NASA CR-2706

NASACONTRACTOR REPORT

A COMPUTER PROGRAM TO CALCULATE THE LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF WING-FLAP CONFIGURATIONS WITH EXTERNALLY BLOWN FLAPS

Michael R. Mendenhall, Frederick K. Goodwin, and Selden B. Spangler

Prepared by
NIELSEN ENGINEERING \& RESEARCH, INC.
Mountain View, Calif. 94043
for Langley Research Center

national aeronautics and space administration - washington, o. C. - september 1976

[^0]
TABLE OF CONTENTS

Page
Section NO.
SUMMARY 1
INTRODUCTION 2
DESCRIPTION OF PROGRAM 3
Calculation Procedure 4
Program Operation 5
Program Usage 8
Limitations 8
Run time 9
DESCRIPTION OF INPUT 10
Vortex-Lattice Arrangement 10
Spanwise distribution 11
Chordwise distribution 12
Jet Wake Specification 13
Input Variables 18
Sample Cases 27
DESCRIPTION OF OUTPUT 29
Sample Case 29
Error Messages 32
PROGRAM LISTING 33
REF ERENCES 59
TABLE I 60
FIGURES 1 THROUGH 9 61

A COMPUTER PROGRAM TO CALCULATE THE LONGITUDINAL
AERODYNAMIC CHARACTERISTICS OF WING-FLAP
CONFIGURATIONS WITH EXTERNALLY BLOWN FLAPS
by Michael R. Mendenhall,
Frederick K. Goodwin, and Selden B. Spangler Nielsen Engineering \& Research, Inc.

SUMMARY

This document is a user's manual for the computer program developed to calculate the longitudinal aerodynamic characteristics of wing-flap combinations with externally blown flaps. A vortex-lattice liftingsurface method is used to model the wing and multiple flaps. Each lifting surface may be of arbitrary planform having camber and twist, and the multiple-slotted trailing-edge flap system may consist of up to ten flaps with different spans and deflection angles. The engine wake model consists of a series of closely spaced vortex rings with circular or elliptic cross sections. The rings are normal to a wake centerline which is free to move vertically and laterally to accommodate the local flow field beneath the wing and flaps. The two potential flow models are used in an iterative fashion to calculate the wing-flap loading distribution including the influence of the wakes from up to two turbofan engines on the semispan. The method is limited to the condition where the flow and geometry of the configurations are symmetric about the vertical plane containing the wing root chord.

The calculation procedure starts with arbitrarily positioned wake centerlines and the iterative calculation continues until the total configuration loading converges within a prescribed tolerance. The results available from the program include total configuration forces and moments, individual lifting-surface load distributions, including pressure distributions, individual flap hinge moments, and flow field calculation at arbitrary field points.

This program manual contains a description of the use of the program, instructions for preparation of input, a description of the output, program listings, and sample cases.

INTRODUCTION

An engineering prediction method for calculating the static longitudinal aerodynamic characteristics of wing-flap combinations with externally blown flaps (EBF) is presented in reference l. An externally blown flap is a STOL high lift device in which the jet efflux from turbofan engines mounted beneath the wing is allowed to impinge directly on the trailing-edge slotted flap system. A large amount of additional lift is produced through engine wake deflection and mutual interference effects. The purpose of the analysis in reference l is to provide a potential flow method, requiring little use of empirically determined information, to predict the detailed loading distribution on EBF configurations. The method involves the combination of two potential flow models, a vortex-lattice lifting-surface model of the wing and flaps and a vortex ring model of the jet wakes. The two flow models are combined by direct superposition such that a tangency boundary condition is satisfied on the wing and flap surfaces. An iteration between the jet wake position and the wing loading is carried out until the solution converges.

The computer program described in this report is an improved and extended version of the program of reference 2. Modifications include the following. An improved vortex-lattice lifting-surface method is used in which the trailing legs of the horseshoe vortices are allowed to bend around the flap surfaces so that all the trailing vorticity leaves the configuration tangent to the last flap. The geometry specification has been changed so that each flap surface can be modeled as a separate lifting surface with a maximum of ten flaps permitted. The iteration procedure has been automated so that the jet centerlines are positioned according to the local flow field direction beneath the wing and flaps, and the iteration procedure can be carried out a specified number of times or until convergence to a specified tolerance is achieved. The jet centerline calculation has been automated so that, after starting with an arbitrary jet location, the centerline is allowed to move so that it lies along local flow angles. The jet model of reference 2 was defined by a series of circular vortex rings. The improved jet model will now handle elliptic rings; therefore, the jet may start at the engine exit with an axisymmetric cross section and change to an elliptic cross section as it moves downstream and interacts with the
lifting surface. The jet cross-sectional area and shape must be specified by the user.

This document is a user's manual for the computer program developed to carry out the calculations in the EBF aerodynamic prediction method. Principal reliance is made herein to reference l for a description of the details of the method and the calculation procedure. Reference l also contains calculated results and comparisons with data for a variety of configurations. The following sections of this report will provide a description of the program, a description of the input, a description of the output, a program listing, and sample cases. The notation used is the same as that of reference 1 .

DESCRIPTION OF PROGRAM

The purpose of this section is to describe the EBF aerodynamic prediction program in sufficient detail to permit a general understanding of the flow of the program and to make the user aware of the analytical models used to represent the jets and the lifting surfaces. Basically, the program models the lifting surfaces with horseshoe vortices whose circulation strengths are determined from a set of simultaneous equations provided by the flow tangency boundary condition applied at a finite set of control points distributed over the wing and flaps. The boundary conditions include interference velocities induced by some external source of disturbance such as the wake of a turbofan engine. The jet wake is modeled by a series of closely spaced ring vortices, circular or elliptical in shape, arranged on the boundary of the jet. The strength of the vortices is specified by the initial velocity in the wake which is determined from the momentum in the jet. The jet is allowed to interact with the wing and flaps through the jet induced velocity field on the lifting-surface control points. The wing and flaps are then allowed to interact with the jet by forcing the jet centerline to be aligned with the flow direction beneath the lifting surfaces. This process is repeated iteratively until convergence of both the lifting-surface loading and jet centerline position are attained.

Calculation Procedure

The general flow of the program, shown in the flow chart in figure 1, proceeds as follows. After run identification information and certain reference quantities are read in, the wing geometry is input and the wing lattice layout is set up and output. This is followed by similar calculations for the flap surfaces. This concludes the liftingsurface geometry specification; therefore, the influence coefficient matrix, which is the left-hand side of the equation set and a function of geometry only, can be calculated. The matrix is triangularized for use in the solution of the simultaneous equations. This concludes the first section of the program which need be considered only once in each calculation.

The next section of the main program is that part in which the solution is carried out and any iterations are performed. The first step is the input of the initial jet parameters and the set up of the jet centerlines in preparation for induced velocity calculations. The jet induced velocity field at each lifting-surface control point is computed at this time. The right-hand side of the equation set is now computed. Solution of the equation set produces the values for the circulation strengths of each horseshoe vortex describing the lifting surfaces. Given the circulation strengths and the induced velocity field, the load distributions on the lifting surfaces are calculated and resolved into total forces and moments. At this point in the solution, the total forces and moments correspond to those on a lifting surface in the presence of a jet or jets in some specified position relative to the wing and flaps. This may or may not be a converged solution. Using the just-computed circulation strengths on the wing and flaps, the induced velocity field at specified points on the jet centerlines is computed. The jet induced velocity field at these same points is also computed assuming each jet to be in its initially prescribed position. The total velocity field, including the free stream, is formed at the specified points on the centerline. The centerline at each of these points is assumed to have the computed flow direction, and its position is adjusted accordingly.

At this point in the solution, the first iteration is complete and the solution may or may not be converged. The jet centerlines have been moved; therefore, their new position does not correspond to the previously calculated induced velocity field on the wing and flaps; thus, the
interference loading on these lifting surfaces does not correspond to the current jet positions unless the jets were moved only a small amount. The option is available in the program to stop here or to continue on for additional iterations.

If further iteration is indicated, the program returns to the beginning of the iteration section and starts a second iteration by computing the jet induced velocity field at the lifting-surface control points. The solution continues as before. At the end of the current iteration, two checks are made. The first test is on the local jet centerline slopes. If these slopes have not changed an amount greater than a prescribed convergence tolerance, convergence is assumed to be attained, an appropriate message is printed, and the solution is complete. If the centerline convergence test fails, the same tolerance is applied to the current and previous values of total normal-force coefficient. If this test indicates convergence, the program skips to the final portion of the calculation procedure. If the convergence test fails after the prescribed maximum number of iterations has been completed, an appropriate message is printed and the program skips to the final section.

In the final section of the program, the jet centerlines corresponding to the last iteration are output. This jet configuration does not correspond to the last set of loadings on the wing and flaps unless convergence has been achieved, but it corresponds to the jet which should be used for the next iteration. The purpose of printing these centerline parameters is two-fold. First, it allows the user to compare the last used centerlines with the new versions; and second, it provides a centerline configuration with which to continue the iterations by restarting the program.

The final calculation to be carried out, if requested, is the computation of the induced velocity field at specified field points. This option is provided so that the user may investigate the induced flow field in the vicinity of a horiziontal tail position or other points of interest in the flow field.

Program Operation

The EBF prediction program is written in Fortran IV and has been run on CDC 6600 and 7600 computers. The version described in this
document was designed to be used under the FIN compiler with a level 2 optimization. Other compilers can be used with only minor modifications and lower optimization levels can be used with the only penalty being an increase in run time. No tapes other than standard input and output units are required for a typical run, although one option allows an externally induced velocity field to be brought in via tape unit 4.

The main program, WNGFLP, contains one item which is not a standard feature of all FIN compilers. Between cards WNGl62 and WNGl74 there are two calls to subroutine REQFL. This is a request for an adjustment in the core memory to make room for the influence coefficient matrix, FVN, which is stored in a one-dimensional array. The purpose of this adjustment is to minimize the core storage used until the large array is required. FVN is dimensioned for unit length on card WNGO43. If subroutine REQFL or its equivalent is not available, the following changes are required. First, remove cards WNGl62 through 174. Second, change the dimension of the FVN array on card WNGO43 to a value which will cover the maximum number of elements in an influence coefficient matrix; that is, the square of the total number of vortex-lattice panels on the configuration of interest. Thus, the dimension of FVN can be made large enough to cover the largest array anticipated, or the minimum size array needed can be defined and the dimension changed as the number of vortex panels is increased.

There is an alternative solution which minimizes storage requirements for the FVN array when subroutine REQFL is not available. Program WNGFLP can be turned into a subroutine with cards WNGl62-174 removed and the FVN dimension set at unity. A short main program can be written which consists of a blank common which sets the dimension of $F V N$ to the required size and a call to subroutine WNGFLP. In this way, a short five-card main program is all that need be recompiled to change the size of the FVN array. This alternate set up for a main program is illustrated in figure 2 to accommodate a maximum vortex lattice of 165 elements. The changes to the current main program, WNGFLP, to make it a subroutine are also shown in this figure.

The following is a list of the components of the EBF program and a brief description of the function of each.

Main Program:
WNGFLP - controls the flow of the calculation and handles some input and output duties

WNGLAT - reads in wing input data, lays out the vortex lattice on the wing, and outputs wing geometric information
FLPLAT - reads in flap input data, lays out vortex lattice on the flaps including wing trailing legs which lie on the flaps, and outputs flap geometric information

INFMAT - calculates influence coefficient matrix
FLVF - calculates influence function for a finite length vortex filament

SIVF - calculates influence function for a semi-infinite length vortex filament

RHSCLC - calculates the right-hand side of the simultaneous equations for the vortex strengths

LINEQS - triangularizes the square influence coefficient matrix
SOLVE - solves for the circulation strengths
LOAD - calculates the forces on the bound and trailing vorticity associated with each area element

FORCES - calculates and outputs the spanwise loading distributions and total forces and moments and pressure distribution on the complete configuration
VELSUM - computes wing-flap induced velocity field at a specified point
JET - reads in initial jet parameters, outputs total jet configurations, and calculates jet wake induced velocities at specified points

JETCL - calculates the modified centerline position due to total velocity field induced on the centerline
CORECT - corrects field point locations relative to vortex rings to avoid singularities

VRING - computes velocity components induced by a single, circular vortex ring at an arbitrary field point relative to the ring

ERING - computes velocity components induced by a single, elliptic vortex ring at an arbitrary field point relative to the ring
JINTEG - solves for the J-integrals required in elliptic vortex ring equations

ELIl - computes the generalized elliptic integral of the first kind

Subroutines (Cont'd):

ELI2 - computes the generalized elliptic integral of the second kind ELLIPS - obtains complete elliptic integrals of the first and second kinds from tables

QUART - solves a quartic equation
CUBIC - solves a cubic equation
QUAD - solves a quadratic equation
SIMSON - does a Simpson's Rule integration

Program Usage

Limitations.- It should be remembered that the prediction method is made up of potential flow models which presume the flow to be attached to the lifting surfaces at all times. When applying the program to configurations at very high angles of attack or to configurations with very large flap deflections, the results will generally be too high as separation may exist on portions of the real model.

The program is a model for the wing and flaps only; therefore, when comparing predicted results with measured characteristics on a complete configuration, the force and moment contributions due to such items as the fuselage, nacelles, and leading-edge slat must be included as additional items. This is illustrated in the data comparisons in reference 1 .

There are certain limitations and requirements in laying out the vortex-lattice arrangement on the lifting surfaces. These are discussed in detail in the input section of this manual, but several of the more important items are noted as follows. Since the current version of the vortex-lattice method bends the trailing legs of the wing horseshoe vortices around the flaps, in laying out the geometry care must be taken that a flap surface not lie above the wing surface. For the same reason, flap surfaces may not overlap.

The program has the capability of computing the induced velocity field at any specified field point, but the modeling of the wing and flaps with horseshoe vortex singularities can cause numerical problems and unrealistic answers if a field point lies too near a singularity. A general rule to follow when computing induced velocities is that the
field point should not be closer to a lifting surface than one half the width of the nearest horseshoe vortex. This also has an effect on the layout of the points defining the jet centerlines since wing and flap induced velocities are important in the centerline iterations. This detail is described when the preparation of jet input is discussed.

Run time.- Both the vortex-lattice lifting-surface and the vortex ring jet models can be time consuming in a typical calculation; consequently, their combination into the EBF program creates a calculation procedure which can be very costly in terms of computer time. When the program is used in the iterative mode, the required calculation time increases nearly linearly with the number of iterations. Estimating the computation time required for a calculation is difficult because of the variables involved. Size of the vortex lattice, number of flaps, number of jets, length of the jets, shape of the jets, spacing of the vortex rings, and iterations all help determine the total run time for a calculation. A list of typical execution times for different combinations of the above parameters is presented in Table I.

The long execution times for the elliptic jet cases are due entirely to the additional complexity involved in computing the induced velocities from elliptic vortex rings. The elliptic jet cases require so much execution time that multiple iterations have been avoided in the use of the program to date. There are some approximations to trim the run time for elliptic jets which have been used by the authors. An equivalent circular jet which has the same area distribution as the desired elliptic jet can be run through several iterations to get the approximate positions of the centerline. The elliptic jets can then be put along these centerlines, and the calculation continued for one or two additional iterations. In this way, the elliptic jet effect on the lifting surfaces can be obtained at some savings in total execution time.

Another method used to minimize execution time is to run the first several iterations with a minimum size lattice to determine the approximate position of the jet centerlines. Then, the full lattice can be input with the jets in their approximate positions and the solution carried out several more iterations to convergence.

This section describes the preparation of input for the EBF computer program. In the following sections, some detailed information regarding the layout of the vortex lattice and the specification of the jet wake are presented. This is followed by a listing of all input variables and their format and positions in the input deck. The last topic in this section is a sample input deck illustrating a typical EBF calculation.

Vortex-Lattice Arrangement

The vortex-lattice method used in the EBF program is an extended and modified version of the wing-flap program presented in reference 2. For that reason, the wing-flap configuration considered herein is much more general than that previously handled, and the specification of the geometry for the input deck requires more detail than the input of reference 2. The characteristics of the configuration parameters are listed below.

Wing

- Mean camber surface may have camber and twist.
- Leading-edge sweep angle need not be constant across semispan.
- Trailing-edge sweep angle need not be constant across semispan.
- Taper need not be linear and there may be discontinuities in the local wing chords.
- Any dihedral angle is allowed but it must be constant over the semispan.
- Thickness effects are neglected.
- Tip chord must be parallel to root chord.

Flaps

- A maximum of ten flaps may be considered, but no more than three flaps may be behind any one wing chordwise row of panels.
- Each flap may have camber and twist.
- Leading and trailing edges must be straight and unbroken on each flap surface.

Flaps (cont'd)

- Flap chord must have linear taper.
- Thickness effects are neglected.
- There may be slots between the flaps, but the leading edge of each flap lies in the plane of the adjacent upstream lifting surface.

The vortex-lattice arrangement describing the wing and flaps is general enough to provide good flexibility in describing the lifting surfaces. A maximum of thirty (30) spanwise rows of vortices may be used, and each lifting-surface component can have a maximum of ten (10) chordwise vortices. The area elements on each lifting surface have a uniform chordwise length at each spanwise station. In the spanwise direction, the widths of the area elements may be varied to fit the loading situations; that is, in regions of large spanwise loading gradients, the element widths may be reduced to allow closer spacing and more detailed load predictions. The convergence of the predicted results as a function of lattice arrangement is described in Appendix A of reference 2. These results apply to the current program with the following exception. In reference 2, the spanwise distribution of the lattice elements on the flaps was chosen independent of the lattice on the wing. In the current program, the deflection of the wing trailing vortex legs requires that the spanwise lattice elements on the flaps be directly aligned with the lattice elements on the wing.

The maximum lattice size on the complete configuration is fixed at 250 in the program. The elements may be distributed in any proportion over the wing and flaps, and for the sake of economy, considerably less than this total number should be used for most calculations as illustrated by the run times in the table in the previous section of this document. The following comments, based on the recommendations of Appendix A of reference 2 and the authors' experience, are offered as an aid to selecting the proper vortex-lattice arrangement for a wing-flap configuration.

Spanwise distribution.- Convergence of gross aerodynamic forces and moments to within 1 percent is obtained by using not less than fourteen equally spaced spanwise rows of vortices. If an unequal spanwise spacing is required to create a locally dense region of vorticity, the initial spacing should be laid out approximately equal, with additional rows
added in the regions of interest. The spanwise spacing can be adjusted small amounts to meet some additional requirements without changing the gross loading properties. For example, it is desirable that engine wake centerlines be positioned directly beneath a row of lattice element control points; therefore, small adjustments in the lattice can be made to meet this requirement. It is also desirable that there be some symmetry in the widths of the vortex elements about the engine centerline station. This can cause some unusual distributions of lattice widths as illustrated in figure 3 where a typical lattice arrangement on the four-engine EBF model of references 3 and 4 is illustrated. In this case the number of spanwise vortices was limited to fifteen to minimize the total number of elements in the lattice. In this particular case, the only suggested modification in the spanwise layout would be to add two additional narrow rows of vortices, one inboard of the inboard jet and one outboard of the outboard jet and redistribute the outboard vortices near the tip into slightly more narrow rows.

Chordwise distribution.- Results in Appendix A of reference 2 indicate that four is the minimum number of chordwise vortices on the wing for best results and more than six vortices do not change the predicted loads appreciably. A larger number of chordwise vortices on the wing can be used if a chordwise pressure distribution is the goal of the predictions.

The number of chordwise vortices on the flaps is somewhat arbitrary. A rule of thumb is that the chord of the vortex element on the flap should not be greater than the chord of the wing elements. Generally, the chord of the flap elements will be much smaller than the wing elements. If gross forces are the objective of the prediction, one or two chordwise vortices per flap are all that are needed. If pressure distributions are desired, there should be three to four chordwise vortices per flap. The gross force will change very little with additional flap vortices.

A comment that was made in reference 2 is also pertinent here. Care should be taken in laying out vortices in regions of wake impingement. Since interference of the jet on the lifting surfaces is "felt" only at the control points of the area elements, small vertical and/or lateral changes in the wake centerline can cause unrealistic changes in the wake induced loading if the area elements on the flap are too large. This
is caused by the covering and uncovering of area elements whose control points fall near the boundary of the jet. Results indicate that if a sufficient number of elements are used in the wake region of the wing and flap, the element sizes will be sufficiently small so that results will not be unduly influenced by changes in wake location.

The chordwise distribution of lattice elements on the EBF model in figure 1 should be considered a minimum lattice. Flap 1 has but one row of vortices, and flaps 2 and 3 have only two rows of vortices. This is adequate for force and moment calculations, but the pressure distribution results are not detailed enough for comparisons with data.

Jet Wake Specification

The vortex ring model used in the EBF program is an extended version of the jet wake program presented in reference 2. Whereas the original program considered only axisymmetric jets with the centerlines positioned a priori, the present program will handle elliptic cross-section jets and the centerlines are positioned by an iterative solution. This new method removes some of the tedious input preparation required by the previous program; however, the new method requires careful layout of the points describing the centerline and of the rings defining the jet boundary. The best way to illustrate the description of a jet model is to go through a sample case for a typical jet. A vortex ring model of the inboard jet in references 3 and 4 is developed as follows.

The first step is to locate the geometric position of the actual engine. From figure 2 of reference 4, the inlet of the inboard engine on the left wing panel is at $X=1.43 \mathrm{~m}(4.68 \mathrm{ft}), \mathrm{Y}=-1.48 \mathrm{~m}(-4.85 \mathrm{ft})$, and $Z=0.42 \mathrm{~m}(1.38 \mathrm{ft})$ in the wing coordinate system with origin at the wing leading edge at the airplane centerline. The engine exit is at $\mathrm{X}=-0.40 \mathrm{~m}$ $(-1.30 \mathrm{ft}), \mathrm{Y}=-1.48 \mathrm{~m}(-4.85 \mathrm{ft})$, and $\mathrm{Z}=0.42 \mathrm{~m}(1.38 \mathrm{ft})$. As noted in reference 2 , the jet model should be extended upstream of the actual engine exit a distance of a minimum of two initial radii to give the model a chance to develop the exit velocity profile. Thus, the jet model could start at $\mathrm{X}=1.43 \mathrm{~m}(4.68 \mathrm{ft})$ and go to $\mathrm{X}=-0.40 \mathrm{~m}(-1.30 \mathrm{ft})$ with a constant radius. This initial portion of the jet is longer than necessary; therefore, in the interest of conserving computation time, the jet is assumed to start at $X=0.14 \mathrm{~m}(0.45 \mathrm{ft}), \mathrm{Y}=-1.48 \mathrm{~m}(-4.85 \mathrm{ft}), \mathrm{Z}=0.42 \mathrm{~m}(1.38 \mathrm{ft})$ and have an initial, constant radius section with length of $0.91 \mathrm{~m}(3.0 \mathrm{ft})$.

The initial cross-sectional area of the jet is assumed to equal the sum of the fan exit area and the core engine exit area. From figure 4
of reference 4, the fan and core engine exit areas are 0.159 and 0.050 sq m (1.71 and $0.54 \mathrm{sq} f t$), respectively. Thus, the initial jet area is $0.209 \mathrm{sq} \pi$ (2.25 sq ft) which is assumed to be modeled by an equivalent circular cross section with radius of 0.258 meters (0.845 ft).

The next step is to detdrmine the initial exit velocity in the jet model so that we may specify the vortex cylinder strength. If the average velocity in the exit is known from measurement, the vortex strength can be determined directly from equation (28) of reference l; that is,

$$
\begin{equation*}
\frac{\gamma}{V}=\frac{v_{j}}{V}-1 \tag{1}
\end{equation*}
$$

where $v_{j} / v i$ the ratio of the jet exit velocity to the free-stream velocity and γ / V is the strength of a constant radius, semi-infinite length vortex cylinder which represents a jet with the correct initial momentum and velocity. Since the necessary velocity is not usually available, an approximate value is calculated using equation (29) from the same reference.

$$
\begin{equation*}
\frac{V_{j}}{V}=\frac{1}{2}\left[1+\sqrt{1+2 C_{T} \frac{S}{A_{j}} \frac{\rho}{\rho_{j}}}\right] \tag{2}
\end{equation*}
$$

To get V_{j} from this equation, the engine thrust coefficient, C_{T}, and the density ratio, ρ / ρ_{j}, in the jet are required. The density ratio, defined as the ratio of the ambient air density to the jet exhaust density, can be estimated from the exhaust temperature. In equation (2), S is the reference area used in defining C_{T}, and A_{j} is the initial jet area which is calculated as the sum of the fan exit area and the core engine exit area. Assuming a density ratio of 2.6 , which is reasonable for a tailpipe temperature of $538^{\circ} \mathrm{C}\left(1000^{\circ} \mathrm{F}\right)$, and choosing an engine thrust coefficient of 1.0 , equation (2) produces $V_{j} / v \cong 11.1$. From equation(1), the vortex cylinder strength defining the jet model vorticity to be input into the program is $\gamma / \mathrm{V} \approx 10.1$.

At this point the expansion rate and the shape of the jet must be chosen. If some empirical knowledge of the jet to be modeled or of a typical jet is available, it should be included in the specifications in order to get the best physical model possible. Before a jet is chosen, a decision must be made as to the cross-sectional shape of the
selected. Based on figure 10 of reference l, which was obtained from flow field measurements, it is assumed that the jet cross section is a 2:l ellipse at a point just aft of the last flap. These same measurements are not used to determine the expansion rate because the measured jet velocity ratio is much lower than we are considering. If we assume that an elliptic jet expands at about the same rate as an axisymmetric jet, the rate of expansion can be obtained from figure 8 of reference 1. At approximately 12 radii downstream of the jet exit, the local radius is approximately 2.2 times the initial radius; therefore, the jet crosssectional area has increased to approximately 4.8 times its initial area. Using this value and the assumed 2:1 axis ratio, the jet is completely described at this one point aft of the flaps.

Assuming an axisymmetric jet with linear expansion between the engine exit and this point aft of the flap provides an area distribution for the jet. If we further assume that the jet remains axisymmetric until it reaches the flap surfaces and then, through linear variation of the length of the vortex ring axes, approaches the $2: 1$ ellipse, we obtain the solid curve for $\mathrm{x}_{\mathrm{j}} \leq 12 \mathrm{ft}$. shown in figure 4 . The circular jet with the same area distribution is shown dashed in this figure. Both the circular and elliptic jets in figure 4 have nearly the same mass and momentum distributions along the jets. Beyond $\mathrm{x}_{\mathrm{j}}=12 \mathrm{ft}$, the jet is downstream of the flaps, and its shape has less effect on the induced velocity field. Two options are open for this region of the jet. The elliptic shape can be maintained and simply extrapolated to the end of the jet, or the shape can be changed back to circular and extraplated to the end. In the interest of saving computer time, the latter choice was made and the elliptic jet was returned to a circular shape in a short distance. This last region of the jet is assumed to have a lower rate of expansion as shown in figure 4. The following table illustrates the parameters of the jet in the jet coordinate system.

$\mathrm{m} \frac{x_{j}}{(f t)}$	$\begin{aligned} & \text { Equivalent } \\ & \text { Radius, } \\ & \text { m } \quad(\mathrm{ft}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { Area Ratio } \\ \text { A/A } \end{gathered}$	$\begin{gathered} \text { Ellipt } \\ m \quad a^{\text {a }}(\mathrm{ft}) \\ \hline \end{gathered}$	$\begin{array}{ll} \text { ic Axes } & \\ \text { m } \quad \underline{\text { b }} & \text { (ft) } \end{array}$	a / b
0 (0)	$0.258(0.845)$	1.00	$0.258(0.845)$	$0.258(0.845)$	1.0
0.91 (3.0)	$0.258(0.845)$	1.00	$0.258(0.845)$	$0.258(0.845)$	1.0
1.98 (6.5)	0.375 (1.23)	2.12	0.375 (1.23)	0.375 (1.23)	1.0
2.29 (7.5)	0.415 (1.36)	2.55	0.451(1.48)	0.375 (1.23)	1.20
2.59 (8.5)	0.448 (1.47)	3.00	0.531(1.74)	0.375(1.23)	1.41
2.74 (9.0)	0.463 (1.52)	3.25	$0.570(1.87)$	0.378(1.24)	1.51
2.90 (9.5)	$0.482(1.58)$	3.48	$0.607(1.99)$	0.381(1.25)	1.59
3.05 (10.0)	0.500(1.64)	3.77	0.646 (2.12)	$0.387(1.27)$	1.67
3.35 (11.0)	$0.533(1.75)$	4.30	0.725 (2.38)	0.393(1.29)	1.84
3.66 (12.0)	0.567(1.86)	4.83	$0.802(2.63)$	0.399(1.31)	2.0
3.96 (13.0)	0.576 (1.89)	5.13	0.735 (2.41)	0.463 (1.52)	1.59
4.57 (15.0)	0.597(1.96)	5.38	0.597(1.96)	0.597 (1.96)	1.0
$6.10(20.0)$	$0.634(2.08)$	6.06	$0.634(2.08)$	$0.634(2.08)$	1.0

The above discussion includes the development of both an axisymmetric and an elliptic jet model. Either of the jets in figure 4 or the above table could be used to represent the momentum in the wake, and the only differences in the predicted interference effects would be caused by the different portions of the wing influenced by two jets. The elliptic jet would tend to spread the load out in a spanwise direction while the circular jet would concentrate the interference loading into narrow regions on the lifting surfaces.

A new rule of thumb has been developed to determine the total length of the jet. In reference 2, the length was specified on the basis of comparison with semi-infinite length vortex cylinder results. This method produced jets with lengths the order of $150 \mathrm{R}_{\dot{\circ}}$. The computer time required to calculate the induced velocity field from a jet of this length is excessive and not warranted on the basis of the small increase in accuracy achieved over shorter jets. In using the current program, it is suggested that the jet extend downstream a distance behind the last flap equal to the total chord of the wing and flaps combined. The user should investigate the effect of jet length on a particular configuration by running one case with an extended jet and comparing predicted results. Generally, jets longer than suggested above are not required unless velocity fields a long distance aft of the wing and flaps are required. If this is the case, the jet should be lengthened so that
it extends approximately one wing chord beyond the axial station at which field points are desired.

The next item to be considered once the jet length and shape are determined is the points on the centerline used to define the jet. Linear interpolation between specified points in the table of jet parameters is used for intermediate points along the jet. Thus, tabular points on the centerline are needed at the beginning, the end, and at any point at which there is a change in the expansion rate of the boundary. For example, in figure 4, the minimum required points in the jet table would be at $x_{j}=0,3,6.5,12,15$, and 20 . This small number of points is adequate for a description of the jet if it did not move during the calculation; but since the program iterates on the centerline shape, additional points should be added to the table. The procedure for laying out the appropriate number and location of points on the centerline should be carried out in the following manner.

A sketch of the wing and flap surfaces at the spanwise station corresponding to an engine location is shown in figure 5. The jet centerline, assumed straight, is also shown in its correct position relative to the wing and flaps. Keeping in mind that more points on the centerline are required in the region of greatest movement, the points chosen to describe the centerline are shown as circles in the figure. The points should be dense along the portion of the centerline near the flaps except in the area immediately adjacent to the flap ($\mathrm{x}_{\mathrm{j}} \simeq 10.7$). points are omitted from this area to avoid the numerical problems associated with being too near a horseshoe vortex. points can be spread farther apart aft of the flaps since the induced velocities are reduced and the relative motion of these centerline points is less than other points upstream. In general, too many points are better than too few except in troublesome regions near the lifting surfaces.

The last critical parameter to be specified is the spacing between the vortex rings. Ideally, the closer the rings, the more accurate the results; but the closer the spacing, the more rings required to make up the jet model and the longer the computer time needed to compute an induced velocity field. A compromise number for the ring spacing is a distance equal to approximately $0.1 R_{0}$. This is not a firm number, but it is generally a good estimate. The program has an option built into it that allows the spacing to vary along the jet through use of the variable DSFACT. This is simply a multiplying factor used to scale up
the ring spacing to two or three times the initial value. This option should never be used in the vicinity of the wing and flaps as the accuracy of the induced velocity field at the control points will be reduced. It is permissible to increase the spacing downstream of the last flap. The use of this scaling factor is illustrated in the sample input decks.

Input Variables

The purpose of this section is to describe the variables required for input to the EBF program. An input form is presented in figure 6; and for each item of input data shown in the figure, the following information is given. The format for each card and the program variable names are shown first. The card column fields into which the data are to be punched are also shown. Within each block representing the card columns is the FORTRAN format type. Data punched in I format are right justified in the fields, and data punched in F format can be punched anywhere in the field and must contain a decimal point.

Note that all length parameters in the input list have dimensions; therefore, special care must be taken that all lengths and areas are input in a consistent set of units.

Item number l is an index NHEAD which indicates how many cards of information are to follow in item number 2. The value of NHEAD must be one or greater.

Item number 2 is a set of NHEAD cards containing hollerith information identifying the run and may start and end anywhere on the card. The cards are reproduced in the output just as they are read in.

Item number 3 consists of one card and contains the following information:

SREF reference area used in forming aerodynamic coefficients

REFL reference length used in forming aerodynamic moment coefficients
$\mathrm{XM}, \mathrm{ZM} \quad \mathrm{X}$ and Z coordinates of point about which pitching moment is calculated; wing coordinate system and positive directions are shown in figure 3 and the following sketch

TOL

DTH
limit, in degrees, on the maximum deflection angle of the jet centerline; this value is generally 70-85 percent of the maximum flap deflection angle and is always input as a negative number

The variable DTH in Item 3 is used to model the turning effectiveness of the jet and flap system. Static jet turning efficiency results indicate that the efficiency decreases as the flap deflection angle increases. For example, in figure 3 of reference 3, the 40° flap deflection configuration has an efficiency of approximately 0.75 , and the 55° deflection configuration has a turning efficiency of 0.70. Thus, appropriate values of DTH for these two cases are -30.0° and -38.5°, respectively. If this limit is not used, the jet turning angle approaches the maximum flap angle and inaccurate results are predicted. The use of the limit can be bypassed by defining DTH to be -90.0 in Item 3 .

The next eight items of input data describe the wing.
Item number 4 specifies the value of NWREG, the number of wing regions. The value of NWREG must be one or greater. The purpose of dividing the wing into regions is to handle discontinuities in local chord length. Region 1 must always extend from $Y=0$ to the tip. The sequence and position of other regions is arbitrary. A wing with three regions is shown in the following sketch.

Item number 5 contains three quantities which are also shown in the previous sketch. They are:

CRW	root chord of region 1, positive quantity
SSPAN	wing semispan, positive quantity
PHID	wing dihedral angle, degrees; positive dihedral is shown in the sketch

Items 6, 7, and 8 are data describing wing region number 1. Data input for this region determine the spanwise distribution of vortices for all wing regions and all flaps. The present program requires that the same spanwise distribution exist on all surfaces.

Item number 6 contains five indices. They are:
NCW number of chordwise vortices on wing region 1 , $1 \leq N C W \leq 10$

MSW number of spanwise vortices on left wing panel, $1 \leq M S W \leq 30$

NTCW twist and/or camber? NTCW $=0$, no NTCW = 1, yes

NUNI if wing has no twist and the camber distribution is similar at all spanwise stations, NUNI = l; for all other cases NUNI $=0$ (omit if NTCW $=0$)

NPRESW is the wing pressure distribution to be calculated and printed? NPRESW $=0$, no NPRESW = 1, yes

The minimum number of spanwise horseshoe vortices is determined by the wing-flap combination geometry. The program requires that vortex trailing legs lie at the following locations:
(a) the root chord and tip chord
(b) the side edges of all wing regions
(c) the side edges of all flaps
(d) points where there are breaks in leading-edge or trailing-edge sweep

Item number 7 is a set of MSW+l cards which specify the following:
$Y(I) \quad Y$ coordinate of the $I^{\text {th }}$ trailing leg on the left wing panel; Y is a negative number on the left wing panel, but positive values may be input and program will correct the sign $[Y(1)=0.0, Y(M S W+1)=-$ SSPAN $]$

PSIWLE (I) leading-edge sweep of wing section to the right of the $I^{\text {th }}$ trailing leg, degrees; positive swept back (measured in wing planform plane)

PSIWTE (I) trailing-edge sweep of wing section to the right of the $I^{\text {th }}$ trailing leg, degrees; positive swept back (measured in wing planform plane)

NFSEG(I) number of flaps behind wing section to the right of When $I=1, Y(I)=0$ and the other three quantities are omitted.

If $N T C W=1$ in item number 6, item number 8 is included in the input data deck. These data specify the twist and/or camber distribution of wing region number 1 in terms of the tangent of the local angle of attack of the camberline for a root chord angle of attack of zero degrees. The input data are:

ALPHAL (J) tan α_{ℓ} of the region l camberline at the vortexlattice control points. If NUNI $=1$, only data for the chordwise row adjacent to the root chord are input. The first value is for the control point nearest the leading edge. If NUNI $=0$, data for all chordwise rows must be input starting nearest the root chord and working outboard. Data for each row start on a new card (omit if NTCW $=0$).

The vortex-lattice control points are at the midspan of the three-quarter chordine of each elemental panel laid out by NCW, MSW, and the Y(I)'s of items 6 and 7.

Item numbers 9, 10, and 11 are input data for the other wing regions. If NWREG, item number 4, is one, items 9, 10 , and 11 are omitted. If NWREG >1, these items are repeated in sequence for regions 2 through NWREG .

Item number 9 contains two indices which locate this wing region spanwise relative to region 1. They specify the subscripts of the elements in the $Y(I)$ array, input in item 7, associated with inboard and outboard side edges of this region.

IIN inboard side edge is at Y (IIN)
IOUT Outboard side edge is at Y (IOUT)
Item number 10 contains five quantities. They are:
NCW number of chordwise vortices in this region, $1 \leq N C W \leq 10$

NTCW twist and/or camber for this wing region?
$\mathrm{NTCW}=0$, no
NTCW = 1, yes
\(\left.$$
\begin{array}{ll}\text { NUNI } & \begin{array}{l}\text { if this wing region has no twist and the camber } \\
\text { distribution is similar at all spanwise stations, }\end{array}
$$

NUNI=1 ; for all other cases NUNI=0 (omit

if NTCW=0 for this region)\end{array}\right]\)| inboard side-edge chord (see sketch), positive |
| :--- |
| quantity |

The vortices are laid out using the value of NCW for this region and the portion of the $Y(I)$ array beginning with Y (IIN) and ending with Y (IOUT) .

Item number 11 is included in the input data deck if NTCW $=1$ in item 10. These data specify the twist and/or camber distribution for this wing region. These data are prepared in the same manner as described under item number 8 , the similar information for wing region 1.

Item number 12 specifies the number of flap regions, NFREG. For a wing alone, NFREG $=0$ and items 13 through 16 are not included in the input data deck. A flap region is a particular flap arrangement behind some spanwise region of the wing. The program will handle a total of ten flaps.

Item number 13 contains four items of input which are repeated in sequence NFREG times.

NINREG	number of flaps in this region, $1 \leq$ NINREG ≤ 3
IIN	inboard side edge lies at $Y(I I N)$ of item 7
IOUT	outboard side edge lies at Y (IOUT) of item 7

The next three items of input data are repeated in sequence NINREG times beginning with the flap nearest the wing trailing edge and moving rearward.

Item number 14 contains four indices. They are:
NCF number of chordwise vortices on this flap, $1 \leq N C F \leq 10$

NTCF twist and/or camber for this flap? NTCF $=0$, no $\mathrm{NTCF}=1$, yes

NUNI if this flap has no twist and the camber distribution is similar at all spanwise stations, NUNI = l; for all other cases NUNI $=0$ (omit if $N T C F=0$ for this flap)

NPRESF

> is a pressure distribution to be calculated and printed for this flap? NPRESF $=0$, no NPRESF $=1$, yes

The vortices are laid out using the value of NCF for this flap and the portion of the $Y(I)$ array input as item 7 beginning with $Y(I I N)$ and ending with Y (IOUT). IIN and IOUT were input in item 13.

Item number 15 contains data which locate this flap with respect to the surface ahead of it, specify the inboard and outboard edge chords, and give the streamwise deflection angle.

GAPIN the distance between the leading edge of this flap and the trailing edge of the preceding surface, measured in the plane of the preceding surface at the inboard side of the flap

CRFIN inboard side-edge chord of this flap
GAPOUT the gap distance at the outboard edge of the flap
CRFOUT outboard side edge of this flap
DELXZ the streamwise deflection angle measured relative to the wing root chord direction, degrees

A streamwise plane containing the inboard edge of a double-slotted flap configuration is shown in the following sketch. The leading edge of each flap lies in the plane of the preceding surface. All quantities in item 15 are input as positive values.

WING

Item number 16 is included in the input data deck if NTCF $=1$ in item 14. These data specify the twist and/or camber distribution of this flap. They are prepared in the same manner as described under item number 8 for the wing except that the twist and/or camber angles
are measured relative to the angle of the flap inboard side-edge chord. These angles are all measured in a streamwise plane.

Item number 17 contains one index.
NRHS the number of successive cases to be treated for this wing-flap combination, NRHS ≥ 1

The successive cases permitted by NRHS are those which affect only the right-hand side of the equation set for the circulation strengths (eqs. (14) and (15) in ref. l). Thus, the wing-flap geometry must remain unchanged in successive cases. Changes are permitted in items 18 through 23; therefore, the successive cases may involve different angles of attack and/or different jet wakes.

The last six items of input data are repeated in sequence NRHS times.
Item number 18 contains seven quantities which are:
ALFA wing root chord angle of attack relative to the free stream, degrees

KEI index indicating whether or not an externally induced velocity data set is to be input via tape 4 KEI $=0$, no $\mathrm{KEI}=1$, yes; data set is read from TAPE4 in a 3El3.6 format

NFPTS number of points in vicinity of wing-flap combination at which wing-flap induced velocities are to be calculated, NFPTS ≥ 0

KJET index indicating type of interference calculation KJET $=0$, no jet calculation, externally induced velocities may be read in if KEI = l
$K J E T=1$, jet interference calculation made one time, no iteration
KJET ≥ 2, iteration on jet centerline KJET times or until convergence is attained, which ever occurs first

MJETCL \quad index used to restrict vertical motion of jet centerline during iteration MJETCL $=0$, no restriction of centerline motion $\operatorname{MJETCL}=1$, centerline restrained from moving vertically upwards toward wing or flaps

NJETV index indicating whether or not jet induced velocities are to be included in external flow field calculation when NFPTS >0 NJETV $=0$, jet induced welocities not included NJETV $=1$, jet induced velocities included in flow field calculation

NJETCL

> index used to restrict horizontal motion of jet centerlines during iteration NJETCL $=0$, jet centerline is restricted from moving NJETCL $=1$, jet free to move laterally under influence of wing-flap induced velocity field

The indices KEI and MJETCI are included for diagnostic purposes; and for typical usage of the program, both indices should be zero. KEI is used to input an interference velocity field induced by some source of disturbance other than a jet wake. It cannot be used along with a jet wake; thus, if $K E I=1$, $K J E T=0$. The index MJETCL $=1$ is available to restrict the vertical motion of the jet centerlines in certain special cases. On occasion, large induced upwash velocities beneath the wing have forced the jets upward and caused unusually large jet interference effects on the wing. The index MJETCL is provided so that the effect of this upward jet motion can be investigated by the user.

The last index, NJETCL, is provided to restrict the lateral motion of the jet centerlines. Under a swept wing-flap configuration, large induced spanwise velocities can move the jet centerlines out of their original planes. This can cause difficulties in the interference calculation if the spanwise distrioution of vortices is specified in a symmetric pattern about the initial centerline positions. Typical EBF measured span-load distributions (ref. 4) indicate very little lateral motion of the wake centerlines; therefore, the option to restrict this movement is provided. It is suggested that $N J E T C L=0$ be used for best results.

Items 19 through 22 identify the initial jet wakes, and they are omitted if $\mathrm{KJET}=0$.

Item number 19 is a single card containing six indices pertaining to the jet calculation. They are:

NHEAD number of heading cards to identify the jet model, NHEAD ≥ 1

NJET number of jet wakes ; NJET $=1$ for one jet wake, etc.
NCYL number of entries in table defining jet parameters, $2 \leq N C Y L \leq 25$

NNUM index controlling calculation of J-integrals required by elliptic vortex rings NNUM $=0$, integrals calculated analytically NNUM $=1$, integrals calculated numerically

NPRINT index indicating whether or not optional output from the jet program is required
NPRINT $=-1$, minimum output
NPRINT $=0$, induced velocities at wing control points output from subroutine JET
NPRINT $=1$, individual jet velocities at each control point output from subroutine JET

NCRCT index indicating whether or not field point locations are corrected with respect to vortex ring locations NCRCT $=0$, corrections made NCRCT $=1$, corrections not made (to be used for diagnostic purposes only)
The last three indices in item 19 are provided for diagnostic purposes only. For general program usage, these indices should be NNUM $=0$, NPRINT $=-1$, and NCRCT $=0$. NNUM should be nonzero only if difficulties arise in the calculation of elliptic jets. This is discussed in a later section describing error messages. When the index NPRINT is equal to zero, jet induced velocities at the control points are output as they are computed. This is a duplication of output. If the user requires information regarding the contribution of each individual jet to the total induced velocity at a control point, NPRINT $=1$ will cause this output to be printed. NCRCT is an index used during program development to investigate a situation in which a control point was located very near the edge of a vortex ring. Unrealistically large velocities were induced until the relative positions between the control point and the vortex rings were corrected. This correction places the vortex rings on either side of the control point equidistant from the point.

Item number 20 is a set of NHEAD cards (from item 19) containing hollerith information identifying the jet. The information may start and end anywhere on the card and the information is reproduced in the output just as it is read in.

The following two items are repeated in sequence NJET times.
Item number 21 consists of one card which contains the following jet specifications:

GAMVJ(J) the strength of the vortex cylinder representing the exit velocity of the J'th jet under the left wing panel

DS (J)
the ring spacing of the vortex rings in the J'th jet; a typical value is $0.1 R_{0}$ where R_{o} is the initial radius of a circular jet; if an elliptic jet is to be used, the appropriate spacing is $0.1 \mathrm{~b}_{0}$
$X Q, Y Q, Z Q \quad$ the coordinates, in the wing system, of the origin of the jet model ($\mathrm{YQ}<0$)

Item number 22 consists of NCYL cards containing the following

information.

When a circular jet cross section is being described, AJET = BJET; and when elliptic cross sections are being described, AJET > BJET.

Item number 23 is a set of NFPTS cards containing the $\mathrm{X}, \mathrm{y}, \mathrm{Z}$ coordinates in the wing system, at which the wing-flap induced velocities are to be calculated. This term is omitted if NFPTS $=0$.

Upon completion of the calculations specified by the above input deck, the program returns to the beginning. Additional input decks, starting with item 1 , may be stacked one after another.

Sample Cases

In this section, two sample cases are described to illustrate the input preparation and the use of the program. The first sample case is a complete calculative example involving a four-engine EBF configuration with elliptic cross-section jets. The second sample case is an lllustrative example of a wing with multiple regions and multiple flaps and a single engine. Its purpose is to provide a check run for the program.

The EBF configuration chosen for the first sample case is the fourengine model from references 3 and 4. The vortex-lattice layout on the wing and flaps is discussed in the Vortex Lattice Arrangement section and the actual lattice arrangement is shown in figure 3. The flap
deflections chosen for this case correspond to the landing configuration, $\delta_{f_{1}} / \delta_{f_{2}} / \delta_{f_{3}}=15^{\circ} / 35^{\circ} / 55^{\circ}$. This particular configuration and lattice arrangement are used extensively for the comparisons with data in reference l

The jet wake model chosen for this sample case is the elliptic crosssection example discussed in the Jet Wake Specification section and shown in figure 4. The initial jet centerline is one which resulted from three iterations using the circular cross-section jet also shown in figure 4. The calculation is set up to run two iterations (KJET = 2) because of the large execution time required by elliptic jets. The total time required for two iterations, with the input deck set up as shown in figure 7 (a), is approximately 600 seconds on the CDC 6600. If the circular jet radius distribution shown in figure 4 is substituted for the elliptic jet axes, the same run requires approximately 200 seconds.

A second sample input deck is illustrated in figure 7 (b). This input deck, to be used as a check run for the program, describes the hypothetical EBF configuration shown in figure 8. The wing shown in figure 8(a), is modeled as two regions for illustrative purposes, but wing region 2 could just as easily be modeled as a flap surface with zero gap and zero deflection. Double-slotted flaps deflected 20° and 40° and a single, unslotted flap deflected 10° make up the two regions of the trailing-edge flap system. A minimum lattice is specified on the lifting surfaces to keep the calculation short. Wing region 1 is modeled by a 7×2 lattice and region 2 is modeled by a 2×1 lattice. Flaps 1 and 2 have three spanwise rows of vortices due to their position behind the wing. One chordwise row of vortices is placed on flap 1 and two chordwise rows on flap 2. Flap 3 is represented by a single vortex-lattice element.

A single circular jet wake with initial jet velocity five times free stream $\left(C_{\mu} \approx 0.5\right)$ is placed at $Y=-11$. Since this case is only a check run for the program, the jet is not extended downstream of the last flap as far as is normally recommended. The expansion rate is linear as the radius increases to two and one-half times its initial value between $x_{j}=3$ and 18. A sketch of the jet and its position relative to the wing and flap is presented in figure $8(\mathrm{~b})$. The ring spacing is set at 0.1 and it is constant until $x_{j}=15$ where it is doubled for the remainder of the jet length. Assuming a turning efficiency of 75 percent, the limit on the turning angle of the jet centerline is set at -30°.

Some incidental features of this sample calculation are the following. Two iterations are specified (KJET $=2$), and after the last iteration, the induced velocity field, including the jet induced velocities (NJETV $=1$), is calculated at four field points (NFPTS = 4). The jet is free to move vertically (MJETCL $=0$) and laterally (NJETCL $=1$) under the influence of the velocity field beneath the wing and flaps. Pressure distributions are computed on the left wing panel, flap 2 in region 1 , and flap 1 in region 2. The output corresponding to this input deck is presented in the next section.

DESCRIPTION OF OUTPUT

This section describes the output from the EBF program. The contents of a typical set of output from one of the previously described sample cases is discussed. This is followed by a description of some of the error messages which may be output during execution of the program.

Sample Case

The output generated during the execution of the sample case shown in figure $8(b)$ is presented in figure 9. Each page of output is described as follows.

The first page of output, shown as figure $9(a)$, is headed by the program title "EBF AERODYNAMIC PREDICTION PROGRAM," followed by the identification information on the several cards at the front of the input deck. This is followed by the reference quantities consisting of the reference area and length and the center of moment location. Next on the first page is the wing input data. All of the input describing the wing geometry and lattice arrangement is included in this section.

Output page 2 in figure $9(b)$ contains all the input data describing the flaps including the geometry and the lattice arrangement. Also printed on this page are the coordinates of the four corners of each flap in a coordinate system fixed in the flap with the origin at the leading edge of the inboard chord of the flap. The purpose of these coordinates is two-fold. First, they illustrate the slightly distorted shape of the flaps that occurs because the flaps are attached to swept trailing edges of the upstream surface. The flaps are required to span a certain length which is defined in planform; therefore, the actual
surface must be longer when it is deflected around a swept hinge line. Second, the coordinates are useful in locating the flap loading center of pressure defined in the flap coordinate system and printed on a later page.

Output page 3 in figure $9(c)$ is headed with the title "HORSESHOE VORTEX PROPERTIES." This table lists all the properties of the lattice elements on each lifting surface. The quantities in the last column on this page labeled "ALPHAL(J)" are the input values of combined twist and camber. This table completes the configuration dependent information. The first item following the table is a list of the variables pertaining to the run to follow. The angle of attack, ALPHA, in degrees, the indices from item 18 of the input deck, and the convergence tolerance (5 percent) are printed here. The last line of output on this page is a statement regarding the limit applied to the jet centerline deflection. If a limit is not specified, no statement is printed.

The fourth page of output is a listing of the jet input as shown in figure 9(d). The variables printed are the same values input via the card deck with the addition of two columns of numbers. The variable SCL is the curvilinear distance measured along the centerline in the same units as the other centerline distance variables. For a straight jet centerline with no inclination (THETA $=0$), SCL is the same as XCL. The last column, identified as P, is the perimeter of the jet at the particular station.

The next page of output shown in figure $9(e)$ is the first output from the program after the circulation strengths are computed. This page, labeled "HORSESHOE VORTEX STRENGTHS FOR ALPHA = xx.x DEGREES," contains the computed circulation strength on each lattice element. The circulation strengths (GAMMA/V) are printed in the last column on the page. Also shown on this page are the externally induced jet velocities at each control point. These velocities, UEI, VEI, and WEI are made dimensionless by the free-stream velocity and their positive directions are defined according to the wing coordinate system; that is, UEI is positive forward and WEI is positive downward. If externally induced velocities are read in via tape 4 (KEI $\neq 0$), these velocities are printed on this page. Also noted at the top of the page, directly beneath the angle of attack, is the iteration number "NTIME" that corresponds to the printed results.

The output shown in figure $9(f)$ is headed at the top "AERODYNAMIC LOADING RESULTS FOR ALPHA = xX.xx DEG." This is followed by a reiteration of the reference quantities which are followed by the spanwise load distributions. On each lifting surface at each spanwise lattice station the span-load coefficient, the section normal-force coefficient, and the section axial-force coefficient are presented. These results are normal and axial to the plane of the particular lifting surface. Following the section coefficients are the wing-alone force and moment coefficients. These results are for both right and left wing panels. The axial force, CAW, and the drag force, CDW, are both defined as positive aft. The pitching moment is positive in the direction that tends to increase the angle of attack of the wing.

The next section of output on this page is the individual flap force and moment coefficients. These coefficients are for the flaps on the left side of the configuration only. CNF is normal to the individual flap surface and the center of pressure of the normal force on this flap is at XF (CNF) and YF (CNF) where these coordinates are in the flap coordinate system defined in figure $9(b)$. The axial-force coefficient, CAF, and its spanwise center of pressure, YF (CAF), follow. The spanwise force, CYF, and its center of pressure, XF (CYF), are the next items; and finally, the hinge-moment coefficient, CHF, is the last item. The sign convention of the flap hinge moments is such that a positive hinge moment would tend to increase the flap deflection angle. The hinge moments are taken about the flap leading edge. The last items on this page are the complete configuration force and moment coefficients. These are resolved into the wing coordinate system and the sign convention is consistent with that described for the wing alone.

If pressure distributions are requested, they are output on the next page shown in figure $9(\mathrm{~g})$. The chordwise location, X / C, at which the pressure coefficients are calculated corresponds to the location of the bound leg in each lattice element. It should be remembered that the pressure is constant over the entire lattice element. The last line on the page is the number of the iteration just completed.

The velocity field induced by the wing-flap loading and the jet models at specific points on the jet centerlines is printed at the top of figure $9(h)$. The coordinates, in the wing system, correspond to the points defining each jet centerline with the exception of the first two points on each centerline. These points represent the physical engine
location and are assumed stationary and not allowed to move with the remainder of the wake; therefore, induced velocities are not needed. The perturbed jet position is shown on the lower portion of this page of output. Notice that the jet deflection angle, THETA, is set equal to the prescribed limit of -30° at two points on the centerline. Thus, the new centerline has not been allowed to move as far as the induced velocity field wanted to move it.

If a second iteration were not prescribed, the last page of output containing the induced velocity field at specified field points would be printed if requested (NFPTS >0). If not requested, this would complete the output.

However, additional iterations are requested; therefore, the jet defined in figure $9(h)$ is allowed to interfere on the wing and flaps. The results of the second iteration are shown in figures $9(i)$, (j) , (k), and (ℓ) and these results are analogous to those just described in figures $9(e)$, (f), (g), and (h), respectively. If convergence has not been achieved or the maximum number of iterations completed, similar groups of four pages will be printed until convergence or maximum number of iteration is reached. At this point, a statement regarding the convergence situation, number of iterations, and current level of convergence (DEL) is printed as illustrated at the bottom of figure $9(\ell)$. If convergence within the specified tolerance (TOL) is achieved, the message "**** CONVERGENCE ATTAINED IN x ITERATIONS, DEL = x.xx****" is printed.

The last page of output containing the induced velocity field at specified field points is shown in figure $9(m)$. Note that both wing-flap perturbation velocities and total velocities are printed on this page. This concludes the discussion of the output from the EBF prediction program.

Error Messages

The following error messages may be printed during program execution.
"ERROR IN JET, B.GT.A"
is printed when an elliptic jet is input with the semi-minor axis longer than the semi-major axis. This is a fatal error.
"EXECUTION TERMINATED, ERROR IN DS"
is printed when the vortex spacing is input as zero or less than zero. This is a fatal error.
"ANALYTICAL $J(N)$ ERROR, XX POINTS"
is a warning message printed to alert the user that the analytical calculation of the J-integrals had numerical difficulties at the noted number of points. The program automatically switches to a numerical calculation technique for these points; therefore, the answers are correct. If the number of points is a large fraction of the total number of control points, there may be some error in the specifications of the jets or in the location of the jets with respect to the lifting surfaces. For example, this error message would be printed if one of the jets was located outboard of the wing tip by mistake or if the jet centerline was located in the plane of the wing. If the error message persists, consider switching to the numerical technique via the index NNUM in the input data. The penalty for using the numerical procedure is increased computer time and a slight decrease in the accuracy of the jet induced velocity calculations.

If the jet centerline deflection angle becomes -90° or less during iteration, the following message is printed.
"ERROR IN JETCL j k -90.00"
where j is the number of the jet and k is the number of the point on the centerline causing difficulty. This is a fatal error. The error is caused by this particular point being too near one of the vortices on the wing or flap. To correct the situation, adjust the position of the point in question upstream or downstream a small amount and rerun or restart the calculation with the previous iteration.

PROGRAM LISTING

The EBF aerodynamic prediction program consists of a main program, WNGFLP, and twenty-four subroutines. Each deck is identified by a threeletter code in columns 74-76 and each deck is sequenced with a three-digit number in columns 78-80. The table below will act as a table of contents for the program listing on the following pages.

PROGRAM	IDENTIFICATION	PAGE NO.
WNGFLP	WNG	35
WNGLAT	WLT	37
FLPLAT	FLT	39
INFMAT	INF	41
FLVF	FLV	43
SIVF	SIV	43
RHSCLC	RHS	44
LINEQS	LIN	44
SOLVE	SOL	45
LOAD	LOD	45
FORCES	FOR	46
VELSUM	VEL	49
JET	JET	51
JETCL	JCL	53
CORECT	CRT	53
VRING	VRg	54
ERING	ERG	54
JINTEG	JIN	55
ELII	ELI 1	56
ELI2	EL 2	56
ELLIPS	ELL	57
QUART	QRT	58
CUBIC	CBC	58
QUAD	QAD	58
SIMSON	S IM	58

PROGRIM WhGFLP(INDUT, DUPPUT, TAPESEINPUT, TAPE GaOMTPUT, TAPE4)


```
T35 formatilox. 10,5 )
    736 format finif
    13 ON THE JET CENTERLINE 11 SOX,
```



```
    152 Fohmar ulis
```



```
        comstanta
        DATA DTOR/.01745329/,FOURPI/12,56039062/.2ERO/O.1
        input and output case identibying information
1000 READ \((3,101)\) NHEAD
        \(\underset{\text { BTOP }}{1 F}(5): 1,2\)
    1 gTOP
2 CONTINU
        MRITI(6,702)
        READ(S, 1 O3) HEAD
    3 WRITE \((6,704)\) HEAD
    input and output reference quantities aho moment center lucation
    READ (5, T20) SREF, REPL,XH, \(2 m, T O L, D T H\)
```



```
    WRLTE(0.706) 3RER, REPLIXM, \(2 M\)
inPut and output ming data amo gayout ming vontex lattice
        call nimelat
        infut mumate of flap hegione
        READ (5,701) NPREG
        INPUY dSta gon alf mbap and lay out vorticee
        nFlaing oo
        compufe inne ano cosine of local angle of httack due to thisi and
        CANEER
        00 al Jol, HTOT
        alpatam(alphal(J)
    ALPHL(N)=8jN(ALF)
    wRITE wjng vortex oata
        wRITE(6,72a)
WRJTE(6,72s)
        DO \(50 \mathrm{MrI}, \mathrm{Nm}\)
```



```
    1 SH(k), ALDHAL(K) 90 es
    if(nflars,ca,o) go ro es
    wRITE FLAP VORTEX data
    DO OO NFEI, NPLAPE
```



```
        nRITR(tipis)
        NLEMETART(AF
        KLEMATART(NF
KUEMEND
```


$055 \mathrm{KBKL}, \mathrm{KL}$
PSIGHAPAN(TPSI(K))/OTOR
 1 sm(k), AGPHaL(K)
60 CONTINUE
65 CONTINUE
$\stackrel{c}{c}$

ADD CORE AREA POR INFLUENCE TOEFIETENT MATRIX
IF RECFL IS NOT AVALABLE REMDVE THIG SECTION ANU IWCREABE
THE DIMENSIONS OF FYN IN GLANK CONHON, ABOVE, TO MTOTAHTOT 1PlBa
CALL AEPLC(TALB) LFLELFLBoMTOTFHTOT-I
CALL REOFL(LFL)
c
c
c
c
c
calculate influence coepficitint beft hand ajde, fun
calb infmat
palanolularize left hand idde
Cabl Linega(miotafyn)
READ NUMEER OF RIGHT gides, and FOR EACM find Vortex
STRENGTHA ANO LOAD OISTMIGUTIO
REAO(5, \%01) NAMS

- kJtTile.o) NJETVGO
if kjetso no jet calculation, induced velocities may oe input

MJETCLIO ORIGINAL JET GL EALCULATION METHOD
I JET REJTRAINED PROM VERTICAL MDIION VOMARD MINE

NJETVMO OMIT JET inducco velogity ielo
btream velocitiet NJETCL:
NJETCL
1

ALPMALFA
abpababrafoter
ginalfaginghlFa)
cosalfacos calpa)
cosalfacoscalpa (MJET,LE,0) 60 T0 74
C
C
c jnfut jnjtial jet parametere and calculate jet induedo velucitiea

c aEAd externally indued velocitieb brom unit a dr keiad and kjetmo
74 EXVELEKEI,NE,


```
    MRITE(0,726) ALF,NTIME
    CalCulate rigmy mano side of eduatjong
    CALL RHBCLC(EXVEG)
    solve gor vorticity oistribution fon this right mamd side
    CALL SOLVE(CIR,FUN,MTOT)
    print vortex staEngths
    IF(,NOT,EXVEG) GO TO 65
    DD SO NPEI,MK
    B0 NRITE(6,72B) NP,XEP(NP),YCP(NP),ZCP(NP),UEI(NP),VEI(NP),MEI(NP),
    % 60%1080
    OS conignul
    OU B8 NPE1,NM
    B6 MRIT(C,72B) NP,XCP(NP),YCP(NP),Z(P(NP),ZERO,ZERO,ZERO,GAMMA
    BQ IFFNPLARS,EQ,0) 60 to of
    WRITI (6,7IS) IDPLAP(NF,1),IDFLAPINF,Z
    HRITE(0,7E)
    MBFMgTART(NF)
    MEMMRND(NF)
    IP(,NOT:EKVEL) GO TO 9:
    gaMMAMCIR(NP)*FOURP!
    Q! MRITE(G,72O) NP,XCP(NP),YCP(NP),ZCP(NP),UEI(NP),VES(NP),NEI(NP),
    &GGAMMA
    92 continue
    OD 0] NPAMs,ME
    GAMMACIR(NP)*FOURPI
    93 WRIT(G,72B) NP, XCP(NP),YCP(NPY,ZCP(NP),ZERO,ZERO,ZERO,GAMMA
    95 cantmult
CALCULATE LOADS, FORGES and mDmEnTE
    CALL LOND(EXVRL)
    IF(KJET,LE,O) GO TO TO
    ITERNTIME
        jet centimblne dferation
        IF (NTIME,GT.1S 60 TO %O
        CNIMCN
        066%1.0
    79 DELMCCNI=CNTI/ENT
        CNI|CNT
        caleulate ming.flap-jet induced velocity field on jet centerline
173 CONTINUE
        MNITE (6,TJ6)
        DAB176 JOL,NJE
        U(J,1)=0,0
        U(J,E)=0,0
        V(d,1)=0,0
        *(J, (J)=0.0
        (J,2)00,0
        OD 176 kE3,NCY
    XFP=XG(J)=XCLR(J,K)
```

c
c
c
6
6
6
6

CAL VELSUK (XFF,YFB,ZFD
CALL JEP (JA, XFP, YFP, 2FP, UE I, VEI, FEI,NTIPE)

(J,K)ER * WEI(S
74 continur
nTfuIsoutim
CALL JETCL (MTIME TOL
if (ABs(OEL) LE, iol)

if (MTIME,GI, 98) 60 To 110
78 NTIME 13
compute timal position of jet cemtentine
CALL JET (WTOT,XCP,YCP,ICP,UEI,VEI,NEI,NTIME)
IF (ABACDEL),LE, TOL) 6090170

190 WRITE (AB,791) ITE月, DEL
calculate velocitifs at apecifieo bield motnts

60 T0 102
co
103 WRITE (6.73u)
102 COHTNE
NTIMEDO
WIIME
JAII
DO 10
Ios Jat, NFPTS

VEl(1)avEl(1)*VP

104 WRIT (6,73s) XFP,YFP,iFP,UD,VE,WP
105 CONTINUE
CONTINUE
COMTINUE
00 TO 1000

[^1]17001

XOLL(230),YTLL(250),2TLL(250)

COMPON APTLDTT ETLXR (250), FTLAL(250), PTLZ 2 (230), FTLZL(250)

COMMDN /PRSDAT/NPRESN, NPRELF (10), ELAREA(250), XLE (30)

Dinkgion atilerint
oimengion xtlisol
purmat atatementa
701 FORmat (lo19)
tu3 FORMAY(y/5x:15HmING inPUT DATA)
704 FORMAT $1 / 110 \times 13$ HREGINN NUMBER, IJ

112,18H DPANWISE BY, 13,10H CHORDNIEE)
107 FORMLT/15x,59HSDANHISE LOCATIONS OF TRAJLING VURTEX LEGS, SMEEP INGLE OF/2OX, GSHRIMG SECIION TD THE RIGMT AND NUNBER UF FLAPS OE
 FORHap (AFio, 0,15)
709 vonmat $15 x$, if $15,5,9 x, 12$

 (t infed, 5x,14日, f10,5)

conatants

DATA DTOR/O,01745329/,P1/3,14159265/
input numbin of ning regions
READ (5,701) NmREG
ingut megion 1 data and lay out vonticea
READ (5,702) CRM,S3PAN,PM1D
NREGEI
RITE (6.703)

Mhancmansm
MTITE (0,706) MM, MBM,NCM

RTIE (bifor)
READ (5,708) Y(1), PSIWLE(I), MSSNTE(1), NFSEG(I)
If (I, EA,I) whtit (0,908) $\mathrm{Y}(1)$
if (i,NE,1)

(F) (Y(1), G7,0,0) Y(I)EOY(1)

10 CONISNA
NFAEG(i)ANPGG(t+1)
if (NTCN,NE,0) 60 TO 21

20 G0 to as
21 IF (NUN1, NE,0) GO TO 23
DO 22 J4mel, Mh,NEN
22 MNamNanem
22 geA rion
23 READ (5,702) (ALPNAL(J),Jel,NC+)

bay out region I Wjng vortices
TEMPE16:0*P1/BREF
TEMREO, S*TEMP
sPMIMEIN(PMI)
CPMinacos (PHI)
TPMIMESMIM/CPHIW
PNCMENEN

cthlarna
oumateme
OUMABTEMR/PNCH
${ }_{c}^{c}$ LOOP OVER CHURDMISE ROMS
DO 40 IF2,Imax
dMEIO1
ThRYY(IM)
ThYEr(in)
PGYEY(i)
TLAZGTLAYTPMIN
T6RETLLTMPHIM

OYOTBYETLRY

BLXPCXL(I)OXLE(IM))=0,
XTELIM)
OpBIATPBILETPSItE
CTRACTLL
CTLLACTLR
CTLLsCTLR+GY*OPBI
$C B L B(C T L R+C T L L) * O, ~$
OCRDBCBLFNEW
CHROLW(IH) UCBL
Maxaxbein
TLXXXLEIS
TCONRRDDMA
TCOND
TCONBLDDUAA*GTLL
c
G boop ovir vontices in init mem

jviJj*J
TJ=J
PACRE(PJoO.15)/FNCW

YTLR(IV)PTLRY

YTLL (Iv)『TLLY
2TLL(IV)
PTLXR(IV)=TLRXDACCRETLA
FTLxL(iv)aplixafaccactib
FTLLLIVA日LLZ
Llartaciv)apre
CUNBRIIVJICONBR
at CONTINLE
4O GONTINUE
${ }^{6}$
LOOP ovir otmer hine regions if present
IF (NMAEG, (0,1) 00 TO 100

aEAD (S,iOIS IIN, IOLT

FRITE (0,710) Y(1IN), Y(IUUT)
REAU (5,711) NCW,NTCW,NUNI,CIN,TESME

MRITE (0,106) RVDR,N8W,NCE
mRITE (6,712) CIN,TESKP
Lay out vorisces for imss resion
CTLLECIN
DUMABTEMR/PNEW
LOOP OVEA CMORDMISE ROME
IBEGEIINAI
DO ©O IEIBEG, IOUT
JMEI
shift vortex data so nem vortices can oe fnserted
memsume 0
61
OH 61 Jolig IM
b. MWMMMANCK

NYOTHMW
NCWIUMANC waumat
IF (I, EQ, imax) 60 yo 63
$2 \mathrm{Jaj=1}$

ZTLR(J)aZTLR(K)

fTLKA(J) \boldsymbol{F} FLXR(K)

CONBL(J) CONEL(K)
ALPAL (J) EAL FHAL (K)

- ${ }^{1}$

NCMI (jM)ENCNI $(I M)+N C H$
Tharay(gn)

TLAZGTLAYTPMIN

CTLRCTLL
CTLEETLA

CBLR(CTLRACTLL)
DCRDRCBLFNCM
CHROLN(IM) CHRDLM(IM)+COL
ThXPXTE(5M)
KTR(IM) MKPE(IN)OCTLR
XTELIMSMXR(I)=CTL
iCONAREDUMAETILR
TCONGLOBUMAFTLL
 $\stackrel{6}{6}$

jJEMCrsumel
[VEJJ*J
AC甘M(FJ-0.75)/FNCN
ACCR(1) Joo. 25)/FNCM
CP(Jv) $5 B L x=F A C E A C B L$
TLR(V) ETLAXOFACBETLR
TLH(IV)ETLR2
MLL(IV)
TLL (Iv)nTLK

PL2B(IV) 1 Int

TLZLCIVINTLL
ELAREA(IV)EDCRD
CONBL(IV)TICONBL

10
60
50
o continul

100 Dumeo.5/CPHIM

$2 \mathrm{CP}(\mathrm{J}) \mathrm{azaL}(\mathrm{J})$

M(J) GUME(YTLA(J)OrfLL (J))

101
continue
END

Cormat bititments

 704 FRRMAT(AFiso. 03

 2F10,5/20x, 2IMUUTBUARO EDGE GHDAD E,F10,5/20x,2IMDRFLECTION ANGLE
 :URKAT(asx,Fil.5) TORMTI(IZOX, A1HXF, YF CODRDINATES OF FOUR CORNERS OF ELAP/2EX, :ORMAT(25x,2f13,5)
constants
data dTOR/0,019453291
WRITE (6.701)
LUOP OVER MEGIONE
DEAD IOO NREH, NFRE

- RITE (4,70a) NINREG, ITM, IOUT

MRITE (4,7OS) NR, NINAEG,Y(IIN), V(IOUT)
YTEDGIMXER(IIN)
YTEDGTAY(IJN)
ZTEDGIOYEDGI*TH
XTEDGOREEE SUUTEI)
YTEDGDEY(tOUT)
17EDGOEYTEOGOFPMIM
LOOP GVER FLADS IN IMIA REEION
DO 200 NFEL, NINAEG
NFLAPSZNPLAPS:
IOFGAP(NFLAPS,Z)ENF
nf Binflap:
MgF (NFis)
REAU (5,702) NCT (NFE

CROUFF (NFA)ACRFIN
CTJPF (Nra)acafou
gangisjne (anger)
CANGECO日(ANER)
ANGODELXI
XHINXTEDGI-GAPINaCANG
YHINETTCDGI
YMINEYTGDGI
InINETEDGI
xwILE(NFS)EXWIN
Hulte(nrs) yymin
2-JLE(NFB)AZnIN
xwUUTETEDGOnGAPDUBaCARG
2NOUTSTTEDGO
OELREDELXZDOFUR
SDELRASINCDELK
CDELRECOS (DELLR
CDELX2(NFE):SDDELR

XTKDGOEXWDUTOCRFOUT*COELR
NVACF(NFB)=MSF(NFO)

	MF（NEg）zNV mgiant（nEs）ampural
	mempe
	－tutamenn（nas）
	msFPamst（nFs）+1
	nRITE（6，707）
	$\mathrm{k}=1 \mathrm{iN}=1$
	DO 210 JE1，mspp
	ksk＋1
210	WKITE（ 6 ，708）YF（J，NFS）
	mSambtami（nFs）
	MEMMIND（NFS）
	neffencf（nfs）
	msFtendif（nfes）
	If（NTCFANE，O） 60 To 212
	DU 211 kims，ME
211	ALPhal（k）＝0，0
	6010810
212	
	OC 213 JNFEMB，ME，NCFF
	MAEMN，MCIF
213	HEAD（5，704）（ALPHAL（K），KDJNF，MN ）
	6010216
214	MCFLEHS＋MCFF－1
	READ（5，700）（ALPMAL（K），Kans，NCPL）
	MNEMS－1
	DO 215 LaH ，NCPF
	しLakK＋L
	LLLCL＋MN
215	alpmal（ll）sal Pmal（LlL）
210	continue
	bay dit vortices
	oxwoxucutexwin
	D2me2woutezmin
	XFOEDXWACDILACDZ＊＊SOEL呂
	YREYWOUT－Ymin
	iphlfazforvoo
	pmifantan（tonit）
	sphip（ngsiosin（mhif）
	Tesilferforvo
	prsjetesiliotpaite
	PNCFFAncFF
	ctulerfin
	CPhimemifents）
	Supfle（NfS）astanctpgile tephl）
	WRITE（0，709）
	XFF＝0，0
	YFFEO．0
	WRITE（0，710）XFF，YFF
	XFFE－EMFIN
	heite（ 6,7 io）XFF，YFF
	XYFEXFO
	VFFEYFO／CPMI
	WHIIE（ 0,710 ）XFF，YFF
	mprixpoecriout
	WHITE（ 0,710$) \mathrm{XFF,YFF}$
	kkaks－1
t	LOOP OVER Chordwise rumb
	00 220 l＝2，48Fp
	JMEI＊
	thayayp（in，nfs）
	TLRZa（Thyermin）＊TPMIF

prithroith

BL＝（CTLL＊CTLF）＊ 0.9
SCKDCBL／FACFF
BLZ2（PLHZ＋TLL2）＊0，5
日LY $=$（PLRY + TLLY $) * 0,5$
3－0，5－DY／CPMI
LAHESNCKD．S．R．
CONAEIEMPAB
TCONBLETEMARCTLG／FNCF
TCONBRETEMR OCTLR／FNCF
c Lnup nuer vurtjees in this ron
DUMAEPLZ＊SOELR＋XnIN
DUMETLRZ＊SDELR＊MWIN
UMCTLLZ＊BDLLR＋KMI
UMDERLI＊CDELR＊2nIN
DUMFETLLZ＊COLR $+2 * I N$
DO 230 KES，NEF
kKEk
FACB＝（FK＝0．75）／FNCF
$X C P F A B L X=F A C C * C B L$
XTGRFELEIM＝CTLRAFACB
MTLF $=x L E I O C T L A F A C B$
FXTLREXLEJMACTLR FACC
XTLREXLEJMACTLA＊FACC
$X P L L E X L E J C Y L L * F A C E$
$\times C P(K K)=X P F=C D E L R+D U M A$

TLXR（KK）$=F X T L R=C D E L R+O U F B$

YCP（KK） 0 gLy
YTLR（KK）＝TLAY
YLL（KK）

TLR（KK）＝－XTLRF＝SUELR＋DUME

TLZR（KK）＝aFYFLReSDELR＊DUME

Sh（KK）DS
PSI（KK）P（TOSMLE－FACDADPSI）RCPH CONA（KK）niCONA
CONBL（KK）
230 CONTINUE
220 CONTINUE
locate intergection of ming prailing lege mith this flap
Dxwaxwoutexain
Ywermoul＝yniN
Dznezwout－zw
00 240 Jalin，IOUTM
JPEJ＋1，（NF，EO，NINFEG）

XWKRN（J，NF）$=X=1 N+F A C * D X W$
rwkmen，NF）ary
MKRN（J；NF）＝ZNIN＋FAC＊D2＊
$Y=Y(J P)$
$A B E(Y Y 0$

YWKLM（J，NF）$=Y Y$

FHANF
JFFEAFBE!
c
c
c
00250 kajF, JF
MSF UMHS (x)
c loup gute r locations of trailing lege on this upstafam flaf
C
DO 260 JEh.MsF

FACB(YY-YNjN)/OYm

2WKRF(J,NE,K)
YYEYF (JP, JF)
Faca(ryarin) form

YnxLP(J,Ns,K)EYY
200
200
250
270 CONTINUE
CONTINE
270 conitnul
200
100 RE TUR
$\varepsilon N D$

> subroutine infmat
> cabculayes influence coifficiemi matilx
> common btatcments
> COMMON EVN(I)
> COMMON OFLPOAT/ BDELXZ(10),CDELRZ(10),YFS30,10),SPHIF(10)
> CPHIF(10)

> CUMMON IRKOATF) XWKRF(30,2,10), YWKRF(30,2,10),2mKRF(30,2,10). KNKLF(30,2,10), YKKLF (30,2,10), 2mKLF(30,2,10),
> COMMON GAEOATA Y

> CALPHL(250),3al.Ph(250)
> COMMON PYLRAT/ XTER(30), XTEL(30),XTLP(250),YTLR(250),2TLR(250),
> $1 \times \mathrm{PLL}(280), Y \mathrm{TLL}(250), 2 \mathrm{ILL}(250)$

> 1HSTART(10), MEND (10), NFSEGF(10)
> 5 LOOP GVER alf COMTREL DOINTE
> $\begin{aligned} & \text { JFLAPAI } \\ & \text { CPMFEPRIF (1) } \\ & \text { BPME }\end{aligned}$
> spmbegplf (1)
> $\begin{aligned} & \text { CDXZBaCDELXZ } \\ & \text { SDXZBASELXZ(1) } \\ & \text { (1) }\end{aligned}$

Parceld
2PsLCR(J)
1AASECO

SALFEsALPML(J)

jF (J.LEMRAPCJFLAR)I GU TU 30
JF6APEJEAAP*

CDXZRECDELI2(JFLAP)
SOXZBESOLLXZ(JFLAP)
ξ_{f}^{G} flap anuncagy cumdition facturg
SO RMECPMFEALFACOXZE-SALF:SOXZ

601050

- ing quundatir cuaditige factors

W0 Rysosphinacalf
RHECPHIWECALF
so conilnue
LUUP aver chohdise rans of ming vontices
DU 150 [3mat,msm
Afluro.
${ }_{4 F T W}{ }^{4}$
LFEAGTF(I8n)

\mathbf{c}
\mathbf{C}
\mathbf{c}

contribution uf finite talting lega in flaps aft of this nom. naftmenaf Tel
DO l20 [asei, Naftm IASPIABH!

YZニYWKPM(ISn,1ASP)
22n2mKR(ISN:IABP)
CAGL FLVF
AFTVEAFTV+FY
AFTKEAFTHFF
ximmktw(Ismifas)

CALL FLVF
$A F T U E A T U O$
aFTVEAFTVAFY
AFTVEAFTVGF
AFTMEAFTMEF
c_{c}^{120}
conisue?
c
c
c
contrigution of semiainfinite trailing legs in labt aft flap

xisemarnilsm, naf!
YIBYMRR(IBNAMFT)
Zantmann(isnonaFt)
aftueartuma
AFPEAFTVOFY
AFTREAFTAFF:


```
        M1:XnMG~(18#NNAFT)
125 cov
luup tueg vobijces in inis mom
NCmCzNCwItISN)
DO140 ICNB1,NCNC
cuntribution uF bmund beg
    x10x9LC(1)
    x\mp@code{mylR(!}
    y2arita(i)
    <1*296(%)
    calb flvF
    uTOTafy
    mTuTery
    Mr(NAFT,NE,O) gu 10 :35
c
    Ax=-1,0
    Az"O.
    uTuTautatapu
    vigTeviutery
    mTarmm0T+F
    M1Exz
    M1072
    cALL SIVG
    Mypautorapu
    MOTENTOTOFN
    M10TENTOTO
G
    135 x1=xTLR(1)
    My=MTLR(1)
    IEZTLR(1)
    MaNMmkRm(18N,1)
    2202nKR#(İm,I)
    CALLFFVFP
    viutavoi+fv
    MTOTEHTOT+F*
    M!日xTL(1)
    vicribl(I)
    2&&2YLL(8)
    V2ツMKL"(IBm,1
    22*2NKL^(18=,1)
    CML6RLVF
    brOTzuTOT-Fu
```



```
c
    adu contajbutions from panele aft uf ming
    uTCTaviotafitu
    VTOTEVPD1+AFTV
    "TOT=0+OT+LFTM
```


OL 100 IFLEI, NFLADS
NAPTEFAEGF(IFL)
c
c
c
LuGp nuer chondise rome un inga fla*
Matensflifl
$C O X B C D E L X Z(1 F L)$
$3 D \times B D E L X Z(j F 6)$
SDXX8DELXZ(1F6)
CRFEMCFIFL)
ounsjantifl)
artus.
ar
ATVEO
AF 1×0.

thating Legs on tme firgi one.

CCLL $+L V F^{\circ}$
AFTUMAFTU

yioventrign, i, if

2202wKLF(18=2,1R6)
CAL FLVF
AFTu日aFTUFP
afiveartiorv
aftamaftampa
6
c
c
contrigution of semi-intinite tratling begs in last fap aft ur

zinznRp(IAn, nat Tiffl)
2 $1=2$ NKRF
$A K=C D E L X Z(L F L F)$
AKEEDELX2(LFLF)
cALt Sivi
AFTUAFTU.F
AFTVAAFTVOFV

CALL SIVF
af Tuasf Tuary
AFTVEAFTVAR
c
c
c LODP over voritice in imis rom
los continue

C
C
influence of hound leg

```
\({ }_{5}^{6}\) Loup over flap conthal puints RETUR
```

aphlifs eguatiens fur findte lengin vortex filamemt INFLUEACE FINCTIONS, TAKE FROH BDEING REPORT DE-9244

COMMON BTATEMENT:
COMMON TTHLNAL, TOL
c
xpouxperi!

zponipazi
2p

3PTEXPTOXPT+2PT-ZTT
SPONKPO\&PD*2PO\&2PD
B=2TO*xPOURTOR2PO

F Un 0.0
Pvo. 0
PwBO:O
8IGNEI:
YPOYPMI

ELEBARTELBA)

CEXTO*YDOMTOAPBO
RADCLASRRT ($4 * A+B B O+C+C)$
If (RADCL,LE, IOL) GO TO
R13AnSPOHPOHFO
R230ng ToY
RIMSART(R1AE)

CSTHZa(RBD-ELSB) (Z $2,0 \in E E * R 2$)

FUFPutazac

- YTOEOYTO

YPDEYF+Y1
YPYOYP
100
aghene
he funn
RETUR
END
suaroutime bivf

common glafements
common rrolpnc/ iol
6

$x \times \nabla x p=x$

22R2P-21


```
        MyBra-H1
        M=0.0
        N=0:0
        Fm=0.0
    0 100 kES,2
    DE*AZyy
    RADCL AGGRT(O*D+E*E4F*F)
    IF (RADCLPLE, YOL) GO TO OO
    GGRagent(YYYYY&XSPZS)
    CRTHTECUP/01GR
    ACTBBIBRABORT(1,OOCSTMTMCSTHT)
    FACPO(CBTHP*1,O)/(8MLR*RADCL)*SIGN
    UaFU+OWFAC!
    MVWFV+EAFAEI
90 YYEYP&Y1
log SIGNE=1,0
    mETURN
    END
```

8ir 015	
siv	017
siv	018
siv	019
siv	020
$3 i v$	021
siv	022
siv	023
SIv	024
SIV	025
siv	026
sir	027
siv	028
Iv	029
3 Iv	030
31	031
siv	032
siv	033
siv	034
	035

gubroutgni Rhactecexveld
this sugrouishe calculates ime rioht hand side of
THE EOUATJONE FOR HORGEBNUE VORTEX TAENGTHS,

Logigal Exvel
cummon btatemento
COMMON / 1NDEXF/ NFNEG, NPLAPG,1DFLAP(10,2),NCF(10), MAF(10), MF(10)

CPHFI(10)

CKCPHL(250), $8 A L$ PML(250) $)$ (

RIGHT HAND BIDE OR
IF(EXVEL) SO TO 4S
LODP over ming control doints pon case mith no externally
LODP OVER WING CON
INDUCED VELOCITIES
sacpesinalfecthin

6
6
6
LODP over ming control mointe ror cail mith externably induceo
VELOCIIIES INGLUOED
45 CONTInut
DO 50 JU1,M

$1+(\operatorname{COSALF}=\mathrm{UE}$ I (J)) + SALPHL(J)
55 IF (NPLAPA, IO.O) EETUAN
c
c
c
6
6
bight hand bide tor plap control mojnts (if present)
LOOP OVER PLAPE
do ad JFRI,NFL
CPHEPMIF(JF)


```
        SPHE3PHIF(SF)
```

 SPHE3PHIF(SF)
 CD\times2=CDELX2(JF)
CD\times2=CDELX2(JF)
CAUXECONZ+CUBALF-SOXZOSINALF
CAUXECONZ+CUBALF-SOXZOSINALF
SADX=CD1Z*SINALF*SOXZ*COSALA
SADX=CD1Z*SINALF*SOXZ*COSALA
DA=SLDX*CPH
DA=SLDX*CPH
DC:CPH*CDXZ
DC:CPH*CDXZ
msmajami(jF
msmajami(jF
ME OMEND(JF)
ME OMEND(JF)
IF{EKYEL} GOS TO TS
IF{EKYEL} GOS TO TS
l
LOOP OVER CONTROL POINTI ON FLAP mITHUUY EXTERNALLY INDUCED
LOOP OVER CONTROL POINTI ON FLAP mITHUUY EXTERNALLY INDUCED
ELOCitiEs
ELOCitiEs
0070 JKM\&,ME
0070 JKM\&,ME
CIR(JJMOA*CALPHL(J)*CAOX*8ALPHL(J)
CIR(JJMOA*CALPHL(J)*CAOX*8ALPHL(J)
Go go
Go go
LODP OVIR CONTROL POINTE ON THIS FLAP FUR CASE WITH EXTERNALLY
LODP OVIR CONTROL POINTE ON THIS FLAP FUR CASE WITH EXTERNALLY
75 cuntinue
75 cuntinue
OU SO JMMs,MA
OU SO JMMs,MA
3aL-AALOHL(J
3aL-AALOHL(J
OO CIR(J)GOA\&CAL*CADX*SAL=NEI(J)*(DC*CAL-SDXZ*SALS

```
    OO CIR(J)GOA&CAL*CADX*SAL=NEI(J)*(DC*CAL-SDXZ*SALS
```



```
    conygnu
```

 conygnu
 lotumN
lotumN
DDECPH*SOXz

```
        DDECPH*SOXz
```



```
IMGNUTINE SDLVE (B,A,N
    OIMENSIDN M(1)
    COMENSIDN A(NIN)
    IF(N,EO,I)GO TOO
    NH{NM!
    oo ikmi,Nml
    kP1Ex+1
    Be(m)
    lol
    0071aKPI,N
    O(I)=s(I)+A(I,k)*
```



```
    KMKH{%1
    K(k) mal(k)/a(K,K)
    THab(K)
    DO IO1,KMS
    B(I)FA(I)+A(1,k)AT
    RETURN
```

$\stackrel{c}{c}$
subroutine loadiexvels
common statemente
COMMON SYORTOR/CXBL(250),
common frizlsfupirire

COMMON /BLOAT/ XBL(250),YBL(250),2AL(250),TP11(250), 3n(250)

COMMON MNOEX/ MBN, MW, MTOY, NEWI(30), IMAX, NFSEG(30),LASTF(30)
COMMON
COMMON TILDAY/ XTER(30), XIELESOS, RTLR(250),YTLR(250), 2TLR(250),
1 XTLL 250) YTLL (230). 2 TLL 1250

coniplits
COMMON JFPLDAY/ FTLXR(250), FFLXL(250),FTL2R(250),FTL2L(250)
bogscal exvel

GAMPRR(30),
1
EALCULAFE FDRCE COMPONENT: IN - X, y, and ez dinECTIONA at
LOUND LEG MIDPOSNTS ON MINE
crsamephimainaly
bpeang hiwecobali
CPCABCDALFACPHI
trijatpis jum)
CALL VELBUM(XBL (JM), VBL (JM), 2BL(JW))
IFC.NOT, EXVEL) GO TO 10
upaupodi (Jw)
pavpovel (jn

100 CONTINNE
6


```
NUN: LEG mopuINTS ON FLAPS
lutif nver flaps
Cu 200 JF=1,NPLAPS
    DxzacDiLxic(jF
    OxZasDELx2(JF)
    SumacDxzmcosalfosDxiesimalF
    Sumacoxz*SINALF*SDxz*cosal
    CPHEPPNIF(JF)
    3PHISPHIF(JF)
    pSAFECDHABSUM
    cpafmephecaum
    gomgrami(JF)
    MSEMSTART(JF)
C
    luop over gound leg midognts on this flam
    DO 190 JC=MS,ME
    pajaipai(SC)
    GALL VELSUC(XBL(JC),YAL(JC), zBL(JC))
    IF,NOT,EXVEL) GO TO 110
    PEvPvEI(JC)
    PanP+GEI(NG)
    c
    motate y and a to lie in tmis flap cdonognate syaten
    110 musup
        JP=~U*COXZ0=mnsoxz
        PamHeCOR&wU*SDXZ
        Facracin(Jc)*CONa(JC)
```



```
    100 cONTMNE
    200
    201
    lomog on ming traibing leg pointa
    NCMEONCNI(1)
    $0 TENB,NEWC
    FC,NOTEXYELLXR(ICW),YTLR(ICN),FYLZR(ICW))
    VF\mp@code{Novil(SIG)}
```



```
        VM(IEW)NVB
        CALL VELSUM(FTLXL(ICM),YFLL(ICN),FTLZL(ICN))
        IF(,NOT, EXYEL) GO TO 30
        YPMVP+VEI(ICN)
    30 YG(ICNLVP
C
            LOOP OVEA WING CHORDMIAR ROME
    f0ASE=0
    DO 1200 10nai,mgn
    MCWCENEWI(ISM)
    IF(IEN,EO,I)GO TO थ5
    NCHHANCM!(IENOI)
    JUmINO(NGNC,NCMN)
        oo og jagiju
        VR(j)=VL(J)
    60 mR(J)aNL(J
        IF(NCNC,LE.NEMN) GO TO **
            JGNCMM&1
            JLONCMM& L
            CALBASE&SGUM(FILXR(I),YTLR(I),FTLIR(I))
            CALL VELSUM(FILXR(I),YY/A
            MPGVPOVEEX(1)
    42 MPEnP+m|i(I)
```

```
    65 MR(J)EnR
        DO 70 JEI,NCAC
        1:1FagE+J
        CALL VELJUN(FILXL(1),YILL(1),FTL2L(I)
        1F(rNOT,EXVEL) GO TO G8
        vpovpovil!i
    LL(J)aVP
c
        DO 1100 iCma1,NCWC
        IBIsAstoicm
        DUMA=DELGAM+0,75*CIRR
        FACLDDUMA*CONBL(I)
        FACR=0DUMA CONAR\I
        CYTLL(I)#FACL*{mLICm)-ajNALF)
        CYTLR(I)EFACR*(MR(CM)-BINALGS
        IF (ISN,EQ,B) CrTLRIJEOCYTL(I)
        CZTLR(I)EFAGR*VRCICM
    OELgAMBD
    1800
    mjeoglgam
c}120
    pRailing leg loads on Plapi oo loop over flapg
    IF(NPLAPB,EO,O) RETURM
    IFGPLAP&,CO,O] RE
    IP(IORLAP(IPL,2),GF,1) 50 T0 312
```



```
    MEamgtant(cpld
    MaFFangr(gFL)
    NcFancF(IFL)
    NOMTF=Y(1,IFL)
    januram%
    IF (Y(TAmm),bE,yatRTF) &O TO 300
    305 CONTINUT
    DO 307 IINPAM,M&FF
    JAMMJBN+!
    07 COMTINUZ
C. TMENE IE A PLAP AHEAD OR TMIE ONE, COMPUTE TAMMA CONTRIOUTIONE
    LODP OVER ChORDWIEE RONE ON THIS flap
    312 IFLMBIFLOI
        NCFFANCP(IFL)
        MgFFMmaF(IFL)
        OO 335 13NF:1,MgFF
            GAMFMA(sBMF)GGAMFAR(ISMF)
    335 CONTNUE
c
    computi fme trajling leg loage on fmis flap
    coxzacoeLxz(IFL)
    30xz=80ELx2(IFL)
ALFPaBINALF*CDXZ*COBALF*SOXZ
c}\mathrm{ c might ano geft velocitite on finst mom of imis flap
    110M8-1
    308 ICmat,NCFF
```



```
        CALL VELSUM(FTLXH(I),YTLR(I),FTLZR(I)
        IFL,NOT,EXVELS 60 10 308
        UP#UP+UEI(I)
    395
        MPEvP+VFI(I)
        MR(ICW)=NP*CDXZ*UP*SOKZ
        CR(ICW)=YP
        IFC,NOT,EXVEL) GOTTO 3O6
        Mpaup+U(I(I)
        VPayP+VE!(I)
306 WL(ICNH=WFCDXZ+UPasoxz
    goop oveh chordmise rone on pmit plaf eo loao calculatiun
    90 500 Isme!, mafr
    IF(1g%,EW,i*AND,YTLRS
c updatf RIGNT AND LEFT VEGOCgTIE:
    II|Mg+(ISN-S)#NCFF=1
        DO 400 ICNEI,NCFF
        VA(ICN)IVLIICN)
        MA(ICN)##L(iCM)
        ISII+ICM
        #PaUP& URI(1)
    309 WL(ICW)=WP*COX2+UPaBDNz
    400 VLIICN)EvP
* 401
    401
    goop over tralling leg polnta in fhit mom
    pelgmaggampma(ism)
    11^(ISMO1)ONCFF*HO-1
    OD450 ICN#1,NCFF
    MN1I+3CH
    cinmacin(l)
    FACRM-(DELEMR&DUMA)ACONDR(I)
    FACRE=(OELGMR&DUMA)*CONOR(I)
    CYFLL(I)&FACL*(WL(ICN)*IALPB
    CYTLR(I)&ACR#CWR(ICN)-BALP)
```



```
    CZTLR(i)EFACRAYR(ICN
40
    O
    gONTINHEG
500
l
    RETUR
```

subroutine forces
THIS sumROUTIME CALCULATEA THE GPANHIBE LOAO DIBTMIBUTIONA AMD THE PORCE
fILAMENPA
common atatements
COMMON atatements

\qquad
CPMIF(10)
 COMMON ARLEGUA/ SSPAN, SREFROFL, XM, ${ }^{\text {M }}$
 COTLL(250).c2TLH(250
COMMCN MLDAY XTER(30), XPEL (30), RTLR(250), YTLR(250), ZTLR(250), xTLL(250).rTbL(250).2TLL(250)

common acinm, CNT
dimention gtatement
oimensiun re(zo),pagsezo
pormat statements
 ${ }^{1}$ 5h DEG.3

 05 PORMARHC

708 FORmat (29x, $2 \mathrm{~mm}(\mathrm{ming}$ cudidimatt gystem)
110 PORMAT $9 \times, 5 F 12,5$)
 L GOCATIONS AT MHICH FGRCES ACTIZOX, S2H (FLAP CUORDINATE SYSTEMS -F

713 FORMATC///IAX,52 אCOMPLETE CONFIGURATION FORGE AND MOMENT GOEFFIGIE

 15 fil) FORMAT(ax, ©FIR.5)

$72!$ furmatis!)

cunatanis

DATA RTOO/B9,2957795,
jpangramsapan
SREFTGABRE/(2.ASPAN)
ALPasin(Sinalf)ar
MRITE(6,702) SPAN, SREF, REF
c_{c} calculate ifing litads
MRITI (6,703)
cunaspiffas(z.*CPhin)
6
6
6
luop civen chordmise roms
lbasiso
001152.1max

crsan.

gren area blfments in rom
CMnENC=I(NSTAT)

CASNS+CLBL(JJ)*0.5*(C2TLL(JJ)+CZTLR(JJ))
cajerasecxbliJJ)
2 ctimifnue
cysatatcrs
nSecnsela
CNOKNECNS*CPHIm+CrSASPHIm
AASF-1bASE +NCNN
MaCNURN\#Z. OASPAN/CHLUC
WRITECb, TOSJ ASTAT, YBUT,CHLUC, CNORM, CN ,CAS
c calculate plaf loads
LOOP OVER Flaps
IFTNFLAPS, EL: 0) 60 iU 50
OO NE1, NFLAPS
RITE(6,106) IDRLAP(N,1), IDRLAP(N,2)
ACFBENCB(N)
CPHIFFECPHIT(N)
SPMIFF=SPMIF(N)

CROUTMCROUTF(A)
OCh(IRDECRDCT-CTIPF(N)
YINORDEYF $(1, N) /(2,0+S Y P A N)$
JBLEMSTART $(N)=1$

0030 IE2.1F
nslalalel

caseo.
c
c
c boop uvir area elements in this rom
DO HO J\#1, NEFF J日LEJB6+!
CYSACYS*CYBL(JBL) $+0,5$ (CYTLLL(JOL) $+C Y$ TLR(JBL) $)$ NAECNA CCZBL (JBL) $+0,5 \times(C 2 T L L(J B L)+C 2 T L R(J B L)$
40 conimut
tarcon/9m(JBL)
CYBE1AHCY8
CNSETA
CNS
CNORMECNSICPMIFF+CYSASDMIFF
CNaCMOAM*2. O*SPAN/CMLUE
casecasitiat?.0espan/ChLUC

zC comignul
calgulate aing furces and ruments
So CNanO, O
Cane 6

citharcithlu)	flim
	Lt
camscan+CXHLn	un
CNBACNn+CZBLm*CLTLRW+CZTLL	Un 10
	ur
	fin 170
CNasz.acna	fut
CAKE2,*CAm	rum 173
chand	Fut 174
conscnnesinalfocanicosatr	
melpe (b,7or)	suh 177
RHIPE (0,708)	Fuf 178
MRITE (0,709)	put
	For 180
coiscom	Put 181
cmiacma	POH lag^{18}
calculate flap fouce and moments	Fokn 18.
	FUR 185
laop over flaps	
white (0,711)	
	FOK ${ }^{\text {coid }}$
Car ${ }^{\text {che }}$	FOR
CYFA0.0	POR ${ }^{\text {P4, }}$
CMFA0:0	Pur 195
CMKNP 0000	Pok 190
Chymapor	POR
CMIAPA0,0	FCR
NCFFEnction	$\stackrel{\text { Puk }}{ }$
ms angiahtis)	FOR
ME PMEND(N)	POR 202
	for 203
	FOR 204
YMLTMYILE(N)	\% $\begin{array}{r}\text { POM } 205 \\ \text { POM } 206\end{array}$
	FOH 209
gphiffespmir ${ }^{\text {a }}$)	${ }_{\text {FOHR }} \mathbf{F} 208$
spsimsphifrasoxz	
spedesphit Fecoxz	POR 211
tpilientanamplem)	for 212
	FOR 213
	FUR 214
luep over vortices on this flap	For 216
	FOH 218
DO Bo Joms,me	fur
cxplifuexbl	for 220
	For 222
	fun 223
catheatithls)	POH 224
	FUR 225
najoust	
	FUf 228
cryLrfao:0	${ }_{\text {FOR }}$
01 continue	fuk 231
	POR 232
	FUk 233
OYMTREYTLR(J)PYM	Fuk 236
	${ }_{\text {FOR }} \mathrm{FOR} 238$
	fun 239

WrFL

YF TLREDYATLK*CYMIFF+UX+TLK*SDSU*CZ, PLR*SPC

CNFTLLECZ PLLAFCPMIFF+CYTLLE APMAFF

$A F A C A F P C A B L$
$N F A C N P+C N F A L$
CYAGYF +CYF $\mathrm{CL}+$ CVFTLR+CYFTLL

 CUNTINLE

LFFENFF*CAPDOCAF*SAPA
KFCNF 2999,909
YFCAF:099.999
XFCVF: 499 , 809

IF (CNF:NE:0.0) YFCNFECMXAFACNF
1F CCYF ,NE: 09 XFCYFMCMZYR/CYF

MRITE $(0,712)$
ICYF, XFCYF,CNF IDFLAP(N,1),IDFLAP(N,Z),CNF, XFCMF,YFCNF,CAF,YFTAR, CLTECLT+2,*CLF
CDT CCOT $+2, \# C O F$
calculate complete compigumation funces anc mombts
100 PRII(6,713$)$
WRITE (6,714)
CNTMCLTACOBALF+CDTASTMAL
CATaCDT*COBALFACLIESINAL
CDCLSACOT/(CLTACLT)
WRITE(b,715) CNT,CAT,CLT,COT,CNT,CDCLS
calculate pressure oisiribuitons
IMEAD:O
wing prissuhf distagbutiun
1F (nPRESM, ER,0) GO TO 300
WAITE CO
WRITE $(0,717)$
WRITE $(0,718)$
6
6
6
Loop over charoxise rums

NCMNENCHI(JM)

```
        JJElRASt+M
        CMS:C2RL(JJ)+C2YLE(JJ)C2TLL(J)S
        CNURHaCHS*CPHImOCYS*SPNI*
        PKES(K)#CNORM*SHEF/EL\triangleREA(JJ)
    20
    10 COMIJNuF
```



```
        MIE (6,720) (PKES(J),JOI,NCMm)
        pale (c,721)
    200 comitnue
C
    flap presmune dibtribupiums
SOO IF (NFLAPs,EQ,u) RETUKM
    logp nver flaps
    Du{310 mel,NBLAPB
    IF (IMEAD,EO,1)GO TO 320
    malte (b,ilo)
    32
    20 WRIE (6,T22) IOFLAP(N,1),IDPLAP(N,2)
    mRIIE (6,718
    MCFFONCF(N)
    00 321 JE1,NEFF
    321 xC(S)E(FJ=0,75)/fNC+F
    [FMEMSF(N)+1
    !FHIMSF(N)$!
    INBROEYF(1,N)/FSPA
    RUDTaCROUTE(N)
    CHURTmCROOT-LIIDF(N)
    jBLzmSTART(1)
    SPFESPHIF(N)
l
LOOP nVER GHORDNISE ROME
    DME330 1-2,IFm
    RDT:(CYF(I,N)+VF(IN,N))/2,0)/&BPAM
    YFSFYMCT=YINRRD
    CMLOCMCMDUT+YFS *OCHOMD
    00 340 kE1
    CNSACZBL(JBL)+CZTLL(JBL)+CZTLR(JBL)
    CYACCvBL(JBL)+CYTLL(JBL)+CYTR(JBL
    MGES(K)|CNORM*SREF/ELAREA(JOL)
    WRITE (6,719) YBOT,CHLOC,(XC(J),JE!,MCFF)
    WRIIE (6,720) (PRES(J),JAI,NCFF)
330
    cumiINUE
    END
```

subroutine velsumexx,yy,zil)
ealculates vilucities due to vortice: amo theia makes at
FIELDPDINT (xx,yy,iz)
ctommon statements

VEL 001
VEL 002
VEL 003
VEL 004
VEL 005
VEL OnO
OL

SUBHOUTINE VELSUM(xx,yy,zi)
ealculates vilucities due to vortice: amo theia makes at
ctommon statements

irmkan 30,3), $2 \times K L m(30,3)$

COMAON ARSJOEA CIR(250), पEI(250),VEI(250), MEI(250)
c
PPXXX
$Y P E Y Y$
$2 P E Z 2$
UPEC.O
$V=0.0$
PEO.O
c influfnce of ang vortices $=-$ lutp over churdige hums
00 200 2 SNEI, msm
NAFTONFBEG(IEM)
arfuen.
ariver
$A F T V=0$.

C influence uf finite lengtm make pieces rehind this hum
naf TMENAFT-1
DO 130 IAsel, NaFTM

$1 A S D_{21} A B+1$

22x2nkRMi
afturaffuef
AFTVEAFPY+FV
AFTNGAFPNF:

liezmkim(ismilas)
X2EXNK以 (ISW, IASP)

22\#2mkLm(ismidASP)
CALL FLF
aftunaftuory
AFTMEAFTAFF:

131 continue
LFELASTH(18:)
AX=CDELXLCLF)

MEMKRM(IRA, AAFT)
li=lmkRm(IOA,NAFT)

af TUEAFTUFU
AFTuEAFTVFF:
x1ExmLnclamant)

VEL 084

```
        GALL SIVF
        AFTEAFIVOF
    13.
    LuOP nvER vidrites in this ming emurd~ise mgm
    NCnConcml(ISM)
    OC 150 ICNEI,NENT
    influence of buunt leg
        largase+icm
        y(EYTL(I)
        z!=19L(1)
        xaEx\1R(I)
        Y2#riLa(I)
        22*2LLR(I)
        CALLFL
        cuspy
        comaf
        IF(NAFT,NE,O) GOTO 145
C C
        4x=-1.0
        A2=0.0
        Clvecu+FU
        evecrafy
        Cumch+FN
        M1=xz
        21=22
        call sjva
        cuscumyy
        CMaCNofm
C C FHERE ARLPLAPS BENIND TMIA MON, COMPUTE INFLUENCE OF
    145 x10xYLA(I)
        y!ariLR(I)
        ziezrn(j)
        xzaxhken(Igw,l)
```



```
        CALGMRLYF
        cvacv+Fv
        x|ETLL(I)
        yifrTlL(I)
        <2ExmxLm(18m,1)
        22a2wkLm(1In,i)
        caLLFLVF
        cumcuafu
        cuacvoFy
        cuscuasitu
        CvECV+AFTV
    147 v
        UPEUPaCU*V8
        VPEvP+tvEYE
    150 MPaPP&FM*
c
```


$\stackrel{6}{6}$

f(vilaps.Eu, O) RETUPN
กn 30n 1FLstinfburs

$-\operatorname{sFEmSF}(1 F L)$
COAZECDELXZ(JFL)

nafiengegr (ifl)
c loup nuet chtirdise ados os vorisces un this flap
DU 250 18mal,msf
AFTUEO.0

aFinanio
if(NaFi,Eu, o) bo to 212
c
c
6
influence of finite trailing legs in firgi flap aft of this dne

Z2=2NKRFG
AFIUZAFIU*F
AFTVEAFP*FV

Y2ErnxLF(13n,2,IFL)
22E2nKLF(19n,2,IFL)
22E2mKLFCI
CALL
FLVF
call Flve
aftvartyobv
af Twafturam
c
c
c
contribution cis semi-infinite trailing legs in secund flaf
210 x1EXMKAF(18N,NAFT,IFL)

Y!EYMRF(IENiNAFT, IFL)
ZISZKRF (ISA, NAFT,IFL)
NFEIFL $+N A F T$
XECCDELXZ(NB)
AZADELRZ (NF
CALL AIVF
aftumaftumf
af TVEAFTVFV
aftionfivef
afineaftrof
X_{1} EXWKLB(IAK, MAFT,IFL)
YIEYMLF(IANNAFY,IFL)
ZIERMKLF(ISN,NAFT,
CALL SIVF
afturaftuofu
apivearturfy
AFTVEAFTV+FV
LOOP ouver vortices in inis chordmite gom
212 conilnut

\mathbf{c}
\mathbf{c}
\mathbf{c}
influence of beuno leg
1211+icm

$x 28 \times 1 L R(I)$
$Y 2 z r r a(1)$

io contimue
c
97 CUNTINUR
\mathbf{c}
\mathbf{c}
\mathbf{c}
bet up table uf jey centerline parameters
OO 14 JEL, NJET
00 is $\mathrm{N}=2$, NCYL

is continue
6
6
6
prelimivary dutput

O 15 Jatincyt

15 White (6,712) XCLR(N,J),YCLR(N,J),ZCLR(N,J), SCLH(N, J), TMETA(N,J),
IF (NERA,GT,0)GO TO G90
CO TO HE,GE,999) RETURN
193 NPRINTAO1
DO 192 Jalin
$\mathrm{VP}(J)$
$V P(J)=0.0$
192
IF (Ogeris)
OD 19 jaidive
$U(J)=0.0$
$Y(J)=0$
19 Y(J) H (J) 0000
SHEND:SLLR(M,NCYL)
c
c
c
trangform fielo pojnt coordinates tu engine bystem
19000191 JEl, NP XPR(J) $=\times P(J)+X Q(m)$

correct pielo moint locations d ofsireo
IF (NCRGT,LEG,O) SALL COREGT (NP,XPR,YPR,ZPR,OS(M),M,NCYL,
 Pacto
20 CONTINU:

c
c Lecate inoividual vortex rings
21 If (SR-BCLR(M,JSR)) 23,25,22

507021
$5 \times \operatorname{XGCLR}(M, J P R)$
GEFCLR(M,JSR)
$Z G Z Z G R(M, J S R)$
ZGERCLR(M, JSR)
GGAJET(H, JBR)

EGEMFT(M,jSR)

661930
60
a 3

 ZGEZCLR(M, JSK=1)+(ZCLK(M,J5R)-ZCLK (M,JSH-1)):DELTA AGEAJE $(M, J S K=1)+(A J E T(M, J S R)-A J E T(H, J S R=1))$ ODELIA
 TMGETHETA(H,JSN-1)
TMGSTGG/RAC
30 ciniminue
SNTmasin(1 mb)
PGAME2,0*PI*SLGT((AG**? + BG**2)/2,0)
3! gambaggamitgam
CO 38 NaI, NP

RPASORT(ETAR**2 + 2ETAR**2) (2PR(A)=2G)*CST

M 6 no. 0
compute velocity inouced by a cincular ring
CALL VRJNG (AG,XIPR,RP,UG,VG

VGP VG*ETAP/RPGGAMMA
compute velocity induceo gy an ellipitcal hing
35 CALL ERING (GAMAA,AG,BG,ETAA,ZETAR, KIPR,VG,NG,UG
IF (JERRGG,O) NERRENERR 1
36 UGAMgIG*CATH =MG*SNTH vgamevg
c
$U(N)=U(N)+U G A M$
$M(N)$
$30 \quad M(N)=(N)+W G A M$
NOTE, U UNS,V(N),M(N) ARE VELUCITIES INDUCED IN ENEINE SYSTE
51 5 (3R. 6 T, SREND) GO TO 20
IF (NERA,GT,O) WRITE (6,720) M, NERR NERH:O DO 52 NEL, NP
$\mathrm{UP}(N)=U P(N)+U(N)$
$\forall P(N)=\forall P(N)+Y(N)$
$52 M P(N)=P(N)+M(N)$
c
c
c
UPTIONAL output
92 WRIT $(6,718) \mathrm{M}$
do so Nali, ip
50 WHITE $(6,710) N, X P R(N), Y H H(N), I^{P R}(N), U(N), V(N), H(N)$
40 CONTINUE
91 DO 41 NE1, N (
4) CONTINUE
al CONIINL
(NPRIM, LT, O) RETURN
C
c
C
Gutput induceo velocities in ming sratem

$$
\begin{aligned}
& \text { FRITE (0,717) } \\
& \text { RRITE (0,715) }
\end{aligned}
$$

H2 WRITE $(B, 710) N, X P(N), Y P(N), Z P(N), U P(N), Y P(N), N P(N), ~$

```
    E!IURN
    ORTITE (6.721)
990 WRITE (0,991)
    STUP
END

subroutine jetcl (ntimegtol)
    calculate the change in jet centerline dosition due to the
    calcugate the change in jey centerline dosition due to the
induego velccity field or the ming/blap and jey


    CUMMON /XYZCL/ NJET,MCYL, XCLR, YCLK, ZCLR,THETA,AJET, BJET,


    CDMmON /ATAK/ SINALF,COSALF
COMMON /ELCALC/ MJETCL, NJETCL, TMMAX
\(c\)
    NTH: \({ }^{\circ}\)
    RADa57.29578
0020 Jitinje
    0020 JMI,NJET
\(0030 \mathrm{KHI}, \mathrm{NCY}\)


    EPBY(k)=0,0
60 TO 10
35
    SAVE M Phetal \((\mathrm{J}, \mathrm{K})\)


    \(34 \begin{gathered}\text { nirainalf } \\ \text { viov(Jok) }\end{gathered}\)



    EPGY(k) 0 O.0 0 (K)









    IF lasscot
30 comisnue
20 cominnue
    IF (NTH, EO, O) NTIME 100


    FORMA
ENOP
END


        - \(n(J, k)\)
                    \(00,0) \quad 601051\)

c \(\quad \frac{1}{2}\)
XCLR(2,25),YCLR(2,25),2CLR(2,25), YMETA(2,25),
```

 SUEWCMUTINE CUNEGT (NP,XUG,YPH,2PA,OSH,M,NCYL,AELE,YCLH,ZCLK,SELK,
 4JET, rJET,TMETA
    ```

        J94R1
SRED
        SREDSF/zin
DO \(11 \mathrm{JEI}, \mathrm{ND}\)

        NFTAO
FAD 57,2957195
        NCTAO
FADS5,2957195


        If (JSH. . G9. NCYL) aETUKN
        ou \(1021^{\circ}\)




        TMGETHETA(M,JJR)/RAD
    TMGETHETA
GOTO 30
DELTACBR





        TMGTHETA(M,JSR=1)+CTHETA(M,JJR)=TMETA(M,JSK=1J)*DELTA
        THGTMG/AAO
    30 agraginio

        Csimseos (ThG)
\(0038 \mathrm{Na}=\mathrm{ND}\)



        ZETARE \((X P H(N) \in X G) * S N T H=(Z P R(N)=26)\) MCSPM



    NFP(N)
NCTET
OD
    \(36 \begin{gathered}\text { GO TO } 36 \\ \text { CONTINU! }\end{gathered}\)
    36 CONTINUR
        XTESTEABS \((X I P R)\)

        MFP(N) \(\quad\) (
ACTENT
        1F (RTEST, GT, OBR) GO 1030
    IF (RTES
FSIGNaI.



    \(\operatorname{XPR}(N)=X P R(N)+X I P R P * C S T H\)
\(Z P R(N)=Z P R(N)+X I P R P * S N T H\)

    CONTINUE
1F (NET
RETURN
        \begin{tabular}{c} 
JF RUUR \\
END \\
\hline
\end{tabular}
    RETUR
\(\begin{array}{ll}\mathrm{CH} & 00 \\ \mathrm{CKI} & 00 \\ \mathrm{CH} & 00\end{array}\)



    22 JSR=S \(20+1\)

        .69. MC
CNT
CNT OOA
CRT O1C
CHT O11
CHT OIA
    END

            o
\(\begin{array}{ll}\text { CN1 } & 018 \\ \text { CKT } \\ \text { CKT } & 024 \\ \text { CK } & 020\end{array}\)

```

SURROU'INE VAING (RGAM,XIPR,MPG,UGAM,YGAM)


```
Sujkcilitat ic elmpute velucity indiced ay a single vogtex ajng
```

Sujkcilitat ic elmpute velucity indiced ay a single vogtex ajng
gGARM E HING RAOIUS/GEFENFI.CE HaOIUS
gGARM E HING RAOIUS/GEFENFI.CE HaOIUS
XIPG AXIAL OISTANG TG FIELC PSINT/HEFEHENCE HAOLUS
XIPG AXIAL OISTANG TG FIELC PSINT/HEFEHENCE HAOLUS
MIPR AXIAL OISIANGE TCFIELC PHMNT/REIENENCE HAOIUS
MIPR AXIAL OISIANGE TCFIELC PHMNT/REIENENCE HAOIUS
UgaH: AxIAL VELCCITY/GAMMA
UgaH: AxIAL VELCCITY/GAMMA
PIEB:1415920
PIEB:1415920
OENRXIPR**2 + (RPR-RGAMR)*AZ
OENRXIPR**2 + (RPR-RGAMR)*AZ
MR)**2
MR)**2
ga_hr/oEna
ga_hr/oEna
ALL ELLIPS (AM2,2k,ZE)
ALL ELLIPS (AM2,2k,ZE)
GAMM(2KO(1,0+2,OHKGAMR*(RPRONGANH)/OENM)*ZE) /SURT(DEND)/(2,O\#PI)
GAMM(2KO(1,0+2,OHKGAMR*(RPRONGANH)/OENM)*ZE) /SURT(DEND)/(2,O\#PI)
if CMPB.O
if CMPB.O
IF(RPR,LE,G\&,OE-05) REFURN
IF(RPR,LE,G\&,OE-05) REFURN
ETV\&N
ETV\&N

```
*RGamR/DENP
```

*RGamR/DENP
END

```
END
```

SUBROUTIME EMING (GAMMA,8A, SB, XL,YZ, ZZ,VPX,VPY,VPZ)
cumpute ime inuucen velocity cumponenta due to an elliptical vontex ring
DIMENSION A(5),AS(5),RTH(4), MTI(4),ZJ(5)
otMENEIDN F(4i), f(41)
COMHON /ERR/ JERR
COMMON JNY ASNUM
${ }_{c}^{c}$

```
    MNUMEAJNUM
    Z=1,0
    sBZ!sa*Be
    222=12*22
    MC2E8A*RA-B8*SB
    OUM&XZ*RZ*YZ*YZ-3CZ
    32#0,5*(DUM+BDAP(DUMADUM+4,0*AC2*YZ*YZ))
    F% (822,L!,0,0) E22a0,0
    22=1224ac:
    A2EBART(ALz)
    #z=80kT(BL2)
    VFx=0.0
    VPY=0:0
```

c begin luop to calculate contributiun of pour buadrante of ring
\mathbf{c}
0030 J11,4
60 T0 $(11,12,13,14), 3$
$11: x=1,0$
$x=1,0$
$Y=1,0$

$13 \begin{aligned} & 60 \text { to } \\ & F x=10 \\ & F y=-1,0\end{aligned}$

15 COMTINUE
(ARE(XZ),GT,SC,AND, ABS(YZ),LT,1,0E-05) GO TO 180
RIng

001

DIMENSION A(5),AS(5),RTH(4),MTI(4),ZJ(5)

PIE3.14159E6
\mathbf{c}
\mathbf{c}
\mathbf{c}

if (J, G1, 1) Gr in 17
fxac.in
fyecoin
F20
GO $40^{\circ} 19$
18 (SETAZ=xZ/AZ*5x

SNETAZ=0,0
SNETAZ=0,0
GO TO 17

17 CONTINUK
SETUP CUEFTCIEN: AHMAY FGR OUARTIC EDUATION

(1)
DO 10 Malis
19 ASM(HM)EA(M)

Call duart (ab, Rta,hti)

If ($02,69,0,0$) 609054

56
CONTINUE
DUMRAZ

gisdum
ounmaz
ARA1
A2aA1
A1sDum
conf
$5{ }^{5}$
- confinue
calculate jointegrals
CALL JINTEG (AA, B1, A2, BZ, 2J)
IF (JEAR,EO, 0) GU OO 20
28
JNUMEIS
COMTINUE
c
c
c
calculate jointegralg using numerieal integration
T(1) $=0$ 。
$N P=4!$
$N P=41$
$O x=A P=1$
OX $=\sim N P-1$
$D X=1$
DO 50 ME2,NP
so T(M) $\operatorname{CT}(M-1)+D$

DO 53 MMER,5
DO
53 MRI,
$55 \mathrm{~F}(\mathrm{~m}) \mathrm{EF}(\mathrm{m}) \pm \boldsymbol{F}(\mathrm{M})$
53 CALL SIMSUN (AD,F, CX,ZJIMM)
c ${ }^{20}$ continue

(blaridi.0) Gn Min
SNE $17=1.0$
prec.n
180 CSETAZEFXAXZ/ARS(x2)
xane,0.0) OU 10
10
10
號
OumEP! *(10.01,5)
OumEP! *(10.01,5)
XRGAUMA=SH*2L/0,Mm*O,5*(2J(1)-2J(5))*FX
XRGAUMA=SH*2L/0,Mm*O,5*(2J(1)-2J(5))*FX
YG6AMA*3A*22/LUN:(2J(2)+1J(4))OEY
YG6AMA*3A*22/LUN:(2J(2)+1J(4))OEY

l
l
v2sveryz
v2sveryz
vpxevpxovx
vpxevpxovx
yPzevpzavz
yPzevpzavz
S1 IF (12.6T,3.0) EETUKN
S1 IF (12.6T,3.0) EETUKN
CONPINUE
CONPINUE
METU
METU
SUHROUTINE JINTEG(A1, 日, AR, BE, ZJ)
solution of jaintegrals
DIMENGIOM zJ(5)
COKKON fERI JFRM
${ }_{6}^{6}$
DO 1

PIE31415926

TLEO. 0
tzpio.o
IZNSO.O
$\mathrm{F}=0,0$
$\mathrm{E}=0,0$
Cazs (A1-82)** $+(A 1+A 2) *+2$
cozn(niale
CABERT(CAZ)
casegrtichz)
tBESGAT(CBz)

CK2
CKESRT(CK2
Gaz.0/(CA+CB)

G1sseri(G12)
NHEO
$T 2 P=E_{1}=A \mid-G 1$
601011
10 gientic
TINEB!-A1-GI
TUETRN

if (TU,6T, 1,0) Pu=1,0

1PHILINE TUAA1-G1-B1
1PHIUDAA1+61*E1-61*TU
phileatanztiphiln,tphild
PhIUEATANZ(TPHJUN,TPMIUD)
DLIPHILRRAO

$\underset{\mathrm{EN}=\mathrm{O}=0}{\mathrm{IF}}$

If (DHIL,

22
IF (PL.LE, Piz) G13 T11 23
DUMETAM(P12)
CALLFLII (F,OUH,CK)
CALL ELI? (L,UUM, (K, I, 0, CK2)
CAL6 FII (GPL, пUM, CK)
CALL ELIT CLPL,OUM,CX,1,0,Cx2

23
DUMETAN(PL)
CALL FLIILPL,OUM, (K)
24 EMEORO IF (PNIU, CT, P12) EMEEN+1,0 1F (PHJUWT:PI) 60 TO 26 Puspunfl
LMmz.0

26
cominule
If (PUALEPP!
DUNETAN(PI2)
(unctan(El2) 27
CALL ELII(F,OUM,CK)
CALL ELIC(I,DUN,CK,1,0,6K2)
CALL ELII(rPU, DUM,CK)
CALL ELI2(EPU,DUM,CK,1,0,CK2)

$2{ }^{60} 1020$
CALL ELII(Pu,DUW, ck)
28 CONTIMUR EU,DUM,CK,1,0,6K2)
28
CONIEAIN(PNIL)

chuUncos (Phil)
ONULESORT(1,00AK2*SNUL*SNUL)
c
6
6
So dumashuacmuugonue = snulacauldonul $A K 4=A K 2 * A K 2$
 2LAME(DNUU $+1,0 / D N U U$-DNUL-1.0/DNUL)/ANG
 2LAMSOR(DNUU+CK2/ONUU DDNULOCKE/DHUL)/AK4

c
6
6
complite J(0) thau Jeas
51 TAUs($11+81+61) /(81-a 1961)$
 graegrag
tauzetauetau taujetauzetau

 DUMEDUne (H10A1*61)

 2J3nDurelzlana *
 DUMabune (B)-A1.GI
 - Jin

```
c - tal*iauz*2lamol
    54 TNuLesNul/CNLL
        Su82LL*1.0/(TL-*2)**2 + A2*AZ)
        3U日2(1/=1,0/(1TU-B2)**2+A2*42)
```



```
    \j(1)=250* 2j(1)
    <J(3)=25\ + \J(3)
    lu(4)=2J3, {J(4)
    TESTI=ABS(SUGZL-SUB2RL)
    TEsTzaABs(suezluosubzRu)
    IF (TEST1.GT,1.0E=05,OR,TESTR,GT,1,0E-05) GO TO 60
    if (Nx,gi,a) return
    jF (11,0-Tu) ,GT, 1.0E-06) RETURN
    G1=-61
    TLMTu
    luni.0
    GO TO 11
    METUR
END
```


PRIz1.
PIM
.
5 SOCEDAATAGET

AAGLE = -SHGEC/AAGLF ANGLE
SDGEEESURT13aGPG)

6. AVGExSOGEC+1,E-8

GEORSOGEGPSOGEO
PIMEPIMPIM

P1mapims
60
10
GO TO 5
10 IF(ANGLE)11,12,12

4 RESARPE
5 RETURN
END
EETBAFS(CK)

SDGEDESURT1B/ANGLF+AAGLE
computes the elliftic infictal of fikst kind
usage
CALL ELIU(RES, X,CK)
UESCRIPTION UF PaRameters
RES REGULT Value
x apper integration bounocargument uf ellipitic
CK JNTEGRAL OR BREP KIND
hemarks
modulus k a Sort (t.oCkmek).

subrdutine elil(res,x,ck)
 subroutine elill(res, x, c_{k})

computes the elliptic infigral of fikst kind AGE
CALL ELIM(RES, X,CK)
uscmiption of parameters
x apper integration gound (argument uf ellipitic
CK JOTEGRAL OF BREMENTARY MOOLIND

METHOD
OKFINITION
OVER T FROM O TUX x,
RESEINTEGRAL(1/(COS(T)*SQRT(I*(CKHTAN(T))**R)), BUMMED

RESAMTEGAALIMSOATI
tenalumioio
ganofnd transblumation it uagd fur calculation,
GEFEFENCE

- BULIPSCH, NUMERICAL EALCULATION OF ELLIPTIC INTEGBALS AND

ELLIPTIC FUNCTIDNS

1F(x)2,1,

HESQOR
IF (CK) $1,3,4$

CK ECONSTANT TERM IN NUMERATOR
- Quadratic term in numerator
Himakg
MOOULus k e Sori(1, oCkaCk)
special cases of the genemalized blljptic integral u
SECOND KINE CARE

methoid

SUMEED OVEH T FRDM O TC X).
FQUIVALENT IS TME TEFINITIJN

evaluation
bandens thansformatgon is usen for calculation
REfREACE
b. bulihsch, numerical calculation def elliptic integhals ano
EILIPTIC BUNCTION

001 002


```
    1 aso
    C=0,
```



```
    parachest sign of argument
```



```
    5 PaRR
0 RETUR
C,
```



```
        \(A B=A\)
\(R \geq B\)
    AnGears(1,fx)
        plyap.
    18100
\(A R 1=1\).
c
- macoganofon transformation
    SEEORARIFGEO
    aban
    alarialat arithatic mean
    ARIGEED+ARI
    anE(R/ARI OF SINE VALUE
    AANGZABA(ANG)AD.
    ANG:
    pImapil
    IF (ANG)10,9,11
    10 pluapimas.ialisaz
    tsIDtsi+1
    Padsontian
    1F(181-4)13,12,12
    12
    15
```



```
\(c^{10}\)
        GGE Cesort (SGED) GEAN
    GEOBSGEDASED
    plyspinaplyA
    131=101+1s!
```



```
    \(C=C+D\) ANG/AANE
        ENTO
```


dimension eameloo eck(100),CE(100)

$A(S) *(x=A)+\Delta(?) *(x=A)+A(3)+(x * n ?)+A(4)+x+A(5)=0$.
GIMENSTON C(5), XH(4), XI(4),AC(4),AN(3), DR(3),NT(b)
EDUIVALENCE (AO,RO)

$1 \pm C(4) / C(1)$
A!s(5)/C(1)
AEA3/2.
$A C(1)=1$.
$A C(2)=A$
$A C(3)=11=13-4, * A O$
AC(4)EAC*(4,*A2-ABA43)-A1*A

20 RERT(1)1P:
DUMEB*R=AO
IF (DUM,GT.1,0E=05) GII $7\left(\begin{array}{ll}24 \\ \hline\end{array}\right.$
220
CA:SORT(A*A+2.*B-AZ)
601025
CAS=(A1/2,-A*
25

AO(3) $\mathrm{B}=\mathrm{D}$

棟 $4(2)=A+C A$

XITHUR
RENO
ENO

$\stackrel{c}{c}$
SURADUTINE DIAR (A, MRI,ARZ,XI)

OJMENSIIN A(s)

| $x \mid A-A(2)$ | $(2, A A(1))$ |
| :--- | :--- |

Disczxi*x(*A(3)/a(1)
10 x2aseat $10,20,20$
$x R 1 E x_{1}$
$x R 2 x_{1}$
$\times R 20 x_{1}$
$\times 1=\times 2$

XIEOA
RETUAN
END

```
024 2:012.*6):4t
```



```
    030 75-2
```



```
Au(1)aA(1)
    AL(2)=A(2)*xR(1)*A(1)
    CaLL ILAD (AG,xK(2),M&(3),x1)
    ME THR
```

SUMEF(1)4F(N)

| $\mathrm{MEN}=2$ |
| :---: |
| 0 O |

2 SuMasume2, $0 \times F(I)$
$\operatorname{SUN}=D X=S U M / 3, n$
REIURN
END
sit 001

$\begin{array}{lll}\text { SIM } & 003 \\ \text { SIM } & 000 \\ \text { SIM } & 005\end{array}$
$\begin{array}{ll}\operatorname{SIM} & 004 \\ \operatorname{sim} & 005 \\ \operatorname{SIm} & 000\end{array}$
sim
sim 000
sim
$\begin{array}{ll}\operatorname{sim} & 007 \\ \text { Sim } 008 \\ s i n & 008\end{array}$

\sin
Sim
Sim 010
Sim
SIM
Sim
$\operatorname{sim} 011$
sim
Sim
Sil

REFERENCES

1. Mendenhall, M. R., Spangler, S. B., Nielsen, J. N., and Goodwin, F. K.: Calculation of the Longitudinal Aerodynamic Characteristics of Wing-Flap Configurations with Externally Blown Flaps. NASA CR-2705, 1976.
2. Dillenius, M. F. E., Mendenhall, M. R., and Spangler, S. B.: Calculation of the Longitudinal Aerodynamic Characteristics of STOL Aircraft with Externally-Blown Jet-Augmented Flaps. NASA CR-2358, Feb. 1974.
3. Aoyagi, K., Falarski, M. D., and Koenig, D. G.: Wind-Tunnel Investigation of a Large-Scale 25° Swept-Wing Jet Transport Model with an External Blowing Triple-Slotted Flap. NASA TM X-62,197, Nov. 1973.
4. Perry, B., III and Greene, G. C.: Wind-Tunnel Investigation of Aerodynamic Loads on a Large-Scale Externally Blown Flap Model and Comparison with Theory. NASA TN D-7863, Mar. 1975.

NIELSEN ENGINEERING \& RESEARCH, INC. Mountain View, California

November 1975

| Wing-Flaps | Jets | | | | Iterations | Angles of Attack | Execution Time (sec.) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vortex
 Lattice
 Elements | No. | Shape | Length | Δs | | | $\begin{aligned} & \mathrm{CDC}-6600 \\ & \text { FTN }, \mathrm{OPT}=2 \end{aligned}$ | $\begin{gathered} \mathrm{CDC}-7600 \\ \mathrm{FTN}, \mathrm{OPT}=2 \end{gathered}$ |
| 26 | 1 | Circular | 18 | 0.1 | 2 | 1 | 8 | |
| 104 | Off | -------- | -- | --- | 1 | 2 | 40 | |
| 120 | Off | --------- | -- | --- | 1 | 1 | 48 | |
| 135 | Off | -------- | -- | --- | 1 | 2 | 90 | |
| 156 | Off | -------- | -- | --- | 1 | 2 | 120 | |
| 126 | 2 | Circular | 20 | 0.1 | 3 | 1 | 170 | 35 |
| 126 | 2 | Circular | 20 | 0.1 | 4 | 1 | 215 | 45 |
| 126 | 2 | circular | 20 | 0.1 | 5 | 1 | 270 | |
| 135 | 2 | Circular | 20 | 0.1 | 1 | 1 | 85 | |
| 135 | 2 | Circular | 20 | 0.1 | 2 | 1 | 140 | |
| 135 | 2 | Circular | 20 | 0.1 | 3 | 1 | 200 | |
| 135 | 2 | Circular | 20 | 0.1 | 4 | 1 | 260 | |
| 135 | 2 | Elliptical | 20 | 0.1 | 1 | 1 | 330 | |
| 135 | 2 | Elliptical | 20 | 0.1 | 2 | 1 | 590 | |
| 149 | 2 | circular | 20 | 0.1 | 1 | 1 | 100 | |

Table I.- Typical execution times for EBF prediction program.

Figure 1.- General flow chart of program WNGFLP.

Figure 1.- Continued.

Figure 1.- Concluded.

```
PROGRAM MAIN (INPUT,OUTHUT,IAPESEINPUT,TAPEO=[IUTPUT,TAPEAJ
CUMM(IN FVN(27225)
CALL WNGFLP
STCP
END
```

SUBROUTINE WNGFLP
COMMON FVNPI)
05 CONTINUE
C
C

GOTO 1000
RETURN
END
WNG 00\%
NHG 043
WNG 160

WNG 161 WNG 175
WNG OOI

NHG 043

WNG 302
WNGA362
WNG 363

Figure 2.- Alternate card decks defining program MAIN and Subroutine WNGFLP.

Figure 3.- Vortex-lattice arrangement for EBF configuration of references 3 and 4 .

Figure 4.- Jet wake model boundary specification.

Figure 5.- Jet centerline specification in region near lifting surfaces.

ITEM 1 FORMAT (I5), 1 card
$\left.\frac{{ }^{2}{ }^{\text {NHEAD }}}{I}\right]^{6}$
ITEM 2 FORMAT (20A4), NHEAD cards

ITEM 3 FORMAT (6 F 10.0), 1 card

ITEM 4 FORMAT (I5), 1 card
$\left.\frac{1}{} \frac{1}{I}\right]^{8}$
ITEM 5 FORMAT (3F10.0), 1 card

ITEM 6 FORMAT (5I5), 1 card

(a) Page 1.

Figure 6.- Input forms for EBF prediction program.

ITEM 7 FORMAT (3F10.0,I5), MSW + 1 cards \quad NFSEG(I)

Omit item 8 if NTCW $=0$$\quad$ MSW sets of cards if NTCW $=1$ and NUNI $=1$

Omit items 9,10 , and 11 if NWREG $=1$. If NWREG >1, repeat items 9,10 , and 11 in sequence.
NWREG - 1 times
ITEM 9 FORMAT (2I5)

| 2 | IIN |
| :---: | :---: |
| I | IOUT |
| | 1 |

ITEM 10 FORMAT (3I5, 2F10.0)

Omit item 11 if NTCW $=0$
\{IOUT - IIN sets of cards if NTCW $=1$ and NUNI $=0$
ITEM 11 FORMAT (BFl0.0), NCW values, eight per card. (one set of cards if NTCW $=1$ and NUNI $=1$.

(b) Page 2.

Figure 6.- Continued.

ITEM 12 FORMAT (I5), 1 card
$\left.\right|^{\text {NFREG }}{ }^{6}$
amit items $13,14,15$, and 16 if $\operatorname{NFREG}=0$.
If NFREG >0, item $13,14,15$, and 16 are repeated in sequence NFREG times.
ITEM 13 FORMAT (3I5), 1 card

ITEM 14 FORMAT (415), 1 card

NOTE: More than one set of items 14,15 , and 16 may be required by NINREG on item 13.

ITEM 15 FORMAT (5Fl0.0), 1 card

ITEM 17 FORMAT (I5), 1 card
${ }^{1}{ }^{\mathrm{NRHS}} \mathrm{I}{ }^{8}$

$$
\text { Items } 18,19,20,21,22 \text { and } 23 \text { are repeated in sequence NRHS time. }
$$

ITEM 18 FORMAT (F10.0,6I5), 1 card

(c) Page 3.

Figure 6.- Continued.

Omit items 19,20,21 and 22 if KJET $=0$
ITEM 19 FORMAT (6I5), 1 card

| | | 1 | 0 | 21 | 28 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NHEAD | NJET | NCYL | NNUM | \|NPRINT | NCRCT |
| I | I | I | I | I | I |

ITEM 20 FORMAT (8Al0), NHEAD cards

Items 21 and 22 are repeated in sequence NJET times.
ITEM 21 FORMAT (5F10.5), 1 card

ITEM 22 FORMAT (7F10.5), NCYL cards

| 11 | | 31 | | 42 | 51 | 81 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XCLR (J, N) | YCLR (J, N) | ZCLR (J, N) | AJET (J, N) | BJET (J, N) | THETA (J,N) | DSFACT (J, N) |
| $\underline{-}$ | - F | - F | F | $\underline{\mathrm{F}}$ | - F | $\underline{\mathrm{F}}$ |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

Omit item 23 if NFPTS $=0$
ITEM 23 FORMAT (3F10.0), NFPTS cards

(d) Page 4.

Figure 6.- Concluded.

SAMPLE EBF CONFISURATION WITH 1 CIRCULA角 JET WAKE, 2 WING REGIONS, 2 SLOTTED ELAPA, AND 1 AILERON TYPE FLAP
ENGINE CENTERLINE FREE TO MOVE IN Y AND 2 DIRECTIONE, Z ITERATIONS SPECIFIED

| $\begin{gathered} 300.0 \\ 2 \end{gathered}$ | | 10:0 | | -5.0 | | 0.0 | | 0.05 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10,0 | | 20.0 | | 0.0 | | | | |
| 2 | 7 | 0 | 0 | 1 | | | | |
| 0.0 | | 24.2 | | 11.2 | | 0 | | |
| 2.5 | | 24.2 | | 11.3 | | 0 | | |
| 5.0 | | 24.2 | | 21.3 | | 0 | | |
| 9.0 | | 24.2 | | 11.3 | | 2 | | |
| 13.0 | | 24.2 | | 11.3 | | 0 | | |
| 15.5 | | 24.2 | | 11.3 | | 2 | | |
| 18.0 | | 24.2 | | 11.3 | | 0 | | |
| 20.0 | | 24,2 | | 11.3 | | 1 | | |
| $!$ | 3 | | | | | | | |
| 1 | 0 | 0 | 2.0 | | | | | |
| 2 | | | | | | | | |
| 2 | 3 | 6 | | | | | | |
| 1 | 0 | 0 | 0 | | | | | |
| 0.1 | | 1.5 | | 0.1 | | 1.5 | | 20.0 |
| 2 | 0 | 0 | 1 | | | | | |
| 0.1 | | 2.0 | | 0.1 | | 2.0 | | 40.0 |
| 1 | 7 | 8 | | | | | | |
| 1 | 0 | 0 | 1 | | | | | |
| 0.0 | | 1.2 | | 0.0 | | 1.0 | | 10.0 |
| $!$ | | | | | | | | |
| 10.0 | | 0 | 4 | 2 | 0 | 1 | 1 | |

(b) Sample case 2.

Figure 7.- Concluded.

(a) Planform view.

Figure 8.- EBF configuration for Sample case 2.

(b) Jet centerline detail.

Figure 8.- Concluded.

```
EGF AERODYNAMIE PREDICTION PRLGRAM
```

```
SAMPLE EGF CONFIGURATION WIYWI CIACULAR JET WAKE, 2 WING REGIONS,
    2 SLOTFED FLAFS, \(\triangle N D\) \& ALEERON TYPE FLAP
    ENGINE CENTERLINE FREE TO MOVE IN Y AND \(Z\) DIRECTIONS, 2 ITEHATIONS SPECIFIED
    REFERENCE GUANIITIES USED IN FOACE AND MOMFNT CALCULATION
    AREA \(=300.00000\)
    LENGTH \(\quad 10.00000\)
    MOMENT CENTFR
        \(\begin{array}{lll}X H & \quad 5 & 5.00000 \\ Z M & 0.00000\end{array}\)
WING INPUT UATA
    REGION NUMEER 1
        INBOARD EDGE CHOAD \(=10.00000\)
        \(\begin{array}{lll}\text { SEMISPAN } & & 20.00000 \\ \text { DIMFORAL ANGLE } & 0.00000\end{array}\)
        \(\begin{array}{ll}\text { SEMISPAN } & \quad 20.00000 \\ \text { DIHFORAL ANGLE } & 0.00000\end{array}\)
            14 VORTICES ARE TO BE LAID DUT IN THIS REGION
            7 SPANWISE BY 2 CHORDWISE
            SPANWISE LOCATIUNS OF THAILIAG VORTFX LEGS, SWEEP ANGLES OF
                WING SECTIUN TO THE GIGHT ANO NUMBEG UF FLAPS EEHIND THIS SECTION
                    SPANHISE LE SWEEP TE SWEEP NUMBER
            LOCAYION OFFLADS
                0.00000
                    2.50000
                                24.20000
24.20000
24.20000
24.20000
24.20000
24.20000
24.20000
                            11.300000
                    5.00000
.00000
                                24.20000
24.20000
24.20000
24.20000
24.20000
24.20000
24.20000
                                24.20000
24.20000
24.20000
24.20000
24.20000
24.20000
24.20000
                                \(11.30000 \quad 0\)
                                11.30000
                13.00000
                                24.20000
24.20000
24.20000
24.20000
24.20000
24.20000
24.20000
                    11.30000
                    11.30000
                15.50000
                                24.20000
24.20000
24.20000
24.20000
24.20000
24.20000
24.20000
                18.00000
                                24.20000
24.20000
24.20000
24.20000
24.20000
24.20000
24.20000
                    11.50000
                            11.30000
                                0
                        24.20000
                                    0
                    20.00000
                    9.00000
                    -
    REGTON NUMDER 2
            THIS REGIGIN EXTENOS FROM Y: 0.00000 TOY: 5.00000
            2 VORYICES ARE TO BE LAIO OUT IN THIS RFGION
            2 SPANWISE BY 1 CHORDWISE
        INBOARD SIDEFEDGE CHORS \(\quad 2.00000\)
        TRAILING EDGE SWEEP - 12.30000
```

 (a) Page 1 .
 Figure 9.- Sample output from
 EBF prediction program.

(b) Page 2

Figure 9.- Continued.

MCRSESHOE VORTEE PROPERTIES

| HORSESHOE VORTEX STREMETHS POR ALPHA E 10.0 DEGREES | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | GAMMA 1 |
| VORTEX NUMBER | -TE=*CONTROL | poifet coor | TEf0-0\% | - EEEXTERNALLY | INDUEED V | VELOCITIESma | |
| J | x 何(J) | YCP(J) | 2CP(J) | UEI(J) | VEI(J) | WEI(J) | |
| 1 | -4.19477 | -1.25000 | 0.00000 | . 00343 | -. 01297 | . 00266 | 3.48552 |
| 2 | -9.03877 | -1.25000 | 0.00000 | . 00970 | -. 00891 | .00183 | 1.78442 |
| 3 | -11.74977 | -1.25000 | 0.00000 | . 01256 | -.00424 | .00087 | . 31417 |
| 4 | -5.08432 | -3.73000 | 0.00000 | . 00635 | -02111 | .00582 | 3.63964 |
| 5 | -9.61012 | -3.75000 | 0.00000 | . 01481 | -.01451 | .00400 | 1.89226 |
| 6 | -12.24932 | -3.75000 | 0.00000 | . 01996 | 0.00756 | .00209 | .11296 |
| 7 | -6.24073 | -7.0000.0 | 0.00000 | .01442 | . .03782 | .08891 | 3.75950 |
| 8 | -10.36714 | -7.00000 | 0.00000 | . 02443 | .. 03002 | .01501 | 2.45213 |
| 9 | -9.66400 | -11.00000 | 0.00000 | .01937 | 0.00000 | .09614 | 3.58566 |
| 10 | -12.29121 | -11.00000 | 0.00000 | . 03409 | 0.00000 | .09149 | 3.18416 |
| 11 | -8.82041 | -14.25000 | 0.00000 | . 02065 | . 03878 | .02386 | 3.51225 |
| 12 | -12.04203 | -14.25000 | 0.00000 | . 03483 | .03105 | . 01910 | 2.28995 |
| 13 | -9.70996 | -16.75000 | 0.00000 | . 01824 | . 02.063 | .00718 | 2.97452 |
| 14 | -12.61958 | -16.75000 | 0.00000 | . 02677 | . 01118 | .00396 | 1.25389 |
| 15 | -10.51055 | -19.00000 | 0.00000 | . 01480 | .01031 | . 00238 | 2.08460 |
| 16 | -13.1393\% | -19.00000 | 0.00000 | . 02880 | .00288 | .00072 | .63825 |
| **********REGION I FbAP 2 DATA ********** | | | | | | | |
| VORTEX NUMEER | -- = - CONPROL | POINT COOR | E8-000 | -P-EXTERNALLY | INDUEED V | VELOCITIESO* | GAMMA / V |
| J | x (${ }^{\text {P }}$ (J) | YCP(J) | ECP(J) | UEI(J) | VEI(J) | WEI(J) | |
| 17 | -12.55589 | -9.00000 | | $.03556$ | -. 02501 | . 01010 | |
| 18 | -13.35517 | -11.00000 | 38477 | -2.09582 | 0.00000 | -10771 | $5,01915$ |
| 19 | -14.00436 | -14.25000 | .38477 | .05181 | . 02375 | .01180 | 1.78761 |
| | | | | | | | |
| VORTEX NUMBER | --**-CONPROL | POINT COOR | -80*** | POTEXTERNALLY | INOUCED V | VELOCITIES** | GMMMA /V |
| J | $x \in P(J)$ | YEP(J) | 2CP(J) | UEI(J) | VEI(J) | WEI(J) | |
| 20 | -13.57678 | -7.00000 | $1,02932$ | $.04382$ | -. 02219 | $.00536$ | $.88186$ |
| 21 | -14.34282 | $=7.00000$ | 1.67211 | $.05121$ | 0.01711 | 100140 | $.28264$ |
| 22 | -14.37606 | -11.00000 | 1.02932 | -1.96547 | 0.00000 | . .06417 | 2.72557 |
| 23 | -15.14210 | -11.00000 | 1.67211 | -1.87086 | 0.00000 | -.02339 | . 83326 |
| 24 | -15.02547 | -14.25000 | 1.02932 | 006677 | .01761 | . 00520 | .79789 |
| 25 | -15.70152 | -14.25000 | 1.67211 | .08034 | .00642 | .00065 | .22293 |
| | | | | | | | |
| VORTEX NUMBER | -®-EEENTROL | POINT COOR | TE800\% | - EEEXTERNALLY | INDUCED V | VELOCITIESEm | Gamma/v |
| J | $x \in P(J)$ | YCP(J) | ZCP(s) | UEI(J) | VEI(J) | WEI(J) | |
| 26 | -14.60904 | -19.00000 | .14326 | .08048 | 0.00291 | . .00068 | . 35480 |

(e) Page 5 .

Figure 9.- Continued.

AEHOUYNAMIC LOADING RESULTS FOH ALPHA $=10.00$ DEG.

REFELENCE OUANTITTES

| MING GPAN, E AREA | LENGTH | |
| :---: | :---: | :---: |
| 40.00000 | 300.00000 | 10.00000 |

SPANWISE LOAD DISTRIBUTIUNE

| CTATIGN | Y/(8/2) | LOEAL CHORD, C | CNORM*C/(2*日) | CNORM | Ca |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -.06250 | 11.0880 | .14232 | . 9741 | -. 0968 |
| 2 | -.18750 | 11.0640 | .01709 | . 1236 | 0.1396 |
| 3 | -. 35000 | H.2520 | .13704 | 1.3255 | -. 1879 |
| 4 | -. 55000 | 7.2544 | .14325 | 1.5797 | -.1224 |
| 5 | -.71250 | 6.4432 | .13033 | 1.6181 | $\cdots .2780$ |
| 6 | -.83750 | 5.8192 | .10819 | 1.4874 | -.3107 |
| 7 | -.95000 | 5,2576 | . 06531 | .9937 | -. 2366 |

| | *** REs | $\begin{aligned} & \text { LeLAP } \\ & \text { LOCAL } \end{aligned}$ | ********* | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| station | $\mathrm{Y} /(8 / 2)$ | CHORD, C | CNOHM*C/(2*日) | CNURM | CA |
| 1 | -. 35000 | 1.5000 | . 10908 | 5.8178 | . 6504 |
| 2 | -.55000 | 1.5000 | .32688 | 17.4337 | -5.2994 |
| 3 | -. 71250 | 1.5000 | .12405 | 6.6160 | . .6557 |

| STATION | Y/(8/2) | CHORD, C | CNORM* $\mathrm{C} /(2 * B)$ | CNORM | CA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . .35000 | 2.0000 | .04614 | 1.8455 | . .0140 |
| 2 | -. 55000 | 2.0000 | 18897 | 7.5588 | . 0918 |
| 3 | -.71250 | 2,0000 | .06005 | 2.4021 | . .0088 |

CIMPLETE CONFIGURATIUN PURCE AND MOMENT COEFFIEIENTE

(f) Page 6.

Figure 9.- Continued.

| $\begin{aligned} & Y /(8 / 2) \\ & -.06250 \end{aligned}$ | $\begin{aligned} & \text { CHORO. } C \\ & 11.68800 \end{aligned}$ | DELTA | $\begin{aligned} & x / e n \\ & \text { P/O: } \end{aligned}$ | $\begin{array}{r} .10361 \\ 1.42433 \end{array}$ | $\begin{array}{r} .51805 \\ .89042 \end{array}$ | $\begin{array}{r} 87166 \\ .25868 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.18950 | 11.06401 | dELTA | $\begin{aligned} & x / C= \\ & P / O= \end{aligned}$ | $\begin{array}{r} .10240 \\ 1.56002 \end{array}$ | $\begin{array}{r} .51202 \\ 1.15175 \end{array}$ | $\begin{array}{r} .86443 \\ -10.31161 \end{array}$ |
| -. 35000 | 8,25281 | DELTA | $\begin{aligned} & x / C= \\ & \text { P/OE } \end{aligned}$ | $\begin{array}{r} .12500 \\ 1.68456 \end{array}$ | $\begin{aligned} & .62500 \\ & .81426 \end{aligned}$ | |
| -. 55000 | 7.25442 | DELTA | $\begin{aligned} & x / C= \\ & P / Q= \end{aligned}$ | $\begin{array}{r} .12500 \\ 1.82440 \end{array}$ | $\begin{array}{r} .62500 \\ 1.15559 \end{array}$ | |
| 0.71250 | 6.44323 | DELTA | $\begin{aligned} & x / C= \\ & p / 0= \end{aligned}$ | $\begin{array}{r} .12500 \\ 2: 06625 \end{array}$ | $\begin{array}{r} .62500 \\ 1.11764 \end{array}$ | |
| -.83750 | 5.81923 | OELTA | $\begin{aligned} & x / C= \\ & P / O= \end{aligned}$ | $\begin{array}{r} .12500 \\ 1.91215 \end{array}$ | $\begin{array}{r} .62500 \\ 1.27870 \end{array}$ | |
| . 9.95000 | 5.25704 | DELTA | $\begin{aligned} & x / C z \\ & P / G z \end{aligned}$ | $\begin{array}{r} .12500 \\ 1.54649 \end{array}$ | $\begin{array}{r} .62500 \\ .41007 \end{array}$ | |
| ********** RESION1 FLAP 2 ********** | | | | | | |
| $\begin{array}{r} Y /(8 / 2) \\ -.35000 \end{array}$ | $\begin{array}{r} \text { CHORD, } \\ 2.00000 \end{array}$ | DELTA | $\begin{aligned} & x / C z \\ & p / O= \end{aligned}$ | $\begin{array}{r} .12500 \\ 4.01272 \end{array}$ | $\begin{array}{r} .02500 \\ 2.06894 \end{array}$ | |
| -.55000 | 2.00000 | DELTA | $\begin{aligned} & x / C= \\ & P / Q= \end{aligned}$ | $\begin{array}{r} .12500 \\ 11.18092 \end{array}$ | $\begin{array}{r} .62500 \\ 2.84862 \end{array}$ | |
| 0.71250 | 2.00000 | DELTA | $\begin{aligned} & x / C= \\ & P / Q x \end{aligned}$ | $\begin{array}{r} .12500 \\ 5.29840 \end{array}$ | $\begin{array}{r} .62500 \\ 3.00024 \end{array}$ | |
| ********** REGION 2 FLAP 1 ********** | | | | | | |
| $\begin{aligned} & Y /(8 / 2) \\ & -.95000 \end{aligned}$ | $\begin{array}{r} \text { CHORD, C } \\ 2.81000 \end{array}$ | oelta | $\begin{aligned} & x / C= \\ & p / 0= \end{aligned}$ | $\begin{array}{r} .25000 \\ 14.37054 \end{array}$ | | |

gTERATION 1
(g) Page 7.

Figure 9.- Continued.

WIng/flap amd jet induced perturgation velocities on the jet centerline

HURSESHOE VORTEX BTRENGTHS FOR ALPHA : 10.0 DEGREES

(i) Page 9 .

Figure 9.- Continued.

AEHPLYNAMIC LTAOING FPSILTS FTNG ALPHAE 10.00 DEG.

REFERENCE Quantities
WING SPAN, AREA LENGTH $40,00000 \quad 300,00000 \quad 10,00000$

SPANWISE LIAD DISTRIBUTIONS

| station | Y/(B/2) | GOCAL CHORD, | CNORH*C/(2*日) | CNORM | CA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -.06250 | 11.6880 | .12773 | .8742 | . .0843 |
| 2 | -. 18750 | 11.0640 | . 02710 | .1960 | -.1202 |
| 3 | -. 55000 | 8.2528 | .12099 | 1.1728 | -1.1626 |
| 4 | -. 55000 | 7.2544 | .11770 | 1.2979 | -.1310 |
| 5 | -.71250 | 6.14432 | .11973 | 1.4370 | -.2113 |
| 6 | -. 83750 | 5.8192 | .09185 | 1.2627 | -.2375 |
| 7 | -. 95000 | 5.2576 | . 05699 | . 8672 | 0.1860 |
| | | | | | |
| STATIUA | Y/(8/2) | CMORO, ${ }_{\text {LOCAL }}$ | CNORM*C/(2*B) | CNORM | CA |
| 1 | -. 35000 | 1.5000 | . 08871 | 4.7312 | -. 5618 |
| 2 | 0.55000 | 1.5000 | . 18789 | 10,0206 | -2,3514 |
| 3 | -.71250 | 1,5000 | . 09265 | 4.9415 | -. 4871 |
| ********** RESION 1 PLAP 2 ********** | | | | | |
| | | LOCAL | | | |
| 8TATIUN | Y/ $8 / 29$ -.35000 | CHORD, 2.0000 | CNURM*C/(2*B) .03752 | CNORM 1.5008 | CA -100 |
| 2 | . .55000 | 2.0000 | .10717 | 4.2869 | -. 0021 |
| 3 | . .71250 | 2.0000 | ,0483! | 1.9325 | -.0051 |
| ********** REGION 2 FLAP 1 ********** | | | | | |
| | | LOCAL | | | |
| statiun | Y/($8 / 2)$ | CHORD, ${ }^{\text {c }}$ | CNDHM* C/ (2*B) | CNORM | C4 |
| 1 | . 95900 | 1.1000 | .07920 | 5.7600 | . .0755 |

INRIVIDUAL FLAP FORCE aND MOMENT COEFFICIENTS AND LOEATIONS AT WHICH fGGCES ACT

| | | Viounl | (Flap coo | INATE srs | ICIENTS
 - Pla口 | | $\begin{gathered} \mathrm{WH} \\ \mathrm{NE}] \end{gathered}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| REGION | FLAP | CNF | xF (CNF) | YF (ENE) | CAF | YF(CAF) | CYF | xF (CyF) | CHF |
| 1 | 1 | .45338 | -1.61431 | -4.92468 | -. 06450 | -5.622! 7 | -.03880 | -2.59432 | $\cdots .03083$ |
| 1 | $?$ | .22762 | -1.38178 | -4.62052 | -.08583 | -5.59633 | -. 04006 | -3.97295 | -. 02531 |
| 2 | 1 | .18015 | . .87449 | -.03763 | -. 00055 | -1.00060 | -, 00622 | -1.15852 | -.00682 |

COMPLETF CQNF!GURATION PORCE ANO MOMENT COEFPICIENTS
(HING COONDINATE EYETEM)

(j) Page 10.

Figure 9.- Continued.

Y/CB/2). CHORD, C
$0.05000 \quad 2.81000$ X/C日 $\quad .25000$

ITERATION

WING/FLAP ANO JET INOUCED PERTURBATION VELOGITIES ON THE JET GENTERLINE

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22161

[^1]: gushoutine meglat
 inis suardutine reads in the ming input data and bays out the ung vortex battice
 cummon gtatementi
 CUMMDN TPOLRMC/ TOL
 COMMON TREPOUA, BAMAN, BREF, BEPL,Xh,ZM

 CaLPhL(250), BALPML(250)
 COKMDN ITLOATY XTEM(30), XTEL(30), XPLR(250),YTLR(230),2TLR(290):

