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"_ FOREWORD 

The  report  describes  the  development  of  the  Tridiagonal  Reduction  Method 

for  real  eigenvalue  analysis  and  the  implementation of this  technique  in  NASTRAN. 
A follow-on  report,  Part 11, will  subsequently  be  issued  for a complex eigenvalue 
version  of  the  method. 

All  major  steps in the  analytical  development  are  documented.  In  addition, 
a  detailed  summary of the  computational  procedures,  explanatory  flow  diagrams  and 
user  data-preparation  instructions  are  provided. 
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SYMBOLS 

Latin 

a 

C i 
d 

2 

f 

m 

m ij 

n 
- 
n 

9 

r 

r 
- 

r 

t 

i 

a 2 

E 

A, x 
x a 

general  element of reduced  eigenmatrix 

participation  factor  for  ith  eigenvector, {Xi} 

off-diagonal  element of reduced  tridiagonal  matrix 

normalization  factor  for  v-vectors  and  approximate  off-diagonal  element 
of  reduced  tridiagonal  matrix 

number  of  previously  calculated  modes 

element  of [K ] matrix aa 
size  of  reduced  eigenproblem 

element  of [MI matrix 

size  of the full,  unreduced  eigenproblern 

number  of  non-null  columns  or  rows  of [MI matrix 

total  number  of  desired  eigensolutions,  including  those  previously 
computed 

desired  number  of  new  eigensolutions 

rank  of  the  matrix [MI 

maximum  possible  size  of  reduced  eigenproblem 

weighted  root-mean  square  residual 

number of  decimal  digits  carried  by  computer 

Greek 

small  negative  shift  parameter  for  vibration  problems 

tolerance  for  rejecting  small  elements  of [MI 

exact  and  approximate  values  of  inverted  and  shifted  eigenvalues 

physical  eigenvalue 
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shift  in  physical  eigenvalue 

exact  and  approximate  buckling  eigenvalues 

w "w 

bound on the  absolute  relative  error  in  ith  physical  eigenvalue 

center  of  frequency  range  of  interest 

exact  and  approximate  circular  natural  frequencies 

2 2  
0 

Matrices  and  Vectors 

vector  of  scalar  coefficients 

tridiagonal,  reduced  eigenmatrix 

eigenmatrix  for  the  inverse  problem 

[Dl [E] , symmetric  matrix 
lower  triangular  Cholesky  factor  of  decomposed [E] 
6lagoIiai Iactvr 01 decomposed [ K j  

symmetric  orthogonality  matrix  for  the  inverse  problem 

defined  by  Equation (21), Section 2.2 

upper  Hessenberg  matrix 

identity  matrix 

stiffness  matrix 

effective  stiffness  matrix  after  eigenvalue  shift 

stiffness  matrix  for  analysis  set 

differential  stiffness  matrix  for  analysis  set 

lower  triangular  factor of decomposed [E] 

equal  to  [Maal or [ICaa] d 

- 

mass  matrix  for  analysis  set 

residual  vector 
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[VI  matrix of v-vectors  assembled  column-wise 

CV 1 trial  vector 

CW 1 pseudo-random vector 

{XI eigenvector of the symmetric  inverse  problem 

€X1 

CY 1 eigenvector of the reduced  problem 

121 exact modal  matrix 

- 
previously  generated  eigenvector 

($1 ,  exact  and approximate  physical eigenvector 

[‘Ad-] diagonal  matrix of exact  eigenvalues 
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1. INTRODUCTION "- 

The Tridiagonal   Reduct ion  or  FEER Method i s  an  automatic   matr ix   reduct ion 

scheme  whereby the   e igenso lu t ions  i n  the  neighborhood  of a s p e c i f i e d   p o i n t   i n   t h e  

eigenspectrum  can  be  accurately  extracted  f rom a t r idiagonal   e igenvalue  problem 

whose o r d e r  is much lower  than  that  of t h e   f u l l  problem.  Specif ical ly ,   the   order ,  

m y  of  the  reduced  problem is never   g rea te r   than  

m = 26 + 10 

where q is t h e   d e s i r e d  number of a c c u r a t e l y  computed eigenvalues.  Thus, t h e  

i n t r i n s i c  power o f   t he  method l ies  i n   t h e   f a c t   t h a t   t h e   s i z e  of the  reduced 

eigenvalue  problem is of   the  same order  of magnitude as t h e  number of   desired 

r o o t s ,  even  though  the  discret ized  system model may possess  thousands of degrees  

of  freedom. The process  is effected  without   arbi t rary  lumping  of  masses o r  

o t h e r   p h y s i c a l   q u a n t i t i e s  a t  se lec ted   node   po in ts   and   thus   avoids   one   o f   the  

basic  weaknesses of t h e  Guyan Reduction Method (Reference   [ l ] )  and o ther   t ech-  

niques  (References  [2]   and  [3])   requir ing a jud ic ious   s e l ec t ion   o f   t he   deg rees  

of freedom t o   b e   r e t a i n e d .  

- 

Tridiagonal   reduct ion w a s  f i r s t   s u g g e s t e d  by Crandall  (Reference [ 4 ] )  as 

a truncated  version  of  the  Lanczos  Algorithm  (Reference  [5]).  However, i t  w a s  

soon   d i scove red   t ha t   t he   o r ig ina l  scheme posses sed   numer i ca l   i n s t ab i l i t i e s  

(References [6]  and  [7]).  The necessary  improvements t o   c o r r e c t   t h e s e  weak- 

nesses  were made by  Ojalvo  and Newman (Reference [ 8 ] )  who were t h e  first t o  

develop a s u c c e s s f u l   t r i d i a g o n a l   r e d u c t i o n   p r o g r a m   f o r   l a r g e  scale s t r u c t u r a l  

vibrat ion  problems.   Further   ref inements  were la ter  introduced by Newman and 

Pipano i n   t h e  FEER computer  program  (References [9] and   [ l o ] ) ,   i nc lud ing   t he  

fol lowing  extended  features:  

1. Highly  eff ic ient   numerical   computat ion schemes  which t a k e  
advantage of matrix  banding and s p a r s i t y .  

2. Calculation  of  upper  and  lower  error  bounds on t h e   e x t r a c t e d  
eigenvalue estimates. 
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3. Accommodation of s i n g u l a r  mass mat r ices  and s t i f f n e s s  matrix 
s i n g u l a r i t i e s   a s s o c i a t e d   w i t h   r i g i d  body  modes. 

The las t  capabi l i ty ,   which  is a l s o   p r e s e n t   i n   t h e   I n v e r s e  Power  Method 

with  Shifts,   overcomes a bas ic   res t r ic t ion   o f   the   Tr id iagonal   (Givens) 'Method,  

namely, the   need   to   e l imina te   mass less   degrees  of freedom. 

From the  s tandpoint   of   computat ional   speed,   the   Tridiagonal   Reduct ion 

Method is  almost as f a s t  as the  Givens and  Householder  methods  (References [ll] 

and  [12]) when a l l  t he   e igenso lu t ions  are ca lcu la ted ,   and  becomes i n c r e a s i n g l y  

more e f f i c i e n t   a s   t h e  number of requi red   e igensolu t ions  is reduced .   In   addi t ion ,  

in   o rder   to   avoid   p rohib i t ive ly   long   running  times, both  the  Givens  and House- 

holder  methods requi re   the   use   o f  a r e l a t i v e l y   l a r g e   c o m p u t e r   c e n t r a l  memory 

for   even  moderate   problem  s izes ,   whi le   the  Tridiagonal   Reduct ion Method is ex- 

t r eme ly   e f f i c i en t   w i th   r ega rd   t o   co re   r equ i r emen t s .  

As shown in  Sect ion  2 .1 ,   the   Tridiagonal   Reduct ion Method employs  only 

a s i n g l e   i n i t i a l   s h i f t  of   e igenvalues   and  hence  usual ly   requires   only  one  matr ix  

decomposition. LC consequent ly   t ends   to  be much more e f f i c i e n t   t h a n   t h e   I n v e r s e  

Power Method when more than  one or  two e igensolu t ions  are required.  

- .  

This   report   descr ibes   the  development   of   the   Tridiagonal   Reduct ion Method 

and i ts  implementation i n  NASTRAN f o r  real e igenvalue   ana lys i s  as typ i f i ed   by  

s t r u c t u r a l   v i b r a t i o n  and  buckling  problems. 

1. F o r   s t r u c t u r a l   v i b r a t i o n  mode a p p l i c a t i o n s   t h e  method extracts 
a prese lec ted  number of  eigenvalues  which are c l o s e s t   t o  a 
s p e c i f i e d   s h i f t   v a l u e ,  Xo, ra ther   than  computing  the  e igenvalues  
i n  a prescribed  range. 

2. In  buckling  problems, a prese lec ted  number of  eigenvalues  of 
smallest   magni tude  are   obtained,  i .e . ,  no s h i f t i n g  is performed. 
Phys ica l ly ,   th i s   impl ies   tha t   the   buckl ing   load   parameters ,  
whether   pos i t ive   o r   nega t ive ,  are computed i n   o r d e r   o f   i n c r e a s i n g  
magnitude. 
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The b a s i c   s t e p s  employed i n   t h e  method are as f o l l o w s .   F i r s t ,   t h e  

i n i t i a l  eigenvalue  problem 

is converted t o  a symmetric inverse form 

where 

A =  1 

ha - x. 
and X. is a s h i f t   v a l u e  which is used  only i n   s t r u c t u r a l   v i b r a t i o n  mode 

app l i ca t ions .   Second ,   t he   t r i d i agona l   r educ t ion   a lgo r i thm is employed t o  

transform  Equation (3) i n t o  a tridiagonal  form  of  reduced  order.   Third,   the 

eigenvalues  of  the  reduced  matrix are ex t rac ted   us ing  a Q-R a lgori thm similar 

to   t ha t   desc r ibed   i n   Re fe rence  [13]. Fourth,   the  corresponding  eigenvectors 

are computed  and conver ted   to   phys ica l  form. F ina l ly ,   upper  and  lower e r r o r  

bounds  on the   ex t r ac t ed   e igenva lues  are obtained. 

The development  of t h e  method is set f o r t h   i n   S e c t i o n s  2 t o  6 .  A 

d e t a i l e d  summary of the  computat ional   procedures   used  in  NASTRAN, explanatory 

f low  d iagrams  and   user   da ta   p repara t ion   ins t ruc t ions  are provided i n   S e c t i o n s  

7 and 8. In   add i t ion ,   u se r   i n fo rma t ion  and e r r o r  messages  and opt iona l   d iag-  

nos t i c   ou tpu t   r e l a t ing   t o   t he   T r id i agona l   Reduc t ion  Method are d e s c r i b e d   i n  

Sect ion 9. 
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2. THE TRIDIAGONAL REDUCTION METHOD 

2.1  Preliminary  Operations 

The problem is t o   f i n d  a s p e c i f i e d  number of real  eigenvalues   and  corres-  

ponding  e igenvectors   for  

It is f u r t h e r   r e q u i r e d   t h a t   t h e s e   e i g e n s o l u t i o n s   c o n s t i t u t e  the set l y i n g  

c l o s e s t   t o  a s p e c i f i e d   p o i n t ,  Xo, in   the   e igenspec t rum.  

The d e f i n i t i o n s  of the  e igenvalue,  ha,  t h e   m a t r i c e s  [K] and [MI, and 

their   mathematical   propert ies ,   depend  on  the  type of problem  being  solved  within 

t h e  NASTRAN environment.  For  real  analysis,  which is t h e   s u b j e c t  of the   cu r ren t  

repor t ,   on ly  two separate   problem  types  need  be  considered;   s t ructural   v ibrat ion 

and  buckling  problems. The m a t r i x   d e f i n i t i o n s  and   mathemat ica l   d i s t inc t ions   for  

t h e s e  two cases  are summarized on the  following  page. 
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Problem 
Type 

- 
S t r u c t u r a l  
Vibrat ion 

Modes - 

- 

Buckling 

- 

u 

TABLE 1 - ProbIem  Fornidations 

quant icy D e f i n i t i o n  NASTRAN 

negat ive ,   semidef in i te  IKaal a n a l y s i s  set 
Symmetric, non- S t i f f n e s s  Matrix - 

P r o p e r t i e s  Notation 
Most General 

[KI 
m a t r i x  

EM1 Mass Matrix - 
a n a l y s i s  s e t  [Ma,] 

Square  of a 

frequency 

S t i f f n e s s  Matrix - Symmetric,  positive- 
a n a l y s i s  set  rKaal d e f i n i t e   m a t r i x  

D i f f e r e n t i a l   S t i f f -  

Same 

x P o s i t i v e  w c i r c u l a r   n a t u r a l  
2 

a 

[ K l  

[MI ness  Matrix - d Symmetric, i n d e f i n i t e  
[Kaal matrix a n a l y s i s  s e t  

Buckling Load 
a Parameter I 

1 
P o s i t i v e   o r   n e g a t i v e  

The essent ia l   mathemat ica l   d i f fe rences   be tween  the  two types  of  problems 

cen te r   a round   t he   p rope r t i e s  of t h e  [MI matrix,  which is non-negat ive  for   vibra-  

t i o n  mode problems,   but   indefini te   for   buckl ing  problems,   thereby  permit t ing  the 

ex is tence  of bo th   pos i t i ve  and nega t ive   e igenva lues   i n   t he  l a t t e r  case. In   addi -  

t i o n ,   t h e   s t i f f n e s s  matrix may.be   s ingular   for   v ibra t ion   problems  whi le  i t  i s  al-  

ways p o s i t i v e   d e f i n i t e   i n   b u c k l i n g   a p p l i c a t i o n s ,   w h i c h   i m p l i e s   t h a t   t h e   b u c k l i n g  

a n a l y s i s  is performed  on a k i n e m a t i c a l l y   s t a b l e   s t r u c t u r e .  

I n  summary, t h e  two problems  under  consideration are of   the  forms 

- w M ]&$I = 0 2 
rKaa aa ( s t r u c t u r a l   v i b r a t i o n s )  (2a) 

and 

F u r t h e r ,   i f   t h e   u s e r   r e q u e s t s   v i b r a t i o n  modes i n   t h e  neighborhood  of a 

spec i f ied   f requency ,  w Equation  (2a)  can  be  writ ten as  
0’  
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I 

where 

and 

h ' = w  - w  2 2  
0 (4b) 

The r e s u l t i n g   e f f e c t i v e   s t i f f n e s s  matrix, [E], is i n d e f i n i t e   i n   t h i s   c a s e ,   s i n c e  

i t  posses ses   bo th   pos i t i ve  and   nega t ive   e igenvalues .   This   requi res   tha t  a non- 

square  root  decomposition scheme be  used i n  subsequent  operations.  However, 

w = 0 is taken as a d e f a u l t   v a l u e ,   o r  it may be   spec i f i ed  by t h e   u s e r .  I n  t h i s  

case,  a s p e c i f i e d  number of na tu ra l   f r equenc ie s  start ing wi th   the   lowes t  w i l l  be  

computed. I n   o r d e r   t o   u t i l i z e  a more e f f i c i e n t  Cholesky  decomposition  of [E] 
under   these  condi t ions,  a small n e g a t i v e   s h i f t  h = -a ( see   Sec t ion  5) is used, 

y i e l d i n g  

0 

2 
0 

and 

It i s  easy t o  p r o v e   t h a t   t h e   r e s u l t i n g   e f f e c t i v e   s t i f f n e s s  matrix [k] is 

pos i t ive   def in i te   p rovided   tha t   the   sys tem masses g e n e r a t e   p o s i t i v e   k i n e t i c  

energy  due  to   any  kinematical ly   admissible   r igid body motions of t h e   s t r u c t u r e .  

This  requirement i s  a lways  s a t i s f i e d  by the  mass m a t r i x   i n  a phys ica l ly  w e l l  

posed  problem,  thereby  allowing a Cholesky  square-root  decomposition  to  be  per- 

formed when t h e   r o o t s  are computed i n   t h e  neighborhood  of  zero.  Since  no  shift- 

i ng  i s  performed in   buck l ing   p rob lems ,   t he   e f f ec t ive   s t i f fnes s  matrix is 

[E] = [Kaa], which is  a lways   pos i t ive   def in i te ,   aga in   permi t t ing   the  use  of a 

Cholesky  decomposition. 

I n  any  event, a decomposition  or  factoring  of [E] is  next  performed: 

[E] = [Ll  [-a,] [LIT  ( sh i f ted   v ibra t ion  mode problems)  (6a) 

o r  

[El = [ C I [ C I T  (buckling  problems o r   v i b r a t i o n  (6b) 
modes in   the  neighborhood of 
zero  desired)  

- 7- 



-where [L]  and  [C]  are  lower  triangular  factors  and [-d,] is  a  diagonal  matrix. 

To facilitate  computation  of  eigenvalues  closest  to  the  point  of  interest 
within  the  eigenspectrum,  inverse  forms of the  eigenvalue  problems  are  employed, 

as  in  the  Inverse  Power  Method  with  Shifts.. 

The  general  form  of  the  inverse  problem  may  be  written  as 

where  the  above  terms  are  defined  as  follows: 

TABLE 2 - Inverse  Eigenproblem  Definitions 
Problem I r ~~ 

Shifted 
Vibration 
Modes 

-1 T -1 -1 
[Ma,] [L 1 Fd-1 [L 1 [Ma,] 

2. Unshifted 
Vibration 
Modes  (in 
the  neighbor- 
hood of zero 
frequency 

[Ma,] rc 1 -1 T 

I 3 .  Buckling 
Modes 

ID1 

[I1 
(1dent.ity 
Matrix) 

The  above  triangular  matrix  inverses  are  treated  as  purely  operational 

symbols,  since in actual  numerical  computations  vectors  defined,  for  example, by 

are  obtained  from  the  solutions of 
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employing  forward  and  backward  passes. 

2.2 The  Reduction  Algorithm 

A reduction of the  order of the  eigenvalue  problem,  Equation (7), is 
effected  through  the  transformation 

where {z} is  an  approximation  of {X), n is the  order of the  unreduced  problem, 
and  m 5 n.  The  transformation  matrix  is  taken  to  be  orthonormal  to [ D l * ,  so 

that 

From  Equations (7), (lo), and (11) it  is  seen  that 

where 

and 3 is an  approximation  of  the  eigenvalue, A. 

Thus,  Equation (12) is an  mth  order  eigenvalue  problem  where rn n. 
The  value of m is established  according  to  the  criteria  given in Section 2.3. 

The  essence  of  the  reduction  scheme  lies  in  the  choice of the  transforma- 
tion  matrix [ V I .  In the  present  case  the  Lanczos  algorithm  is  used  to  build  up 

the [VI  matrix,  vector  by  vector, i.e., 

*In  problem  types 2 and 3 (see  Table 2), [D] is the  identity  matrix  and, 
therefore,. [V]T[V] = [I]. 
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[ V I  = [IV,}, {v,},. ..., {vm13, 
nxm 

such  that  the  reduced mxm matrix [A]  is  tridiagonal  and  its  eigenvalues 

accurately  approximate  the  roots  of  Equation (7) having  the  largest  magnitude 
(or,  equivalently,  the  roots  of  the  physical  model  closest to the  specified 

point  of  interest  in  the.  eigenspectrum). 

Define  the  matrix 

and  let 

[B] = [D-']  [B]", 

di+l{vi+l) = {vi,,} = [B]  {vi) - a {vi} - a - - 
i,i  i,i-1  i-1 {v 1 

. . . . . . . . . . . . . . . . - a (v,} 

= [Ii]{viI - 1 ai, {v. I; i = 1, m-l 

i,l 
i 

j =1 J 
(16) 

where {v } is  a  starting  vector  (see  Section 3) and  all  m  {v}-vectors  are 

orthonormal  to  [Dl.  This  implies  that 
1 

a = (v.1 [B]  {vi} T 
i,j J 

while di+l is  a  normalizing  factor  given  by, 

- T  - }]1/2 
di+l - [Dl - (18) 

The  recurrence  relationship,  Equation (16), when  carried  out to one  addi- 

tional  step  (i.e.,  over the range  i = 1, m), can  be  expressed  in  the  following 

matrix  form: 
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nxn  nxm  nxm mxm nxm 

where [HI is an  upper  Hessenberg  matrix  given  by, 

[HI = 

- 
a a a 

a  a 

a 

11 21 31""ad 

22 32""a m2 

33 

d2 

d3 

and 

Premultiplying  Equation (19) by  [VI  [Dl,  it  can  be  seen  that 'I 

or 

However,  the  matrix [A] is  symmetric  and  hence  [HI is symmetric,  requiring  that 

it be tridiagonal. It follows  that 

and 

a = 0; j < 2-1 
i,j 

d. = a 
1 i, i-1 ' 

while  Equation  (19)  assumes  the form 

As a consequence of Equations  (23)  to  (25),  the  reduced  tridiagonal  eigen- 
value  problem,  Equation (12), is 

-11- 
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[Aj(y} = i 
a 11 

%? 

d2 

22 d3 a 

d3 a33 ' - 
. a  m 

d a m mm 

and  the  matrix  coefficients  are  theoretically  given  by  the  simplified  recurrence 

formulas 

} = -  1 -  
{vi+l di+l €vi+l 1 ; 

J 

where  the  sequence  is  initialized  by  choosing  a  random  starting  vector  for (v } 

and  setting d = 0, (vo) = (0) - 1 
1 

Although  the  final  off-diagonal  term,  given  by  Equations  (28a)  is 
not  needed  to  construct  the  tri-diagonal  reduced  matrix,  it is calculated  and 

saved  for  use  in  establishing  error  bounds  (see  Section 6 ) .  In  addition,  the 

above  algorithm  is  modified  in  the  computer  program as follows: 

dm+l 9 

1. Each  vector  {vi 1}, calculated  by  Equations  (28b)  is  reorthogonalized 
to  all  previousty  computed  {vhvectors  and  eigenvectors,  as  des- 
cribed  in  Section 4 ,  before  re-entering  Equations  (28a). 
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2. The a c t u a l   s i z e ,  m, of the  reduced  eigenproblem is es tab l i shed   by  
t h e  criteria g iven   i n   Sec t ion  2 .3 ,  one of t h e   r e s t r i c t i o n s   b e i n g  
t h a t  it cannot '   exceed  the  rank of t h e  matrix [Ma,] f o r   v i b r a t i o n  
mode problems  or [Kt,] for  buckling  problems. 

- 
The eigenvalues ,  A, and  eigenvectors,'  cy)  of  Equation  (27) are ex t r ac t ed  

using a Q-R algori thm and eigenvector  computational  procedure similar t o   t h a t  

descr ibed i n  t h e  NASTRAN Theore t ica l  Manual (Reference [13]). They are then  con- 

ve r t ed   t o   phys i ca l   fo rm as fol lows:  

xi = =" -1 

-2 1 2 wi=:+w 0 

'i 

= [C 1 [VlIYi1 -1 T 

(buckling  problems) 

(unshi f ted   v ibra t ion  
mode problems) 

( s h i f t e d   v i b r a t i o n  
mode problems) 

(buckling  or  unshifted  (29d) 
v i b r a t i o n  mode problems) 

( s h i f t e d   v i b r a t i o n  
mode problems) 

In addi t ion ,   the   vec tors   {y .}  are normalized ({yi} {y.} = 1) for   convenience   in  

e s t a b l i s h i n g   e r r o r  bounds (see  Sect ion 6 ) .  

T 
1 1 

2 . 3  Criteria f o r   t h e   S i z e  of t h e  Reduced Eigenvalue  Problem 

The t o t a l  number o f   e igenso lu t ions ,   i nc lud ing   any   ex i s t ing   r i g id  body 

modes, is equal   to   the  rank,  r ,  of the   mat r ix  [MI = [M 3 o r  [MI = [Kaa], depend- 

i n g  on whether a buckl ing   or   v ibra t ion  mode problem is being  solved. Thus, t he  

s i z e  of the  reduced  problem, m, cannot   be  greater   than r. If, f o r  example, [MI 
is diagonal ,   then  the maximum permissible   value of m is e q u a l   t o   t h e   t o t a l  number 

of non-zero  diagonal  entries.  In a d d i t i o n ,   i f  f e igensolut ions  have  previously 

been computed  by NASTRAN, thes'e  must  be swept  ou t  of t h e  problem  by  making a l l  

d 
aa 
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{v) vec to r s   o r thogona l   t o   t he   p rev ious ly  computed eigenvectors .   This   implies  

t h a t   t h e  maximum s i z g  of the  reduced  problem i s  fu r the r   r educed   t o  

r = r - f  
- 

(30) 

A s  a r e s u l t  of numerical   experiments  and  application  experiences 

(References [8, 9, 14 ] ) ,  i t  has   been  found  that   in  cases where m << f ,  a f i r s t  

grouping  of more than m/2 e i g e n v a l u e s   c l o s e s t   t o   t h e   s h i f t   p o i n t  a re  i n  

accurate   agreement   with  the  corresponding number of exact  eigenvalues.  The 

remaining  reduced-system  roots are spread  across  the  remaining  exact  eigen- 

spectrum. 

Thus, i f   t h e   u s e r   r e q u e s t s  a t o t a l  of q e i g e n v a l u e s   c l o s e s t   t o  a speci-  

f ied  numerical   value*,  the  order  of  the  reduced  problem  solved by NASTRAN w i l l  be  

where 

It should  be  noted  that   in  a l l  cases  m r, and  whenever m is set  - - 
equa l   t o  r ,  the   e igensolu t ions  of the  unreduced  problem,  which  have  not  been 

previously computed, are generated.  

From the   above   d i scuss ion  i t  is apparent   that ,   depending  on  the number of 

e igensolut ions  reque.s ted,   the   rank of [MI may have  an  inf luence on the   o rde r  of t he  

reduced  problem  which is generated  by  the Program.  Although the  user  should  never 

reques t  more than r e igenso lu t ions ,   t he   va lue  of r may not   a lways  be a simple 

matter to   ca lcu la te ,   par t icu lar ly   in   buckl ing   problems.   Therefore ,   the  computa- 

t i o n a l  scheme has  been  designed  to  resolve  the  question of rank   in   the   fo l lowing  

manner: 

- - 

*q i nc ludes   t he  number of   previously computed e igensolu t ions ,   f .   These   cons is t  
of modes gene ra t ed   p r io r   t o  a restart p l u s   r i g i d  body  modes generated by us ing  
a SUP@RT card  i n  the   bu lk   da t a  'deck. 
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1. The matr ix  [MI i s  f i r s t  checked for   inord ina te ly   smal l   o f f -d iagonal  
elements, i.e., those  which l i e  i n   t h e  round-off  range of the  com- 
puter.   These terms can  sometimes  introduce  ar t i f ical ly   large  physi-  
cal eigenvalues  and are therefore   e l imina ted .  Any off-diagonal 
element  for  which 

is set  e q u a l   t o   z e r o ,  where t is t h e  number  of dec imal   d ig i t s  
ca r r i ed   i n   t he   computa t ion  of t h e  [MI matr ix .  

2. The number of  non-null  columns o r  rows  of t h e  above  modified [MI 
matr ix  is  counted  and  designated as G .  Since  the  rank,  r, cannot 
be   g rea te r   than  n, t h e  program i n i t i a l l y  sets r = n - f i n  Equa- 
t i o n s  (31) to   p rov ide  a t e n t a t i v e   s i z e ,  m, of the  reduced  eigenvalue 
problem. I f   t he   u se r   has   a sked   fo r  more than f eigensolut ions,   he  
is given a message tha t   t oo  many eigensolutions  have  been  requested 
and t h a t   t h e  program w i l l  t r y   t o   f i n d  a l l  the   ex i s t ing   so lu t ions .  
(See  Section 9 f o r  a complete list of user  messages  and  diagnostics). 

" 

3. I f   t he   r eo r thogona l i za t ion  tests (see  Sect ion 4 )  f a i l   f o r  some 
vec to r  {vi+,}, t h i s  is  a n   i n d i c a t i o n   t h a t  a nul l   vec tor   has   been  
generated  because  the maximum number of r-f i inear iy   independent  
{v) vectors  have  already  been  obtained. The recurrence  sequence 
is then  terminated  and  the  order of the  reduced  eigenproblem is 
fur ther   reduced   to  m = i. 
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3. CHOICE OF TXE INITIAL  TRIAL VECTOR AND RESTART  VECTORS 

Prior  to  tridiagonal  reduction,  the  original  eigenvalue  problem 

is cast  in  the  inverse  form 

or 

where 

A =  1 
'a - ' 0  

From  Equation (1) it  can  be  seen  that  if 

(3) 

( 4 )  

the  problem  size  is  designated 

as n and  r  is  the  rank  of  the [MI matrix,  then  there  are  (n-r)  spurious 
eigensolutions  corresponding  to = 0 or,  equivalently, A s  * 00. If,  for  example, 
a  relatively small number  of  nodal  masses  or  differential  stiffness  elements  are 
employed,  then [E] contains  a  large  multiplicity  of  zero  eigenvalues  which  are of 

no  interest  and  cause  numerical  difficulties.  These  are  eliminated  from  the  re- 
duced  tridiagonal  problem  by  employing  a  constrained  sub-set  of  v-vectors  having 
zero  projection  on  the  set  of  eigenvectors  associated  with A = 0. 

- 

To  accomplish  this,  use  is  made  of  the  fact  that  any  non-null  vector 1, 1 
generated  from  any  other  non-null  vector {w}, through 

will  contain  no  components of the  eigenvectors  corresponding  to A = 0. This  can 
be  seen  as  follows. 

First,  express {w} as  a  linear  combination  of  all  the  eigenvectors of [E] : 
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i=l  i=r+l 

where {X.}, (i = 1, r), are  the  eigenvectors  for A # 0 and  €Xi), (i = 1: + 1, n), 
are  the  eigenvectors  for A = 0. 

1 

Next,  substitute  Equation (6) into  Equation (5), giving 

r n 

Since 

and 

it  follows  that 

[i]{xil = Ai{Xil; i = 1, r 

[B]IXi} = 0 ; i = r+l,  n 

Thus, {v contains  no  eigenvectors  corresponding  to h = 0, and is a  null  vector 

only  if {w) happens  to  be  a A = 0 eigenvector.  Further,  it  is  easy  to  see  that 
after {v } is  normalized 

1 

1 

the  next  vector  generated, 

as  well  as a l l  subsequent  trial  vectors  will  be  free of h = 0 eigenvectors. 

Employing  a  somewhat  similar  argument,  it  can  be shown that  the  most de- 

sirable  initial  trial  vector, {; }, and  hence  the  vector {w) from which  it  is 1 
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generated,  should  contain  all  components  of  the  eigenvectors  for I'L # 0. How- 
ever,  since  there  is  generally  no  a  priori  knowledge  of  the  modal  matrix, {w) 
should  be  selected  in  such  a  way so as to make  it  as  "irregular"  as  possible  with 
respect  to  the  system  of  eigenvectors so that  it is most  likely  to  contain  a  mix- 
ture  of  all  the  mode  shapes. It has  been  found  that  this  is  best  achieved  by 
using a random  or  pseudo-random  number  generator  to  obtain  the  elements  of 

{wl. 

If  the  vector {w} selected  in  the  above  manner  should,  by  some  chance, 
be  deficient  in  eigenvector  components,  then  a  null  v-vector  may  be  generated 
at  some  point  by  the  recurrence  algorithm  (Equations (28), 'Section 2.2). In  the 
context  of  a  finite  digit  computer,  this  is  indicated  by  the  appearance  of  an 
off-diagonal  term,  di+l,  which is exceedingly  small  compared to the  corresponding 
diagonal  term,  a  in  the  reduced  tridiagonal  matrix.  The  test  used  is  that i,i' 

implies  that  the  newly  generated  vector {ii+l), is  null,  where t is  the  number 
of  decimal  digits  carried  by  the  computer.  In  this  event, di+l is  set  exactly 
equal  to  zero  and  a  new  restart  vector  is  employed  for 1; 1 .  This  vector  is 
generated  exactly  as  in  the  case  of  the  initial  trial  vector {v 1 ,  but  using  a 
different  pseudo-random  number  seed.  The  recurrence  algorithm  for  generation  of 
the  v-vectors  is  subsequently  continued  in  the  usual  manner  until  the  required 
number  of  vectors  has  been  generated. 

i+l 
1 

A  further  constraint on each  v-vector,  including  the  initial  one,  is  that 
it be  orthogonal  to  all  previously  generated  v-vectors  and  previously  calculated 
eigenvectors*.  The  imposition  of  these  additional  constraints  is  discussed  in 
the  next  section. 

*Previously  calculated  eigenvectors  may  be  available  from  the  following  sources: 
(1) The  specification of fictitious  free  body  supports  on  a SUPdRT card,  which 

causes an equal  number  of  rigid  body  modes to be  automatically  generated  by 
NASTRAN  prior  to  entering  an  eigenvalue  extraction  routine. 

to  obtain  additional  eigensolutions. 
(2) Checkpointing  of  previously  obtained  eigensolutions  followed  by  a  restart 
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4 .  

vectors 

SWEEPINGOUT OF - ." PREVIOUSLY . ~ . ~ .  OBTAINED  EIGENVECTORS AND REORTHOGONALIZA- 
TION OF THE TRIAL VECTORS 

Assume  that  a  combination  of f rigid  body  and  non-rigid  body  eigen- 
have  already  been  extracted  prior  to  the  current  application of the - -. 

tridiagonal  reduction  method.  Let  these  vectors  be  designated  by {X 1, -{X }, 
Y 1 2 

. . . . , {X 1. In order  to  avoid  regenerating  these  previous  eigensolutions,  which . 
would  be  inefficient,  the  initial  trial  vector,  cv 1, obtained  in  the  manner  just 
described,  should  be  made  orthogonal  or  "swept  ciean" of these  eigenvector com- 

ponents.  This  is  theoretically  accomplished  by  setting 

f 
1 

where {v } is  the  swept  initial  vector  to  be  used  in  place  of {v } following  its 
normalization.  It  can  then be shown  that  all  succeeding  v-vectors  generated  by 
the  recurrence  algorithm  (Equations 28, Section 2.2) form  a  theoretically  ortho- 
gonal  set  which  does  not  contain  components  of  {X.}; j = 1, f. However, it has 

* 
1 1 

,.a 

J 
L-" "Cell ShObTL ("nefererics :E;> that the v--VeCL--- LULJ degrade  rapidly as ths coiiiputations 

proceed,  such  that  the  later  vectors  are  far  removed  from  orthogonality  to  the 
earlier  ones.  This  is  caused  by  unavoidable  computational  round-off  which,  because 
of  repeated  multiplications  by  the  unreduced  eigenmatrix,  [E],  tends  to  amplify 
the  contributions  of  the  eigenvector  components  nearest  the  shift  point  in  the 
calculated  trial  vectors.  Thus,  unless  sufficiently  accurate  orthogonality  of  the 
trial  vectors  is  maintained,  they  will  be  excessively  rich  in  the  modes  near  the 
shift  point,  and  the  solution  of  the  reduced  tridiagonal  eigenvalue  problem  will 
yield  a  false  bunching  of  eigenvalues  around  this  point  in  the  eigenspectrum. 

To  correct  this  problem,  Gregory  (Reference [ 6 ] )  experimented  with  the  use 
of  higher-precision  computer  operations,  but  found  only  marginal  improvement  in 
the  final  results.  Later,  Lanczos  suggested  a  reorthogonalization of the  type 

-21- 

I 



where {vi+l}  is  calculated  by  the  unmodified  recurr&nce  algorithm  and {v } is 

an improved  vector.  While  this  improves  matters  substantially, it still  does  not 

eliminate  the  precision  problem  adequately.  However,  Ojalvo  and  Newman  (Reference 
[ 8 ] )  found  that  the  introduction of an  iterative  reorthogonalization  loop  can make 
the  trial  vectors  as  orthogonal  as  necessary  for  extremely  large  systems.  The 

procedure  is  as  follows: 

* 
i+l 

The  vector  {vi+l},  obtained  from  either  the  recurrence  algorithm  or  the 

pseudo-random  number  generator  (see  Section 3) is  denoted as {v and  reortho- 

gonalized  with  respect  to  all  the  previously  obtained  vectors.  This  is  accom- 

plished  by  iterating, 

( 0 )  } 
i+l 

until  an  acceptable  vector 

is found  which  satisfies  the  orthogonality  criteria 

where t is  the  number of decimal  digits  carried  by  the  computer. If, for  some 

vector,  the  above  criteria  are  not  satisfied  after  a  set  number  of  iterations,then  the 

program  assumes  that  a  new  trial  vector  cannot  be  generated,  and  a  reduced  eigen- 
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va lue  problem  of  order m = i is solved, as discussed   in   Sec t ion  2 . 3 .  

I f  the  above criteria are met ,   then   the   resu l t ing   vec tor  is normalized 

and set equal  to t h e  new normalized trial vec to r ,  i .e.,  

This new vec to r  is u s e d   t o  compute the  next   off-diagonal  term in   the   reduced  tri- 

diagonal  matrix  from  the  formula 

However, i f  

i t  is  probable   tha t  iv,) is a nul l   vec tor ,   poss ib ly   because  the maximum number 

of l inear ly   independent   vec tors ,   cor responding   to   the   rank  of t h e  problem,  has 

been  exceeded.   In   this   event  a reduced  eigenvalue  problem of order  rn = i is 

solved,  as above. 

If t h e   c r i t e r i a   g i v e n  by  Equations (5) and (8) are a l l  m e t ,  then   the  new 

normalized  vector  (v } is  used  to   cont inue  the  reduct ion  a lgori thm. i+l 
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5. CRITERION FOR THE NEGATIVE  SHIFT  PARAMETER, a2 

Before  tridiagonal  reduction, the eigenvalue  problem  for  natural  fre- 
quencies  in  the  neighborhood of zero is 

where 

and 

A =  1 
(5) 

u2 + a2 

The  criterion  involved  in  the  choice  of  the  shift  parameter, a , is  that 2 

it bc large er;ougf, to i-ii&zr a -,ossfbly sfrLg.dlar st<ffnzss -&trix non-s~r;g.&l.r (to 

the  extent  that  Cholesky  symmetric  decomposiion  can  be  performed  accurately  in  a 

finite  digit  computer),  and  small  enough  to  prevent  troublesome  clustering  of  the 
eigenvalues, Ai. As an  approach  toward  solving  this  problem,  it  is  helpful  to 
note  that,  given  a  symmetric  positive-definite  matrix [J],  we  really  obtain 

when  it  is  factored,  because of computer  rounding  errors.  According  to  Wilkinson 

(Reference [16]), the  following  inequality  is  almost  always  satisfied, 

where  the  above  Holder-one  matrix  norms  are  equal  to  the  maximum  row  sums  of 
absolute  values,  n  is  the  order  of  the  matrix,  and t is the  number  of  decimal 
digits  carried  by  the  computer. 
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Thus,  in  order  to  render  the  matrix  [K + a M ] non-singular,  even 2 
aa  aa 

when [K 3 itself  is  singular,  some  matrix  norm  of  the  modification a [M 3 
should  be  appreciably  larger  than  the  corresponding  norm  of [6K 1, where  the 
latter  matrix  is  in  the  "noise  level" of the  computer. On the  basis of Equa- 

tion (7), the  minimum a2 should  therefore  satisfy  the  requirement 

2 
aa  aa 

aa 

or 

where  and  m  are  the  elements  of [K ] and [M 3 .  Kij ij  aa  aa 

To further  enhance  the  removal  of  possible  singularities  in  the  stiffness 

matrix,  a  factor  of  ten  is  applied  to  the  right  side  and  the  maximum  ratio  of 

diagonal  matrix  elements  is  used.  The  resulting  value  of ct- is 
7 

min 

A final  requirement  imposed  on  the  shift  parameter  is  that  it  be  large 

enough to effect  alterations  in  the  last  two-thirds  of  the  significant  digits  in 

each  diagonal  term  of  the  unmodified  stiffness  matrix or, equivalently, 

Consequently,  the  actual  value  of  the  shift  used  by  the  program is 

2 2 2 
ct = max  (amin, 

"0) 
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If  the  resulting  modified  stiffness  matrix  is  still  singular,  as  indicated 

by a failure of the  Cholesky  decomposition  process,  the  above  value  of a2 is 
multiplied  by  a  factor of 100, a maximum of two  times in an  attempt  to  render 
the  undecomposed  matrix  non-singular.  If  this  procedure  fails,  the  problem  exe- 
cution is aborted  and  the  user  is  informed  that  the  singularities  cannot be re- 
moved  from  the  stiffness  matrix. 
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6.  ERROR " BOUNDS - ON THE COMPUTED EIGENVALUES 

Once  the  modes  of  the  reduced  problem  have  been  extracted,  close  upper 
and  lower  bounds  on  the  eigenvalue  errors  can  be  obtained  rather  economically. 
This  provides  the  user  with  an  a  posteriori  check  on  the  number of accurately 
calculated  eigenvalues  which,  in  most  cases,  will  be  greater  than  the  number  re- 
quest  ed. 

In  carrying  out  the  development,  it  is  convenient to write  the  eigen- 
problem  in  its  inverse form 

where 

A =  x - x. a 

Considering  some  approximation, {x. 1 ,  to an  exact  eigenvector , (Xi)' it 
1 

can  be  expanded  in  terms of the  exact  modal  matrix  as  follows: 

where 

and 

is  a  vector of scalar  coefficients. 

If the  eigenvalue  approximation  associated  with {x.) is denoted  by Ai, - 
1 

then  the  residual  vector  for  the  ith  modal  approximation  is  given  by 
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I I 

However 

where ['A ,] is the diagonal matrix of eigenvalues, Ai, i = 1, n. d 

It follows that 

Denoting a weighted root-mean-square residual by 

it can be seen that 

However, without any loss of generality, 

so that 

{Xj IT [Dl {X,) 

the eigenvectors can be orthonormalized 

- { l ;  - i = j  
0 ;  i # j  

I 

The  modal matrix is therefore unitary, i.e., 

and 
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where {b . I  r e f e r s   t o   t h e   j t h   e l e m e n t  of t he   vec to r  {bi). 
i J  

A t  t h i s   p o i n t  it should  be  noted  that  NASTRAN also  normalizes   the  e igen-  

vec to r s  {y. 1 of the  reduced  tridiagonal  problem, so t h a t  
1 

where 

Thus, 

and it fo l lows   t ha t  

Therefore,  when Ai is c l o s e  t o  an  exact  eigenvalue,  Ai, i t  can  be  seen  that  
- 

o r  

- 
Since X is  c l o s e  t o  when Ai is c l o s e   t o  Ai, Equation  (19) a i  'ai 

imp l i e s   t ha t  

which is a measure  of  the maximum r e l a t i v e   e r r o r   i n   t h e   i t h   p h y s i c a l   e i g e n v a l u e * .  

The r e s idua l ,  r i n   t h e  above  equat ion  can  be  evaluated  qui te   easi ly  via i' 
the  following  approach. 

*This test i s  obvious ly   inva l id  when Xa+ = 0, i .e. ,  a r i g i d  body so lu t ion .   In  
t h i s   e v e n t ,   t h e  computed value  of  xa i  IS, i n   i t s e l f ,  a measure  of t he   abso lu t e  
e r r o r   i n   t h e   p h y s i c a l   e i g e n v a l u e  and  no fur ther   accuracy   in format ion  is needed. 
The ex i s t ence  of an  eigenvalue as a n   a d d i t i o n a l   r i g i d  body mode not   requested 
on a SUP6RT c a r d   i n   t h e  NASTRAN Bulk Data Deck is  detected by t h e   c r i t e r i o n  
Ixail < 10-t/3, i n  which  case  Equation (20) is bypassed. 
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However,  from  Equation (26) of Section 2.2, it is seen  that 

6 1  [VI = [VI  [AI + dnrtl[Gm+ll 

where  [A] is the  tridiagonal  reduced  matrix  and 

Therefore, 

But 

so that 

and 

It can  be  seen  that 

0 ... 0 0 

[Gm+ll T [Dl[Gmfl1 = [ ; 0 . -  p p ] 
... 0 1 
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so t h a t   f i n a l l y ,  

where ymi is t h e  l as t  element of t he   vec to r -  {yi). 

Therefore,  Equation (20) assumes  the  form 

Thus, it i s  seen   t ha t   t he   e igenva lue   e r ro r s  are p ropor t iona l   t o  ddl, which is 

the   next   o f f -d iagonal  t e r m  t h a t  would be  generated,   had  the  reduced  t r idiagonal  

mat r ix  [A] been  increased  from  order m t o   o r d e r  d l .  Equation (31) shows t h a t  

t h i s  term is fur ther   modi f ied  by a weight ing   fac tor  ymi, which is t h e  las t  term 

i n   t h e  reduced-system  eigenvector  associated  with 
- 
'ai. 
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acceptab le   e igensolu t ions  is d e s c r i b e d   i n   S e c t i o n  7. 





7. SUMMARY OF COMPUTATIONAL  PROCEDURES AND FLOW  CHARTS 

Flow diagrams  illustrating  the  computational  procedures  are  shown  in 
Figures 1 and  2.  The  details  of  each  block  are  summarized  below. 

(1) Calculate Small Negative  Shift  Parameters, a , (See  Section 5) 
2 

"- . 

In  the  case of unshifted  vibration  mode  problems  the  negative  shift  paray 

meter  for  removing  possible  singularities  is  found  from: 

where 

and 

or2 = max (amin, 2 2) 

I7 
h ii  ii 

a i i ~  Ili are tp,e d~agoila: Gf rrr Ll,aaj and :?I j ,  rzspezt?;cly, E is aa 
the  number  of  (u } degrees  of  freedom,  and t is  the  number  of  decimal  digits 

carried  by  the  computer. 
a 

(2) Zero-Out  Excessively  Small  Elements  of [MI Matrix  (See  Section 2 . 3 )  

a.  Compare  the  magnitudes  of  all  off-diagonal  elements of [MI with 
the  corresponding  diagonal  elements  to  determine  whether 

m ij < -,0-2t/3. 
ii 

I,.I - a i = j, m # 0. ii 

b. Set  m = 0.0 for  every  off-diagonal  element  satisfying  the  above 

criterion. 
ij 

(3) Establish  Tentative  Reduced  Problem  Size  (See  Section 2.3)  

a.  Count  the  number, n, of  non-null  columns  or rows in  the  above  modi- 
fied [MI matrix  and  set 

- 
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” 

r = n - f  

where  f is the  number  of  previously  computed  eigensolutions. 

(b) Calculate  a  tentative  size, m y  of the  reduced  eigenproblem  from 

where 

and q is  the  total  number  of  accurate  eigenvalues  requested  by  the  user, 

including  previously  computed  modes.  If > f , warn  user  that  too  many 
eigensolutions  have  been  requested - program  will  try  to  find  all  existing 
solutions. 

(i) [E] = [K,, - w M ] (Shifted  Vibration 2 
o aa Mode  Problems) 

or - 2 
(ii) [ K l  = [Kaa -t a Ma,] (Unshifted  Vibration 

Mode  Problems) 

or 

(iii) [E] = [Kaa]  (Buckling  Problems) 

b. Perform  a  non-square  root  decomposition: 

[k] = [L] [’d,] [LIT 

for  case (i), or  a  Cholesky  symmetric  decomposition: 
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f o r   c a s e s  (ii) and (iii), using  real   ar i thmetic   without   pivot ing.   Save 

t h e   t r i a n g u l a r  and diagonal   factors .   I f   the   decomposi t ion f o r  case (i) 

f a i l s   o r   t h e   d e c o m p o s i t i o n s   f o r   c a s e s   ( i i )  and ( i i i )   f a i l   a f t e r  two i n -  

creases i n  a2 by f a c t o r s  of one  hundred,  then  the  program is aborted 

ahd a f a t a l   e r r o r  message is i s s u e d ,   i n d i c a t i n g   t h a t   t h e r e  are unremov- 

a b l e   s t i f f n e s s   m a t r i x   s i n g u l a r i t i e s .  

(5) Execute  Tridiagonal  Reduction  Algorithm  (See  flow  diagram for t h i s   b l o c k ,  
Figure 2) 

(5 .1)   Ini t ia l ize   the  Recurrence  Algori thm  (See  Sect ion 2.2) 

I n i t i a l i z e   t h e   v e c t o r   i n d e x   t o  i = 0 and set  

{vel = (03 

where {v 1 is an   (nx l )   nu l l   vec to r .  
0 

(5.2) Generate a S t a r t i n g   o r   R e s t a r t   V e c t o r  and set d = 0.0 
(See  Section 3) 

(a) Construct  an  n-element  vector {w} using a pseudo-random 

i+l 

number genera tor .  

(b) Solve  for  an  un-normalized t r i a l  vector  from  the  equation 

where 

or 

o r  
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( c )  Normalize the above  vector: 

where 

[ D l  = [Ma,] (case i) 

[DJ = [I3 (cases ii and i i i )  

(d l  S e t  di+l = 0.0 and  proceed t o   b l o c k  (5.5). 

(5.3) Create One Approximate Tr ia l  Vector  and One Diagonal  Coefficient 
(See  Section  2.2) 

The recurrence  a lgori thm is: 

and {Gi:;] i s  an  approximation t o  t h e  new t r i a l  vector .  
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(5.4) First  Normalization  Test  (See  Section 3) 

The  test is 

Pass:  Proceed  directly  to  block  (5.5) 

Fail:  Return  to  block (5.2), generate  a  new  restart  vector  for {v (0) i+l' 9 

and  then  proceed  to  block (5.5). 

(5.5) Iterate  to  Obtain  Orthogonalized  Vector  (See  Section 4) 

Designate {Gj}, j = 1, € as  previously  calculated  and  stored 

eigenvectors.  Perform  the  iterations, 

until 

or 

s = 14. 

If the  orthogonality  criterion,  Equation (20), is  satisfied,  proceed  to 

block (5.6). Otherwise,  set  the  problem  size, m, equal  to i and  pro- 
ceed  to  Exit. 

(5.6) Normalize  the  Orthogonalized  Trial  Vector  (See  Section 4) 

Compute 
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This is  t h e  new orthogonal ized and  normalized t r i a l  vec tor .  

(5.7) Second Normalization  Test   and  Creation-of  Off-Diagonal  Coefficient 
(See  Section 4 )  

(a) Compute t h e  next off-diagonal term i n   t h e   r e d u c e d   t r i d i a g o n a l  

matrix from 

(b) Verify  whether   the  fol lowing test i s  m e t :  

I f  i t  has, se t  i = i+l and r e t u r n   t o   b l o c k  (5.3) fo r   con t inua t ion   o f  

the   recur rence   a lgor i thm.   I f   the  test  f a i l s ,  set m = i t o   r e d u c e   t h e  

problem  s ize   and  proceed  to   Exi t .   Issue  message  to   user   that   only i 

modes can be  obtained - more than r - f modes may have  been  requested. 

( 6 )  Solve Reduced-System Eigenvalue  Problem  (See  Section  2.2) 

a.  The c o e f f i c i e n t s  and .. . ., dm, 

computed i n   b l o c k  ( 5 )  are i n t e r p r e t e d  as the  fol lowing symmetric, t r i d i a g o n a l  

a r r ay :  

A]  = 

a 11 d2 

d2 22 d3 a 

d3 . a 33 

d m 

d ‘ a  m mm 
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b. The  mth  order  eigenvalue  problem 

is  solved  for  the  eigenvalues, A,, and  eigenvectors {y,) using  a Q-R algorithm 
and  eigenvector  computational  procedure  similar  to  that  described  in  the NASTRAN 
Theoretical  Manual  (Reference [13]). 

- 

C. The  reduced  system  eigenvectors  are  normalized so that 

(7) Compute  Maximum  Eigenvalue  Errors  (See  Section 6 )  

a. The  maximum  absolute  relative  errors  in  the  computed  physical 
eigenvalues  are  obtained  from 

where  is  the  last  off-diagonal  term  computed  in  block (5.3)  and  yd  is 
the  last  element  in  the  vector {yi). If the  physical  eigenvalue  lfAi + Xo, 
corresponds  to  a  rigid  body  mode,  the  above  computation  is  invalid  and  therefore 
bypassed. A rigid  body  mode  is  assumed  to  occur  whenever 

- 
dlTl+l - 

and  is  denoted  by  setting  the  relative  error, k, equal  to  a  flat  zero. 

b. The  eigenvalues  are  processed  in  order  of  increasing  distance 
from  the  center  of  range  of  interest, X to  determine  whether  their  associated 

0' 

€j. values  meet  an  acceptable  relative  error  tolerance  set by the  user  on  the 

EIGR or EIGB bulk  data  card  (the  default  value is .001/n  where  n  is  the  order 
of the  stiffness  matrix). The first  eignevalue  not  meeting  the  tolerance  test, 

-41- 



as w e l l  as a l l  subsequent  eigenvalues  further removed from t h e   c e n t e r  of i n t e r e s t ,  

are considered  to   lack  suff ic ient   accuracy and are the re fo re   r e j ec t ed .  

C. Acceptance   e igenvalues   ob ta ined   in   the   above  manner are reordered 

i n  terms of   increas ing   phys ica l   va lue   for   subsequent   p rocess ing  by NASTMN. 

8. Compute Physical  Eigenvalues  and  Eigenvectors  (See  Section  2.2) 

The mathematical  eigenvalues, xi, and  eigenvectors,  cy. 1,  are converted 
1 

to   phys ica l   form as follows: 

where 

-2 1 c1 2 w = - -  i i  
i 

(Buckling  Problems) 

(Unshifted  Vibration 
Mode Problems) 

(Shi f ted   Vibra t ion  
1, r,ode Pro31ma) 

{Si} = [ C  1 [V1{Yi1 
-1 T (Buckling  or  Unshifted 

Vibrat ion Mode Problems) 

(Shi f ted   Vibra t ion  
Mode Problems) 

-42- 



Unshif  ted 
Vibration 
Modes 1. Calculate  small 

negative  shift 
parameter, a 2 

All J 

Others I 
1 

2. Zero  out  excessively 
small  elements of 
[MI  matrix 

4 

I 3. Establish  tentative 
reduced  problem  size I 

4. Construct  factors of 
[E] matrix 4 1 a2 = l0Oa t( 2 

I 

. 7 I 

5. Execute  tridiagonal 
reduction  algorithm 

I Singularity 
stop 

I 7. Compute  maximum 
eigenvalue  errors 

8 .  Compute  physical 
e_igenvalues  and 
eigenvectors 

Figure 1. Overall  flow  diagram  for  tridiagonal  reduction  method 
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ENTER 

t 
5.1 Initialize  the 

Recurrence 
Algorithm; i = 0 

5.3 Create  one 
approximate  trial 
vector  and  one 
diagonal  coeff. 

V 

5.5 Iterate  to  obtain 
orthogonalized 
vector 

Unsatisfied 

Satisfied 
I 

Reduce 

trial  vector  size to i 
orthogonalized - problem 

5.6 Normalize  the 

4 
A 

* 
5.7 Second 

Fail normalization 
test  and  creation 
of  off-diagonal 
coef  f . 

Pass 

_.. . 

Figure 2. Flow  diagram  for  block 5, execute  tridiagonal  reduction  algorithm 
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8 .  NASTRAN  USER'S  INSTRUCTIONS 

The  following  pages  show  modifications of the  EIGR  and  EIGB  cards  in 
the  NASTRAN  Bulk  Data  deck  which  accommodate  user  implementation of the  tridia- 
gonal  reduction  method f ~ r  real  eigenvalue  analysis.  The  modifications  are 
constituted of additions  to  the  standard  user  instructions  and  are  underscored 
for  ease  in  identification. 

When  the  tridiagonal  reduction  method  is  invoked,  the F2 or L2 parameter 
on  these  cards  represents  the  maximum  allowable  value  of  the  computed  relative 
error  in  a  physical  eigenvalue  (see  Section 6). If  this  value  is  exceeded,  the 
associated  eigensolution  is  not  accepted  for  further  processing  by NASTRAN. A 

detailed  list  of  the  maximum  relative  errors  in  the  computed  eigenvalues  can  be 
obtained  by  requesting  DIAG 16 in  the  NASTRAN  Executive  Control  Deck  (see  Section 

9) * 
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BULK  DATA  DECK 

Input  Data  Card  EIGB  Buckling  Analysis  Data 

Description:  Defines  data  needed to perform  buckling  analysis. 

Format  and  Example: 

1 2 3 4 5 6 7 8 9 10 
EIGB I SID I METHPD L1 L2 I NEP I NDP -E 
EIGB I 13 I DET I ' 0.1 I 2.5 I 2 I 1 1 1  

Field  Contents 

S ID  Set  identification  number  (Unique  integer > 0) 

METHOD 

L1, L2 

NEP 

NDP, NDN 

Method  of  eigenvalue  extraction,  one  of  the  BCD  values  "INV", 
f t ~ ~ ~ l f ,  I'FEER~' - , 'VIW', or YJDET" 

INV - Inverse  power  method,  symmetric  matrix  operations 

DET - Determinant  method,  symmetric  matrix  operations 

FEER - Tridiagonal  reduction  method,  symmetric  matrix 
operations 

UINV - Inverse  power  method,  unsyrmnetric  matrix  operations 

UDET - Determinant  method,  unsymmetric  matrix  operations 

Eigenvalue  range  of  interest  (Real; L1 < L2 > 0.0) For  METH@D 
= "FEER", L1 is  ignored  and L2.is the  acceptable  relative  error 
tolerance  on  eigenvalues,  in  percent  (Default  is  .001/n  where  n  is 
the  order of the  stiffness  matrix)  (Real 7 0.0) 

Estimate of number  of  roots  in  positive  range.  Desired  number 
of eigenvalues  of  smallest  magnitude  for  METHOD = "FEER" 
(Default  is  automatically  calculated  to  extract  at  lease  one 
accurate mode) (Integer > 0) 

Desired  number  of  positive  and  negative  roots  (Default = 3 NEP)  
(Integer >O) . Ignored  for METHflD = "FEER" 
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E 

N0RM 

G 

C 

Convergence  criteria  (optional)  (Real > 0.0) 

Method  for  normalizing  eigenvectors,  one  of  the  BCD  values "MAX" 
or  "P4INT" 

MAX - Normalize  to  unit  value  of  the  largest  component in the' 
analysis  set 

P0INT - Normalize to unit  value of the  component  defined in 
fields  3  and 4 defaults  to "MAX" if  defined  component. 
is zero 

Grid or  scalar  point  identification  number  (Integer >,O) (Re- 
quired  if  and  only  if  NORM = "P0INT") 

Component  number  (One  of  the  integers 1-6) (Required  if  and 
only  if  NORM = "P0INT"  and G is  a  geometric  grid  point) 

Remarks 

1. Buckling  analysis  root  extraction  data  sets  must  be  selected in the 
Case  Control  Deck  (METHOD = SID) to be  used  by  NASTRAN. 

2. The  quantities L1 and L2 are  dimensionless  and  speci.fy  a  range  in 
which  the  eigenvalues  are  to  be  found. An eigenvalue  is  a  factor  by 
which  the  prebuckling  state  of  stress  (first  subcase)  is  multiplied  to 

sents  the  maximum  upper  bound,  in  percent,  on lXF,,,/~ucT - 1 I for 
acceptance of a  computed  eigensolution. 

"- p L V d ~ c 2  bscklfng.  If ? E ' E @ D  = "FEER", L!. is igzored and L2 repre- 

"" - . - 
" " ~~~. 

3.  The  continuation  card is required. 

4. See  Sections  10.3.6  and 10.4.2.2 of  the  Theoretical  Manual  for  a  dis- 
cussion  of  convergence  criteria. 

5. If  >ETH@D = "DET", L1 must  be  greater  than  or  equal  to 0.0. 

6. If NGRM = "MAX", components  that  are  not  in  the  analysis  set  may  have 
values  larger  than  unity. 

7. If N0RM = "P@INT", the  selected  component  must  be  in  the  analysis  set. 
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BULK DATA DECK 

Input  Data Card EIGR 

Descr ipt ion:   Defines   data   needed  to   perform real  e igenvalue   ana lys i s .  

Format  and Example: 

EIGR I SID 1 METHgD I F1 I F2 I N E ) N D ) N Z )  E I +abc 
EIGR I 13  1 DET I 1 .9  I 15.6 I 10 I 12  I 0 I 1 . -3  I ARC 

+abc I N@RM I G I C I I I I I I 
+BC I P@INT 1 3 2  4 I 

F ie ld   Content  

S I D  S e t   i d e n t i f i c a t i o n  number (Unique  integer  > 0) 

M E T H ~ D  

F l y  F2 

Method of   e igenvalue  extract ion,   one  of   the BCD v a l u e s  "INV", 
"DET" , "GIV", "FEER" , l'UINV", o r  YJDET". 

DET Determinant  method, symmetric matrix operat ions.  

G I V  Givens method  of t r i d i a g o n a l i z a t i o n .  

FEER Tridiagonal  reduction  method,  syimnetric  matrix 
opera t ions .  

UINV Inverse  power method,  unsymmetric  matrix  operations. 

LJDET Determinant  method,  unsymnetric  matrix  operations. 

Frequency  range of i n t e re s t   (Requ i red   fo r  METHgD = "DET", 
''INV", "UDET", o r  "UINV'') (Real > 0.0; F1 < F2).  Frequency 
range  over  which  eigenvectors are d e s i r e d   f o r  METHdD = "GIV". 
The frequency  range is ignored i f  ND > 0, i n  which case t h e  
e i g e n v e c t o r s   f o r   t h e   f i r s t  ND pos i t i ve   roo t s   a r e   found .   (Rea l  
F1 Y F2). I f  METHOD = "FEER", F1 i s  t h e   c e n t e r  of  range of 
i n t e r e s t   ( D e f a u l t  i s  F1 = 0.0) (Real 1 0.0) , and F2 is the 
acceptab le  re la t ive e r r o r   t o l e r a n c e  on frequency-squared, i n  
percent  (Default  is  .001/n  where n i s  the   o rde r  of t h e   s t i f f n e s s  
matrix)  (Real > 0 . 0 )  

". "~ " - ~ = ~  __ 

Estimate of number of roots   in   range   (Requi red   for  METAPID = 
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ND 

NZ 

E 

N@RM 

ti 

C 

Desired  number  of  roots  for  METH$D = "DET",  "INV",  "UDET", 
or  "UINV",  (Default  is 3 NE)  (Integer > 0). Desired  number 
of  eigenvectors-  for  METHgD = .''GIV"  (Default is  zero)  (Integer 
- > 0). Desired numbes.of roofs and'eigt2rivectoss €or METHgD = 
''FEER''  (Default. is automatically  calculated.to  extract  at  least 
one  accurate  mode)  (Integer > 0) 

Method for normalizing  eigenvectors,  one of the  BCD  values 
"MASS", '"AXMAx" or 1 1 ~ ~ ~ ~ ~ 1 1  

MASS - Normalize  to  unit  value  of  the  generalized  mass 
MAX - Normalize  to  unit  value  of  the  largest  component  in 

the  analysis  set 

PgINT - Normalize to unit  value  of  the  component  defined in 
fields 3 and 4 - defaults  to "MAX" if  defined  com- 
ponent  is  zero 

Grid  or  scalar  point  identification  number  (Required  if  and  only 
if x@t?? = "P@INT'~) (Integer 2 0) 

Component  number  (One  of  the  integers 1-6) (Required  if  and 
only  if N@RM = I'P@INT"  and G is  a  geometric  grid  point) 

Remarks : 

1. Real  eigenvalue  extraction  data  sets  must  be  selected  in  the  Case 
Control  Deck  (METHgD = SID)  to  be  used  by  NASTRAN. 

2. The  units  of F1 and F2 are  cycles  per  unit  time.  If  METHbD = 
"FEER';,.;; F2_-zspresents the maximum upper  bound, in percent,  on 
&$,&LJJ&ACT - 1 1  for  acceptance of a  computed  eigensolution. 

3. The  continuation  card is required. 

4. If  METHbD = "GIV",  all  eigenvalues  are  found. 

5.  If  METH@D = "GIV",  the mass matrix  for  the  analysis  set  must  be 
positive  definite.  This  means  that  all  degrees  of  freedom,  including 
rotations,  must  have  mass  properties.  @MIT  cards  may  be  used  to  re- 
move  massless  degrees  of  freedom. 
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6 .  A nonzero  value of E in,field 9 also modifies  the  convergence 
criteria,  See  Sections  10.3.6  and  10.4.2.2 of the  Theoretical  Hanual 
.for a  discussion o f  convergence  criterla. 

7. If N@RM = '"AX", components  that  are not in the  analysis set may have 
values larger'than unity. 

8 .  If NaRM = "PflINT", the  selected  component  must  be in the  analysis  set. 

9. If METHgD = "GIV" and  rigid  body  modes  are  present, F1 should  be 
set to a  small  nega'tive  number  rather  than  zero  if  the  rigid  body 
eigenvectors  are  desired. 

10. The  desired  number of roots (ND) includes  all  roots  previously  found, 
such  as  rigid  body  modes  determined  with  the  use  of  the SUPgRT card, 
or the  number of roots  found  on  the  previous  run  when  restarting  and 
APPENDing  the  eigenvector  file. 
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9. USER  MESSAGES  AND'OPTIONAL  DIAGNOSTICS 

9.1 NASTRAN  Functional  Module  User  Messages  for  the  Tridiagonal  Reduction 
Method 

9.1.1 General 

The  following  is  a  description  of  the  NASTRAN  user  messages  which  may  be 
generated  by  NASTRAN  during  the  execution  of  the  Tridiagonal  Reduction  method 
and  which  are  unique  to  this  method.  Explanatory  information  is  provided  follow- 

ing  the  text  of  each  message  and,  in  the  case of a  fatal  message,  corrective 
action  is  indicated.  Refer  to  the  NASTRAN  Users'  Manual,  Section 6 for a com- 
plete  listing of other  system  and  user  messages. 

Fatal  messages  cause  the  termination  of  the  execution  following  the  print- 
ing  of  the  message  text.  These  messages will always  appear  at  the  end  of  the 
NASTRAN  output.  Warning  and  information  messages  will  appear  at  various  places 
in  the  output  stream.  Such  messages  convey  only  warnings or information to the 
user.  Consequently,  the  execution  continues  in  a  normal  manner  following  the 

printing  of  the  message  text. 

9.1.2 List  of  User  Messages 

2385*** 

2386*** 

23875:"* 

USER  WARNING  MESSAGE 2385, DESIRED  NUMgER OF EIGENVALUES  EXCEED 
THE  EXISTING  NUMBER,  ALL  EIGENSOLUTIflNS  WILL  BE  SOUGHT. 

The  desired  number  of  eigenvalues  specified on the  EIGR  card 
(NEP)  or  the  EIGR  card (ND) exceeds  the  rank  of  the [K:,] or [Mas] 
matrix,  which  is  the  maximum  number of existing  eigenvalues. 

USER  FATAL  MESSAGE 2386, STIFFNESS  MATRIX  SINGULARITY  CANNOT  BE 
REMOVED  BY  SHIFTING. 

Check  the  specific.ation  of  masses  on CONM1, CgNM2, CMASSi, 
material  defintion  and  element  property  cards  to  ensure  that  the 
degrees-of-freedom  in  the  analysis  set  are  not  all  massless. 

USER  WARNING  MESSAGE 2387, PROBLEM  SIZE  REDUCED  TO **** DUE  T@ 
@RTH@GeNALITY  DRIFT  OR  NULL  TRIAL  VECTOR. 
ALL  EXISTING  MODES MAY HAVE  BEEN  gBTAINED.  USE  DIAG  16 TO 
DETERMINE  ERROR  BflUNDS . 
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The Tridiagonal   Reduct ion Method cannot   generate  a reduced 
problem s i z e  of t he .o rde r   p re sc r ibed   i n   Sec t ion   10 .6 .2 .3  of 
the   Theore t ica l  Manual. However, t he   des i r ed  number of accura te  
e igenvalues   spec i f ied   on   the  EIGB card (NEP) o r   t h e  E I G R  card  
(ND) may have  been  obtained. A d e t a i l e d  list of t h e  computed 
e r r o r  bounds  can  be  obtained  by  requesting DIAG 1 6   i n   t h e  
EXECUTIVE C@NTR@L DECK. 

2388*** USER WARNING MESSAGE 2388, USER  SPECIFIED RANGE NOT USED  F@R 
FEER  BUCKLING,  THE R@@TS OF LgWEST MANGITLJDE ARE  OBTAINED. 

The va lue  of L 1  s p e c i f i e d  on the  EIGB card is ignored f o r  
buckling  analysis  by  the  Tridiagonal  Reduction (FEER) method. 

2389*** USER WARNING MESSAGE 2389, PRgBLEM S I Z E  REDUCED. Nfl M@RE TRIAL 
VECTgRS CAN BE @BTAINED. 

The des i red  number of e igenvalues   specif ied  on  the EIGB card 
(NEP) o r   t h e  EIGR card (ND) exceeds  the number tha t   can   be  
ca l cu la t ed  by the  Tridiagonal  Reduction (FEER) method. Check 
whether  the  requested number  of eigenvalues  exceeds  the  rank 
of  the [K:,] o r  [Ma,] matrix,   which  equals  the number of exist-  
ing  e igenvalues .  

2390+;** USER WARNING MESSAGE 2390, **** FEWER ACCURATE EIGENS0LUTIONS 
THAN THE **** REOUESTED HAVE BEEN FOUND. USE  DIAG 1 6  T@ 
DETERMINE  ERRbR BOUNDS. 

The number of e igenvalues   pass ing   the   e igenvalue   re la t ive-er ror  
t es t  i s  less than  the number requested  on  the EIGB o r  EIGR card.  
The maximum a l lowable   e r ror  is spec i f i ed   i n   f ’ i e ld  5 on the  above 
cards .  A d e t a i l e d  l i s t  of t he  computed e r r o r  bounds  can  be ob- 
ta ined  by reques t ing  DIAG 16 i n   t h e  EXECUTIVE C@NTROL DECK. A 
checkpoint  and restart  should  be employed t o   o b t a i n   a d d i t i o n a l  
accura te   e igensolu t ions .  

2391*** USER  FATAL MESSAGE 2391, PROGRAM LOGIC ERROR I N  FEER. 

2392*** USER INJ@RMATI@N MESSAGE 2392, **** MORE ACCURATE EIGENS0LUTIflNS 
THAN THE **** REQUESTED HAVE BEEN FOUND. USE  DIAG 1 6  T@ DETERMINE 
ERRdR BBUNDS. 

The number of e igenvalues   pass ing   the   e igenvalue   re la t ive-er ror  
test is g rea t e r   t han   t he  number requested  on  the EIGB o r  EIGR 
card.  The maximum a l lowable   e r ror  is  s p e c i f i e d   i n   f i e l d  5 on 
the  above  cards.  A d e t a i l e d  list of t he  computed e r r o r  bounds 
can  be  obtained by request ing DIAG 1 6   i n   t h e  EXECUTIVE  CONTRgL 
DECK. 
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2393*** USER WARNING MESSAGE 2393, THE REDUCED-SYSTEH EIGENVECTOR 
C@lZRESP@NDING TO EIGENVALUE **** D$ES NflT MEET C@EJVERGENCE 
CRITERIflN, &@LUTE RELATIVE ERROR BETWEEN SUCCESSIVE 
ITERATES XS ****.. 
The accuracy  of  the  corresponding  physical   eigenvector is  i n  
doubt.   Refer  to  the  Eigenvalue Summary T a b l e   f o r   t h e   l a r g e s t  
e r r o r   i n   t h e   g e n e r a l i z e d  mass matrix. 

9.2 The Eigenvalue Sumnary Table 

The following summary of  the  eigenvalue  analysis  performed is automat ica l ly  

p r i n t e d  when r igid  formats   using  the  Tridiagonal   Reduct ion (FEER) method are in- 

voked : 

1. Number of   e igenvalues   extracted.  

2 .  Number of s t a r t i n g   p o i n t s   u s e d .  

This   cor responds   to   the   to ta l  number of random s t a r t i n g  and re- 
start vectors   used by the  FEER process.  

3 .  Number of s t a r t i n g   p o i n t  moves. 

Not used i n  FEER (set equal   to   zero) .  

4 .  Number of  tr iangular  decompositions.  

Always equal   to   one,   except   for   unshif ted  vibrat ion  problems 
( r o o t s   s t a r t i n g  from t h e   l o w e s t   r e q u e s t e d ) .   I n   t h i s   c a s e  a 
maximum of t h r e e   s h i f t s  and three  decompositions are employed 
t o  remove p o s s i b l e   s t i f f n e s s   m a t r i x   s i n g u l a r i t i e s .  

5. Tota l  number o f   v e c t o r   i t e r a t i o n s .  

T h e . t o t a 1  number of   reor thogonal izat ions of a l l  t h e  tr ial  
v e c t o r s  employed. 

6. Reason for   t e rmina t ion .  

(0) Normal te rmina t ion  

(1) Fewer than  the  requested number of  eigenvalues  and  eigen- 
vectors   have  been  extracted.  

(3) The problem size  has   been  reduced.  However, t h e   d e s i r e d  
number of accura te   e igensolu t ions   spec i f ied   on   the  EIGB 
o r  EIGR card  may have  been  obtained. A d e t a i l e d  list of 
t h e  computed e r r o r  bounds  can be obtained by reques t ing  
DIAG 16 i n   t h e  EXECUTIVE CaNTRgL DECK. 
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7. Largest  off-diagonal  modal mass term  and  the  number  failing  the 
mass orthogonality  criterion. 

9 .3  Optional  Diagnostic  Output 

The  user  can  obtain  special  detailed  information  relating to the  genera- 

tion  of  the  reduced  problem  size,  the  elements of the  reduced  tridiagonal  matrix, 

computed  error  bounds  and  other  numerical  tests  by  requesting  DIAG 16 in  the 
NASTRAN  Executive  Control  Deck. 

The  meaning of this  information is explained  below  in  the  order in which 
it  appears  in  the  DIAG  16  output. 

ORDER - The  order  of  the  unreduced  problem  (size  of  the [K ] matrix) 

MAX RANK - The  maximum  number  of  existing  finite  eigensolutions  as  initially 
aa 

detected  by  FEER 

RED  ORDER - The  order  of  the  reduced  eigenproblem  which  will  be  solved  to 
obtain  the  number  of  accurate  solutions  requested  by  the  user 

$Ern T.TCT - The i,iiiiiber of """ "-1- p L e v h u a ~ y  c o ~ p u t e d  accurate s f g ~ ~ ~ ~ ~ t o r ~  OZ the 
eigenvector  file  which  were  generated  prior  to  a  restart  or  by 
the  NASTRAN  rigid  body  mode  generator 

USER  SHIFT - Used  only  in  frequency  problems.  The  user  specified  shift  after 
conversion  from  cycles  to  radians - squared 

INTERNAL  SHIFT-  Used  only  in  frequency  problems.  A  small  positive  value  auto- 
matically  computed  to  remove  singularities  if  the  user  has 
specified  a  zero  shift.  Otherwise,  the  negative  of  the  user 
shift 

SINGULARITY  CHECK - PASS:  the  shifted  stiffness  matrix  is  non-singular 
****: the  number  of  internal  shifts  needed  to  remove 

stiffness  matrix  singularities 

TRIDIAGBNAL  ELEMENTS  ROW j, **, ***, **** - Lists  the  computed  tridiagonal  ele- 
ments of the  reduced  eigenmatrix: 

j - Matrix  row ** - Diagonal  element 
*** - Off-diagonal  element 
**** - First  estimate of off-diagonal  element  in  the  next row 
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ORTH ITER - The number of times a reorthogonal izat ion of a tr ial  v e c t o r  
has  been  performed. 

MAX P R ~ J  - The maximum p r o j e c t i o n  of t h e  above t r i a l  vec tor   on   the   p re-  
v i o u s l y  computed accura te  t r ia l  v e c t o r s   ( p r i o r   t o  the c u r r e n t  
reor thogonal iza t ion)  

NgRHAL FACT - The norma l i za t ion   f ac to r   fo r   t he   r eo r thogona l i zed  t r i a l  vector .  

OPEN CORE NOT  USED *** FEER3 - open  core  not  used.by  Subroutine FEER3, i n  
single-precision  words 

FEER QRW ELEMENT *, ITER **, ***, RATIO ****, PR0J ***** : 
* 

** 

*** 

**** 

*kkk* 

- The i n t e r n a l   e i g e n v a l u e  number i n   t h e   o r d e r  of its ext rac t ion   by  
FEER 

- The number of i n v e r s e  power i t e r a t ions   pe r fo rmed   t o  extract t h e  
assoc ia ted   e igenvec tor  of the   reduced   sys tem  ( th i s  is  no t  a 
physical   e igenvector)  

- I f  a mul t ip le   roo t   has   been   de tec ted ,   the  number of times t h a t  
the  previous  multiple-root,   reduced-system  eigenvectors  have  been 
projected  out   of   the   current   mult iple-root   e igenvector   before  re- 
pea t ing   t he   i nve r se  power i t e r a t i o n s  

- The a b s o l u t e   r a t i o  of maximum, reduced-system  eigenvector  elements 
fo r   success ive   i nve r se  power i t e r a t i o n s  

- The maximum p r o j e c t i o n  of a current   mult iple-root   e igenvector   on 
previously computed e igenvec to r s   fo r   t he  same roo t .  

PHYSICAL EIGENVALUE $c, **, THEOR ERRgR *** PERCENT,  PASS OR FAIL: 

* 

** 

*k* 

- The in t e rna l   e igenva lue  number i n   t h e   o r d e r  of its ext rac t ion   by  
FEER 

- The assoc ia ted   phys ica l   e igenvalue  (X for   buckl ing  problems,  
u2 for  frequency  problems) 

- Theoret ical   upper  bound on   the  relative e igenva lue   e r ro r ,   i n  
percent  

PASS - The computed e r r o r  is less than  or   equal   to   the  a l lowable  specif ied 
on  the EIGB o r  EIGR bulk   da ta   card   (defaul t  is . O O E  where n is t h e  
o rde r   o f   t he   s t i f fnes s   ma t r ix )  

FAIL 
- The computed e r r o r  i s  greater   than  the  a l lowable and t h i s  mode is 

not   accepted  for   fur ther   processing 

$PEN @RE N@T USED ::fc* FEERO - open core  not  used by Subroutine FEER4, i n   s i n g l e  
prec is ion  words 
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FEER  CgMPLETE *, **, ***, **** 
* - The remaining CPU t i m e  avai lable   fol lowing  decomposi t ion  of   the  shif ted 

s t i f f n e s s   m a t r i x ,   i n   s e c o n d s   ( t h e   t o t a l  time is spec i f i ed  on the  TIME 
card   in   the   Execut ive   Cont ro l  Deck) 

** - The remaining CPU time, i n  seconds  af ter   complet ing  Subrout ine FEER3 

*** - The remaining CPU time, i n  seconds  af ter   complet ing  Subrout ine FEER4 

**** - The t o t a l   o p e r a t i o n   c o u n t   f o r  FEER af ter   decomposi t ion of t h e   s h i f t e d  
s t i f f n e s s   m a t r i x .  One opera t ion  i s  cons idered   to   be  a m u l t i p l i c a t i o n  
o r   d iv i s ion   fo l lowed  by an   addi t ion  
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