distribution of self test

functions between the host computer and the interface computers. , As a result,

the approach taken in designing the software defers that problem to a later

time and presents the software structure so as to define hierarchies of

software modules, and the necessary sequencing of operations and channels of

data communication.

A simulator self test software tree is shown in Figure 4-1. The software

modules are identified by both an acronym, suitable for programming use, and

a descriptive title. The modules shown in this tree do not have the relationship

usually implied by a software tree in the sense that the modules at the two

lower levels are not subprograms to the modules above them. Instead the impli-

cation of the structure of the tree is that modules at the same level may be

exercised concurrently and independently, resources permitting; all modules in

the same string but at a higher level must be exercised successfully before

that module may be exercised; or, in other words, the modules in a string must

be exercised in a top down sequence. All of these modules and programs will

be controlled in their execution by the test executive and consequently in

an ordinary tree would all be shown directly connected to the executive. Each

of these modules is further described in detail in the final report for the

hardware techniques task. In this report, we will limit ourselves to describing

the test executive software.
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4.1 SELF TEST EXECUTIVE SOFTWARE

A software flow for the test executive is shown in Figure 4-2. The test

executive is primarily concerned with controlling the order and extent of the

testing executed and comtmunicating the proper output messages and data for

operator use as well as for storage in the data base for incipient fault

detection. The test executive accomplishes its function by initiating and

controlling the loading of all test software from mass storage facilities,

commanding execution of the tests, reviewing the processed results from the

tests and then selecting the proper course of action which will include in

most casiss the presentation of data to the operator, the selection of

^-	 addltipnal.tests, the storage of historical data in data base files, and ther•
!.	 printing of test data reports.

It should be noted that the test executive does not become involved in

the dynamic test timing function. The test data sampling rates are established

by the test software for each subsystem being tested. Time tags for the data

points are obtained from an external clock and are loaded into the controlling

computer at the same time the data words are loaded. This minimizes the depen-

dence of the subsystem tests on proper operation of all computer and interface

timing functions and eliminates unpredictable interrupts and interrupt processing

as an error source in test da ta timing.

The executive does contain the logic to decide on the course of action

after each level of testing is completed. This logic requires access to the

test results temporarily stored in a memory buffer.

When testing is completed or has proceeded to a standstill, the executive

formats the data, if necessary, and communicates the appropriate information

as follows:

o Operator display - Operator action requirements, including "system ready"

o Hardcopy printer - Daily test results summary and reference data

o	 Data base file - Incipient fault data base update
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4.2 SUBSYSTEM TEST SOFTWARE

The subsystem test software, such as FITST or MBTST, is loaded by the

executive, TESTER, and includes the programming which implements the tests, the

characteristic parameter data associated with the hardware being tested, and

the date processing software required for reducing the test data. The output

of the subsystem test software is stored in a memory buffer for final disposition

by the executive, TESTER.

There are three different types of testing/processing at the subsystem

level. These consist of readiness testing, fault isolation testing, and inci-

pient fault detection processing, and are usually executed in that order.

The readiness tests are ideally end-to-end tests or total performance

tests for a subsystem. If a readiness test indicates a fault and fault

isolation tests are applicable, the decision to proceed with fault isolation

can be taken automatically at the subsystem test software level, and the logic

is shown accordingly as part of the subsystem tests. It is recognized that

this decision could be exercised at the executive level where the-results of

other concurrent subsystem tests could also be considered. The decision can

also be reserved for manual selection by the operator. Final choices can be

•'made during software implementation without any significant impact on the

software development.

Incipient fault detection data should nominally be gathered during the

readiness tests. If a fault is detected at that time, the incipient fault

detection data may be adversely affected. Consequently, the decision should

be made at the subsystem level to delete this data and not add it to the data

base. Otherwise, the incipient fault detection data is communicated to the

executive through the memory buffer.
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SECTION 5

SELF TEST SYSTEM HARDWARE

This section summarizes the total hardware requirements to implement the

simulator Self Test System developed in the course of the study. The hardware

listed includes only those components added for test purposes. A primary ground-

rule of the study was to maximize use of operational hardware in carrying out

the Self Test job. This groundrule has been adhered to throughout the study,

and hardware used in this manner is not specifically identified in this section.

Cost data on Self Test System hardware 1s presented and discussed in Section 7.

Table 5.0-1 is a list of the various components added to each of the sub-

systems for Self Test purposes. Each'photosensor used for galvanometer testing

include a photodiode as a built-in light source. These devices are compatible

with signal levels of logic circuitry used in the Data Conversion Equipment and

therefore, no additional signal conditioning components are needed.

The current sensor circuits used to verify operation of lighted.indicators

are. counted as a single component per indicator. These sensor circuits contain

resistors, diodes, and transistors. However, each sensor circuit can be packaged

as an individual module and using state of the art circuit integration techno-

logy, the circuits could be packaged right in the indicator assembly.

The loop closure switches listed for the Analog DCE are those solid state

switches used to connect output channels to input channels in order to verify

DCE operational status. Also under DCE is included the necessary components,

ADC, switches, and buffer amplifiers needed to provide input channels for

measurements taken during the Self Test process, measurements using instru-

mentation specifically added as part of the Self Test System.

Table 5.0-2 shows the breakdown of additional DCE channel requirements for

Self Test. These requirements cover the data acquisition channels used speci-

fically to measure characteristic parameters of simulator hardware during

Readiness, Fault Isolation, or Incipient Fault Detection testing. No additional

command channels were identified for applying test stimuli to operational hardware.
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TABLE 5.0-1 HARDWARE ADDED FOR SELF TEST

COMPONENT	 QUANTITY

Galvanometers (70)
3 photosensors in each 	 210

Lighted Indicator Current Sensor Circuits	 700

Analog DCE - Loop Closure Switches
•	 Closure to test input channels	 200

Crew station isolation and connection of output
channels to the 200 operational input channels 	 200

Analog DCE Test Channel Components
ADC	 1
Buffer amplifiers 120
Solid state analog switches 120

Bilevel DCE - Loop Closure Gating and
Digital	 Input Multiplex Selection Gates 2500

Visual Simulation System Self Test Hardware.
Digital processing oscilloscope 1
Signal generator 1
Signal to noise meter 1
Video switches 16
Video buffer amplifiers 36

Motion Base
Pressure sensors 5
Level sensor 4
Temp sensor 2
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TABLE 5.0-2 ADDITIONAL DCE CHANNEL REQUIREMENTS FOR SELF TEST

COMPONENT TESTED CHANNEL REQUIREMENTS

Bilevel. Analog
Galvanometers 210

Servometers 16

Tapemeters . 20

ADI (4 units)
4 wire sin/cos, 3 channels each 48
6 pointer position feedback' 24

signals from each ADI

Lighted Indicator 700

Electromechanical Flags 400

-Switches - No extra lines for testing

Visual Model	 Servos
3	 cameras x 6 servos 18
Terminal area transport servos 4
Orbital earth position resolver 30
Cloud/sky/terminator altitude servos 3•

Motion Base
Sensors	 11

Position, actuators 6 17

1388 102

Wi th Sp- .res 1500 125

5-3

MCOONwrELL nou42twi AST OOVAUWCS 000WP MMV - WAS P

a

•	 J



.i _ L ^: I 11-T^-T
MOC El 149

• 20 September" 1974

However, in the case of the video components of the Visual Simulation System, the

test controlling computer, with DCE, must issue the necessary commands to re-

configure the test hardware and-control the test execution. These commends acti-

vate the DPO, signal generators, and measuring equipment used to test video

elements. The number of these commands is relatively small (less than 20) and

represent negligible impact on the total DCE.

On the other hand, the additional input channel requirements of 1500 bi-

level and 125 analog channels for Self Test purposes represent an effective

doubling of DCE capability when compared with the'Reference Configuration

magnitudes-of 2000 bilevel and 100 analog channels. Considerable increase

in parts and manufacturing cost should be expected from the fact that the in-

crease in DCE capability is more accentuated on the analog instead of the bilevel

side of the DCE. Analog channel components are larger, more complex, and more

costly than the gating required to add bilevel channels.

Additional t"t hardware for the Visual Simulation System consists

of the Digital Processing Oscilloscope, a video test waveform generator, a

signal to noise meter, and the necessary switching to isolate each LRU

during the testing sequence. No additional hardware is expected for testing

model scene generation equipment other, than that listed under DCE.

The Motion Base test hardware consists of the sensors and signal conditioning

circuits required to route characteristic parameter data to the computer. Normally

these parameters are only routed to the maintenance panel either electrically,

mechanically, or hydraulically. In order to implement the automatic Self Test

capability developed in this study, it is also necessary to digitize charac-

teristic parameter data and supply them to the computer conducting the test.

The amount of hardware discussed above is a significant measure of the

impact on simulator design and maintenance by the addition of automatic Self

Test. Cost data related to this impact is discussed in Section 7. However,

at this point it is important to point out that parts cost is a small part of

total impact when compared with the total cost that includes generation of
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additional wiring instructions. manufacturing additional housing space for these

components, actual wiring cost, and increase in acceptance and integrated test-

ing of the resulting system. All of these costs, however, may be offset by the

increase achieved in simulator availability and utility during the operational

life of the system. They also represent a very smell percent increase to

simulator total procurement cost.

0
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SECTION 6

SYSTEM IMPACT BY REQUIREMENTS OR DESIGN CHANGES

This section discusses various types of changes that can occur after the

simulator has become operational and the sources of changes. Particular

attention is given to the impact of these chan94s both on the Simulator

System as well as in the Self Test System. This discussion is the basis for

assessing the effect of changes on the operational simulator and Simulator

Self Test systems, and for formulating some recommendations that could

minimize impact.

6.1 SOURCES OF CHANGE

As indicated above, this section only deals with changes initiated after

the simulator has been installed, accepted, and is in its operational phase.

Changes during design or development of the simulator per se are not considered

here, because these changes are allowed a greater impact than those during

the operational phase, and also because when considering the implementation

of development changes, the impact of these changes on other parts of the

system is evaluated before permitting implementation.

The major sources of changes during the operational life of the Simulator are:

1. Mission peculiar requirements variation from flight to flight.

2. Vehicle design changes.

3. Advancements in state of the art and

4. Performance enhancements.

These sources of change are discussed below.

6.1.1 Mission Peculiar Requirements Variations

The primary mission of Shuttle simulators is to provide a training facility

for the various piloting and mission oriented crews that will man Shuttle

controls during the life of the program. Although the aerodynamic and vehicle

performance characteristics will not vary considerably from flight to flight,

It is reasonable to expect significent changes in mission objectives, payload

management requirements, and general procedures as dictated by the type of

trajectory, orbital characteristics, and manuevering requirements needed to

accomplish these mission objectives.

6-1
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Mission related changes manifest themselves-in the Simulator in the need

4	 for special payload management controls, payload related math models,, and

development of procedures that permit efficient utilization of vehicle and

{ payload systems in accomplishing mission objectives. A dramatic example of

mission related Simulator changes is the addition of payload environmental

control and life support management facilities in the crew station, as well

as the addition of math model restrictions in payload manipulation when

changing Simulator configuration from a Shuttle carrying only unmanned pay-

i
lads, to one carrying a mix of manned and'unmanned payloads.

6.1.2 Vehicle Design Changes

This source of Simulator changes is more difficult to visualize at this

point in the Shuttle program. The design of the vehicle is an ongoing effort,

and additions and changes are taking place on a daily basis. It would be

Ideal A f this process could achieve an optimal configuration prior to the

first space flight; however, experience in previous programs has shown

otherwise, and therefore, it is reasonable to expect design changes to take

place as problems become more apparent during early flights of the Shuttle.

Design changes may affect vehicle performanvi or payload accomodation

facilities and consequently alter the control and displays layout in the

crew station, as well as the looks, feel or sound of related cues.

6.1.3 State of the Art Advancements

Even more difficult to visualize than vehicle design changes are those

modifications that result from advances in the state of the art of simulator

hardware. Generally, these modifications result in the replacement of multiple

components for an integrated system that performs the same job more effectively.

Effectiveness in this case refers to fidelity of simulation as a primary

intention, and cost of ope-,:tion when compared with the price of implementing

the change.

6.1.4 Performance Enhancement

The fourth source of simulator modifications is the need to improve perfor-

mance of the simulator beyond that which was specified, and supposedly met as

shown by acceptance test results. Again, the'primary consideration in this
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case is fidelity of simulation. The situation may develop such that although

the simulator. performs as specified, it does not present realistic cues to the

crew so that positive training can take place in an environment that truly

represents the vehicle in looks, feels, sound, and performance; co,sequently,

modifications are needed to enhance the simulation capability of the system.

Performance enhancement changes would generally manifest themselves in

the installation of new equipment, or replacement of existing components with

units that have more capability. These changes would usually result in an

increase of complexity in the simulator system,'and therefore increase the

need for control as well as data acquisition channels in quantity and sometimes

in capability.
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6.2 IMPACT OF SIMULATOR CHANGES

Implementation of changes on the simulator system requires additions$

deletions. and reconfigurations of hardware and software. This impact will affect

simulation as well as self test elements. In many cases t also l the character-

istic parameter data base will be impacted. Table 6.2-1 itemises the impact

of various changes on the affected elements of the system.

The impact analysis for changes in interface minicomputers, visual simu-

lation, and motion base is unnecessary since changes in these subsystems are

unlikely after simulator acceptance. These subsystems are large, complex,

and generally the subject of individually managed procurement efforts. This

special attention in procurement yields comprehensive requirement specifications

for components that are reliable. maintainable. and capable of meeting future

needs of the simulator

The Crew Station and IOS control and display elements may be changed

either by vehicle changes * mission requirement changes. or the need to improve

fidelity of simulation. Flight hardware used as part of the simulator system

may al ... ^,% the subject of change by either of the reasons mentioned above.

The chaiiyei shown on Table 6.2-1 for the DCE generally result from changes in

Crew Station and IUS controls and displays or in simulator Flight Hardware.

Minor changes may develop to take care ' of needs for additional control or

instrumentation of simulator functions.

Notice that the changes discussed may originate from needs to modify the

simulation system, or from needs to modify the simulator Self Test System.

Changes in one system generally impact configuration of the other system.

This relationship is shown in the Table. Also, it should be noted that the

characteristic parameter data base, as expected, 1s only affected when new

hardware is introduced into the system, or when some hardware is removed or

replaced.
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SECTION 7

SELF TEST SYSTEM COST DATA

Relative cost data for addition of automatic self test capability to the

Reference Configuration Simulator is shown in Table 7.0-1. No absolute dollar

figures are shown because the selection of test component configuration, packaging,

manufacturing, and installation techniques are dependent on the actual simulator

design used, as well as the date in time when self test systemi implementation

is to take place.

The first column shows cost of self test system elements relative to the

basic cost of the subsystem to be tested. This rating ranges from Negligible

(0-5%) to Moderate (20r-M). No "High" ratings were given to self test cost

for any subsystem as this rating would have implied greater than a 50% increase

in cost of the basic system. Consistent utilization of existing operational

capability in the system for self test purpose is the basic reason for maintaining

cost between Moderate and None.

The five columns to the right of the Table show cost of different factors

in implementing subsystem self test as a percentage of total Self Test System

cost. Some of these factors are estimated as less than 1% and therefore are

shown only as *. The total cost of the Self Test System adds only to 98%;

the remaining 2% is accounted for in the * items and others which exceed the

whole number shown.

The largest percentage of Self Test System cost appears in Visual Simulation

CCTV Self Test. This high percentage is due to the cost of the Digital Processing

Osscilloscope, the special video pattern test signal generators, and the various

signal and noise meters. The cost of visual simulation video component self

test is further increased by test software development cost. This software is

relatively more sophisticated than other elements of the test software in that

it must provide processing capability for various complex waveforms from the

video string. These waveforms have a variety of frequency components, require

sampling rates of up to 50 Megahertz, and include test patterns such as a stair

step and frequency multiburst signals.

7-1

AWDOMWsu. 002VOLws AATVWC A,&MC6 CORM W e CAST



.

r
Ell 49
Sept^r 1974

^^ N O0
N N O► ao	 O 	 M

LN	
i
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Following closely in percentage of cost is the Crew Station and IOS self

test factors. The high cost of controls and displays checkout is owed to the

large number and variety of components to be testedo which in turn requires a

fairly large characteristic parameter data base. In addition to the data base

software, a generalized routine must be develc ped for each of the types of

components used. Each component must be tested individually and therefore

requires its own unique test calling and control sequence. With component

count in the hundreds (thousands, if switches included), it can be seen that

these sequences make up a considerable amount of software to be written,

integrated, tested, and documented. Also, the large number of components

affect design, manufacturing, and test component costs to make Crew Station

•	 aod IOS self test a high portion of total Self Test System cost.
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SECTION 8

CONCLUSIONS

The system level analyses of the simulator and automatic self test concepts

have yielded several conclusions that help understand the self test process and

the self test system as such. 'This understanding-contributes to comprehensive,

realistic and integrated requirements definition, while at the same time providing

a picture of the cost of self test implementation relative to the operational

advantages gained by its presence in the simulator system.

First of all, it was determined that three levels of testing are required

to achieve effective operational utility of the Self Test System, and increase

availability of the simulator. Readiness Tests yield information as to oper-

ational health of each subsystem. Fault Isolation Tests are called upon to

determine which LRU, if any, has tailed. Incipient Fault Detection Tests gather

performance degradation data to schedule maintenance of-degraded components

before an actual failure occurs. The DCE, Motion Base, and Visual Simulation

subsystems can be adequately checked at the functional level; only if a fault

exists is it necessary to call the more detailed Fault Isolation Test. Other

subsystems must be ' tested at the LRU level in order to ascertain readiness.

Incipient Fault Detectiorr techniques were found to be effectively applicable

to the Motion Base System, the Visual Simulation elements, and to servo driven

instrumentation.

A software structure for the Self Test system was developed. This structure

Conforms to the operational considerations brought about by the three categories

of testing mentioned above, and depends largely on the use of utility test

modules that minimize redundancy and maximize programming efficiency.

No significant increase in hardware was found to be needed to implement the

simulator self test capability developed in the course of the study. On a

subsystem basis, the relative cost of adding self test hardware was found to be

from moderate to none. The greatest hardware impact is found in the DCE because

of the more than 100% increase in number of analog channels, and in the Visual

Simulation because of the Digital Processing Oscilloscope, signal generators, and

signal meters needed to perform specially designed video component tests.
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Change impact analysis indicated that changes'occurring during operational

phase of the simulator would be felt most in Crew Station and IOS controls and

displays, in the Flight Hardware components of the simulator, and in the DCE.

The magnitude of this impact cannot be assessed a priori. as the effect of a

{	 change greatly depends on the nature of the change and the components involved.
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