$\sqrt{76-32127}$

Final Report

on

AN INVESTIGATION OF DRAG -REDUCTION ON

BOX-SHAPED GROUND VEHICLES

July 1976
KU-FRL \#180

NASA Dryden Flight Research Center

Grant NSG 4004
Mr. Edwin Saltzman, Technical Officer
by
Vincent U. Muirhead Principal Investigator The University of Kansas

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE

1. U.S. DEPARTMENT OF COMMERCE

$$
\mathrm{N} O \mathrm{~T} \text { I C E }
$$

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

TABLE OF CONTENTS

List of Symbols IV
1 Introduction 1-1
2 Theoretacal Studies 2-1
21 Aerodynamic Model 2-1
22 Acoustic Model 2-1
23 References 2-3
3 Experimental Actıvities 3-1
3.1 Aurcraft Preparation 3-1
32 Measurement of Propeller Performance 3-1
321 Introduction 3-1
322 Propeller Shaft Loads 3-3
3.23 Strain Transducer Axrangements 3-5
324 Mechanical Intensification of Thrust Strain 3-6
325 Direct Shaft Strain Measurements 3-9
326 Instrumentation Development and In-Flight System Description 3-13
33 Fly-by Noise Measurements 3-16
34 References 3-17
3.5 Bıblıography 3-18
Appendix A Numerıcal Analysis of Propellers A-1Appendix B. Former Approach to the PropellexNouse ProblemB-1
Appendix C Present Approach to the Propeller
Nolse Problem $\mathrm{C}-1$

LIST OF SYMBOLS

A cross-section area in $1 n^{2}$
E_{o} output voltage of a strain gauge bridge
I section moment of inertia in in ${ }^{4}$
J section polar moment an inertia in in ${ }^{4}$
K_{g} gauge factor of a strain gauge, 1 e , unlt resistance change per unit strain

M bending moment in in-lb

Q torque in in-Ib
R resistancé in ohms
T thrust load in $1 b$

V bridge excitation voltage
$\varepsilon \quad$ strain in microstrains, 1 e , micro-inches per Inch
ε_{B} bending load induced strain
ε_{Q} torque load induced strain
ε_{T} thrust load Induced strain
σ stress in psi
μ Polsson's Ratio

Introduction
This project, inıtiated in September 1971, has as its objectıve the determanation of propeller design parameters which yield minımum propeller nolse, given constraints on propeller performance

The study addresses both the theoretical and the experimental aspects of the problem Theoretical efforts have been darected at applying variational techniques to the noise equations Expeximental efforts have been concerned wath measurement of the propeller performance and nolse of a Lockheed Y0-3A alrcraft

The following sections presents a report of the current state of this study

Theoretacal Studies

The objective of the theoretacal aspect of the program 1 s to determine the optimum blade loading to manimıze nolse level, given the thrust, diameter, rotational speed and forward velocity. Both an aerodynamic model and an acoustic model for the propeller are required for this analysis

2.1 Aerodynamıc Model

The aexodynamic model at present consists of a vortex system utilizing a lifting line and a helical vortex sheet for each blade The bladewise circulation distribution $\Gamma(y)$ is the sought for quantity in the noise manamization problem

A computer program has been written for the aerodynamic model based, essentially, on the analysis of Morıya (Ref. 2 1). The program, as it now stands assumes constant bladewase section aerodynamic characteristacs. Modification to allow varıable section aerodynamics is a relatively easy task and is now In progress The results of the aerodynamic analysis express the propeller performance in terms of the Fourier coefficients for the carculation distribution $\Gamma(y)$ A draft of this analysis 15 enclosed as Appendix A. Some further shakedown and check out of the program is required before it becomes fully operational

2.2 Acoustic Model

The acoustic model is a simplification of that represented by the Ffowcs-WIllıams-Hawkings equation (Ref 2.2, Eq 3-16) Presently only the force terms are retalned, resulting in a model that is essentially Gutin's model with radially distrabuted line dipoles representing the blades Following successful treatment of this model, volume displacement effects will be included.

The sound antensity may be expressed in normalized form, as

$$
I^{*}=\int_{0}^{1} \int_{0}^{1} F\left(r^{*}, r_{1}^{*}\right) Y\left(r^{*}\right) Y\left(r_{1}^{*}\right) d r^{*} d r_{1}^{*}
$$

where γ is related to the carculation and F is a known function The constraint of constant thrust is expressed as

$$
\int_{0}^{1} \gamma\left(x^{*}\right)\left(1-r^{*}\right) d r^{*}=1
$$

Applyang varıational analysıs to these equations provides a necessary condition for I^{*} to be a minımum

$$
\int_{0}^{1} F\left(r^{*}, r_{1}^{*}\right) \gamma\left(r_{1}^{*}\right) d r_{1}^{*}=-\frac{b}{2} r^{*}\left(1-r^{*}\right)
$$

where b is a Lagrange multiplier.
Inıtial attempts at numerical anversion of this integral equation utilized both a Legendre Polynomial expansion and a Chebyschev polynomial expansion for $\gamma\left(r^{*}\right)$, coupled with a Gaussian integration procedure, reducing the integral equation to a matrix equation

$$
\mathrm{AL}=\mathrm{C}
$$

where L represents the unknown values of γ at selected points on the blade Numerical inversion of this matrix equation was not successful In all cases tried, the coefficient matrix A was ill-conditioned

The current approach involves a Fourier transform of the antegral equation, implying the assumption that the noise is periodic in the blade frequency, with a Doppler shift This is consistent with the acoustic farfield assumption

Some success is indicated with this approach, however convergence is exceedingiy slow and, as a consequence, required computer time is large

Appendix B contans some details of the earlier analysis for a simplified case in which only the thrust component of blade lift was included. Appendix C contains some details of the current analysis utilizing Fourler Transforms.

23 References
21 Morıya, T., "Selected Scientafic and Technical Papers," Unıversity of Tokyo, Tokyo, 1959
2.2 Goldsteın, M E , "Aeroacoustics," National Aeronautıcs and Space Admınıstration, Washıngton, D C , 1974

3. Experimental Activaties

All experımental efforts have been dırected toward $1 n-f 11 g h t$ measurements of propeller torque and thrust and fly-by sound levels, utillzing a YO-3A axrcraft

31 Alrcraft Preparation

Since the YO-3A aircraft was recelved in disassembled, worn and damaged condition, a good deal of time and effort has been spent rendering 1t aırworthy. Much of this effort was expended in obtaining maintenance and operating manuals, shop drawings, etc. The cooperation in these endeavors of Mr Harold Schuetz, USAAVSCOM, St Louis, and Mr. David Schnebly, Lockheed, Sunnyvale, is very gratefully acknowledged

Major repairs have included a top overhaul on the engine, repair of a. fractured vertical fin-fuselage attachment fitting, repair of alleron and wing tip damage, replacement of elevator attachment pıns, manufacture of special jıgs for checking drave shaft/prop shaft alıgnment and belt tension, modification of the forward instrument panel, installation of VHF radio, removal and repair of the muffler system, and other items Photographs of the aircraft and the propeller drave systems are shown in Figures 31 and 32

3.2 Measurement of Propeller Performance

32.1 Introduction

An essential element in the development of a low-nolse propeller is the accurate measurement of its propulsive performance This means that the thrust avallable, the thrust power avallable, and the shaft power required must be measured, preferably in flıght For the subject studies, a

Lockheed Y0-3A alrcraft is available for use as a test platform A significant part of the program has been devoted to instrumenting this aircraft for the in-flight measurement of thrust and power

Two approaches to these measurements were considered in this study
a) Aurflow Measurement

By pressure surveys of the flow faeld behind the propeller, determinations of the thrust and torque acting on the propeller are possible (Ref 3.1) However, this method requires correction for the interference effects of the fuselage The accuracy of this method was judged insufficient for the purposes of this project
b) Direct Thrust and Torque Measurements

The Y0-3A's propelier is mounted on a cantilevered propeller shaft (Figures 32 and 3 3) This shaft is driven through a speed reduction drave system employing pulleys and belts Because of this drave system, the engine is isolated from the shaft and load cell measurements on the engine mounts would not yield propeller thrust data. Such measurements could produce approximate torque measurements if pulley, belt and propeller shaft bearing losses could be determined

As shown in Figure 3.3, approximately 9 -inches of the propeller shaft is easily accessible The strains induced in this shaft are direct measures of the thrust and torque transmitted to the propeller Thus, direct instrumentation of the propeller shaft (say, wath strain gauges) can, in principle, yield the desired information This approach was selected

There is one major difficulty involved in this approach, 1 e , the thrust related strains are much smaller than the torque related strains and are very small in an absolute sense No mechanacal modafacations to the shaft (e g weakening the shaft in tension) were attempted because of aırworthiness questions involved Instead, it was decided to attempt to measure the shaft stranns directly

322 Propeller Shaft Loads

The Y0-3A alrcraft is powered by a Continental IO-360A engine rated at 210 hp at 2800 rpm It drives a 3-bladed, constant-speed propeller through a sheave and belt system that provides a 3331 speed reduction ratio. The blade pitch is controlled by a Woodward governor that supplies pressurized engine oll to the propeller through the hollow propeller shaft

Based on data gaven in Reference 32 and assuming no drive system losses, it is estamated that a maximum of 186 hp is available at the propeller shaft to drive the propeller This, together with a propeller shaft speed of 841 rpm , yzelds a maximum torque to be transmatted by the shaft of 13,944 in -Ibs.

Again based on data from Reference 3 2, at appears that the thrust required in level flight, at sea-1evel, will be in the range from 250 to 400 lbs. Although performance data are not avallable for the propeller, the assumption of an efficiency of 50% at the sea-level stalling speed of 61 knots yields an estimated maximum thrust available of about 500 1bs. The thrust load instrumentation has been designed on the basis of a maxımum thrust load of 500 lbs , but can measure thrust loads up to 1000 lbs

Besides the torque and thrust loads, the shaft is subject to loads from three other sources
a) Bending Due to Propeller Weight

Bending stresses due to the weight of the propeller are estimated to be due to a 1500 in -1b moment actang about the location of the instrumentation on the shaft
b) Internal Oal Pressure

The internal oil pressure produces an axial tension stress due to the action against the hub piston. It also produces a hoop stress (tension) that, through Poisson's ratio, induces a compressive axial stress The net effect is a small axial tension stress. Thas net stress is about 28 psi for an 011 pressure of 100 psi ; this is equivalent to an additional thrust load of about 53 lbs c) Centrafugal Force

At a shaft speed of 841 rpm , the outer surfaces of the shaft has an acceleration of about 24 g 's The resulting axial stress is negligible compared to the other shaft stresses

Table I summarizes the stresses and strains in the propeller shaft due to thrust, torque, and bending Both the centrifugal stresses and the net oil pressure stresses as calculated were negligable, however, their effects will be evaluated during calibration of the instrumentation The ratios of the maximum strains taken from Table I are

$$
\varepsilon_{\mathrm{T}_{\max }}: \varepsilon_{M_{\max }} \quad{ }^{\varepsilon_{Q_{\max }}} \cdot 1 \quad 66.424
$$

These ratios show the crux of the instrumentation problem, i e., the very low thrust strains in the presence of much larger bending and torque strains

323 Strain Transducer Arrangements

The sensor choice was dictated by the need to distanguish between the combined loads present, as well as the need to measure them reliably and accurately The sensor must also function over the range of environmental conditions met in aurcraft flight. Strain gauges were chosen as the sensors

Most strain gauge work is done in the $50-500$ microstrain range, within this range it is possable to measure changes of 1 or 2 macrostrains However, the thrust strains on the shaft are 8.85 microstrans full scale, see Table I. This low strain level poses problems in the thrust measurement The torque and bendang strain levels are high enough to present no difficulties in reliable measurement by foil stran gauges

Figure 3.4 outlines the decision process followed in choosing the method of measurement and selection of sensors Two main avenues of approach were made for the thrust measurement

1) Intensification of the low level thrust strains by mechanical means, using foil strain gauges as sensors.
2) Direct shaft strain measurement of thrust strains Foil
strain gauge and semi-conductor strain gauge evaluations were made and compared The semi-conductor gauges are 75 times as sensitıve as foll gauges but have a high inherent temperature effect on sensitivity as compared to foll gauges

Wheatstone bridges, with an actuve strain gauge in each arm were chosen If all four arms experience equal temperature changes, and if all four gauges are perfectly matched then temperature effects are automatically cancelled. Figures 35 and 3.6 illustrate the directions of the strains produced by the thrust, bendang, and torque loads and the bradge arrangements used for measuring them. Each of the strains can be measured independently
of the other two and, in each case, the bridge output exceeds the output of a sangle active gauge

When the shaft is subjected to thrust, bendang and torque, the induced strains act along certain directions, as shown in Figure 3.5 Thrust and bending loads produce tensile and compressive strains in the axial direction Due to the Poisson effect, axial tensile and compressive strains generate compressive and tensile lateral strains. The shear strains induced by torque cause tensile/compressive strains on mutually perpendicular axes inclined at 45° to the shaft axis, the sum of the components of torque strains in the axial and laterial directions are zero The sums of the thrust and bending strain components, in the torque strain directions, are not zero but thear effects on the torque bridges will cancel

Figure 36 shows the three arrangements of strain gauges used to measure thrust, bending and torque on the shaft, taking advantage of the directional properties just discussed Referring to thas figure, we have

Thrust. $E_{0}=\frac{K g}{4}\left[2(1+\mu) \varepsilon_{T}\right] V$
Torque $\quad E_{o}=\frac{K g}{4}\left[4 \varepsilon_{Q}\right] V$
Bending $\quad E_{o}=\frac{K g}{4}\left[4 \varepsilon_{B}\right] V$
Ignoring second order effects, non-linearıties and cross-sensítivities of the gauges, and assuming the gauges are perfectly matched and aligned in the required directions, each of these bridge arrangements reacts only to one type of loading and is insensitive to the other two loads

3.24 Mechanical Intensıfication of Thrust Strain

Larger thrust strains can be obtained by addang a load path parallel to the propellant shaft and incorporating in this added path a short, weak link

Such an arrangement is shown in Figure 3.7. The propeller shaft (1) carries most of the thrust load The parallel load path (made up of the support link (2) and the weak link (3)) carries only a small part of the thrust load, the amount is determined by the relative strengths of the weak link and the propeller shaft However, both load paths stretch equally under the load Because most of the stretching of the parallel path occurs in the short weak link, its strain is much greater than that of the shaft, 1 e, $\varepsilon_{3} \gg \varepsilon_{1}$ An analysis of this strain intensifier arrangement yields the following intensification ratio

$$
\frac{\varepsilon_{3}}{\varepsilon_{1}}=\frac{\ell_{1}}{\ell_{3}}\left[\frac{1}{1+\left(\frac{l_{1}}{\ell_{3}}\right)\left(\frac{A_{3} \mathrm{E}_{3}}{\mathrm{~A}_{1} \mathrm{E}_{1}}\right)+\left(\frac{\ell_{2}}{\ell_{3}}\right)}\left(\frac{\mathrm{A}_{3} \mathrm{E}_{3}}{\left(\mathrm{~A}_{2} \mathrm{E}_{2}\right.}\right)\right]
$$

where

$$
\begin{aligned}
& \varepsilon=\text { strain, mıcro-inches per inch } \\
& \ell=\text { length } \\
& A=\text { cross -sectional area } \\
& E=\text { modulus of elasticity }
\end{aligned}
$$

The subscripts 1, 2, and 3 refer to the components as shown in Figure 3.7 and $\varepsilon_{I_{0}}$ is the shaft strain in the absence of the intensifier If the tensile strength of the weak link is made much less than those of the support $l_{1 n k}$ and the propeller shaft such that

$$
\left(\frac{\ell_{1}}{\ell_{3}}\right)\left(\frac{A_{3} E_{3}}{A_{1} E_{1}}\right) \ll 1
$$

and

$$
\left.\frac{\ell_{2}}{l_{3}}\right)\left(\frac{A_{3} E_{3}}{A_{2} E_{2}}\right) \ll 1
$$

then the intensification ratio is approximately

$$
\frac{\varepsilon_{3}}{\varepsilon_{I_{0}}} \simeq \frac{l_{1}}{l_{3}}
$$

The system used to study the performance of the strain intensifier is shown in Figure 3.8. The system consisted of two weak link assemblies, 180° apart, mounted on a full-scale model of the exposed portion of the propeller shaft. The links were fabricated of aluminum and were each instrumented with 4 -arm strain gauge bridges. Using the smallest gauges available, a link length of 0.2 inches was achıeved, yıelding a length ratio, ℓ_{1} / ℓ_{3}, of 40. The thickness and width of the lanks were 0.010 and 0.400 Inches, respectively. The tensile strength ratios were

$$
\begin{aligned}
& \frac{\mathrm{A}_{3} \mathrm{E}_{3}}{\mathrm{~A}_{1} \mathrm{E}_{1}} \cong 0.003 \\
& \frac{\mathrm{~A}_{3} \mathrm{E}_{3}}{\mathrm{~A}_{2} \mathrm{E}_{2}} \cong 0.001
\end{aligned}
$$

The test assembly was installed in a lathe (Fugure 3.9) and could be loaded simultaneously in torque, bending, and thrust. Loadings up to 40% of full-scale were used. Typical results of the thrust calibration are shown in Figure 3.10, and the overall thrust and the torque interactions With thrust results are summarized in Table II. It is evident that the torque interaction is very large. Over the full-scale range of loads to be met in flight, the weak link system would have an output, due to torque interaction, of 860% and 212% of the full-scale thrust output. (The interaction results of the two links are different due to different arrangements of the gauges on each link. This was done to check the effect of gauge arrangement on the torque interaction.) Because of the large torque interaction effects and because the links required very close machining tolerances and were found to be very dıfficult to install and adjust satısfactorily, the mechanıcal strain intensıfier was rejected as a practical solution to the thrust measurement problem.

A second attempt at mechanical intensification was made using a deflection sensor manufactured by DSC, Inc In this device, a smail cantilevered arm is instrumented with semi-conductor strain gauges to measure the bendang strains produced by deflection of the end of the arm The deflection sensitIvıty appeared very attractive for the present applicatıon, $1 . e$, about $6 \mu V / V / \mu-$ nnch compared to a shaft strain of 8.85 microstran for the 500 Ib thrust load

The sensor's arm has a flexure neax x ts end to reduce the effects of bending moments other than those due to linear deflections It was hoped that this feature also would help reduce the torque and bending anteractions in the thrust measurement Tests of several different installation arrangements showed, however, that the interactions were much worse with this sensor. Because of this, it was rejected as a possible thrust sensor

3.25 Direct Shaft Strain Measuxements

With the abandonment of mechanical strain intensification, a study of the practical problems of direct thrust strain measurement was undertaken. For comparison purposes, both foll and semi-conductor strain gauges were used In the case of the forl gauges (which have low strain sensitivity but good temperature characterıstics), both 120 ohm and 350 ohm gauges were used The latter gauges were used to take advantage of the higher excitation voltages possible. The semı-conductor gauges (which have high strain sensitıvıty but poor temperature characterıstics) wexe 1000 ohm gauges with gauge factors of about 155

The gauges were mounted on the model propeller shaft and were $1 n-$ stalled in the lathe (see Figure 3 9) and loaded in combined thrust and torque. The torque sensor was made up of 350 -ohm forl gauges fabricated as special purpose torque rosettes Typical results are presented in Figures 3.11 and 3.12 The results are summarized in Table II For
comparison purposes, the expected sensitivity of the foll bridge was

$$
\frac{E_{o}}{V T}=.023 \text { mıcro-volts } / \text { volt } / 1 \mathrm{~b} \text { thrust }
$$

and the expected sensitivaty of the semi-conductor bridge was

$$
\frac{E_{o}}{V T}=178 \text { micro-volts/volt/lb thrust }
$$

From the results of Table II it was concluded that the forl gauges are adequate for the torque measurement However, the hagher sensitavity of the sema-conductor gauges was found necessary for reliable measurement of the small thrust strains Since the alrcraft will produce a nolsy environment for the instrumentation system and since the sensor signals will be transmatted from the rotating shaft through slip rangs, it is important that the sensor outputs be as large as possible to insure a high signal-tonolse ratio

The selection of semi-conductor straln gauges for the thrust measurement was made in spite of their poor temperature sensitivity characteristics. The resistance of these gauges increases while the gauge factor decreases as the gauge temperature increases These temperature effects can be reduced by placing a suitable resistance (called a span resistor) in series with the bridge This resistor has a negligıble resistance change with temperature As the bradge resistance increases (reducing the carcuit current), the voltage drop across the span resistor decreases and voltage drop across the bridge. increases This increase in bridge (excitation) voltage tends to compensate for the decrease in bridge sensitivity The value of the span resistance can be used to control the temperature range over which compensation is achieved.

The effectiveness of temperature compensation was studied by installing an electrac resistance heater inside the model shaft and measuring bridge
output as a function of bridge temperature (which was monitored by thermistors mounted near the gauges). Some typical results from this study are presented in Figure 3 13. These results show that the uncompensated bridge has a temperature sensitivity of $12.3 \mu \mathrm{~V} / \mathrm{V} /{ }^{\circ} \mathrm{F}$ That is (for a bridge initially balanced at $78{ }^{\circ} \mathrm{F}$) at a bridge temperature of $104{ }^{\circ} \mathrm{F}$, the temperature induced output would be about 40% of the full-scale thrust output However with a 915 ohm span resistor, this bridge, at $104^{\circ} \mathrm{F}$, will have a temperature Induced output of only 5% of the full-scale thrust output. In flight, the propeller shaft temperature will change due to changes in both ambient temperature and oil temperature inside the shaft. Thus, temperature compensation of the semi-conductor bridges wall be mandatory In addation, surface temperatures wall be measured so that corrections in bridge output can be made.

The results presented in Figure 314 and Table II, show that there is a large torque interaction bridge output. This interaction possibly can be explained by one of the following arguments Theoretacally there should be no toxque strain components in the axial and lateral directions, which are the directions in which the thrust gauges are mounted This is true provided that the thrust gauges are exactly aligned on the shaft axes, and that the shaft is 1sotropic and homogenous In the present case, the ratio of the maximum thrust and torque strains is 1424 Thus, small misalıgnments of the thrust gauges from the shaft's axial and lateral directions would cause a pickup of torque strain components that might be sizeable compared to the small thrust strains. The term masalignment here is meant to include both the deviation of the gauges from the axalal and lateral directions caused in gauge mounting, as well as the deviation of the shaft axis from its theoretical direction.

For the full-scale loads, the thrust and torque interactions per
degree of gauge misallgnment have been calculated to be• A maximum torque strain interaction of 968% of the maximum thrust strann would occur for each degree of masalıgnment of the thrust gauges

A maximum thrust strain interaction of 2.23% of the maximum torque strann would occur for each degree of misalignment of the torque gauges

Another possible source of this interaction could be the crosssensitivity of the gauges This is normally a very small effect, but in the present case ıt may be significant because of the 1424 ratio of maximum thrust and torque strains.

For both the foal and semı-conductor thrust bridges, whose results are presented in Table II, the torque induced output was of a sign opposite to the thrust output. (The sense of the applied torque was the same as that whach would occur in the alrcraft) When the sense of the torque was reversed, the sign of the torque induced strains also changed Both the foil and semiconductor gauges were mounted on a shaft which had buckled slightly in an earlier test Before the gauges were installed, the shaft was remachined, but the buckling could have caused a curved shaft axis

Another test shaft was made and a new set of semı-conductor gauges were mounted on it When this shaft was tested under the same conditions as the older shaft; the torque interaction in the thrust bridge output was still present but its maxımum value had been reduced to 443%. Also, torques applied in the same sense as that in the aircraft, produced torque induced strains of the same sign as the thrust induced strains This result is opposite to that observed with the older shaft This result tends to support
masalignment as a cause of the interdction It is very daffacult to exactly preduct the masalıgnment effect because four indıvidual gauges are involved However, for both the old and the new shafts, the torque anteraction was calıbratable and repeatable

A bending interaction in the thrust output was also observed. This interaction was much smaller than the torque interaction The bending intexactıon can also be caused by mısalıgnment, as well as by small differences In the sensitavaties of the gauges making up the thrust bridges for the new shaft, the maximum interaction was only 705%. This bending interaction also was found to be calıbratable and repeatable

3.26 Instrumentation Development and In-Flight Systems Description

3 2.6.1 Introduction and Background

A block diagram of the thrust/torque measuring system as presented in Figure 3 15. The elements of this system can be grouped into three subsystems, (1) straln measurement components mounted on the propeller shaft, (2) components located in the cockpit, and (3) auxiliary components. By way of background, a short discussion of the development of the strain measurement system $1 s$ presented furst

Because of the very low thrust-induced strain levels, a high gain system with a high signal-to-nolse ratio is required if the thrust measurement is to be successful Inıtıally an AC system, with a 1000 Hz carrıer frequency, was designed and built. Thıs system exhıbıted sufficient sensıtıvity and was quate linear However, the zero-strain brıdge output could not be nulled, even when the bridge was resistance balanced Furthermore, this zero load manımum brıdge output level was suffacient to saturate the first amplification stage. Is is thought that the problem was due to phase unbalance between the semi-conductor bridge arms In view of this problem,
the system was redesigned to use DC excitation throughout The DC system, which will be used for in-flight testing, has been built and is now being checked out on a full scale model of the propeller shaft. With the exception of the data recorder, all components of the instrumentation system recelve power from a regulated ± 15 VDC power supply operating from the 400 Hz aircraft electrical system

3.2 6.2 Components on the Propeller Shaft

The thrust, torque, and bending transducers (4-arm strain gauge bridges) are mounted directly on the propellex shaft The associated electronics are mounted on a printed circuit board that is attached to the front face of the slip-ring assembly (see Figure 316 and Section 3263 below) Bridge excitation is by a regulated, IC 5 VDC power supply that is part of the shaft instrumentation package and operates from the 15 VDC source This addıtional regulation was selected to provide a stable source for the strain transducer circuits

The brıdge outputs are processed by IC differentıal amplıfıers feeding into operational amplifiers (See Figure 3.17). The amplifier combinations are adjusted to give overall gains of 1000 The amplifiers are mounted in high thermal resistance packages and have active internal temperature controls giving very tight temperature control This arrangement provides haghly stable gain and low temperature draft over a range of ambient temperatures from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

326.3 Slap Rang Assembly

A sectional view of the slip ring assembly is shown in Figure 3.18 and a photograph of the components, before final assembly, is presented an Figure 3 19. The brush/rıng materıal combination was selected on the basıs of

Information given an Reference 33 and after some prelımınary laboratory checks The objectave was a low resıstance contact and very low slip ring noıse The materıals selected were hard brass rings and salver-graphite (50% silver by weight) brushes Two brushes and two internal leads are provided for each rang to further improve the contact characteristics.

In order to avold the complications of a split slip ring assembly, the inside diameter of the assembly is 5 inches, large enough to slip over the flange at the forward end of the propeller shaft (see Figure 3 2) A split spacer is clamped to the shaft, to bring the diameter up to 5 inches Two alrcraft quallty bearings separate the inner (rotating) and outer (fixed) assemblies. The outer assembly is thus carried by the shaft and is not rigidly attached to the aurcraft frame. A soft rotational restraint will be used, manimizang vibration effects.

32.64 Cockpıt Components

An amplifaer control box and a data recorder are located in the observer's (forward) cockpit The control box contains active filters, having 3 db roll-off at about 65 Hz , and output amplifiers for use in adjusting the overail gain of the system (See Figure 3 20) It wall also contain auxiliary components discussed in Section 32.65 below

The data recorder is a Gulton Industries, 8-channel, strip chart recorder provided by the University's Aviation Research Laboratory (ARL) where it has been used for in-flight testing. It is powered by a 400 Hz to 60 Hz inverter, also supplied by ARL

A bundle of shielded co-axial cables will connect the slip-ring brushes to the amplifier control box

3.265 Auxiliary Instrumentation

In order to correct the semi-conductor bridge output for temperature
effects, thermistors w11 be mounted on the shaft surface close to the strann gauges They wall be connected to the cockpit control box through the slip rings and the cable Associated electronics will be contained on the pranted carcuit board on the shaft and in the control box Thear output w111 also be recorded on the 8-channel recorder

The apparent thrust load will contain a contribution due to the oll pressure in the shaft This pressure will be monitored by a pressure transducer in the hydraulic line between the governor and the propeller shaft. Its associated electronacs also wall be in the control box wath output recorded on the 8-channel recorder

Finally the control box will contain a single stage timer to provide a time reference for the recorder output

3.3 Fly-by Noise Measurements

Capability of fly-by noise measurements has been established Measuring equipment consısts of a General Radıo 1962-9601 microphone with associated pre-amps and power supply, feeding into a NAGRA IV-SJ tape recorder. Analysis of the results is accomplished by use of a General Radio 1564-A Sound and Vibration Analyzer The nolse recording and analysas equipment is University suppiled

Procedural checks of the nolse measuring program have been satisfactorily completed.

Weather conditions with sufficiently low ambient noise level to allow detection of the very low noise level of the YO-3A alrcraft have not prevalled at this wrating This aspect of the program is ongolng and aircraft nolse measurements will hopefully be achleved in the near future
3.4 References
3.1 Vogley, A. W., "Climb and High-Speed Tests
of a Curtis No. 714-1C2-12 Four-Blade
Propeller on the Republic P-47C Aıxplane",
NACA ACR No. L4L07, 1944.
3.2 Condon, G. W., Rundgren, I. W., and Davis,
W. B., "Army Prelıminary Evaluation I,
YO-3A Alrplane, Final Report", US Army
Aviation Systems Test Activity, August
1970.
3.3 Dutee, Phıllıps, and Kemp, "Operatıng Stresses 10
Aircraft Engine Crankshafts and Connecting
Rods Part I, Slip Ring and Brush Combinations
for Dynamac Strain Measurements",
NACA MR E5C30.

3.5 Bıbliography

3.1 Dean M , and Douglas R , "Semi-Conductor and Conventional Strain Gauges," Academic Press, New York and London

32 Murray W., and Stein P , "Strain Gauge Technıques," MIT Press
3.3 Perry C , and Lassner H, "The Strain Gauge Pramer," McGraw Hall.

34 Stein P , "Measurement Engıneerıng," Arızona State Unıversity Press

Figure 3.1 The YO-3A Aircraft with Cowl Removed

Figure 3.2 The Y0-3A's Propeller Shaft and Hub

Figure 3.4 Approaches to the In-F1ıght Measurement of Propeller Performance

Figure 3.5 Propeller Shaft Strain Gauge Arrangements and Strain Directions
ω
i
4

Figure 3.8 Mechanical Thrust Strain Intensifier, Mounted on Model Propeller Shaft $3-26$

Figure 3.9 The Combined Loading Arrangement for the Model Shaft

$\sqrt{\varepsilon}$

Figure 313 Temperature Compensation of the Semi-conductor Thrust Bridge

Figure 314 Semi-Conductor Thrust Rridge Calibration for Tormup Tnferartion

u
Gis
Figure 315 Block Diagram of In-Flight Instrumentation System

Figure 3.16 The Instrumentation System

Resistance as Req'd to Balance Bridge

Pre-amplifier gain $=1000$ Both Op Amps are Mil Spec.

Figure 3.17 Schematic of One Typical Channel of On-Shaft Instrumentation

Figure 3.19 The Slip Ring Assembly

$\begin{aligned} & \text { Maximum } \\ & \text { Loadt } \end{aligned}$	Section Characteristics	Strength of Section	Strain Lquation	Stıain Per Unit Load \& Navimum Strann	Stiess Pel Unit Load \& Maximum Stress
Thrust $\mathrm{T}_{\operatorname{Max}}=500 \mathrm{lb}$	$\mathrm{A}=189 \mathrm{mn}^{2}$	$\begin{array}{rl} \mathrm{AE} & = \\ 5 & 68 \times 10^{7} 1 \mathrm{~b} \end{array}$	$\varepsilon_{T}=\frac{T}{\overline{A E}}$	$\begin{aligned} & \frac{\varepsilon_{\mathrm{T}}}{\mathrm{~T}_{\text {micro-strains }}=01 \mathrm{~b}} \\ & \varepsilon_{\mathrm{T}_{\mathrm{Ma}}}=885 \\ & \text { micro-strains } \end{aligned}$	$\begin{aligned} & \frac{\sigma_{T}}{T}=529 \mathrm{zn}^{-2} \\ & \sigma_{T_{\text {Max }}}=265 \mathrm{pSI} \end{aligned}$
Torque $\begin{aligned} & \mathrm{Q}_{\text {lax }}= \\ & 14,000 \mathrm{nn}-1 \mathrm{~b} \end{aligned}$	$J=206 \mathrm{~m}^{4}$	$\begin{array}{rl} J G & = \\ 2 & 2,10^{7} \\ & 1 n^{2}-1 b \end{array}$	$\varepsilon_{Q}=\frac{Q R}{2 J G}$	$\begin{aligned} & \varepsilon_{Q}=0268 \\ & \frac{Q_{\text {micro-strains }} /}{\text { an-1b }} \\ & \varepsilon_{Q_{\text {Max }}}=375 \\ & \text { macro-strains } \end{aligned}$	$\begin{aligned} & \frac{\sigma_{Q}}{Q}=573 \mathrm{~m}^{-3} \\ & { }_{Q_{Q_{1 a}}}=8020 \mathrm{psi} \end{aligned}$
Bending $M_{\text {Max }}=\frac{1500}{1 n-1 b}$ (at bearing end of the shaft)	$I=103 \mathrm{mn}^{4}$	$\begin{aligned} I E= & 309 \times 10^{7} \\ & 1 n^{2}-1 b \end{aligned}$	$\varepsilon_{B}=\frac{M R}{I E}$	$\begin{aligned} & \frac{\varepsilon_{\mathrm{M}}}{\mathrm{M}_{\text {micro-strains/ }}^{\text {mn-1b }}}=0382 \\ & \varepsilon_{\mathrm{M}_{\text {Max }}}=585 \\ & \quad \text { micro-strains } \end{aligned}$	$\frac{\sigma_{B}}{M}=114 \mathrm{mn}^{-3}$ ${ }^{\sigma_{\mathrm{Bax}}}=1718 \mathrm{psi}$

TABLE I
PROPELLER SHAFT LOADS
Lu
Cu
-0

APPENDIX A

NUMERICAL ANALYSIS OF PROPELLERS
by R. M. Plencner

LIST OF SYMBOLS

a
axial interference factor
rotational interference factor
coefficients of sine series
aspect ratio
number of blades
non-dimensional chord, C / R
chord, feet
IIft coefficient
drag coefficient
diameter, feet
induction factor
advance ration, $V / n D$
loading factor
rotational speed, rev/sec
torque, ft-1bs
torque coefficient
distance along blade, feet
radius of propeller, feet
vector from origin to segment of trailing vortex filament
vector from origin to a blade section
thrust, Ibs
thrust coefficient
velocity induced at the propeller disk, ft/sec
forward velocity of propeller, ft/sec

${ }^{w} n$	normal induced velocaty
W	vector sum of rotational and forward velocities
X	non-dimensional distance along blade, r / R
Z	rearward distance from the propeller, feet
α_{g}	absolute geometric angle of attack
α_{1}	induced angle of attack
α_{0}	effective or sectional angle of attack
β	blade angle
I	circulation
δ	anterval around the singularity
7	efficiency
θ	parametric variable of the helix, radians
λ	tip speed ratio, $V / \Omega R$
ρ	density, slugs/ft ${ }^{3}$
σ	propeller solidity, $B C / 2 \pi r$
ϕ	angle between the relative velocity and the horizontal plane
Ω	rotational speed, rad/sec

I. INIRODUCTION

A great deal of effort and expertise went into modeling the aerodynamic characterıstics of propellers in the early part of this century, However, with the coming of the jet age in the early,1950's, the propeller was made obsolete for many applications and new theoretical work on propeller theories was almost non-exastent Therefore, most of the work done in this area was undertaken before digital computers were developed Since the problem of flow around a propeller is by nature very complex, these early approaches to the problem necessitated many simplifying assumptions and often made use of graphical techniques to obtain solutions to the problem

Recent years have seen a renewed antexest in propeller modeling for predicting their performance in a wide variety of applications These applications anclude more efficient propellers to reduce fuel consumption, propellers suitable for STOL aircraft, low nolse propellers for commercial and general aviation aırcraft, as well as rotors for wind malls. Many of the applications require more accurate prediction over a wider range of operating conditions than is possible with classical propeller theories

The purpose of this paper is to review the classical approaches to the propeller problem and then dispense with as many sumplifying assumptions as possible in order to produce a theory that more closely models the actual physical phenomenon

II. CLASSICAL THEORIES

Momentum Theory - A propeller produces thrust by increasing the velocity of a large quantity of air. This production of thrust is associated wath a loss of energy which is due to the increase in kinetic energy, rotational motion imparted by the torque and frictional losses of the propeller blades In the simplest form of the momentum theory, first set forth by R E Froude [1] and W. J. Rankine [2], only the axial component of momentum is considered; the rotational and frictional losses are 1gnored. Therefore, the theory describes the characteristics of in ideal propeller.

The axial momentum theory is developed [3, 4] by replacing the propeller with a propeller disk that has an infinite number of blades, and the thrust uniformiy distributed over the disk. The flow is assumed to be incompressible and irrotational in front of and behind the propeller disk. Under these conditions the change in pressure across the propeller disk is equal to the total pressure head in front of the disk minus the total pressure head behind the disk. It can then be shown that at the propeller dask the increase in velocity over the free stream value is one half of the increase in the ultimate wake. The efficiency which is predicted by the momentum theory, which, is the maximum theoretical efficiency, 1s given by

$$
\begin{equation*}
\eta=\text { propeller efficiency }=\frac{V}{V+V} \tag{1}
\end{equation*}
$$

where V is the free stream velocity and v is the velocity increase at the propeller disk.

Practical applications of the momentum theory are lamited due to the gross simplifications that are made The theory neglects rotational energy losses, non unıform thrust loading losses, profile drag, blade interference, and compressible drag changes Its direct application, therefore, is only principally useful in obtainang an upper limit on efficiency or a crude first estimate for the performance of a propeller. A more general form of the momentum theory [5] includes rotational momentum as well as axial momentum. However, this added complexity does not increase its usefulness in most applications.

Blade Element Theory - The blade element theory [5] analyzes the aerodynamic characteristics of the propeller by estimating the aerodynamı forces experıenced by each blade element as it moves through the air. The blade element theory is evolved by assuming that the aerodynamic forces acting on a given blade element are equivalent to the forces acting on a suitable finite wing of the same airfoil section moving linearly with the same relative velocity and the same geometric angle of attack that $1 s$ experienced by the propellex blade section. The contributions from all the blade elements may be added up using a strip integration technique to get the overall propeller characteristics. From the geometry of Figure 1 It can be shown that the incremental thrust and torque of any blade element operating at a geometric angle of attack, $\alpha_{g}=\beta-\phi$, are given by

$$
\begin{equation*}
\frac{\mathrm{dr}}{\mathrm{dr}}=\frac{1}{2} \mathrm{BC} \mathrm{\rho N}{ }^{2}\left(\mathrm{C}_{\mathrm{L}} \cos \phi-\mathrm{C}_{\mathrm{D}} \sin \phi\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d Q}{d r}=\frac{1}{2} B C \operatorname{roW} W^{2}\left(C_{L} \sin \phi+C_{D} \cos \phi\right) \tag{3}
\end{equation*}
$$

Figure 1. Force and velocity diagram for the blade element theory
where $W^{2}=V^{2}+\Omega^{2} r^{2}$. The validity of equations (2) and (3) is largely dependent on the characteristics of the wing used to represent the propeller blade section In order to accurately account for the interference effects, the characteristics of the assumed wing would have to change from station to station However, the blade element theory greatly simplifies the problem by assuming the wings used to represent the blade element sections have an aspect ratio of six. Thus the problem is completely specafied by equations (2) and (3) when the chord and blade angle distribution and the aerodynamic characteristics of an aspect ratio six wing of the same airfoil section as the blade element are known.

The blade element theory better takes account the effect of the geometric shape of the propellex than does the momentum theory. However, It still fails to accurately account for the interference velocities induced by the trailing vortex system.

Vortex Theory - The vortex theory of propellers is basically a combination of the momentum theory and the blade element theory. Therefore, it is often referred to as the blade element-momentum theory: To avord confusion with other theories it will be referred to as the Glauert vortex theory $[5,6,7]$ in this paper. The Glauert theory is based on the assumption that the trailing vortex filaments which are produced by the rotating blades form helical vortex sheets as they pass downstream. An exact application would require the induced velocity produced by the trailing vortex system to be computed at each blade station. However, Glauert simplified the problem by assuming the propeller to have an infinite number of blades. This assumption removes the periodicity of the flow, therefore, the velocity for any given raduus is constant over the propeller disk. As a result, the momentum theory may be used to evaluate the interference velocities. The geometry of the problem is
given in Figure 2 a and a^{\prime} are defined as the axial and rotational interference factors respectively $V(1+a)$ is the forward velocity, V, plus the axial interference velocity. $\Omega \mathrm{r}\left(1-\mathrm{a}^{\prime}\right)$ is the angular velocity of the propeller blade section minus the rotational interference velocity. The effective velocity, W_{r}, of the blade element is just the vector sum of $\mathrm{V}(1+\mathrm{a})$ and $\Omega \mathrm{r}\left(1-\mathrm{a}^{\prime}\right)$. From the geometry given in Figure 2 the following relations may be defined

$$
\begin{align*}
& W \sin \phi=V(1+a) \tag{4}\\
& W \cos \phi=\Omega r\left(1-a^{\prime}\right) \tag{5}
\end{align*}
$$

It is often convenient to define a non dimensional speed ratio, λ, as the forward speed divided by tip speed. Using equations (4) and (5) the speed ratio may be written in terms of the interference factors as,

$$
\begin{equation*}
\lambda=\frac{V}{\Omega \mathrm{R}}=\frac{1-\mathrm{a}^{\prime}}{1+\mathrm{a}} \tan \phi \tag{6}
\end{equation*}
$$

The equation for the elemental thrust and torque are found in the same manner as for the blade element theory, except now they are written in terms of the interference factors and are given in non-dimensional form as,

$$
\begin{equation*}
R \frac{d^{T} c}{d r}=\sigma \frac{r}{R}{ }^{3}\left(1-a^{\prime}\right)^{2}\left(C_{L} \cos \phi-C_{D} \sin \phi\right) \sec ^{2} \phi \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
R \frac{d^{Q} c}{d r}=\sigma \frac{r^{4}}{R}\left(1-a^{\prime}\right)^{2}\left(C_{L} \sin \phi+C_{D} \cos \phi\right) \sec ^{2} \phi \tag{8}
\end{equation*}
$$

where the non dimensional thrust and torque coefficients are defined by

$$
\begin{equation*}
\mathrm{T}=\mathrm{T}_{\mathrm{c}} \pi \mathrm{R}^{4} \rho \Omega^{2} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=Q_{c} \pi R^{5} \rho \Omega^{2} \tag{10}
\end{equation*}
$$

respectively Equations (6), (7), and (8) are not sufficient to determine

Figure 2. Force and velocity diagram for Glauert vortex theory
the interference factors a and a^{\prime}. It is now necessary to make use of the assumption of an infinite number of blades. This mahes it possible to apply the momentum theory to obtain relations needed to evaluate a and a^{\prime}. The results of the axial momentum theory, where rotational momentum is neglected, can be used to determine the axial interference factor as

$$
\begin{equation*}
\frac{a}{1+a}=\frac{\sigma\left(C_{L}^{\prime} \cos \phi-C_{D} \sin \phi\right)}{4 \sin \phi} \tag{11}
\end{equation*}
$$

Equation (11) is not exact. In addition to neglecting the flow periodicity due to a finite number of blades, it also is based on the assumption of no slip stream contraction, and no rotational velocaty component. The rotational interference factor may be evaluated by equating the torque to the rate of increase of angular momentum. This relation may be written in terms of the rotational anterference factor as,

- $\frac{a^{\prime}}{1-a^{\prime}}=\frac{\sigma\left(C_{L} \sin \phi+C_{D} \cos \phi\right)}{4 \sin \phi \cos \phi}$

Equations (6), (7), (8), (11), and (12) are sufficient to determine the thrust and torque of a given propeller when the number of blades, the chord distrabution, blade angle varıation and the aerodynamic characteristics of the airfoll used at each blade location are known.

Due to the assumptions made, the above set of equations accurately apply only to a lightly loaded propeller with a large number of blades. However, reasonable results may be obtalned for many conditions varying greatly from the above restrictions The predicted thrust and torque distributions along the blade differ from the actual distributions for propellers operating at high blade loadings or for propellers with square tipped blades In the case of square tipped blades, the vortex theory falls to predict the fact that the thrust must fall to zero at the tip [8].

Goldstein's Theory - Goldstean [9] dispenses with the assumption that the spacing between successive trailing vortex sheets is small and assumes there is a bound vortex filament springing from each blade element The local strength of the trailing sheet is the negatave of the circulation gradient around the corresponding blade section The carculation must fall to zero at the root and the tap These trailing vortex falaments approximately follow a helical path in the slip stream All the falaments together form a helicoidal surface. Goldstein specifacally considers the optimum circulation distribution for which the energy lost due to the production of the trailing vortex system is a minımum, for a given thrust. Betz proved for laghtly loaded propellers that this optimum circulation distribution corresponds to the requirement that the vortex sheet move rearward as if it were a rigid helacold. Thus, the flow in the wake between the helicoldal surfaces is that of an inviscid, continuous, irrotational fluid, wath zero carculation The circulation around a gaven blade element is equal to the discontanuity in the velocity potential of the respective point on the helicoidal vortex surface Since the problem is one of potential flow, it us possible to apply Laplace's equation,

$$
\begin{equation*}
\nabla^{2} \phi=0 \tag{13}
\end{equation*}
$$

where ϕ is the velocity potential. Using the relations

$$
\begin{equation*}
\zeta=\theta-\frac{\Omega z}{V} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu=\frac{\Omega \mathrm{r}}{\mathrm{~V}} \tag{15}
\end{equation*}
$$

Laplace's equation in polar coordinates may be transformed to a more convenient form given by,

$$
\begin{equation*}
\mu^{2} \frac{\partial^{2} \phi}{\partial \mu^{2}}+\mu \frac{\partial \phi}{\partial \mu}+\left(1+\mu^{2}\right) \frac{\partial^{2} \phi}{\partial \zeta^{2}}=0 \tag{16}
\end{equation*}
$$

The boundary condition for the problem becomes,

$$
\begin{equation*}
\frac{\partial \phi}{\partial \zeta}=-\frac{\Omega^{2} r^{2}}{V^{2}+\Omega^{2} r^{2}} \frac{w V}{\Omega} \tag{17}
\end{equation*}
$$

for $\zeta=0$ or π and $0 \leq r \leq R$. In addition, ϕ must be continuous everywhere except at the helicoldal vortex surface, and its derivative must vanish when r is infinite. Goldstean goes through a rigorous solution of this problem to obtain the loading factor, k, which is just a nondimensional circulation defined by

$$
\begin{equation*}
k=\frac{\Gamma B}{2 w \pi r \tan \phi} \tag{18}
\end{equation*}
$$

Lock [10] applied Goldstein's solution to a method for predicting the characteristics of an arbitrary propeller. The development of this method parallels that of the Glauert vortex theory quate closely, except that Goldstein's solutions are used to determine the interference velocities at the blades The equations that are obtained for the interference factors are

$$
\begin{equation*}
\frac{a}{1+a}=\frac{\cos ^{2} \phi}{k} \frac{\sigma C_{L} \cos \phi-C_{D} \sin \phi}{4 \sin ^{2} \phi} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a^{\prime}}{1-a^{\prime}}=\frac{\cos ^{2} \phi}{k} \frac{\sigma C_{D} \cos \phi+C_{L} \sin \phi}{4 \sin \phi \cos \phi} \tag{20}
\end{equation*}
$$

Equations (19) and (20) differ from equations (7) and (8) of the Glauert vortex theory by the factor $\frac{\cos ^{2} \phi}{k}$. It should be noted that in the limit
when the number of blades goes to infanity.

$$
\begin{equation*}
k=\cos ^{2} \phi \tag{21}
\end{equation*}
$$

Thus, equations (19) and (20) reduce to the Glauert vortex theory, equations (7) and (8), for the case of an infinite number of blades.

Goldstean's loading factor, k, only applies exactly when there is a particular distribution of carculation along the blade to give optimum loadıng as defined in Goldstein's original problem. However, Lock shows that equations (19) and (20) make adjustments for tip losses and are generally more accurate than the Glauert vortex theory formulae, especially In the case of a square tipped blade.

Theodorsen's Theory - Theodorsen [11, 12, 13, 14, 15, 16] attacks the same problem of the optimum propeller as was developed by Goldstern. However, Theodorsen expanded and extended the results of Goldstein's work Betz's requirement that the tralling vortex sheet move rearward as a rigid vortex sheet for an optimum loaded propellex was proved only for a lightly loaded propeller Theodorsen extended the interpretation of these results to apply to heavy loadings.

Goldstein's original solution also applied only to infinitely light loadings Theodorsen showed that it is possible to extend these results to heavy loadings by including the rearward displacement velocity of the helicoidal vortex surface and doing all the calculations in the wake anfinitely far behind the propeller This does not change the potential problem that must be solved. However, it does change the operating conditions which a given solution corresponds to. Including the rearward displacement velocity of the vortex surface, instead of assuming it to be negligably small, takes account of the contraction of the slip stream.

Theodorsen's method depends on the solution for the propeller loading coefficient, k, which is a function of the distribution of circulation along the blade. Goldstein's results may be used to evaluate the loading coefficient. However, Goldstein was only able to obtain a small number of solutions. Iherefore, Theodorsen used an electrical analogy method to experimentally measure the loading function By using the electrical analogy, he was able to obtain the loading function for dual rotating propellers as well as for single propellers. The drawback of this method is that one is limited to the charts and tables which Theodorsen gives for the loading function.

Application of the Prandtl Theory - Lock [17, 18, 19, 20] put forth a theory which solved the propeller problem through an application of the Prandtl theory [21] for a monoplane wing In calculating the induced velocity along the blade, the actual helicoidal trailing vortex sheets are replaced with a system of vortices in two-dimensions. This method assumes that the flow around the helicoldal vortex sheets can be approximated by the flow around a system of parallel two-dimensional vortex sheets whose strength is equal to the actual strength of the helical vortices at the same radial distance from the axis of rotation. The distance between successive sheets is equal to the pitch of the arrscrew The Fourier series may then be used to represent any arbitrary distribution of vorticity with radius Strict application of this theory would require the coefficients of the Fourier series to be found in a manner analogous to that employed in wing theory, where a system of simultaneous equations in the coefficients must be solved. However, to simplify the technique, a graphical method is applied to determine the coefficients of the series and corrections are then applied to account for errors introduced by replacing
the helicold vortex sheet by a system of two-dimensional plane laminae The method in its final form is strictly a graphical technique, usung charts developed by Lock

Morıya Theory - Moriya [22] developed a calculation method for the aerodynamic characteristics of a propeller in which he obtained the anduced velocity by introducing an induction factor, I To obtaln the induction factor it is assumed that the trallang vortices springang from each blade form a helxcoldal surface which extends rearward from the blade to infinity The downwash velocity at each blade element due to the whole vortex system $1 s$ then calculated by applacation of the Biot-Savart law The downwash integral becomes singular when calculating the velocity induced at a point where the trailing vortex falament springs from that same point. If the vortex filament were straight anstead of helacal, it would exhibit the same singular behavior Therefore, Morıya introduced an inductıon factor, I, which defined as,

$$
\begin{equation*}
I=\frac{\mathrm{d}^{w_{n}} n_{n}}{\mathrm{~d} \mathrm{w}_{1}} \tag{22}
\end{equation*}
$$

where $d w_{n}$ is the normal velocity indu'ced by a helical vortex filament and $d w_{n_{l}}$ is the normal velocity induced from a straight vortex filament At the point where the vortex filament leaves the blade, the induction factor takes on the value of unity Induction factors for various advance ratios were calculated graphically by Moriya and are tabulated in reference [22]

A successive approximation scheme to determine the aerodynamic characterıstics of an arbitrary propeller was developed by Moriya In this scheme the circulation around each blade element is calculated corresponding
to an equivalent monoplane wing of aspect ratio six Using this calculated circulation distribution and the suitable induction factors, the normal velocity at each station is obtained by graphically integrating the followang.

$$
\begin{equation*}
w_{n}=\int_{0}^{1} \frac{\frac{d \Gamma}{d x}}{4 \pi R} \frac{I}{x-x}, d x \tag{23}
\end{equation*}
$$

An equivalent aspect ratio for each blade section can then be calculated from

$$
\begin{equation*}
\frac{w_{n}}{V}=\frac{C_{L}}{\pi A R} \tag{24}
\end{equation*}
$$

This scheme is repeated by calculating the carculation distribution corresponding to the new equivalent aspect ratio at each blade element This iteration is repeated until the equivalent aspect ratios of two successive approxamations are sufficiently close The lift and drag coeffacients are found in the final iteration and are used in the normal strip theory formulas, equations (2) and (3), to find the thrust and torque coefficients It is reported by Moriya that only one or two aterations are needed to obtain a good degree of accuracy

Most of the preceding theories anvolve many simplifying assumptions to obtain the interference velocities needed to analyze the aerodynamic characteristics of a propeller The equations and method needed to solve for the induced velocaties with a minimum of simplifying assumptions in a manner analogous to that of finite wing theory will now be developed - The basic assumption is that of a helicoidal trailing vortex sheet which extends rearward from the blade to infinity. The velocity anduced by a segment, $\bar{d} \bar{\ell}$, of a trailing vortex filament can be calculated at each blade section by means of the Biot-Savart law which is given as,

$$
\begin{equation*}
\delta v(r)=\frac{\Gamma}{4 \pi} \frac{\bar{d} \ell \times \overline{(t-s)}}{|t-s|^{3}} \tag{25}
\end{equation*}
$$

where t is the vector from the origin to the blade section at which the Induced velocity is to be calculated and s is the vector from the origin to the vortex filament segment $\overline{\mathrm{d} \mathrm{\ell}}$. For the geometry depicted in Figure 3 the following relations can be written,

$$
\begin{align*}
& \overline{\mathrm{t}}=\mathrm{R} \times \hat{x^{\prime}} \quad \therefore \tag{26}\\
& \bar{s}=R \hat{x} \cos \theta \hat{i}+R x \sin \theta \hat{j}+R a \tan \phi \hat{k} \tag{27}\\
& \overline{d \ell}=R \times \sec \phi d \theta[-\cos \phi \sin \hat{\theta}+\cos \phi \cos \theta \hat{j}+\sin \phi \hat{k}] \tag{28}
\end{align*}
$$

The induced velocity at a point x due to a semi-infinnte vortex filament springang from the point x on the blade is found by substituting equations (26), (27) and (28) into equation (25) and then integrating this equation over θ from zero to infinity The normal component of this induced velocaty is given as,
$d w_{n}=\frac{\Gamma}{4 \pi R} \int_{0}^{\infty} \frac{x^{\prime}\left[x^{2}-x x^{\prime} \cos \theta\right]+[x(\theta \sin \theta+\cos \theta)-x] \lambda^{2}}{\left[x^{-2}-2 x x^{\prime} \cos \theta+x^{2}+\theta^{2} \lambda^{2}\right]^{3 / 2}\left[\lambda^{2}+x^{\prime 2}\right]^{1 / 2}} d \theta$

rigure 3. Helical vortex geometry

The normal induced velocity at the point x^{-}due to the vortex filaments springing from the radius x on all the blades is
$d w_{n}=\frac{d \Gamma}{4 \pi R} \sum_{k=1}^{B} \int_{0}^{\infty} \frac{\left[x^{2}-x x^{\prime} \cos \theta_{k}\right] x^{\prime}+\left[x\left(\theta \sin \theta_{k}+\cos \theta_{h}\right)-x^{\prime}\right] \lambda^{2}}{\left[x^{-2}-2 x x^{\prime} \cos \theta_{k}+x^{2} \lambda^{2}\right]^{3 / 2}\left[\lambda^{2}+x^{2}\right]^{1 / 2}} d \theta$
where $\theta_{k}=\theta+\frac{2 \pi(B-k)}{B}$

The normal induced velocity at some point x^{\prime} due to all the vortex filaments springing from each of the blades is found by integrating equation (30) over the blade and can be expressed as

$$
\begin{equation*}
w_{n}\left(x^{\prime}\right)=\int_{0}^{1} \frac{\frac{d r}{d x}}{4 \pi R} \sum_{k=1}^{B} \int_{0}^{\infty} \frac{\left[x^{2}-x x^{\prime} \cos \theta_{k}\right] x^{\prime}+\left[x\left(\theta \sin \theta_{k}+\cos \theta_{h}\right)-x^{\prime} \lambda^{2}\right.}{\left[x^{-2}-2 x x^{\prime} \cos \theta_{k}+x^{2}+\theta^{2} \lambda^{2}\right]^{3 / 2}\left[\lambda^{2}+x^{2}\right]^{1 / 2}} d \theta d x \tag{31}
\end{equation*}
$$

Equation (31) is quate complex and is diffacult to handle sance the innermost integral contains a singularity at $\mathrm{x}=\mathrm{x}^{\wedge}$ that is not shown explicitly. This singularity can be made explicit by applying the induction factor, I, introduced by Moriya [22] and defined by equation (22) The induction factor is simply the ratio of the normal induced velocity for a helicoldal trailing vortex system to the normal induced velocity for a straight trailing vortex system of the same strength The induced velocity has a component from the vortex sheet spranging from each blade The induced velocity for the hellcoadal vortex sheet springing from the blade at which the calculations are being made becomes infinite at $x=x^{\prime}$. The induced velocity for a straight vortex system also becomes infinite at $x=x^{\prime}$ The infinite velocity in both cases is a result of that portion of the vortex filament In the neaghborhood of the point x^{\prime}. Since the property of the infinaty at $x=x^{\wedge}$ is the same in both cases, the ratio of the two induced velocities must be unity at the point $x=x^{-}$. The contributions to the induction factor at $x=x^{\wedge}$ from all other helicoidal trailing vortices springing from
all other blades must be zero since only the blade at whach the induced velocity is being calculated has the property of infinity at $x=x^{\prime}$. Therefore the induction factor takes on the value of unity at $x=x^{\prime}$.

The induction factor, which is a continuous function of λ, x and x^{\prime} only, may be evaluated numerıćally by computer. When x approaches x^{-}the induction factor becomes hard to numerically determine with accuracy. However, since the induction factor is a contanuous function and equals unity when $x=x^{\prime}$, the values when x approaches x^{\prime} may be interpolated to a high degree of accuracy Typical curves of the induction factor for $\lambda=0.3$ are shown in Figure 4

The normal induced velocity at a point x^{\wedge} may now be expressed compactly as,

$$
\begin{equation*}
w_{n}\left(x^{\prime}\right)=\int_{0}^{1} \frac{\frac{d \Gamma}{d x}}{4 \pi R} \frac{I}{x-x^{\prime}} d x \tag{32}
\end{equation*}
$$

The singularaty at $x=x^{\wedge}$ is now shown explicitly in equation (32)
The method is now formulated by applyang the fundamental equation of finate wing theory,

$$
\begin{equation*}
\alpha_{g}=\alpha_{0}-\alpha_{I} \tag{33}
\end{equation*}
$$

α_{g} is the geometric angle of attack and is defined by

$$
\begin{equation*}
\alpha_{g}=\beta-\operatorname{Arctan}\left(\frac{\lambda}{x}\right) \tag{34}
\end{equation*}
$$

The effective, or sectional angle of attack, α_{0}, is evaluated by applying the Kutta-Joukowski theorem and is evaluated as,

$$
\begin{equation*}
\alpha_{0}=\frac{2 \Gamma}{R \Omega\left(\lambda^{2}+x^{-2}\right)^{1 / 2} a_{0}-C^{2}}= \tag{35}
\end{equation*}
$$

The induced angle of attack, α_{1} is given by

$$
\begin{equation*}
\alpha_{I}=\tan \frac{W_{n}}{W}=\frac{W_{n}}{W} \tag{36}
\end{equation*}
$$

Irgure 4. Induction factor curves for $\lambda=03$

Putting equation (34), (35), and (36) into equation (33) results in the fundamental integral equation which must be solved for the circulation, Γ

The boundary condition for the circulation requires that,

$$
\begin{equation*}
\Gamma(0)=\Gamma(1)=0 \tag{37}
\end{equation*}
$$

Therefore, we may express the carculation as a sane series given by

$$
\begin{equation*}
\Gamma\left(x^{\circ}\right)=\sum_{n=1}^{\infty} A_{n} \sin n \pi x^{-} \tag{38}
\end{equation*}
$$

Using this series, the fundamental integral equation can be expressed as

$$
\begin{gather*}
\frac{2 \sum A_{n} \sin n \pi x^{\prime}}{a_{0} c R \Omega\left(\lambda^{2}+x^{-2}\right)^{1 / 2}}-\frac{\sum n \pi A_{n}}{4 \pi R^{2} \Omega\left(\lambda^{2}+x^{-2}\right)^{1 / 2}} \int_{0}^{1} \frac{\cos n \pi x^{\prime}}{x-x^{\prime}} I d x= \\
B-\operatorname{Arctan}\left(\frac{\lambda}{x}\right) \tag{39}
\end{gather*}
$$

Difficulty now arises in determining the second term in equation (39) since It contains a singularity in the integrand at $x=x^{-}$This problem is handled by breaking the integral into three separate integrals,

$$
\begin{equation*}
\int_{0}^{1} M d x=\int_{0}^{x^{-}-\delta} M d x+\int_{x^{-}-\delta}^{x^{-}+\delta} M d x+\int_{x^{-}-\delta}^{1} M d x \tag{40}
\end{equation*}
$$

where $M=\frac{\cos n \pi x}{x-x}, \quad I$ and δ is a small but finite value The first and third antegrals on the right-hand sade of equation (40) may be evaluated using established numerical techniques The second term, however, requires special consideration It can be shown that the integrand, M, wall go to zero In the limat as δ gocs to zero Thus, $\int_{x=\delta}^{x \neq \delta} M d x$ will have a fanite value. A method to evaluate this integral for a finite δ is required This is accomplished by farst making a variable substitution using,

$$
\begin{equation*}
\tau=x-x^{\prime} \tag{41}
\end{equation*}
$$

The integral can then be written as

$$
\begin{equation*}
\int_{-\delta}^{\delta} \frac{\cos n \pi\left(\tau+x^{\prime}\right)}{\tau} I d \tau \tag{42}
\end{equation*}
$$

Equation (42) is then expanded in a power series in τ It should be noted that the induction factor, I, is a summation of integrals. The induction factor is a contanuous function by vartue of the manner in which it was defined However, each of the integrals making up the induction factor is not continuous and these integrals do an fact contain singularites Therefore, it is necessary to expand the induction factor in a power series in a manner whach wall elimanate these sangularities. Since the sangularities occur for the helix angle, θ, equal to zero, they may be elimanated by integrating the singular integrals from θ equal ε to ∞ and then separately expanding the integral from θ equal 0 to ε, which contains the singularity. Once the power series in τ is obtaned, it is integrated term by term and terms of order τ^{2} and larger are dropped This gaves the following approximate relation,

$$
\begin{gather*}
\int_{x^{\prime}-\delta}^{x^{\prime}+\delta} \frac{\cos n \pi x^{\prime}}{x-x^{\prime}} I d x=2 \delta \cos \left(n \pi x^{\prime}\right) \sum_{k=1}^{2} \int_{x^{\prime}-\delta}^{x^{\prime}+\delta} M d x+2 \delta\left[\frac{x^{\prime} \cos \left(n \pi x^{\prime}\right)}{2\left(\lambda^{2}+x^{-2}\right)}\right] \\
\left(1+\ln \left(2 \varepsilon^{2}\left(\lambda^{2}+x^{-2}\right)\right)-n \pi 2 \sin n \pi x^{\prime}\right]-\delta \ln (\delta)\left[\frac{4 \lambda^{\prime} \cos \left(n \pi x^{\prime}\right)}{2\left(x^{\prime 2}+\lambda^{2}\right)}\right] \tag{43}
\end{gather*}
$$

where ε is a small value and $\varepsilon \gg \delta$. The singular integral can thus be approximated for the finitc region of width δ around the singularity.

In order to evaluate the coefficients, A_{n}, of the infinate sine series given in Equation (38), the series is truncated at N terms. The integral Equation (39) is then appiled at N locations along the propeller blade. This gives a system of N equations in the N unknowns This system of
equations is solved for the coefficients, A_{n}, which are used to evaluate the circulatıon, using Equation (38) The effective angle of attack can then be found using Equation (35). Once the cffective angle of attack is found at each designated posation along the blade, the laft and drag coefficionts can be found directly from the two-dimensional aerodynamic characteristics of the airfoll used at that position on the propellex blade The differential thrust and torque coefficients can be found by applying Equations (2) and (3).

The preceding method has been programmed for use on a digital computer. An explanation of the program is given in Appendix A and a listang of the program is gaven in Appendix B.

APPENDIX A
 Computer Program Explanation

The computer program insted in Appendix B was developed following the method proposed in Section III of this report The variables in Table V must be inputs to the program.

Table V Input Variables to the Computer Program

AO - Laft curve slope per radian.
BT - Blade pitch angle in degrees which must be specified at N locations along the blade.

C - Non-dimensional chord which must be specified at N locations along the b1ade.

CDO, CD1, CD2 - Drag coefficients of the airfoll section where the total drag coeffiexent, $C D=C D O+C D 1 \alpha+C D 2 \alpha^{2}$.

DEL1 - Interval around the singularity which is not integrated directly. EL - Tip speed ratio.

N - Number of terms in the sine series
NB - Number of blades.
R - Radius of the propeller in feet.
SKPI1, SKPI2 - The upper and lower limits, respectively, axound each of the N blade locations, between which the induction factor 1s interpolated

WO - Rotational component of tip speed of the propeller in feet per second.
X,W - Languerre-Gauss integration coefficients.
ZTP - N locations along the blade at which the calculations. for the sine series are made

The program uses a 44 point Languerre-Gauss integration scheme [25] to do the integration from zero to infinity in order to evaluate the induction factors. Induction factors near x ' are interpolated using a spline interpolation formula [26]

second-order spline integration technique. The spline integration formula is obtained by integrating the spline interpolation formula given in reference [26]. The general form of the splane integration formula for the integral of some function Y between X_{1} and x_{2} is

$$
\begin{align*}
\int_{x_{1}}^{x_{2}} Y \mathrm{dx} & =\frac{C_{1}}{4}\left(x_{2}-x_{1}\right)^{4}+\frac{C_{2}}{4}\left(x_{2}-x_{1}\right)^{4} \\
& +\frac{C_{3}}{2}\left(x_{2}-x_{1}\right)^{2}+\frac{C_{4}}{2}\left(x_{2}-x_{1}\right)^{2}
\end{align*}
$$

where the C's are the spline coefficients generated by the spline interpolation routine developed in reference [27]. The spline integration technique has been found to be very accurate since it fits a curve with continuous deravatives through second order to the gaven function and then Integrates the area under this curve. This Integration scheme is also used in calculating the total thrust coefficients from the differential thrust coefficients.

A value of δ as small as possible is desired to give the best approximation for

$$
\int_{x-\delta}^{x+\delta} M d x
$$

However, making δ too small causes $\int_{0}^{\stackrel{\rightharpoonup}{x}-\delta} M d x$ and $\int_{x+\delta}^{1} M d x$
to become less accurate due to the antegrand M becomang very large. A value of δ between 10^{-5} and 10^{-6} has been found to give good results. The matrix equation for the coefficients of the sine series is solved using Gauss elimination. The answer is checked for accuracy by substituting it back into the matrix equation.

```
    THIS PROGRAN COMPUTES THE THRUST COEFFICIENT FUR AN ARBITRARY
    PRDPELLER DESIGN USING THE METHOD DEVELOPED IN CHAPTER THREE
    OF THIS PAPER.
    IMPUT VARIAOLES TO THE PROGRAM ARE:
    AO - THE lIFT CURVE SLUPE PER RADIAN
    bT - THE blave aNgle at each of the N lucations along the blade
    CDO, CDL, CD2 - SECTIONAL DRAG COEFFICIENTS
    C - THE CHORO NON-UIMENSIONALILEU NITH THE RAOIUS
    OELL - THE INTERVAL AROUND THF SINGULARITY THAT IS INTEURATED
    SEPARATELY
    EL - THE TIP SPEED RATIO = V/WO*R
    EP - A SMALL NUMBER WITH EP>>DELI
    N - THE NUIIBER OF POINTS IN THE SINE SERIES
    N8 - THE NUMBER OF PRDPELLER BLADES
    R - THE RADIUS DF THE PROPELLER IN FEET
    SKPII,SKPI2 - BLADEWISE LOCATIONS BETWEEN WHICH THE INDUCTION
    FACTOR "IS INTERPOLATED
    WO - THE ROTATIONAL SPEED IN RAUIANS/SEC
    X,W - LANGUERRE-GAUSS INTEGRATION POINTS
    ZTP - THE N NON-DIMENSIONAL BLADENISE LOCATIONS AT WHICH
    THe calculations are made for the sine series
    IMPLICIT KEAL*8 (A-H,O-L)
    INTEGERr4 IOUM(9 )
    DIMENSION ZTP(81), ZT(81), XZ(31), Q(81), AA(4,81),SS(5,81),
    1 QINT(9),SIMT(\vartheta),S(Ol), RINT(9 ),ALPOIG ),C(G),
    YI(BL), CA(9,9), RHS(Y), AS(9), CCA(9 ,9),
    IS(31), TIGRL(L1,11), DTC(1L), BETA(11)
    COMMON/BBB/X(44),W(44)
    COMMON/CCC/ TT, TTP, PI, EL, EP, NB
    RADIANS TO DEGREES CONVERSION
    RDC=57.295779513082300
    PI=3.1415926535897900
    READ IN DATA FOR A 44 PGINT LANGUERRE-GAUSS INTEGRATIUN
    READ(5,5) (X(L),W(L), L=1,44)
5 FORMAT (2030.0)
```

```
    WRITE (6,6) (X(L), W(L), L=1,44)
    6 FORMAT [* * D 30. L5, D30.15)
    N=9
    NB=3
    EL=0.298600
    EP=0.3000
    WO=153.93300
    AO=0.0700*RDC
    R=1.4000
    CDO=0.03334821DU
    COL=-0.0080089300*RDC
    CD 2=0.0006339300%RDC**2
    NP IS THE NUMBER OF POINTS USED IN THE SPLINE INTEGRATION
    NP MUST BE AT LEAST 4%N SO THAT WHEN INTEGPATING FRON X=0 TO
    ZTP-DEL OR ZTP+DEL TO I THERE WILL ALWAYS BE AT LEAST 4 PUINTS
    FOR THE SPLINE INTEGRATION. (SUBROUTINE SLPLZ WILL FAIL WITH
    LESS THAN FOUR POINTS'
    NP=(N-1)*10+1
    DO % J=1,N
    READ IN THE BLADE ANGLE, CHORD, ANO CORRESPONDING LOCATIONS
    on the blade
    READ(5,7) BT, C(J), ZTP(J)
        7 FORIIAT (3F10.6)
            BETA(J)=BT/RDC
            ALPC IS THE GEOMETRIC ANGLE OF ATTACK
            IF (ZTP(J).LE.0.000100) ALPO(J)= BT/RDC-PI/2.000
            IF (ZTP(J).GT.0.0001DO) ALPO(J)= BT/RDC-DATAN(EL/LTP(J))
            WRITE (6,8) LTP(J), BT, ALPO(J), C(J)
            8 FORMAT {: 1, 4F20.6)
    g continue
        DO IO I=1,NP
    102T(I)=FLOAT(I-1)/FLOAT(NP-1)
    DELI=0.0000GIDO
    DO 400 J=1,N
    DO 4 I = 1,NP
    IS(I)=0
    4 YI(I)=0.000
        WRITE (6,11) ZTP(J)
11 FORMAT ('O', 'ZTP=*,F8.3)
```

```
    SH=EL**2+ZTP(J)**2
C
C
    This section calculates all the induction factors NEEdED
C
        TPP=ZTP(J)
        TT=TTP
    NOPT=2
C PLZ IS THE SUM OF THE INDUCTIDN FACTORS FOR OLAUES 1 AND 2
C OIVIDED BY (ZT-LTP)
    CALL CALCI (PIL, NUPT)
    NOPT=3
c P3 IS THE INTEGRAL FROM EP TD. INFINITY OF THE INTEGRAND iA
C NHERE I3=(ZT-ZTP)%INTEGRAL DF i
    CALL CALCI(P3, NOPT)
    NOPT=1
    TTP=ZTP(J)
    NA8=0
    NCTR=0.
    ICTR=0
G INTERPOLATE VALUES OF I BETNEEN SKPII & SKPI2
C WHERE SKPIL & SKPI2 ARE READ IN FUR EACH ZTP LUCATIUN
    REAO(5,12) SKPII, SKPI2
    12 FURMAT (2F10.3)
    WRITE (6,13) SKPIL, SKPIZ
    13 FURMAT ('0',' SKIP DIRECT I CALCULATION BETNEEN LT=', F7.3,
    1 'AND', F7.3)
    DO 15 I =1,NP
    TT=2T(I)
    FINO THE VALUE OF THE DO LOOP PARAMETEK FOR WHICH ZT=ZTP
    IF (DABS(TTP-YT).LT.0.00J0010O) ICTR=1
    IF (TT.LT.SKPII.OR.TT.GT.SKDI2) CALL CALCI(XI, NOPT)
C STURE THE INDUCTION FACTOR IN THE ARRAY YI
    IF (TT.LT.SKPIL.OR.TT.GT.SKPI2) YI(I)=XI
C STORE WHICH INOUCTION FACTOR CALCULATIONS HAVE BEEN SKIPPED
    IF (TT.GE.SKPIL.AND.TT.LE.SKPI2) IS(I)=1
        15 CONTINUE
    DO 17 I=1,NP
    ICK=0
    TT= ZT(I)
```

```
            IF (ISII).NE.L.AND.TT.GE.SKPII-O.074DO.AND.TT.LE.SKPI2+C.O74DO
    1 -OR.I.EQ.ICTRI ICK=2
C MAB IS THE NUMBER OF POINTS AT WHICH THE DIRECT CALCULATION
C OF THE INOUCTION FACTOR HAS bEEN CAlCUlATED
    IF (ICK.EQ.2) NAB=NAB+1
    IF (ICK.EQ.2) XZ(NAB)=TT
    STORE THE COMPUTED INIUCTION FACTORS IN ARRAY Q
    IF (ICK.EQ.2.ANC.I.NE.ICTR) Q(NAB)=YI(I)
    IF (I.EQ.ICTR) Q(NAB)=1.ODO
    17 IF (I.EQ.ICTR) NCTR=NAB
    WRITE (0,21) NAB, ICTR, NCTR
    21 FORMAT ('0', 'NAB=', 3[10)
    WRITE (6,19) (XZ(L), Q(L), L=1,NAB)
    19 FORMAT (', ', 2F20.5)
    USE THE SPLINE INTERPOLATION FORMULA TO OBTAIN THE [NDUCTION
    FACTORS THAT WERE SKIPPED IN THE DIRECT CALCULATIONS
    SLPLZ IS A COMPUTER SUPPLIED SUBROUTINE WHICH WHICH GENERATES
    SPLINE INTERPOLATION COEFFICIENTS.
    CALL SPLIZ (XZ, 2, NAB, AA, SS)
    DO 18 I= 1,NP
    Tr= LT(I)
    USE SPLINE INTERPOLATION FURMULA
    IF (IS(I).EQ.I.ANO.I.LT.ICTR)
    I YI(I)=AA(1,NCTR-1)* (XZ(NCTR)-TT)**3
                +AA(2,NCTR-1)*(TT-XZ(NCTR-1))*4*3
                +AA(3,NCTR-1)*(XL(NCTR)-TT)
                +AA(4,NCTK-1)*(TT-XZ(NCTR-1))
    IF(I.EQ.ICTQ) YI(I)=1.000
    18 IF (IS(I).EQ.I.AND.I.GT.ICTR)
    1 YI(I)=AN(1,NCTR)*(XZ(NCTR+1)-TT)**3
                +AA(2,NCTR)**(TT-XZ(NCTR))*** 3
                +AA(3,NCTR)*(XZ(NCTR+1)-TT)
                +AA(4,NCTR)*(TT-XZ(NCTR))
    IF (ZTP(J).GT.DLLI) TT=ZTP(J)-DELI
    IF (ZTP(J).GT.DELI)
    1 XIBL=AA(1,NCTR-1)*(XZ(NCTR)-TT)**3
                +AA(2,NCTR-1) 
                +AA(3,NCTR-1)*(XZ(NCTR)-TT)
                +AA(4,NCTR-1)*{TT-XZ(NCTR-1))
```

```
        IF (1.000-ZTP(J).GT.DELI) TT=ZTP(J)+DELI
        IF (1.000-LTP(J).GT.DELI)
    1 XIAZ=AA(1,NCTR)*(XZ(NCTR+1)-TT)**3
            +AA(2,NCTR)*(TT-XZ(NCTR))** 
    +AA(3,NCTR)*(XZ(NCTR+1)-TT)
    +AA(4,NCTR)*(TT-XZ(NCTR))
    all the INDUCTION factors have NON bEEN CAlculated and
    STOKEO IN YI, XIBZ, XIAZ. XIBZ & XIAL ARE THE INDUCTION
    FACTORS AT LTP-DEL AND ZTP+DEL RESPECTIVELY.
    DU 210 NS =1,N
    AFG=NS*PI茾ZTP(J)
    WRITE (6,20) NS
    2O FORMAT {'O', 't++ NS=', [ 3, ' +t+++++t+++++')
    DO 22 IJ=I,N
    QINT(IJ)=0.000
    RINT(IJ)=0.000
    22 SINT(IJ)=0.000
    DEL=DELI
    ND=0
    IF (ZTP&J).LE.DEL) GO TO 53
    25 Q(I)=DCOS(NS*PI*ZT(I))*YI(I)/(LT(I)-ZTP(J))
    30\timesZ(NO)=LTP(J)-DEL
    Q(ND)=DCOS(NS*PI*XZ(ND))*XI3Z/(XZ(ND)-ZTP(J))
    NDL=NO-L
    IF (NS.EQ.1) NRITE (6,35) (XZ(L), Q(L), YI(L),L=L,NDI)
    IF (NS.EQ.I) WRITE (6,35) XZ(NL), Q(ND), XIBZ
35 IF (NS.EQ.1) WRMTE (6,35) XZ(NL),
C
```

```
    00 25 I =1,NP
    ND=ND+1
    IF (ZT(I)-ZTP(J).GE.-DELI ) GO TU 30
    XZ(I)=ZT(I)
    STOFE THE INTEGRANO IN ARRAY O
    CALL SPLIZ(XZ, W, ND, AA, SS)
    SUMQ=0.ODO
    NO L=ND-1
```

```
        DO 40 K=1,ND1
    40 SUMQ=SUMQ+. 2500*AA(1,K)*(XZ(K+1)-XZ(K))**4
    1 +.2500*AA(2,K)*(XZ(K+1)-XZ(K)) #*4
    2 +.5000*AA(3,K)*(XZ(K+1)-XZ(K))**2
    +.50DO*AA(4,K)*(XZ(K+1)-XZ(K))**2
    QINT(NS)=SUMQ
    WRITE (0,50) SUMQ
    50 FORMAT (' ', 'INTEGRAL OF Q=', Ell.3)
    5 3 ~ C O N T I N U E ~
        IF (IGT.EU.L) GO TO 75
        IF (ZTP(J).LT.DEL.OR.L.ODO-ZTP(J).LT.DEL) DEL=DEL/2.ODO
C
    THIS SECTION CALULATES THE INTEGRAL FROM ZTP-DEL TO ZTP+DEL
    ATERM=DCOS(ARG)*2.ODO*DEL*P12
    BTERML=2.ODO*DEL*((ZTP(J)*DCOS (ARG))/(DSWRT(2.ODU)*SH)
    1 *(1.000+DLOG(2.0D0*EP**2ヶSH))
    2 -NS*PI*DSQRT(2.0DO)*DSIN(ARG))
    BTERMZ= -UEL* DLOG(DELL)*(4.ODO*ZTP(J)*JCOS(ARG)
    l * /{DSQRT(2.ODO{#SH)}
    CTERM=2.000*DCOS(ARG)*DEL*P3
    RINT(NS)=ATERM+BTERML +BTERM2 +CTENM
    IF (NS.EQ.1) WRITE (6,55) P12, P3
55 FORMAT ('O', 2E2O.j)
    IF (NS.EQ.1) WRITE (6,60) ATERM, BTERM1, 3TERM2, CTERM
60 FORMAT ('0', 4E20.5)
    WRITE (6,70) RINT (NS)
70 FORMAT (' ', 'INTEGRAL GF R=', E11.3)
    DEL=DELI
75 RINT (NS)=0.000
    IF (L.UDO-LTP(J).LE.DEL) GO TO 160
C THIS SECTION CALULATES THE INTEGRAL FROM ZTP+DEL TO 1.O
C
    ND=1
    XZ(NO)=ZTP(J)+DEL
    S(ND)=DCOS(NS*PI*XL(ND))*XIAZ/(XZ(ND)-ZTP(J))
    DO 100 I=1,NP
    IF (ZT(I)-ZTP(J).LE.DELI } GOTO 100
```

```
    NO=ND+1
    XZ(NJ)=ZT(I)
C STORE THE INEGRAND IN ARRAY S
    S(NO)=DCUS(NS*PI&ZT(I))*YI(I)/(ZT(I)-ZTP(J))
    100 CJNTINUE
    110 CONTINUE
        IF (NS.EQ.1) WRITE (c,35) XZ(1), S(1), XIAZ
        LND=NP-NU
        DO 115 L=2,ND
        LL=L+LNO
        IF (NS.EQ.1) WRITE {t,3コ) XZ(L), S(L), YI(LL)
    115 CONTINUE
C INTGRATE S USING SPLINE INTEGRATION FURMULA
    CALL SPLIZ(XZ, S, ND, AA, SSI
    SUMS=0.ODO
    ND1=ND-1
    DU 140 K=1,NOL
    140 SUMS = SUINS+. 2500*AA(1,K)*(XZ(K+1)-XZ(K))**4
        l
        2 + +.5000%AA(3,K)*(XZ(K+1)-XL(K))***
        3+.50CO*AA(4,K)*(XZ(K+1)-XZ(K))**2
        SINT(NS)=SUMS
        WRITE(6,150) SUMS
    150 FORMAT (', 'INTEGRA゙L OF S=', EI2.4)
    TINT IS THE TOTAL INTEGRAL FROM ZERO TC I
    160 TINT=QINT(NS) +RINT(NS)+SINT(NS)
        TIGRL(J,NS)=TINT
        WRITE(0,170) TINT
    170 FORMAT ('O', 'TOTAL INTEGRAL FROM O TO INFINITY=', E2O.5)
C SET UP THE MATRIX EQUATIUN
    CA(J,NS)=2.ODU*DSIN(NS*PI*ZTP(J))/AD-iVS*C(J)*TINT/(4.ODO&&)
    CCA(J,NS)=CA(J,NS)
    210 CONTINUE
    RHS(J)=WO*R**SOSQRT(SH)*ALPO(J)*C(J)
    WRITE (6,350)
```



```
    400 CONTINUC
    WRITE(\delta,500) ((CA(M,L), L=1,N), M=1,N)
```

 500 FORMAT (' ' \(\quad\) ' 5 FLL. 5)
 WRITE $(6,550)$ (RHS(L), $L=1, N)$
FORMAT ('O', 9FLL.3)
COLVE THE MATRIX EQUATION FOR THE AS VALUSS USING A
CDMPUTER SUPPLIED GAUSS ELIMINATION TECHNIQUE.
CALL GAUSZ (CA, N, N. RHS, AS, IDUM, IER)
600 FORMAT $1,1, A=1, N$
FRITE ($0,0,1$, $A=1, D 20.5)$
WRITE $(0,025)$
625
1 FOMAT 'U', $11 x$, 'ZEJA', 1SX, 'GAMA', L6X, 'ALPHA I'.
DO 700 iNK=1,N
STIGR=0.000
$S G A M=0.000$

VR IS THE RELATIVE VELOCITY
$V_{K}=V C / R$
DO $650 \mathrm{~K}=1, \mathrm{~N}$
STIGR=STIGR+TIGRL(NK,K)*AS(K)*K
calulate the circulation
050 SGAN=SGAM+AS(K)*DSIN(K*PI*ZTP(NK))
$A L I=S T I G R /(4.0 D O * V R)$
C calculate the effective angle of attack
$A L O=2 . O D O * S G A W /(A O * C(i N K) * V C)$
$\mathrm{PH} I=B E T A(I N K)-A L O$
IF (ALO.LE.U. 108DO) CL=O. LIDU*ROC*ALO
calculate the lift coefficient
C \quad CALCULATGT.U.108DO) $\mathrm{CL}=0.07000 * R 0 C *(A L O-0.10800)+0.700$
CALCULATE THE DRAG CUEFFICIENT
$\mathrm{CD}=\mathrm{CDO}+\mathrm{CD1*ALO*CO2*ALO**2}$
$C Y=C L * O C O S(P H I)-C D * D S I N(P H I)$
Calculate the differential thrust
DTC (NK) $=N B * C(N K) \neq V R * 2 * C Y /(2.000$
WRITE (6,675) 2TP(NK), SGAM, (2.ODO*PI*R**2*WO**2)*(0.2500*PI**3)
675 FORMAT (" ', 6E20.5)
700 CCNTINUE
Integrate the thrust over the blade using spline integration FGR MULA
CALL SPLIZ(ZTP, DTC, N, AA, SS)

```
        NMl=N-1
        SUMT=0.000
        DO 702 K=1,NML
    702 SUMT=SUMT+. 2500O*AA(2,K)*(ZTP(K+1)-ZTP(K))**4
        1 +.500DO*AA(4,K)*(ZTP(K+1)-ZTP(K))**2
        2 +.25000*AA(1,K)*(ZTP(K+1)-ZTP(K))**4
        WRITE (6,705) SUMT
    705 FORMAT {'0', "THRUST COEFFICIENT=', F20.7)
        CHECK TU SEE IF THE MATRIX EQUATION WAS SOLVED CORREGTLY
        DO 725 I=1,N
        CKRHS=0.0
        DO 710 J=1,N
    710 CKRHS=CCA(I,J)*AS(J)+CKRHS
    725 WRITE (6.730) CKRHS
    730 FORMAT ('O', F2O.31
        RETURN
        END
C
C
        SUBROUTINE CALCI (XI, NOPT)
C THIS SUBROUTINE CALCULATES THE INOUCTION FACTORS AS FOLLONS:
C NOPT = 1 CALCULATES II+I2+I3=I
    NOPT = 2 CALULATES THE INTEGRAL OF P1+PL FRUM O TO INFINITY
    NOPT ='3 CALULATES THE INTEGRAL OF P3 FROM EOSILON TJ INFINITY
    WHERE I=(ZT-ZTP)* (PI+P2+P3)
    IMPLICIT REAL*8 (A-H,O-Z)
    COMMON/AAA/ KK, NNOPT
    CDMMON/CCC/ TT, TTP,PI, EL, EP,NB
    OLMENSION AN(3)
    EXTERNAL AUX
    NNOPT=NUPT
    OO LO KK=1,3
    IF {NOPT.EQ.2.AND.KK.EQ.3} GO TO 20
    IF (NOPT .EU.3.ANO.KK.NE.3) GU TO 10
    CALL GLQU (AUX, ANS)
    10 AN(KK)=ANS
    IF (NOPT.EQ.1.AND.DABS(TT-TTP).LE.0.001DO)
    I
                XI=1.000
```

```
                            IF (NOPT.EQ.1.AND.DABS/(TT-{TTP).GT.0.001DO)
            1 XI=(AN(応)+AN(2)+AN(3))*(TT-TTP)
    20 IF (NOPT.EQ.2) XI=AN(1)+AN(2)
        IF {NOPT.EQ.3) XI=AN(3)
        RETURN
        END
    C
    C
    SUBROUTINE GLQU (AUX,ANS)
    C THIS SUBRUUTINE SETS UP THE LANGUERRE-GAUSS INTEGKATION
        IMPLICIT REAL*8 (A-H,O-Z)
        CUMMON/B8B/X(44),W(44)
    200 ANS =0.000
        S=0.000
        OO 201 I=1,44
        Y=X(I)
        CALL AUX(Y,Z)
    201 S=S+Z*W(I)
            ANS=S
            RETURN *
            END
    C
    C
    SUBROUTINE AUX (PHI, FX)
    C THIS SUBRUUTINE CALCULATES THE INTEGRAND OF PL, P2, & P3
    C WHERE THE INDUCTION FACTOR = (ZT-LTP)%INTGRAL OF (P1, PL, &P3)
    NOTE THAT THE INTEGRAND OF P IS GIVEN BY A/B BELOW
    IMPLICIT REAL*8 (A-H,O-Z)
    COMI'ON/CCC/ TT, TTP, PI, 巨L, EP, NB
    COMMDN/AAA/ KK, NOPT
(TTHTT*) IF (NOPT.EQ.3) PHI=PHI+EP
    PHIK=PHI+2.ODO*PI*(NB-KK)/NB
    A=(TT** 2)*(TT-TTP*DCOS (PHIK) )+(TT*{PHI*DSIN(PHIK)+DCDS(PHIK))-TTP)
    1 *EL**2
    B=(DSQRT(TT**2+TTP**2-2.ODO*TT*TTP*DCOS(PHIK)+PHI**2*EL**2))** 
    1 *DSQRT(EL**2+(T\pi)**2)
        C=A/B LTTP
        FX=DEXP(PHI)*C
    RETURN
```


REFERENCES

1. Froude, W, "On the elementary relation between pitch, slip and propulsive efficiency," Transaction of the Instatute of Naval Archıtects, Vo1. 19, 1878.
2. Rankine, W. J M , "On the mechanical princuples of the action of propellers," Transaction of the Instıtute of Naval architects, Vol. 6, 1865
3. Dommasch, D. O., "Elements of Propeller and Helicopter Aerodynamics," Pitman, New York, 1953.
4. McCormack, B. W., "Aerodynamics of V/STOL Flaght," Academac Press, New York, 1967.
5. Durrand, N F., "Aerodynamıc Theory, Vol IV," Julıus Sprınger, Berlin, 1945
6. Glauert, H., "The Elements of Aerofoll and Axrscrew Theory," Universıty Press, Cambrıdge, 1948
7. Glauert, H , "An Aerodynamic Theory of the Axrscrew," . Aeronautacal Research Commıttee Reports and Memoranda No. 786, 1922
8. Glauert, II , and Lock, C N. H , "The Accuracy of the Vortex Theory of Airscrews in the Light of Recent Experımental Work and Its Application to Airscrew Design," Aeronautical Research Committee Reports and Memoranda No 1040, 1926.
9. Goldstean, S , "On the vortex theory of screw propellers," Proceedings of the Royal Society of London, Serıes A, Vol. I23, 1929
10. Lock, $\mathrm{C} N \mathrm{~N}$, "Application of Goldstein\}s Airscrew Theory to Design," Aeronautical Research Committee Reports and Memoranda No 1377, 1930

11 Theodorsen, T , "Theory of Propellers," McGraw-Hıll, New York, 1948.
12. Theodorsen, T, "The Theory of Propellers I - Determination of the Circulation Function and Mass Coefficient for Dual-Rotating Propellers," NACA Report 775, 1944.
13. Theodorsen, T, "The Theory of Propellers II - Method for Calculatang the Axial Interference Velocity," NACA Report 776, 1944.
14. Theodorsen, T., "The Theory of Propellers III - The Slipstream Contraction wath Numerical Vlues for Two-Blade and Four-Blade Propellers," NACA Report 777, 1944
15. Theodorsen, T , "The Theory of Propellers IV - Thrust Energy and Efficiency Formulas for Single and Dual-Rotating Propellers wath Ideal Circulation Distrıbution," NACA Report 778, 1944.
16. Crıgher, J , "Applıcation of Theodorsen's Theory to Propeller Design," NACA Report 924, 1949.
17. Lock, C. N. H , "Application of Prandtl Theory to an Airscrew," Aeronautical Research Commattee Reports and Memoranda No. 1521, 1932.
18. Lock, C. N H , "Alrscrew Theory," Aeronautical Research Commıttee Reports and Memoranda No. 1746, 1936.
19. Lock, C N. H. and Yeatman, D., "Tables for use in an Improved Method of Airscrew Strip Theory Calculation," Aeronautical Research Commıttee Reports and Memoranda No. 1674, 1934.
20. Lock, C. N H., "A Graphical Method of Calculating the Performance of an Aırscrew," Aeronautical Research Committee Report and Memoranda No. 1849, 1937.
21. Prandt1, L , "Application of Modern Hydrodynamics to Aeronautics," NACA Report 116, 1921.
22. Morıya, T., "Selected Scıentıfıc and Technıcal Papers," Unıversıty of Tokyo, Tokyo, 1959

23 Reid, E , "The Influence of Blade-WIdth Distribution on Propeller Characteristics," NACA Technical Note 1834, 1949
24. Stack, J , "Test of Aırfoals Designed to Delay the Compressibılıty Burble," NACA Report 763, 1943
25. Stoud, A. and Secrest, D , "Gaussian Quadrature Formulas," PrenticeHall, Englewood Cliffs, New Jersey, 1966.
26. Pennington, R. H , "Introductory Computer Methods and Numerical Analysis," MacMillan Company, London, 1970
27. FORTUOI Wrateups, Computing Services Offices, Universaty of Illinoas, Urbana, 1974.

APPENDIX B

FORMER APPROACH TO THE PROPELLER NOISE PROBLEM
by C. J Woan

LIST OF MAIN SYMBOLS

$$
\begin{aligned}
& a_{0} \text { speed of sound } \\
& \text { I acoustic intensity } \\
& \ell(r) \text { thrust per unit length } \\
& \overline{\mathrm{M}}=\overline{\mathrm{V}} / \mathrm{a}_{0} \\
& \bar{M}_{f}=\bar{v}_{f} / a_{o} \\
& M_{t}=r_{t} \Omega / a_{o} \\
& M_{R}=\bar{M} \cdot \bar{R} / R \\
& \text { p1 acoustic pressure } \\
& p_{t}^{\prime} \quad \text { acoustic pressure due to } \\
& \text { thrust } \\
& \overline{\mathrm{R}}=\overline{\mathrm{X}}-\overline{\mathrm{Y}} \\
& r_{t} \text { raduus of propeller } \\
& \text { T total thrust }
\end{aligned}
$$

t observation time
\bar{V} the velocity of source
$\bar{V}_{f} \quad$ forward velocity of propeller
$\overline{\mathrm{X}} \quad \mathrm{f}_{\text {Iell }}$ point
$x_{0}=\left(x_{01}^{2}+x_{02}^{2}+x_{03}^{2}\right)^{1 / 2}$ the distance
Between the field point and the center of the propeller at t
$\bar{Y} \quad$ source point
θ the instantaneous angle the source makes wath y_{2} - axis
$\theta_{0} \quad$ nitial angular displacement
$\Psi \quad \tan \Psi=x_{02} / x_{01}$
τ retarded tıme
$\Omega \quad$ angular velocity of propeller
$[f(t)] \equiv f(\tau)$

1. Coordinate System and Geometry

B. 2

Field Point

Figure 1 Coordinate System

2. Acoustic Pressure Perturbation

Following Ffowcs Williams and Hawkings, the acoustic pressure perturbation at the field point is given by

$$
P^{\prime}=-\frac{1}{4 \pi} \frac{\partial}{\partial x_{k}} \int\left[\frac{P_{e}}{R\left|1-M_{R}\right|}\right] d S
$$

where $d S$ is the blade surface area and P_{1} is the $I^{\text {th }}$ component of the force acting on air by the blade surface

3 Noise Due To Thrust
Let $\ell(x)$ be the spanwise distribution of the thrust along the lifting line per unit length Then

$$
\begin{aligned}
P^{\prime}= & -\frac{1}{4 \pi} \frac{\partial}{\partial x_{2}} \int_{0}^{r_{t}}\left(\left[\frac{x_{1}-y_{2}}{a_{0} R^{2}\left(1-M_{R}\right)^{2}}\left\{\frac{\partial P_{1}}{\partial t}+\frac{P_{2}}{1-M_{R}} \frac{\bar{R}}{R} \cdot \frac{\partial \bar{M}}{\partial t}\right\}\right]\right. \\
& \left.+\left[\frac{1}{R^{2}\left(1-M_{R}\right)^{2}}\left\{\frac{P_{2}\left(x_{1}-y_{i}\right)}{R} \frac{1-M^{2}}{1-M_{R}}-P_{i} M_{i}\right\}\right]\right) d r
\end{aligned}
$$

where $P_{1}=-\ell(x)$

$$
\begin{aligned}
& P_{2}=0 \\
& P_{3}=0
\end{aligned}
$$

Therefore the pressure perturbation due to thrust is

$$
P_{t}^{\prime}=\frac{T}{4 \pi r_{t}^{2}} \int_{0}^{1} f_{t}\left(r^{*}, \theta_{0}\right) \bar{l}^{-*}\left(r^{*}\right) d r^{*}
$$

where

$$
\begin{array}{ll}
r^{*}=\frac{r}{r_{t}}, \quad \lambda=\frac{a_{0}}{\Omega}, \quad R^{*}=\frac{R}{\lambda} \\
t^{*}=\Omega t, \quad \tau^{*}=\Omega \tau, \quad x_{0}^{*}=\frac{x_{0}}{\lambda}
\end{array}
$$

$$
\bar{l}\left(r^{*}\right)=\frac{l(r)}{\left(\frac{T}{r_{t}}\right)}=\bar{l}^{*}\left(r^{*}\right) r^{*}\left(1-r^{*}\right)
$$

T Is the total thrust
and

$$
\begin{aligned}
& f_{t}\left(r^{*}, \theta_{0}\right)=M_{t}^{2} r^{*}\left(1-r^{*}\right)\left\{r^{*} M_{t} x_{0}^{*^{2}} \sin \psi \cos \psi \frac{\cos [\theta]}{\left[R^{*}\right]^{3}\left[1-M_{R}\right]^{3}}\right. \\
& \quad+r^{*} M_{t} x_{0}^{*} \sin \psi \frac{\cos [\theta]}{\left[R^{*}\right]^{2}\left[1-M_{R}\right]^{3}}+r^{*} M_{t} x_{0}^{*} M_{f} \sin \psi \frac{\sin [\theta]}{\left[R^{*}\right]^{3}\left[1-M_{R}\right]^{3}} \\
& \left.\quad-x_{0}^{*} \cos \psi \frac{1}{\left[R^{*}\right]^{3}\left[1-M_{R}\right]^{3}}\right\}
\end{aligned}
$$

where the angle θ_{0} is uniformly distributed over ($0,2 \pi$) Then the probebility density function for the random variable θ_{0} is

$$
\begin{array}{rlrl}
p\left(\theta_{0}\right) & =\frac{1}{2 \pi} & 0 \leq \theta \leq 2 \pi \\
& =0 & & \text { otherwise }
\end{array}
$$

Therefore, the mean square of P_{t} is

$$
E\left(P_{t}^{\prime 2}\right)=\int P_{t}^{\prime 2} p\left(\theta_{0}\right) d \theta_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{t}^{\prime 2} d \theta_{0}
$$

The intensity

$$
I=\frac{E\left(P_{t}^{2}\right)}{P_{0} a_{0}}
$$

Then define

$$
I^{*}=\frac{I}{\frac{T^{2}}{r_{t}^{4} p_{0} a_{0}}}=\int_{0}^{1} \int_{0}^{1} F\left(r^{*}, r_{1}^{*}\right) \bar{l}^{*}\left(r^{*}\right) \bar{l}\left(r_{1}^{*}\right) d r^{*} d r_{1}^{*}
$$

where

$$
F\left(r^{*}, r_{1}^{*}\right)=\frac{1}{32 \pi^{3}} \int_{0}^{2 \pi} f_{t}\left(r^{*}, \theta_{0}\right) f_{t}\left(r_{1}^{*}, \theta_{0}\right) d \theta_{0}
$$

The total thrust is given by

$$
T=T \int_{0}^{1}-^{*}\left(r^{*}\right) r^{*}\left(1-r^{*}\right) d r^{*}
$$

Letting

$$
\begin{equation*}
J=1=\int_{0}^{1} \vec{l}^{*}\left(r^{*}\right) r^{*}\left(1-r^{*}\right) d r^{*} \tag{1}
\end{equation*}
$$

the necessary condition that I^{*} be an extremum, subject to the constraint $J=$ const (I.e. constant total thrust) is

$$
\begin{equation*}
\int_{0}^{1} F\left(r_{1}^{*} r_{1}^{*}\right) \bar{l}^{*}\left(r_{1}^{*}\right) d r_{1}^{*}=-\frac{b}{2} r^{*}\left(1-r^{*}\right) \tag{2}
\end{equation*}
$$

where b is a Lagrangian multiplier
and $\bar{l}^{*}\left(x^{*}\right)$ and b can be obtained by solving equations (1) and (2)
4. Numerical Method

The equations needed to solve this problem are
(A) $\quad \int_{0}^{1} \ell^{*}\left(r^{*}\right) r^{*}\left(1-r^{*}\right) d r^{*}=1$
(B) $\quad \int_{0}^{1} F\left(r^{*}, r_{1}^{*}\right) \lambda^{*}\left(r_{1}^{*}\right) d r_{1}^{*}=-\frac{b}{2} r^{*}\left(1-r^{*}\right)$
(c) $F\left(r^{*}, r_{1}^{*}\right)=\frac{1}{32 \pi^{3}} \int_{0}^{2 \pi} f_{t}\left(r^{*}, \theta_{0}\right) f_{t}\left(r_{1}^{*}, \theta_{0}\right) d \theta_{0}$

$$
\begin{aligned}
& \text { (D) } \quad f_{t}\left(r^{*}, \theta_{0}\right)=M_{t}^{2} r^{*}\left(1-r^{*}\right)\left\{r^{*} M_{t} x_{0}^{*} \sin \psi \cos \psi \frac{\cos [\theta]}{\left[R^{*}\right]^{3}\left[1-M_{R}\right]^{3}}\right. \\
& +r^{*} M_{t} x_{0}^{*} \sin \psi \frac{\cos [\theta]}{R^{* 2}\left[1-M_{R}\right]^{3}}+r^{*} M_{t} x_{0}^{*} \sin \psi \frac{\sin [\theta]}{\left[R^{*}\right]^{3}\left[1-M_{R}\right]^{3}}-\frac{x_{0}^{*} \cos \psi}{\left[R_{0}^{*}\right]^{3}\left[1-M_{R}\right]^{3}}
\end{aligned}
$$

(E). $\left[R^{*}\right]=\left\{\left(x_{0}^{*} \cos \psi+M_{f}\left[R^{*}\right]\right)^{2}+x_{0}^{*^{2}} \sin ^{2} \psi+r^{*} M_{t}^{2}\right.$

$$
\left.-2 x_{0}^{*} r^{*} M_{t} \sin \psi \cos \left(\theta_{0}+t^{*}-\left[R^{*}\right]\right)\right\}^{1 / 2}
$$

$$
\begin{equation*}
[\theta]=\theta_{0}+t^{*}-\left[R^{*}\right] \tag{F}
\end{equation*}
$$

(G). $\left[1-M_{R}\right]=\left(1-M_{f}^{2}\right)-\frac{x_{0}^{*}}{\left[R^{*}\right]}\left(M_{f} \cos \psi-r^{*} M_{t} \sin \psi \sin [\theta]\right)$

The solution proceeds as follows
Given M_{F}, M_{T}, x_{0}^{*}, and Ψ, find b and $\bar{\ell}^{*}\left(r^{*}\right)$
1 The integrals in equations (A), (B), and (C) are calculated by Gaussian integration (Gauss-Legendre formulas or GaussChebyshev formulas).

2 Equation (E) is solved by the Newton Method

$$
\begin{aligned}
{\left[R^{*}\right]_{n}=} & {\left[R^{*}\right]_{n-1}-\frac{f\left(\left[R^{*}\right]_{n-1}\right)}{f^{\prime}\left(\left[R^{*}\right]_{n-1}\right)} } \\
f\left(\left[R^{*}\right]\right)= & {\left[R^{*}\right]-\{ } \\
& \left(x_{0}^{*} \cos \psi+M_{f}\left[R^{*}\right]\right)^{2}+x_{0}^{2} \sin ^{2} \psi+r^{*} M_{t}^{2} \\
& \left.-2 x_{0}^{*} r^{*} M_{t} \sin \psi \cos \left(\theta_{0}+t^{*}-[R]\right)\right\}^{\frac{1}{2}}
\end{aligned}
$$

3 After obtaining [$\left.\mathrm{R}^{*}\right]$ from (2), the value of [$\left.\mathrm{R}^{*}\right]$ is substituted into equations (A), (B), (C), (D), (F), and (G)
4. After applying Gaussian integration to equation (B) and assigning n different values for r^{*} ($0 \leqslant r \leqslant 1, n=$ the number of points used in Gaussian integration), equation (B) can be reduced to a system of n equations with unknowns $\bar{l}^{*}\left(r_{1}^{+}\right)(1=1,2, \cdots, n)$ [r_{1}^{*} are the zeros of the $\mathrm{n}^{\text {th }}$ polynomial used in the Gaussian integration]

In matrix form

$$
\mathrm{AL}=\mathrm{C}
$$

A. nxn matrix
C. column matrix
$\mathrm{L}=\left(\bar{l}^{*}\left(r_{1}^{*}\right), \bar{l}^{*}\left(r_{2}^{*}\right), \cdots, \bar{l}^{*}\left(r_{n}^{*}\right)\right)^{T}$

5 The Lagrangıan multiplier is obtained by substituting $\overline{\ell *}\left(r_{1}^{*}\right)$ obtained from (4) into equation (A).

APPENDIX C
PRESENT APPROACH TO THE PROPELLER NOISE PROBLEM
by C. J. Woan

LIST OF SYMBOLS

A_{1}	Fourier coefficients of Γ	T_{t}	total thrust
a_{0}	speed of sound	t	observation tame
B	number of propeller blades	$\overline{\mathrm{V}}$	the velocity of source
C_{m}	complex magnitude of the $\mathrm{m}^{\text {th }}$ harmonic	\bar{V}_{F} W_{i}	forward velocity of propeller induced velocity
dD	drag per unit length	$\overline{\mathrm{X}}$	field point
dL	lift per unit length	\bar{Y}	source point
I	acoustic antensity	α_{1}	Induced angle of attack
$J_{m(z)}$	Bessel function of order m and argument z	ϕ	initıal angular displacement
$\overline{\mathrm{M}}=$	$\overline{\mathrm{V}} / \mathrm{a}_{0}$	θ	the instantaneous angle the source makes with the y_{2} - axis
$M_{R}=$	$\bar{M} \cdot \overline{\mathrm{R}} / \mathrm{R}$	ρ_{0}	fluid density
$\mathrm{P}^{-\mathrm{P}_{0}}$	acoustic pressure	Γ	spanwise circulation distribution
		τ	retarded tame
$\mathrm{p}_{\text {rms }}$	root-mean-square pressure	Ω	angular velocity of propeller
$\overline{\mathrm{R}}=$	$\overline{\mathrm{X}}-\overline{\mathrm{Y}}$	$[f(t)] \equiv \mathrm{f}(\mathrm{T})$	
$\mathrm{R}_{0}=$	$x^{2}+y^{2}+z^{2}$		
r_{t}	radius of propeller		

1. Coordinate System and Geometry

Figure 1 Coordinate System
2. Sound Pressure Due to Moving Lifting Lane

The force acting on the air at $\bar{Y}=\Omega \tau+\bar{r}$, by the moving lifting inge, is developed as follows

Consider a blade element at location r

$$
d F_{x}=-(d L \cos \psi-d D \sin \psi), \quad d F_{\theta}=d L \sin \psi+d D \cos \psi
$$

The force, $d \bar{F}$, acting on the air at $\bar{Y}=\Omega T+\bar{r}$ is

$$
d \bar{F}=d F_{x} \bar{\imath}-d F_{\theta} \sin \theta \bar{\jmath}+d F_{\theta} \cos \theta \bar{k}
$$

The total sound pressure generated by the moving lifting line is given as

$$
\left(P-P_{0}\right)(\bar{x}, t)=-\frac{1}{4 \pi} \frac{\partial}{\partial x_{l}} \int\left[\frac{d F_{l}}{R\left(1-M_{R}\right)}\right]
$$

3 Periodicity of the Acoustic Pressure Disturbance
Consider a propeller whose hub is moving with constant velocity $\overline{\mathrm{V}}_{\mathrm{F}}$ Choose fixed axes $0_{x y z}$ such that the origin coincides with the hub
(I) at time $\tau=0$
(11) the x axis is parallel to the axis of rotation
(111) the hub velocity vector lies an the plane and in x-direction.

Let the field point \bar{X} be at (x, y, z) and a typical source point be situated at $\bar{Y}(t)$ This can be expressed as the vector sum of the hub location and the rotational position

$$
\bar{Y}(\tau)=\bar{V}_{F} \tau+\bar{r}(\tau), \quad \bar{r}(\tau)=(0, r \cos \theta, r \sin \theta) .
$$

Here θ is the instantaneous angle the source makes with y axis This increases in nearly with time, and can be expressed as $\Omega \tau+\phi$ where Ω is the angular velocity of the source, and ϕ is the initial angular displacement.

$$
\tau=t-\frac{[R]}{a_{0}}
$$

If attention is confined to source tames near $\tau=0$, [R] can be approximated by

$$
\begin{aligned}
{[R] } & =\left\{\left(x-v_{F}\right)^{2}+(y-r \cos [\theta])^{2}+(z-r \sin [\theta])^{2}\right\}^{1 / 2} \\
& =R_{0}(1+\varepsilon)^{1 / 2}
\end{aligned}
$$

where $\quad R_{0}=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$
and

$$
\varepsilon=\left\{r^{2}-2 r\left(y \cos [\theta]+z \sin [\theta]+v_{F}^{2} \tau^{2}-2 x v_{F} \tau\right\} / R_{0}^{2}\right.
$$

Therefore,

$$
[R] \doteq R_{0}-\frac{x}{R_{0}} V_{F} \tau-\frac{r}{R_{0}}(y \cos [\theta]+z \sin [0])
$$

and

$$
\Omega t-\Omega \frac{R_{0}}{a_{0}}=\Omega \tau\left(1-M_{0 r}\right)-M_{r}(y \cos [\theta]+z \sin [\theta])
$$

where

$$
M_{o r}=\frac{x V_{F}}{a_{0} R_{0}} \quad \text { and } \quad M_{r}=\frac{\Omega r}{a_{0}}
$$

This equation shows that as θ increases by 2π, Ω t only increases by 2π ($1-\mathrm{M}_{\mathrm{or}}$) Hence the basic observed frequency is $\omega=\Omega /\left(1-\mathrm{M}_{\mathrm{or}}\right)$ and therefore $\mathrm{P}_{-} \mathrm{P}_{\mathrm{o}}$ has a period $2 \pi / \omega$

Fourier Analysis
$\left(P-P_{0}\right)(\bar{X}, t)$ has a period $\frac{2 \pi}{\omega}$, where $\omega=\Omega /\left(r-M_{o r}\right)$
and $M_{o r}=\frac{V_{F} x}{R_{o} a_{o}}$
Then, defining the complex matnitude of the $m^{\text {th }}$ harmonic in the usual way

$$
\begin{aligned}
C_{m}(\bar{x})=a_{m}+i b_{m} & =\frac{\omega}{\pi} \int_{0}^{\frac{2 \pi}{\omega}}\left(P-P_{0}\right)(\bar{x}, t) e^{i m \omega t} d t \\
& =-\frac{1}{4 \pi} \int \frac{\partial}{\partial x_{i}} I_{i}
\end{aligned}
$$

where $I_{i}=\frac{\omega}{\pi} \int\left[\frac{d F_{i}}{R\left(1-M_{p}\right)}\right] e^{i m \omega t} d t$
changing variables back to the retarded time, τ, gives

$$
I_{i}=\frac{\omega}{\pi} \int\left[\frac{d F_{i}}{R}\right] e^{i m \omega\left(\tau+\frac{[R]}{a_{0}}\right)} d \tau
$$

where $d t=\left[1-M_{R}\right] d \tau$

$$
[R] \doteq R_{0}-a_{0} M_{o r} \tau-\frac{r}{R_{0}}(y \cos [\theta]+z \sin [\theta])
$$

Since the far field approximation is in force, the only significant dependence of F_{I} upon x_{I} is through the R_{0} term in the exponent.

Therefore

$$
\frac{\partial I_{e}}{\partial x_{k}}=\frac{1 m \omega^{2}}{a_{0} \pi} \int\left[d F_{l} \cdot \frac{\partial R_{0}}{\partial x_{i}}\right] e^{\ell m \omega\left(\tau+\frac{[R]}{a_{0}}\right)} \frac{d \tau}{R_{0}}
$$

and

$$
\begin{gathered}
C_{m}=\frac{-i m \omega e^{i m \omega \frac{R_{0}}{a_{0}}-i m \phi}}{2 \pi a_{0} R_{o}\left(1-M_{o r}\right)}(-\ell)^{m} \int J_{m}\left(m \frac{y}{R_{0}} \frac{M_{t}}{\left(1-M_{o r}\right)} \frac{r}{r_{t}}\right) \cdot \\
\left(\frac{x}{R_{0}} d F_{x}+\frac{1-M_{o r}}{M_{t}} \frac{r_{t}}{r} d F_{\theta}\right) .
\end{gathered}
$$

5. Extension to B Blades

For an assembly of B identical blades, the usual phase arguments show that only harmonics which are multiples of B survive, and all the rest cancel Hence only harmonics of the propeller blade passing frequency, $\mathrm{B} \omega$ are present in the acoustic field of the complete propeller, and the magnitude of the $m^{\text {th }}$ harmonic is $B C_{m B}$:

$$
\begin{aligned}
C_{m}= & \frac{1 m B^{2} \omega e^{i m \omega \frac{R_{0}}{a_{0}}}}{2 \pi a_{0} R_{0}\left(1-M_{o r}\right)}(-i)^{m B} \int J_{m B}\left(m B \frac{y}{R_{0}} \frac{M_{t}}{1-M_{0 r}} \frac{r}{r_{t}}\right) . \\
& \left(-\frac{x}{R_{0}} d F_{x}-\frac{1-M_{0 r}}{M_{t}} \frac{r_{t}}{r} d F_{\theta}\right) .
\end{aligned}
$$

Then, the r mas pressure $1 s$ given as

$$
P_{r m s}^{2}=\frac{1}{2} \sum_{m=1}^{\infty}\left|C_{m}\right|^{2}
$$

The total intensity at $\overline{\mathrm{X}}$ is,

$$
I=\frac{P_{r m s}^{2}}{\rho_{0} a_{0}}
$$

An Inexpensive Economical Solar Heating Syatem for Homue
N76-27671/PAT 59 p PC $\$ 450 / \mathrm{MF} \$ 300$
Viking I Early Results
N76-28296/PAT 76 p PC\$200/MF\$300
Energy Fact Book 1976, Chapters 1 through 21
ADA-028 284/PAT 432 p PC\$11 75/MF\$300
Security Analysis and Enhancements of Computer Operating Systems
PB-257 087/PAT 70 p PC $\$ 4$ 50/MF $\$ 300$
Evaluation of the Air-to-Air Heat Pump for Residential Space Conditioning
PB-255 652/PAT 293 p PC\$9 25/MF\$300
Monitoring Groundwater Quality Monitoring Methodology PB-256 068/PAT 169 p PC $\$ 675 / \mathrm{MF} \$ 300$

An Aur Force Guide to Software Documentation Requirements ADA-027 051/PAT 178 p PC $\$ 750 / \mathrm{MF} \$ 300$
${ }^{T}$ The Production of OIl from Intermountan West Tar Sands Deposits
PB-256 516/PAT' 98 p PC $\$ 500 / \mathrm{MF} \$ 300$

Analysia of Large Scale Non-Conl Underground Mining Methods
PB-234 555/PAT 581 p PC $\$ 13$ 75/MF $\$ 300$
Who's Who In the Interagency Energy/Enviromment hand D Program
PB-256 977/PAT 35 p PC $\$ 4$ (100/MF $\$ 300$
Local Area Personal Income, 1969-1974 Volume 2 Central and Northeastern States
PB-254 056/PAT 578 p $\quad \mathrm{PC} \$ 13$ 75/MF $\$ 300$
Feasibility of Considerably Expanded Use $n f$ werstern Coal by Midwestern and Eastern Utilties in the Period 1978 and Beyond
PB-256 048/PAT 61 p PC $\$ 450 / \mathrm{MF} \$ 300$
Avarlability of Potential Coal Supply Through 1985 by
Quality Characteristics
PB-256 680/PAT 121 p PC $\$ 50 / \mathrm{MF} \$ 300$
Flat-Plate Solar Collector Handbook A Survey of Principles,
Technical Data and Evaluation Results
UCID-17086/PAT 96 p PC $\$ 500 / \mathrm{MF} \$ 300$

HOW TO ORDER

When you indicate the method of payment, please note if a purchase order is not accompaned by payment, you will be billed an additional $\$ 500$ ship and bill charge And please include the card expration date when using American Express

Normal delivery tume takes three to five weeks It is vital that you order by number
or your order will be manually filled, insuring a delay You can opt for airmat dehvery for $\$ 200$ North American continent, $\$ 300$ outside North American contunent charge per item Just chech the Airmail Service box If you're really pressed for time, call the NTIS Rush Handling Service (703) 557-4700 For a $\$ 1000$ charge per item, your order will be armanled within 48 hours Or, you can prek up your order in the Washington Information Center \& Bookstore or at our Springfield Operations Center within 24 hours for a $\$ 600$ per item charge

You may also place your order by telephone or if you have an NTIS Deposit Account or an American Express card order through TELEX The order desh number is (703) 557-4650 and the TELEX number is 89-9405

Thank you for your interest in NTIS We appreciate your order

METHOD OF PAYMENT

\square Charge my NTIS deposit account no
\square Purchase order no
\square Check enclosed for \$ \qquad NAME

Bill me Add $\$ 500$ per order and sign below (Not avallable outside North American continent)Charge to my American Express Card account number

Card expiration date.
Signature
\square Airmall Services requested
Chip and mall to

Nun

National Techmical Information Service US DEPARTMENT OF COMMERCE Springfield $V_{a} 22161$
(703) 557-4650 TELEX 89.9405

Item Number	Quantil		Unit Price*	Total Price
	Paper Copy (PC)	Microfiche (MF)		
 All prices subject to change The prices Sub Total above are arcurate as of $3 / 77$ Addtional Charge				

and the total thrust is

$$
T_{t}=\int_{0}^{r_{t}}\left(r \Omega+V_{F} \frac{W_{e}}{V}\right) P_{0} \Gamma d r
$$

6. Method of Solution

The problem to be solved can be stated as follows
Find the circulation distribution along the lifting line such that is minimum and T_{t} constant.
The solution then proceeds as follows.
Expand Γ as Fourier series with coefficients A_{1}, then

$$
\begin{aligned}
& I=I\left(A_{1}, A_{2}, A_{3} \cdots\right)=I\left(A_{i}\right) \\
& T_{t}=T_{t}\left(A_{1}, A_{2}, A_{3} \cdots\right)=T_{t}\left(A_{i}\right)
\end{aligned}
$$

Let $J=I-b\left(T_{t}-T_{t}\left(A_{I}\right)\right)$
where b is a Lagrangian multiplier.
A necessary condition that I be extremum is

$$
\frac{\delta J}{\delta A_{2}}=0 \quad-i=1,2,3, \ldots
$$

Solve equation (A) and (B) for A_{I} and b

