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ABSTRACT

A perturbed orbit, resonant scattering theory for pitch-angle

diffusion in magnetostatic turbulence is slightly

generalized and then utilized to compute the diffusion coefficient for
1

spatial propagation parallel to the mean magnetic field, x . All
II

divergences inherent in the quasilinear formalism when the power

spectrum of the fluctuation field falls off as k -q (q --^- 2) are removed.

Various methods of computing x 
11 

are courpared and limits on the validity

of the theory are discussed. For 1 < q < 2 the various methods give

roughly comparable values of x 
11 , 

but use of perturbed orbits systematically

results in a somewhat smaller x than one obtains from quasilinear theory.
II
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I. INTRODUCTION	 1

The propagation of charged particles through interstellar and

interplanetary space has often been described as a-random process in which

the particles are scattered by ambient electromagnetic turbulence. In 	 i

general, this changes both the magnitude and direction of the particles'

momentum. In this raper we confine our attention to those situations

for which scattering in direction (pitch angle) is of primary interest.

One can derive from this microscale phenomenon of pitch-angle scattering,

a spatial diffusion coefficient, x ll , which describes the macroscopic

diffusion of the particle distribution. These diffusion coefficients

have been useful for describing the solar modulation of the galactic

cosmic radiation, in which the outward convection due to the solar wind

is balanced by an inward diffusion [v. Jokipii, 1971 for a review]. In

addition, particle observations during solar flares often show a diffusive

phase in which the initial anisotropy of the particle distribution decays to

isotropy. Again, knowledge of x
II 
aids in calculating various characteristic

times, such as the time to reach maximum flux, and the time scale for the

I
decay of streaming anisotropies. Diffusion coefficients have customarily

been computed from the quasilinear kinetic theory of pitch-angle scattering

[v., e.g., Rowlands, Shapiro, and Shevchenko, 1966, Kennel and ;ngehiann, 1966;
—	 i

Jokipii, 1966, 1967, 1968, and references contained in Jokipii, 1971]

along with knowledge of the power spectrum of the electromagnetic

r	 turbulence. When the turbulence is superimposed on a strong background

magnetic field, as is the case in the interplanetary and interstellar

media, the quasilinear theory contains some well-known difficulties if

2
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the Larmor radius of the particles in less than the correlation length

of the field [Klimas and Sandri, 1973; Jones, Birmingham and Kaiser, 1973;

Kaiser, Jones, and Birmingham, 1973; and V81k, 19731. In particular, if

the magnitude of the magnetic field is constant to first order in the

strength of the fluctuating field, then particle backscattering is not

allowed. [For a recant discussion of this point, v. Klimas et al., 1976a.]

Alternatively, when fluctuations in magnitude are present, the pitch-angle

scattering coefficient, D µ , is nearly zero near µ = 0 (where µ is the cosine

!I	 of the particle's pitch angle with respect to the mean field) but at µ = 0
i

is either infinite, in the case of magnetostatic turbulence [Fisk et al.,

f
f	 1974 and Goldstein, Klimas and Sandri, 19751; or, in the general electro-

magnetic situation, is highly peaked [Lee and Volk, 19751. Formally one

can derive expressions for X 1 in this situation [Jokipii, 19711, but
interpreting the result in terms of a mean-free path for backscattering,

which is implicitly done when discussing solar flare events, is suspect

when scattering through µ = 0 is strongly inhibited [Gal'perin, Toptygin,

and Fradkin, 19711.

Many of the difficulties encountered in the quasilinear theory can

be avoided if one modifies the trajectory followed by particles to

include perturbations caused by the fluctuating fields. These perturbing

forces become especially important for µ — 0 because the duration of the

wave-particle interaction is increased in that region of phase space. In

recent years several nonlinear theories have been proposed that predict

significant scattering through µ = 0 [Jones et al., 1973; V81k, 1973;

Goldstein. 1976]. [An alternative approach that also finds significant

scattering through µ = 0, while retaining unperturbed trajectories has

3
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been developed by Klimas et al., 1976a, b.] In this paper we present

a detailed comparison between the magnitude of x
II 
computed from the perturbed

orbit theory of Goldstein [1976] (Paper I) and that resulting from quasi-

linear theory. The discussion is restricted to the relatively simple

situation of magnetostatic turbulence which is a function only of position

along the mean field (the "slab" model).

Use of the perturbed trajectory can produce nearly isotropic

scattering through p = 0. Then the time for backscattering through

A& = A (Cff -lµ) — n is often about equal to the time for scattering

through A(^ — 1 and it becomes meaningful to interpret x
II 

in terms of an

approach of a particle distribution to isotropy. The value of R 1 derived

from perturbed orbit theory tends to be slightly less than that computed

from quasilinear orbits. In addition, for power spectra with spectral

index q z 2, the perturbed orbit theory removes the divergence in x
II

that characterizes the quasilinear result when the distribution function

is expanded in a perturbation expansion L., e.g., Jokipii, 1966 and

Hasselmann and Wibberenz, 196b and 19701.

In §II we generalize the results of Paper I to include slab models

with arbitrary spectral indices. We follow the basic approximation of

that analysis in that we assume, to first order, that the turbulence is

not modified by the particle distribution (I.e., a test particle model).

In addition, the theory is restricted to the weak coupling limit in which
1

it is assumed that ti.e amplitude of the fluctuating field is sufficiently
i

small so that interactions between various wave modes are negligible

compared to wave-particle effects and that the particle orbits are not

i	 1+
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grossly perturbed during a scattering time--the time necessary to

propagate across several correlation lengths. In $III we evaluate K
II

for a variety of parameter values that are characteristic of the inter-

planetary medium and discuss the consequences of the results.

v

i
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¢II	 PITCH-ANGLE SCATTERING - A REVIEW

Ben-Israel et al. [19"5] have recentl;,, developed a nonlinear
kinetic theory of strong electromagnetic turbulence. In Paper I their

work was adapted and modified to describe pitch-angle scattering in

magnetostatic turbulence in a "slab" geometry. In order to provide a

comparison with numerical experiments (Kaiser, 1975), the previous analysis

was confined to	 exponential correlation functions to describe the

statistical properties of the turbulence. In such a model, the dimension-

le-,;s power spectrum is given by
I

R (fro : (2rd -12- E 0 E : kvz) -	
(1)

where, as in Paper I, e = Xc
/
r9 is the ratio of the correlation length

of the turbulence to the Larmor radius. (Our notation follows Paper I,

wherein all lengths are measured in Larmor radii and time in Larmor

periods.)

In this section we first generalize the results of Paper I to include

power spectra with arbitrary power law indices, q. This will enable us

to compute spatial diffusion coefficients from power spectra with

7/5 s q s 2, which is typical of interplanetary observations. For

mathematical simplicity we generalize equation (1) to the following:

f" V+ ,* E	 1 1 3 'Y1

Rik) - =--^	 ^ ^ t E k,)	
c )` r Cv) v,?-- 2

where r x) is the ganmsa function and ?_v + 1 = q. The normalization is

chosen so that

Tr R	 (3)

6
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where Tr R(E) denotes the trace of the correlation tensor of the field,

defined by ( I-23).* In the slab model, Z(k0 ) is implicitly defined by

An 0^1

where B ^k) is the Fourier integral transform of R(I); and the notation

follows ( I-34) and (I-45). From (2) and (3) one has for the correlation

tensor satisfying (2) [Erd6lyi, 19541

yK P-416) N
fW M	 owl	 ["W) (2e E	 V	 ^"'	 (5)

where X is a dimensionless measure of length along the mean field

direction, and where KV (x) is the modified Bessel function of the third kind.

The set of approximate equations that describe pitch-angle scattering

in a slab model were derived in §IV of Paper I. From that analysis and

equation (2) one immediately has for the pitch-angle diffusion coefficient

D :
P

r

Y L ^^	 (6b)

where

r
Ada Cr-a)Cos a (it ^,.1^1 ter) CG (a^^ N^a^^

2 

2 

3
O	 (7)

* Equation 23 of Paper I.
7

R EFRODUCIBIIM OF MM
t;ItIGVAL PAQI 19 POOR

' v



i

O^

rty+^i cos r 
Cl* 

Cos[k r- oxtr^^^ eacpFkifl,^rJj,^

JyC^ 
= E r(y*/l rco,r dk k s;z [k r-^xc^^ ex ^` k2D,c z

2 r

^x^2''^ =, f da Cr--aJ 2 ,vC,C,IJ + Cĵv') ^1C,1)]
V421.7

v	 (10)

_ 4 z	 (	 S^	 D, ^r^	 f
o	 (u)

and I is the ratio of the root mean square , of the f11Lctuation magnetic

field, B; to the mean fie'.d, B o ; i.e.,	 < B'. B'> i/ LBO I.

?or convenience we have dropped the subscript "p" on k and Ox.

	

For v	 the integrals over k in (8) and (9) must be done

n=irically, but otherwise the system of equations can be solved exactly

as before (cf. Appendix E of Paper I).

For comparison, the quasilinear pitch-angle diffusion coefficient

is given by [Jokipii, 1971; Goldstein et al., 19751

	

PL	 Vff	 1+ 
191 2)	 (12)

[NOTE: The definition of D used here and in Paper I differs slightly
µ

from that used in Goldstein et al., 1975.1

8
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In Figure 1 we have plotted solutions of equation (6 ) for

c - 2, I = 0.1, and v - 1/3. The results are qualitatively siYrilar to

those previously presented in Paper I. As before, substantial scattering

through µ = 0 is present.

9



Recently, Earl [1974] has demonstrated + t the correct expression

for H
II 
is 

'
also see Hasselmann and Wibberenz, 1970)

'Tw	 2 fTp 
	 L	 J	 (13)

where (^ 2^^^^ r a 2
In the past, H has also been computed from the expression [Joki ii,

II

1966]

2 [ 
I	 - I

ko

which should be a good approximation to (13) only for nearly isotropic

scattering.

For q 2 2, equation (13) diverges while (14) remains finite.

Earl [1974] has previously noted that generalizations of quasilinear

theory wUch allow scattering through µ = 0, also remove the divergences

in expression (13).

In the remainder of this section .,e discuss the results of evaluat.ng

(13) and (14) for vnriu ,is values of 1, e, v; and for both quasilinear and

perturbed orbits. The general conclusion is that use of perturbed orbits

(equations 6-11) results in appruximately equal magnitudes of k
it 
evuluated

from either ( 13) or (14). This remains true even for q = 2. We dis-

tiriguish tt:e four possible approaches for corTuting H
II 

by using ^. super-

script QL or ITI, to denote quasilinear or nonlinear orbits, respectively;

and a subscript Y or L (perturbation of LeCendre) to denote evaluation

`	 of H
II 
using (13) or '14), respectively.

10
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We confine our attention to values of a between one and three and

I s 0.6. At small a (high energies) the slab model becomes ^nphysical,

but in more realistic turbulence geometries the usual quasilinear

treatment is adequate because the unperturbed trajectories are straight

lines and consequently the difficulty for J p rge c of treating µ = 0

disappears LJokupii, 19h6, 1967, 1968; Klimas and Sandri, 19711. At low

energies (e >> 1) problems arise because in the interplanetary medium n can be

0.6 or larger. In this case equations (6) - (11) become inaccurate

represen'ations of the perturbed orbits for e > 3 and complete

derivatior of the perturbed orbit equations has not been carried out

for arbivai- values of µ. [See Paper I for a more detailed evaluation

of nonlinear effects when p = 0.1 In addition, we show in the Appendix

that the weak-coupling approximation, which is essential to the derivation

of (6) - (11), breaks 4,)wn for I e ;^s 1.

The dimensionless results can be easily transformed into more

familiar dimensional units as follows: Let X denote the dimensiona1
II

diffusion coefficient, then

ti	 _

	 ;R ;/4.t _E 0( ^(,,	
(15)

where W , s ^°-8'/(YMW,	 -y2,	 "1C	 and 80' <Q*,

which we take to be 5 x 10 5 G in the interplanetary radium.

In Tables I and II we show X for I = 0.1, e _ 1, 2 and 3; and
II

v = and 1/3 (q = 2 and 5f3). Use of perturbed orbits has completely

removed the divergence in XQL for q = 2 and yields W fL	 K^L	 XIS'
II9 P 	II^P —	 II I	II+L

For q = 5/1 Vie four forms of X are all nearly equal. The success of
II

V
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F2g.I /2
^	 _

^d r P
_ o. (17)

c

the perturbed orbit theory in removing the divergences present in

quasilinear theory for steep power spectra (a ^t 2) is, of course,

common to any approach that gives a non-zero value to D
µ 
at k = 0.

The near equality of OL to X(^LT arises because scattering throughII ) P	 II ;
µ ^ J is nearly isotropic, and eith.-r spherical harmonic or Legendre

expansions of the distribution are expected "o yield good approximations

to x
u
In the interplanetary medium 1l is rarely as small as 0.1. However,

it can be determined from power spectra computed from data collected

from magnetometer experiments on space probes.	 We discuss below

two examples of such spectra; the first from Jokipii an
d 
Coleman [1968]

(Figure 2) and the second from Fisk and Sari [1973] (Figure 3). From

Figure 2, v 0.2 (q — 7/5) while from Figure 3, v — 1/3 (q — 5/3) and

we assume, for illustrative purposes, that the spectra shown represent

a slab model. P(f) is the power spectral densit- r in y2 /Hz (1 y = 10 5G)

as a function off = Vsw k/2TT, where Vsw is the speed of the solar wind,

taken to be J50 km/so P(f) is related k(k
II ) 

through the definition of

R(a); viz

ao

(16)
a

so tha t

12
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I,

where

P(ka^^/VSw
(1 s)

1	 Equatijn (17) also defines the total variance of the fluctuating field-

which, for Figure 2 is 4.3y
2
 (TJ _ .6), (the Fisk and Sari spectrum is	 !

discussed below). For the spectrum in Figure 2,Xc — 2 x 10 1 cm. The

resulting values of X 1 are shown in Table III; and again ase of perturbed

orbits does not significantly modify x .
II

Fisk and Sari [19731 have argued that low-energy particles

100 MeV/nucleon) do not interact with tangential discontinuities

that are included in computing the power spectrum shown in Figure 2.

The authors th - ,-o on to remove tangential discontinuities from their

data set and compute the spectra labeled PLET1.flm in Figure 2. In this

'0
case I ^ 0.3 (Sari, private communication), and X c 2 x 10i cm. The

resulting values of x are shown in Table IV.
II

The values of x in Table IV (and to some extent, also those in
II

Table III) are consistently smaller than those deduced from the decay

portion of solar flare events [v., e.g., Webb et al., 1973; and Countee

and Lanzerotti ,1,97E 1' . Ccuntee and ?anzerotti [1976] conclude that an

empirical fit to the particle data gives k
II — 

2 x 3021cm2 /s (at proton

energies of — 7 N;eV), a factor of — 7 larger than shown in Table IV.

Webb et al. [1973] also found that the scatterin g* mean free path for

various solar particle events was smaller than could be understood

theoretically from numerical solutions of the F ,_kker-Planck equation

which describes spatial transport. The resoluti, ,n of this discrepancy is

really not well. underst ,) I0.	 * ::e! e are several possibilities, some

E 'i
J



",d

.

of which we mention below: First, we have restricted the turbulence

model to one in which all the k-vectors are parallel to B
0 , 

which tends

to underestimate x 	 Volk [19731 has argued that	 the radial
II

expansion of the solar wind causes the wave vectors to refract into the

radial direction, thus increasing X	 Recently, Morfill [1975] and
II

Morfill et al. [1976] have investigated this possibility in more detail,

with the conclusion that one can indeed 	 increase x
II 
by a much as a

factor of 10 if the wave vectors of interplanetary Alfv6n waves are

predominately in the radial direction. Their analysis includes a dis-

cussion of effects due to an admixture of compressive modes. Unfortunately,

there is little definitive information about the direction of propagation

of interplanetary magnetohydrodynamic (MHD) waves and no evidence has been

presented that the wave k-vectors are in the radial direction. Second, in

order to fully understand interplanetary propa gation it is undoubtedly

necessary to have a fairly detailed knowledge of the nature of the

magnetic turbulence before, during and after a solar flare event. Such

a detailed study is not generally made, and consequently x
II 

is not often

evaluated for the actual turbulence at the time of a flare. There are,

however, several analyses which have related X 1 to the magnetic power
spectrum at the time of the particle events (v., e.g., Lan zerotti et al.,

1973; Webb et al., 1?73, and Wibberenz et al., 1973, 1)76). A general

conclusion of these studies is that X evaluated from the weak-coupling
II

theory is systematically smaller than implied by the observed time

behavior of the particle fluxes. Third, one does not know the heliocentric

dependence of X 	 If ( Sari, 1973) }% increases rapidly toward the Stan,
II	 II

then large mean free paths inside of 1 A.U. could explain the flare

llE
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observations at 1 A.U.; however, large values of X are also needed to
	 1

II

understand the small gradient in cosmic ray intensity that is observed

on Pioneers 10 and 11, so again one cannot completely remove the dis-

crepancies in this way. One could also argue that if X 	 2 x 1011cm,

then 10 MeV protons correspond to e 20. Then, with ^ 0.6 one has

seriously violated the weak-coupling approximation; and, as there is no

extant kinetic theory valid for strong coupling in strong turbulence,

one might expect tha t a more correct theory, when it appears, would

improve the situation. Even this explanation is seriously weakened,

however, if Fisk and Sari [1973] are correct that lnw-energy particles respond

to 
PBETWEEN 

rather than PAL . For then, with I 0.3 and e 2

(12 MeV protons) the weak-coupling approximation is not badly violated;

but from Table IV, one still finds X to be too small. Yet another
II

approximation that is always made in deriving D
µ 

is that the particle

distribution behaves as a collection of test particles. While this is

an excellent approximation at moderate energies it may well breakdown

at the low energies (< 10 MeV for protons) discussed by Countee and

Lanzerotti [1976]. A crude estimate of the energy density of the particles

indicates that at times it equals the energy density in the fluctuation

fields; a situation which in principle necessitates a full self-consistent

treatment of the Vlasov-Maxwell equations for a complete theoretical

treatment. [Such a theoretical framework is available only in the

weak-coupling regime (Ben-Israel et al., 1975).] Finally, Nolte and

Roelof X19751 have developed a mathematical treatment which examines the

consequence of assuming "scatter-free" propagation at the onset.
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§V	 CONCLUSION

We have computed the spatial diffusion coefficient x using both
II

perturbed and quasilinear orbits within the context of the weak-coupling

approximation. Use of the perturbed trajectory removes divergences

found in quasilinear calculations for steep power spectral indices

(q z 2) when equation (13) is used to compute X... For less steep spectra,

1 < q < 2, XK - tends to be slightly less than x	 due to enhanced pitch-
II	 II

angle diffusion through p = 0. If the correlation length of the inter-

planetary turbulence is X 	 2 x 10
11
 cm, then for e 4 3 (proton energies

;b 400 Mev) one obtains values generally consistent with observations.

At lower energies (e >> 3), the weak-coupling approximation is violated

and one may require a kinetic theory valid for strong coupling.

However, if Fisk and Sari [1973] are correct in their assertion

that low-energy particles (" 30 Mev protons) traverse a stochastic

field characterized by X c 0. 2 x 1010cm, then one should,in principle,

be able to use the present theoretical formalism to determine the spatial

diffusion coefficient for — 30 Mev protons. The results of such a

computation, using either perturbed or quasilinear orbits, yields spatial

diffusion coefficients that are consistently too small by factors of 5-10.

[Unless there is significant focusing of the wave k-vectors into the radial

direction.] However, it is possible that for this low-energy particle

population the test particle approximation has broken down. Correction

of this breakdown would require significant modification to the theoretical

formation that is now used, even within the context of the weak-coupling

approximation.
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FIGURE CAPTIONS

Figure 1.	 The dimensionless pitch-anglo diffusion coefficient, e D
µ

is plotted as a function of µ. The solid line is the

result of using equations (6) - ( 11) (nonlinear orbits),

while the dashed line results from use of equation (12),

employing unperturbed orbits (quasilinear approximation).

The spectral index is q = 5/3, and I and a are 0.1 and

2.0, respectively.

Figure 2.	 Power spectrum of the component of the interplanetary

magnetic field normal to the solar equational plane,

observed on Mariner 4. A fit to these data with an
I

analytic function of the form of equation (2) yields	 0.6

and X  — 2 x 101-1 cm (after Joki ii and Coleman, 1968).

Figure 3.	 Representative spectra for the total observed power density

( PAL), the power density due to directional discontinuities

(PDIS)' and the power density due to field fluctuations

between the discontinuities ( PBETWEEN ). A fit to these

data with an analytic function of the form of equation '12)

yields, for PBETWFZV
	

e. 
0.3 and % c — 2 x 1010 cm (after

Fisk and Sari, 1973).
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APPEUDIX

The weak-coupling approximation, as used here, is essentially the

claim that (Appendix B of Ben-Israel et al.	 [1975] or I-13)

This is true whenever

d	 (A-2)

All quantities in the integrand are 0(1), and the integral converges in

after a time T ;^: 1 or T ? e (i.e., after a cyclotron period or a

correlation time, which are the two characteristic t^-ie scales of the

problem. Therefore, (A-2) is true if I << 1 and 7 e << 1. (This is

identical to the conditions of Ben-Israel et al. [1975] that aB << 1 and

of << 1.) For low enerr,ies (e >> 1) one expects (A-2) to saturate

fter many Laiinor periods (T > e) and therefore one needs 7 e << 1 for

(A-1) to hold.

Similarly, the perturbed tra,ject;uries are likely to be a food

approximation if (cf. equation B,', of Ben-Israel et al. [1975] or I-16.

r^	 t'e ( r)	 (A-;)

With

J0
4



j

t

Iteration leads to

^^cU

which is true if I << 1 and	 << 1, as above.

(A-5)
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