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Comment, annotation

On-line storage (e.g., disk)

Decision

Predefined process, subroutine

LIST OF SYMBOLS

1.	 PLOW CHART SYMBOLS

Flow charts shown in this report conform to American National Standard

X3.5-1970, "Flow Chart Symbols and Their Usage in Information Processing".

Symbols of interest are defined below.

Process: Computation, storage move, etc.

Input/output
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O
O

O
Program terminus: begin, end, return,
stop, etc.

i

Flowline connector

Parallel mode: multitasking, databus

2.	 ACRONYMS

=	 The acronyms listed below are those of fairly general use within this

report.

APU Auxiliary Power Unit

ATCS Active Thermal Control System

CGI Computer-Generated Image

C & W Caution & Warning

£CLS Environmental Control/Life Support

EOM Equations of Motion

EPG Electrical Power Generation

EPS Electrical Power Subsystem

ET External Tank

GN&C Guidance, Navigation & Control

IMU Inertial Measurement Unit

MOM Mul ti pl exer/Demul ti pl exer
ME aMain Engine	

i
MPS Main Propulsion System

MSBLS Microwave Scanning-Bean Landing System

OMS Orbital Maneuvering System
d

a
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PDR Yre nmi nary ues i gn Review

PDRS Payload Deployment & Retrieval System

PMS Performance Monitoring System

PRSD Poorer Reactants Supply & Distribution

P/T Payload/Target

RCS Reaction Control System

?	 SGLS Space/Ground Link System	 i

SRB Solid Rocket Booster

SRM Solid Rocket Motor	 t,

SSFS Space Shuttle Functional Simulation

STDN Spaceflight Tracking & Data Network

SVDS Space Vehicle Dynamic Simulation

TACAN Tactical Air Navigation

TBS To Be Supplied

TDRS Tracking & Data Relay Satellite

UHF Ultra-High Frequency

a

1

i
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4.7.4 Power Generation Subsystems

This section discusses the Electrical Power Generation and Auxiliary Power

Generation.

4.7.4.1 Electrical Power Generation

The Electrical Power Generation (EPG) portion of the Electrical Power System

includes three H2/02 fuel cells with associated water cooling loops; and the Power

Reactant Storage and Distribution subsystem (PRSD). (The battery subsystem has

been deleted.) The distribution and control of electrical power is accomplished

by the Avionics Subsystem.

EPG System Description

Each of the three fuel cells contains subsystems which provide the following

functions:

e Heating and pressure regulation of the H 2 and 02.

9 Coolant circulation and control for proper temperature control.

0 H2/02 circulation to remove product water from the fuel cell.

Reference 25 provided Figure 4.7-65,a schematic of the fuel cell interfaces

with other systems. Figure 4.7-66 (also from Reference 25) illustrates the fuel

cell internal operations and functions, which are discussed below.

Fuel Cell

The H2 and 02 from the PRSD are passed through pre--heaters (heat exchangers)

which warm the gases prior to flow through coupled pressure regulators which

maintain the proper operational gas pressures for purges and normal fuel power

generation.

The fuel cell coolant loop circulates a cooling fluid - .through the fuel cell.

This fluid transfers heat from the fuel cell to the active Thermal Control System.

The system includes coolant pump, flow control valve, condenser (heat exchanger),

startup heaters, fuel cell coldplates, 02/H2 pre--heaters (heat exchangers), and

coolant accumulator.

The N2/02 circulation is accomplished by a combination pump/H 20 separator.

The flow is through the fuel cell, condenser, and the water separator. The fuel
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:ell product water is output to the ECLSS for storage and use.
a

PRSD

The Power Reactant Storage and Distribution (PRSD) subsystem comprises

cryogenic storage tanks, control valves and distribution manifold. The Shuttle

subsystem has two tank assemblies for 0 2 and two tank assemblies for the H2.

However, provisions of the manifolds allow the addition of cryogenic 0 2 and H2

tank assemblies in the payload bay. Each tank assembly has two heaters, burst

diaphragm and relief valve. The subsystem schematic from Reference 25 is shown

in Figure 4.7-67.

EPG Module Description and Performance Parameters

The EPG module functions are to provide the calculations related to the fuel

cell operations and the PRSD performance. Figure 4.7-68 is an illustration of the

EPG module functional elements and their interfaces with other modules. The

functions of each functional element are discussed in the following paragraphs.

The module performance parameters for the fuel cell and PRSD are identified in

Tables 4.7-19 . and 4.7-20.

i

Fuel Cell Pressure Control - The following calculations are provided by this

element:

a Electruue pressure -- a function of temperature, gas quantity, gas

volume.

Gas Usage rates a function of electrical load, inlet pressure, electrode

pressure, temperature, purge mode selection, and electrode differential

.	 pressures.

a Electrode Gas Quantities - functions of regulator flow characteristics and

gas usage rates.

a H2O quantity - function of electrical Ioad and electrode pressures.

Fuel Cell Coolant Loo	 This element makes the following: calculations:

9 Pump flow rate - a function of loop configuration selection, fluid

.temperature, input voltage.

a Pump outlet temperature	 a function of inlet temperature; flow rate, input 	 a

electrical power, and output hydraulic power.
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TABLE 4.7-19	 EPS FUEL CELL PARAMETERS (TYP 3)

DATA RANGE
PARAMETER NOMENCLATURE

LOW HIGH UNIT

H2 Regulator Pressure 0 +100 PSIA

Voltage 0 +40 VDC

Current 0 +500 AMP DC

Cell Current Low LOW EVENT

Ready OFF ON EVENT

Start Up Heater OFF ON EVENT

Startup Heater - OFF ON EVENT

Stack Cool Out Temperature -50 +300 DEG F

Condenser Exit Temperature 0 +250 DEG F

02 Flow 0 25 LB/HR

02 Regulator Pressure d +100 PSIA

H2 Flow 0 4.5 LB/HR

02 Purge Valve Automatic ON EVENT

H2O Condition ON OFF EVENT

120 Outlet Valve Position OPEN CLOSE EVENT

Product H2O Line Temperature 0 +200 DEG F

H2O Line Heater Active ON EVENT

H2O Line Heater ON ON EVENT

02 Pressure Over H2O 0 +10 PSID

H2 Purge Valve OPEN ON EVENT

H2 Purge Valve - Automatic ON EVENT

02 Purge Valve OPEN ON EVENT

a P - Performance Parameter
CP r Critical Performance Parameter

I - Input

TYPE 

CP

P

P

P

I

I

I

CP

CP

CP

CP

CP

I

I

I

CP

I

I

P

I•

I

I
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TABLE 4.7-20 EPS POWER REACTANT STORAGE AND DISTRIBUTION PARAMETERS
(COMMON 3 FUEL CELLS)

PARAMETER NOMENCLATURE
DATA RANGE

TYPE 
LOW HIGH UNIT

H2 Circulation Isolation Valve lA OPEN CLOSE OPEN EVENT P

42 Circulation Isolation Valve 1B OPEN CLOSE OPEN EVENT P

H2 Circulation Pump IA ON ON EVENT P

H2 Circulation Pump 1A Automatic ON EVENT P

H2 Circulation Pump 1B ON ON EVENT P

H2 Circulation Pump 1B Automatic ON EVENT P

H2 Circulation Line Heater No. 1A-Active ON EVENT P

H2 Circulation Line Heater No. 1B-Active ON EVENT P

H2 Manifold 1 Pressure 0 +400 PSIA CP

H2 Manifold l Isolation Valve Closed OPEN CLOSE EVENT P

H2 Manifold 2 Pressure 0 +400 PSIA CP

H2 Manifold 2 Isolation Valve Closed OPEN CLOSE EVENT P

H2 FCP 1 Supply Valve Closed OPEN CLOSE EVENT P

H2 FCP 2 Supply Valve Closed OPEN CLOSE EVENT P

H2 FCP 3 Supply Valve. Closed OPEN CLOSE EVENT P

H2 Pressure 0 +400 PSIA CP

H2 Quantity 0 100 PCNT P

H2 Heater 1A ON OFF ON EVENT P

H2 Heater 1A Temperature -425 +200 DEG F CP

H2 Heater 1B ON OFF ON EVENT P

H2 Heater 1B Temperature -425 +200 DEG F CP

142 Purge Vent Temperature 0 +250 DEG F CP

H2 Relief Vent Heater l Active ON EVENT P

H2 Relief Vent Heater 2 Active ON EVENT P

H2 Relief Vent Heater 3 Active ON EVENT P

02 Pressure 0 +1500 PSIA CP

02 Quantity 0 100 PCNT P

;i

4.7-189	 3
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TABLE 4.7-20 (CONTINUED)

PARAMETER NOMENCLATURE
LOW HIGH UNIT

TYPEa

02 Heater IA ON OFF ON EVENT P

02 Heater 1A Temperature -325 +300 DEG F CP

02 Heater 1B ON OFF ON EVENT P

02 Heater 1B Temperature -325 +300 DEG F CP

02 Circulation Isolation Valve IA OPEN CLOSE OPEN EVENT P

02 Circulation Isolation Valve 1B OPEN CLOSE OPEN EVENT P

02 Circulation Pump 1A ON ON EVENT P

02 Circulation Pump 1A Automatic ON EVENT P

02 Circulation Pump 1B ON 	 - ON EVENT P

02 Circulation Pump 1B Automatic ON EVENT P

02 Circulation Line Heater No. 1A-Active ON EVENT P

02 Circulation Line Heater No. 1B-Active ON EVENT P

02 Manifold 1 Pressure 0 +1500 PSIA CP

02 Manifold 1 Isolation Valve Closed OPEN CLOSE EVENT P

02 Manifold 2 Pressure 0 +1500 PSIA CP

02 Manifold 2 Isolation Valve Close OPEN CLOSE EVENT P

FC 1 02 Supply Valve Closed OPEN CLOSE EVENT P

FC 2 02 Supply Valve Closed OPEN CLOSE EVENT P

FC 3 02 Supply Valve Closed OPEN CLOSE EVENT P

H2O Relief Vent Temperature 0 +250 DEG F CP

FC H2O Relief Vent Heater 1 Active ON EVENT P

FC H2O Relief Vent Heater 2 Active ON EVENT P

02 Purge Vent Temperature 0 +250 DEG F CP

02 Relief Vent Heater 1 Active ON EVENT P

02 Relief Vent Heater 2 Active ON EVENT P

02 Relief Vent Heater 3 Active ON EVENT P

a P - Performance Parameter
CP - Critical Performance Parameter

I - Input

I
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* Coolant flow to ATCS - a function of condenser H 20/H2 outlet temperature,
pump flow rate, startup heater inlet temperature, and condenser fluid

outlet temperature.

e Fluid temperature to ATCS - a function of pump outlet temperature.

a Coolant flow to condenser - a function of coolant flow to ATCS, condenser

H20/H2 outlet temperature, startup heater inlet temperature, and , condenser

fluid outlet temperature.

e Condenser fluid inlet temperature - a function of condenser fluid flow

rate, pump outlet temperature, condenser H 2/H20 outlet temperature, ATCS

fluid flow, and ATCS fluid return temperature.

@ Condenser fluid outlet temperature - a function of condenser fluid flow,

H2/H20 flow, H 2/H20 inlet temperature, and condenser fluid inlet temperature.

@ Startup heater inlet temperature - a function of static inlet control valve

characteristics, pump fluid outlet temperature, condenser fluid outlet

temperature, condenser flow rate, and pump flow rate.

s Startup heater temperature - functions of heater electrical power, inlet

fluid temperature, and fluid flow rate.

a Startup heater outlet temperature - a function of fluid flow, heater

temperature, and inlet fluid temperature.

e Fuel cell outlet temperature - a function of the fuel cell temperature,

pump flow rate, and startup heater outlet temperature. _

a 02 Pre-heater fluid outlet temperature . - a function of inlet fluid

temperature, inlet 0 2 temperature, 02 flow rate, pump flow rate.

# 02 Pre-heater outlet 0 2 temperature - a function of inlet 0 2 temperature,

inlet fluid temperature, and 02 and fluid flow rates.

a H2 Pre--heater outlet fluid temperature - a function of 0 2 pre-heater fluid

outlet temperature, H 2 inlet temperature, H2 flow rate, and fluid flow

rate.

@ H2 Pre-heater outlet H 2 temperature - a function of 02 Pre-heater fluid

outlet temperature, H 2 inlet temperature, H 2 flow rate, and fluid flow rate.

@ Fuel cell temperature - a function of electrical load, end plate heater

power, 02/H 2 flow rates, coolant flow rate, H 2/H20 -Flow rate, coolant inlet

temperature, and H 2/H 20 inlet temperature.

H 2/H20 Circulation - This element calculates the following:

o H2/H20 pump flow - a function of electrical input voltage, H 2/H20 temperature,

4.7-191
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rpm, and outputpower.

^,	 a Separator H2O flow - a function of separator efficiency and H 2O quantify
inlet.

{	 a Separator H 2O pressure - a function of H 2O tank pressure, and H 2O flow.
a Separator outlet H 2O temperature - a function of inlet H 2/H20 temperature,

input electrical power, and output hydraulic power.

{	 H2 pump outlet temperature - a function of the inlet_H 2/H20 temperature,
input electrical power, and output hydraulic power.

H2 pump outlet pressure - a function of H 2 temperature, and pump flow
rate.

0 Condenser inlet H2/H20 temperature - a function of inlet H 2 temperature,
inlet H2 flow, H2/H 20 pump flow, fuel cell outlet H 2/H20 temperature, and
H2/H20 pressure.

Fuel Cell Electrical Output - This element generates the following:

s Output voltage level - a function of reactant quantities at electrodes,

output current, and fuel cell temperature.

a Output current - a function of load impedance, and fuel cell output

voltage.

PRSD - The calculations performed by this element are:

Reactant Quantities - functions of ECLSS usage, fuel cell usage, and

relief venting.
Tank temperatures - functions of input heater power, heat leakage,

,-eactant flow rates, and pressures.

a Tank pressures - functions of reactant quantities, temperatures, and

volumes.

® Burst diaphragm rupture (discrete) - a function of diaphragm characteristics

and pressure.

a Relief flow rate - a function of tank pressure, ambient pressure, reactant

temperature, and relief valve characteristics (only after burst diaphragm

rupture).

a Manifold temperature - a function of inlet and outlet flow rates, and

temperatures.

a Manifold pressure - a function of inlet flow, outlet flow, and manifold

temperature.
REPRODUCIL'iLFrY of THE
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a Manifold flow rates - functions of inlet pressure, inlet temperature,

and outlet pressure.

EPC Reference Data Sources and Data Formats

Several sources of data exist for use for developing reference modules or

making direct comparison with simulator results. The system and component design

performance requirements, analysts/performance predictions, test results, and

flight performance data are a few. Figure 4.7-69 is an overview flow chart of

methods of using hese sources in a direct comparison wi -the results of . a..	 }9	 P	 ..

simulator run. In brief, the method is to establish the design requirement,

analysis, etc. as input conditions on the simulation module to be verified. The

simulation module is allowed to reach a stabilized response and the resulting data

output for manual comparison with the spec requirements, analysis results, etc.

This method is discussed in Section 4.2.1.4. The method of section 5.1	 can be

used with the reference models for verification.

Fuel Cell

The fuel cell requirements are provided by Reference 64 . The requirements,

analysis and predictions can be determined from Reference 22, design or analysis

groups, and MPAD. Many of the test results can be acquired from individual

acceptance tests and integrated-systems checkout. Reference 63 discusses a

computer program for simulation of the CSM fuel cells for the Skylab mission.

The Shuttle fuel cell system is very similar to the one described by this

reference; thus, the subject program should be easily converted for Shuttle

simulation verification.	 3

PRSD - The basic flow for the PRSD 0 2 reference module is shown in Figure 4.7-70 .

This approach utilizes the basic flow charts shown in Figures 4.7--71 and 4.7-72.

The approach for PRSD-H2 parameters would be identical to the 02 except for the

fluid characteristics. Reference 65 can be used as a source of 0 2 characteristics

while Reference 66 provides the H 2 characteristics. Reference 22" , provides many

of the component characteristics of interest.
1
j

FPG Validation Methods and Check Cases

The reference module is utilized by the method of Section 5.1, while the

systems performance data is used by the technique of Section 4.2 is validating the

EP0 simulation module. Drivers required to generate and maintain interfacing

4.7-193
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module input parameters include:

0 Atmosphere Revitalization

v Active Thermal Control

t Avionics (Electrical Power distribution)

0 H2O Management

9 Control Logic Inputs

The check cases should include minimum, intermediate, and maximum electrical

power load requirements, transient power switching loads, and projected mission

load profiles.

EPG Data Base Imnact
The impact of the EPG validation on the. simulator data base is in four forms.

These forms are the reference module, required drivers, processing subroutines,

and data files. The most significant impact is the reference module. The

reference module includes the fuel cell and the power reactants systems. The

drivers would have the next most significant impact. The drivers would be required

for both the reference module method and the systems performance data method.

The processing subroutines would include the data output routines (tables,

plots, etc.) and any comparisons or data manipulations. The output routines would

be required for the reference module and the systems performance data methods.

Most processing routines would be common to all modules validated, however.

Data files are required for the power load profiles, 02/H2 cryogenic tables,

and output data tables.

4.7.4.2 Auxiliary Power Generation (APG)

The APG consists of three Auxiliary Power Units (APU's) which provide power

to the hydraulic pumps in the three hydraulic power systems. The three APU's

are identical with each driving only one hydraulic system. APU's are identical

with each driving only one hydraulic system.

APG System Description

Figure 4.7-73 (taken from Reference 25 ) is a schematic of the APU used for

the Shuttle Orbiter. The fuel (N 2H4) is expelled from the fuel tank by a fixed

quantity of nitrogen used as a pressurant. A turbine-driven fuel pump feeds the

4.7-199
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fuel through control valves into the gas generator. The gas generator is a

heated catalytic bed which causes decomposition of the fuel into a hot gas 	 The

hot, high pressure gas is then used to drive the turbine and exhausted overboard.

A gearbox provides torque and angular velocity transformation to drive the fuel

pump, AC generator (if any), oil pump and hydraulic fluid pump. The oil pump

circulates the gearbox lubricant through the gearbox.and the water boiler for

cooling. The lubricant in the gearbox is pressurized by a tank of GN 2 via a	
I

pressure re gulator. An electronic APU controller provides fuel flow modulation

to allow startup, shutdown, and maintain normal turbine run speed.

APG Module Description and Performance Parameters

Figure 4.7-74 is a schematic showing the APG module functional elements and

their interfaces with other modules. Table 4,7-21 is a listing of the APU para-

meters. The functions performed by each element are discussed below:

Fuel Source

a N2 pressure - function of temperature, Helium quantity, and N 2 
H 
4

quantity remaining.

o Tank (fuel) temperature - function of heater power, -input, and NA
usage.

a N2H4. quantity - function of initial quantity and fuel usage rate.

Fuel Pump

a Pump flow rate - function of turbine speed and fuel density.

Pump bypass rate - function of fuel delivered to the gas generator,

pump flow rate, and control mode.

* Fuel source flow rate -- function of fuel delivered to the gas generator

and control mode.

a Fuel pump torque - function of friction, speed, flow, differential

pressure, and moment of inertia.

Gas Generator

a Pressure - function of temperature, fuel inlet flow, gas flow out, and

gas quantity.

o Temperature - function of fuel decomposition rate, heater power,

exhaust temperature, and turbine flow rate.

a Gas quantity - function of turbine flow, fuel inlet rates, and

decomposition rate.
4.7•-?n1
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TABLE 4.7-21 APU REFERENCE MODULE PARAMETER LIST (From Ref. ' 9 )

PARAMETER NOMENCLATURE TYPEa
LODATAHRANGEUNIT

Shutdown inhibit command ON 'EVENT P

Propellant tank pressure 0 600 PSIA CP

Propellant tank temperature 0 +160 DEG F P

Tank heater-element A-B ON ON EVENT P

Discharge line temperature 0 +16O DEG F P

Line heater-element A-B ON ON EVENT P

Fuel pump discharge temperature 0 250 DEG F P

Package heater-element A-B ON ON EVENT P

Fuel isolation valve-open command ON EVENT P

Fuel isolation valve position Open CLD EVENT CP

Lube oil heater-element A-B ON ON EVENT P

Thermal bed heater A ON ON EVENT P

Thermal bed heater B ON ON EVENT P

Gas generator bed temperature 0 2500 DEG F CP

Controller power-on command ON EVENT P

Status light - ready OFF ON EVENT P

Start command ON EVENT P

Turbine speed 0 100K RPM CP

Gearbox lube oil temperature 0 900 DEG F CP

Gearbox lube oil pressure 0 +100 PSIA P

Gearbox bearing temperature no. 1 0 500 DEG F CP

1

a
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Turbine

f	 a Turbine speed - function of turbine torque, gear box lubricant

temperature, hydraulic pump load, system friction,

system moments of inertia, fuel pump rate, and AC

generator output power.

p Turbine input power - function of turbine polytropic efficiency; gas

inlet temperature, gas inlet pressure, and gas outlet

pressure.

a Discharge temperature - function of inlet temperature, turbine power.

e Turbine fuel flow - function of inlet pressure, temperature, outlet

pressure, and effective -turbine flow area.

Gearbox

m Oil pump pressure - function of pump speed, oil temperature, and line

resistance.

e Oil pump flow rate - function of pump speed.

@ Ail  pump torque load -- function of oil temperature, flow rate, and

line resistance.

I
e Oil temperature - function of oil pump flow, return oil temperature,

oil quantity.

a Rate heat input - a function of friction and rotation (rpm).

APU Control

o Valve control(s) - function of input commands, turbine speed,

temperatures.

APG Reference Data Sources and Data Formats

The APG module can be verified by use of reference module(s) or system

performance data. The reference module(s) should have incorporated the most

accurate systems performance data in order to achieve a high degree of fidelity.

The systems performance data would include design requirements, analysis results,

test results, and vehicle flight data.

Figure 4.7-75 is a flow chart utilizing the reference data sources for

verification. The sources of the systems performance data include:

a MC201-0001 (Reference 67 ) - provides system and component design perfor-:
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mance requirements.

j	 a JSC-08934, Vol. I (Reference' 22'.:) - provides a. compilation of design

requirements, analysis results, test results, and performance

predictions for various Shuttle systems.

a SAPUCM (Reference 68) - the Simplified Auxiliary Power Unit Consumables

Model allows the conduct of full consumable analysis for

comparison with the simulation module.

A reference module for the APU is shown in Figure 4.7-76.

APG Validation Methods and Check Cases

The method of Section 5.1 and the selected reference module on the technique

presented in Section 4.2.1.4 with the system performance data can be used for

verification of the APG module. When utilizing the reference module, the following

interface module drivers are required:

a Hydraulic power - system functions, power load, and lubricating oil

(Gearbox) cooling

e EIectrical power bus voltages

a Control logic inputs

Check cases should include startup, shutdown, steady-state maximum hydraulic

load, steady state minimum hydraulic load, mission hydraulic load profiles, and

hydraulic load switching.

APG Data Base impact

The impacts on the simulator data base are associated with the reference

module, special drivers and check case data files. The selected APG reference

module will have a large impact. The development of Figure 4.7-76 into a

reference module (or the use of some detailed model) will be the bulk of the impact.

Special drivers will also be required for the simulation module and reference.

modules. These drivers would include the hydraulic power subsystem, electrical

power system, and control logic inputs. The hydraulic power subsystem driver would

provide hydraulic pump loads and cooling for the gearbox lubricating oil. The

electrical power driver provides appropriate bus voltage levels for the heaters,

control logic, and valve actuation. Switch positions, command input,;, and automatic

inputs are provided by the control logic input driver.

4.7-207
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LEGEND: m&z - Gear Box mass

.	 - Wass of Gas Generator

P^ - Fuel mass available

Residual fuel mass

ux^ - Fuel tank N2 mass

cRna-- N2 mass in Gear Box pressure bellows

AM. e - Lubricant mass in Gear Box

-,nor, - Gear Box - N2 source tank N2 mass

-- Gas mass in Gas Generator

Mr.F, - Mass of fuel in fuel line l (Run)

- glass of fuel in fuel line 2 (Bypass)

Mu= - Mass of fuel 'in fuel pump line

- Mass of lubricant in oil base.

tl ~ Mach number of turbine flow

vmp - Volume of N2 in fuel tank

V^ - Fuel tank volume

Vsm' - Gear Box N2 source tank volume

dozva Ge r Box N 2. bellows volume

r- ^- Gas .yo7 ume of Gas Generator

f - Fuel tank and fuel temperature

Tr- - Fuel tank compartment temperature

TPF-oki Fuel pump inlet fuel temperature

Tpp-dam. Fuel pump outlet temperature
	 .v

Tjj-c Gas Generator inlet  fuel temperature

Lubricant pump 'outlet temperature

Ta - Gear Box lubricant temperature
Gear Box lubricant  return temperature

T - Lubricant temperature out of Hydraulic Boiler

7s'; ,7 - Gear Box N 2 source tank temperature

Tespz_ Gear Box N2 tank compartment temperature

r --- Gas Generator temperature

rc Gas Generator compartment temperature

T,,, - Turbine outlet gas temperature

it - Fuel heat of formation.
	 f,

FIGURE 4.7-76 . (CONTINUED)
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3

AF.i- Mass fl ow rate of -Fuel from fuel tank

.AiYF - Fuel pump mass flow rate

Fuel flow rate through startup line

.m.,-W Bypass line fuel flow rate

Lubricant pump mass flow rate

N2 flow rate to Gear Box pressure bellows

Gas flow rate through turbine

- Fuel density

Lubricant density

b-h - Time increment

e^ Specific heat of fuel

(^„^NZ Specific heat at constant volume of N2

Co -» Specific heat of lubricant

,,165 - Specific heat of Gear Box
G,fc, - Specific heat of fuel gases at constant volume

Co - Specific heat of gas generator

cP^ - Specific heat of fuel gases at constant pressure

Ya - Fuel gases specific heat ratio

1?,.X._ N2 gas constant

r?% - Fuel .gas constant

jp.- Fuel pump volume displacement per cycle

Ira -Lubricant pump volume displacement per cycle

Fue.I pump efficiency factor
- Lubricant pump efficiency factor

ysr- - Fuel pump angular velocity

- Hydraulic pump angular velocity

-- Lubrication pump angular velocity

A37- - Turbine angular velocity
Wj= - Gear ratio of fuel pump to turbine

Na - Gear ratio of oil pump to turbine

M ~ Gear ratio of hydraulic pump to turbi ne

FIGURE A „7-7,. (CONTINUED)
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r

qc - Fuel tank pressure

I	 P - Gas generator pressure

Pg o Fuel pump outlet pressure

APr- - Fuel pump pressure rise

Pp_o^T- Lubricant pump outlet pressure
M. -- Lubricant pump pressure rise

P - Gear Box lubricant pressure

P,HZ - Gear Box N source tank pressure

P	 Turbine outlet pressure

Del• heater electrical power

-Gas ia	 .ator heater electrical power

Fuel delivery line flow area

Am- Fuel bypass line  flaw area

11,L -- Lubri cant I i ne fl ow area

Turbine flow area

Ve - Fuel pump fuel velocity

Tj,-c, -- Fuel delivery line  vetocity

 ^- Fuel bypass line velocity

vo - Lubricant line  velocity 	 .

R'eF,- Reynold's number for fuel delivery line

rQ,eFz-- Reynold's number for fuel bypass line

Reynold's number for oil line

A^,	 Diameter of fuel delivery line

nz - Diameter of fuel bypass line

DQ	 Diameter of oil line
6r-j - Roughness factor of fuel delivery line

EFx - Roughness factor of fuel bypass line

Zcl- Length of fuel delivery line

I-Fz Length of fuel bypass line
tQ -. Length of oil line

FIGURE A .7-76, (CONTINUED)
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System friction at turbine

- Oil line  friction -Factor
-PILL - Fuel delivery line  friction factor

f,p,_ - Fuel bypass line  friction factor
24= - Fuel friction due to line realted to pump shaft

Y,WP - Friction losses of oil pump

jpp - Friction losses of fuel pump

HP - Friction losses of hydraulic pump

Oil pump and line  friction losses
- Fuel pump and line friction losses

J^P - Fuel pump moment of inertia

J.	 Oil pump moment of inertia

JH'p - Hydraulic pump moment of inertia

Summation of pump and fuel inertias

a - Summation of pump and oil inertia

,Ts - System moment of inertia at turbine

Gear Box moment of inertia  at turbine

14aL Oi I pump hydraul i c power l oad

Fuel pump hydraulic power load

1y t - Hydraulic pump hydraulic power load

Turbine power

Hydraulic power load for turbine

qT - Turbine efficiency
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The use of analysis/test/design requirements reference data requires the use

of special drivers. These drivers establish and maintain proper conditions in'the

module which correspond to the analysis/test/design requirements conditions. The

plotting or outputting of the simulation data would also require special subroutines.

However, the total impact of the analysis/test/design requirements is small.

The use of input/output files for special check case profiles may be required.

The profiles would include hydraulic power profiles for launch and reentry-through-

ianding.

•]



4.7.5 Avionics

Avionics subsystems are involved in sensing, communications, information

3	 yhurdling, and con trol. The following subsections discuss avionics modules under

the categories of Guidance, Navigation and Control; Communications and Tracking;

Displays and Controls; DpFrational Instrumentation; and EPS Distribution and

Control. Data Processing and Software functions are performed by flight hardware

and software in the simulators of interest to this study. 	 ' t

4.7.5.1 Guidance, Navigation and Control:

Guidance, Navigation and Control subsystems and components are used for

sensing vehicle-related observables, using these sensor data to estimate vehicle

state variables, and defining and executing desired vehicle maneuvers. The

subsystems and components in this category include inertial measurement units,

stra don gyros and accelerometers propulsion systems interfaces opticalP	 9Y	 , P P	 .Y	 s P	 ^

trackers, and the aeroflight control system.

f

i

cr,
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A.7.5.1.1 Inertial Measurement Unit (IMU) - The IMU is used to sense the inertial

(Wicntltion and acceleration of the vehicle.

i;U System, Description

Generally, three types of IMU's are employed in spacecraft:

o three-gimbal platform -- as used in the Apollo Command Module.

0 four-gimbal platform - as used in the Gemini spacecraft and currently

baseliri,d for Shuttle (see Refs. 25, fi g ).

o strap-down platform - similar to the backup attitude reference system

on Apollo; considered as an alternate attitude reference system for

Shuttle.

Regardless of the type, the IMU outputs directly perceivable by the crew

consist of three angular readouts which describe the orientation of the spacecraft

with respect to an inertial reference. In addition, accelerometer outputs are

input to the onboard computer for processing. In the case of the four-gimbal

platform, the output of a redundant inner roll gimbal is also input to the

1

	 onboard computer. This gimbal provides the capability of preserving the stable

member attitude reference during "gimbal lock" conditions. The output of this

gimbal is used by the flight computer to prevent gimbal lock, but is not

no nually displayed to the crew.

The performance verification methods presented in this section are

particularly suited to the Tour--gimbal arrangement, since this design has

all-attitude capabilities under noniial conditions of body rates. Additional
	

R

development would be requ' •ed to verify INIU simulation in and around the

gimbal-lock regions characteristic of the other two types of IMU design.

IMU Module Functions and Performance Parameters

Figure 4.7 -. 77 depicts the interfaces between the IMU module and the rest

of the simulaticn. Inputs come from four basic sources:

o MDM (Multiplexer/Demultiplexer), which provides the "operate"

discrete and the flight software torquing and slew commands.

4.7-221
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FIGURE 4.7-77	 IMU MODULE INTERFACES
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o EPS (Electrical Power System), which provides the 28 Vdc operating

power.

a ECL.S (Environment Control and Life Support) system, which provides

the thermal control.

a Environment, which provides the vehicle dynamics sensed by the

platform: angular rotation and inertial acceleration.

Outputs of the IMU fall into four categories:

u Status discretes which are used by the flight software and

the Caution and Warning (C & W) system.

o PMS (Performance Monitor System) Data, which are used by the flight

software performance monitor system for its redundancy management function.

o Gimbal angle resolver data, which consists of sine and cosine data

from the coarse (l X) and fine (8X) resolvers attached to the individual

gimbals and is used by the flight software and the FDAI for determining

the orientation of the vehicle with respect to the stable member of

the platform.

o Accelerometer Data, which consists of the LTV accumulator outputs

and is used by the flight software to determine the total inertial

acceleration acting on the vehicle.

Using the current Shuttle baselined four-gimbal platform as a reference,

the performance parameters as defined in Ref. 25 are summarized in Table 4.7-22.

Note on this table that the three primary gimbal angles (not the resolver

sine and cosine outputs) have been chosen as critical performance parameters.

The fourth gimbal is a redundant roll gimbal which is forced by the stabilization

loop to remain at or near zero. It only has a non-zero value during the time

that the platform is in the condition that would result in gimbal--lock in a

three gimbal platform. Since the stabilization loop of the IMU is not expected

to be part of the simulation software (Reference 32 ), the role of this redundant

gimbal in thc, simulation is unknown. Some empirically--determined "kluge"

simulation may be incorporated to provide a "wobble" in the FDAI during these

conditions; however, verification of this implementation would be dependent on

the manner of its simulation, and is therefore not addressed in this newsletter.

4.7-?.93
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I = input

0 = output

P = performance parameter

CP = critical performance parameter

LEGEND:

I

TABLE 4. 7-22	 IMU MODULE PARAMETERS	 #

SYMBOL DESCRIPTION TYPE"

"Operate" discrete I

Electrical power I

Avionics Bay temperature I

Gyro torquing and gimbal slew commands I

w Body angular rate vector I

as
Body sensed acceleration vector I

Status discretes (IMU ready, operate mode,

overtemperature,	 IMU fail) 0

PMS data (redundant sensed angular rate, oven

temperature, IMU mode/BITE status 0

Gimbal angle resolvers;

o	 outer roll	 (coarse/fine) P

0	 pitch	 (coarse/sine) P

e	 yai^,	 (coarse/fine) P

e	 inner roll	 (fine only) P

5p, e,•4) Gimbal angles	 (roll, pitch, yaw) CP
Vx ,	 ►Jy , V, L V accumulator outputs P

aimu Instantaneous accelerometer outputs CP

rt

io

-i
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IMU Reference Data Sources and Data Formats

Two methods are presented in this section to provide ideal (closed-form

solution) IMU angular information in response to selected vehicle body rate

inputs. The first method, the "constant rate input method", employs constant

body rates or stable member drift rates as inputs, and computes the resultant

gimbal angle time histories. The second method, the "closed-form gimbal angle

input method", computes the body rate time history which must be input to produce

a pre--selected gimbal angle time history.

These methods apply only to the nominal operation of an IMU. Failure

modes, effects of off-nominal temperature or power conditions, and control

logic are not considered. In the design of these IMU reference math models,

only rate and acceleration inputs and gimbal angle and accelerometer outputs

are considered. Generation of status discretes and PMS data would require a

high--fidelity representation of actual hardware operational logic, which is

best obtained from test data. Similarly, determination of IMU responses to

input voltages and temperatures will re quire test results from the actual flight

hardware. Generation of the IMU responses to slew commands and gyro torquing

commands would involve a high fidelity simulation of the flight hardware

stabilization loop. Approximate data for the response to gyro torquing commands

can be generated by equating the -torquing commands to the gyro drift rates in the

reference module presented in this section.

Constant Rate Input Method - By holding the rate input to an IMU constant, the

total angular displacement can be determined as a linear function of time. The

corresponding IMU gimbal angles can be easily determined by first de =fining the

total angular response in terns of quaternion elewents. Once the time history of

quaternion element variation is determined, the individual gimbal angles can be

extracted from the body/IMU direction cosine matrix, which is a function of the

quaternion elements.

Two types of rate inputs are considered:

4.7-'25
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e body rates (p, q, r)	 - three components of angular velocity

about the body axes.

o drift rates (DX , Dy , Dz ) - three components of angular velocity

about the stable member reference axes. (These rates can also be

interpreted as gyro torquing commands from the flight software.)

Both types may be input in a single run. Other input data required are: the

iteration rate (^A t) at which the resultant gimbal angles are to be printed

out; the initial gimbal angles ( ^0o , 60 , Lp
o
 ); the body-axis referenced

accelerations (Ax, Ay , Az ), to check the IMU accelerometer computations; and the

time (t max ) at which the run is to stop.

Figure 4.7-78 presents a math flow of this to hnique. An initialization path

is incorporated, to allow the capability to preset the gimbal angles to any value

prior to initiating the input rates. Additional data is computed (including an

initial  direction-cosine matrix, C) concerning the orientation of the angular
velocity vector with respect to the initial stable member orientation, which

serves as the inertial reference for the remainder of the computations.

After the initialization pass, the gimbal angles at each time increment (At)
are competed. This computation progresses as follows:

1) Time is incremented by 4t.

2) The total angular displacements of the body (-CL r ) and of the stable

member (__ d ) from their initial orientations are computed as linear

functions of time.

3) The quaternion elements (d 1 , d 2 , d 3 , d4 ) defining the angular displace-

went of the stable noiber are computed as a function-of total drift

angle ILd and the orientation of the drift vector.
4) The direction cosine matrix (D) defining the orientation of the stable

member with respect to i ts initial position is computed.

5) The quaterrion elements (r 1 , r2 , r3 , r4 ) defining the angular displace-

ment of the vehicle are computed as a function of the total displacement

- 11r, and the orientation of the rate vector.
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PA55

body rtes - p,q,r
READ drift rates - Dx,Dy,Dz
.	 PUT _ _ _ __ body accel . - Ax,Ay,Az
DATA initial angles - Oo,9d,^o.*

max. time -
de E to time

tmax
- At

t=01 i

a

a

E

C1I = Cos 9
0 Cos ua

Clz 
= Cos 90 sin o

C13 = -sin go
C = sin 00 sin go cos % --cos 00 sin 00
C21 = sin 00 sin g o sin vo +-cos 04 cos ;to
C22 = sin 00 cos goC23 = cos	 sin go Cos qt, -sin 00 sin '^o
C32 

= Cos 0p si n go sin ^o -sin 00 Cos o
C33 = cos 00 Cos 90

t = L+At

2r = wr - t

std =wd - t

dl = Cos (9d/z)

d2 = cos (Yd) sin (2d/ z)

da = Cos ( 0d ) sin ("d!z)

d4 = Cos ("d ) sin (2d/z)

wr = (P2
=gz+rz)1/z

Yid = (Dxz+Dv2+DZ2) Y2

D11 = 
d12-dz2 -d32+d42

D12 = 2(d=td3+d2d1)

Cos -r = p/wr
	

D13 = 2(d4d2-dzdl)

C©s -d = Dx/wd
	

D21 = 2(dsd2-d3d1)

cos ^r = q /Vfr
	

D22 = d12 -d22+,d32 -d42

cos $d = Dy /k!d
	

D2 ; = 2(d3d2.'_d4d1)

Cos Yr = r/wr
	 D31 = 204da+d3d1)

COS Yd = Dzlwd
	

D32 = 2 (d3d2-d4di)

D3 3 = d12+d2z-d32 -d42

s

FIGURE 4.7-73 CONSTANT RATE IMPUT METHOD
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6) The direction cosine matrix (R) definin g the orientation of the vehicle

with respect to its initial position is computed from the quaternion

elements.

7) The direction cosine matrix (B) defining the orientation of the vehicle

with respect to the stable member is computed as a function of the three

previously defined matrices.

8) The gimbal angles describing this orientation are extracted from the B

matrix. The equations presented are valid for a gimbal sequence of
1

yaw	 pitch (r3 ), rol-I (90); other sequences can be treated in a

similar manner.

9) The ideal IMU accelerometer outputs are computed using the B matrix

and the input body-referenced accelerations.

10) The gimbal angles and accelerometer outputs are stored for comparison

with simulation software outputs.

Closed Form Gimbal Angle Input Method - The previous method is primarily suited

to verifying the IMU performance during orbital conditions, where the body rates 	 i

tend to be constant for considerable periods of time. It is also necessary to

verify the IMU performance for variable body rates such as encountered during

entry conditions. The math flow shown in Figure 4.7-79 describes a method for

establishing a closed-form relationship between variable body rates and IMU gimbal
i

angles.	 j
This reference module, given a desired IMU output time history, "inverts:

the IMU transformation to generate the body-rate time history which must be input

to the IMU. To do this, it is necessary to restrict the form of the input. Each

gimbal angle time-history must be an analytic function of time, thus the time

derivative of the function (i.e., e_irrbal angle rate) is precisely computable.

Three typical examples are:

50= A sin w is	 SD=Aw cos wt

= C tan -1 ( t-U ) 	 B	 f

	C2 k (t2-02 )	 I

7 = E [cos w2t + (%.12 sin Sv Zt) ---^	 = E (w2 t) cos W2 

With the gimbal angle rates thus defined, the corresponding body rates are

determined by standard Euler transformations. The body rate data is then written

4.7-229
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START

F

PUT DATA:

i {t)

 ^2 (t)

F3 (t)

^t
	 j•

i

= Fl(t)

0 = F2 {t}

^	 F2 {t)

- F3 {t)
= F3 { t}

Iy_

p=-	 sin 8

q = cos 0 +	 sin cos 9-
r = 4, cas 9 cos 12	 sin 0

STORE :	 I

0, B,

P)q.r=
t

t = t+At

t	 t	 rya
max

YES

£P^ s7

FIGURE 4.7-79 CLOSED FORM GIMBAL ANGLE METHOD 	 j
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on an output tape for each computation interval required by the simulation'

software.

IMU Data Base Imp_-act

Data base impact for initial IMU dynamical validation is very minor; only

the above referer.- modules and a few mathematical subroutines. are required. 	 F

Revalidation of the basic IMU dynamics should be required rarely, if at all.

Validation of subsidiary IMU outputs will require a certain amount of hardware

test data.

IMU Validation Methods and Check Cases:

Verification software structures employing the closed-form-solution reference

modules previhusly described are shown in Figure A .7-80 .

To use the constant rate input method, Figure 4.740 (a) , input constant

body rates and/or drift rates to the IMU reference module.and the IMU simulation

module, thus obtaining comparable gimbal--angle time histories.

To use the closed-form gimbal angle input technique, Figure 4.7-80 (b),

select analytic functions of time to be used as inputs (see preceding examples).

These time.-histories and their derivatives are input to the reference module,

which generates body-rate tine-histories ^o be input to the VIII simulation module.
The outputs of the IMU simulation module should then match the original gimbal-

angle time histories.

A set of check cases applying different combinations of magnitude and

frequency inputs to the various IMU axes should be used for thorough validation

of individual-axis responses and their interactions. DW I to the analytical

nature of the reference data, a highly-accurate match with simulation data

should be demanded; e.g., one percent or better over time spans up to a hundred

seconds.

4.7-L.)1
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(a) CONSTANT RATE INPUT TECHNIQUE
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(b) CLOSED-FORM GIMBAL ANGLE LNPUT TECHNIQUE

Figure 4.7-M.	 IMU SIMULATION! VERIFICATION

TECHNIQUES
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f

4.7.6.1.2 Strapdowln Inertial Sensors - This section concerns those inertial

sensors which are "strapped down"; i.e., rigidly mounted to the vehicle structure,

rather than on a stable elerment.

SIS System Description

The SIS subsystems, as described in Refs. 25, 71 , consists of five identical

sensor packages - three at various locations in the Orbiter, and one in each SRB.

Each package contains a normal and lateral accelerometer, and orthogonal rate

gyros to sense body roll, pitch and'yaw rates. These sensors provide data for

use in the vehicle attitude control loops. The SIS has also been considered for

use as a backup navigation data source in the event of multiple IMU failures.

This application would require the addition of longitudinal accelerometers.

SIS Simulation tiodule Description and Performance Parameters

The input/output interfaces of the SIS module are shown in Fig. 4,7-$Il .

Primary inputs are of course the body angular rates, the body-axis sensed

accelerations of the center of mass, and the current c.g. position. The primary

outputs are the simulated rate gyro and accelerometer outputs, which include the

effects of sensor l ,-cation, axis misalignment, and possibly hardware error

characteristics. (Hardware error modelling may not be required, unless the SIS

is used as a backup navigation reference.) Body bending and fuel slosh contri-

butions to SIS outputs are discussed in Section 4.6 	 . Subsidiary inputs and

outputs include electrical powder, avionics bay temperature, and various status

and failure discretes. Table 4.7-23 provides a parameter list for the SIS

simulation module.

SIS Reference Data Sources and Data Formats

Figure 4.7-22 provides the math flow forfor a reference module which provides

data for nominal SIS operation only. Off-nominal operation due to failures and

voltage variations and temperature variations is not considered in this study.

Two separate flows paths are shown on Figure 4.7-82 : an error-free
E

computation path, and a :measurement-error path. On the error-free path, Equation

(1) calculates sensed vehicle accelerations at the sensor-package location, in ideal
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TABLE 4.7-23. STRAPDOWN INERTIAL SENSOR MODULE PARAMETERS

SYMBOL DEFINITION TYPEa

Body coordinates of center of gravity I

a Vehicle sensed acceleration I

p,q,r; Vehicle angular rate and acceleration in I

p,q,r body axes

AT Difference between operating temperature and I

calibration temperature of the SIS

xi ,y i ,z i Typical sensor locations (in body coordinates) DB

Accelerometer/rate gyro misalignments ( q-' =

misalignment in X-Y plane, E)'- 	 misalignment

in X-Z plane, SP A= misalignment in Y-Z plane) DB

D Accelerometer dead zone DB

Ea 	 E az Accelerometer measurement errors DB
y

pd , Eqd , E rd Rate gyro measurement errors (roll, pitch,

yaw drift rates respectively) DB

a ia Accelerations at the accelerometer, in

ideal axes P

ama Accelerations at the accelerometer, in

misaligned axes CP

pma' gma ,r^ a Vehicle angular rates, in misaligned axes CP

aLEGEND:	 DB = data base input

I = input

P = performance parameter

CP = critical performance parameter
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i sensor axes. Equations (2) and (3) then transform the ideal-axis accelerations

and angular rates into true sensor-axis outputs, using small-angle relationships

for axis misalignments. A single misalignment transformation is used for both

accelerometer and gyro outputs, since the use of a typical misalignment provides

all the generality required for a complete verification.

The measurement-error computations are provided on the assumption that some

or all of the simulations of interest will require sensor error modelling. The

measurement-error path is taken only when an input flag is set.'

The accelerometer measurement error reference data is generated using Equations

(4) and (5) of Fig. 4 .7-82, where D is from the data base and represents a typical

dead zone or threshold below which no acceleration is sensed, and the functions

€ AY and € AZ are generalized representations of the measurement errors that tifrould

be added to the true axis accelerations. Equation (7) presents an expansion for

the accelerometer error function EA of Equation (5), using a standard modelling

algorithm for typical accelerometer measurement errors.

Al = B  + C I A 1 + C 2A l 2 + ... + C12  2 + C13A3 + C14T + ...	 (7)

The parameters in Equation (7) are defined as follows:

B 
	 = accelerometer total bias (mean + random)

Al ,A2 ,A3= acceleration components along the input axis and the cross-axes,

respectively

C 1	 = linear scale factor error

C2	= non-linearity error coefficient

C12,C13 = cross-axis sensitivity error coefficients

6 T	 = difference between calibration temperature and operating

temperature

C14	 = linear temperature error coefficient

4.7 --237
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it may not be necessary to model all the terms shown in Equation (7),

dependin g upon the fidelity required. In addition, Equation (7) does not represent

tie most general case; for example, we could include higher order non-linearity

terms, error terns proportional to acceleration products, and non-linear temper-

ature variations. The necessary terms in the error model can be determined

using vendor-supplied design and test data for individual errors, the real-world

sensor use, and the simulator's functional requirements. Typically, bias, linear

scale factor, second order non--linearity and linear temperature error terms would

be all that is required for sensors * involved in a navigation function.

Equation (6) provides rate gyro measurement error reference data, where the

functions E Pp , & QD , and E R  are generalized representations of measurement

errors based on sensor design and test data. The error values output would

normally be added to the true rate outputs as drift rates. Equation (8) presents

an expansion for gyro drift rate, using a standard modeling algorithm:

E p = 5  + K 
i 

A i + K 
0 

A 
0 

+ KS.AS + ... + KioAiA0 + 
KosAoAs

+ Ksi ASAi + Kt LET + ...	 (8)

where the individual parameters are defined as follows:

B 
	 = gyro total bias drift (mean + random).

A i ,A0 ,A s	= case accelerations along the input, output, and spin axes

respectively.

Ki3 K0 ,Ks	 = anisoelastic drift coefficients

p T	 = difference between calibration temperature and operating

temperature

Kt	= linear temperature coefficient

It may not be necessary to model all the terms of Equation (8), or it might be

necessary to model additional terms; for example, drifts proportional to

acceleration squared or possibly drift due to external magnetic fields. As with

the accelerometer error modeling, gyro error model fidelity should be determined

using vendor--supplied design and test data on individual errors, the real-world

sensor Use, and the simulator's functional requirements.
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The gyro case accelerations shown as variables in the error functions of

Equation (8) are the same as the body accelerations for the accelerometer error

functions. The transformation of AX, AY, and AZ into gyro input, output, and

spin axis accelerations depends on the individual gyro orientations. As a

result the individual drift rate equations for E P 0 , E Qp , and ER 
D  
will have

different body acceleration components as the respective gyro axis accelerations.

Since the error model is not affected by the preceding generalizations, there 	
r

is no loss in the validity of the verificatin,

The data required for validation will ra,.mally be in hard-copy format. Basic

information, such as sensor package locations and typical misalignments, should

be found in Ref,	 70	 . Hardware error coefficients may have to be obtained

from test reports or other less-accessible sources.

J

SIS Validation Methods and Check Cases

In general, checkpoint data will be required for both error-free and measure- 	 ^.

ment-error modes of operation of the SIS module. Although reference-trajectory

segments may be used to provide input data, selected discrete checkpoints will be

simpler to implement, and actually give better results. 	 fi
t

For reference data not containing measurement errors, the inputs include

sensor location in the body reference system, the center-of-mass accelerations,

body angular rates and angular accelerations, and a zero value for the measurement-

error flag. Only a relatively small number of independent input check points are

required for a complete verification for this mode, since the equations involved
k

are relatively simple. Sets of three widely-spaced linearly-independent vectors

in linear acceleration, angular rate, angular acceleration and axis misalignments

will provide a thorough validation exercise. Several sensor-package location;

should be tested, including fore/aft, left/right, and up/down displacements

relative to the c.g. Agreement between reference and simulation data should be 	
i

i

close to machine accuracy (e.g., five to six significant figures).

When generatin g reference data for the error model verifications, the required

inputs are the accelerations at the sensor in the sensor true axes (assumed the

h3'n	
i

MCt7^Rlf*3rcC.^. E^^d1M,At? ^r3^ .^SY"r^a^>i F'.+;1!/i dC^ CC^fr9dQ.^1il+Y ^+ ^115'F	 's

fJ



I

MDC F1136
27 January 1975' 

3

sa y=ie for both accelerometers and rate gyros), the operating temperature variation

from that for calibration, and a positive value for the measurement-error flag.

Data can be generated by varying the inputs selectively to magnify effects of

different error terms. Comparisons can then be made which are identifiable with

individual error components. Agreement should be within a few percent.

When driving the simulator models to generate the corresponding data, we

anticipate that some action will have to be taken to provide compatibility with

the reference module execution mode: For example, contributions due to flexible

body dynamics must be zeroed; simulation-module measurement-error models must be

deactivated for non--measurement error check points. For the measurement error

check points, sensor Iocations should be set to the renter of gravity, with zeroed

misalignments. Since the simulator software has not yet been developed, only the

preceding generalizations are made with respect to interface initializations and

input identifications required for the simulator module.

SIS Validation Data Base Impact

f	 Data base impact for SIS module initial validation is very minor. The

l	 reference module is rather simple, and the use of discrete checkpoints obviates

handling of large data files. Revalidation would only be required if significant

changes were made in the measurement-error model.

4.7-2,11)
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4.7.5.1.3 Propulsion Systems Interface U i ts_(PSIU's) - These units, which
	

E° 1

1.	 transfer data between the propulsion subsystems and flight computers and/or crew
controls and displays, include the Main Engine Controller/Engine Interface Unit

(MEC/EIU), the Solid Rocket Booster (SRB) interface, the Orbital Maneuvering

System Thrust Vector Control (OMS TUC) interface, and the Reaction Control System

(RCS) interface.

Except for the MEC/EIU, these are rather simple hardware units, and we assume

that their functional simulation, data-word generation/interpretation capabilities

and malfunction-insertion provisions will be "embedded" in the module which

simulates the corresponding propulsion subsystem. Only the MEC/EIU will be

described in any detail in this section; the other PSIU's perform the same

general functions.

PSIU Subsystem Descriptions

The MEG hardware and functions are described by Ref. 62 , the MEC software

by Ref 72 . The EIU is described by Ref. 73 . Specifications for the other

PSIU's have apparently not been issued yet.

1

The MEC and EIU together perform the following functions:

o Accept discrete (e.g., start, shutdown) and variable (e.g., thrust level)

commands from the Orbiter avionics.

o Control SSME sequencing, thrust, and mixture ratio.

o Perform engine checkout and Monitoring.

o Transmit SSME checkout/monitoring data back to the Orbiter avionics

o Perform self-test.

Figure A,7--83 (after Ref. 62 ) shows the control and data interfaces of the

MEC/EIU. The EIU's role in control/data interchange is simply code conversion and

formatting. Other PSIU's perform similar functions, except for thrust variation.

PSIU Module Description and Performance Parameters

PSIU simulation has two aspects: functional simulation, and data.-word

generation/interpretation. From the functional viewpoint, we assume that each

PSIU simulation is "embedded" in the module which simulates the associated

., I,
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propulsion subsystem. Thus the overall command/response characteristics of each

propulsion module will be a composite of (a) the internal processing of the PSIU

and {b) the response of the propulsion hardware - pumps, valves, combustion

chamber and nozzle. Startup/shutdown sequencing will probably be simulated as

empirical time functions for thrust buildup/tailoff.

The other basic function of the PSIU modules is the handling of digital

data-words, including interpretation of command words received from the flight

computers, and generation and formatting of monitoring and status words for

transmission to the flight computers. These functions must be implemented pre-

cisely to satisfy the flight software; however, they will be shared with or

entirely absorbed by the Flight Hardware Interface Device (MID), thus simplifying

the simulation software.
6.

Each PSIU module will also require some failure-insertion provisions;

simulated failures may affect either the functional simulation, the data-word

handling, or both.

1	 No performance--parameter• tables are provided for PSIU simulation modules.

1	 Since PSIU simulation is embedded in the propulsion subsystem simulation module,

the performance parameters for each such module will include both functional-

simulation parameters and avionics--related command and status words. For example,

see Section 4.7.3.1 for the SSflE/MEG/EIU parameter table and simulation-module

interface diagram.

PSIU Reference Data Sources and Data Formats

The functional performance of each PSIU simulation will be implicitly

validated by end-to-end command/ response validation of the as^-ociated propulsion

module. This will include static thrust levels, thrust buildup/tailoff, and

(for the SSMIE only) throttle response.

The basic source of functional-simulation reference data will be engineering

simulations of each propulsion subsystem. Later in the program, engineering data 	 i

will be refined using static-firing data; these data will be corrected for

atmospheric pressure in the case of the larger engines, but vacuum-chamber firing

data will be available for the smaller engines. These considerations are discussed

in Section 4.7.3.

4.7 241
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Command/status data-word formats must be verified bit--by-bit for each nominal

and off nominal case, the basic source of reference data being the most current

version of each PSIU specification.

Due to the complexity of the MEC/EIU, it may be necessary to verify this

submodule in isolation, before integration with the basic SSME module. The

hardware/softrlare MEC simulation described by Ref. 74 may be a suitable source

of reference data for such an exercise.

PSIU Validation Methods and Check Cases

Each composite PSIU/propulsion-subsystem module must be exercised over its

overall operating range, including startup, constant thrust, and tailoff.

Additional check cases will be necessary for the variable-thrust SSME. These

will include static-thrust levels from MPS. to EPL, as well as dynamic throttle

response to both increase and decrease commands over the operational static--thrust

range. For simulators which use functional simulation of the flight software,

ttie command inputs will be in the normal internal floating-point format of the

host computer.

For simulators using flight--campiiter hardware, inputs must be in the format

in which they will be received from the flight computer/FHID. The set of check

cases must then be sufficient to verify that each PSIU module properly interprets

all valid flight--computer command words, and returns the correct status/monitoring

words for all self-test modes, nominal and off--nominal operational modes.

PSIU Validation Data Base Impact

In the functional-simulation area, validation of the PSIU's contributes no

data base impact, since PSIU functions are implicit in the end-to-end validation

of the propulsion modules.

Validation of digital data-word handling will require a command/response

data-word "dictionary" covering the operational regime of the simulator of

interest. For the MEC/EIU, this dictionary w'111 be fairly extensive (several

hundred entries); for other PSIU's, the dictionaries will be short (perhaps a

few dozen entries).
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4.7.5.1.4 Star Tracker (ST) - Unlike previous manned space vehicles, the Orbiter

I t	 provides fully automatic star/target tracking, without crew viewing of the tracker

field. This section discusses the ST hardware and its flight-computer interface,

as well as the functions and validation of the associated simulation module.

ST Subsyste^.r Description

The ST is a strapdowm, wide field-of-view (10 X 10 0 ) image-dissector device.

It provides automatic acquisition and tracking, under flight-computer control, of

a selected star or stn-illuminated rendezvous target. While tracking; it outputs

the apparent magnitude and position in the field of the object being tracked.

Its sensitivity (acquisition threshold) is variable on command; the maximum

sensitivity is sufficieit to acquire and tract: the 153 brightest starts (5-20

magnitude), or a sunlit target vhose apparent brightness is at least equivalent

to an 5--20 magnitude of +3 at a range of 300 nm.

Despite the stray-light protection afforded by its light shade (LS), the ST

may fail to acquire, or lose track on, stars or targets which are in the vicinity

of other bright objects; e.g., the sun, moon, earth, or a brighter star. To protect

the tracker from damage due to excessive input brightness, it is provided with a

shutter, activated by a separate bright source sensor. Field of view and response

time of this subsystem are sufficient to prevent damage due to a bright object

approaching at a rate of 10 deg/sec.

The physical arrangement of the three ST/LS assemblies, mounted on the nav

base for maximum accuracy, is shows, in Figure 4.7--84 (from Ref. 75 ); additional

detail may be found in Ref. 76 . mote that #1 and T2 star trackers provide over-

lapping coverage.

Star tracker operational Diodes, internal signal processing, and corrarrand/data

interfaces are indicated by Figure A .7-85. The erodes of interest are:

a Open/close door

o Self test

o Search; acg1fi re star or target

e Track star or to rgt t

e Break track

o Close shutter (bright source protection)

'".7-245

R^7^[]t,^1R+!FJ^ LE Eryi f3 LlG4 Las ^L'STW^J1JfSEl Tl[Y C 2?lrYF^/rfvv - CAST

,M

1



0

rt
ti

F

r^ 
CLz

I
VehlcEe azimuth
determirfitlon cube	 arr9	 j

4144,--'`_.
Pitch f_

Y0 ^^ S^ 	 -f-x
Roll

0	
Z 

Yaw
 0!

f2

+Y	 H-

3

s'sr —Yo

CL3 	-

a V
i

Xo/Yo/Z o = orbiter axis

CL = tracker I

	

_X	 FOV centerline

	

o	 IdI = tracker Z

	

_X	 horizontal deflection

	

0	 axi s
V = tracker x

Axes in relation	 M--
Z --Azimuth determination 	 to orbiter axes	

vertical deflectIOn
w

	

	 axiscube (CSC)  N	 ^ ^

1< 
Q,

0
FIGURE 4.7-84. STAR. TRACKER PHYSICAL ARRANGEMENT	 v'v30

_. . 	 --..---

Star tracker

—y
0

G
	

-Star tracker I



S
Q

p

G

r

a
Q

M

N

3
3
b

ti

V
r^

L	
S , AQ T

DIGITAL

	

ll!tIC!i -f	 lic.	 ZO^ITiV. _	
o

	
INPUT/

s

	

SURCE	 L?l:i'fi;R	
I^1pl] /

L^l ^	 j	 ...	 OT"1'T

...e., ^	 _ _^...., 110P I Z7 i iT L	 StErT 10

CS , 1	 tit I P" 0	 ; PIZOi'TAL	 CiMPUT

	^'`	 Nr 1D F•,;",w7,..	 F<'- :^+ii3l;S:i:JK^r t	 F1rECT[;O;dICS

	

VF1?TICf 	̂ -RTICAL

a	 3	 l;Ri1%I:f:^^ "..LCTI.OI'1I1v5 OUTPUT

L	

a
u

1 c
S
	.-r-	 ccyy t

s	 s' J.	 J7f5^1 iRi}.^I, I^LuL

e	 f ^

^	 Ili^^'F

mu-

MODE	
-0-1 STATjjS

`? riT1 CS SHUTTER STA7US

TRACKER FAIL	

M111.1	 V28 Y OC

IGU IRE' 4.7-85. STAR T pr',CKER FUNCTIONA— BLOCK DIAGRAM (REFERENCE)

t

t

!,r ^

	

i)15'.. CE', :_	 c

1)1SC 7r

1

.r f +r

	

w!I i7' ^C ':^	
I

`	 I

PATA

Ii1J OUT

S HITTER
[)IS"E T r

28 VDC

--T,

V C^7
c^

au rn

tv w
^ rn

V
Cal

i



a

MDC E1136
27 January 1975

r

t

The star tracker door, in the left side of the Orbiter fuselage, is closed

during ascent and entry, and opened on orbit. The self-test mode activates ST SITE,

causing the ST to return a discrete indicating either operable or failed status.

In initiating a search, the flight computer sets the acquisition threshold,

and may also provide horizontal and vertical position offset coordinates. In the

absence of offset coordinates, the ST searches its entire field, locking onto either

the first catalo g star acquired, or to the brightest object iii the field. If given

an initial offset, it searches a reduced field centered on the offset point. In

either case, a rectangular raster--scan search pattern is used, the search time

will not exceed ten seconds, and the ST falls into the track mode.

The ST remains in the track mode until given a "break-track" command, the

object passes out of the field of view, or it loses lock due to excessive vehicle

rates or bright-source interference. Since the ST's are strapped-down, it may be

necessary for Orbiter attitude maneuvers to be executed to maintain tracking.

(Note that Ref. 75 does not presently define ST discretes for search failure or

loss of target during track.)

ST module description and Performance Parameters

Star tracker functions will be simulated at varying levels of detail. Door

opening and closing will be simulated as talkback, with time delay and allowance

for malfunction insertion. Self-test operation can be simulated with a small

corunand/response dictionary which allows for nominal status and a repertoire of

inserted malfunctions.

To obtain realistic star selection and timing results, the search/acquire

mode simulation will have to be rather detailed. For all stars which are not

blocked by the sun, moon, or earth, and satisfy the magnitude criterion def'-ied

by the current threshold selection setting, coordinate transformation and gating

operations will determine whether they fall in the range of the scan pattern. To
	

i^

determine the first star acquired, a "lexicographic ordering" operation (see
	

i

Ref. 77 ) will be required to determine which of the candidate stars is "nearest"

to the starting corner (shown as the bottom-left corner in Figure 4.7-86, in terms

of scan-pattern coordinates. Hardware scan-rate parameters can then be used to

compute the acquisition time.

4e7--1148
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The scan computationsear se wil l be simpler for target acquisition, or for

the search mode in which the brightest object in the field is selected. However,
r	

Computation of target: brightness will require determination of terminator position,

range to target, and target viewing aspect (e.g., broadside vs. end-on).

Simulation of tracking outputs requires only a simple coordinate transformation,

plus logic for loss of tracking due to excessive vehicle rates, movement of the

object Out of the field, and inserted malfunctions. Hardware error sources (bias

and random) and stellar aberration due to Orbiter inertial velocity will also be

simulated.
F	

3

Bright--source relative positions and closure rates must be simulated at all

times that any star tracker is operational.

Star tracker simulation module parameters are listed in Table 4.7_24, and

module interfaces are shown in Figure 4,7-07.

ST Reference Data Sources and Data Formats

Initial validation of the track mode is best supported Using closed--form

solutions, for several special orientations of the ST axes relative to the point
.a

targets used for testing.

For more complete validation tall operational modes, interface with environ-

ment and dynamics), a	 detailed reference module will be required. Two candidate

reference nodules have been identified. One of these was developed, checked out,

and used for the study described in Ref. 78 . However, we recommend the module

now being developed and checked out for inclusion in SUDS, the math flow of which

(Ref. 79 ) is presented in Figure 4.7-88. Note that the search-mode simulation in

this module only simulates the brightest-object selection criterion. Modifications

will be necessary if the first-object-acquired criterion of Ref. 75 is actually

implemented in the flight system.	 i

ST Data Base Im pact
The reference module for ST simulation validation is quite detailed; it will

be of the same order of size as the ST simulation module for the SMS, larger than

the one for the SnS. In addition, a driver routine will be required to generate

Orbiter and target states and rates. Initially, these should be just syntsetic

4.7--x'54
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SYMBOL DESCRIPTION TYPEa

Door-open discrete I

Search-mode command d i screte I

Initial	 search position commands•(horizontal and vertical
displacement) I

Self-test mode command I

Threshold-set command I

Break-track command I

Bus voltage I

r,	 v Orbiter position & velocity (ECI axes) I

6r Target relative position (Orbital axes) I

V'04, Orbiter attitude I

w Orbiter angular rate vector I

Star catalog (magnitudes, unit vectors in ECI) I

Sun & moon positions (unit vectors in ECI) I

Earth horizon altitude I

Tracker alignment angles DB

Horizontal & vertical scan rates DB

Tracker hardware errors (bias, scale factor, and random) DB

Shutter-closed discrete CP

Self-test data P

Track-mode engaged discrete P

Star/target tracking position (horizontal & vertical
displacement) CP

Star/target apparent magnitude CP

a I = input

OB = data base input

f	 ^
t

I

k

4

P = performance parameter	 4

CP = critical performance parameter

•	 i
t

1.7^^J1	 1
r

rvrc¢3^sruru^-^c.^ ^a^u^e..^s asTtxcrrars^r^s,r^. ^,t^rt^tP 3atur.. ^as3-	 °;



	

VEHICLE	 ENVIRONMENT

	

DYNAtMICS	
NODULE

IMODULE.

earth	 star catalog:Orbiter	 target	
horizon	 sun & moon	 g:

states	 relative	 positions	 positions &
al ti tude	 magnitudes€ rate	 position	 g

r g
L^

0r

E	
z	 STAR

PS TRACKERo t,	 iODULE	 power	 MODULE
demand

& supply

commands	 discretes data
i	

a

{

MDM {

FLIGHT
COMPUTER

N
V n

C ^
LV W

CC ^
{	 FIGURE 4.7-137. STAR TRACKER SIMULATION MODULE INTERFACES

I

E

!y



T:
t

4

Progran !1`01,R
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and attitude Inforrstlon.

Inputs:

n(a,3) annular rotrt^alli definlug !.tar tracl,er Coordlnatt+
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DEL(3) angular facto r t., actnunt for celestial 	 hody brightness

RB(3} average radii of the r th, WA, and moon

KATH an!Iular fac tor fa • the oorth's atmosphere

9f eff^ctive radiva of the rearkh for sun occultation

render.o ,ls trecklug	 flag

FOY Star tracker rastrr field e 1 v'.eii (one half of the slew
,Z
b

of the squarel

Q .%Fled auto-optics f i e'.- of view

USTA:I nur,Cer of stars	 in the sl.ar table

"^ CF )V half-angle of tl! circulhr 	 meld of view enclosing
the sta r	traclti • !,1,eru raster field

f
i4RX ma.li,an range frr	 I+racun tracking

^ C7

:.,.3 u!'IA bbnacon	 Visual	 hY.:•111011'.la

1H1.; sun-ill:	 !,^tnd !ar+et visual	 r+sgnitude

T elapsed tire sli p ! the VOCk epoch

R(3) vehicle	 ur:sitlol, 'Jac Lot'

RT{3) tdroet vahicie ppiitian eeC or

1TK(1) star tracknr ac- iratton 9a ls

(j PAUTOP (3) auto-optics

4 VBC0!1(3) beacon tracking Ilaps

a Pslcb '1(2,3) auto-up,tcs a+1gu'ir corrtilnds

'!1!(3,3) EC!-to-l+cuy ira-+srnrmation naErim

IABERR

14015E
11115AL	 }	 crrnr option flans
ISCALE	 jh
1gUA tT

MIS	 constant far computing tracker noise standard devintion

Pill (313tracker misalinement vectors

SF(3,2,3)	 tracker scale factor r!onllnearittes

QUAIIT	 deflection output quantization level

Outputs:

ITRAC(3)	 tracking flags

PS4(2,3)	 ideal star tracker deflection angles

P51O11(2,3)	 simulated star tracker angles

ti

Y

5
r^

N s
^C:1

:11
	 iW C?

w m

A.r W
5 C31

1<

FIGURE 4.7--88. STAR TRACKER REFERENCE MODULE MATH FLOW
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^,I nY.».^^	

I

REAR P l!%R'-N CONSTMiT'i l

coC , :m i E'1_ . oil	 r	 t/^(ID) y I fi0	 TD t 3	 YES 10 • ID + 1
7	 ?

YES	 li0
CUMF+ 7TE VEHICLE My T4 STAR ?RlrK(R V-IMFORHA"IONS:

C"(3.I) S nf 3,:} a" 12, 	 I -Snl2 i}	 1	 p	 0
EXIT

^iBS(I}^ a -SQ3,I) C'i(?.1) O^	 O	 1	 U	 O C n(I,I) 5O{1,I}
O	 0	 1 	 ?,1I C Cn(?	 t+,I)	 -Sr)(1,I) C^(1,I)	

CALL YCCL" (;., T, DEL, R0, lATf•^,
1 " I,^,3	 -	 (lIC, tv, T EL,, KE, ERE, ID+1Y)

	

5 T	 r^	 '. 1

'

	

	 FFt1.,	 R, R., ITY., ML131'UP,^ 	 ,ALL DLgC ISTCL(1,f0}, tSi,
"von, -,IoC . I•f i:rm, [DAY. 0, IDfsLC)

tI

(0 1 1LITE STAR TRI+CI'I1! 0MTER LVFS:

ITST(i)I ° IT1f3 IT (T3S(I)I 1 	,,^I 	 R0DOCC ° O	

ORBIT: "IOCE STAR TRICKER
OCCULTED BY EARTH (IF

7	 111000 - 1), SM (IF IDOCC 	 2).
MOOR (IF IDOLC R 3)"

STCL(I)TSI!i)I }O1	 Y
!!!! ; 	 r,YcS

1 ^ 1. ? , 3
--.	

^-	
ITRAC {IO) e 4

E IiWERR ° 0	 I{Q	 i '1 ° U
I.....	 1

1
'^	 r	 YES	 ID ? 3	 it0

l D	
?	 10= ID + l

2
YES

C

EXIT

SrRAr:..l	
i

STRAKR•2

FIGURE 4,7--18 . (CONTINUED)
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}

iTc'?,(

D)I 110 FSWAx (1Q) 1Q • 1
AFal' AND 11r(2)

.^ 7

GALL TUCK (TSTRO M), STEL(1,10),
1,rS •

troy , lfSTAR,	 FE.	 i4AUiUi'tIQ} _ YES

PSl"7!!(1,1Q(, PSIMM10))	 TSI(I.l,IQ), P511ViY	 (a'k)	 FO'1
() Uk, [GAY, FDV, 1TM(10)l .^

Cfi `^—•----"^—^^	 - y-- I
ID =
ITRIC(2) = ITRAC 1}

•,	
{

TSTR(1,2) • TSTR^1,1)

PRIRr;	 "f,0 Il0	 ITRAL Llt!i	 iEFRCII	 (SR:!'l,In)	 EFUV,	 NSTAR,
TSTR(2,2)	 T5TRf2,1
TCTR 3,2	 T,11 3,1

4I51BLE VAR (10)	 1 Y.E:,	 et01'C,P{!I}},	 PSICfm(5,10), 751114 2 ;	 F5T1' ;,1 !
( 1 ) IN IDO 51" i P;h'hf(1G}	 'fSIfI,1,[+11,	 V-4,	 IlAY, NAl3TQP	 ) f?A,iTUA{{1
f" FIiV,	 T311t(7.t{F).	 !TV.0{!D}) PslS•Ax Z} 1'slmx(i
fYES t

CALL 095G"I (f S TR(1	 T p )
TSiR(1,1D),	 1{t,	 Yst r l,l,I p ),
I,	 PSI(1,1G).	 PSP7fll1.Ip))

p R111T:	 ^ItiF
^lyriuC	 f?n	 VISIltLF STRR

"	 1
'

j

?\^1\
ii	 I :h SEAR FTftAG	 RD

n 1RALKO.. (1D)	 =) i

yYES ' ?

J

Zj
•

IQ "
C.lil.	 ;sR%U? (TSM11,10)	 T5'fil(+1,10).

YES

110 °S[,I,1,1D },

Ln
i!	 }max	 AkD IiK(Z)( 

~J	 T
Piiil3(1,1D))	 _
--^ .^	 --

CALL MGM (	 IMI 10},
TSTR(4.Iis): 10. T5t^1,T.lk),?

YES
T.	 PSI(1,toi),	 PSIGN1,10))

^^	 Q
a

10? 3	 0	 ITKW	 1 YES ID = 3

PRINT:	 "fiC 110 IT ?	 7
VISME STAR (10)	 1

Q IN	 t0tlt ST" ? YES	 Ila

rE5

(ALL D05GE11	 (TS1R(l	 !0),s
!

EXIT

'

c
D	 rSTA(d,lL'),	 !k,	 Tstli,l,fo).

^ ^̂  ^ STRA}:EI-4 N .^.
STRA R-3a ";

..t. cam_.,
ry	 r•+-1

'

w w

^ rn
FIGURE 4.7-88.	 (CONTINUED)
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C^MILRE LIKE Ur SMM .ND 1.4fIUE

DEL F1 • RT - A

IIA'16E

.510h 1 :; ],.a	 LE

FltfT:	 hAa ]^L4 	,I^	 AA'li^ ^,
EXIT	 ^;, ^;qE E^LE!v [D" 	 <a^ci	 ^^	 '

t

CALL 7.516 NV, I.E. Nay'JP[]D),
PSUa:^^t,ln1. !sr^y.. xl 1, I,

,

]DD[C •	 P3,4'!f: 'hLACII!I

	

1	 s'•	 It7r 11^^IDLCItt '^+- IINACIID) • 0
19th 11IRC,:CN	 I

II	 —	 -^ ^*ES

	MIAMI)) • 1	 ~,
[AL! GlS 3 r hl, VP !D.
15141 ,.IL). T, ^5 'I'.I11,

	

^SIOL(,,lD)a	 .

a

	

	 .
I

i
SMKR-GsrNnl n-s 



FIGURE 4.7-t, . (CONTINUED)

STR,10-7
NOco

cz

10i M

>r
su w

^ °1

C

)lrtar (ln) • AFOV	 (ta - fl

^r (LS

PSIPAI(([G)	 fOV

GILL V1S1t1 (UY, LYE, M-:STOPP0,
r'S1CQ".(l,lU}, P5!'!4Y(tp}
TS10,1,!O), Uu, 1011Y. 1"mn)

Subroutine ABERR iT, U. d5thR}

P,lrpose: To cor,pute the shift In t!!e apparent line of sight to a star cae to Motion
of the 0sservin9 vehicle about the sun.

Pants.

T	 elapsed time from the Clock epoch

1)(3)	 geometrical llne of sight to star

OJI.Put!

USTAR(3)	 line-of-sight vector corrected for aberration

=3

J
q

4'1
n^

A

b
ti

N

i.

1DUCC	 O	 !IU	 b;,F3?OF ` YES	 I PS1 !"1? O}} n FOV i
1	 ^"	 {fOi . 1	 ^100P M) O

Y'S	 i '+U

LT! 4KIVOPS

.!r

DMI - TIV6	
tr ,7l"

4f'iy	 o I



4

Sabroutire FLOC (V, UP. TKTA, CrOV,	 [DAY, IEAIMI, IOOCC)

Purpaso:	 To test Fol interference by the earth, sun, or noon

Inputs:

V(3) target line of sight or ST canterlInc

L-6 (3.3) unit vectors from toe vehicle to the earth, sun, or mion

WEFA(3) effective half-anglus of the earth, sun, and moon sub-
tended at the Vehicle

CFOV half-cone angle of the tirtular field-of-view encompass-
ing the ST search raster pattern

IDAY orbital phase (day/night) flag

T!:,IliTli earth only flag

Ou tpul.:

IOOCC identity of the occulting body

[OOCC	 1:	 earth

= 2:	 sun

3:	 moon

r {

Ifi:

T1 RI 	 )	 ,

•J_

CA	 99: E74 :c 1C-4

ACCESS SJLFR IPHE IIEA IS I'M 'RJE LCMHT'JPE

OF DE SJN RELATHE TJ 11!C'4_ A!: r.'ilh r).t or
DA TE, Ul ,I . ANIl TPF Fil.,SF?:±A[I:RI F'ATnIx
R01 [Cl TU TtiC EGllr''! f . CUU ^ BATE
Sf5TEM, (TILL]

FCCLSS v[HhL^ rrIIEMFi['.• r f,, :'Fft1CLE
VELOCITY 11LATIVE TU 14 14H. V'tE, IN ECI

COINTE AEER•R,STIO'l CCHMIJION VF,MIR:

j TEE"	 S1!!(r,An!A)	 l:O:•[G1!4sA)	 0
1

Ea AT a CINV • MT t CA ' "E'_1PT [TIE(.]

L"I
Ul

!	 —

^J

Co 0T	
LINE OF SIl'i!!i	 VJUSI?'O FOt1

AOE,91tATICN:

.^ USTAR • UNIT fil + ,'s'I

F

RE?:;FlIi
w.3

M
1	 ^

i ABERR-1
i

O1

M^

Ii

1

^ flM

._j
sz w

zURE 4.748	 (CONTINUED)
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 .., l	 -]
F:0 V	 Fu I

VIP

AIM, V4

YES	 M 	 Iv I tl 11

A. 4T
TEVP < 
>

N 

yrd

COMPUTE ANGLE BE]	 V Afll) Ulh

SEP ARCC% (Mi. .

sti.

[TjjrTp,

11

olF

<	 T."T,

lE SATH Zu-

^I	

I	 ,

FIGUR-r 4.7-88	 (CONTINUED)
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k

}

^

r.

ffi

1 ^

i

I

k.

Ctt}!S constant For c4rpn:Iny tracker noise standard deviatian

^	
AA

'	 Y+ PlF1 (],3} Lra.'. «r miSkl!nrrrr It	 vet tors
•tJ(via	 t^r ,m

Irattlr scale '?c l^r rarilreartties
^ i !via	 DJ!I"!;'i)

.J	
OU;,^IT weflecrtnn output ,u'anil2n! , tnn	 level

{v la COaiOy)

Outputs:

t PSi(2) ideal	 star track;' , I'e r lect l on angles

PSIOD("r slrulated scar ir,.:ier angles

OISE	 110

A2O

YE5

COlINTE IIGISE 0

u•
SSE, - CitOIS "	 (2.5)ti

•'
i

ACCESS RANCOR I	 P.ER

GENERATOR FDet 2 GA1J5,Mli
nNuum NUMBERS. M. AND ill

MOIS(l) - RI +	 SIG

R40IS(2) - R2 • SIG

CORRECT FOR ADERitATIGIi:

D[Rk	 IiO	 'CALL. AWR (T, SI, SIC)
.O

?	 SR - [T51]TSI£

02SGEII-1
	

Q

W
I]i m

g

s, W

5 0)

FIGURE 11 . 7-88. (CONTINUED)

SuhrautIne CRSGFli (S I, s`a' ri, ITl ilt, TS I, I. i'SI, PSI I,

Purpose: TO cevP.yte siffolated Star L,Bder Ct'!ution antle5

'.[gouts;

Si(3}	 neanetrical ?!re , r s i ght to i4a target;

VI'M	 visuat %ignitt,rte	 tar Jet

j	 1!G lil	 idertity of trark,r

TSI(3,3 	 star tractor - to - rli 1.171115trr"ALICn a,atrlx

M	 T	 elapsad tin,; Sinr; Ine clock t{oCh
r

lAact;R

+1-a	 error emice p fiAjr
15,.:..E	 (Inr, . t via CG"":!
l y "'II

(

1

START

I - iIRkR

t

CCf'?L`TE IDEAL STAR TRACKER
DULZCTI01i ANGUS:

Sp - [T5JTT5I	

511 r
1
94 11PSI(1) - ARCTANt n lfl

2

^ !!!

PSI( 2)	 AR{TA'I sl^3'j



i

(,
E

Q

(n

ES	 L
AfD 

.p

1111

COMPUTF 2 OR !,w7.RNt,t• AXES.
V1 Ar; V2. CM-31;OIIAL TO SI T ;

UYT a [ O 1 D ]

VI . 1lltIr (21 x R)

V2 + SR x 91

COMPUTE STAR TRAC ►.L'R ANGLES
FROM SENSED STAR VECTOR:

PSIOBM • ARCTAN (fff 5 f^ !!

PSIOD(2) - ARCTAN5(7}

► V

1 M
1 ^

I FORM ERROR VECTOR AND RorArE STAR VECTOR:

ERR1tEC - RNOIS(i} " V1 + RIOIS(2) * r2 + P1tI(t)

ERR • 1ERRVECI

EflQVFC

uE -	
EIIR

O	 -UE(3)	 UE(2)

[ux] +	 UE(3)	 G	 -UE(1)

-UE(2)	 uE(1)	 o j

SR	 [17 + (I - COS(ERRJ)[Ut]2 + SIR(ERR)[Ux]jwR

AND

M91FY P5109 TO IFCLUM SCALE FACTOR

, NOULINERITY;

PSIOD(1) y PSIOD(T) + SF(1,1,!}x[PSlOD(1)]2

+ SF(2,1, W[PSIOD(1)]3

sF(a,1,I}*[rstDll(1!]4

PSI08 ( 2) - PSIGO(2) + SF{l,'l,I }=[PS1gD(2)72

+ 5P(2,2.I)°[PSlDB(2)]3

+ SF(3,2,I}*[PSIOD(2)]4

P ' IgUANT	 D	 RETURN !

E	 g NO I

i
!

° ODS=E'1-3 N M.
ODSGEN-3 • Q

.::

M

`	 • ru W	 I

4x7-88FIGURE	 (CONTINUED)
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0
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V
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y	

in

1.3

C

A
C

N

0
3

1
A
N
y

QUANTIZE PS:0.1:

TEMP - MOOEPS101(l), QIIANQ

PS100(1) • PS10)(1) - TEMP

TEMP - MOD[ PS101(2). Q';Ahr;

MOW) - -'STOg(2) - TEmP

O :S'EN-4

I

Sibroutine SCREEN (STCL, CFO'!, NSTAR, STRDAT. 11S)

Purpose: 'a sort out navi99ntion stars which fall within the circular field of
view incompassing the ST :earth raster pattern

In^wts:

STCI(3)	 ST conterline in [Cl coordinates

CFOtl	 half-angle of the circular field of view encorpassing
the S1 search raster pattern

NSTAR	 number of stars in the star tale

Outputs:

STROAT(10,4)	 star data (unit vectors and nQgnittides) of candidate
stars

NS	 number o! candidate stars

r< .

N ^.
V t^

120 m

L —^
!y W

V
C"FIGURE 4.7-83. (CONTINUED)



Z

i

:ubrcutine SEARCH (STCL, CFOV, kSTAR, KE, HAVOP,

ETAT
>SIM.M. PSNM, IS[, W. ICAY, FOV, TSTR, ITRAC)

I^1
Purpose:	 To det^ct a target star for tracking

'ti	 0
Inputs:

STCL(3) star tracker centerlinet,

_

ACCESS
CrOV half-angle of circular field of view euciasin, the

STAR 1ABLE FOR Will tracker search raster pattern
Q VECTOR OF It 	 STAR, Wit,

A,tID ITS W.C.4I'U7`., 	 Sfr%-; 11STAR nurber of stars in the star table

if
KE effective half-angle of the earth

CO'?r'J1E A!161.E BEThEE:f 	 if 1IAUICP auto-optics mode fla,
,, OE!7IER L1!,E	 I MR:

PST((!?(2) auto-optics reflection corrands
r A!1 ,1E	 AR^CQ'(STf.L	 VSTiJ

PSUVIX raster limit

i	 4
L

TSIlc,3} ST-to-ECI transfornetion m.trix

^^ UJ(:, 3) unit vectors from YP.11iLld to the earth, sun, and moon
t M 	 -----t

IDAV orbital	 phase	 (day/night) flag

ES FOV tracker search raster size

^ V
N t P.SHS•	 1
V ^; STP.DAT(I	 NS,`	 • VSTR(1)

Outputs:

^;

a

a STRPAi(2.•".5;	 V;TR(2
STRE;AT(3,M51	 VSTE!(3^

TSTH;4) target star unit vector and	 m gnitude

1 SMATjd,Vjl_STRMAI: , ITRIii: tracking flag

y ! • f	 1	 'c	 l > !.STAR .

I

I
"Es

D O FT . P,1 I

N i

FIGURE 4 . 7 - M . (CONTINUED)
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fV "^^d
c,

c^

w M

w w
I rn

l<

SEARCH-1

SE ARCH STAR TABLE FCR XIDIDATE STARS:

CALL SCRCEM (STC., CfOJ, NSTAR,
STIDAT, NS)

t

VISIBILITY Of JSUI ::AMU:DATE Silk

V[SIB {5TkDAT(I,JS), KE, MALITOP,

4, PWOM. TSI, tU. DAY, MCC)

W)

'+LS

ST09E VISTELL S TA I UN!T
VECTOR Ah: +tr,G°iT.DE:

45'.R{K,1)	 ST^1.A-(1,J5)

V'TR(K,2)	 SWA"(2,•IS}
YSTR(K,3) • STP:>A•{],JS

YSTR(K,4) - SIRFjA"(4,JS)

NSTR Y.	 ^	 •

K • K+ 1 	 ^

JS - JS + 1	
MO	

35 > RS

YES

HST? t n	 "`1
p+ JTOP	 M04

7 T

.Y£S YES

1 1PAC • PRINT:	 "NO VISPILE
MAUT0 • 0 STAR iN AUTO-OPTICS
PSIMAX	 FOY PP TER AREA"

SI:LELT TARGET STAR FOR TRACKING: 1'Sih^X ' Fu7

MAUIGP	 0
C1ILL SELECT	 O'TR(1,4}, t15TR, M)
I

TSTRJ ?I	 + 1'STk(M,1)

TSTP 2 • VSTk 4,2

TST	 4)	 YSTR(M,4)

P.ETURH

RETL'RM

SEARCH-2

FIGURE 11 .7-98.	 (CONTINUEG)
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FIGURE 4.7-31, (CONTINUED)
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Subroutine SELECT (94G, NsTR, ri114)

Purpose: To select the brightest star in ttr ST field of view

Inputs:

SIWG(N51R)	 magnitudes of v l :Ale stars

NSTR	 number of v! •.ibiw stirs

outputs:

IIIN	 Index of the br I-htest star



Purpose:	 To test the visibility of the s+.ar	 ;tinU tracked and t, search for a
new target star if the vlsibi	 ity test	 Is faV ed,

Inputs:

TSTR(4) target star unit sector and nignitude

STCL(7) star tracer centt-rline

MY half-angle of eir,.ular fleld .)f view er.0osing the
tracker Search raster pdtte'n

HSTAR number of stars	 in t1le sta r tsble

KE effective half-angle of tht earth

HAUTOP auto-optics aaC? '`lag

PSICOM M auto-optics def t e.tion co,non9s

PSINAX raster limit

TS10.3) 57-to-ECI traniformatlon matrix

UWOM unit vectors tram vehicle to the earth, son, and moon

IDAY orbital	 Phase	 (da.,/night)	 flag

FOY tracker search ra:tar size

Outputs:

TSTR(4) target star unit vector and ragnitude

ITPAC tracking flag

QETE'IH';i THE 1'IS13IL1TY CF
M;11 DEVIS TRACY.ED:

CALL YISIO (TSTR, Y.E, HAUTCP
PS1Q:11, PSI11AX, TSI, UW,
]DAY, 12000}

4	 SEARCH FOR NEW TARGET STAR;

CALL SEAf'CH (STCL, cF9V,

1Q['EL	 110	 IISTAR. KE, K.4UTUP, PS1CCH.
7	 PSIHAX, TS[, UW, IDAY,

fOV, TSTR, 1T1o1C)
1	 YES

iTkAC • 1

RETUkh

Subroutine TRACK (TSTR, STCL Mil, NSTAR, KR, MUTDP,
PSIC011, PSIMK. T51, Ulf, 10Y, FDf, 1TVAC)

I

START

N

a
at
n
r

r
a

n
N
,^ V

i

N 7

G
3

C

n

t1

G
a
a

D
2
K

n
D
H
M

N .

C_
i7

n, M

C —^w

=.o
v
^r

TRACK-1

FIGURE 4.7-8 P, . (CONTINUED)
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VCELB-1

Subroutine VECELD (R, T. DEL, RD, M i l e RE, UN, THETA, K£, KRE,	 IDAY)

Purposa:	 To compute vehicle-to-celestial bjdy	 (the earth, sun, and r.on) unit
vectors, half-angles of celestlal 	 bodies,	 snd orbltal	 phase.

Inputs:

R(3) vehicle posltlo:i 4ector

T elapsed time frw the clock eouch

nOEL(3) angular factors t: arcrunt for celestial	 body brightness

0
AS M average radii of the earth, sun, and moon

y KAT11 angular factor for the earth's atmusphere

2

r
RE effective radius rf t •ie earth for sun occultat'on

Ou!puts:

QUu(3,3) vehicle-to-celestial 	 uody unit vuctors

C ThETA(3) eff.:cttve half- 10 les of celestial	 bodies	 Including
glow

7} WE effective half-ankle: of the Larth loclueing the
atmosphere

D •^ KRE effective half-aetle of the earth for sun occultation

.( IDAY day phase flag

a

r

n

A

e'

b

2

A
N
y

START

J-1

LRf p n

C:^
ACCESS LUNAR	 ACCF55 SCLAR
EPPEhCFIS 02	 3	 ?	 EPHT"iRIB FOR

M001i P(SITI01; (	 =V O4	
J	 (.;B41	 S ll fi51iI0f1

VECTDP ' ^V-M.N	 VECIOR, YSUR

^,	 1
(EARTH)

PtB • v : 117 '!Y	 kT:: • LSUh

CO"PUTE UNIT VECTQR 1`1104
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states and rates; later, realistic vehicle dynamics can be provided by an EOM

module. Hardware data (error sources and scan-rate parameters) and a star

catalog complete the ST validation data base requirements.

i

4.7-?70

nacr^o,3rr►f.-: :%na.rC.[.zt•^ r.^,Tfi:Cllifll crrr+:S (`C^MF'.KfVYr FAST
4



'	 l

MDC El 136
27 January 1975

4.7.5.1.5 Aero-Flight Control System (FCS) - The FCS, which is used during approach

and landing, TAEM, and part of entry, is described in Ref. 84 . This 's a "fly by

wire" system, with data handling and control functions performed by the flight soft-

ware resident in redundant digital computers. The backup FCS is another digital

computer (with identical CPU hardware and simplified software).

Of the flight hardware involved in flight control, nost modules -- e.g., IMU,

rate gyros, TACAN receivers -- are covered in other sections of this report. The

flight hardware modules which we have assigned exclusively to FCS are:

z Aerosurface Actuator Interface Units

t Air Data System

4.7.5.1.5.1 Aerosurface Actuator Interface Units (ASAIU's) - These are rather

simple hardware units, with very limited simulation and validation requirements.

Therefore, the discussion which follows is rather brief. Additional information

relating to somewhat similar hardware units (PSIU's) may be found in Section

4.7.5.1.3.

i	 ASAIU Descriotion

Like the PSIU's described in Section 4.7.5.1.3, the ASAIU's provide interfacing

between controlled hardware units (in this case, aerosurface actuators) and manual

controls and flight computers, performing signal processing and checkout functions.

When the control channels and aerosurface actuators are performing properly, the

primary function of the ASAIU's is formatting and conversion of signals from and to

the flight computers, to implement closed-loop vehicle control.

The ASAIU's also implement "voting" of redundant commands and feedback signals,

enabling command equalization as well as malfunction detection, isolation, switch-

out and annunciation. Switchnut of a malfunctioning actuator can be overridden by

crew command. in the case of the quad-redundant hydraulic actuators used on the

fast-response surfaces -- elevons and rudder/speedbrake -- these monitoring functions

are implemented with rather complex and as yet ill-defined algorithms involving

position feedbacks and hydraulic pressures sensed at multiple ports. For the dual-

redundant hydraulic actuators used on the body flap, the implementation is similar,

albeit simpler.

4.7-271
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Specifications and study reports defining command/ response word formats,

malfunction-handling algorithms, etc., have not ,yet been identified.

ASAIU Mo dule Descri2tio n and Pe rformance Parameters

Again like the PSIU's, it seems reasonable to assume that the functions of

the ASAIU's will be "embedded" in the associated actuator simulation modules. Phis

is particularly true in view of the fact that the level of detail of actuator

simulation will probably not be adequate to directly simulate the equalization and

monitoring functions in high fidelity. That i s, the actuators will be simulated

basically as transfer functions with appropriate nonlinearit:ies (see Section

4.7.1.4); thus the physical quantities used in the monitoring process will simply

not exist in the simulation. It may be possible to translate these physical

parameters into their equivalent transfer-function variables. More likely, however,

the simulation module will simply talkback inserted molfunctiors.

4.7-'73
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4.7.5.1.5.2 Air Data System (ADS) -- The air data system is used to sense the

velocity and orientation of the Orbiter relative wind, providing data used for

aerofIight control.

ADS _System Description _
	 i

Figure 4.7-39 shows an overview of the air data system and its hardware

interfaces. The total system consists of: a set of dual-redundant probes, with
	 s

associated deploy/retract mechanisms and heaters; dual/dual-redundant air data

transducer asserblies (ADTA); and electronics interfaces. The probes are deployed

during the transition phase of entry, and air data outputs are used from then

until landing.(See Refs.25 , &? .)

Figure 4.7-90 is an expansion of an ADTA, identifying the individual

transducers, calibration memories, and miscellaneous electronics. The ADTA has

self-test and operate modes. Self-test data is evaluated by the GN&C computers

to determine the status of each ADTA. In the operate mode, the ADTA responds to

probe inputs to generate static pressure, total pressure, total temperature and

differential pressure outputs. These are processed by the GN&C coMputer to

compute airspeed, angles of attack, etc.

ADS Simulation Module Description and Performance Parameters

We assume that the ADS simulation module will provide a high-fidelity simu-

lation of ADTA self-test and operate mode outputs and a time-delay sinulation of

probe deployment and retraction, will alloi for various internal failure modes,

and will respond properly to variations in sirulated bus voltages.

Figure 4.7-91 is an overview of ADS simulation module interfaces. Table

4.7 -L5 provides an ADS module parameter list.

ADS Reference Data Sources and Data Formats

The ADS reference module discussed in this section provides a simulation of

the nominal operation of the air data probes and the ADTA, and sets discretes for

probe deploy/retract and heaters without any detail simulation. The individual

hardware elements of the air data syster; are not modelled in this reference module.

i
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TA5LE 4.7-25 AIR DATA SYSTEM MODULE PARAMETER LIST

SYKBOL DEFINITION; TYPE 

- - Command for self-test mode or operation mode i

To , Po Ambient air temperature and pressure I

11 Bach number I

pt	 Va Angle-of-attach:	 angle-of-sideslip and airspeed I

— — ADTA self-test values for P
si'	 Pti' T

ti ,A P i , and DB

mode/status

Temperature sensor- recovery factor DB

Specific heat ratio for air DB

Pso' Pto' T to I	 Ideal	 probe values of static pressure, 	 total P

pressure and total temperature

6P Ideal	 probe differential 	 pressure (function of P

.vehicle aerodynamics)

SP	 S 
Pto'

Changes in ideal	 probe values due to vehicle P
S09

^,Tto dynamics

E Psi'	
EP ADTA hardware errors P

ti
ET ti , EINPi

P si +	 Indicated static pressure (4ivided into most CP

significant and least significant words)

P ti Indicated total	 pressure CP

Tti Indicated total temperature CP

AP indicated pressure differential CP

- - ADTA Operational Mode and Status flag 0

- - Power-on discrete from ADTA 0

- - Probe heater status discrete 0

- - Probe deploy/retract status discrete 0

a LEGEND:	 1 = input

DS = data base input

0 = output

P = performance paramet3r

CP = critical performance parameter

4.7-'76
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Modelling of hardware errors is to be accomplished by means of "generalized

functions” (table lookups polynomials etc.) based upon hardware test data.

The math flow for module CKADS, as shown in Fig. 4.7-38 , is initialized

with constant parameters from the data base, and driven by checkpoint data

provided either by an on-line driver routine or accessed from a predefined data

file. It has two basic piths: one for the self-test mode, and one for the

operate mode.

Self-Test P"ode - The ADS reference module simulates the ADTA self-test mode,

normally initiated by the GM&C computer. Generation of reference verification

data for the self-test mode is accomplished by simply setting the ADTA output

to the values expected by the GN&C computer for a nominal status.

Operate Mode - The operate mode simulates the functional situation in which

dynamic sensor data is supplied to the GN&C computer for processing. Generation

of the ADTA output during this mode is accomplished by exercising Equations

(1) through (9) of Figure 4,7-92, discussed in the following paragraph.

Equations (10),(11), and (12) provide the ideal values for total temperature

(Tt ), static pressure (P s ), and total pressure (P t ), as measured by the air

data probes. The equations presented are developed, using fundamental dynamics

and thermodynamics of air, in Reference 81

T, = To 0 .0 , 2—„o—^M')	 (l 0)

P = Po

	

	 (11)
YX

= Po (1.0 + 1-1:9M ^	 for M< 1	 )

P, = Po(1.o+ 90 M? 1	 :Y)zr^z	
for M>) 1
	

(12

	

I	 ^d^h1--(Y-t.o1	 1

Note that the proves are assumed to be located in the free stream ahead of any

shock gave, and the temperature sensor is assumed to measure full adiabatic

temperature increase within the recovery factor 7. Equations (10), (11), and

(12) are for airflow axial along the probes, and will not provide the correct

measurement w en the incident flow is not axial. They are typical calibration

	

equations; by add 	 `n'-Af correction terms dependent on vehicle parameters such
ti

as angle of attack, angle of sideslip, and airspeed, representative ideal values

for Ps , P t , and T  can be achieved for all vehicle states. The additive

4.7-'"7
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l j correCtions indicated by 6 in Equations (1), (2), and (3) of Figure 4.7-92
are derived from test data.

The differential pressure parameter ( A P), is a function of vehicle dynamics
and airflow around the probe, with the functional form heavily dependent on probe

design and location on the vehicle. For the reference module, the ideal A P

is modeled using design and test data. (The flight software will contain an

algorithm for converting A P i into sensed angles of attack; this algorithm will

be essentially the inverse of the reference module algorithm.)

The ideal inputs to the ADTA thus obtained are then degraded due to non-ideal

operation of the hardware. Typically, hardware errors can be divided into two

classes: those which are compensated for in the software accepting the data,

and those not compensated for and thereby introduced into the system. Since the

GN&C flight software will likely perform compensation for certain hardware

characteristics, both tykes should be introduced to the ideal data. The reference

module discussed here provides all hardware errors as additive terms ( E ) to the

ideal values. The hardware error functions are determined usin g design and

test data.

The final output performance parameter, the mode/status flag, is assigned

the appropriate value for nominal system operation. Since operate and self-test

values may differ, the parameter appears in both paths of Figure X1.7-92.

ADS Module Validation Methods and Check Cases

ADS module validation is performed by driving both the siriulation module and

the reference module with corresponding input data. Check-case data required

by the reference module are as follows:

e Power--off Data Check - The power off checkpoint is to verify that the

power-off condition for the ADTA results in proper power-off output data.

This single check point need not be built in to the reference module.
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c Self-Test Data Check - The self-test check point is to verify the ADTA

^-^	 output in response to self-test commands. The reference output for

this check point will consist of stored test words identical to those

existing in the GN&C computer for verification of the ADTA status. The

reference module input needs only the mode parameter to specify the

self-test condition.

© Operate Data Check - This check consists of a series of check points

chcsen to verify the system output over its normal range of use. The

reference data for this check is generated by a parametric variation of

tale 'Inputs (P,T, 0. , P . etc.) used in the calculation of the performance

parameters. The appropriate parameter variations are selected based on

performance specifications fc the air data system and the vehicle.

The simulation module, being more directly hardware-oriented, will require

additional input data (see Table 4.7-25) for proper operation.

In addition to the discrete check points, the appropriate input values to the

reference module may e stored along with resulting simulation module outputs

from a simulation run. The verification executor can then access the data to

drive the reference module and aenerate data for comparison with the stored

simulation data. However, care should be used in utilizing this option. Since

the reference module does not simulate ali the air data system hard!•lare-related

i	 effects (e.g., malfunctions, voltage and temperature variations), the simulation

data must be in the nominal operational regime to be directly comparable.

For nominal operation, reference/simulation data agreement should be within

a few percent for moderate mach numbers and angles of attack, during steady

flight. Discrepancies of ten percent or greater would not be unreasonable at

high mach numbers or high angles of attack, during turbulence or high-g maneuvers.

ADS Data Base Impact

The parameters and functions indicated on Figure 4.7-02 as input through the

data base must be available to the reference module from mass storage. Table

4.7-11F presents the individual data base items, with an indication of the data

source and added comments on the type of data.

e^

r



TABLE 4.7-26 REFERENCE MODULE DATA BASE SOURCE LIST

ITEM	 I SOURCE COMMENT

Self-test Air Data Subsystem Nominal	 Values	 indicating a "GO" status

Values Vendor

y Reference Simulation Assigned Reference Value (e.g., 1.40

Standards for air)

Air Data Subsystem From Design or Test Data

Vendor

E p si,E p ti Air Data Subsystem Predicted static error data from design

ETti,EQPi Vendor studies

Vehicle Vendor Fro!rn Wind Tunnel	 or F light Test Data
, 0biopsi

A'

..	 t

MDC E1136
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i

The coripl i cated nature of the airflow functions S Ps i ' "Pti and AP warrants the

use of flight test data when available. blind tunnel data or predicted values will

in general provide only trend data, but should be used until flight test data

becomes available. However initially obtained, the airfiovr functions should be

updated upon the availability of flight test data to ensure i valid simulation.

For all test data items, it is important that configuration control procedures

be utilized to maintain up-to-date data base information. Reference module data

base updates would result from system modifications and from the availability of

more reliable data through program advances. When such updates are incorporated

into the reference module, a reverification of the simulator air date module

would be undertaken. If it is fcund that the simulator module is no longer valid

with respect to the updated data, simulator management Would then be informed.

4.7-2^1
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4.7.5.2 Communications and Tracking (C&T) Subsystem

The C&T subsystem provides capabilities for transmission L information and/or

commands and determination of relative state variables bets•:een ,:he Orbiter and

(a) ground-based facilities (see Section 4.3.2.1) and (b) payloads and rendezvous

targets (see Section 4.3.2.2). Orbiter/payload communication and tracking is

performed during the on-orbit mission phase; Orbiter/ground communication and

tracking may be performed daring any mission phase - except for a short period of

communications "blackout" during entry.

C&T-Subsystem Description

The block diagram of Figure 4.7-93 (Ref. 70 ) provides an overview of the

C&T subsystem. This subsystem includes several types of components:

e receivers, transmitters and transponders

c recrrci/playback equipment

o data handling and distribution equipment (e.g., signal processors, coders,

data interleavers, switching systems)

v antennas

c manual control and display interfaces

(	 6 flight computer interfaces

Component specifications (Refs. 83 through 92) provide detailed information

relating to many of these components; specifications for other components have not

yet been identified.

C&T Module Description and Performance Parameters

The C&T subsystem simulation module will consist of a number of submodules.

Each such submodule will provide the operational modes and performance parameters

of one of the basic hardware components of the CPT subsystem, model appropriate

hardware errors, and allow for the insertion of simulated malfunctions.

Table 4,7-2% gives a list of performance parameters for the C&T simulation module.

Figure ".7-0.4 shows the C&T module interfaces. Definition of the interface

with the artificial environment module requires sore assumptions about the soft-

ware design. We have assumed that, for maximum module independence, each of these

modules will require a minimum of information about the other. For example, the

ground nav/comet module will compute the line-of-sight (LOS) to the Orbiter (as

`	 seen from the ground), in its owr. axis set, and use the ground-antenna gain pattern

to compute its transmitted signal strength along that LOS. The onboard C&T

4.7 12
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FIGURE 4.7-93 COMMUNICATIONS AND TRACKING SUBSYSTEM BLOCK DIAGRAM
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TABLE 4.7-27. COMMUNICATIONS AND TRACKING SIMULATION MODULE PARAMETERS

SYMBOL DESCRIPTION TYPE 

RSE Ground station coordinates 	 (earth-fixed axes) I

Ground station identification tags I

Ground station transmitting frequencies I

Line-of-sight contact flags I

r,	 v Orbiter position and velocity (ECI axes) I

b r, 6v Target relative position and velocity	 (ECI or orbital 	 axes) I

e, q) Orbiter attitude I

h Orbiter altitude (above local	 terrain) I

rs ,	 rs Station range and range rate I

AZS' ES
Station azimuth, elevation I

rT,	
tT

Target range and range rate I

SSTI STT Transmitted signal	 strength from ground station, target I

Incoming and outgoing data/command streams I

Onboard antenna gain patterns DB

,	 uT^ Line-of-sight to station, target (body axes) P

SSR'STR Received signal strength from station, target P	 .:,.

ST Transmitted signal	 strength to ground station or target . P

Dc Measured doppler counts !	 CP

hra Measured radar altitude CP

s T
Measured range to station, target CP

_

AZS'LS
Measured station-referenced azimuth, elevation CP

^r
Measured target angle and angular rate CP

aTYPE: I = input

DB = data base input

P = performance parameter

CP = critical performance parameter

X1.7-134
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module will compute the LOS to the ground antenna (as seen from the Orbiter), in

its body-axis set, and then use the onboard antenna gain pattern and the transmitted'

signal strength to compute its received signal strength along that LOS. Thus,

each module will need to know its own antenna patterns, but neither module will

need to know the other's antenna patterns. In addition, each module will need

to output various flags and tags to inform the other which ground facilities

are active and in view, which onboard subsystems are active, etc.
s

The Shuttle Mission Simulator, which is sometimes used in integrated operations 	 3,

with Mission Control, must provide the capability to provide a sioiul aced telemetry

stream -- realtime and/or recorder data-dump. This will require the C&T module to

have telemetry simulation modes, in which properly-formatted mass-storage files

are generated during simulator operationa, then dumped over an appropriate conmuni-

cation channel upon commands received via the Mission Control communication link:.

UT Reference Data Sources and Data Formats

Figure 4.7-95 shows the math flow and variable definition for a module

(CHKCMT) to generate reference data for validation of the C&T simulation module.

The equations shown in this figure are derived in Ref. 93. Geometry calculations

necessary to compute range, range rate, bearing, etc. are performed in terms of

coordinate systems as shown in Figure 4.7-95; (see Ref. 47 ). In some cases,

complete information required for equation development is not yet available, and

computations are shown as generalized functions. These generalized functions

may be implemented in computational form, or via table lookup, polynomial fit,

etc., as the required data becomes available during the course of the Shuttle

program. Status discretes and other secondary parameters are assumed set to

their nominal operational values, and are not represented on the math flow.

Note that this reference module is designed for initial validation of the C&T

module, and includes computations which will actually be performed by the artificial

environment module. R simpler reference module will be appropriate for integrated

validation of the UT and artificial environment modules.

Command parameters (e.g., switching, data-dump) normally generated by manual

controls, flight computers, or ground command mus'- be provides' by an external

driver and/or manual data input to the reference module, in a format matching their

4,7.-9286

-	 ?G'a"CE^t'31!!14l^lL.^. J:f^:^3^^,^^ ^"'S^'L-PCArcl^t.°'d1^d^'S ^016rJi^i^l^1'Y. CAST

_



frsi+hsi)c: '0 s#Sicos;kSi—

-SE 	 (rsj+hsi)cos0sislnXsl

-ee2)rsi+hsi]sin^sj

-sinXsl	 sindisicos?,si cososills;ksj

Tj	 cOsXsi sin0si sinXsi	 cososislas

0	 cospsi	 Si0si,

cos wt	 sin wt	 0

T2	 sin wt	 tos wt	 0

0	 0	
1-j

sin wt cos wt

T3 -cos wt sin wt

0	 0

I

T

0

0

rsi	 ae

FIGURE 4.7-05 COMMUNICATIONS AND TRACKING REFERENCE MODULE MATH FLOW.
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LEGEND

SYMBOL DEFINITION

i pass number

psi Ground station latitude

Xs! Ground station longitude

hsi Ground station altitude

N Number of Ground stations to be verified

ae Earth semimajor axis

ee Earth eccentri ci ty

Wt Angle between vernal equinox and Greenwich Meridian (Note
t depends on time of reference frame initialization)

W Earth rotation rate

fl Function relating Doppler counts to range rate (Ground
Transmission)

f2 Function relating antenna transmitted signal strength to
line of sight (vehicle to ground station)

f3 Function relating antenna received signal strength to line
of sight (ground station to vehicle)

f4 Function relating antenna transm i tted signal strength
to line of sight (vehicle to TDRS)

f5 Function relating antenna received signal strength to
line of sight (TORS to vehicle)

FIGURE 11 , 7_05 (CONCLUDED) .

4.7-291
!YS4.'LrT€A{i1FTl^'!L^ F3OY,.lC p..^'#5 x'.^"a':7CS1Z1.4f33r0^̀S ^^FfY9^+.^filB'^ SLaSY

--- -^_.



intended operational format in the eventual integrated--simulator environment. A

pseudo-data stream should also be provided to verify proper transfer of telemetry

data.	 1

Note that, to simplify the reference module logic, values for azimuth,

elevation, range and range rate are computed for all ground station types, even 	 i

though not needed in every case; e.g., elevation angle and range rate are not used

for TACAN stations.

C&T Validation Methods and Check Cases

In accordance with the basic validation software structure described in

Section 5.1, Figure 4.7-97 provides the math flow for a checkpoint-generation

routine to be used in C&T module validation. This routine will provide, in

addition to discretes for selection of operational modes, ground stations and

TDRS satellites, the following vehicle-dynamics-related data:

X = (X,Y,Z,X,Y,Z) = shuttle state vector

X t = (X t ,Y t ,Z t ,X t ,Yt' i t ) = rendezvous--target state vector

B = 3 X 3 coordinate transformation matrix

T = universal time

The logic of this driver routine provides for exercising the linkage between

the Orbiter and every ground facility, as well as varying the relative position and

velocity over the entire range of operational interest. For initial validation,

synthetic state vectors will be used. Later, when a vehicle dynamics module becomes

available, integrated validation will make use of realistic trajectories which

pass into and through the regions of ground-station a ped payload contact.

C&T Validation Data Base Impact	 ^=

The data base contributions for C&T module validation will include the

reference module, the checkpoint--generation routine, ground-station tables,

antenna-pattern functions or tables, and temporary riles of checkpoint inputs and

outputs.	
f.,

The reference module and checkpoint-generation module are both fairly simple,

and will impose little storage load. The ground--station table will may be fairly

extensive (dozens or hundreds of stations, depending upon Shuttle operational

rules), but will be common to the simulator data base rather than in addition to

inn
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XI - Through the Vernal Equinox of Reference

YZ - 90 1 East in the Equatorial Plane

ZI - Through the North Pole

XE - Through the Greenwich Meridian

YE - 90 0 East in the Equatorial plane

ZE - Through the North Pole

XL_ - East through the station location in the Earth tangential plane

YL -- North through the station location in the Earth tangential plane

ZL, - Up through the station location along the geodetic vertical

FIGURE 4.7- 116 COORDINATE SYSTEMS FOR COM14OP11CATIONS AND TRACKING MODULE.
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it. The antenna-pattern data, if maintained in tabular rather than functional

form, will also be extensive, but should also be common to the simulator. The

extent of the checkpoint files will vary with the resolution desired for

comparison plots, and in any event, these files need not be maintained after

initial validation is completed. Overall, the data base impact for C&T module

validation should be minor.

1
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4.7.5.3 Controls and Displays (C&D)

The controls and displays group includes subsystems and components involved in

the presentation of information to the flight crew and flight crew control of the

Shuttle vehicle and its various onboard systems. It also includes the Master

Events Controller (MEC), which transfers discrete commands from the flight computer

to various pyrotechnic devices.

Controls and displays will be discussed in four categories: timers (including

the MEC), artificial feel system, miscellaneous display interfaces, and

miscellaneous control interfaces. Flight-computer CRT/keyboard units are excluded

from this discussion, on the assumption that they will be implemented using flight

hardware on the simulators of interest.

This discussion will be brief, since C&D software requirements are minor, and

much of'their validation will be done in an integrated rather than isolated-module

configuration.

C&D Subsystem Description

Timers and MEC - This category includes the Master Timing Unit (MTU), the event

timer, and the MEC.

The MTU (Ref. 94), based on a crystal -controlled oscillator, provides

(a) stable frequency outputs for use by various Orbiter subsystems and payloads,

and (b) serial time code outputs for subsystems including computers, data

acquisition systems, recorders, displays and attached payloads. it includes

separate time accumulators for Greenwich Mean Time and Mission Elapsed Time,

which can be set or updated by external control.

The Event Timer (Ref. 95) is used by the crewin execution of maneuvers and

other onboard procedures. It accepts and counts timing pulses from the MTU (or a

backup internal source), and generates a numeric display. Operational modes are

count-up, count-down, reset, preset, and override.

The MEC (Ref. 96) recognizes two types of discrete commands output by the

.y; flight computer: critical and non-critical. Critical comand words must be

4.7-2`96
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Miscellaneous Display Interfaces -- The display interface software will perform

simple buffering, formatting and scaling of signals from the host computer. Some

meters may require compensation-curve processing, based upon periodic calibration

data.

The caution and warning status display, if flight hardware, will interface

directly with the flight computer. If implemented as simulator hardware, it will

require flight-computer data conversion by means of software in the host and/or

the FEID. An interface with the aural simulation hardware will also , be required to
generate tone, klaxon and siren outputs, used to indicate mission-critical anomalies.

Miscellaneous Control Interfaces - The control interface software will simply

buffer, format and scale discrete and continuous control inputs for the host and/or

FC/FEID.

Summar - Figure 4.7-98 depicts the C&D simulation module interfaces. Table 4.7-28

lists the C&D simulation module parameters.

C&D Reference Data Sources and Data Formats

The basic sources of reference data are the specifications of the onboard

systems, and of the simulator hardware and software for the particular simulator

of interest. The simple C&D software modules just perform a simulator-peculiar

mapping of inputs to outputs -- e.g., discrete input #xxx is delayed for ttt

seconds and becomes discrete output fyyy; so much controller motion maps into so

many degrees of aerosurface deflection.

C&D Validation Methods and Check Cases

The bulk of the C&D validation is performed on the integrated simulator.

Preliminary validation of discrete-data handling would be done by means of an

external driver and a command/response "dictionary." Preliminary validation of	 !`

continuous-data handling would be performed by providing sampled inputs over the

	

	 -

:jspecified range (e.g., tia input to a particular meter), generating a data plot

to be compared to the meter calibration curve.
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TABLE 4.7-23. CONTROL AND DISPLAY MODULE PARAMETERS 27 January 1975

	

is

	

i

DESCRIPTION TYPEa

Hand--controller and rudder pedal deflections I

Manual switch actions I

Flight computer discretes I

Flight computer continuous data I

Avionics data:	 MSBLS, TACAN, IMU gimbals, etc. I

Aerodynamic and runway velocities I

Sensor and instrument scaling and calibration data DB

Aerosurface deflection commands (manual) P

Avionics mode and channel- select commands P

Thrust commands (manual) P

Displayed times:	 GMT, VET, event P

Display discretes:	 C&W, channel	 set, etc. P

Instrument drive signals P

C&W panel	 settings:	 inhibits, limits, etc. P

Discrete talkbacks P
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C&D Validation Data Base Impact j

Very little on-line storage is required for validation of the C&D module,
I-

-	 which requires no reference module as such. The on-line data base will consist of =

some short command/response dictionaries, a few calibration curves, and a simple - i,{

external driver module.
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4.7.5.4 Operational Instrumentation (0I)
The OI-subsystem provides the telemetry processing.. and . caution and. warning

CC&W) functions on the ,Shuttle Orbiter.' . fhe telemetry processing function
	 r

consists of data buffering, scaling and formatting, and control'of onboard recording,
recorder dumping, and real' time telemetry. to the ground netwdrk- The e caution and .	

1

warning function consists .of buffering, filtering and gating`,dat'ra, and generating
display messages in response to detected anomalies.

	
t

r

These functions are all implemented in flight software in the Orbiter flight
computers, and will thus require no simulation software in the simulators of
interest, which will incorporate flight computer hardware. In the SMS, which
simulates most onboard subsystems in high fidelity, OI implementation will require
the subsystem simulations to provide realistic values for such performance-
correlated variables as temperatures, voltages, and various operational discretes

over and above a correct: representation of subsystem functions. in the SPS and

OAS, we expect little or no implementation of OI functions, and much-simplified

representation of most onboard subsystems.

w.

The telemetry and maintenance recorders are discussed under C&T (Section

4.7.5.2), and the C&W displays under Controls'and Displays (Section 4.7.5.3).

pA

1

7
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4.7.5.5 Electrical Power Distribution and Control

The Electrical Power Distribution and Control (£PD&C) subsystem provides the

means of conditioning and transfer of electrical energy From the fuel cells or

ground support equipment (GSE) umbilicals to the various systems electrical

equipment. In addition, the subsystem includes external vehicle illumination.

This section provides a discussion of the subsystem components, module performance

Parameters, reference data sources validation methods and impact to the

simulation data ba :a.

EPD&C Subsystem Descri tion

Figure 4.7-99 is a schematic of the EPD&C subsystem. The means of energy

transfer is a network of bus bars which are connected by electrical cables, power

relays, solid state power controllers, fuses, etc. This network of buses includes:

o 3 main buses

a 3 essential (critical) control buses

® 3 forward local buses

9 3 midsection local buses

a 3 aft section local buses

a 3 AC 3-phase buses (powered by 3 inverters)

The three main buses can be individually interconnected by a tie bar which also

allows connection of the tie bar to GSE power via the nose--wheel umbilical. The

three aft local buses can be individually connected to GSE power via the aft GSE

power umbilical. The three aft local buses can also be connected together via a

tie bar. The 3-phase AC buses can also be electrically connected by tie bars.

The illumination system block diagram is presented in Figure 4.7-100. The

exterior lighting is controlled by manual switching. The lighting includes landing,

navigational, anti-collision, rendezvous, docking, manipulator, payload and camera

lights.

EPD&C Module Description and Performance Parameters

The Figure 4.7-101 schematic illustrates the EPD&C module interfaces with the

other modules and shows the functional elements within the module. The performance

parameters of the module are listed in Table 4.7-34. The module functional

elements provide the following calculations:

4.7-303
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PARAMETER TYPE 

Switch position, selections, etc. I

Equipment operating modes, on/off I

FC electrical outputs - (Norton's equivalent current, admittance) I

CSE electrical outputs - (Norton's equivalent current, admittance) I

Equipment temperatures I

Bus voltages CP

Load voltages P

Bus currents CP

Load currents P

Bus distribution admittances P

Load admittances P

External illumination Tight operating modes P

Power interruption devices - total current P

- overload trip time CP

- device open P
1'^
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a Loads - determine the admittance values of each load as functions of

operating mode, input voltage, and temperature.

a Control logic - determines enabling/disabling selection logic from the

control inputs.

a AC inverter - calculates:

-- Inverter AC load - determines inverter load-phase as functions

of AC voltage, mode selected temperatures.

-- Inverter efficiency - this is a function of inverter temperature,

AC load, and input DC voltage.

-- Equivalent DC load - a function of inverter efficiency and

inverter AC load.

a Distribution resistances - calculates the bus network distribution

resistances as functions of the control logic, and bus voltages. 	 L''

	

e Distribution voltages and currents - calculates bus and load voltages and	 e

currents as functions of the fuel cell current/admittance, load

admittances, and distribution network resistances.

a Power interruption - sums current through the power interruption devices,

determines overload conditions, integrates overload time, and sets

logic indicating power line open.

® External illumination - determines light operating mode and on/off

condition from control logic and bus voltages.

EPD&C Reference Data Sources and Formats
rs

	The component design performance requirements, performance predictions, test 	

f

r;

results, and flight vehicle performance results can be used as reference data

for direct comparison with simulation results. Reference 22 is •pecifically

	intended to provide data of this type. Component design requirements are defined 	 3

in the following Rockwell International documents:

COMPONENT	 SPECIFICATION

Fuses	 MC451-0010

Thermal circuit breakers	 MC454-0026

Remote control circuit breakers MC454-0027

Remote power controller	 MC450-0017	 :1

AC inverters	 MC495-0012

ti
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Various analysis computer programs are available for use in providing reference

data. One such program is the Shuttle Electric Power System Analysis Computer

Program (SEPS) developed by TRW for the consumables analysis section of the Mission

Planning and Analysis Division (see Ref. 100). The subroutines used in the SEPS

can be easily developed into an adequate reference module. The complete develop-

ment of a suitable module would be a relatively simple and straightforward task.

Pi gure 4.7-112 i s a generalized overview of the module operations.

Figure 4.7-103 provides an equivalent DC circuit for the Shuttle EPD&C. It

also shows the defining matrices for the circuit assuming the switches are all

closed and the diodes are forward-biased. The defining matrix equation is:

[I] = [GI [E]

where [1] = column matrix for the node input current sources

[G] = square admittance matrix of the circuit

LEI = column matrix of the node voltages

v

The node voltages can be determined from the following equation:

Ex .

EY = x-node voltage

IN = value of the determinant of [GI

g̀x = value of the determinant of the matrix resulting by replacing

the x column of the [G] with [I]

The analysis of the circuit; with all switches open is similiar with the resultingY	 P

matrices being less complex.

EPD&C Validation Methods and Checkcases

The methods of Sections 5.1 and 4.2 can be used in validating the EPD&C

simulation module. A comparison of the parameters listed in Table 4.7-2e and

bus power, load power, -fuel cell input power, fuel cell input watt hours, and

ampere hours, should provide adequate checks. During the module runs, interface

drivers will be required to provide the input parameters from the interfacing

modules. It will also be necessary to provide drivers to initialize or hold

static the intermodule parameters and conditions. Drivers required are:

s EC electrical outputs

y	 Equipment operating mode, etc.
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YA	= AC load admittance

= AG bus voltage

la	 = logi c inputs

YAer	 = Sum of AC loads on AC inverter

= inverter electrical efficiency

GACI	
= Equivalent DC load representing inverter- and its AC loads

P-M	= Individual DC load resistances

R/,	 = Line resistance from load to bus

GI	= Sum of bus load admittances

G
2
	= Bus interconnection admittance (DC)

Ex	= Bus voltage

AX	= Value of determinant of the admittance matrix with x-column
replaced by current matrix

Ao	= Value of the determinant of the admittance matrix

i	 = Current

E	 = voltage

P	 = Power (electrical)

B	 = Interruption state of power interrupt devices (fuses, circuit
breakers, etc.)

d^	 = Time increment

T	 = Temperature

^-	 FIGURE 4.7-102 (CONTINUED)
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IFCA

I FLB	 = Norton's equivalent current sources representing the fuel cell
A, B, C outputs.

FLC

GFCA

GFCB	 = Norton's equivalent admittance for the fuel cells A, B, C.

GFCC j

GFC G M	 = Admittances connecting -Fuel cell output to main buses.

GA

= Equivalent loads on main buses A, B, C including forward local/
GB	 middle local/AC bus loads and wiring losses.

GC

GLAA

G LAB	 Admittance between main buses and AFT local buses A, B, C.

GLAC

GLA

GLB	 = Admittance loads on AFT local buses A, B, C.

GLC

TA

GTB	 = Admittance between AFT local buses A, B, C and AFT Bus Tie.

GTC

GTMA

GTMB	 = Admittances between main buses A, B, C and main Bus Tie.

G TMC

GAA
= Admittance between main buses A, C and essential bus A.

GCA

FIGURE 4.7-103. (CONTINUED)
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rjAB Admittances between main buses A, B and essential bus B.
GBB

GBC Admittances between main buses A, B and essential bus C.
Gcc

G EA

GEB	 Admittance loads on essential buses A, B, C.

GEC

EFCA

EFCB	 Fuel cell output voltages.

EFCC

EFCA

EFCB	 Fuel cell A, B, C input voltages.

EFCC

EMA

EM	Main buses A, B, C voltages.

EMC

E	 Main bus tie-bar voltage.
i.

ELT	 AFT local tie-bar voltage.

EEA

EE	Essential buses A, B, C voltages.

EEC

ELA

ELB	 AFT local buses A, B, C voltages.

E LC

Value of the determinant of the G-matrix (EGI)

AX	 Value of the determinant of the matrix resulting by replacing the
x--column of the C,-matrix with the 1-matrix.

SK	 Switch.
FIGURE 4.7-103. (CONTINUED)
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i

The check cases.implemented should include step changes in loads, bus switching,

maximum equipment powered, minimum equipment powered, and expected mission load

profiles (equipment powered -dime-dine). System checkout or test sequence results

can be input as check cases with simulation results compared directly to the test

resul is .

EPUC Data Base Impact

The CPD&C reference module and drivers are of moderate impact to the simulation

data base. The majority of the processing subroutines (data comparison, read,

write, etc.) would be common to all modules requiring validation. The equipment

power profiles (time-lines) would be required but represent a minor impact. Data

files would also be required for the input and output data tables.

4,7-317
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4.7.6 Environmental Control/Lire Support System

This section includes the discussion of the Atmosphere Revitalization System;

the Active Thermal Control System; and the Food, Water, and Waste Management

System.

4.7.6.1 Atmosphere Revitalization System (ARS)

The ARS includes the Atmosphere Revitalization Pressure Control Subsystem 	 s

(ARPCS), and the ARS Cabin Atmosphere Control Subsystem (ARS-CACS). These two

subsystems are discussed in the following sections.

=i

U

`. Y

r a

j

r.^
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4.7.6.1.1 Atmos phere Revitalization Pressure Control Svstem Descriotion

The Atmosphere Revitalization Pressure Control Subsystem.(ARPCS) provides

three basic functions for the Shuttle Orbiter. The functions provided are:

1) N2 and 02 stirage (gas)

2) distribut i on of gaseous 02 and N2 , at proper pressures, to the user

equipment, system, etc.

3) ensuring proper O2 and N2 mixture while controlling cabin (crew

quarters) pressure.

These functions are accomplished via interconnecting manual valves, solenoid

valves, pressure regulators, pressure sensors, electronic controls and relief

valves. This interconnection was determined from schematic VL70-000214 (Reference

111), specification MC250-0002 (Reference 103), and a Preliminary Design Review (PDR)

handout on the Power Reactant Storage and Distribution System. The resulting

representative plumbing schematic is shown in Figure 4.7-104 and 4.7-105„ Although

these figures are not totally accurate, they should suffice for the current

verification study purposes.

N.LSuppl,y and Distribution - The N2 gas is stored in 3000 psi bottles containing

approximately 50 pounds of N 2 in each. The primary source of N 2 is one (7)

bottle, with the auxiliary source comprised of three (3) bottles. Additional

bottles can be carried in the payload area and connected to the system if desired.

Either the primary, auxiliary, or payload supply can be selected to deliver gas to

either of the two N 2 distribution networks.

The N2 distribution networks are each comprised of various control valves

(manual and solenoid) and two (2) N 2 pressure regulators. A 175 psi outlet

regulator provides the proper pressure level to the 0 2/f42 cabin pressure controller

and to the potable H2O bottle regulators. This 175 psi regulator also provides

outlet pressure relies` (at approximately 200 psi) to prevent over pressurizing the

downstream distribution network. The pressure relief is vented overboard resulting

in possible vehicle attitude and rate disturbance torques. Potable water bottle

regulators maintain pressurization of the three (3) potable water tanks. Pressure

i s regulated 8 to 12 psi above the cabin pressure. This higher pressure ensures

the expulsion of the water from the tanks. It should be noted that the N 2 side

4.7-319

rV7CJ3?0r PJE'L-L jDaUCiL' AS .QSTRdefr -J.1 U7dC5 040Ml-.Cl VY.. MMS7



ff 1.

-E3

C(*hNTPCL ASSr

1.7

cl

16.0	 r
0, 91AIMAL

MESS CWTROL --------

7A-UX 0, SUPPLY ASSY

114 -

	

0 REG.	 i of
Il a M.,	 SfX=

r
L•

1>
PA A	 FLOW x1150®

4
1.70! CK(X

4-
ICAM

12 CASN	 taaJrtat tKIT-Off

RD5•	 F
OL

I's	 I' ll 	 (.Z5	
m	 It JJJVOtt

Vu1.14	 1-302	 14	 -ALVT
to	 L-----

[it	
lmn,	

4141 UL"A
RELIEF vaVE	 W, WAM

1,09 C%Wlk:JL ISL41 	
to

^t:7

	

XRATCO OM

f—=03—Li
'^ 	, >v ,

uls	 11L
7 TCST YOXT

.^	 ^ ^^	 P'+^i1	 1	 t^-5

I	

CABIN

ITA I
U	 lt

m I EVC41

Ew

11-10 WATER 11

V%CkTER TANKS

L ccĉu m
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of the water tanks can be opened to the crew quarters atmosphere via a solenoid

actuated valve. Theotable water tanks pressure regulators also provide pressureP	 P	 g	 P	 P 

relief for the water tanks. This relief is vented into the crew quarters and

contribute's to the total cabin pressure.

02 Supply and Distribution - The 02 gas supply has three (3) sources. The primary

and secondary supplies are from the Cryogenic 0 2 Systems for the Power Reactants

Storage and Distribution System (PRSD) 	 which also provide 02 to the fuel cells.

The Cyrogenic 02 flows through restrictor/heat exchangers which provide flow control
is

as well as increasing the gas temperature. Oxygen accumulators (surge tanks) act

as pressure stabilizing and intermediate storage devices.

An auxiliary 02 gas supply is also available. This is at an initial pressure

of 3000 psi and must be regulated to approximately 450 psi to prevent over-

pressurizing the 0 2 distribution network. The 450 psi regulator also provides

a distribution system over pressure relief at approximately 1I00 psi. This OZ

relief is vented overboard and may generate vehicle attitude and rate disturbance

! torques.

The 02 distribution networks are each made up of manual valves, solenoid

valves and a pressure regulator. The 100 psi 02 regulator provides the proper

02 supply pressure to the 0 2/N 2 cabin pressure controller. High pressure 02 is

provided to the four (4) emerge;,cy 02 outlets in the crew compartment mid section,

to the four (4) outlets for portable ) 2 bottle filling, and to the two(2) airlock

support outlets.

Mixture and Pressure Control - The cabin 02/N2 mixture control and cabin pressure

control are provided by cabin pressure regulators, pressure relief valves, 02 partial

pressure controller, manual valves, and solenoid valves.

02 or N2 is selected for cabin make-up gas by the 02/N2 mixture controller.

The partial pressure of oxygen is sensed by the partial pressure controller and

electronically opens (for 0 2 partial pressure 3.45 Asia) the N 2 supply solenoid

,1.7-322
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valve(s) which allows the 170 psi N 2 to flow to the cabin pressure regulator

inlet. The N2 pressure is greater than the 100 psi 02 which feeds the regulator

through a check valve. The higher pressure closes the check valve preventing

02 from entering the regulator and N 2 only is supplied to the cabin. When the

02 partial pressure is less than 2.95 Asia, the N 2 solenoid valve is closed. This

allows any cabin make-up gas flow to be 0 2 . 02 and N2 flow sensors provide output

to the caution and warning subsystem if flow is Excessive. In addition, signals'
are provided to the caution and warning subsystem if the cabin 02 partial pressure

becomes too high or too low.

The cabin pressure control is provided by two (2) types of cabin pressure

regulators, cabin relief pressure valves, and manual valves. The primary cabin

pressure regulators maintaih the cabin pressure at 14.7 psia under normal conditions.

However, in the event of excess cabin leakage, additional cabin regulators operate

to maintain the pressure at 8 psia.

Two cabin overpressure relief valves operate to limit the cabin high pressure

at 15.5 to 16 psi above the vehicle external pressure. These relief valves can be

electrically overridden if desired. Two reverse cabin pressure relief valves

actuate to maintain a maximum 2 psid external pressure above the cabin pressure.

These reverse pressure relief 'valves can be manually overridden when desired. The

venting of these valves can cause body attitude and rate disturbance torques.

Manually actuated pressure equalization valves are used to pressurize and

depressurize the airlock compartment. Each of the three (3) avionics bays is

continually vented (at a low rate) to the spacecraft external ambient. This

venting is required to prevent equipment outgassing products from entering the crew 	 !

compartment. The inle-c to each bay is open to the crew compartments via a relief	 ^-

valve. This valve maintains the bay pressure at 0 to 0.4 psi below the cabin pressure.

In the event of a cabin rapid depressurization the same relief valve operates at

0.6 psi to prevent the bay over--pressuriGing with respect to the crew compartment.

A cabin pressure decay rate detection provides signals to the caution and

warning subsystem when the cabin pressure is decreasing at an excessive rate.

a.7-323
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The continued venting of the three avionics bays, and pressurization/

depressurization of the airlock may cause vehicle attitude and rates disturbance	
z

torques..a



Control Logic - The control logic functions are dependent on the position of manual

valves, solenoid valves, switches, command inputs, bus voltages, etc. The logic

outputs are used extensively in each of the other functional elements calculations.

The valve logic can be determined from the plumbing schematic; however, the

electrical logic is not presently known. The total logic will, of necessity, be

highly dependent on the exact electrical design, and this study does not warrent

accurate description of the logic. It is only necessary to recognize its existence,

and the possibility of many combinations existing.

CF -

	

;-	 4

A. 02 Accumulator Calculations

1. 02 quantity as a function of initial quantity, inlet flow, outlet 	 3'

flow, time, etc.

2. Pressure as a function of quantity, temperature, tank volume.

3. Temperature is a function of initial temperature, inlet 0p	 p	 2
temperature, heat leak, etc.

4. Mass flow inlet as a function of cryogenic 02 pressure, accumulator

pressure, and restrictor flow/pressure characteristics.

X1.7-375
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02 and N2 Storage - The 02 and N2 storage functions are the calculation of remaining

far available) -vailable gas mass, source pressures, temperatures, inlet or outlet mass

flow, etc. The parameters associated with these calculations are as follows:

NDC E1136

27 January 1975

ARKS Module'FUh ctions and Parameters

Figure 4.7-106 provides an overview of the'ARPCS simulation module functional

elements and interfaces with other modules. Basically there are four functions

performed within the module. These functions are:

a Control logic

0 02 and N2 storage

0 0 2 and N 2 pressure regulation and distribution

9 Cabin pressure control

Table 4.7-30 provides a detailed listing of the parameters associated with

the ARPCS module and designation of parameter type.

The following discussion identifies, in general, the functions performed in

each element and the factors involved in the calculations.
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TACLE4.7-- 30 ,ATNOSPHERE REVITALIZATION PRESSURE CONTROL SUSSYSTEi-t PARAMETERS

PARAMETER_

y= Primary 02 Accumulator - inlet 02 temperature

Primary 02 Accumulator - cryo 02 pressure

Secondary 02 Accumulator - inlet 02 temperature

Secondary C2 nGcumul ator - cryo l;2 pressure

Primary 02 Accumulator - 02 mass

r
Secondary 02 Accumulator - 02 mass

Primary 02 Accumulator - Pressure

Secondary 02 Accumulator - Pressure

Primary 02 Accumulator - Temperature

Secondary 02 Accumulator - Temperature

Primary 02 Accumulator - 02 inlet mass flow - cryo

Secondary 02 Accumulator - 02 inlet mass flout -- cryo

PRI MARY 	 'ACCUMULATOR - 02 mass gullet flow
2

SECONDARY 02 ACCUMULATOR - 02 mass outlet flog

AUXILIARY 02 TANK - 02 mass

AUXILIARY 02 TANK - pressure

AUXILIARY 02 TANK - Temperature

AUXILIARY 0 2 TANK - 02 mass outlet flow

AIRLOCK SUPPORT -	 pressure

AIRLOCK SUPPORT - 02 mass flow

N2 PRIMARY TASK - N2 Mass

N2 AUXILIARY TANKS - N2 mass

N2 PRIMARY TANK pressure

N2 SECONDARY TANKS - pressure

N2 PRIMARY TANKS - temperature

N2 SECONDARY TANKS - temperature

N2 PRIMARY - N2 mass flow outlet

N2 SECONDARY - N2 mass flow outlet

Numerous Control Logic Outputs/Inputs

Electrical Power System .. Bus Voltages

Aux 02 regulator - Output Pressure (include relief)

P.'ux 02 re gulator - Input Pressure

Aux 02 regulator - Relief vent mass flow rate

4.7-3?7
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sys

TABLE4.7-30. (CONTINUED)

MID SECTION EMERG 02 flour 1 - mass flow

141D SECTION EMERG 02 flow 2 - mass flow

MID SECTION EMERG 02 flog 3 - mass flow

MID SECTION EMERG 02 flour 4 - mass flog

PORTABLE 02 bottle fill - 1 bottle pressure

PORTABLE 02 bottle fill - 2 bottle pressure

PORTABLE 02 bottle fill - 3 bottle pressure

PORTABLE 02 bottle fill - 4 bottle pressure

PORTABLE 02 bottle fill 1 - mass flow
	

P

PORTABLE 02 bottle fill 2 - mass flour
	

P

PORTABLE 02 bottle fill 3 - mass flow
	

P

PORTABLE 02 bottle fill 4 - mass flow
	

P

PRIMARY 02 - 100 PSI reg - inlet pressure
	

P

PRIMARY 02 - 100 PSI reg - outlet pressure
	

P

PRIMARY 02 - 100 PSI reg - rass flow
	

P

PRIMARY 02 - 100 PSI reg - relief vent mass flow
	

P

SECONDARY 02 - 100

SECONDARY 02 - 100

SECONDARY 02 - 100

SECONDARY 0 2 - 100

PAYLOAD N2 tanks -

PAYLOAD N 2 tanks -

PAYLOAD N2 tanks -

PAYLOAD 
N2 

tanks -

PSI reg - inlet pressure
	

P

PSI reg - outlet pressure
	

P

PSI reg - mass floc,,
	

P

PSI reg - relief vent mass flow
	

P

mass
	

CP

pressure
	

P

temperature
	

P

mass flow out
	

P

I P RIMARY T+ 2 175 PSI

PRli, ,P%RY ft2 175 PSI

PRIP.APY N2 175 PSI

PRI,ftRY hq 175 PSI

reg - inlet pressure	 P	
r

reg - outlet pressure	 P

reg - mass flow 	 P

req - relief vent flow 	 P
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TABLE 4.7- 30. (CONTINUED).

PARAMETER

SECONDARY N2 175 PSI reg - inlet pressure

SECONDARY H2 175 PSI reg - outlet pressure

SECONDARY N2 175 PSI reg - mass flow

SECONDARY N2 175 PSI reg - relief vent mass flog

PRIMARY N-, Check valve - outlet pressure

SECONDARY N2 Check valve - outlet pressure

PRIMARY POTABLE H2O Bottle Regulator - inlet pressure

Primary POTABLE H2O Bottle Regulator - relief vent flow to cabin

PRIMARY POTABLE H2O Bottle Regulator - flow  rate

SECONDARY POTABLE H2O Bottle Regulator - inlet pressure

SECONDARY POTABLE H2O Bottle Regulator - relief vent flow to cabin

SECONDARY POTABLE H2O Bottle Regulator - flow rate

P
P

P

P

P

P

P

P

P

P

P

POTABLE H2O tank 3

POTABLE H2O tank 3

POTABLE H2O tank 3

POTABLE H2O tank 3

POTABLE H2O tank 3

POTABLE H2O tank 3

POTABLE H2O tanks 1

POTABLE H2O tanks 1

POTABLE H2O tanks 1

POTABLE 112O tanks 1

POTABLE H2O tanks 1

POTABLE H2O tanks 1

POTABLE H2O tanks 1

142 (gas) quantity

Gas Pressure

temperature

Gas flow/bottles 1 & 2
Gas volume,

11 2 0 mass remaining

and 2 - NZ (Gas) mass

and 2 - Gas pressure

and 2 - temperature
and 2 - Gas flow to cabin

and 2 - Gas volume

and 2 - H2O mass remaining 1

and 2 - H2O mass regaining 2

CP

P

P

P

P

I

P

P

P
P

P

z

I

Crew Cow.parti, ,unt CO2 Partial Pressure
	

P
Pri N2 to Cabin Pressure Controller - Pressure

	
P

Sec.ii 2 to Cabin- Pressure Controller - kressure	 —	 P

rrgc^orwtar^^^. ^ou^,c.,ms .^sr^c^rassuar^s cearvs^,^arar^- ^,asr	 - `:^
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TABLE 4.7-30. (CONTINUED)

PARAMETER

^s
i3

E
C

ti
s

t

1

+	 a

9

.4

C

Pri 0 2 to Cab' s► Pressure Controller - Pressure

Sec 02 to Cabin Pressure Controller - Pressure

Pri Cabin Pressure Regulator - inlet pressure

Sec Cabin Pressure Regulator - inlet pressure

Pri 02 mass flow to cabin

Sec 02 mass flow to cabin

Pri N2 mass flow to cabin

Sec 
N2 

mass flow to cabin

Pressurized Volume

Crew Compartment Pressure * - total

Crew Compartment Pressure - 02 Partial Pressure

Crew Compartment Pressure - Decay rate

Crew Compartment - 02 mass

i	 Crew Compartment - ['1 2 mass

Crew Compartment - temperature (gas)

Crew Compartment 02 leakage, loss

Crew Compartment - t12 leakage, loss

Airlock Compartment - 02 mass

Airlock Compartment: - t42 mass

Airlock Compartment - Pressure

Airlock Compartment - 02 mass loss /gain

Airlock Compartment - N2 mass loss/gain

Payload Compartment - 02 mass

Payload Compartment _ N2 mass

Payload Compartr::ent - Pressure

Payload Com.partment - 02 mass loss/gain

Payload CorF.partment 	 N2 mass loss/gain

P'"Onics La y 1 - 02 Wla3s

Avionics Bay 1 - N 2 mass

^^. f.vi c,ni cs bay -1 --- Pressure

^c¢saArr^r ^z V!9r11C;x-A!5 e^ra^+^r^er^ac ^ears^a!ar^rg	 .^asr
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_	 TABLE 4.7-3 s 1.	 (COMPLETE)

s

PARAMETER TYPEa

Avionics Bay 1 - 02 mass loss/gain P

Avionics Say 1 - N2 mass loss/gain P

Avionics Say 1 - Gas temperature
j

Avionics Bay 2 - 02 mass P

Avionics Bay 2 - Nass2 m P

- Avionics Bay 2 - pressure P

Avionics Say 2 - 02 mass loss/gain P

Avionics Bay ' -- H2 mass loss/gain P

Avionics Bay 2 - Gas temperature I

`;. Avionics Say 3 - 02 mass P f
s-

f Avionics Bay 3 - N2 mass P

Avionics bay 3 - Pressure P

Avionics Bay 3 - 02 mass loss/gain P '.

Avionics Bay 3 -- N2 mass loss/gain P

Avionics Bay 3 - Gas temperature I }

a P = Performance Parameter

CP = Critical 1	 Performance Parameter
I = Input parameter (from another module)

s;rv^

4.7-331
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B. Auxiliary 0 2 Calculations

1. 02 quantity remained as a function of time, initial quantity, flow, etc.

2. 02 source pressure as a function of quantity, temperature, tank volume.

3. Temperature as a function of initial temperature, }-peat leak, etc.

C. N2 Source Calculations

1. Primary, auxiliary, and payload N 2 quantities as a function of

initial quantities, outlet flow, etc.

2. Primary, auxiliary and payload temperature as a function of initial

temperatures, heat leaks, etc.

3. Primary, auxiliary and payload source pressures as a function of

temperature, tank volumes, quantity, etc.

D. Components characteristics needed to perform these calculations are:

1. Cryogenic 0 2 restrictor/heat exchanger 0 2 flow versus differential

pressure characteristic.

2. 1. accumulator volumes

3. 02 and N2 tank volumes

Pressure Regulation and Distribution - The 02 and N2 pressure regulation and

distribution functions are the calculation of the pressures, temperatures, flow

rates, etc, throughout the distribution networks. The parameters associated with

the calculations are as follows:

A. 02 Distribution Network Calculations

1. Gas temperatures as a function of source temperature and heat leaks.

2. Pressures as a function of regulator characteristics, inlet

pressures, relief characteristics, line volumes, flow rates, etc.

3. Total system flow rate as a function of demand, leakage, etc.

4. 02 delivery flow rates to the four Emergency 02 outlets as a function

of inlet/outlet pressures, valve/line flow characteristics.

5. 02 delivery flow rates to +,,ie four portable 0 2 fill outlets as a

function of inlet/outlet pressures, fill tank volume, valve/line

flow characteristics, etc.

4.7-132-
lVFCp7®141tb1d:£^ 8aaUC;LAS ASTWOI AL/7/0S C'fDWAR 4IV.V L-As '
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B. N2 Distribution Network Calculations

1. Temperatures as a function of source temperatures'and heat leaks.

2. Pressures as a function of regulator characteristics, inlet

pressures/relief characteristics, line volumes, flow rates, etc.

3. Total system flow rate as a function of demand, leakage, etc.

4. N 2 gas flow rate and quantity delivered to the potable water tanks

as functions of regulator characteristics, H 2O tank 
N2 

volume,

remaining H2O quantity, etc.

5. N2 gas flow to cabin via the valve opening the H 2O tanks N2 side

to cabin.

C. The component characteristics needed to perform these calculations are:

1. Pressure regulators flow characteristics, relief pressure points,

and regulation pressure points,

2. Line/equipment volumes.

Cabin Pressure Control - The cabin pressure control functions are the calculation

of various compartment pressures, 0 2 and N2 gas quantities, g	 flow rates into

and out of the cabins, and pressure decay rates. The parameters associated with

these calculations are as follows:

A. Flow Rates

1. 02 flow rate to cabin as function of pressures, partial pressure

controller characteristics, cabin pressure regulator characteristics,

etc.

2. N2 flow rate to cabin as function of pressures partial pressure

controller characteristics, cabin pressure regulator characteristics.

3. 02 and N2 flow from cabin, as function of pressures, cabin leak

rates, relief valves, depressurization valves, etc.

B. Gas Quantities

1. 02 and N2 quantities in cabin as a function of initial quantities,

flow rates into and out of cabin, etc.

^.7-333
fyyC^^fSlfil^^l^ fi^C^ClE:L.4S IS^'^6,T^.RJSdil'^d^^ ^6'!U?d^AlNdif ^ IEA,S7

i



C. Cabin Pressure

1. Caution and warning signals as functions of pressures.

2. Cabin pressures as a function of various gas partial pressures.

3. 02 partial pressure as a Function of 02 quantity, cabin temperature,

cabin volumes.

4. N2 partial pressure as a function of N2 quantities, cabin tempera-

ture, cabin volumes.

D. Component characteristics required to perform these calculations are:

1. Cabin pressure regulators flow/pressure characteristics, regulation

points, etc.

2. Cabin pressure relief valves flour/pressure characteristics, open and

close points for solenoid valves.

3. 02 partial pressure controller operating voltage levels, open and

close points for solenoid valves.

4. Avionics bays vent orifice flow/pressure characteristics (effective

flow area), etc.

5. Airlock vent and equalization valve flow/pressure characteristics.

6. Cabin or compartment gas volumes, leakage, etc.

A.7-334
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ARKS Reference Data Sources and Formats

'-	 Reference modules for ARKS rnadule validation can be developed from routines

described in Reference 101 and 102. 	 The G189A (see Ref. 12 ) program was developed

for JSC and provides a versatile analytical tool for support of environmental

systems work.	 Reference 102 describes environmental analysis subroutine used for =;5

mission analysis and consumables studies.

3

Figure 4.7-107 is a flow chart for calculation of gas flow into or from a

manifold or compartment from various sources, as well as calculating the resulting

pressure, temperature, etc.	 This routine is used in providing a reference moduleP	 ^	 p	 ^	 P	 g ,
for cabin pressure control	 (see Figure 4.7-102) and N	 distribution/source

(Figure 4.7-109).	 The 02 distribution network module can be developed in a

similar way.	 It should be noted that the proper system control logic must be =a

integrated into these modules.

The system and component design performance requirements, analysis, performance
a

predictions, and test results provide data for direct comparison with the Shuttle

simulation results.	 Reference	 22, will	 provide these types of data as they become

available.	 The design requirements can be determined from Reference 103. =;

r
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FIGURE n. 7 -10. MANIFOLD GAS REFERENCE MODULE MATE{ FLOW
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LEGEND
4 P

P,- Manifold pressure

P,m_r-- pressure of I th load/source

Temperature of I th load/source

Flow rate from I h load/source into manifold

TAN-z - Temperature into manifold 	 Its tank

Tz - Temperature delivered to I	 goad/source

ox -- Fluid velocity from 1 1h 	 into manifold

T„ -- Fluid temperature in manifold

p4 - Fluid density

Fluid mass in manifold

-- Fluid specific heat

¢ - Time increment

Aw-x— Flow area from IL- load/source into manifold

.ef2 - Critical pressure ratio

FIGURE A .7-107. (CONTINUED)
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LEGEND:

P. r Crew Compartment Pressure

P - Lock Compartment Pressure

66" Payload Compartment Pressure

FA,^ Avionics Bay 1 Pressure

Pz - Avionics Bay 2 Pressure

P 3 -- Avionics Bay 3 Pressure

P^„c - Ambient Pressure

T,a, - Ambient Temperature

Tt_ F,LSs- Compartment heat exchanger outlet temperature

Tc, - Crew Compartment Temperature

TL - Locl Compartment Temperature

r - Payload Compartment Temperature

T, - Avionics Bay 1 Temperature

7- - Avionics Bay 2 Temperature

72s -- Avionics Bay 3 Temperature

AT - Effective flow area of relief valves, lines, etc., between compartments

Q^ - Heat gain rate of crew compartment

nL - Heat gain rate of lock compartment

by - Heat gain rate of Payload compartment

F{eat gain rate of Bay 1 compartment

Heat gain rate of Bay 2 compartment

m
ass - Heat gain rate of Bay 3 compartment

Electrical heat rate for compartment

R,,,c —c, " Heat leakage rate from compartment

Q11.T - Metabolic heat rate

Vt - Compartment volume

Constant pressure specific heat of gas

C'Y 	Constant volume specific heat of gas

l?, - Gas Constant

Y	 Specific heat ratio of gas

""`cxr_ y ~ Gas flow rate into compartment ( ,Y- } from compartment y

02 gas flow rate into compartment	 from compartment y.

N. gas flow rate into compartment 'x from compartment y.
,;.tcoz) x _1 - CO2 gas flow rate into compartment x from compartment y.

H 2O gas flow rate into compartment x from compartment y.

-FIGURE 4.7-1`) " . (CONTIWED)
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X compartment 02 gas quantity

--.̂ 6ji) -- X compartment N2 gas quantity

Ccoz)cX compartment CO
2 gas quantity

.n,(N2o)x —X ,ompartment H 2O gas quantity

A

FIGURE 4.7-1` : 8 (CONTINUED)
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LEGEND,

P,,-(., - Cabin Pressure Regulator inlet pressure

P - Cabin Pressure (Crew Compartment)

P:-1- 02 Regulator (100 psi) outlet pressure

P Z - wz -- N2 170 psi Regulator outlet pressure

P1420-1-- H 2O tank regulated pressure

paz-sr N2 170 psi Regulator inlet pressure

7e — Cabin temperature

-- Cabin pressure regulator inlet temperature

"N2 170 psi pressure regulator inlet temperature

TZ,.f - H 2O tank gas temperature
_.. N 2 170 psi regulator inlet temperature

VReG_, -Cabin pressure regulator inlet manifold volume

Va2a-i-Volume of H 2O in H2O tank

Vr- — Volume of H2 O tank

VN z,_ S,- Volume of manifold inlet to N 2 pressure regulator

Vuz ,,7 _ N
2 

170 psi regulator outlet vol urae

flrrE^, --Effective flow area of cabin pressure regulator

Effective flow area of H 2O tank pressure regulator

Specific heat at constant pressure

e, - Specific heat at constant volume

e,,- Specific heat. of liquid water

14'(00-- 02 flow rate into cabin

-sA.{u2.) - N 2 flow rate into cabin

Flow rate of N2 170 psi regulator

''; 'xzo ~ H2 O flow rate into H 2O tank

H 2O flow rate out of H 2 O tank

N 2 quantity in H 2 O tank

pressure regulator inlet line 0 2 mass quantity

Cabin pressure regulator inlet line N2 mass quantity

H2O tank gas quantity

N 2 170 psi regulator inlet quantity

FIGI..)RE 11,7-1.00 (COI;INIUM)

7„-,. ;

JzYt:t^^,v,n.,^LY. S7C3¢,C.^L4`S. F^ti7• rrC„vat,rFa: ^ r_csng a•n,ary . ^^^



v-Specific heat ratio (CPJCV)

T — Gas constant
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LEGEND:

PS — Tank pressur E.,

P„,[, — Ambient pressure
AR„ — Effective flow area of relief l ine/valve

T —Temperature of tank

Tk — Tank compartment temperature

--;nS,e— Flow rate through relief line

--, s —Flow rate to distribution system

,s-n,— Quantity of gas in source tank

joxo — Gas density in tank

W,,,-j--Tank electrical heater power

4^-$—Heat leak into tank

C'S - Gas specific heat

^ls — Tank volume

i

FIGURE A , 7 -11 r). (CD'iTINUFH)

A 7_157
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ARKS Validation Methods and Check Cases

Thi, verification approach for the ARKS simulation module utilizes a!td expands

upon the technique presented in Section 5-1	 . The use of this flow O art

allows the comparison of the simulation module with various types of chockcases

(test, analysis, soft.-tare model, etc.). Figure 4.7-112 presents the flcwchart for

checkpoint generation subroutine in Figure 5.1-1 . - Figure 4 .7-113is the sub-

subroutine shown in Figure 4.7-112 as "CORCHK" and generates the "all checkpoints

sequenced" flag.

Some liberty was taken in the notation for variables in these flow charts.

With the exceptions of time (t), initialization time (to), computation time ( at),

and COMBCHK variables, the variables used represent a group or "set" of parameters

rather than a single variable. Each parameter set is associated with a particular

driver, function or logic. For example, the variable PROS (JAOS) represents a

set of parameters including pressure, 0 2 quantity, etc. associated with the

auxiliary 02 supply. The identification of the actual parameters is dependent

on exact system design and simulation fidelity desired.

This verification technique provides the following capabilities:

o Initialization of parameters

a Inter facing module drivers

o ARFCS functional element drivers

o Time--dependent evaluations

e Multiple evaluations in a single run.

Initiali za tion - At the start of each checkcase the ARFCS module and driver

parameters, logic, and conditions are set to pre-determined values. The values

may change as the checkcase is allowed to continue.

External Module Drivers - The parameters normally provided by interfacing modules

are provided by module drivers. These drivers supply parameter values which

can be held constant or allowed to vary according to calculations performed

within the dri v p r. The fol 1 ooi ng module drivers were identified:

M-359

R7CL;OMP rL.L E] DUC--L A ,	 COreYF'AA1V - EVV'iT

t

s

i
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GENPT-
ARPCS bz

CGi l b C I i K
(GENERATE.
JCRY, JATC .
...JK2N)

t}tL1;IT

1;0

S

I

LMIT JCRY
LMT JATC
LMIT JCLNT
WIT JH20
L14IT JLTRC
LMT JFIR
WIT JAGS •
WIT JN2S
LMIT JCBNP
LHIT J1,12L
LHIT J02L
LMIT JCBNL
LMIT J02N
WIT JN2N

CRYO STATIC FLAG
ATC STATIC FLAG

CLNT STATIC FLAG
H2O STATIC FLAG

t = t +At

5

MC E1136 E	 'i
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CRYIC (JCRY)

ATCIC (JATC) f
CLNTIC (JCLNT)

H2OIC (JF;20)
ELPIC (JLTRC)

FSIC (JFIR)
AOIC (JAGS)
SH2IC (JN2S)
CPIC (JCBNL )

r

tLMIt
At
to

CBNl P STATIC FLAG 4;

No / 1St
'^, PASS

PCRY (JCRY)
PATC (JAFC)
PCLNT (JCHT)
PH2O (JH2O)
PLTRC (JLTRC)
PFIR (JFIR)
PADS (JAGS)
PN2S (JN2S)
PCBNP (JCBNP)
CM2L (JN2L)
CO2L (J02L)
CPCL (JCBNL)
D02IC (JO20
DN2IC (JN2N)

LTRC STATIC FLAG
FIR STATIC FLAG
A05 STATIC FLAG
N2S STATIC FLAG

JCRY	 = 1 JCBNP = 1

JATC	 = 1 J112L	 = 1
JCLNT = 1 J02L	 = 1
JH2O	 = 1 JCENL = 1
JLTRC = 1 J02N	 = 1

JFIR	 = 1 JIM = 1
JAOS	 = 1 t = to
JN2S = 1 CHKPSEQ FLAG=	 CLEAR

CLEAR

	

ray	 SET

	

1	 RETUR^^	 ' ^^

FIGURE 4,7-112. CHECK POINT DRIVER, ATMOSPHERE REVITALIZATION PRESSURE CONTROL

SUPSYST? M (ARPCS) FLOWCHART	 i

\./	 ^ardcgc>rdr€r^^^ eaca+crc^.^s .^s^z-e^otu.^u^-tc5 cc^ra•r6a.arar^•• ^<s^r	 ,' .;
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j :	 1

	

r	 I

NO	 t - to	
t

	

YES	 I

CRY02 SOURCE INITIAL CONDITIONS 	 = CRYIC (JCRY)

	

'	 ACTIVE ThERMAL t )N T ROL INITIAL CONDITIONS = ATCIC (JATC)
H70 COGLP SIT INITIAL  CONDITIONS	 = CLNTIC (JCLNT)
POTABLE H2O IP tTIAL CONDITIONS 	 = H201C (JH2O)	 4r
ELECTRIC POWER INITIAL CONDITIONS	 = ELPIC (JLTRC)

EIRE SUPPRESSION INITIAL CONDITIONS	 - ^FSIC (JFIR)
AUX 02 SOURCE INITIAL CONDITIONS 	 = AOIC (JARS)'b
N2 SOURCE INITIAL CONDITIONS	 = N2SIC (JNZS)
CABIN PRESSURE CONTROL INITIAL CONDITIONS = CPIC (JCBNP)
N2 CONTROL LOGIC	 = CN2L (JH2L)

	

b	 ^_

02 CONTROL LOGIC	 = CO2L (002L)
CABIN PRESSURE CONTROL LOGIC = CPCL (JCBNL)
02 DISTRIBUT1014 NET IWORK INITIAL CONDITIONS = D02IC (J02N)
N2 DISTRIBUTION NETWORK INITIAL CONDITIONS = DN2IC (JH2N)
ACTIVE THERMAL CONTROL PARAMETERS	 = PATC (JATC)

CRY 02 PARAMETERS	 = PCRY (JCRY)
H2D COOLANT PARAMETERS	 = PCLNT (JCLNT)
POTABLE H2O PARAMETERS	 = PH2O (JH2O):
ELECTRIC POKIER PARAMETERS	 = PLTRC (JLTRC)
FIRE SUPPRESSION PARAMETERS	 = PFIR (JFIR)

AUX 02 SOURCE PARAMETERS 	 = PAOS (JAOS)
N2 SOURCE PARAMETERS 	 = PN2S (Jt.12S)	

#

CABIN PRESSURE CONTROL PARAMETERS	 = PCBHp (JCBNP)

	

j	 a

ACTIVE THERMAL	
_	

RETURN
CONTROL
MODULE
INTERFACE	 ATC
DRIVER	 STATIC	 YES	 6

tJ0	 NO
I

ACTIVE	 ACT THERI,A
THERMAL	 CONTROL

r	 CONTROL	 PARAMETERS =	 ^
PARFA DETER	 €'ATC (JATC)
CALCULATIONS

r
FIGUI,E 4 e7-112(CONTItIUED)	 A.7-

rrpc,vc^ivnrE^.k r^aer^^,ass ^srcr^rvasl^tcs cc^rvr^.ar.^e^o c.as •r	 ,,^
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PRS&D MODULE
CRYOGENIC 02_ w _
INTERFACE	 i
DRIVER

CRYO	 YES

STATIC

N.0

CRY 02	 CRY 02
PARAMETERS	 PARAMETERS =
CALCULATIONS	 PCRY (JCRY)

ARS MODULE
H2O COOLANT — - -^ -- -
INTERFACE
DRIVER

	

CLI`T	 YES
STATIC

NO

H2O COOLANT	 H2O C00LIANT
PARAMETERS	 PARAMETERS =
CALCULATIOPv	

PCLNT (JCLNT)

POTABLE H2O
MODULE
INTERFACE
DRIVER	

_.J

	

H2O	 YES
STATIC

[v0

a.•

POTABLE H2O	 POTABLE i?20
PARAMETERS	 PARAMETERS =
CALCULATION'S'.

PH2OJN20(	 )	 a

FIGURE 4.7-11? (continued)

tSr3C^SEDJCiRf^^^ E3EaEJ: P LiS l^ST6?^RlI9E.l^'P^^ $^'e^lb'Jlm!•LfEJB^^ ^.Q.^'8'
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DISTRIBUTION
MODULE
INTERFACE
DRIVER—

-
- LT	

^ESLT RC.-	 ^ES
T̂rSTATIC

Uo

ELECT PWR ELECT. PWR
PARAMETERS PAWETERS
CALCULATIONS PLTRC (JLTRC)

FIRE
SUPPRESSION
MODULE
INTERFACE
DRIVER

FIR
s-

STATIC

FIRE FIRE SUPPRESSION
SUPPRESSION PARAMETERS
PARAMETERS PFIR (JF i
CALCULATIONS

AUXILIARY 02
SOURCE
DRIVER

S	
YES-Os

S,iATI
ai

AUX 02
SOURCE
PARAt•",ETERS
PAOS (JAGS}

I-

FIGURE 4.7-112 (CONTINUED)
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LEGEND:

to Universal 
time 

at initialization

41t =	 Computation time

tCMIT =	 Limit on time

CMIT =	 Limit

CRY =	 Cryogenic element

ATC =	 Active Thermal Control Element

CLNT =	 Coolant element

H2O =	 H2O element

LTRC =	 Electric element

FIR Fire Suppression element

AOS Auxilliary 0
2
 element

N2S N2 source element

CBNP Cabin Pressure element

N2L N2 logic element

02L 02 logic element

CBNL Cabin Logic 'element

02N 02 network element

N2N N2 network element

Indexing variable for indicated parameters

IC Indicated parameter initial conditions

P Parameters for indicated element

MDC E1136
27 January 1975

r,

FIGURE 4.7-112 (COMPLETE)

4.7-365
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{I.

JCRY NO JCRY =
?LMIT JCRY 1	 JFIR	 N O 	JFIR =	 }}

JCRY	 LMIT	 = JFIR + l

TES +FIR	 YES

JCRY -- l	 --- -	 '
JFIR 3

Q^

f

JATC	 NO	 JATC

?:LMIT	 JATC 1	 JAGS	 P,0	 JAOS =	 S
E	 JATC	 ^'	 : LIMIT	 JAOS + 1

	

YES	 JAGS
ES

JATC = 1	 JAGS I

JCLMT	 P'O i JCLNT =	 t	 J1,12S
? LMIT	 ^`:= ^1CLI^T	 1 to —_M

? Lt-11T	 h. J1i
Ji^2S

2S =
CLNT	 J142S'	 L t :.

,..f	 YES	 YES

JCttr'T = 1	 JP.'2S = 1

JH2O {0	 JH20 =
> Ll4IT	 JH2O t 1	 JCM^	 ^ 0

J1l20t	 ^ LPf^IT	 _
1'E5	 JCBN	

JCJC^P,P

YES	
ti1:P -? 1	 r

JH2O —	
I----	 ---- __^	

JCEMP = 1

LM IT JLTRC	 ?L III	 — { J^V2L --

 :JLTRC + 1	 Jiv2L ^/	 1 Jf►2t l	 -

	

.YES	 YES

 RETURN

^' 1 FIGURE 4.7-113, FLOWCHART FOR ARKS CHECKPOINT SEQUENCE
REPRODUCIBMITY OF TAT.

y	 ^ ORIGINAL PAGE ISPOOR
rac,v^^^er^^.^ Fsa^u^^ls . ,asa^®^.aa.1^-a^s ^^n^^•tnressr- ^.a^r

_. ^w
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J02L
J02L

LM IT J02L

YES

J02L

15

OCHIL	 N0 1  r JCB•< 0

Ul I T	 JCBhE +
jr^^

JCBNL

YES

F ' --jCBI,,L

JCBRL

J02N	 NO t x iJ02N
WIT
J02N

-YES

v
J02N

9

LEGEND:

(See Figure 407-112,)

t
NO

x0l + I

YES

F--CiiKPSEQ

FLAG SET

RETUR',11

Fl( . ";i'L 4.7-111 
(COOINUED)
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a PRSD Cryogenic 02 supply - provides 0 2 supply pressure temperature,

quantity, etc.

a Active Thermal Control - provided cryogenic 02 feed temperature, etc.

a ARS 420 Coolant - provides cabin temperature, CO 2 quantity, humidity,

etc.

e Potable H2O Management - provides quantity H2O remaining (each tank),

temperature, etc. for N 2 pressure quantity, etc. calculations.

a Electrical Power Distribution - provides bus voltages for logic, etc.

9 Fire Suppression - provides freon quantity release rate into cabin

for cabin pressure calculations, etc.

Functional Element Drivers - Certain intramodule parameters provide logic changes,

etc. which require thorough verification. Drivers are included to provide ease in

this verification. Those drivers identified were:

o Auxiliary 02 source - parameters include tank pressure, quantity, etc.

d 
H2 

source - parameters include tank pressures, quantities, etc.

9 Cabin pressure control - parameters include cabin total pressure,

r	 pressure decay rate, 02 partial pressure, etc.

'w

1

Multiple Evaluations - The sub-subroutine "COMBCHK" (Figure 4.7= 113) generates the

values of indexing variables controlling the checkcase conditions and determines

when all check points have been sequenced (CHKPSEQ). Since the number of check-

cases performed during a single run is the product of the number of parameter

sets (EMIT JCRY, etc.), care must be taken to prevent a large number of unnecessary

checkcases being performed. Effort must be made to complete the module verifi-

cation with a minimum number of checkcases. This may be best accomplished by

restricting certain parameter sets to nominal values, while cycling through the

more significant param,:t.:r sets. The run could then be repeated for different

parame a.er sets.

4.7-363
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ARPC- Data BaseImpact

The major impact to the ARPCS data base is the impact of the reference module

( Figures 4.7-107, 4.7-1 '08, and 4.7-1091) and the functional element/module drivers of

Figure 4 . 7- 1 12. Most processing subroutines (data input/output routines) would be

common to all modules being validated. Data files are required for storage of the

output data tables. The use of analysis/test/design requirements as reference

data requires the use of special drivers. These drivers establish and maintain the

conditions within and interfacing with the module which correspond to the analysis/

test/design conditions. The plotting or formatting of the simulation results

would require a few utility subroutines of small data base impact.

E	 N

W h

4.7-359
1
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4.7.6.1.2 ARS-CACS Subsystem_ Description

The ARS Cabin Atmosphere Control Susbystem provides the circulation of the

atmosphere, temperature and humidity control,and CO2 and odor control. Figure

4.7-114 provides a simple schematic of the interfaces with other ECLSS modules.

Atmosphere Circulation - This subsystem provides atmosphere circulation for the

crew quarters, and avionics bays. A simple schematic of the crew quarters circula-

tion is shown in Figure 4.7-115 and the avionics bay schematic is shown in Fig,3re

4.7-116.
a

r
	 Temperature Control - This element provides cooling and heating of the cabin

atmosphere. Thermal transport is accomplished by means of two water loops, as

shown in Figure 4.7-116. The primary and secondary loops are identical, except

that the secondary loop has one water pump vice two as in the primary loop.

Heat rejection from the water loops to the ATCS is accomplished at the cabin

interchanger through which both water loops and both ATCS freon loops flow. Two

water sublimators receiving water from the potable water system provide an active

heat sink during launch and orbital periods when the payload bay doors, housing

the space radiator system on the underside, are closed. The sublimators are

active during entry to an altitude of 100K feet.. Between 100K feet and 20K feet

there is no active heat rejection from the Orbiter, and temperatures are governed

by the bulk thermal capacitance of the vehicle. Below 20K feet through landing,

ammonia evaporators in the ATCS are activated for heat rejection.

Figure 4.7-115 from Reference 23 shows the Orbiter cabin atmosphere thermal

and purification system. Three fans circulate cabin air through an aerosol filter,

through lithium hydroxide canisters for C0 9 removal, then on through a condensing

r	 (cooling) heat exchanger for temperature and humidity control. Condensate is

removed to the waste management system. The condensing heat exchanger is part of

the water coolant loop system shown as the "cabin HV in Figure 4.7-114. The

cabin temperature is maintained by controlling the airflow , through the cabin heat

exchanger by means of a controller regulating bypass flow around the heat exchanger.

The controller is regulated by a temperature selector. If cabin heat input is

required the controller activates electric heaters in the bypass loop.

4.7-370
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ARS-CACS Module Functions and parameters

a Figure 4.7-117 provides an overview of the ARS-CACS simulation module

functional elements and interfaces with other modules. There are five basic

functions performed within the module: air circulation, CO 2/11 20 control, H2O

coolant flow, therm_l control, and control logic.  Tables 4.7-31, ` l • 7-32 , and

4.7-33 provide a listing of the atmosphere control module parameters. The

following discussion is related to the calculations performed within each of the

module elements.

Air Circulation - Air circulation calculations are provided for each of the three

avionics bays and the crew quarters.

o Fan/Duct flow rates - These are functions of input voltages, air density,

duct pressure drop and fan efficiency.

o Duct pressure drop - a function of air velocity, density, and duct

configuration or branches.

a Condensate line inlet pressure - a function of pump outlet pressure and

duct pressure drop.

a Duct air temperature -- functions of cabin temperature, duct velocity,

s	 fan power, heat exchanger outlet temperature, air cooled equipment

electrical power, and electrical heaters electrical power.

CO2 Control - This control is provided for the crew quarters.

o CO2 removal rate -- a function of cabin CO 2 pressure, air flow rate through

U OH canisters, and air temperature.

H2O Coolant Loop Flati^r _ Calculates H
2O coolant loop flow rates and pressures.

e Pump flow rate - a function of input voltage, pump pressure rise, and

inlet pressure.

e Loop pressure drop - a function of H 2O pump flow rate, H 2O temperature,

and branch flow rates.

o Branch flow ratLs - functions of pump flow rates and cabin heat exchanger

outlet H2O temperature.
	 i^ ,

© Accumulator H r0 Quantity - a function of H 2O temperature.

f 'I

	 o Accumulator Pressure - a function of H 2O quantity and temperature.

4.7-374
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TABLE 4.7-31 WATER COOLANT LOOP MODEL INPUT DATA

4

i

1

PARAMETER TYPE 

SPECIFIC HEATS DB

HEAT TRANSFER COEFFICIENTS DB

SOURCE HEAT CAPACITIES P.B

SOURCE TEMPERATURES DB

LOOP TEMPERATURES DB

INTERNAL HEAT LOADS DB

TRAJECTORY AND ATTITUDE HEAT LOAD TABLES DB

TRAJECTORY AND ATTITUDE I

MISSION PHASE FLAGS I'

WATER PUTAP/LOOP FLOW CHARACTERISTICS DB

INTERFACING MODULE PARAMETERS I

14ATER PUMP P014ER DB

AVIONICS EQUIPMENT POUERc DB

AVIONICS BAY FAN/AIR FLOWRATE CHARACTERISTICS DB

AVIONICS BAY FAN POKIER DB

MATER PUMP AND AVIONICS BAY FAN ON-OFF DISCRETES I

AVIONICS EQUIPMENT ON-OFF DISCRETES c I

POTABLE WATER USAGE I

SUBLINATOR OPERATING CHARACTERISTICS DB

LIQUID COOLED GARMENT HEAT LOADS DB

i



-y

i
3

TABLE 4.7-32 WATER COOLANT LOOP MODEL OUTPUT DATA

PARAMETER TYPEa

H2O ACCUMULATOR QUANTITY - PCL & SCL P

AVIONICS BAY I AIR FLOW P

AVIONICS SAY 2 AIR FLOW P

AVIONICS BAY 3 AIR, FLOW P

SIBLIMATOR OUTLET TEP'P - PCL 0 SCL CP

H2O COOLANT FLOW RATE - PCL & SCL P

SUBLIMATOR 1 VAPOR VENT TEP ,'P P

SUBLI P'ATOR 2 VAPOR VENT TEMP P

H2O PUMP OUTLET PPESSURE - PCL & SCL P

AVIONICS BAY I OUTLET TEMP - PCL & SCL CP

AVIONICS BAY ?. OUTLET 'TEMP - PCL & SCL CP

AVIONICS BAY 3 nUTLET TEMP - PCL & SCL CP

CABIN INTERCHANGER OUTLET TEMP - PCL & SCL CP

SOURCE TErPEPATURES (ALL CAPACITIVE LOADS) P

LOOP TE" PERATUP?ES (fi!t M-TELEHTERED) - PCL & SCL P

FLOW RATES (NOM--TELEITTFPED) - PCL & SCL P

HFAT TPyAMSFER RATFS (MON-TELEP ETERED) - PCL & SCL P
HA PUMP OUTLET TEMP - PCL & SCL CP

a P - Performance Parameter

CP - Critical Performance Parameter

4.7-377
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PARAMETER TYPEa

I`ETAROLIC VEAT, CO ? AND WATER PPODUCTIOM DB

CABIN EQUIPMENT HEATING RATES I

TRAJECTORY/ATTITUDE CABIN HEATINIG RATES I

CABIN FAH PERFOPf ;gIICE DATA DB

CABIN FAIL ON-(OFF DISCRETES P

LiOlf CANISTER ON-LINE TIVE P

Li OH CANISTER PEPFORPANCE CHARACTERISTICS DB

TEV.PEPATURE SELECTOR SE'T'TING P

RNLI. CABIN THEPMAL CAPACITANCE DB

CONDENSIOa HEAT EXCHANGER CHAPACTERISTICS DB

COIITROLLEP/BYPASS THPOTTL£ CHARACTERISTICS DB

CABIN T£I'PERATIJRE CP

CABIN HU HIDITY CP

CABIN CO? PARTIAL PRESSURE CP

CABIN AIR FLOW RATE CP

OUTLET HIJI'IDITY P

OUTLET CO2 PARTIAL PRESSURE P

OLrrLET TEI P£RATURE CP

CONDENSING Hx AIR FLOW RATE P

CONPENSING Hx OUTLET AIR TENPFRATURE P
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Thermal Control - Temperature calculations are provided for the H 2O coolant loops

and interfacing module.

n Pump outlet temperature - a function of H 2O -flow, pump inlet temperature,

pump pressure rise, and pump input electrical power.

a Coldplate equipment temperature functions of electrical power, inlet

H2O temperature, equipment temperature, and H 2O flow rate.

e Heat exchanger outlet H 2O temperatures - functions of inlet H2O

temperature, H 2O flow rate,	 terchange 'fluid inlet temperatures, and

interchange -fluid flow rate.

;f	 a Heat exchanger outlet interchange fluid temperatures - functions of

interchange fluid inlet temperature and flow rate and the H 2O inlet

s	 temperature and flow rate.i
© Accumulator 

H1?0 inlet temperature - a function of cabin heat exchanger

outlet H2O temperature/flow rate, bypass temperature and flow rate.

o Pump inlet temperature - a function of the accumulator inlet temperature,

accumulator temperature and H2O flow rate.

ARS-CACS Reference Data Sources and Data Format

_

	

	 Various reference data sources exist for the ARS- CACS. Data concerning

component and system performance requirements, predictions, and tests are

available from References 22 and 104. In addition, several computer programs are

available for development into a reference model or performing analyses.

References 12 and 102 described component subroutines which can be combined to

provide a system simulation reference module. Reference 105 is an ARS/ATCS

performance routine designed for use with the Wang 700-series programmable

calculator system. The use of this type of equipment allows an average runs

time of five minutes per - case, as opposed to hours or days turnaround with a

regular computer facility. References 106 and 107 provide data for Orbiter heat

exchanger calculations. The following discussion pertains to the development

of a independent reference module.

4.7-379
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Final performance evaluation of the simulator subsystems modules is best

accomplished by evaluating the dynamic response of all crew station displayed and

telemetered parameters pertaining to that subsystem, in a full-up simulation (all

interfaces operating ) of a mission phase or a transition from one mission phase to

another. Certain parametric data, other than displayed data, is required to

verify proper interfacing and coupling with other subsystem modules, e.g., the heat

load from the H2O coolant loops transferred to the ATCS.

Static check cases can be run with simpler verification models, however, the

validation of simulator response to combinations of off--nominal operating con-

ditions, insertion of malfunctions, etc., is not readily performea using simple

check case models. The subject thermal and atmospheric control models are

presented as examples of what a verification model involves in terms of input

data and interface requirements. Maximum use should be made of existing hardware

sizing and subsystem analysis programs with their data packages in developing an

integrated verification module, e.g., Reference 12.

Primary and Secondary H2O Coolant Loop Model - The math flow for the H 2O coolant

loops model (COOLP) is shown in Figure 4.7-1119. This model is applicable for

generating static or programmed parametric variation check case data from a

given set of input data, as well as generating performance data from a dynamic

simulation run (whereby the simulator supplies the systems configuration and

trajectory data). Basically COOLP calculates the outlet temperature of each heat

transfer device in the order of the device position in the loop. Appropriate

mixing calculations are performed at device output convergence points. Reference

is made to three subroutines for calculating outlet temperatures for three types

of heat transfer devices: a) coldplate, b) heat excha%or, and c) a direct

heat load such as structural cooling, windows, etc.

COOLP uses an incremental time base for the computations. Typically the

time increment would correspond to the computation cycle of the simulator module

being checked. The device inlet temperature is related to the preceeding device

outlet temperature and assumed constant during the integration time period.

t	 ^

I^

WC!]ONME'-r- €S0VOLAS f3 1+^C$ltlL^&lF9G` CO579aAIav- a.jmnr



1

MDC E1136
27 January 19754;	 F

COOLP	 2	 3

1".

CALCULATE	 CALL HFATLO

i	 PASS

YES READ

	

INITIAL	
INPUT	 INLET TEMP

NI:ID^H5	
(CABIN HX IgLET

 
DATA	 TEI lP )

k

	

ND	 '

e	 CALL H£ATLD	

ED

TABIN HX

INITIALIZE:	 (HINDO14S I OUTLET	 AIR II1LE3 TEti?

o COIiFIGU°ATIO[I ARRAY	 TEtiP} 
	 FLOHP.ATE FROt1

	

^f	
o LOOP TE'•'PEPATURES	 IiAIR

t	 o LOOP FLO'SRATES

a HEATLOAD5	 ^ 0

o CONTROL Pf R*:ETERS	 CALL HEATLO
E	 o ATTITUDE AND TRAJECTORY	 (wfuDC''S 2
r	 OUTLET Tcl:P)	 CALL HEATX	

tt
(CABIN HX OUTLET	 ,

VARY CHECK CASE	 1120 TEt4P A'lU AIR

	

c%TER::A.L	 YES	 ,^ PAR4:ac3ERS fi5	 CALL He'ATLO	 OUTLET TyyE'4?

	

ttECY. Cfi5	 SPECIFIED BY	 (HATCH OUR 	 f
IRPUT DATA	 TET•1P)	 `^	 t T

	Il0 	 CALCULATE PU1:P
_	 IIILET/OUTLET TEMP

1
READ SII!+LR30R^	 CALCULATE

DATA PIE C 0RD	 CAE 1:1 I/C	 i
INIEI TE ;P

—.	 NO	 RUN	 YES
U"rD+TE:	 SQ!PLETED

f	 a LG"FIr,'!P_1TI6'! L CABIfi I/C
a ATTITUCI e	 O'n-',ATE
o TR4JECTuRY	 iOF C.81:1

1E';P)

T—
CALCL A7E AND UPDATE.	 IpCRF.mufT	 'RITE	 }
o PEA] LO;U5	 Tit 1E	 PERfORa: INC	 i
n FLOC PATES	 YES	 rSUsul;,TORS	 DATA	 f
o PRESSURES	 CTIVAT O.	 I

CALCULATE SUSS- VIATOR	 IlO

HEAT PEJECTION
(FU'iCT[0:. OF Si:"L.	 --^-^	 1	 E[IO
.WATER FL041FATE)	 OBTAIN CABIN I/C	 i

CALL CLOPLT	 --	 IFiLET TE','S FROM
TffP)(I) CUTLET	 ATCS If DEL

	

_r	

^	 CALL	 1

	

y	 (SUDL. OU TL
HEATLG 

ET .

	

-	 TEhP)	 CALL HE.,

	

CALL CLDPLT	 (Cf6iN I/C O'IILETI'

	

i' (A'j U{ JICS Gz't	 TEMP)
} { 1) COLD F± 4TE

	TE'SP)	 v

SUKii•:;T:}R O'!TLE3
TEMP = 'CAF I: I/C
TEMP

	

ttf •ti x	 L.	 i
( •• 1' i'i!C) B4Y

^_	 I) r t _ E[T	 v	
`{{

FOR	
CALCULATE I".:ATI`i<;
RATES FOR H2O ANI G LCG

HEAT E%Ci:,iIiGERS	 i

^ a ri' .Is.S vY	 I i

4.7-11,;. 
REFERENCE MODULE, !'DATER COOLANT LOOP (CO:?l.P) FLOWCHART

J. 

{	 4.7-3'31
y.

}	 /bJL^F.7gFiffVFLf F.7^3JGR_AS AS-^R^tlJ=i83'YOL^ C^lY9PIil^Ji/ v BAST

t^ s	 R	 -	 1.^...^.....^^..^.:a«..wa.-s:rsnvek^-•a::1.•ss: e _ '. ..: 8i,qu;,..,	 -	 _	 _ ..,,..,e	 ..



A

I
j

MDC El 136
27 January 1975

II	 The PRI and SEC H 2O loops -are identical except for flow rate, i.e., all heat

L transfer devices are serviced by both loops. The model combines the flow in both

loops, and the calculated loop temperatures are applicable for both loops.

Parameters for a non-operating loop could be set to some predetermined value based

on the temperatureF maintained by the operating loop.

r

	

	 The comp cycle begins at the outlet of the H 2O pumps and proceeds around the

loop as shown in Figure 4.7-112 using internally calculated flow rates and heat

loads as applicable. Not all the coolant loop flow paths are represented fo r the

sake of simplicity, e.g., the avionics bay cold plates really consist of a series/

parallel arrangement of cold plates for each piece of equipment. Some unidentified

functions are those of the cabin interchanger bypass flow which is controlled by

the cabin HX outlet temperature, and the sublimator operation.

Table 4.7--31 is a representative set of input data required to operate COOLP.

complete set of starting conditions is required including load source and loop

temperatures. Data pertaining to vehicle and subsystem configuration is contained
in a configuration array of discretes which is continuously updated during the

course of a run. These data are used to internally compute flow rates and heat

loads from tabular type input data. A number of scripted malfunctions can be

handled by inputs to the configuration array.

Operational data such as heat capacities, heat transfer coefficients, etc.,

will probably not be available until late in the subsystem design/test stage;

however, high fidelity data of this type is not required for accurate equilibrium

solutions. Starting conditions (namely initial loop temperatures, bypass flow

rates, etc.) can be determined and trimmed by running the model until it reaches

equilibrium for given static heat loads and vehicle configuration.

The output parameters for directly evaluating the performance of the H2O

coolant loop module are lis..ed in Table n .?-31'.. All the telemetered parameters

are available for display on any of four crew station CRT's via keyboard callup.

Other parameters (such as avionics equipment case temperatures) can be checked
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using this model; however, they are not identified here. The output from COOLP

can be used to provide checks on such things as equipment overtemp condition

sensing and proper alarm response. Parameters such accumulator quantities are

scripted unless a malfunction such as a leak is input, whereby internal compEi-

tations would be made prior to outputting the data.

Cabin Atmosphere Control - The math flow for the cabin atmosphere control model

(CABAiR) is shown in Figure 4,7-119. As with COOLP this model is capable of

running prescribed check cases or evaluating a simulator run. The output from

this model consists primarily of cabin temperatures, humidity, and CO 2 partial

pressure profiles for given starting conditions and dynamic load conditions. The

air flow into the system is based on the running status and performance charac-

teristics of the three cabin fans. Flow rates through each of the LIOH canisters

and the cabin HK are determined in order to calculate the CO 2 and water removal

rates and heat transfer to the H2O coolant loops or heat input to the cabin as

required.

CO2 Level

CO 2 is removed by passing cabin air over LIOH beds contained in a canister.

The reaction (2 LION + CO
2
 Li t CO

3
 + H20) results in heat production as well as

i

water which is removed by the subsystem. The efficiency of the LION canisters

in removing CO2 is a function of bed geometry and on-line tide. The cabin CO2

level is determined by the time integral of the net of the removal and metabolic

production rates.

Cabin Temperature

Cabin air temperature is determined by calculating the net cabin heat produc-

tion (or loss) and using appropriate starting conditions and thermal capacitance.

Heat production sources include metabolic, cabin equipment, LION canister operation,

and wall heating. The heat removal is governed by the cabin temp selector which

controls the air flow through the cabin heat exchanger. The cabin heat exchanger

heat removal rate in turn is a function of the running condition of the H 2O coolant

loops and the ATCS.

i
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Cabin Humidity

The cabin humidity is determined by calculating the net,cabin water production.

Water sources include metabolic, food and waste management, U OH canister operation,

etc. The removal is a function of the cabin heat exchanger air flow rate, air

inlet dew point and outlet air temperature. The calculated water removal rate is

required by the condensate and urine storage model.

ARS-ACS Validation Methods and Check Cases

The methods of Sections 5.1 and 4.2 can be used to verify the ARS-ACS

simulation module. These methods require the use of interface drivers (to provide

interfacing module functions) and the module functional element drivers to establish

and maintain desired conditions for each check case. Drivers are required for the

following:

o ARS-ARPCS nodule

o Electrical Power Generation

o Electrical Power Distribution

o Active Thermal Control module

o Food, Water and haste Management module

These drivers should provide capabilities for parameter initialization,
	 f

transient response, steady state response, static inputs, and multiple check case

execution during a single simulation run.

The check cases implemented should include step inputs with a comparison of

the transient and steady-state responses. Initial check cases should also provide 	 r;`

a thorough exercise of the module internal responses, as outlined in the design

requirements documents. Latter check cases should implement refinements due to

actual component and system design/tests. Actual systems/component test conditions

can be input as a check case with simulation results compared directly to the test 	 +

results. Other check cases should include the maximum, minimum, and nominal load

conditions for each subsystem.

ARS-ACS Data Base Impact

The ARS-ACS reference module and the module drivers previously discussed 	
y:

represent a large impact to the simulation data base. Most of the processing

subroutines (data input/output; data comparison) would be commas. to all modules being

validated. Data files are required for input and output data tables.

. 7- 3'35
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:.	 4.7.6.2 Active Thermal Control System

s

	

	 The Active Thermal Control System (ATCS) provides the positive means of preventing

orbiter equipment and fluids from exceeding permissible temperature extremes. This

section describes the current system design, the expected simulation module's

functions, identifies parameters associated with the module, and discusses. techniques
j	

of verification of the module performance.
s'

ATCS Desr.,rip tion

The ATCS transfers heat from "heat sources" to "heat sinks" via a circulating

fluid and interconnecting valves and tubing. The heat sources include coldplate

mounted equipment, warmer fluids flowing through heat exchangers, and pumps. The

heat sinks include fluid evaporators, colder fluids in heat exchangers, and the

radiator. The heat sources and sinks are connected by controlling valves, tubing

and fluid accumulators, The Orbiter uses two coolant loops which are identical,

except that the primary loop has two pumps and accumulators, while the secondary

loop has only one pump and accumuiator. Figure 4.7-120 (see Refs. 107 and 110) is

a schemdtic of the ATCS. A brief description of the major components and their

pertinent performance characteristics follows.

Fluid - The circulating cooling liquid used in the Orbiter ATCS is Freon 21.

The primary characteristics of interest are the density and specific heat, both

of which vary with the fluid temperature. The consideration of these temperature

variations in the simulation is dependent on the required fidelity.

Pumps? - The role of the fluid pump is to provide the energy (pressure rise)

necessary for circulation of the fluid through the loop components. The pump flow

rate produced will vary with its input voltage and the system's resistance to fluid

floe{ (pressure drop). Voltage regulation can be used to reduce the effects of the

voltage variations. The system resistance (pressure drop) will vary with the

selection of flow paths.

Fluid Accumulators - The purpose of the accumulator is to provide adequate'

system fluid volume for thermal expansion, slow leakage, and to provide adequate

fluid pressure ranges throughout the expected temperature range. The major

performance characteristics are the fluid volume and the pressure exerted on the

fluid. The pressure is maintained b y a sealed bellows,

i
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Heat Exchangers - Heat exchangers provide the means of transfer of heat from

one fluid to another flowing fluid. The major performance characteristic of interest

is the "overall heat transfer coefficient (U
0
 A) 5  which varies with the flow rates

and inlet temperatures of the fluids. R second characteristic is the fluid's

pressure drop as functions of the fluid flow rates. These pressure drop character-

istics are used in determining the total system pressure drop and corresponding

loop fluid flow rates.

Evaporators - The H 2O evaporator and NH3 Boiler are essentially heat exchangers

with one of the flowing fluids being allowed to vaporize within the exchanger. The

energy required for the fluid's vaporization is absorbed from the fluid being

cooled. This vaporizing fluid is operated "open--cycle" being vented overboard.

The amount of cooling is dependent on the flow rate and the specific heat of

vaporization of the fluid being evaporated. The effective heat transfer is there-

fore dependent on the cooled fluid inlet temperature and flow rate and the quantify

rate of fluid evaporated.

i	 The H2O evaporator uses water from the H 2O management subsystem as the

evaporating fluid. The NH 3 Boiler uses ammonia from three storage tanks for the

evaporating fluid. The H2O evaporator is used on-orbit when the payload bay door

is closed. The NH3 Boiler is used after entry, below lOOK feet.

Coldpiates - The coldplates provide heat transfer from the mounted equipment

to the cooling fluid circulating through the coldplates. The primary performance

characteristic is the effective thermal conductance. This characteristic varies

according to the cooling fluid inlet temperature, flow rate and the mounted

equipment temperature.

Radiator - The radiator cools the Freon 21 by radiating the heat into space.

The heat rejection is dependent on the fluid inlet temperature, fluid flow rate,

surface emissivity, surface absorptivity,and the surface area exposed to ,unlight,

earth, and space.

4.7-3D3
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Control Lo g ic - The exact switching logic is not currently known. The logic,

however, represents the control inputs for pump operation, valve positioning, loop

selection, etc. These inputs can be manual controls, radio frequency commands, or

automatic equipment commands. The functions of the logic are normally dependent

on the voltage level, pressure level, temperatures, etc.

ATCS Module Functions and Paramet ers

The functions provided by the ATCS module include calculations and performance

determination pertaining to control logic, coldplates, heat exchangers, evaporators,

radiator, and pumps. Figure 4.7-121 is a block diagram which i11ustrates the module

functional elements and interfaces with other modules. Table 4.7-34 provides a

listing of the parameters associated with the ATCS module. The following paragraphs

describe the functions performed by each element.

Control Logic - This element provides logic determination of loop selection,

pump enabling, valve positioning, etc., allowing control of the freon fluid flow

rates, interfaces, temperatures, etc. Inputs would include manual switch and

valve positions, radio frequency command, automatic commands, and computer commands.

Most of these controls are dependent on electrical bus voltage levels to actuate

relays, valves, or other circuits. The logic would also include the following:

° Bypass Valve Position controller: . a function of the bus voltage(s)

and 620 evaporator outlet freon temperature, etc.

° Radiator Bypass Valve Position Control: a function of the bus

voltage(s) and the radiator outlet freon temperature, etc.

Radiator Flow Direction Valve Position: a function of the

payload door position, etc.

Coldplates - This element provides the calculations of the thermal conditions

of the coldplate mounted equipment and the effect on the coolant fluids. The

coldplates cooled are the mid-fuselage, aft--fuselage, and DFI coldplates. The

following calculations should be provided for each coldplate or group of coldplates:

Equipment temperatures: functions of equipment mass, equipment

specific heat, previous temperature, heat dissipation, coldplate

freon inlet temperature, freon flow rate, freon specific heat,

heat transfer of the coldplates, heat conduction to walls, etc.

4.7-31"19
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TABLE A . 7-94-ACTIVE THERMAL CONTROL PARAMETERS

Parameter	 Typea

Electrical power bus voltages I

Switches/control selections I

Coldplate equipment heat loads or po%.,er

(DFI, AFT fuselage, MID fuselage) Z

Heat exchangers (H20 payload, Cryo 0 2 , fuel cell, hydraulics 1/2,

fluid inlet temps./specific heats/flow rates I

Heat exchanger U0 	 (overall heat transfer conductance) I

Sun angle Z

Shuttle attitude I

GSE heat exchanger freon outlet temp. I

H2O evaporator, H 2O inlet temp./pressure/flow rate I

Freon pumps on - (primary: 1, 2; secondary) P

Freon system, branch flog rates P

Freon pump outlet pressure, pressure rise CP

Freon accumulator position (quantity) P

Freon temperature (into and out of coldplates, heat exchangers,

radiator, evaporators) CP

Coldplate equipment temperatures (DFI, AFT & MID fuselage) CP

Heat exchangers - 2nd fluid outlet temperature

(H 20, payload, Cryo 0 2 , fuel	 cell, hydraulics 1/2) CP

Evaporators - evaporation fluid outlet temperature/vapor pressure

(NH3 , H 20) CP

Specific heats (freon, fluids, equipment) P

Controlled valve positions

(Diverter, flow proportioning, bypass, radiator bypass,

radiator flow direction, NH 3 evaporator valves, H 2O evaporator

valves, accumulator control valves) P

N11 3 flow rate/quantity remaining/pressure CP

Radiator temperatures P

a

CP = Critical Performance Parameter
P = Perfo~riance Parameter

I = Input
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Freon outlet temperature: function of equipment temperature,

heat transfer, inlet freon temperature, inlet Freon flow rate,

specific heat of freon, etc.

Heat Exchangers - This element provides the interface relationships and

functions defining the thermal interchange with other modules. This interchange

includes PRSD.	 Cryogenic 02 heating for the ARPCS, fuel cell heat dissipation

from the power generation circulation system, H 2O coolant loop heat transfer for

the ARS, hydraulic fluid warming for the hydraulics systems, heat transfer from

payload coolant loops and heat dissipation to the ground cooling loop of the

prelaunch/launch module. The calculation of the fluid outlet temperatures are

provided for each interface.

Outlet temperatures: functions of inlet fluid temperatures,

fluid flow rates, heat conductance of the heat exchanger, and

fluid specific heats.

0

Evaporators - This element provides the calculations associated with the NH3

boiler subsystem and control of the H 2O evaporator as follows:

_	 A. NH3 Boiler

1. Quantity NH3 remaining: function of flow rate, flow time,

Ieakage, vent rate, starting quantity for each of three tanks.

2. Tank pressure: function of NH3 quantity remaining, temperature,

for each of three tanks.

3. Tank vent flow: function of tank pressure, density.

4. Evaporator NH3 valve position: function of electrical bus

voltage, evaporator outlet freon temperature.

5. NH3 evaporator flow rates: function of NH 3 tank pressure,

valve position, and density.

6. Freon outlet temperature: function of the inlet freon tem-

perature, freon flour rate, specific heat, NH 3 flow rate,

NH3 inlet temperature, NH 3 specific heat, NH3 heat of

vaporization.

4.7-3n".
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ly B. X1 20 Evaporator

i, i120 flaw control valve position: function of bus voltage

level, outlet freon temperature.

2. Outlet freon temperature: a function of 6 20 flow rate, inlet

freon temperature, freon flow rate, inlet H2O temperature,

specific heat of fluids, water heat of vaporization.

Radiator - This element determines thermal results and conditions for heat

rejection.

® Radiator temperatures: function of the inlet freon temperature,

freon flow rate, neat rejection, mass, specific heat, freon flow

direction (payload door position).

° Radiator heat rejection: a function of the radiator temperature,

vehicle attitude, vehicle state vector, beta angle, payload door

position, freon flow direction.

° Radiator outlet freon temperature: a function of freon flow rate,

inlet freon temperature, heat rejection, freon flow direction,

radiator bypass valve position, specific heat, etc.

Freon Flow/Pressure/Temperatures - This element determines the freon system/

branch flow rates, pressures, and integrated temperatures.

° System/Branca; Flow rates: functions of the system configuration,

pump selection/enabling, freon temperatures, pump and equipment

flow/pressure characteristics, bus voltage level.

System pressu,-os: functions of the flow rates, temperatures,

accumulator quantities, flour/pressure characteristics, system con-

figuration, bus voltage level.

° Integrated freon temperatures: function of mixing freon flow

rates/temperatures, system configuration.

° Accumulator freon quantity: function of the freon leakage, flow
rate, temperature.

+..7-333
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,

ATCS Reference Data Sources and Formats

ATCS System and component design performance requirements, analysis,

predictions, and tests provide data for direct comparison with the Shuttle

simulation results. Figure 4.7-121 2 is an overview flow chart of a method of

reference source selection and comparison. Reference 22 (updated at intervals)

is a source of component and systemserformance data regarding design requirementsp	 9
analysis, tests, and actual flight. Design requirements are available from

f

f
Reference 108. The analysis and test results should be available from Shuttle

design and evaluation groups.

In addition, several computer programs are available which can be used to

develop suitable reference modules or to use in performing analysis of the system.

References 12 and 102 provide descriptions of system component subroutines which

can be combined to provide a reference module for the ATCS. The G189A program of

Reference 12 was developed for OSC and is a versatile analytical tool for support

of environmental systems work. Reference 105 describes an ARS/ATCS performance

subroutine designed for use with the Wang 700 series programmable calculator. This

subroutine allows an average run time of five minutes per case as opposed to hours

or days turnaround when using the regular computer facilities. Figure 4.7-123

provides a overview flow chart of an ATCS reference module.

ATCS Validation Methods and Check Cases

The ATCS module can be verified by the techniques described in Sections 4.2

and 5.1. During the verification the following drivers are required to provide the

necessary range of inputs and conditions for establishing each checkpoint.

o Electrical Power Generation

o PRS and D

o ARPCS

o ARS

o Payload thermal control loop

o Prelaunch/launch GSE cooling

o Hydraulic Subsystem heating

o Food, H2O, waste management

o Equations of motion

o Intra module functional elements

F
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LEGEND:

L
A,; -- Effecti ve f 1 ow area of control vat ves

Evaporator fluid quantity

Pump freon flow rate

$ - Freon loop branch flow rate

_A,	 Heat exchanger Interfaces circuit flow rate

Evaporator fluid fl ow rate

-i;- Freon flog rate through radiator

r--Sun rays incidence angle with radiator panel

.< - Earth vi ew angl a wi th radi ator panel s

T,.- Freon average temperature

T- Branch freon temperature

T OH Heat exchanger freon outlet temperature

7-,,r Heat exchanger interface circuit outlet temperature

T,N -- Heat exchanger freon inlet temperature

r-of--Heat exchanger Interface circuit inlet temperature

T.^-- Evaporator outlet freon temperature

*[,-Evaporator fluid tank temperature

T_,- Evaporator outlet evaporation fluid temperature

Evaporator freon inlet temperature

Evaporator inlet evaporation fluid temperature

TF-w Radiator inlet freon temperature

TF-ag— Radiator outlet freon temperature

7-R$ -TemperatureTemperature of radiator surface 	 ?`	 _

do -^ Freon loop pressure drop

Lp- Freon loop effective length

Ls— Effective branch length	
'r

i_

Do - Freon loop flow diameter	 !`

Da - Branch flow diameter	 !"

fF Freon viscosity	 I'

6b-- Freon loop effective roughness

- Evaporator storage tank pressure

-- Evaporator pressure on evaporation fluid circuit

Ambient pressure

rIGURE 4.7-123 (CONTINUED)
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The system design requirements (see Ref. 108) provide component and system

maximum/minimum acceptable performance levels. These requirements should provide

the initial check case conditions. The results of various contractor- and NASA-

performed analysis, studies, and evaluations can provide higher fidelity verification

check cases. Later, data from actual systems and component tests as well as actual

'	 flight performance can be used to establish the more severe verification check cases

for both the module and the individual functional elements.

The check cases should include the exercise of each individual functional

element and of the module functioning as a unit. The approach for individual

functional element verification is to nullify or isolate all interaction with other
3..

elements and allow the calculation of selected outputs for controlled input

parameters.

ATCS Data Qase_lmpact

The ATCS reference module and the ATCS i A ule drivers as previously discussed

will have a large impact on the simulator data base. The processing subroutines

(such as data input/output and data comparison) are of small impact, and most of

them will be common to all the modules being validated.

4.7.6.3 Food, Dater and haste Management (FWWM)

This system provides control, storage and utilization of food, water and

waste. The simp lified schematic of the water subsystem (from Ref. 110) is shown

in Figure 4.7-124. Figure 4.7-125)is a schematic of the waste management subsystem

(also from Ref. 110),

FWWM -System Description

Food Mana ement - This subsystem provides for the storage and preparation of

crew meals.

Water Management - The water management subsystem provides for the collection

of fuel cell product water, storage in the three potable water bottles, and

subsequent delivery to water sublimators, overboard dumps, airlock, and food

management subsystem.

Waste Management - This subsystem provides for the collection, storage, and

disposal of condensate (from the ARS subsystem) and human waste.

4.7-1!00
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FWWM Module Functions and Parameters

The food ianagement system is a lower--deck function, and thus will not be

dynamically simulated. The Taste management system only requires the condensate

collection (flow rate) to be dynamically simulated. The water management sub-

system, however, interfaces dynamically with the fuel cell and ARS-water coolant

loop (Mater sublimators). The module performance parameters are identified in

Table '1.7-35.

Water Managementment - This functional element provides the following calculations.

o Water flow rates to using outlets - functions of the tank pressures,

outlet pressures, and effective flow areas.

o Tank H2O quantities - functions of initial quantity, flow rates, and time.

Waste Management - This functional element provides the calculation of the conden-

sate flow rate from the condensing heat exchanger to the urine storage tank or

vacuum dump. The flow rate is a function of the heat exchangers inlet pressure,

condensate quantity and tank pressure.

FWWM Reference Data Sources and Formats

FWWM subsystem design requirements, analysis, and test results can be used

for module verification. In addition, certain math models described in previous

portions of Section 4,7.6 can be utilized for this module. Figure 4.7-126 to

calculate the liquid flow rates, can be developed into a suitable reference module.

Those portions that are not dynamically simulated can be functionally provided by

a performance profile (i.e., a tabular function of time). - Reference 22 , 109, and

23 are sources of component and subsystem performance requirements and data,

FWWM Validation Methods and Check Cases

This module can be verified by the techniques described in Section 4.2 and

5.1. Module drivers are required to provide the fuel cell inlet water flow rates,

water sublimator pressure, water tank pressure/temperature, and condensing heat

exchanger inlet pressure. Check cases can be developed utilizing component and

systems maximum and minimum performance design requirements, analysis, and system

4.7-403
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CP = Critical Performance Parameter
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# ..;

FABLE. 11 .7-- 1 ri FOOD, MATER AND WASTE MANAGEMENT PARAMETERS

4	 ,;

a

PARAMETER TYPE 

Condensate heat exchanger H 2O quantity/pressure I

Ambient: pressure I

Fuel cell water flow rates/temperatures i

Water chiller and heater fl ow rates I

Water sublimator pressure i

Mater container pressure/temperature I

Water sublimator pressure regulator flow areas P

Water container water quantities CP

Fan/Separator flow rates P

Urine tank quantities/pressures P

4.7- 404
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FIGURE 4.7-126 POTABLE WATER MANAGEMENT FLOW CHART
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LEGEND:

	

	 f ` 1

P0O3- - Pressure of J th load

P?„- Manifold pressure

N̂ x` Source pressure of I h tank

T,,,-_, -Source temperature of I th tank fluid

1. 1 ,,,-x Liquid flow rate from I th tank into manifold	 .^
'`.

^M O_s Liquid flow rate from manifold to J ĥ load
Liquid temperature into manifold from I th tank

Fluid temperature delivered to J th load

Fl ui d vel oci ty from I th tank into manifold
th^, sM Fluid velocity from manifold to 	 load

Tm - Fluid temperature in manifold

^, Fluid density I
Fl ui d mass i n manifold	 3

I th tank fluid quantity

e - Fluid specific heat	 s

Az - Time increment

^xr - Flow area from I th tank into manifold

Oro - Flow area from manifold to J th load

V,,,^--Volume of fluid in I th tank
4

FIGURE 4.7-126 (CONTINUED)
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FWWM Data Base Impact

.a

	

	 Impact to the simulation data base is small. The reference module should be

relatively simple. Few drivers are required, and the comparison/processing

subroutines would be common to other simulation modules.
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4.8 MODULE INTEGRATION

The size and complexity of the simulators we are concerned with in this study

militates against the use of either a pure "top-down" or "bottom-up" integration

sequence. We anticipate that simulation integration will proceed, instead, by a

process of "agglomeration." That is, validated modules which have a high degree

of interaction will be integrated into distinct "clusters." When these individual

clusters have been validated, they will be integrated with each other, again on

the basis of their degree of interaction, until the complete simulation has been

integrated.
Y

Validation aspects of the clustering process are discussed in Section 5.2.

This section is concerned only with the definition of a probable integration

sequence for a large spacecraft simulator. The basic information used to develop

this sequence is taken from our module interface diagrams: Figures 4.3--2, 4, 6,

7; 4.4-2, 3; 4.5-2, 4, 5; 4.6-1; and 4.7-11, 28, 42, 67, 70, 84, 94, 116, 135,

162, 174, 187, 202, 222, 234, 242, 252, 276, 285, 299, 306, 326, 375, and 390.

Figure 4.8-1 depicts an integration sequence developed on the basis of this

information. No "drivers" are shown explicitly on this figure,the assumption

being that whatever drivers are necessary for the modules in question will be

provided. Wherever possible, the actual simulation executive should be used as

the basic driver, with additional drivers or "stub" subroutines used to

substitute for modules not yet-integrated.

Major stages in the integration process are separately identified as named

clusters in the line of integration flow. In several cases, a "replica" of a

module or cluster (e.g., the ELLS and the Trajectory Cluster) is shown in use

on more than one line of flow. When these distinct lines are merged, excess

replicas will of course be removed. In open-loop applications, previously-written

tapes may be used in place of an on-line replica of the required module/cluster.

In addition to the natural sequence of integration derived on the basis

of hardware/software interactions, the timing of the process will be constrained

by the availability of modules; this is particularly true of hardware. The

flight computer/flight hardware interface device (FC/FHID), for example, may

t
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profitably be integrated anywhere between the "earliest" and "latest" positions

shown on the figure. If the FC/FEID is unavailable when desired, its functions

must also be provided by a driver of some sort (a functional simulation or

emulation). Of course, the most efficient overall development will result if

hardware and software development is scheduled to provide modules in a sequence

which is compatible with the natural integration sequence.

is

A

I
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4.9 SPECIAL TEST REQUIREMENTS

-

	

	 Spacecraft hardware tests are conducted for both static and dynamic test

conditions, at the component level, integrated subsystem/system level, and the

total vehicle level. In these respects, the hardware test sequence seems to

resemble the simulation validation sequence as we know it. This would lead us to

expect test data to be an important category of reference data for simulation

validation.

However, it is important to remember that the goal of hardware testing is

to prove out the hardware, not to support simulation programs. Thus, certain

characteristics of test programs and normally-available test data tend to reduce

their utility for simulation validation. This section first discusses the general

characteristics of various test programs and of the resulting data, based upon

experience from past space programs. It then suggests potential changes in test

operations, data-gathering and data--handling which would enhance the usefulness

of test data for simulation validation. Finally, some consideration is given to

the question of how simulation project personnel might interface with test groups

to affect implementation of the desired changes. (This topic, however, is not
y	

strictly within the scope of this study.)

Suggestions for the use of test data to validate individual simulation

modules will be found in various module-oriented sections (e.g., 4.5.2, 4.7.1.4).

4.9.1 Survey of Conventional Test Operations

There are three basic classes of testing performed during the development of

a space vehicle:	 omponent tests, system tests, and vehicle tests. In this

section, we discuss various characteristics of these tests -- purpose, time frame,

types of data taken, documentation, and potential problems in using the test data

for simulation validation. Example data are shown.

4.9.1.1 Component-Level Tests

We expect component-level tests to be the most fruitful in terms of providing

directly-usable reference data. Component tests will fit the simulator development

cycle best, and provide data which is more performance-oriented than the other

classes of test.

4'.9-1
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Development and Bench Tests

These tests are intended to verify hardware design concepts, establish design

parameters, predict flight hardware performance, and identify the potential

influence of such environmental factors as temperature, voltage level, acceleration,

etc.

{
Test Characteristics -- These tests, conducted with early prototype hardware, occur

t

	

	

rather early in the hardware design phase. For many onboard systems, this time

period will coincide with the simulation software development phase. Tests are

often quite rigorous with regard to the range of environmental conditions and

input forcing functions. Extensive engineering analysis is often performed upon

the resulting data, including updating of the contractor's local analysis/simulation

programs to reflect the performance parameters as estimated from test data.

Typical Documeatation -- Both informal and formal test documentation may be

generated. The informal documentation (recorded during the actual conduct of the

test) may consist solely of hand-entered parameter and environmental values, with

various annotations. In modern test laboratories, however, it is becoming common

to record test data automatically, using on-line minicomputers. The data format,

however, will be highly customized, and probably rather abbreviated, whether in

hard copy, punched tape, or magnetic tape.

The formal documentation will be free-farm test reports, reproducing the

more significant portions of the test data (raw and/or reduced), and providing

some engineering analysis of the significance of the results in terms of the

performance of the component.

_

	

	 Potential Problems -- The formal test documentation is not often widely distributed;

simulation personnel must often make personal contact with cognizant engineers to

even become aware of the existence of such documentation. The informal documentation,

obscurely formatted, often cannot be used without the aid of the people who were

actually involved in the generation and/or reduction of the data. Even the formal

documentation will often require further analysis to be put into a form useful

for module validation. Finally, the performance data may be obsolete, due to

design changes based upon the test results; indeed, this is the basic reason for

conducting such tests.

4.9-2
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Examplemple -- Figure 4.9- 1 resulted from the evaluation of development test data for

certain Skylab T electrical-equipment coldplate heat transfer coefficients= see

Ref. 14 .

Qualification Tests

"Qual tests" are performed to verify that components operate within

specification limits, during and/or following exposure to specified environmental

extremes, such as shock, vibration, temperature, and overvoltage. Life tests also

fall in this category.

	

y	 ^

Test Characteristics --- These tests are started early in the component's

production history, and are continued through the component production phase, often

on a 100% testing basis. Very little parametric data is collected from qualification

tests, which are intended only to provide go/no-go information at specification

limits.

Lypical Documentation --- Qualification test results, considered highly significant

to the success of the hardware program, are quite formally and thoroughly

documented. The reports are widely distributed and widely evaluated.

Potential Problems -- The test data is not parametric in nature, and is almost

always at extremes of environmental conditions , - pruvi di ng little  or no information

about performance under nominal conditions.

Acceptance Tests

Acceptance tests are conducted on -individual production units, prior to

installation in the flight vehicle, to verify that each unit has been properly

assembled, and performs within specification over a reasonable range of operating

parameters.

Test Characteristics -- These tests are conducted with production hardware slated

for installation in actual flight vehicles. Accurate, parametric performance data

reflecting normal operational conditions is recorded for each individual unit, and

tagged with the serial number for the production unit. Since data is available for

multiple units, it becomes possible to determine the inherent scatter in the

performance-parameter data, which helps to establish fidelity criteria for

	

simulation validation.	
4.9-3
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^--	 redT.yp^cal Documentation	 Rather thorough, formal documentation is prepa red for
each serial-numbered component. The tests results, however, normally remain with

the unit until installation, and do not receive wide distribution.

Potential Problems -- Acceptance-test data does not become available in time for

initial simulation validation, although it can serve as a good reference for

simulation updating. The data must generally be "filtered" and reformatted to be

directly useful for validation. Test documentation normally remains with the

tested unit, and is not widely distributed, posing something-of a retrieval problem.

Examples -- Figure 4.9-2 , from Ref. 14 , shows typical acceptance-test data from

an individual component (a pump for a Skylab coolant loop). Also see Figure 4.2-10

of Section 4.2.1.4, which shows operational envelope data, compiled from a number

of individual acceptance-test results on individual pumps, which were retrieved via

considerable "legwork."

4.9.1.2 Systems-Level Tests

Systems-level tests are conducted after components have been integrated into

subsystems and systems and, in some cases, installed on the space vehicle. They

normally require rather complex setup and operational procedures, which must be

faithfully duplicated for the results to be meaningful.

Systems Development Tests

These tests verify system conceptual designs, and lend confidence to the

results of prior analyses and simulations.

Test Characteristics -- The tests are performed late in the design phase.

Complete or partially integrated subsystems are operated with simulated external

inputs, loads, etc. Data may be taken at isolated performance points, or may be

parametric over an operational range of interest. The type and amount of data

taken will depend upon the (formal or informal) test plan, the degree

of prior confidence held by the investigators, and upon whether initial results

turn out as expected. Unexpected results will usually induce the investigators

to take more data, and to exercise the system over a wider range, in the interest

of later analysis.

4.9-5
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Typical Documentation -- Semi-formal documentation is normally prepared, consisting

of a brief cover report of problems, conclusions, etc., followed by a description

of the test procedure and reproduction of the test data sheets as recorded during

the test. Generally, the only information which becomes widely known is the

problems encountered.

n

1

Potential Problems -- Data becomes available rather late for simulation use. The

systems as tested may lack certain components, and test conditions may be

unrealistic and/or hard to duplicate in a simulation. The data may be incomplete'

and in an inconvenient format.

Example --- APU spin-up tests (rotation vs. time); APU fuel consumption under

various hydraulic loads.

Integrated Systems Test

This is a go/no-go test series for the integrated vehicle, to verify that

the performance of the various interacting systems is correct (within the acceptable

range of values).

Test Characteristics -- With multiple systems installed in the vehicle, energized

and operated according to a rather precise and complex procedure, isolated

performance data points are taken over a range of conditions. Since the test is

of a go/no-go nature, the actual parameter values are often not recorded if they

fall within the expected range.

Typical Documentation -- The test report will include a description of the test

procedure or "script," and indicate whether the data taken fell within the

expected rangr.; few actual performance parameter values are provided.

Potential Problems -- Integrated systems tests occur during the vehicle integration

phase, late relative to simulator requirements. Little useful data is provided in

the test results, and what useful data is available is difficult and time-consuming

to extract. The test setup is difficult to duplicate on the simulator, even if the

published script is followed exactly.

4.9.7
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Example -- Figure 4.9-3 was excerpted from a ten-page test procedure published

in Ref. 113.	 -

Vehicle Prelaunch Checkout

These tests are conducted to verify operability of each vehicle prior to

launch.

Test Characteristics -- These tests require highly complex procedures, which are

often fully or partially automated using a variety of computer systems. Isolated

performance data points are taken, and tested against acceptable ranges; actual

parameter values are often not recorded.

Typical Documentation -- Much of the data remains within the checkout complex in

volatile form, and is never published. Summary reports usually only cover

`	 anomalies observed, and are not widely distributed.

Potential Problems -- Very little useful data can be expected from prelaunch

checkout. Tests occur very late for simulation purposes.

4.9.1.3 Vehicle Flight Tests

Flight tests are conducted to verify the operational readiness of the

complete vehicle and its onboard systems in its . actual environment. Successful

flight tests develop confidence in in-space capabilities, procedures, etc.

Test Characteristics -- Flight tests provide data which reflect the actual

operational environment of the vehicle. Great quantities of data are recorded --

both external (ground tracking) and onboard-system performance parameters

(telemetry stream and onboard recording). The data stream includes both

discretes, such as switch settings and event markers, and continuous parameters,

such as accelerations, temperatures, voltages, etc. Rather complex commutation

and framing schemes are necessary to record such a quantity of data. For

example, the onboard data acquisition system used during DC-10 flight tests is

described by Ref. 1I2 as follows:

"Most data recorded in the airborne system are digital,

although it also has a secondary Fri-FM recording capability. The

400 telemetry channels are divided into 910 recording at prime



I
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SEQUENCE
SYSTEM
AREA

DESCRIPTION REMARKS

02-031 EMC PHOTOGRAPH VOLTAGE SPECTRUM (FREQUENCY DUMA.IN, 1 KHZ
TO 110 t-51Z) OF EXTERNAL POWER (POSITIVE LEAD ON PIN G,
NEGATIVE LEAD ON PIN U) .

CAUTION

ALWAYS USE X10 ATTENTATOR PROBE WHEN USING•FET PROBE TO
AVOID TEST EQUIPMENT DAMAGE.

V

02-032 EMC OPEN S111TCH S1 ON BREAKOUT BOX (EXT PWR IN) .
PHOTOGRAPH CURRENT SPECTRUM (FREQUENCY DO.iAIN, 1 KHZ
TO 110 MHZ) .	 CLOSE SWITCH.

02-033 EHC OPEN SWITCH S12 ON BREAKOUT BOX (EXT PWR RET) .
PHOTOGRAPH CURRENT SPECTRUM (FREQUENCY D01HAIN, 2 KHZ
TO 110 PifIZ) .	 CLOSE SWITCH.

02-034 EMC RECORD 14HRORY VOLTMETER READINGS AVD RESET THE METERS

NORM	 VOLTS
10	 S	 VOLTS

02-035 LCP MOVE AU I-LIARY FIRING SWITCH S9 TO STANDBY AND HOLD
AGAINST DETENT SPRING.

02-036 HARCO PLACE OPERATION POWER SWITCH TO NORMAL.

02-037 LCP VERIFY LCCP STANNDBY WINDOW AND READY TO FIRE WINDOW
ILLUMINATED'.

STANDBY	 CHECK
READY TO FIRE	 CHECK

02-038 HARCO VERIFY:
IGNITER EXTENDED-OFF	 CHECK
OPEFATION POWt:i:-ILLUMINATED	 ^ CHECK

02-039 EMC RECORD P MEMORY VOLTMETER RF.ADI':GS AN D RESET THE METERS

NORM	 VOLTS

10	 S	 VOLTS

i

1

FIGURE 4.9-3 . EXCERPT FROM AN INTEGRATED-SYSTEM TEST "SCRIPT."
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sampling rates, 290 recording at a 10:1 subcommutation rate, and

20 recording at a 20:1 subcommutation rate. The prime channel

sampling rate can be changed in flight from 400 to 10 samples per

second in six stages.

"The up-to-2400 parameters on one aircraft are transmitted 	 i

over the 400 charnels by onboard multiplexing of some data. Data

from 64 temperature sensors on an engine may be multiplexed on

board into one channel, for example."

Typical Documentation -- Qualitative and semiquantitative data is provided by

crew debriefing reports, flight control reports, and final summary reports. The

informal reports become available soon after the flight, while the formal summary

reports may not be published until months later.

The bulk of the quantitative data remains available on magnetic tapes.

Depending upon the software, hardware and retrieval aids provided, it may be a

fairly simple matter to obtain tabulations and plots of any desired parameter

time-histories from a particular flight -- or it may be extremely difficult.

There the inputs and outputs for an onboard system can both be obtained as

functions of time, the validator will have a directly-usable, highly realistic

check case for simulation validation.

Potential Problems -- Flight test data becomes available too late for initial

simulation development and validation, but should be useful for subsequent

updating. The available check cases are constrained by the actual mission

timeline, and may require complex setup to duplicate the operational conditions

on the simulator. It may be difficult to obtain sufficient data to accurately

define the environmental conditions in which the vehicle was operating. Potential

availability of the data is sharply dependent upon the power of the retrieval

and data--reduction aids provided by the spacecraft project.

4.9.1.4 Shuttle-Related Test Documents

Table 4.9-1 provides a list of currently-published documents relating to

planned tests for the Shuttle program.

4.9-10
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TABLE 4.9-1 . POTENTIALLY USEFUL TEST DOCUMENTATION

MJ072-0004-3

ML0101-0001

SD72-SH-0009

SD72-SH-0112-6-II

SD72-SH-0112-12

SD-72-SH-0112-13

SD72-SH-0112-18

SD72-SH-0112--19

SD72-SH-0112-21

SD73-SH-0062

73-SH-0094

SD73-SH-0298

ISP74-SH-0011
through
SD74-SH-0049

Shuttle Master Verification Plan,
Volume 3: Orbiter Verification Plan

Test Requirements: In-Process and Acceptance-Orbiter

Orbiter Quality Assurance Plan

RDD-Major Ground Test-Thermal Vacuum Test Program:
CMS-RCS POD

RDD-S, , hsystem Ground Test-Docking Mechanism Dynamic Simulation

RDD-Ground Subsystem Test-Orbiter/External Tank Separation
Subsystem Test

RDD-Subsystem Ground Test-APU Integration Test

RDD-Subsystem Ground Test-ECLSS Test Article

RDD-Subsystem Ground Test-Escape System Test Article

Checkout Plan: Orbiter and Combined Elements Ground
Operations

Manual, Technical and Non-De-tructive Testing, Space Shuttle
Specification for Preparation of

Avionics Development Laboratory General Test Plan

Subsystem Certification Plans

4.9-11
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_	 4.9.2 Idealized Test Programs

Based upon an understanding of historical norms in test operations, we are now

in a position to consider what changes would be desirable to make test data a more 	 j

valuable source of reference data for simulation validation. Efforts should be

concentrated upon component-level tests, for at least two reasons:

(a) Component-level tests appear to be an inherently more valuable source

of reference data.

(b) System-level and vehicle--level tests are already so complex and expensive

that resistance will likely be encountered to any changes which would

make them still more complex and expensive. We recommend a three-step

approach to maximizing test-data utility: (1) identify required data,

(2) develop an idealized test plan, and (3) define the data recording

and documentation desired.

_	 4.9.2.1 Identify Required Data

In the analysis of spacecraft subsystems and associated simulation modules

provided in Section 4.7, we have identified inputs, performance parameters and

critical performance parameters for each module. Obviously, the data most desired

from a test are the values of the component inputs and the critical performance

parameters. Fortunately, these will in most cases also be the data most desired

from the test by the ;.-rdware designers. For high-fidelity simulation, non-

critical performance parameters will also be desired, but at lower priority, thus

giving the test designers a "shopping list" against which they can evaluate

potential time and cost impacts of setting up increased test instrumentation and

recording capability.

The workload of establishing data requirements for each onboard component

will be minimized by unifying the analysis of similar components, regardless

of their end use. The guiding philosophy would be that, for example, "a pump

is a pump is a pump," whether it is a fuel pump in the main propulsion system,

a coolant pump in the ELLS, or a lubricant pump for the APU. The parameters of

interest - RPM, differential pressure, flow rate, etc. -- would then be the same

for all pumps on the vehicle.

4.9-12
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4.9.2.2 Develop an Idealized Test Plan

The ideal test for a component is one which would translate directly into a

check case for validation of the associated simulation module. The analysis steps

necessary to define such a test are as follows:

(a) From preliminary analysis or simulation results, determine the

expected range of the component; inputs and performance parameters.

(b) From similar performance predictions, define the expected shape of the

performance curve between its upper and lower limits.
Y

(c) Determine the minimum number of input values necessary to define this

performance curve, and the best choice of values based upon the curve

shape. This will commonly lead to non-uniform spacing of checkpoint

values -- widely spaced in regions of expected uniform slope, closely

spaced in regions of expected high curvature.

Similar considerations will apply for defining the time-spacing of data-

points for dynamic response of a component, based upon the estimated transfer

function of the component and the expected bandwidth of input forcing functions.

Standard test descriptions would be prepared for basically-similar components,

such as pumps, as discussed above. Performance curves for all such similar

components would be expected to be similar in shape.

4.9.2.3 Define Desired Data Recording and Documentation

During the conduct of the actual test, the data to be recorded will consist

of environmental conditions, input stimuli, and output responses of the component/

system. These should, of course, be actual values, rather man go/no-go

assessments. Accuracy, time spacing, and other data attributes will generally

be selected by the test personnel on the basis of available instrumentation and

the requirements and goals of the test. Accuracy estimates will be helpful in

making proper use of the test data.

The normal recording format and medium will be hard-copy tabulations,

either handwritten or minicomputer printout. Where available, graphical data will

be very desirable. Magnetic tape records will probably not be available, and are

likely to be incompatible in format with the simulation computer in any event.
i

4.9-13
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	 Test documentation should include units, scale factors, known biases, and

any other adjustments necessary to use the data as a simulation check case.

4.9.3 Implementation of Test Enhancements

Although simulation personnel should make every reasonable effort to

communicate their requirements to test personnel, it must be assumed that the

goals and economic constraints of the hardware programs will take precedence.

Thus, the simulation/validation test-interface group should become familiar

enough with test operations, requirements and instrumentation to assess the

potential impact of whatever enhancements they plan to request.
s;

This will require the early establishment and continuing maintenance of

effective liaison with design and testing groups, to accomplish the following:

s Communicate their needs for performance-oriented data from component/

system testing.

a hake test personnel aware :,f the data formats and documentation which 	 7

would make test data most useful for simulation validation.

e Ensure that they will receive available test data in a timely manner.

a Evaluate the probable impact of unexpected test results upon hardware

designs, operational procedures, etc.

In some large test organizations (e.g., the DC-10 flight test organization),

a formal structure for integration of various user's requirements into test design

will already be in existence; the simulation personnel will need only to make use

of the existing interfaces. (It is to be expected that PICRS will provide

assistance in this area.) Where formal lines of communication do not yet exist,

the simulation program will need to make efforts to establish new working

interfaces, to make their requirements known. Ideally, the personnel assigned

to this liaison function would have extensive experience both in simulation

development and hardware design and testing. Where such personnel are initially

unavailable, some cross-training will be required.

4.9-14
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4.10 REFERENCE DATA FORMATS

This section discusses methods for formatting of reference and stimulation

data, to obtain the following benefits:

o Maintain -ompatibility between reference module and simulation module

inputs and outputs.

o Optimize verification data-handling, comparison and evaluation pro-

cesses-- manual and automatic.

v
o Mininize simulator verification data base impact.

4.10.7 re ference Data Types

Reference data to be used as standards of performance for simulation

validation may be available in either machine-readable or non-machine-readable

form.

4.10.1.1	 Pion-Machine- Readable Reference Data

{ion-machine-readable reference data -- numerical tabulations and plots --

will become available to the validation staff from several sources:

o System and subsystem data books, which compile data derived from per-

formance predictions, analysis /simulation programs, and component/system

tests.

o Component, subsystem and system tests, providing raw data taken during

test execution, and/or reduced data published in test reports (see

Sect. 4.9).

o Printout and/or plats from existing analysis/simulation programs not

under the control of the validation staff.

4.10.1.2 Machine-Readable Reference Data

Machine-readable reference data may be provided by any of the following

means:

o Standard plot tapes generated by multi-user an- Iysis/simulation programs,

such as SVDS (see Scct. 4.2.1.3).

J
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o Output data files (tape or disk) generated by either an existing analysis/

simulation program operated under control of the validation staff, or a

new reference module developed specifically for validation purposes.

(This includes highly-detailed reference trajectory tapes.)

o Basic data tapes provided by an outside.contractor•.or agency Ce, g.,

planetary ephemeris tapes, vehicle aerodyn'ami 'c'data tapes).

4.10.2 Reference Data Generation, Handling and Conversion

Clearly, radically different methods are required for the handling of machine-

readable and non-machine-readable data. For non-machine-readable data, we have

the options of either performing the comparison/evaluation in a purely manual

mode, or hand-entering the data into the computer for automated comparison/

evaluation. For machine-readable data, we may either put the data out for

manual comparison/evaluation, or perform automated comparison/evaluation within

the computer (see also Sect. 5.5),

0.10.2.1 Handling of Mon-Machine-Readable Data

We recommend that when the reference data is in non-machine-readable form,

the comparison and evaluation required for simulation validation be. performed in

a purely manual mode. To simplify the manual operations, reduce workload and

fatigue, and eliminate all possiblo sources of error or misjud gement, it is

essential that the simulation dF<. to be mapped into a format which is as nearly

identical as possible with the pre-existing format of the reference data.

Formatting factors involved in tabular data include headers, physical

arrangement of data on the page, spacing of inaepender.t-variable values, and

units, axes, and numerical format of individual numerical entries.

Graphical output from :imulatian module drivers should be designed to enable

the simulation-data plot to be exactly overlaid on the reference-data plot, for

convenient "eyeball" evaluation of fidelity. The factors which rust be controlled

to enable such overlaying include axis conventions and units of the basic data,

as yell as axis lengths, origins and scale factors of the plot itself. Since

plots found in data books and other sources may not be reproduced in their

original full size, highly flexible formatting and scaling capabilities will be
4.10-2
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required for the simulation data-handling support software.

Since great flexibility is desired for the required data-handling support soft-

ware, consideration should be given to "human engineering" factors in the design

of this software -- i.e., command vocabulary and formats, control of options,

free-form input, etc. The goals of the support-software design should be to

provide all required formatting capability, achieve a practical minimum of

workload in obtaining the required hard-copy, and minimize the potential for

errors induced by the support sofa-rare itself.

Hand-entry conversion of non-machine-readable data into machine-readable

form is definitely not recommended. The labor and error potential of the re-

quired manual operations, in our view, more than offset the potential gains of

automating the comparison and evaluation.

4.10.2.2. i{andl t -g of Machine-Readable Data

When both the reference and simulation data are in machine-readable form,

the basic processing for comparison and evaluation is rather simple (see Sect. 5.5).

The bulk of the progranning effort and computer time is likely to be expended in

pure data-handling; file searching and retrieval, record searching and re-

trieval, data formatting and adjustment, etc. For that reason, we believe that

substantial benefits can be realized from the early establishment, continuing

maintenance, and broadest possible application of a universal data format.

Formats for Ilea Validation Software

This universal format would encompass axis conventions and units, decimal

formatting of discretes, fixed-point and floating-point data, data sampling rates

and the mapping of software input and output data streams into time-tagged

"pages" or "frames" of data. The basic properties of such a universal data format

are i Ilustrdted in Fig. 4.10-1 . (Also see sect. 4.9.1.3 for a brief description

of the framing scherie used for onboard recording and telemetry of DC-10 flight

test data.) The formatting and framing information necessary to utilize the data

would automatically be recorded on a "header" preceding each data file.

With the amount of study and development which has already gone into the next

gener-alLi on of training and procedures-development s emulators for IiASA-DISC, it

4.10-3
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DESCRIPTION

Data file identification (fixed-length alphanumeric title)

Date file was venerated

Type of data: reference, simulation, both

Identification of reference and simulation modules used
to generate data

Data word length

K=Number of words per data frame

Nominal frame rate (frames per second)

M=Total number of frames (if knot-in)

N=Total number of parameters in this file

Identification name or code for first parameter

Location of parameter #1 in each frame in which it
appears

Word length for parameter #1 (several short parameters
may be "packed" into a single word)

Frame frequency for parameter nl

(Same information for parameters 2 through 1--I)

ITEM n
r

i

2

3

4-5

411 + 9

(a) Header Block

FIGURE 4.10-1, SCHEMATIC OF A UNIVERSAL FORMAT FOR VALIDATION DATA FILES
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Parameter values at time t 
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End of file mark

M Data Frames

FIGURE 4.10-1 (continued)
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should be possible to define the universal format with high confidence, rather
early in the simulation design phase. A growth margin can be allowed by leaving

some spare capacity in each data frame. In this way, drastic redesign of the

format, and resulting obsolescence of existing programs and data files, should be

avoidable for the life of the program. The frame size would, of course, have to

be consistent with the block- length constraints of the host-computer operating

system and I/O peripherals. f

In application, the universal format would be built jnto all new support

software developed for simulation validation. This would include:

o New reference-data generation programs (See Sects. 4.2.141, 4.2.1.2).

o "Driver" routines for simulation software modules and clusters of modules

(see Sects. 5.1, 5.2).

o Routines for realtime data acquisition during operation of the all-up

simulator (see Sect. 5.4).

o Service routines for reference/simulation display, comparison and evalua-

tion (see Sects. 5.1, 5.5),

Since a truly universal format will have to'be designed to accomodate high-

volume data generation processes (up to and including an all-up high-fidelity

simulation), there will be some sacrifice in "micro-efficiency" when it is used

for the low-volume applications, such as individual modules, small clusters, and

low-fidelity simulations. However, this sacrifice will be counterbalanced by the

increase in "macro-efficiency" over the entire program, resulting from the

ability to standardize the input and output routines of all validation support
software. An intermediate approach between a single universal format and a

plethora of custom formats would be the definition of a small number of "semi-

universal" subset -formats: one for vehicle dynamics and environment parameters,

one for onhoard-system parameters, another for simulator hardware parameters, etc.

4.10-6
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Software-development effort and data-base impact will be minimized by the

absence of custom data read/write routines for individual modules and module

clusters. Finally, data-handling errors will be minimized, both by the standar-

dized arrangement of data on all validation data-files, and by the use of the

header record on each data-file.

This universal format concept has been applied with considerable success in

the data-reduction programs for the Skylab Earth Resources Experiments Package

(EREP) and the Earth Observation Aircraft Program (EOAP). In these programs,
users at scattered geographic locations, with widely varying needs for data,

benefited greatly from the standardized input/output interface provided by this

approach.

Reformatting Data from Existing Software

Even if the Universal data format approach is adopted for all new vali-

dation soft-tare, pre-existing software Sri it have a variety of individual formats.

Two approaches are available for integrating these programs into the overall

validation system, and making effective use of their reference-data capabilities;

build format conversion into the software, or reformat its data-files with a

post-processor.

If a copy of the program is under the control of the validation staff, it may

be feasible (depending upon the complexity of the program and the completeness

of its documentation) to build-in compatible I/O routines. From that point on-

ward, all data generated by the program will be in the universal format.

For programs which are not under the control of the validation staff, or are

too difficult to modify, it will be necessary to use a custom-built post- processor
to reformat the output from the existing program. Such post-processors will also

be required for reference data which already exists in the form of a card, tape

or disk file.

J
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^.	 4.11 DATA BASE IFPACT

A large and complex data base will be built up during the simulation develop

meet and verification phases. This section discusses the overall organization and

structure of this data base, as well as the software, procedures and personnel re-

quired for data base management.

4.11.1 Data Base Organization and Structure

Figure 4.11-1 shows in tree form the overall scope and structure of the

validation data base. We define the data base to include information in both

machine-readable and hard copy form.

4.11.1.1 flachine-Readable Information

Machine-readable information may be in the form of disk or drum storage,

magnetic tape, or punched cards. Due to the great differences in costs of the

various media, it will be desirable to distinguish between active and inactive 	 a

data base materials, and keep only the most active in rapid-access storage,

C	 Active Materials

Frequently-used materials which %-till need to be maintained in on-line storage

or convenient-access tape files will include:

A. Simulation module checkpoint data, for modules currently being validated

(See Sect. 5,1.1.)

B. Active reference and simulation data:

1. Module level

2, nodule "cluster" level

3. All-up simulator

4. Reference trajectories

C. Active Reference modules

D. Validation Service routines:

1. Tabulation softvlare

2. Plot software
3, Peal-tine data acquisition software (see Sect. 5.4)

4, Module and cluster drivers

5. Driver-interface data-location routine (COWSEN or enuivalent; see Sect. 5,1.2)

6. Reference-data conversion routines (See Sect. 4.14.2.2)

7. Compariscn and evaluaticn routines (see Sect. 5.5)

E. Data base r ztnaa pn not soz t:vrare	 4.11-1
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Inactive Materials

Lower-activity materials which can be kept on magnetic tape (or, for low-

volume data, on punched cards) include backup copies of currently- active files

(for recovery from possible catastrophic failures of the system hardware or soft-

ware), plus check-case data and reference modules for portions of the simulation

which have passed their initial validation. These materials would be retained

for potential use in revalidation efforts following later modifications. However,

in some cases the modifications will invalidate the existing check-case data

and/or dictate modifications to the reference module.

4.11,1.2 Hard Copy

The hard-copy portion of the data base will, like the machine-readable

portion, include both active and inactive elements, with similar requirements for

access, updating and purging. The hard-copy files will encompass three general

categories of information: base information, reference data, and validation

results. The most significant information from all three categories mould he

compiled into a module-organized "validation data book". This data book would

serve as a reference for the ongoing staff, for training of near members of the

validation staff, and for coordination with other project personnel.

Base information (see Sect. 4.2.2) is information which is not directly

usable as validation check cases, but supports the development of check cases

and/or soft!•rare to generate check cases. This includes system descriptions,

specifications, operational data books, performance parameter definitions, etc.

Sections 4,2 - 4.7 of this report are base information for simulation validation.

Reference data hard copy will include data which is not available in machine-

readable form, as well as printouts and plots of machine-readable data made for

engineering analysis. This will. include all four categories of reference data

identified in Sect. 4.2.1 -- closed-form solutions, inde pendent math models,

existing analysis/simulation programs, and test data. Recent versions of software

listings will also be retained in hard-copy form.

4.16-3
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Validation results will be retained in raw form, in informal summary reports

covering the validation of individual modules, and in formal validation reports

issued at major milestones of the validation process.

4.11.2 Data Base P9anace.ment

The total Data Base Management System (DWIS) includes the hardware (host

computer and peripherals), support software, procedures, personnel, and documen-

tation. Some of the factors to be considered in assessing the magnitude of the

data base management problem, and thereby defining the requirements, design, and

implementation plans for the DBMS, are as follows

o The total amount of data to be handled

o The complexity of the data structure (i.e., the number of "dimensions"

of identification by which a particular data item might be sought by an

eventual user)

o Desired efficiency, in. terms of utilization of physical facilities and

computer resources

o Desired efficiency in terms of use of support-personnel resources and
user interface

o Duration of the program over which the data base will have to be maintained

(ten years or more)

o Modularity and extensibility of the DBPsS as requirements change

o Reliability requirements, in terms of probabilities of incorrect filing,
retrieving, updating or purging of data

o Stability of the system -- i.e., freedom from "crashes" and catastrophic

loss of data or accass capability

o Data security

R few of these factors are briefly discussed below.

4.11.2,1 DBi1S Requirements and Design

Data Di cti onary

The design of any DBP1S begins with the development of a "data dictionary".

Whether the system is manual or automated, dealing with hard-copy or machine-

readable data or both, it cannot function effectivel y without a comprehensive

data dictionary. The data dictionary simply defines the standards for identifi-

cation of data iter;s as they are brought into the system, which in turn tells each

user hoer to identify an item which he is tryi nq to get out of the system.

4.11-4

M70I]ONME7tL	 4CCXMPIArVY. CAST

t 9



MDC El 136
27 January 1975

Dimensions of the. identification for an item sought may include: the subsystem of

interest, the name of the simulation module for that subsystem, the date or version

of the module, the source of the reference data, the name and version of the reference

module, identification of the check cases), identification of a reference mission

or mission phase, and the time period of interest during the mission. Standardi-

zation of names and formats for these identifiers will be required to formulate

data requests in an unambiguous and reliable manner, and allow efficient access

to the desired data.

The data dictionary will require frequent updating, especially in the early

stages of buildup of the data base. However, the initial definition of the

system's data structures and the data dictionary should be made general enough

that it will not be necessary to go back later and modify the identifiers for

data which has already been filed.

Data Di rectory

A companion to the data dictionary is the "data directory", which is simply

a list of all files and-documents existing in the system as of a particular time.

The data directory will also require frequent updating, and may eventually become

so large as to be difficult to maintain in hard-copy form.

Query and Report Language

The query and rc,port language is the means of interface between the data

base and its users and support personnel. A "query" will consist of commands,

data identifiers, and data destinations. A "report" may consist of actual hard-

copy produced on a line printer or plotter, a display of tabular or graphical

data on an on-line terminal, or simply making desired software or data accessible

to an application program. 1.4hether formulated in English-like statements or

abbreviated numerical codes, whether in batch or on-line mode, user queries will

be of foals such as:

"Copy program xxx onto file yyy"

"Copy xxx data-file onto unit yyy"

"Printout xxx data-file in forriat yyy"

"Got mission xxx; plot parameter yyy against parameter zzz from time t  to time t2

with scale factors s  and s2
E

4.11-5
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Data base support personnel will also need to make commands of the forms such as:

"Add program xxx to the system"

"Copy the data on file xxx into the system, with identifiers 11' 129 ...$ in"

"Delete file xxx"

"Replace file xxx with file yyy"

Data Base Reliabilit y and Stability

The reliability (freedom from error) and stability (freedom from crashes) of

the DBi'S can obviously be ;io better than those of the hardware and operating system

of the computer in which it resides (along wi th pppl i cati ons software, simulation

software, compilers, etc.). Unless properly designed and implemented, morerver,

they are apt to be a good deal worse! It should be clear that the DMIS must be as

modular and as well validated as the software it serves, if it is to maize a con-

tribution to the solution of the validation problem, rather than be an additional

source of problems. Finally, as added insurance from crashes, backup tapes of the

data base should be made at intervals.

Data base stability also encompasses the idea of freedom from major redesigns

during the lifetime of the program. This is ensured by:

A. Building sufficient scope and flexibility into the data structure and data

dictionary

B. Modular organization of the data base and the MISS, and

C. A phased implementation of the DM S, enabling detection and correction of

potential inadequacies before too great an investment is tied up in the data

base.

Data Security

Data security, in the sense of prevention of uncontrolled access to data,

may or may riot be requi red in this application, depending upon whether JSC simu-

lators are used to support classified (DoD) missions. Another aspect of data

security is the prevention of inadvertent modification or destruction of programs

and data by machine error, entry of incorrect codes, etc. CODASYL data base

standards (see below) incl ,,de Provisions for both }ands of data security.

4.11-6
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The probability of inadvertant destruction of data can be sharply reduced

simply by limiting the number of people who are able to enter data-modification

commands. That is, data-modification commands should be intercepted by the DBMS

unless enabled by appropriate "passwords". These passwords would be known to

data base support personnel, but not communicated to any other users of the system.

4.11.2.2 DBMS Implementation

It should be clear from the foregoing discussion that the development of a

DBMS to support the development and validation of a large-scale simulator is not

only a large task in itself, but is a task Quite unlike the development of the

simulation software. It requires different personnel capabilities, different

computer capabilities, different language properties, and an entirely different

conceptual base. For these reasons, we recommend that a thorough and serious

"make or buy" analysis be conducted before jumping into the DBMS development.

A wide variety of DKIS software (much of it catalogued in kef. 114) is

available on the open market --- from simple file-management systems costing

$5000 or less to full--scale DBMS/report generators costing upwards of $200,000.

Some of these packages have been proved in years of operating experience at

dozens of installations, and are supported by their vendors with on-site installa-

tion and training, extensive documentation, periodic updates, and performance

guarantees.

If the decision is made to proceed with in-house DBMS development, we

recommend that most of the lead personnel assigned to the program have extensive

prior experience in data base design and implementation. The remainder of the

personnel requiren,--_-nts can be filled by cross- training of simulation types.

Any in-house development should also be consistent with CODASYL (Committee on Data

System Languages) standards. This will enable the DBP1S development to profit from

the years of study expended by the CODASYL Data Base Task Group, and provide

easier access to the most-current DBMS technology. Table 4.11-1, from fief. 115,

provides a few of the most important definitions of data base concepts, as for-

mulated and standardized by CODASYL.
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TABLE 4,11-1, BASIC CODASYL DATA BASE DEFINITIONS

Data ItemThe smallest data base unit referenced by an assigned
I	 name.

pecordf	 A collection of one or more data items; contains a named
J	 description of data items and attributes.

Set	 'Establishes a named Iogical relationship between two or
.more record types; the basic data base building bloc: which
alloys the data base designer to establish complex data
structures.

Area	 A named subdivision of logical address space in a data
base; each record must reside in an area which contains
one or more records.

Schema	 A complete description of all data items, record types,
set types, and areas which exist in a data base; the
foundation i' a data base dictionary system.

Subschema	 A logical subset of the schema which names only those
record types, set t ypes, and areas that are accessed
by one or more specific applications programs.

CALC	 Refers to one r_nmmnn methnd of rernrd n3arement and

h



MDC El 136
27 January 1575

..	 SECTION 5
i

METHODS FOR VALIDATING PERFORMANCE

The total process of simulation validation consists of:

1. Exercising a simulation with properly-chosen inputs,

2. Gathering the output performance parameter data which it generates in

response to these inputs, and

3. Evaluating the simulation fidelity by comparing these data to reference

data representing the real world which the simulation is intended to

represent.

.	 , Techniques and support software for the efficient performance of these opera-

tions are discussed in this section. The discussion includes overall validation

software structure, the performance of validation at various levels of simulation

integration s guidelines for check case formulation, methods for realtime acqui-

sition and formatting o€ data from an all-up operational simulator, and methods

l	 and criteria for comparison and evaluation of simulation data.

r
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5.1	 VALIDATION SOFTUARE STRUCTURE

Figure 5.1-1	 depicts a support-software float for the overall generation,

handling, comparison and display of simulation and reference data as used in

performance verification. The complete support-software system will	 consist of
3

the validation executive shown in this figure, modelling routines as discussed

in Section 4, and a set of service routines. 	 Table 5.1-1 briefly discusses the j

role of each part of the overall software system. Al

r

To reduce the amount of specialized coding and setup required to perform

each individual validation exercise, it is desirable to build as much generality

as possible into the service routines. Characteristics of the major routines

are briefly discussed in the following subsections.

5.1.1 Checkpoint Generation Routines

Checkpoint generation routines provide a series of check case input values

for static and/or dynamic exercise of the reference and simulation modules. The

checkpoint veneration routines will provide the user with the capability to set

up a complete set of check cases in a convenient manner (rather than manually

defining and entering the checkpoint data for each individual check case). It

will incorporate logic to generate various combinations of discrete parameters,

thus exercising various operational nodes and logic paths of the software, as

well as to vary continuous parameters over various ranges of values, thus

verifying the operational envelope of the simulation. The checkpoints may be

generated individually on-line, under control of the validation executive, or

may be generated all at once and placed on a data file (see Sect. 4.10) for

later input.

As discussed in Sect. 5,3, it is generally impractical to exercise a :nodule

over all combinations of a set of input values. For example, if a module has eight

on/off discretes used for mode control, 256 check cases will be required to test

all possible combinations of these discretes; if it has six continuous input

parameters, 729 check: cases trould be required to test all combinations of high,

nominal and lout values of these parameters; and 256 x 729 = 136,624: The checkpoint

generation routines must then nrovide flexible lo gic to goner-ate only required

and meanin g ful combinations of inputs. Dot„ sys-cema ti c and randoi-. variation

of para,eters All prove useful in module validation. Exarples of checkpoint
5.1-1
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TABLE 5 . 1 -1 . VALIDATION SOFTWARE MODULES (GENERIC)

ROUTINE FUNCTIONS

Executive Overall sequencing, interfacing and control.

Data read routine Reads records from a data file generated
by a prior simulator performance run, and/
or a reference data generation program,

10 strips data for the-appropriate module and
places it into a data array.

Checkpoint generation Generates checkpoints including all data
routine required for input into the module to be

verified.

Simulation module Interfaces with the simulation software
interface routine module, placing input and output data into
(driver) a data array.

Reference Module Generates reference performance parameter
data, placing the input and output data into
an array compatible with the simulation
software data array.

Data write routine Writes the data from the simulator soft-
ware module and the reference module onto
a temporary file, to be read back in for
comparison processing.

Data comparison routine Processes the data file previously written.
Incorporates a variety of differencing
techniques and corpari son criteria. 	 Per-
forms automated comparisons of simulation
and reference data.

Data display routine Generates listings and plots of raw or
processed data for manual 	 interpretation.
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generation routines are shot-in in Figs. 4.3-16 thre s.;gh, 4.3--22, 4.7-112 and 4.7-113,

5.1.2 Simulation Soft tare Module Drivers

Driver routines perform an interfacing function (analogous to the "patchboard"

in a piece of test hardware). The driver obtains checkpoint inputs from an in-

ternal array or an external data file, passes these 'inputs to the simulation

software in the proper order, format, and common locations, accepts outputs

generated by the simulation softi-iare from their appropriate common locations,

and places -these values into an output data file for later comparison, evaluation

and display.

The normal interfacing method for simulation modules in their eventual

operating environment will, in most cases, be b y means of a large total-simu-

lation "common" package. Due to the size and complexity of the total simulation,

it seems very likel y that some type of support software -- COMGEN (Ref. 116)

or equivalent -- will be used for development, analysis and maintenance of the

simulation common package. Therefore, the same interfacing mode and support

software should be used for interfacing of simulation modules with their drivers

and other validation service routines. Likewise, the same relative common structure

and support softwlare should be used for reference module development, thus pro-

viding an additional area of standardization and removing another potential

source of error,

_	 5,1.3 Extern al Data Files

In many cases, either the reference or simulation data (rarely, boti: the

-	 reference and simulation data) will be handled as an external data file, rather

than being generated on-1 4 ne during the validation exercise. The validation

exercise, in turn, will typicall y generate a new external data file, consisting

of interizaved reference and simulation data vs. time, for post-processing by

comparison, evaluation and display routines. Some of these data files will be

"volatile" 0. e., discarded soon after processing is complete:), while others

will be retained in the data base for varying periods of time.
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Section 4.10 discusses 'ne generation and formatting of reference data files,

either by newl y-developed reference modules or b y use of existing analysis/simu-

lation programs adapted for validation purposes. Section 5.4 discusses the

generation and formatting of simulation data files by realtime acquisition

of data from an operational all--up simulator. In both applications, it seems

clear that the magnitude of the analysis, development and maintenance efforts

will be minimized, and the occurence of errors in data-handling sharply reduced,

by the use of standard or "universal" formats for all data files in the system.

541
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5.2 MODULE INTEGRATION

Simulator validation is performed at various stages of integration during

the course of simulator development. This is true whether integration and

validation are conducted in "top-down" or "bottom-up" fashion. This section

-,	 defines four configurations of simulation software linked with validation support

software which can be used for the exercises required for performance verification,

and discusses the utility of each of these configurations in accomplishing total-

simulation validation.

t
5.2.1 Configuration Definitions

Isolated Module

For the present purpose, a "module" is defined as a "set of software elements

which is invoked as a unit-and performs a defined function." Any single module of

simulation software can be verified in isolation by use of a properly-designed

"driver" (interface routine) with appropriate static and/or dynamic check cases.

To do this, the driver must substitute for all other modules which, in the eventual

integrated simulation, will interface with the module under test. That is, the

driver must provide all continuous and discrete inputs needed to initialize the

module and control its execution, as well as exercise it for performance

verification. These inputs must be properly scaled, formatted and routed (by

use of argument lists and/or common-storage locations). Similarly, module outputs

must be scaled, formatted and routed for storage, manipulation, comparison and/or

display.

Integrated "Cluster" of Modules

Two or more naturally interacting modules can be operated together by a

single driver, thus providing for each other some of the data,control, and I/O

functions which would otherwise have to be provided by the driver. Section 4.8

provides examples of natural clusters of modules. The limiting case of cluster

testing is off-line (non-realtime) operation of the total software system without

its simulator hardware interfaces.

The exercise of an integrated cluster could conceivably be the initial

validation for all of the modules in the cluster; more commonly, however, some or

+	 all of the modules will have previously been individually validated more or less

5.2-1

WCRL M6114IU _ VOWC.1 ASr ASr"CP?VAUTYd.'S ^C"IWFIAIVV a CAST



MDC El 136
27 January 1975

-	 thoroughly, either in isolation or as part of a different cluster.

_

	

	 Figure 5.2-1 provides examples of dynamical check cases (step-input responses)

which could be run oa a cluster consisting of aerodynamics, vehicle dynamics and

environment, together with an appropriate driver.

Modified All-Up Simulator

c

	

	 During initial integration of the simulator software and hardware into an

operable all-up simulation, temporary modifications can be made for verification

purposes. Two types df modifications are considered:

a Emplacement of "probes" or "test points" for insertion of stimuli and/or

tapping of responses at points which would not normally be accessible via

standard output.

Interruption of normal signal flow within the simulation system, to

artifically decouple various interacting functions (e.g., the aerodynamics

from the equations of motion) and thus simplify signal/error propagation

characteristics.

The first approach isused, for example, at NASA-LRC; control commands from

a "canned man" (a data tape) are inserted downstream of the manual controls. This

-	 ensures check case repeatability and objective evaluation of simulation performance.

Both approaches are to be used in the acceptance testing of the USAF F-15 simulator

r	 now being developed under the aegis of McDonnell Aircraft Company.

Interrupted s i gnal flows must of course be reconnected to return the

simulator to normal o peration. Certain of the test points, however, might

profitably be left in place permanently, for convenience in reverification efforts

following later modifications.

Normal All-Up Simulator

The complete man-in-loop simulator, in its normal operating configuration,

can be exercised by check cases of two different kinds:

a Specially-constructed test cases (not necessarily representing any

anticipated real-world mission or mission phase), providing rigorous

exercise of the simulation, high repeatability, and easy interpretability

of results.

5,2-2
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MACH = XXX

WEiGHT= XXX
CG= XXX

tr	 ae = XXX

FIGURE 5.2-1. EXAMPLE CHECK CASES FOR A SMALL CLUSTER OF MODULES.
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9 Realistic mission/mission phase check cases; e.g., a reference mission,
an anticipated future mission, or a re-enactment of a previous mission.

5.2.2 Pros and Cons of Defined Configurations

The four test configurations just described are often considered as the

normal evolutionary stages in validation of simulators; every module would be

expected to pass through all four states in turn. It is also often assumed that

a "complete" verification of all possible functions is performed at each stage,

before proceeding to the next. Thus, isolated-module configurations would be

used to verify all functions of individual modules, so fh at when they were

integrated into clusters, all that would remain to be verified would be their

relative interfaces and interactions. This is the traditional "bottom-up"

integration/validation methodology.

Recent advances in software-development methodology, particularly an

increasing emphasis upon "top-down" testing, make it appropriate to question

these conventional assumptions, and to consider whether, for some modules, it may

be reasonable to de-emphasize isolated-module validation in favor of validation

at a higher level of integration. Table 5 . 2-1 provides an objective look at

the capabilities and limitations of validation exercises performed at each of

the above-defined levels of integration. These considerations are essential to

any effort to allocate overall simulation validation effort.

Y

5.2-4
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Can be executed offline (batch runs).

ho coding and debugging of drivers.

Allows extensive verification of module-to-module linkage.

Normal all-up	 To Validate Dynamic	 f ho coding and debugging of drivers.

simulator	 Adequacy of total	 I Allows complete verification of hardware and software
(hardware and	 Simulator System	 Interfaces.
software)	

Successful operation builds confidence in complete simulator
system,

Contributes to simulator acceptances.

allot explicitly in the scope of this study.

r	 •	 r

TABLE 5.2-1. CONSIDERATIONS RELEVANT TO•PERFORMING VALIDATION AT VARIOUS LEVELS OF INTEGRATION
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Generation of each driver represents extra coding and de-
bugging effort. (Development of "general-purpose" drivers
will reduce the cumulative effort, but sans: tailoring of
the driver to each module under test will still be necessary.)

For "trivially" sin•ple modules, the validation benefits may
not be commensurate with the effort of building the driver
and setting up and executing the check cases.
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operation.

^ fln
ty rrl

iv
ICn

J

UD
4M

._, _.	 -	 -	 ....,rte	 _.__., ....... 	 ........W



MDC E1136
27 January 1975

5.3 D1ECK CASE FORMULATION

This section deals with the problem of providing a thorough validation

exercise of a simulation in an efficient manner. Thoroughness is essential

to provide high confidence that the simulation will function properly over

its entire range of operation, and for long periods of time. Efficiency is

essential becLllse the simulation is large and complex, and validation will

require large expenditures of computer and personnel resources. 	 I

The topics covered in this section are check case design principles,

application of these principles to initial validation of modules and integrated

simulations, and application to revalidation of modules and integrated simu-

lations. Interestingly enough, the same principles lead to diametrically

opposite approaches for initial validation vs. revalidation.

5.3.1 Check Case Design Principles

Criteria for selection/construction of a set of check cases include thor-

oughness, efficiency, and order of execution; implementation methods include

manual selection, complete and incomplete factorial designs, orthogonal designs,

and random Olon to Carlo) variation of parameters.

5.3.1.1 Thoroughness

It is convenient to visualize the jperational range of a particular simu-

lation as a "parameter space" -- the range of values which its input parameters

(including time) are allowed to assume. The process of validation exercise then

consists of su p plying check case inputs which "sweep out" the parameter space

over a broad enough ranee and at a close enough spacing that vie become confident
	

1

that the simulation will perforn properly when given any input l ying in that.

space. Discrete and continuous regions of the parameter space must be considered
	

j-^	 3
separately.

Discrete regions of parameter space arise when a simulation has internal

logical breaks which result in different modes of operation for different values

of its input parameters. These internal logical breaks may be activated either

by input of discrete variables (failure flags, switch settinets, etc.), or by 	

4
input of continuous variables whose values cross over certain breakpoints in the

logic  (e, q., altitude ranges in an atEtosnhere routine, iaach-number ran ges in

aerodynamic tables).

5.3-1
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The range of variation of continuous input parameters should reflect the

spectrum of missions for which the simulator will be used, including nominal,

off-nominal, failure and abort caws. Within the simulation module, variation

of the values of its continuous input parameters may result in variations in

amplitude, frequency, linearity, or other attributes of its response in a
I_

smoothly-varying manner, rather than by discrete switching between modes of

i	 response.i
4	 5.3.1.2 Efficiency

Efficiency in this context refers to minimizing to the expenditure of com-

puter and personnel resources needed to attain a certain level of confidence

- in the fidelity of the simulation over its entire operational range. Effi ci enc^f
can be gained in two trays:

o By minimizing the total number of check cases needed to attain a given

level of confidence, and

`	 o By minimizing the resources needed to generate, execute, and interpret

each individual check c-se.
E:

The second approach is discussed in other sections of this report.

:'. useful viewpoint for attacking the minimization of the number of check

_.	 cases is ',`.he economic concept of "marginal utility". The marginal utility of a

7

	

	 check case is the increase in confidence derived if it executes successfully,

or the diagnostic information derived if it fails. To maximize the marginal

utility of each check; case, it is necessary to minimize inter-case redundancy.

That is, each additional check case must be made sufficiently different (in a

`

	

	 meaningful way) from previously-executed check cases that it provides new infor-

mation about the module performance, rather than just reconfirming what has already

been demonstrated.

AIthough in practical cases it is difficult to quantify the marginal

utility of a check case (or even to quantify the current level of confidence in

the simulation), even an intuitive understanding of the concept will help to

prevent over-validation in some regimes of o peration at the expense of under-

validation in other regimes of aqual importance. In conducting parametric

studies resr'tting in Performance curves, for example (see Sect. 4.9,2.2), t1 

5.3-2
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input points should be spaced just closely enough to define the shape of the

curve, as predicted from preliminary analysis or test data -- not necessarily

closely enough to draw a smooth curve starting from scratch.

5.3,1.3 Order of Execution

Obviously, the marginal value of a particular check case depends not only

upon the properties of that check case itself, but also upon the check cases

which have previously'been executed. To define an "optimum" ordering of

check cases, it is hel"pful to consider what will be known, and ghat decision

will result, if each check case passes, or if it fails. The cost of that

decision or sta12 of knowledge is then the cumulative cost of all check cases

which have been executed up to that point. This viewnoint has different impli-

cations for initial validation and revalidation.

5.3.1.4 Basic Check Case Selection/Construction Methods

Four basic methods of constructing sampling points in a parameter space

are the complete factorial, incomplete factorial, orthogonal, and random methods.

These four methods are shot-in for two- dimensional space in Fig. 5.3-1; however,

-

	

	 it is important to realize that the parameter spaces in simulation validation

will be many-dimensional.

In a complete-factorial parameter-variation scheme, every possible combination

-

	

	 of parameter values (for a fixed spacing in each dimension) occurs exactly once.

Thus, the checkpoints define a more or less closely-spaced grid spanning the

T

	

	 parameter space. As the number of dimensions increases, the number of checkpoints

increases explosively. For example (see Sect. 5,1.1), running all combinations

of low, nominal and high values for six continuous parameters, and all combinations

of on/off values for eight discretes will require 186,624 checkpoints. in an

incomplete-factorial scheme, the checkpoints still lie on a grid, but some of the

grid points are void. Although every individual parameter takes on every possible

value (for the given grid spacing) at least once, many possible combinations of

values do not occur.



m

(c) Orthogonal lines

(a) Complete Factori al 	 (h) Incomplete factorial	 x
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FIGURE 5.3-1 TWO-DIMENSIONAL ILLUSTRATIONS OF FOUR
METHODS OF CHECKPOINT GENERATION

(RECTANGLE REPRESENTS PARAMETER SPACE, S.)
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The orthogonal-line method is a further extension of the incomplete factorial

concept. Here all checkpoints lie on perpendicular lines, extending out to the

boundaries of the parameter space. The orthogonality of the lines tends to

achieve the goal of maximizing the difference between checkpoints, and the

limitation to these lines sharply reduces the total number of check cases, as

compared to factorial schemes. If the lines are skewed relative to the coordi-

nate axes of the parameter space, the basic benefit of the factorial schemes

the use of combinations of parameter variations -- is retained,

Random or Monte Carlo variation of input parameters is inefficient for

parameter spaces of few dimensions, but research in optimization methods has shown

that the relative efficiency of Monte Carlo methods improves as the dimensionality

of the problem increases (Rpf. 117) . Historically, Monte Carlo methods have

`	 been of greatest value in attacking complex problems which proved impractical

to solve by more systematic methods (Ref. 118). The checkpoints may be generated

by-a uniform distribution (i. e., with equal probability of falling anywhere in

the parameter space), or may be distributed more densely either in the nominal

operating regime or near the extremes, whichever is desired.

All of the above-described'methods are suitable for implementation in auto-

matic checkpoint-generation routines. Check cases may also be generated manually,

either using one of these basic methods, or based upon the analyst's intuitive

understanding of the system and its simulation requirements, and a "feel" for

what choices of input parameter values will provide the most information about

the simulation fidelity.

5.3.2	 Check Cases for Initial Validation

Check case ordering is an important aspect of initial-validation strategy,

both for modules and integrated simulations. The ordering of check cases for

initial validation should result in a more-or-less gradual process of ex andin

the envelope (by analogy to hardware testing and vehicle flight testing) . This is

based upon a pessimistic initial assumption (since nothing has yet been proven

about the module's capability) that, for some or all of its required operational

range, the simulation will fail to perform satisfactorily. 11hen it does fail,

it must be fixed, and some or all of the previously-executed check: cases repeated.

Therefore, ale wou l d like 1:v minimize the resources expended up to the paint of
5.3-5
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t
failure. Figure 5.3-2 depicts, in general terms, the relationship between objec-

tive confidence level and the number of chF:ck cases executed, for initial simula-

tion validation.

5.3.2.1 Initial Val i dati oi, of Individual  Modules

The first check case(s) presented to an individual module should verify

some minimal operational capability -- the simplest logical  fl ori, most linear

regime, etc. ('Again by analogy to hardware testinu, this is sometimes called a
"smoke test" (Ref. 119); "plug it in and see if it smokes.") Successive cases

become increasingly more rigorous, until the complete envelope has been attained.

The output data density also varies during the course of module validation.

Most or all of the performance parameters would be output in the early stages,

gradually sca?ing down to just the critical performance parameters as validation

progresses successfO ly. Failed check cases would probably be rerun w4 ch more

complete output for diagnostic purposes.

5.3.2.2	 Initial Validation of Integrated Simulations

At all stages of simulation integration (see Sects. 4.8, 5.2), the operational

modes of the individual modules, as well as the types and values of inputs tFey

receive, are determined basically by the overall mission phase and vehicle opera-

tional mode. Therefore, integrated-simulation check cases should be mission-

oriented sequences.

The process of envelope expansion in this context will consist of execution

of longer, more complete, and more rigorous mission segments. Starting with a

"mini-phase" or mission-phase segment, well within the nominal operational regime,

the duration would be extended out to include a complete mission phase, at the same

time that the forcing parameters -- trajectory parameters, failures, etc. --- are

made more extreme. when operational capability has been verified for mission

phases individually, the capability to progress from one phase to another, and

from nominal operation to abort modes, should then be verified.
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Most integrated-simulation validation will be based upon output of critical

parameters only. For diagnostic purposes in the event of check-case failure,

t pomplete performance parameter output from suspect areas may be obtained. However,

complete output of all performance parameters of the simulation may not be possible

within realtime constraints (see Sect. 5.4). In any event, a powerful data-handling

_	 system will be required to make effective use of so much data. 	 r

5.3.3- Check Cases far Revalidation

By contrast to tfie initial validation problem, revalidation strategy should
be based upon the optimistic assumption (due to prior successful experience with

the simulation before it was modified) that it wi ll perform satisfactorily over

its required operational range. Therefore, revalidation is treated as a process

of envy contraction. The process is started by executing a small set of

	

`	 check cases (ideally, a single check case) which, if successful, will verify
both the nomimal and extreme operational capability. 	 a

If the initial test results in one or more failures, progressively less

-

	

	 rigorous exercises are performed, until the root of the failure is uncovered.

Figure 5.3-3 depicts the relationship between objective confidence level and the

number of check cases executed, for simulation revalidation.

The data density is lour for the initial test (cri tical performance para-

meters only), and increased only for diagnostic purposes in the event of failure.

Check case "failure," of course, may be due to improper implementation of the

simulation modification,, or may simply mean that the old check case (retained

in the data base) has been invalidated by the modification.

5.3.3.1 Module Revalidation Check Cases

The initial check case for revalidation of a simulation module should be a

fairly long time-sequence of discrete and continuous inputs which forces the

,
module to select all of its operational modes, perform in its nominal operational

'	 regime, and operate out to its specification limits.

f = 	-
1
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Depending upon the magnitude and type of modification made, revalidation check

cases for the integrated simulation may be either complete mission phases or a.

short but complete end-to-end mission (either a once-around mission or a return-

to-launch-site abort). Table 5.3-1 suggests the scope of potential mission/mission

phase check cases for revalidation.

Each such check: case should provide a rigorous exercise of the all-up system,

in terms of trajectory parameters, maneuvers, visual and motion-base exercise and

synchronization, etc. Manual -inputs, such as stick motions and switch settings,

should be provided by a "canned man" (a pre-recorded data file) for check case

repeatability. For rapid and accurate evaluation, the maneuver sequences should

result in easily-recognizable decision points -- out-the-window views, insertion,

touchdown, stopping point on runway, etc.

As with all integrated-simulation operations, validation outputs should be

limited to the critical performance parameters.

5.3-9
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TABLE 5,3-1. SUM11AR Y OF 14ISSIONMISSION PHASE CHECK CASES.

cn

c.s

0

A

s

N

MISSIO11,10ISSIGH PHASE DESCRIPTION TYPICAL PERFORMANCE PARAMETERS

• LAUNCH TO TOUCHDOWN '	 o TOTAL SPACE MISSION WHICH INCLUDES ASCENT, ONE ORBIT a ATTITUDES AND RATES, ALTITUDE, RACH 114„ RANGE, RANGE RATE,

REVOLUTION, ENTRY, TAEM AND AUTOLAND ANGLE-OF-ATTACK.

• ASCENT a FLIGHT HI THE ATMOSPHERE POWERED BY BOOSTER SOLID ROCKET a ATTITUDES AND RATES; ALTITUDE AND ALTITUDE RATE, DOWNRANGE,

MOTORS AND ORBITER MAIN PROPULSION TO ORBIT INSERTION. START RANGE, VEHICLE VELOCITY.

• ON-ORBIT • CIRCULAR OR ELLIPTICAL EARTH ORBIT WHICH CAN INCLUDE ANY a ATTITUDES AND RATES; ORBITAL VELOCITY & ALTITUDE, PROPELLANT

ONE, A LL OR HONE OF THE OR-ORBIT MANEUVERS USAGE

—RENDEZVOUS — PHASE WHICH BEGINS WITH FIRST CATCH-UP MANEUVER AFTER a TARGET EPHEMERIS, RENDEZVOUS TIME, RANGE, RANGE RATE. AND

INSERTION AND CDIITINUES THROUGH BRAKING AND DOCKING ELEVATION ANGLE

— STATION KEEPING — INSPECTION OR WAIT PERIOD IN THE VICINITY OF THE a RANGE, RANGE RATE, LINE-OF-SIGHT RATES

TARGET VEHICLE

— PAYLOAD IIAIIDLI14G — DEPLOYMENT AND RETRIEVAL PROCEDURES FOR OIKHOIT • PAYLOAD ATTITUDE, RANGE, RANGE RATE, PAYLOAD SUBSYSTEM

PAYLOADS PARAMETERS
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MANFUVER THROUGH TIME START OF THE SUBSONIC FLIGHT DYNAMIC,PRESSURE, AERODYNAMIC HEATING RATES.

REGION.

• TAEM a THAT PHASE OF THE ORDITER'S REENTRY TRAJECTORY WHICH a ANGLE-OF-ATTACK. BANK ANGLE, SPEED BRAKE POSITION, M A.CH NO.,

STARTS WITH THE SUBSONIC FLIGHT REGION AMID CONTINUES ALTITUDE, HEADING, RANGE.

TO FINAL APPROACH. ,

• AUTOLAND m MISSION PHASE BEGINNING WITH THE FINAL APPROACH AND a ALTITUDE, SINK RATE, GLIDE SLOPE ERROR. LOCALIZER ERFIOR,
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5.4 REALTIME DATA ACQUISITION AND FORMATTING

This section discusses requirements and techniques for realtime acquisition

of performance parameter data from an operational all-up spacecraft simulator.

Although such data may be used for on-line manual monitoring or "quick look"

assessment of simulation performance, the basic purpose of the data is for

validation post- processing.

Reference 120 describes a similar application of realtime data acquisition

on the Shuttle Procedures Simulator, undertaken in support of the Crew Procedures

Development Techniques Study performed at NASA-dSC,

5. A.1 Data Acquisition Requi rements, Goals and Constraints

The basic purpose of the realtime data acquisition subsystem is to build

a properly-formatted data file of time-tagged data -- flight cretin inputs and

simulation performance parameters -- for later processing by validation service

routines. As a secondary function, it may be desirable to provide summary in-

structor/operator station CRT displays for on-line monitoring of the most critical

aspects of sinulation performance, or for "quick look" assessment of simulation

performance immediately after a.simulator run.

Since the data may be intended for use in'initial validation, revalidation,

or problem diagnosis, the data acquisition subsystem must provide capabilitiQs

for convenient variation of data density, both in terms of the number of para-

meters recorded and the sampling frequency; see Sect. 5.3. The data file must

be formatted in a manner consistent with other validation data files (see Sect.

4.10); that is, in time-tagged "pages" or "frames" of data of standardized arrange-

ment and format, preceded by a header frame of standardized type, and ending with

a standard end-of-file flag.

The data acquisition subsystem must be properly synchronized with the real-

time simulation executive, such that all data recorded in a particular frame is

actually updated as of the time shown in that frame. It must have access to all

simulation data common-storage areas, and appropriate data buffers and I/O

channels. i,ost importantly, the data acquisition system must not interfere with

realtime simulator operation s either by pre-empting required main storage or by

preventing the simulation from keeping up with real time.

5.4-1
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7{	 5.4.2 Data Acquisition Subsystem Design and Implementation

l	 Overall control, storage, and input/output relationships for the realtime

data acquisition subsystem are sketched in Fig. 5.4.-1.

5.4.2.1 Data Acquisition Control Module

The control module performs interfacing and synchronization with the simu-

lation, and controls buffering, manipulation and transfer of data to the output

file. Prior to the start of the simulation run, the control module performs the
b

following initialization functions:

(a) Accepts inputs defining the desired data density (number of output parameters

and sampling frequency), and instructions for formatting the Individual Para-

meter values and mapping them onto the output data frames. This information

is then written onto the data-file header block (see Sect. 4.10).

(b) Establishes linkages to the simulation common-storage blocks. This would

probably be achieved by use of the same basic common package support soft-

ware used for the simulation (CO14GEti or equivalent; see Sect. 5.1.2).

(c) Establishes linkages to the buffer areas and input/output channels provided.

This would normally be controlled by the host computer operating system.

5.4.2.2 Operational Interface with Realtime Simulation

Upon receipt of each "transfer enable" discrete from the simulation executive,

the data acquisition control module accesses the desired parameter values from com-

mon storage, and loads them into the buffer area. It may also be necessary to

pick up certain hardware-related variables (e. g., switch settings, visual and

motion-system parameters) from simulator I/O channels. Depending upon the update

cycle of the simulation software, multiple transfers may be necessary to acquire

all of the data required for a particular frame.

To prevent data acquisition from interfering with simulator realtime operation,

it may be necessary to restrict the size of the data acquisition software and its

associated buffers to conserve main storage, and/or to restrict the data-density

to conserve execution time. During execution, the priority of the data acquisition

function must be set low enough that, data-acquisition operations can be Deferred

or interruntnd	 the event that the simulation threatens to lose synchronization

with real time. This would lead to "dropouts" on the data file, and some com-

promise of its usefulness for validation. Such occurrences should be flagged by

the control module.	 5.4-2
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5.4.2.3 Data Buffering

A buffer area in main storage must be provided to hold newly-acquired data

while it is manipulated for formatting and output. This buffer area must be

`	 large enough to hold a complete frame at one time, since output will be in terms

of complete frame:,.

5.4.2.4 Data Manipulation

ils ;:^g the i ns tructi ons loaded at initialization time, the data acquisition
software will tame dafa from the buffer area, format it for output or display,

and transfer it out on the appropriate output channel. in its primary opera-

tional mode, generation of a data file for validation post-processing, the

formatting operations will consist of:
o formatting of individual data items (scaling, fired-point and floating-

-	 point formatting, packing, etc.). and
o frame generation (ordering outputs for the current frame, multiplexing,

etc.)

If secondary capabilities for realtime display are implemented, the selected

parameters from the buffer area will also be put out onto -tabular CRT displays

at selected update rates (consistent with human reading-speed limitations).

Display updates could be performed at fixed intervals, on the basis of the amount

of change in the parameters of -interest, or upon the occurrence of certain

discrete events. Realtime graphical displays may also be provided, if sufficient

computational time is available. Quick-look graphical displays could easily be

generated when the simulator is in "hold" mode.
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5.5 COMPARISON METHODS AND CRITERIA

When the reference data and simulation data for a particular check case or

set of check cases are both available in machine-readable, compatible form, the

comparison and evaluation may be implemented in either of two ways:

(a) Use the validation support software to display the reference and

simulation data in a form designed to enhance the ease and reliability
	 "f

of manual comparison and evaluation.

(b) Perform automatic comparison and evaluation within the validation support

software.

Automated comparison/evaluation is desirable on grounds of accuracy, internal

consistency, speed, and of course, cost. To be useful, however, it is essential

that automated comparison/evaluation methods give results which are consistent

with the subjective ,judgement of experienced simulation engineers.

Whether the comparison is performed manually or automatically, the level of
fidelity which is considered acceptable will vary for different modules, and for

different operational ranges and modes of a single module. For all modules, the

criteria for acceptability will become more demanding as a function of time, as

the vehicle, subsystems and environment become better defined, and higher-

confidence reference data becomes available.

.Whenever the fidelity of a particular module is judged to be unacceptable,

the normal response of the simulation staff would be to attempt to obtain acceptable

fidelity by tinkering with the "characteristic parameters" (gains, time constants,
and other coefficients) of the simulation module, before attempting a basic

redesign of the module. Although such techniques are not strictly within the

scope of this study, they are briefly discussed both for manual and automated

comparison methods.

5.5.1 Display Methods for Manual Comparison
The validation support software must provide a variety of tabulation,

plotting and processing capabilit'ss to present the reference and simulation data

in formats enabling efficient manual comparison and evaluation.

5.5-1
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5.5.1.1 Tabular Displays
4Iy	

Tabular displays, although ineffective for time-history data, are useful for

highly accurate single-point comparisons of reference and simulation data; for

example:

o The times at which certain discrete events occurred,

* Vehicle state variables at the end of a particular mission phase or

maneuver sequence -- ascent, rendezvous, etc.

s Summary or end-point variables, such as consumables.

Fixed-time comparison of matching variables from_ replicated modules,

such as IMU gimbal angles or bus voltages.

5.5.1.2 Raw-Data Plots

The most useful presentation for manual compar i son/eN a i ua •,i on will be time-

history over plots of reference and simulation data on the same axes, as shown

in Figure 5.5-1 .. This plot is scaled to give maximum resolution for the available

picture area, which results in uneven scale parameter. If ease of interpolation

or intercomparison of various plots in a set of data were desired, it would be

necessary to use preassigned scale factors. The support software must therefore

offer a variety of formatting and scaling capabilities, including logarithmic

scaling for parameters of broad dynamic range (e.g., atmospheric density).

Interpretation of time-history plots to modify module parameters for a better

match will require consideration of individual attributes of the response, such as

initial mismatch, oscillation frequency, damping, phase error, and steady-state

error. The subjective "weighting" assigned to the various attributes of the

simulation response will depend upon the context. For example, if the parameter

is to be integrated, steady-state error might be most important; but in a motion-

base or visual system, the initial response would be most important as a source

of cues to the pilot.

Depending upon the familiarity and complexity of the system:, it may be

fairly obvious which parameters should be changed to improve each attribute of the

response, or considerable experimentation may be required. This type of experi-

mentation is best done on via on-line graphic-display terminals (which were used

with coissiderable success in the DC-10 performance monitor development program).

5.5-2
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'- Therefore, the validation support system should include this software and hard- {,,

-.	 ware capability.

5,5.1.3	 Difference and Error Plots

Numerical differencing (differentiation) can be used as a check on smoothness

of a module's input/output response, in those cases where a module has discrete

switching between modes of operation, or uses a piecewise fit to cover its overall

_ dynamic range (e.g.,y	 g 	 atmosphere and aerodynamic routines). 	 Figure 5a5-2	 shows

the appearance of i-regularities at boundaries of the piecewise fit used in an :4

atmosphere routine, as amplified by the use of numerical differencing.,

It is also sometimes convenient to generate a plot of the error between the

simulated and reference data, appropriately rescaled.	 Fixed or percentage tolerance

bands can be simultaneously plotted on the same axes to aid evaluation.
^	 t

Figure 5.5-3	 shows an example error plot for an atmosphere routine. `-	
`:1

As with the raw-data plots, linear, logarithmic  and other foti m,^s of scaling -"

_ may be used, as a ppropriate to the range and type of parameter variation.

5.5.1,4	 Parameter-Plane Plots `
f

The "parameter plane" or "calibaration curve" format may be used to advantage
1

E

_ for certain static cfeck cases resulting from a parametric study. 	 In this format,

illustrated in Figure 5@5-4 , the reference value and simulation value for each

- checkpoint are used as the plotting coordinates. 	 Thus, a perfect match between ?}'

reference and simulation data, over the range of interest, will put all plotted

points on a diagonal line of unit slope (shown dashed in the figure). 	 Sias, scale '•

- factor, and other forms of error will result in departures from this ideal line. F	 ;

_ Fixed or percentage tolerance bands can also be placed on the parameter--plane plot,

as shown. 2
5_ 9

t

A special form of parameter-plane plot, which is useful for summarizing large
1

quantities of essentially static data, is the contour plot, in which contours

of simulation error value (or percentage) are plotted against two of the input

parameters of interest, over a range of variation. 	 Use of the contour plot,

where appropriate, can focus attention upon the regions of greatest inaccuracy of

a simulation module. 	 A hypothetical example is shown in Figure
a
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5.5.2 Automated Comparison Techniques

Computers are, of course, incapable of making subjective judgements about the

"goodness" of the match between reference and simulation data. An automated

comparison/evaluation program will perform some processing (which raay range from

elementary to quite complex) of the reference and simulation data, resulting in one

or more numbers which quantify the degree of mismatch. The mismatch value(s) are

then compared against criterion values provided by the validator, and the

simulation is thus classified as acceptable or.unacceptable.

F

r:

	

	 The experience and judgement of the validator are, of course, embodied in the

selection of the criterion values used to separate acceptable from unacceptable

performance. As stated above; the acceptance criteria will vary for different

modules, for different operational modes and regimes, and as a function of time.

Variation of simulation module characteristic parameters to improve the

match can easily be automated, since all quantities involved in the process are

available to the computer in numerical form. The match between simulation and

reference data can be "optimized" (relative to the comparison technique in use)

either by systematic or random perturbation of the module characteristic para-

meters. Descriptions of optimization algorithms (stepwise variation, gradient

search, Monte Carlo, etc.) are widely available in the literature.

5.5.2,1 Tolerance Bands

A very simple routine can be used to find the maximum error between the

reference and simulation data,

Emax = max 
I jr(t) -s (t) 1: 0 < t < T

and compare this to a preassigned tolerance. In some cases -- where the data

covers a wide dynamic range, but does not pass through zero --- it will be

appropriate to use the maximum percentage error, rather than the maximum absolute

error.

Where smoothness at certain representational boundaries is an important

criterion of simulation quality, tolerances may be applied to the first and/or

second differences (derivatives) of the simulation data,

5.5-9
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5.5.2.2 Integral Criteria

A variety of simple integral transformations may be used to convert the

mismatch between reference and simulation time-history data into a single number

for evaluation purposes. Several of these transformations are listed below:

Integral of error:	
fT

IE = o [r(t)-S(t)]dt

Integral of absolute,error:	 T

„	 IAE_f	 jr(t)-s(t)l dt

Time-weighted integral of absolute error:

IAET =	 jr(t)-s(t)Itdt

Integral of squared error:	 T

ISE_= f(r(t)-s(t)12dt

Time-weighted integral of squared error:

ISET _[[r (t) -s(t)]2tdt

The IE criterion appears at the outset to be too simple to be workable,

since errors of opposite sign will cancel, giving an unrealistically small mismatch

value. The squared-error criteria, ISE and ISET, as compared to TAE and IAET,

assign increasingly higher weight to large deviations, which seems a reasonable

thing to do. Even higher powers can be used, such as ME, 16E. The time-weighted

criteria, IAET and ISET, give higher weight to persistent errors than transient

errors, and higher weight to bias errors than to oscillating errors. Further

properties of various integral criteria are discussed in Ref. 121.

5.5.2.3 Feature Extraction

A potential problem in the use of the simple criteria described above is that the

individual attributes of the response -- frequency, damping, phase, etc. -- cannot

be individually identified in the result. It then appears desirable to devise

algorithms for processing time-history data to extract these individual attributes

of the response. If desired, a single numerical criterion could then be devised

by forming a weighted sum of the errors in the individual attributes; the weighting

could be varied with the simulation context, as previously indicated.

5.5-10
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Limited experience to date indicates that feature extraction is'likely ^o 'be
r

difficult for complex systems. Further work in this area should be undertaken.

^i

5.5.3 Agreement Between Manual and Automated Comparisons

A simple experiment was conducted to shed some light on how well the results

('-	 of automated comparison might be expected to agree with subjective judgements of

76-	 simulation fidelity.	 ..

5.5.3.1 Experiment Description
:i

The simple linear system shown in Figure 5.5-6 was forced with a unit step

input. With a selected set of parameters and zero initial conditions, the

'-	 "reference” time-history shown in Figure 5.5-7 was obtained. "Simulation" time-

;=	 history data was generated by using the same linear system, with random errors in 	
H

-	 parameters and/or initial conditions. Ten simulation cases were generated in

this manner. For each case, a time-history plot was generated for subjective

evaluation, while the - Pidelity was also evaluated by a number of objective

criteria. The resulting plots are shown in Figure 5.5-3 .

Copies of the ten time-history plots were made with uniform scaling, and

distributed to ten experimental subjects. All subjects were engineers at our

Houston Operations facility. The subjects were classified by their experience

in simulation: those in the "high" experience group had from one to fourteen

i	 years experience (mean of 6.0 ' years); those in the "law" experience group had from

zero to one year experience (mean of 0.4 years).

r

Each subject was instructed to rank the ten cases as to how well the

simulation data matched the reference data; the actual instruction sheet is

reproducted in Figure 5.5-9	 The subjects were not told what criteria to use

in this evaluation, nor informed as to the context of the simulation from which

the data were taken. Conversations with subjects following the experiment

indicated that the weight given to various response attributes -- initial response,

final error, oscillation amplitude and damping, etc. --- varied widely among

subjects; however, several subjects in the high experience group indicated that

they gave highest weighting to initial response characteristics, perhaps due to

familiarity with the role of visual/motion cues in simulators.
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7.	 This experiment wi11 take you only a i`e^r minutes.

2. The attached plots represent ten attempts to match a given

"reference" data tune-history t^rith a simulation program. On each

plat, the reference and simulation time-history data are plotted on

the same axe"s, Your task is to evaluate {ranks how well the ten

simulation i:rails succeeded in matching the reference data.

3. Spread cut the time history clots so that you Can easily see and

compare all of them. The plot vrhich, in your judgement, shot^rs the

best match betvreen the t^^ro curves should be ranked l; the next
}	 i

..	 best ranked Z; and so forth do^rn to the Hrorst match, which should 	 '

be ranked l0.

^.	 Take your time; lock them over. !dhen you are sure of ya^rr ranking,
^,

-.	 mark each plot with its assigned ranking in the top right corner;

circle i t. Then staple the entire se.t togethQr and return to

..	 P. B. Schoonmaker, E9l y , Beta.

5.	 Ttt maintain standard experimental conditions, please da not discctss

the experiment with anyene until it is completed.

b.	 Thank you i'or your cooparaticn.

-'

FIGURE 5.5-9	 INSTRUCTION 5NEET DISTRIBUTED TO SUB.lECTS IN EXPERIMENT.	 -^

,. -:^

,^	 _

1

cc 	rr̂̂ ^̂{{

	 y

J. ^"L`t	 ;^^i

,^
^S/il'C17l^NN^ZL 1CDt^d1^S.AS AiSSRC3NXi^?'l^" i GOIYAF^LB/014^ . 6s.A^T

^ ^	 ..	 ..	 ..,...y,.--^,.—.. ^	 _.._	 -_.-	 .._ ^._..^.._^.^_. ^. ^.^___^_ ..._...,^.._..^,v..__,..^_.___.Yr_.^.LL.,^,._,,s..^____.._..... .._^.^. _.__,^-_.^. -....____^^.__-^, _.__..n.a... _^. .... .^,..,..,^..... .. ..__ 	 _ Iw..^



^;

^±

^IDC E1136

^;	 2^ January I975^^
^;

^^-	 5.5.3.2 Subjective Comparison of Time-History Bata
r^

Table 5,5-1 summarizes the subjective ranking data -For all '^En subjects.
^.E	 c :.r

'^

	

	 As would be expected, the greatest unanimity is shotirn for the best 	 and worst

matches, with considerable scatter for the 'intermediate cases. Scatter would
k

}^'	 probably be lower in a real application, where the context of the data was known,

^`'	 and hence the relative importance of various response attributes would be better 	 _

understood.	 -

Table 5e5°2 compares the subjective rankings accorded by subjects in the

high and law experience groups. The low-experience data seems to show slightly

greater scatter, and same significant individual differences in ranking. As an

,::

	

	 objective measure of the comparability between the two groups, we use the "rank

correlation" given by

6^di`
r=1-

N (NZ -1 }

where di = the difference between the two groups' mean ranks for the i ts case

iV = the number of cases (1 O}

f For these data, r = 0.952, which is quite high (r is always between plus and

-	
^rt	

minus one). Overall, then, the differences between the two groups are not

_

	

	 important for these data. Differences with respect to individual criteria will

be evident in the following diSCUSSion.

5, 5.3.3 Comparative Flanking for Simple Cri teri a

-	 Table 505-3 shows the numerical values and resulting ranking for each of 	 ^^

the simple objective comparison criteria: maximum error, and the five integral

-	 ^ transforcnatians previously listed. the ten-subject mean subjective ranking (MSR} 	 '.'

is also shoti^^n for convenient comparison. The IE criterion must be converted to

absolute value (AIE} to make any sense at a11; and as expected, it shows some

^^	 wide departures from the results for the other criteria. Mote that IAE and ISE

gave the same objective ranking for these data.

	

Table 5,5m^` summarizes the comparison of subjective and objective ranking 	 _
F

^

	

	 for the simple mismatch criteria and the mean objective rank (hiOl^), using the rank

correlation algorithm previously shown. Correlation values are shown -For all

subjects, and separately for the high and low experience groups. As expected,
,^
^;',

3

^rs^^eorrarerc^^ ^oa^^^tas sasrtsrc^re^rausr^s ^c,^rarr^.c,r+^^- q rc.c;sa

\. -:	 ^	 .. -	 _	 ..	 _	 ..	 _	
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TABLE 5a5w2 . SUBJECTIyE RRf'lKING FOR DIFFERENT EXPERIENCE GROUPS 	 :'

RANKING 6Y INDIVIDl3AL St18^ECTS ^	 RANK SPREAD

CASE "High" Experience "Lnw" Experience High Bean Low

1 2 3	 4 5 6 7 8 9 IQ

I 9 9 IO	 9 9 IO 9 9 IO IO 9 9.4 10

2 2 2 2,	 2 2 2 2 2 1 2 I 1.9 2
3 5 7 8d	 6 5 5 5 7 5	 ,, 8 5 6.3 8

4 8 5 5	 8 7 8 4 4 2 5 2 5.G 8
5 7 6 7	 7 8 7 8 8 G 7 6 7.1 8
6 4 3 3	 3 3 4 3 3 4 3 3 3.3 4
7 ] 1 1	 1 1 1 1 1 3 1 1 1.2 3
8 5 4 4	 4 5 6 7 5 7 4 4 5.2 7
9 10 10 9	 IO IO 9 I4 1Q 9 9 9 9.6 IO

10 3 8 S	 5 4 3 5 6 8 6 3 5.4 8

^.._,'

RANK SPREAf3

GASE "High" Experience "Low" Experience

High ^Cean	 Lntrr High Nfean	 Law

1 9 9.2	 IO 9 9.6	 IO

2 Z 2.Q	 2 I 1 .$	 2

3 5 5,4	 8 5 6.2	 8

4 5 6.6	 8 2 4.b	 8

5 6 7.0	 8 5 7.2	 8

6 3 3.2	 4 3 3,4	 4

7 I 1.0	 1 1 1.4	 3

8 4 4.6	 6 4 5.8	 7

9 9 9.8	 10 9 9.4	 10

10 3 5.2	 8 3 5.6	 8

^^RODUCISILI'i'Y OF `^E	 9

5.525	 ^r^A.L ^P^GE ^$^ ^'U4^	 ^ '.

^ir^\r iF F.}IM^A^i.^ .V ^Fi..l^.1f4NJr'^ ^^Jr^1rLI^V^^.^1 ^^M1S^ QiV1Yf ^^.^V^a ^^ ^y i

'^ ay ;.Yk^.^y9Y..'.
	 1-.::d	 ....-^..:T15wY.-:ik:^ V ,..yM%id':+++i-i"'.i,:- +.iw
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CASE ^ESR

M^S1^A7•Ckf VALDE/BARK RACK SPREAD

Emax	
AIE	 IAE	 1AE7'	 I5E	 ISEi' High	 Mean Lqw

7 9.4 Q.879 Q,422 2.948 11.203 1.417 4.286
9 4 9 9 9 9 4 8.17 9

2 7.9 .753 .678 .618 7.789 .055 .747
2 .6 2 3 2 2 2 2.83 6

3 6.3 .753 °1.781 1.792 5.931 .620 1.67
8 9 8 ^' 8 7 7 7.83 9

4 5.6 .570 .406 .883 7.903 .233 .293
fi 3 5 4 5 4 3 4.50 6

5 7.i .472 1.623 1,628 6.282 .432 1.328
5 7 6 8 6 8 5 6.57 8

6 3.3 .231 .2Q6 .657 1.782 .Q94 .778
4 7 3 2 3 3 7 2.57 4

7 1.2 .738 .270 .287 .6iQ .023 .Q29
7 2 7 7 7 7 1 7.i7 2

8 5.2 .i87 .579 .857 4.ii6 .099 .478
3 5 4- 5 4 5 3 4.33 5

9 9.6 i.Q89 3.732 3.732 72.289 2.762 5.104
i0 7Q 10 70 i0 i0 10 10.00 70

i0 5.4 .730 1.748 1.748 4.b22 .571 .823
7 8 7 6 7 6 6 6.83 $

5.5m27
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^^^^'	 the AIE criterion shows the poorest results, and should therefore not be used as 	 ''`

^^	 an eval uation method,
^.i	 ^	 ^_ ^	 ,.^;

^4	 One apparent difference between the high and low experience groups is evident	 ^	 F,

:;	 in their correlations with the time-weighted criteria, IAi=T and ISET. The low,^

;^	 experience group apparently gave higher weight to persistent .errors, as s pawn by

.^^-	 the fact that the correlation with IAET was higher than with TAE, and their
rEf;_	

correlation urith ISET was higher than with TSE. This carried through to the all-,;:

'-	 subjects carr •elations; but results were mixed for the high experience group.
3	 p ..<

^;

Overall, the maximum-error criterion seems less useful than any Qf the

' 3 	-integral criteria, and the squared-attar criteria seem better than the absolute-

error criteria. On the basis of these limited data, then, trte would make the 	 a

^=-	 fo11 awl ng recommendations for simple mismatch cri teri a

^^.:	 ^	 ^a^ Use ISE for cases where i nitial dynamic response is important,
5`

';r	 such as visual, motion, and instrument-readout inputs.

{b) Use ISET for cases where persistent errors are undesirable, particularly
,.

variables which lie upstream of integrators in the system.

5.5.3.4 Comparative Ranking for feature Extraction

4:	 The features which were considered potentially important in subjective

-	 evaluation of mismatch were initial position, initial slope, and final value of

the total response curve, and the frequency, damping, amplitude and phase of the

`_	 Oscillatory component. Even for the simple dynamical system used for this

4	 experiment, the oscillation frequency amplitude and phase proved surprisingly

-	 difficult to extract. This would seem to indicate that they may be particularly

^'--	 difficult to extract far comple^c dynamical systems. Therefore, the value of thea.

-	 first pea[c was used as a rough indicator of the oscillation amplitude, and the

time of the first peak as a rough indicator of the initial phase of the
z	 .

;-	 oscillatory component of the response.

i.

-^

	=	 Table 5.5-5 summarises tl^e correlation of errors in these response features

or attributes with the subjective ranking of the experiment time-history data.

A11 rank correlation values are rather low, indicating that no individual

	

-	 attribute is dominant in the subjective evaluation of fidelity, at least for

^^

-.
,	 these data.

5.5-za
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TABLE 5.5-4. SUBJECTIVE/OBJEGTIVE EVALUATION COMPARABILITY FOR
SIMPLE MISMATCH CRITERIA

Si16JECT
RANK CORRELRTION V5. CRITERION

GROUP
Emax

AIE	 IAE IAET ISE ISET MG►R

High experience 0.919 0.536	 0.990 0.931 0.940 0.945 0,931

Ail subjects '.905 .558	 .946 .954 .946 .971 .943

Low experience
f

.872 .562	 ,933 .959
4

.933 .979 .935

TABLE 505-5 . SUB^7ECTIVE/OBJECTIVE EVALUATION COMPARABILITY

FOR FEATURE-EXTRACTION DATA

' RANK CORRELATION V5. ATTRIBUTE
SUBJECT
GROUP Initial

Value
Initial
Slape

Final
Value

^
Frequency Damping

First
Peak

Fi rst-peak
Time

High experience 0.451 0.594 0.422 0.749 0.586 0.596 0.900

Ail subjects .528 .547 .524 .750 .617 ,649 .377

Low experience .586 .482 .608 .732 .630 .673 .336

i
f

^ .^

14

:^
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i=or feature extraction to be usefU7 in automatic co^tparison and evaluation

of simulation data, further development will be regraired in two areas:

(a^ pev^7op^nent of efficient! reliabl y algori-^hms for extraction of

individual response attributes from time—hisi:ory data.

(b} Formulation of a composite performance index -- i.e. a ^rdeighted.
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^,	 SECTIOPi 6

COfdCl.^7SI0^lS APiD ftECOt^9iF1E@^iDATIOEiS

Conclusions and recommendations compiled from a71 sections of this report

are I i steel bet a4•r. The numbers } i n parentheses after each item indicate the

sectian^s} in t•rhich supporting rationale may be found. The conclusions and

recor^mRndati ons are listed i n the order of the section i n vrh i ch first mentioned;

na ranking of importance is implied.,

7 ." Si mul ati an vat i daft an should 6e performed by a staff vrhi ch i s organizationally

independent of the staff responsible far simulation deveiopme^^t (3.0}.

2. Simulation validation must be performed at the isolated module level, at

intermediate stages of integration, and i n the final al i-up man-i n--coop

configuration (3.0, 5.2}.

"s. Attention should be conceni:rated upon the "critical" performance parameters

of each simulation module in performing simulation validation (4.0, ^.1,

5.3.2j.	 •

	

'^.^.	 ^. Each of the four types of reference data source -- closed-form soiuti^ans,

imdependen t math models, existing analysis/simulation programs, and test

data -- has particular advantages and disadvantages far simulation va1i--

datian. (^.2}.

5. t9ost si mui ati on modui es tri 11 require 6at4^ static and dynamic cF^eck cases

for thorough validation (4.x.7, 4.7}.

5. i.ibraries of existing simulation routines offer many candidate reference

•	 modui es far vat i elation. Hot^rever, modifications t^ri I i be necessary i n many

cases (4.2.i.3, 4.7}.

7. Driver routines must be developed far module validation exercises: both to

provide the inpui.s representing interfacing modules, and to ensure format

compatibility bett^reen the reference and simulation data t4.7, 5.1,2, 5.2}.

8. The integrationJvaiidation sequence for a simulation should be based upon the

natural "clustering" structure of strongly-interacting m©doles. Efficiency

grill be improved by scheduling module deveiopr;^ent to be consistent frith this

module integration/validation sequence (4.8}.

	

.,	 9. Eari^► estabiisi^r,^ent of trorking interfaces faith cor7por}ent and system test

	

---	 groups trill help to ensure timely access to appropriate reference data under

desired tes : c^andi ti ons (^. g} .
b-I
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^	 10. Servi ce routines Sri 1 i 	 be requi red for printout, plotting, data hand1 i ng, data jj	 ,

' comparison, and vali dati an data base r^anagement. 	 An early start an the de-
1..`

.

.	 - vet oprtent of these service routines i s requi red to ensure that they :•ri i l 	 be ^<

available ti •rhen needed (4.10, 4.11, 5.1). ^
^^	 -^

17.
.

For efficient development of the required service routines, "customized" ^'.

softlrare should be minimized by the early and unifor^t application of certain -`	 <^'.^

standards • ^`r	 ' ^''
a)	 Data formats and fi i e structures for reference and simulation data

^	 ^:.
^`^	 `r,

files	 {4.10.2;	 5,4}„	 ^
^,
^

b}	 Data base management system implementation consistent tirith CODA5YL `^-3

standards	 (4.11.
=_^	 ^^^
:_;..

c)	 tladul e/driver interfacing {using COtiGE^^ or an equivalent support ^	
^`

saft;•rare pacE:age)	 {5.1.2}. ^'̂ "

`	 12. Hand entry of non-r:!acliine-readable reference data into the computer is not =`^''`-_ t	 `^

recommended.	 Corresponding simulation data should be output in compatible A.,x^

formats for manual comparison and evaivation (4.10.2)• ``f	 ^^
_	 13. A thorough "make or bu^^" analysis should be performed before undertaking the -^	 '.J '"^	 c:-.

^ implementation of a data base management syster^ far the validation data base ^'`

{4.I1}.
's	 :.

1'^. For al i-up simulation validation, use of a "canned man"	 {prerecorded manual ^	 ,^

inputs) is pre'rerahle to roan-in-loop operation {5.2, 5.3}. i4	 -,^

i5. Efficiency and thorough exercise are the basic criteria f:^r check case ^^	 `^`^
_^	 :,

design/selection	 (5.3}. .F	

,i

-;	 =^

16. For initial	 validation of a simulation, check cases should be sequenc4d on
-'^:

t,

. the basis of steady expansion of the operational envelope; the oppn5ite ^=^^:.

approach i s recormtended for revalidation fa 11 oL^ri ng modifications { 5.3.2,

5.3.3) .

;1:,,.
:^	 -:,:

1?. The acceptable fideiity for a simulation varies with time, as the system ;,	 ,

^ being simulated becomes better defined, and more accurate reference data :'^^~

r becomes available {5.5). ^

10. Rutortated car^parison techniques :^rhich correlate trell with the subjective ^`:`^`

judgersent of experienced simulation engineers are presently available.
;;a

;^X,^

Hn^^tever, further development of "feature extraction" 	 techniques i5 `^
^

recommended (5.5.3).
3

`'
''	 9

`^
.,	

^1
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