
A THEORETICAL ANALYSIS OF THE CURRENT-VOLTAGE
 

CHARACTERISTICS OF SOLAR CELLS
 

(NASA-CR-148827) A THEORETICAL II'ALYSIS OF N76-32648 
THE CURRENT-VOLTAGE CHARACTERISTICS OF SOLAR 
CELLS Annual Report (North Carolina State 
niv.) 98 p HC $5.00 CSCL 10A Unclas


G3/44 03473
 

Annual Report on
 

NASA Grant NGR 34-002-195
 

NASA Lewis Research Center
 

August 1976
 

P. M. Dunbar and J. R. Hauser
 

\WS 

Semiconductor Device Laboratory 5 
Department of Electrical Engineering \ 

North Carolina State University '4>. 
Raleigh, North Carolina 27607 



A THEORETICAL ANALYSIS OF THE CURRENT-VOLTAGE
 

CHARACTERISTICS OF SOLAR CELLS
 

Annual Report on
 

NASA Grant NGR-34-002-195
 

NASA Lewi§ Research Center
 

August 1976
 

P. M. Dunbar and J. R. Hauser
 

Semiconductor Device Laboratory
 
Department of Electrical Engineering
 

North Carolina State University
 
Raleigh, North Carolina 27607
 



i 

ABSTRACT
 

This report summarizes work performed-during the past twelve
 

months under NASA Grant NGR 34-002-195, entitled A Theoretical
 

Analysis,of the Current-Voltage Characteristics ofSolar Cells. The
 

overall objective of the work is to identify the various mechanisms
 

which limit the conversion efficiency of silicon solar cells. This
 

is being accomplished by means af a computerized semiconductor device
 

analysis program which gives a complete numerical solutionof the
 

generalsemiconductor device equations including excess carrier
 

generation due to the full'spectrum solar irradiance.
 

The first major area of study-concerns the effects of changes in
 

solar cell geometry such as layer thickness on performance. In general
 

it has been found that BSF cells can be reduced in total thickness to
 

the range of 50 pM - 100 UM without a severe loss in conversion
 

efficiency. In fact a slightly improved efficiency was found for cell
 

thicknesses around 100 UM - 150 VM ifback surface reflection of
 

light -,occurs.
 

The effects of various antireflecting layers have been studied.
 

It is found .that.any single film antireflecting layer still results in
 

a significant-surface loss of photons. The use.of surface texturing
 

techniques or low loss antireflecting layers can enhance by several
 

percentage points the conversion efficiency-of silicon cells. 

The basic differences between n -p-p and p+-nn cells have been 

studied. In ,generalthe conversion efficiencies of these two types 

of cells are found to be somewhat equal. The n -p-p cell has a slightly 
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higher conversion efficiency for equal doping levels if the diffusion
 

length for holes is one-half or less of the diffusion length for
 

electrons. If electrons and holes had equal diffusion lengths, the
 
+ + 
p -n-n cell would have a plightlyhigher conversion efficiency.
 

A significant part of the study has been devoted to the importance
 

of surface region lifetime and heavy doping effects on efficiency.
 

These effects have been found tobe somewhat interrelated with the importance
 

of heavy doping bandgap reduction effects being enhanced by low surface
 

layer lifetimes. Conversely, the reduction in solar cell efficiency due to
 

low surface layer lifetime is further enhanced by heavy doping effects.
 

Finally a series of computer studies are reported which seek to
 

determine the best cell structure and doping levels for maximum efficiency.
 

Beginning with a fairly standard 10 O'cm cell with an efficiency of
 

slightly less than 15%, various modifications are discussed which improve
 

the efficiency to approximately 20%. The most important of these changes
 

are an improved p-p+ BSF structure, an optimized base layer doping, and a
 

low loss antireflecting layer.
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1. INTRODUCTION
 

1.1 Objectives of Current Work
 

The overall objective of the current work is-to c6ntinue the
 

identification and characterization of various mechanisms which tend
 

to limit the conversion efficiency of silicon solar cells. This
 

includes the study of various geometric variations on the basic
 

three layered structure as well as more complex modifications which
 

involve tailored doping profiles and four layered structures.
 

As in past work, the results presented in this report represent
 

the results of a complete computer simulation of the solar cell.
 

The attempt is made to formulate a complete theorectical description
 

of a solar cell through a solution of the fundamental device equations,
 

including an external generation rate calculated from tabular infor­

mation regarding the incident light spectrum, reflection, and the
 

optical properties of the solar cell material. Included within the
 

solution are such phenomena as drift and diffusion current components,
 

doping and field dependent mobility, non-uniform doping profiles, and
 

band gap reduction models due to heavy doping effects. Subsequently
 

the accuracy and completeness of the solutions presented in this
 

report are limited only by the accuracy of contemporary empirical
 

measurement and the realization and understanding of the various
 

subsidiary modeling of second order effects. A detailed discussion
 

of the device modeling and computer analysis program have been presented
 

elsewhere [Dunbar and Hauser (1975)].
 

Recent developmentsin solar cell devices have, through textured
 

surfaces and reflecting high-low'junctions, increased the short circuit
 

current to closely approach values predicted theoretically. However,
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the open circuit voltages obtained experimentally still fall below
 

the various theoretical predictions of what is possible. An investi­

gation of various phenomena which could be the source of these
 

discrepancies forms a major portion of this report.
 

In addition; many geometric variations of the solar cell structure­

are investigated. These include rather straightforward studies of
 

region width modification in the basic three layered structure and
 

several of the various two, three and f6ur layered structures which
 

have been recently proposed. A special emphasis is placed upon the
 
+ + + + 

major differences between the n -p-p and p -n-n polarity solar
 

cells due to postulated differences in band gap reduction and lifetime
 

magnitudes. Also studies are -shown for Various antireflectior layers, with a 

particular enphasis upon "non-reflective" coatings.
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1.2 Review of Prior Work 

Prior grant periods have been concerned with an extensive analysis
 

and computer simulation of silicon solar cells. The objective of this
 

section is-to review and summarize the results of that work 'andthe
 

work of others which have occurred in the same time frame and point out
 

those results which have strong relevance to the present study. For the,
 

+ 
most part this work was concerned with the operation of both n -p and
 

+ + 
n -p-p solar cells of varying base resistivity. The general objective 

was to identify those physical mechanisms which limit the conversion 

efficiency. 

Figure 1.1 displays the efficiencies of silicon cells as a function 

of base resistivity. The structural features of the cells are tabulated 

in Table 1.1. It is to be noted 	from the table that these are all 250
 
0
 

pM thick solar cells with an 800 	A SiO antireflection layer. For the
 
+ + 	 + 

n -p-p structure, the back surface p region is -5 M in width and doped 

to 10 /am . As seen in the figure the efficiency peaks at about 0.3
 
+ +
 

ohm-cm for the n -p-p solar cell and at a slightly lower resistivity for
 

,. + 	 + +­
- the n -p cell. Generally the n -p-p solar cell resulted in higher 

+ 
efficiencies than the n -p solar cell and gave increases in both the 

open circuit voltage and the short circuit current.
 

However, at very low base- resistivities no difference was found
 

bewe h + + +
 
between the n -p and n -p-p structures due to the reduction of the p
 

region diffusion length to a value below the p region width. -At these
 
+ 

low base resistivities injection of holes into the n surface region is
 

also a significant fraction of the total forward dark current. This
 

effect counteracts any increase in open circuit voltage expected from a
 

reduction of center region p type base resistivity. This hole component
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Figure 1.1 Solar cell efficiency as a function of base resistivity (See Table 1.1). 



5 

Table 1.1 Material and Dimensional Parameters of Solar Cells Anaiyzed"
 
in Past Work.
 

Overall Cell Thickness 250 jiM
 

+ 
n Thickness 0.25 pM
 

+
p Thickness (n+-p-p cell) 	 5.0 PM
 

1020/cm3
 n Surface Concentration 


p Doping Concentration 	 Variable
 

10 19/cm 3
 p Doping Concentration 

+ 

Lifetimein n Region 100 nsec, 1 nsec
 

Lifetime in p Region Iles (1975)
 
+ 

Lifetime in p Region Iles (1975)
 

Surface Recombination Velocity 103 cm/sec
 

0 
Antireflection Layer 	 800 A, SiO
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of forward dark current (so called back injection component) is dependent
 

+ 
upon the characterization of the n. surface region with respect to
 

heavy doping effects and lifetime. Figure 1.1 for example indicates
 

the large reduction in-efficiency for a surface region that has-a life­

time of 1 nsec. Subsequently it .isclear that this back injection
 

component can form a major limitation to solar cell conversion efficiency.
 

Furthermore, its magnitude limits conversion efficiency gains as a
 

result of high doping densities and/or geometric variations on the base
 

+ 
p and back p regions.
 

The selection of the lifetime values of 1 nsec and 100 nsec in the
 

surface region are somewhat arbitrary. For lifetimes below 100 nsec the
 

resulting calculations are quite lifetime dependent. For example. Fossom's
 

analysis at Sandia (1975) produces results comparable to experimental
 

data only by including a sub nanosecond surface region lifetime (no heavy
 

doping effects). On the other hand work by Brandhcrst (1975) which
 

included heavy doping effects (via Van Overstraeton) obtained a reasonable
 

data match with higher lifetimes but with -an anomolous diffusion profile.
 

However, virtually all of the past work in this regard must be viewed
 

with the realization that both the lifetime and the magnitude of band
 

gap reduction in heavily doped diffused silicon exhibit a large range of
 

uncertainty. This5 when coupled with the possibility that the effects
 

of band gap reduction and low lifetime cannot be accurately superimposed
 

due to interactive ,effects allows room for much speculation is to the
 

dominant mechanism limiting solar cell efficiency for low resistivity
 

cells.
 



7 

It was also found that the mechanisms which limit the conversion 

efficiency are not-the same over the entire range of proposed base 

resistivitiese As can be seen from Figure 1.1 low surface region life­

time has little effect upon higher resistivity solar cells (greater
 

'than10 ohm-cm)0o The major factors which come into play in this range
 

are high injection phenomena both at the injecting and reflecting
 

junction. For reasons such as this, the picture of solar cell operation
 

has been broken down into three-fairly distinct regions based upon base
 

resistivity. The low resistivity region (below about 1 ohm-cm) can
 

be characterized by phenomena such as band gap reduction due to heavy
 

doping effects in the surface region and short diffusions lengths both
 

in the surface and base regions. These have major consequences in the
 

surface region and reduce the conversion efficiency to below what is
 

obtained by the usual first order analysis. On the other hand there is­

a high resistivity region (above about 10 ohm-cm) where these same
 

phenomena do not have significant effects-. In this region, high
 

injection effects tend to reduce the conversion efficiency to levels
 

beiow that expected by first order models due to a reduction of the
 

curve factor. In the center region of resistivity (between 1 and 10
 

ohmrcm) the operation of the cell is relatively simple in that it can
 

be quite adequately described by models which include only first order
 

mechanisms since back injection, high injection phenomena, and heavy
 

doping effects are notsignificant.
 

It is quite convenient to break solar cell conversion efficiency
 

down into the constituent components of open circuit voltage, curve
 

factor, and short circuit current. The dependences of these quantities
 

on base resistivity are illustrated in Figures 1.2 thru 1.4 respectively.
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In viewing theopen circuit voltage,-the three regions of operation
 

described above are quite apparent. In the low resistivity region the.
 

open circuit voltage tends to saturate due to the predominance of the
 

back injection component. An additional decrease is due to the reduction
 

of the collection efficiency. The peak value of open circuit voltage
 

is dependent upon surface region lifetime as seen in the figure. In
 

addition, depletion region currents can become significant which tends
 

to suppress the open circuit voltage even further. The existence-of the
 

depletion region components can be verified by the reduction in curve
 

factor seen in Figure 1.3. The center region of resistivities is
 

characterized by the expected dependence of open circuit voltage upon
 

base resistivity and also relatively constant curve factors. The
 

high resistivity region on the other hand illustrates relatively
 
+ + 

constant open circuit voltages for the,n -p-p cell but a sharp decrease
 

in the curve factor due to high injection phenomena. Note also that 

there is a slight reduction in short circuit current due to resistiv ­

drops in the lightly doped center region.
 

Summarizing, it is seen that the most promising area for high
 

efficiency solar cells is the low resistivity (about 0.3 ohm-cm)
 

+ + 
n -p-p structures. However, to realize the enhanced.efficiencies­

afforded by this structure means must be found to minimize the relative
 

magnitude of the back injection component. Without this, further gains.
 

which can be postulated through-reductions of the forward electron
 

component will be nullified.
 



12 

2. GEOMETRIC VARIATIONS
 

2.1 Objectives
 

The current state of conventional silicon solar cell desi'gnincludes
 

a realization that.significant improvements-in conversion efficiency will
 

come only from increases in the open circuit voltage. Optimization of.
 

other parameters, although still possible, will not significantly improve
 

the current solar cell (Brandhorst, 1975). Consequently the major
 

orientation of this section is.to view methods by which the open circuit
 

voltage can be increased. Given a fairly constant short circuit current,
 

the open circuit voltage is determined by the forward dark characteristics
 

of the solar cell. This forward characteristic is made up of three
 

major components, each of which must be minimized. The first of these
 
+ 

is the injection of electrons from the n surface region into the p-type
 

base region. This component has-been reduced thus far through the use
 

of a n -p-p+ structure with optimum values for base resistivity and high­

low junction interaction. However, further improvements can be obtained
 

through the narrowing otthe p region width. This is the topic of.the
 

following section. The most serious tradeoff- in this technique is
 

the loss of short circuit current due to short optical path lengths.
 

However, if total optical reflection at the back surface of the solar
 

cell occurs, this tradeoff does not become quite as critical. This
 

section assumes total optical reflection at the,back surface through
 

a "two pass" model. The details of the inclusion of this model are
 

discussed in Section 3.1.
 

The other.component of forward current is that of hole injection
 
+ 

into the n surface region from the p-type base region. Normally, due
 

to heavy doping levels within the surface region this component can be
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neglected. However, with reduced electron-injection into the base a-yer
 

the neglect of this back injection component is not valid. Further
 

reductions of electron injection makes this component dominant. The
 

back injection current component is dependent upon the lifetime and band
 

gap shrinkage within the surface region. There is a large range of
 

uncertainty as to the magnitude of both of these parameters. Nonethe­

less, a relative reduction of this current component can result from a
 

reduction of.the width of the region. Section 2.3 discusses the effects
 

of such a reduction in width, with a particular emphasis upon-improvements
 

which may be gained for the extreme case of low surface region lifetime.
 

Heavy doping effects are included throughout this report by means of an
 

empirical model for band gap shrinkage [Hauser (1969)]. This model
 

produces results between the extremes of "effective doping" as predicted
 

by van Overstraeton (1973) and Mock (1973).
 

The third component of forward current is that of depletion region
 

recombination. This component is a strong function not-only of the
 

magnitude of the lifetime but also of its spatial-dependence; Subsequently,
 

further discussion of this current component is included in the section
 

which treats spatial lifetime models.
 

The cells discussed in this chapter are for the most part 0.3 ohm-cm
 

+ + 
n -p-p solar cells. The complete information on the cells is tabulated
 

in Table 2.1. Note that these cells include total optical reflection at
 

the back surface and a 5 percent "non-reflecting" film. Consequently
 

the efficiencies and open circuit voltages are somewhat higher than
 

those of the prior chapter. The detailed information on the improvements
 

in performance due to the two pass optical model and a nonreflective film
 

are discussed in Section 3. Other than the optical nature of the cells,
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Table!2.1. Characteristics of Solar Cells Analyzed in Chapter.2.
 

n+ Region Thickness 0.25 pM 

,p Region Thickness Variable 

+ 
p .Region Thickness 5 PM 

+ 
n Surface Concentration 

210 20/cm2 

p Region Resistivity 0.3 Qcm 

p+ 'DopingConcentration 1019/cm3 

* + 
Lifetime in n Region 100 nsec 

Lifetime in p Region 65 sec 

Diffusion length in p region 340 1M 
+ 

Lifetime in p region 0.37 psec 

Surface Recombination Velocity 103cm/sec 

Antireflection Layer "5% film" 

Irradiance Conditions AMO 
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the center p-type ,base region width, and the specification of center
 

p-type resistivity these cells are identical.to those.,of the past work
 

outlinea in the prior chapter.
 

2.2 Base Region Width
 

The width of the base region of 0.3 ohm-cm n+-p-p+ solar cells 

was varied to determine -the effect of such a.variation on the overall 

conversion efficiency. A high lifetime in the n + surface region was 

selected in order to minimize the effects of back injection into the 

n surface region so that optimization of the conversion efficiency 

based upon the resulting reduction of electron injection into the center
 

p-type base region could ,be isolated.
 

Figure 2.1 indicates the .resulting dependence of the total forward.
 

dark current at 0.7 v forward bias upon the center region width. As
 

expected, the total current decreases with a decrease in region width.
 

The first order analysis indicated in the figure neglects hole injection
 

into the surface region and depletion region current. However, if these
 

current components'as calculated from the complete analysis are added to
 

the first order results, a more reasonable match is obtained as shown
 

by,the dashed curve. Nonetheless, the exact analysis still indicates
 

not only a larger current density but also a non-linearity. This could
 

be due to the Methods by which center region recombination and high-low
 

junction reflection are approximated in the first order methods. However,
 

these first-order results follow very closely those of Godlewski (1973)
 

whosemethods of including base recombination are quite accurate. At
 

0.-7 V forward bias, the magnitude of.the total hole-current flowing into
 

the surface and depletion region: amounted to 18 mA/cm
22 . This value is.
 

independent of p region width. It should be realized that these-results
 

http:identical.to
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+ 
are for a rather ideal n surface region in that the lifetime is taken
 

as a constant 100 nsec. Even under these conditions this current
 

component is significant.
 

Figure 2.2 illustrates the dependence of the open circuit voltage
 

on p regionwidth for these cells. As expected, the open circuit voltage
 

increases with decreasing device width. However, the values are below
 

what is expected from first order analysis (dashed curve) due again to
 

the neglect of the injection of carriers into the surface region and
 

+ 
the n -p depletion region current. However, as can be seen from the
 

figure, the curve resulting from a correction due to those hole com­

ponents, the magnitudes of which are obtained from the complete analysis,
 

is still more optimistic that the complete analysis. This is the same
 

discrepancy seen in the prior figures regarding the dark characteristics.
 

Figure 2.3 illustrates the resulting conversion efficiencies for
 

these solar cells. .-As can be seen, the efficiency peaks at a cell
 

thickness of about 150 IiM. The reduction of efficiency at the wider
 

device lengths is due to the reduction in open circuit voltage. The
 

diffusion length for this base resistivity is taken as.340 PM indicating
 

that recombination effects should not be appreciable in this range of
 

base widths. At narrower base region widths the reduction in efficiency
 

is due primarily to the reduction in short circuit current. The decrease
 

in efficiency for very narrow base widths however may not be as severe in
 

actual devices as indicated by Figure 2.3 since the model utilized dpes.
 

not include additional photon passes due to internal reflection at the
 

irradiated surface.
 

The results of first order models are also illustrated in Figure
 

2.3. These were calculated using curve factors of 0.84. This value
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agrees quite well with the exact Value which did not change significantly
 

over the range of device widths.studied. The overall discrepancy between
 

the two sets of results is twofold. For one, -the first order model for 

the short circuit current as a function of device width.neglected
 

recombination and diffusion effects due to the non-linear generation rate.
 

Using the results of the complete analysis to correct for this,: results
 

in the corrected curve-marked.in the figure. Secondly, the first order
 

model neglected hole currents injected into the surface region. Again
 

using the results of the complete analysis to correct for this effect,
 

it can be-seen-that very close agreement is obtained. Subsequently it
 

can be concluded that narrow base region n+-p-p + solar cells with-b'&ck
 

surface reflectance can be fabricated without any loss of conversion
 

efficiency. Recent work by Michel°-et al. (1975) donfiri the'con­

clusions made in this section.
 

2.3 Surface Region Widths
 

The prior section discussed improvements poss-ible in solar cell
 

performance by a.reduction of the electron injection into the center
 

+
p-type base region. However, that work was performed with an n surface 

diffused region which was optimistically characterized with respect to 

lifetime. With a non-optimum lifetime characterization i.e. 1 nsec, ­

there is a sharp reduction in open circuit voltage and consequently 

the overall efficiency due to the dominance of hole injection into the 

±
 
n surface diffused region. Subsequently this section discusses the
 

reduction of this hole component through a narrowing of the surface
 

region width. For the most part calculations are made for the low
 

lifetime case since a modification of the region width has little effect
 

for the higher lifetime case. In addition, the cells studied are those
 

http:curve-marked.in
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of 100 pM center base region width since this prodices an optimum
 

case as discussed in the prior section. Thus the cells have the
 

characteristics of Table 2.1 except for surface region lifetime (U nsec),
 

center region width (100 VM), and surface region width (variable).
 

Figure -2.4 illustrates the total value and hole component of dark
 

±
 
forward current density as a function of n region width. Also.included
 

in the figure is comparison data for the same cells with a 100 nsec
 

+ 
region lifetime. From this it can be seen that the n region width
 

reduction results in-a substantial reduction in the hole current density
 

for the low lifetime case but very slight reductions for the high life­

time case. These significant reductions have direct effects upon the
 

open circuit voltage as seen from Figure 2.5. The point of major
 

interest is that narrow surface region widths can be effective in com­

pensating for the effects of low surface regi6n lifetime.
 

Figures'2.6 and 2.7 illustrate the dependence of short circuit current
 

and curve factors upon the region width. The increase in the curve factor
 

could be due to a reduction of the depletion region current component as
 

the diffused region width is narrowed. This would occur for a constant
 

+
surface concentration since the n depletion region width would be narrowed.
 

This cannot be readily verified quantitatively since-there is .nbwell
 

defined depletion region edge in the exact simulation.
 

.oThe.resulting efficiencies of these cells is illustrated in Figure
 

2.8. These results make it quite apparent that the reduced width can be
 

effective in increasing efficiency for the low lifetime case. However,
 

for-n region lifetimes below 1 nsec, the surface region width necessary
 

to produce signigicant changes may be prohibitively narrov for con­

temporary processing capabilities
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All of the prior results were performed with a surface recombination
 

velocity of '1000 cm/sec. However with a narrow surface regi6n the
 

dependence of the results on this parameter becomes more critical. For
 

example Figures 2.5 and 2.8 indicate the effects of raising the surface
 

recombination velocity to 5000 cm/sec (isolated data points). It can
 

be seen from Figure 2.8 that there is a larger reduction in conversion
 

efficiency for the higher lifetime case due to the large diffusion lengths
 

in the surface region.
 

The results for this-section are based upon a constant n+ region
 

lifetime. Somewhat different conclusions can be-reached if a lifetime
 

model which varies spatially in the n+ region is used. These are discussed
 

in a later section.
 

2.4 Other Surface Profiles
 

In relationship to hole injection into the surface region, two
 

modifications to the.surface region profile were considered. More detailed
 

profile changes are discussed in a later section. However, an interesting
 

modification is to select the surface concentration so that these is no
 

retrograde field within the diffused region due to band gap reduction
 

phenomena (Godlewski, 1973). For the heavy doping model used in this
 

19 3
work, the surface concentration required to do this is 2 x 10 /cm
 

Furthermore, this was attempted on the structure which had the minimum
 

+
 
back injection current component. The structure was that of the n-p--p


configuration listed in Table.2.1 with the narrow (0"l-IM) n surface
 

width. However, the removal of the retrograde field by this method did
 

not have significant effects upon the efficiency. Although'there were
 

slight increases in the open circuit voltage and the short.circuit current
 

for the low lifetime case, there was .areduction in the curvefactor due
 

to a wider depletion region in the nt side of the junction.
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The second profile studied was that of a uniform surface region.
 

The assumption behind this-selection is that the lifetime within the
 

uniform region can be taken~frem-the data of Iles for bulk,silicon.
 

This results in a lifetime of around 200: nsec for-a doping level of
 

2 x 1019/cM. Although the actual lifetime may nobe that high, it would.
 

19 3

probably be higher-than.that of a diffused region of 2 x 10 /cm surface
 

concentration and 0.1 . *pM_. in width. This'calculation, again with the 

cells of Table 2.1 with a 0.1 P M, - n region, did not result in.very 

significant gains., The slight improvement which did exist was due to 

increases in the open circuit voltage. Nonetheless, the efficiency did 

not decrease, leading to the conclusion that the doping dependent fields 

in thin diffused surface regions are not-as significant as previously 

expected. 
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3. ANTIREFLECTION FILMS
 

3.1 Back Surface Reflection
 

As presented in the previous sections, gains in conversion efficiency
 

can be.obtained if the overall deVice thickness is narrowed when total optical
 

reflection from the back surface of the.solar cell is assumed. Since this is
 

A potentially feasible manufacturing process and may also occurdue to internal
 

reflection in textured surface cells such as the COMSAT CNR cell, a "two pass"
 

model was developed in the simulation prpgram.
 

Since-the simulation involves the solution of the basic semiconductor
 

device equations including a spatially dependent generation rate term; the
 

two pass model is based upon a linear addition of incident and reflected
 

generation rates. Essentially, a subsidiary program calculates the spatial
 

dependence of a generation rate in silicon material which is twice the width
 

of the solar cell considered. The main simulation program then "folds" the
 

generation rate quantities back for spatial values greater than the device
 

width and adds-these quantities to the incident generation rate at each spatial
 

point. Since the main simulation includes the total generation rate itself,
 

high injection levels, diffusion, etc. are still included in the overall
 

modeling process as before0
 

- For the wider devices (250 pM base region) the two pass model had only 

a slight effect, raising the short circuit current about 1.75 per cent. The 

efficiency ieflected the same percentage increase. However, for the narrow 

devices (100 UM base-region) the increase in short circuit current was 3,75
 

per cent with just under a 4 percentage increase in conversion
 

efficiency. These increases represent a pessimistic case-since the model
 

does not-include additional photon passes due to internal,reflection at-the
 

irrddiated or Si-AR interfaces. However, any increases due these additional
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passes would-be significant only for very. narrow devices (base region widths 

below 100 microns).
 

3.2 Non-Reflective Antireflection Coatings
 

-There has been recent emphasis and workon-the textured surface or non­

reflective antireflection layers. The essential characteristics of such a
 

-surface is a low, nearly constant value tof reflctane ranging from.3 to 5 per
 

cent across the wavelength range. Subsequently, the generation rate for many
 

studies has been calculated assuming an antireflection film of constant 5 per
 

cent reflectance. The compatisons.of the results .ofthis-film with other
 

films is tabulated in Table 3.1. A significant increase in the available.
 

optical current can be seen. The inclusion of the resulting generation rate
 

with the exact simulation resulted in a percentage increase in efficiency of
 

about 13 per cent over that of an optimum SiO film. This almost.exactly
 

matches-the percentage in avAilable'optical current as given in Table 3.1.
 

In the fabrication of a typical textured surface, the junction follows, 

the texture of the surface. Consequently a correction shouldbe made in any 

one-dimensional calculation to dark current due to the increase in junction 

area. For.a pyralmidal. structure of base length L and an apex angle of 70.50, 

the total surface area is 1.74 L2 . Thus, the current component injected 

into the surface region must.be increased by the factor 1.74. This factor
 

however does not produce a significant decrease in the open circuit voltage
 

due to 'its. logarithemic dependence-upon the dark current density.
 

3.6 Other Antireflection Films
 

Due to the short wavelength,light absorption in thin Si0 films, several
 

other films have been suggested for use as solar cell antireflection layers.
 

These include SiO 2, Ta205, Si3N4, TiO 2, Nb205, 1f02 , and ZrO2. Data on some
 

http:compatisons.of


Table 3.1. Summary of Excess Carrier Generation in Silicon
 

Geometry Spectral 

Conditions 


AMO 


Si
 

AM2 


AMO 


Si + SiO
 

AM2 


AMO 

Sit+ iO2
 

AM2 


AMO 

Si + "5% 
Film"
 AM2 


AMO 


T205
 AM2 


Optimum Anti-

Reflection 

Thickness (M)' 

N. A. 


N. A. 


800 


800 


1100 


1100 


N..A. 


N.A. 


720 


720 


Surface 

Lossa 


(%) 

36.4 


34.7 


15.6 


10.4 


17.6 


14.5 


5.0 


5.0 


12.5 


9.5 


Available 

Optical Currenta 


(mA/cm2) 


34.2 


22.4 


45.4' 


30.7 


44.3 


29.3 


51.1 


32.6 


47.0 


31.1 


Surface
 
Generation
 

Ratea
 

(#1cc/sec)
 

1.15 x 1022
 

1.62 x 1021
 

5.96 x 1021
 

1.39 x 1021
 

1.25 x 1022
 

1.83 x 1021
 

2.71 x 1022
 

3.14 x 1021
 

1.56 x 1022
 

1.89 x 1021
 

aComputed at optimum antireflection thickness if applicable.
 

co)
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of these films has been presented by Wang et al. (1973) which indicated that
 

multilayer Si0-Tib filiis produced improved results over SiO-Ta2 05 multiayes.
225
 

However, these.calculations.neglected the absorptance in both the,SiO and TiO 2
 

layers. Work by Travina and Mukin.(1966) and ethers indicates thatTie is­

lessey in the short wavelength region. In addition, the properties of Ti0%
 

are very process dependent, with the ,index of refraction ranging from .2.2
 

to about 2.9 (See Heitman, 1971). 'Subsequently there hasbeen a major interest
 

in Ta205 antireflection films.since the film does not begin to absorb light
 

until below 0.3 pM wavelength (Knausenberger and Tatber, 1973). The index of
 

refradtion is close to an optimum value, although its value is also process
 

dependent (Revesz, 1976).
 

A detailed analysis was performed-with the Ta205 films. Part of these
 

result are listed in Table 3.1 which indicates an optimum thickness of 

0 

720 A. The index of refraction data for the analysis was taken from the data 

of Young (1958). Figure 3.1 illustrates the reflectance and transmission 

coefficient resulting from an optimum layer. This 4atais quite similar 

to that-calculated by Wang et al. (1973) and measured: by Revesz et al. (1976) 

for wavelengths greater than 0.3 pM. The data indicate an improvement over 

an optimum Si0 film with respect to available optical current. The complete 

analy~is indicated an.improvement in short circuit current of about 4 per cent. 

Measured data by Brandhorst%1975) indicated a 6 per cent increase in short 

cirduit current with a Ta2 05 antireflectien layer as opposed to a SiC layer. 

This improvement however occurred after the addition of a cover glass. Prior 

to this treatment the SiO film indicated a slight increase in short circuit, 

current ever the cell with Ta205. 

Other films of interest include Nb205 . This film howeveris reported
 

te be virtuallyidentical to Ta205 (Revesz, 1973). Another film of interest.
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isthatof ZrO2. This film has-a dielectric constant of 2.1 with -an bsorption
 

edge of about 0.2,microns. However, no data was found regarding the wavelength
 

dependence-of the index of refraction. A similar situation exists for HfO 2,
 

which has-a nominal index of refraction of 2.3 (Revesz, 1973). In view of.
 

the lack of data on the wavelength dependence of the index of refraction for 

various films, calculations were made to determine the optimum value for the 

index of-refraction assuming no dependence on wavelength. This was formed. 

by evaluating the photon transmission efficiency of various thicknesses of 

such a film upon a silicon substrate. The silicon was fully characterized
 

as to the wavelength dependence of both the real and imaginary parts of.-the 

index if refraction. The results of such a calculation aie illustrated in, 

Figures 3.2 which displays the photon transmission efficiency at optimum film 

thickness (and the optimum film thickness) as a function of-the index of
 

refraction. The .peakis seen to occur at an n value of 1.95. Thjs is
 

somewhatbelow the optimum value of 2.3 reported by Revesz et al. (1976).
 

However, their value was obtained-by "tuning" the optical system, including
 

a cover glass (n = 1.45) at a 0.54 micron wavelength and does.not take into
 

account the wavelength dependence of the optical properties of silicon.
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4. THE P+-N-N STRUCTURE
 

+
4.1 Primary Differences in p+-n-n+ and n -p-p Structures 

Most of the prier work with solar cell analysis-and fabrication has.
 

+ +
 
involved the n,-p-p structure. Consequently there remains the question 

+ +-n-n+
of possible differences if the structure is changed to the .p 

structure. Several differences in the two structures canbe noted which­

may contribute to any such differencest
 

a) In the heavily diffused surface region the amount of band gap 

shrinkage and penetration of the Fermi energy into the conduction band 

differs for p-and n-type doping. This was discussed in the prior grant 

report and is discussed further in the following chapter. In general, 

heavy doping effects are not as severe in a p region as in a n region. 

+ + 
This would tend to reduce the amount of back injection in a p -n- n structure. 

b) In the .base region, the results are quite dependent upon diffusion
 

length selected. If equal diffusion lengths are selected for both n-and
 

p-type base regions then an n-type base region sill have a higher lifetime
 

than a p-type region due to differences in hole and electron mobility. This
 

can effect the magnitude of the forward dark injection component -with the
 
+ + 

n.-p-p structure illustrating higher values and subsequently lower open 

circuit voltages. 

c) A Dember type potential in the base region due to the .non4hear 

generation rate aids in the collection of short circuit current for a p­

type base region and opposes the collection in a n-type ba~e region. This
 

however is not a major factor as discussed in the prior grant report.
 

The sections which follow present results for solar cell efficiency
 

as a function of base resistivity and base region width. A concluding
 

section discusses the lifetime dependence and gives a direct comparison
 
+ + 

to the n -p--p structure.
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4.2 Efficiency as a Function of Base Region Resistivity
 

The dependence of solar cell efficiency-upon base resistivity is
 

quite strong if the injection of-carriers into the surface region is.
 

neglected. As discussed in the prior grant report, threemajor regions
 

of operation are encountered as the base region resistivity is changed.
 
+ +. 

To investigate these effects with the,p -n-n structure, a high (100
 

nsec), constant lifetime was selected for the surface region. In this
 

case, the efficiency is determined by the nature of the base region.
 

The devices analyzed include heavy doping effects, optical reflection
 

at the back contact, a high-low junction, and a 5 per cent antireflection
 

layer.- The lifetime in the base region as a function of base resistivity
 

is taken from the data of Iles. Other characteristics of these cells are
 

tabulated in Table 4;1.
 

Figure 4.1 illustrates the dark characteristics of these devices
 

for base resistivities-ranging from 10 to 0.01 ohm-cm. As can be seen.,
 

10 ohm-cm p-type base regions tend to show substantial high injection
 

effects. This is due to the lighter p-type doping required to obtain 10
 

ohm-cm material as compared to the n-tyle doping.- As expected, the forward
 

current density reduces as the base resistitivy is lowered. For the 0.01
 

ohm-cm device the depletion region current component has increased dramatically
 

due to the reduction of-the base region lifetime. This is illustrated by
 

the large increase in current for this device at low voltages in Figure 4.1.
 

Figure 4.2 illustrates the illuminated characteristics of thesesame cells.
 

Again it can be seen-that the limiting factor with regard to low resistivity
 

base regions is the dependence ef the collection efficiency upon the base
 

region lifetime. This conclusion can be made due to the high surface region
 

lifetime. A lower than 100 nsec surface region lifetime would exhibit severe
 

reductions in open circuit voltage. This-is discussed in the following chapter
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Table 4.1 Material and Dimensional Parameters of the p+n-n+
 

Solar cells analyzed in Chapter 4
 

Overall Cell Thickness 250 pM
 

p Thickness 0.25 vM
 

+ 
n Thickness 5 PM 

+ 210 2cm p Surface Concentration 

n Doping Concentration Variable 

n + Doping'Concentration 1019 /cm.3 

+ 
Lifetime in p Region 100 nsec
 

Lifetime in n Region Iles data (1975)
 

Lifetime in p+ Region Iles date (1975)
 

Surface Recombination Velocity 103 cm/sec
 

Antireflecting Layer "5 per cent Film"
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The overall results regarding efficiency, open circuit voltage, and
 
+ + 

curve factor are summarized in Figure 4.3. Like the n,-p-p devices , these
 

devices illustrate the same three-regions of operation. The cutoff.points­

for the regions however differ with respect to resistivity magnitude.
 

High injection begins to occur above about 1 ohm-cm. The so called center
 

region of operation is quite wide, extending to lower base resistivities..
 

This is due mainly to the selction of equal hole and electron diffusion
 

lengths from the data of Iles. Nonetheless it is seen that for base
 

resistivities below 0.1 ohm-cm'that there is a substantial decrease in
 

efficiency due to the loss of collection efficienc r;
 

4.3 Efficiency as a Function of Base Region Width
 

± + 
The p -n-n devices were also investigated with regard to the effect
 

of base region width upon the conversion efficiency. The devices,are
 

thoseof Table 4.1 except for the base resistivity, which .washeld con­

stant at 0.3 ohm-cm. The surface region lifetime again was ,held at a
 

constant 100 nsec in order to isolate the effect of the base region
 

modification.
 

Figure 4.4 shows the results of these calculations. It can be seen.
 

that the efficiency remains relatively constant as the base Midth is
 

decreased. These results are quite similar to those obtained with the
 

+ + 
n -p-p deviceswhich were discussed in detail in a prior section. It
 

should be noted that back surface optical reflection is included in
 

this analysis. If this is not included, the efficiency decreases
 

more with decreasing width.
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+ 	 + +
and p +-n-n+
4.4 	Lifetime Related Differences Between the n -p-p 

Structures 

As stated in the prior sections, the electron and hole diffusion 

lengths were taken as identical in the calculations so far discussed. 

Due to differences in hole and electron mobility this produces 

larger lifetimes in the p type material. For this case the 
+ + 

p -n-n structure results in efficiencies which -are higher than the 
+ + 

n -p-p . This is mostly due to the increase in open circuit voltage 

due to the reduction of-dark forward current injection. Recall that 

in a back surface field solar cell, the forward injection current 

(under dark conditions) is dependent upon the base region lifetime 

(assuming that the diffusion length in the base region is greater 

than the base width). However, if the hole diffusion length is 

taken as one-half of the electron diffusion length for the same 

doping level, the advantage of the p -n-n structure disappears 

and the two structures-are roughly equivalent. A slight difference 
± ± 

does arise due to a reduction of-short circuit current in the.p -n-n 

structure, but this is expected from the shorter diffusion length. 

The data tabulated in Table 4.2 illustrates these differences. These 

cells have the parameters presented in Table 2.1 with the-appropriate
 

changes in doping polarity. The base region doping is the same in
 

16 	 3 
both structuresj 8.5 x 10 /cm3 . This results in a 0.3 ohm-cm p­

type base region and a 0.1 ehm7 cm n-type base region. The major
 

conclusion is that for similar cells with equal diffusion lengths,
 

+ 	 ++ 
cell 	has a slightly higher efficiency than the 

n+-p-p

the p -n-n 


cell. However, if the hole diffusion length is reduced over that 

for eiectronsfor thn te n-p-p +t+en the n cell has the higher peak efficiency.
lecron 




*j + ± + 
Table 4.2. Tabulation of Results Comparing the n -p-p and p -n-n solar cells.
 

tsurface Tbase V CF Eff J JIat 0.7v Back Injection
 

nsec (psec) c sc ) (dar) Component at 0.7v (dark)

(V)M % % (mA/cm2)  (mA/cm )mA/cm2)
 

p -n-n 1 163 0.707 81.6 20.0 46.9 24.1 17
 

Lp= Ln 100 163 0.718 84.6 21.1 46.9 38.2 3
 

= 340 VN
 
+ +
 

S-n-n ' 41 0.679 81.8 18.9 46.1 91.4 33
 

Lp 100 41
5n / 2 0.691 84.0 19.8 '46.1' 64.4 4
 

=170 JM 

1 65 0.679 81.3 19.1 46.9 86.3 39
 
100 65 0.692 84.1 20.2 
 47.0 63.8 
 17
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The use of a smaller hole diffusion length is more consistent,
 

with existing experimental data on hole and electron-lifetime and
 

diffusion length.
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5. 	THEORETICAL EFFECTS OF SURFACE DIFFUSED REGION
 
LIFETIME MODELS ON SILICON SOLAR CELLS*
 

5.1 Introduction
 

This-paper presents the results of a detailed computer simulation
 

of narrow base silicon back surface field (BSF) solar cells. Such solar
 

cells can be optimized with respect to open circuit voltage through 

reductions in the level of current injected into the -base region. These 

theoretical optimizations however, produce open circuit voltages which 

are significantly higher than those found experimentally [l]. Fpr the 

most part this discrepancy-is due to the neglect or approximate 

modeling of the dark current component which is injected into the surface 

region. This current component can become quite significant and conse-, 

quently can account for the lower values of open circuit voltage found 

experimentally. However, models which account for this current component 

can obtain a reasonable match with experimental results only by using 

extremely low (picosecond range) lifetimes in the surface region [2]. 

Such low lifetime values have been justified in past work on the basis 

that the surface region is a diffused region with a high level of trapping 

centers and dislocations. However, the present work has obtained a theoretical 

degradation in open circuit voltage without such extreme assumptions as to 

lifetime magnitudes. The work.indicates that band gap shrinkage in the 

diffused surface layer combined with a spatially dependent lifetime form a 

mechanism-for severe limitations on the open circuit voltage of-solar cells 

formed by diffusion techniques. 

*This chapter is written in the form of a-paper which is being submitted 

for iublicationo References for this chapter are at the end of th6u, 
chapter. 
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Certain spatial forms .oflifetime dependence .tendto shift the actite­

area-of the diffused region with respect to dark current density toa
 

region very close.to the,surface. This, when-combined with the,fact that
 

heavy doping effects are'more severe near~thd surface;- produces a-pair
 

of interacting mechanisms whidh-greatly increases the current density
 

injected into the surface region. The analytical method used in this-work 

involves a numerical solution of the semidonductor device equations 

including the effects of a generation rate term due t6 AMO solar irradiance 

with a constant 5 per cent antireflection-film and total optical reflection 

assumed at the back surface., The device modeling, which has teen discussed 

elsewhere, includes phenomena such-as drift and diffusion currents,-recom­

bination effects, doping dependent mobilityj non-ohmic contacts, diffused­

impurity-profiles, and band gap reduction due'to heavy doping effects L-3,41. 

5,2 General Device -Models
 

t-

The basic solar cell structure studied is that of a n -p-p 

(or p -n-n+ ) back -surface field solar cell with the characteristics 

outlined in Table,5.L Results by Michel.et al. have been confirmed in that 

high efficiency solar cells can be'fabricatedwith narrow base layer widths
 

[51, Subsequently a narrow (100 M) 'base region is-used-in this work.
 

The width of-the base region, in combination with the low base resistivity,
 

forms a situation in which carrier injection into the surface region tends.
 

to be the major component of the dark'curent,density and-5ubsequently in
 

the determination of the ,open:circuit toltage. Consequently the ,characterization
 

of-the diffused,surface region is,.quite important. In particular, the character­

ization of the lifetime in this region is an important parameter and consequently
 

http:close.to
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Table 5.1-.- Device parameters used in surface region study.
 

Diffused Surface Thickness 


Center Region Thickness 


Back Surface Region Thickness 


Surface Concentration (Gaussian) 


Center Region Resistivity 


Back Surface Region Concentration 


Surface Recombination Velocity 


Antireflection Layer (Two Pass Model) 


Irradiance Conditions 


0.1 vM"
 

100 pM
 

5 pM
 

10 20/cm2
 

0.3 ohm-cm
 

10 19/cm 2
 

103 cm/sec
 

"5% Film"
 

AM0
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is-describedin this work by-two models. One is-that of a constant life­

time, ofeither 1 nsec or 100 nsec, and the-other,is.that-of a spatial
 

doping dependent model as postulated By Lindholm,et-al. [6]. The general
 

form of.this doping dependent-model is
 

-
T(x) = ,-eo/(Ns/NB +-i)N (1)
 

where Ns is the doping in the diffused region,,NB is the bulk or'base-"..
 

region doping, To is a constant dependent upon the base or bulk region
 

lifetime (TO equals .no for a.ptype hase layer and T for a.n-type
 

base layer,),- and 'Nis a parameter .whichcan take on the values 'of 1, 2, or 

4 [7]."*
 

The thin surface diffused region in solar cell structures is
 

typically quite heavily doped. Consequently both Fermi-Diractstatistics 

and band gap reduction effects must.be included in an analysid of this
 

region. However, the magnitude-of band'gap reduction is-a quantity nct
 

known with a great deal of certainty'for silicon. The-overall combined
 

effect of degenerate.doping and band gap reductien-howeverxisan increase
 

in the-intrinsic carrier concentration. This can be conveniently modeled
 

by an,"effective doping" which is the doping required to give the',co'rect
 

minority carrier densitt ifFermi-Dirac statistis and band gap reduction
 

effects were not present. Figure 5.1 illustrates the effectiva' d6ping in
 

n-type'material for several band gap reductionmodels'including the
 

empirical model used in this-work [8,9,10,fi,12], The curves for Mock
 

and-van Overstraeten were obtained directly from their results regarding an
 

effective intrinsic concentration. The other curves-were calculated from
 

reported models for band gap shrinkage. These, models were used with
 

Fermi-,Diracstatistics to determine the effective doping. -In addition,
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the effective doping-differs for n-and-p-type material due to a-difference
 

in the-Fermi level penetration into the conduction and valencebands, This­

is illustrated in Figure S.2. Note,also-in this figure curves for the effect 

of Fermi-Dirac,statistics independent of any-band gap reduction. The band 

gap reduction effects tend to fqrm a.peak in the effective doping for n-type. 

material -at an actual doping density of.about 2x!019/cm and an effective 

doping density at about 2xl0 i/cm . This peak-suggests an optimum-doping
 

density around 2x101 /cm for minimizing heavy doping effects but the exact
 

doping density at-which this occurs depends on the modelused for band gap
 

reduction.
 

5.3 Results
 

The heavy doping effect in itself tends-to increase the .injected
 

current density into the surface region due to an increase in minority
 

carrier density. However, the increase is mudh.more severe than
 

expected when spatial lifetime effects are also included. It can be shown
 

from first order device theory neglecting heavy doping effects (confirmed
 

by the complete analysis) that -in the diffused.surface layer, under dark
 

conditions
 
2 n. 
Iexp(qV/kT),
p~x) ) (2), 

where p is the minority carrier density-and N is the doping-density.
 

The change in current density in the.diffused.regien can be.expressed
 

as
 

AJ(x) = f Q(x)/T(x)dx, (3) 

0 

where Q is,the charge in the region,.T -is the lifetime in that region, 

and x:= 0 is-taken as the depletion region edge. Combining Equations-(1) 

and (2), it can be.seen that (also assuming that-NS>NB ) 
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Q/ a N N (4) 

Consequently for values of N greaterthan 1 the integrand in Equation (3)
 

tends-to grow in,magnitude for increasing x., This is in contrast.to the
 

idea that the region close to the injecting.junqtion is the most important
 

in determining injection current deisity. Consequentlyheavy doping effects,
 

which -are larger closer to the surface, have a stronger effect for these
 

cases. If heavy doping is included inthe model,
 

Q/T NsN /Neff (5)" 

since the lifetime is dependent upon the actual doping (N-) and the minority
 

carrier density-is dependent upon the effective doping (N e).
 

Plots of Q/T -as obtainedfrom.the computer analysis .are shown in Fig­

ute 5,3' throughout the diffused surface layer. The doping profile in the 

surface layer has been taken to be described by a Gaussian function of 

distance. The dashed curves.in Figure 5.3 ihdibate the vtriance of.'Q/T for 

no heavy doping effects and different N values.. For the N = 0 case 

( .e. constant lifetime) the-decay-in-Q/rT-with-increasing distance from 

'the depletion region is as expected for the given--doping profile. However 

the N=I case indiaates that the entire -surface region contributes -about 

equally tocurrent flow. (The lowered values of Q/T.are indicative of the 

higher-lifetime-which occurs for the N = 1 case)-. TheN = 2 case however 

indicates that-the-region close to the surface-produces significantiy more 

recombination current than regions close to the.injecting junction.' The 

calculated behavior is seen to follow almost exactly the simple results of. 

Equation-(4)., 

http:curves.in
http:contrast.to


.55 

106 

10 

-

- --

CN=2., 

Heavy Doping 

No Heavy Doping 

102 NNt 

0'3 

• "-N=­

100 

0.02 0.04 0.06 0.06 "" 0.10 

)DISTANCEFROM INJECTING JUNCTION (PM) 

Figure :5.3 The dependence of the quantity Q/T for v rious values of 
the spatial lifetime parameter, N. 



56 

The solid curves -indicate the situation when-heavy doping is. included, 

'Here there is an enhanced significance of the surface region in all cases, 

due to the reauction-in.the-.effective.-doping near the strface. For the 

case of constant surface region lifetime (N=0) the heavy doping effect
 

is present although its contribution is not--as significant as in the .other
 

cases as seen from-the-high value of-Q/T near the injecting junction. 

For N50, the-lifetime near the',injecting junction is sufficieTly high 

,to shift the active region further toward the semiconductor surface.-

Figure B.A ifdicates the effect of ihis recofbin tion upon the b~iildup 

of current in the diffused region. This-figure neglects the current 

component due -to surface recombifiation for the sake'of clarity. The 

importance of the-diffused layer close to.the surface is seen to be 

enhanced in importance-when heavy doping anda spatial decay in lifetime 

is taken into account. -For the-N = 1-and N = 2 cases'it is seen that about 

80% of the dark'current'component due to thesurface region-comes from 

'about 20% of the diffused laypr located near the semicondcutor surface.
 

T~bl& 5.2 summarizes the effects of these heavy doping and lifetime 

effects on solar-&ell terminal characteristics.- The surface region current 

component is the current component injected into.the n (n -p-p 1ell)or 

p (p+-n-n+_cgll) region. It is this-injection-component which is 

, responsible for reductions in-open-circuit voltage and efficiency in low 

-resistivity 
 solar cells. This component includes both the depletion region
 

and surface recombination components.. For the lifetime models used, the
 

depletion region current component was found-to be insignificant except
 

for the, constant (l nsec) model.. The-first 'two rows of Table 5.2. iridicate
 

the extent -of 'the- heavy doping effect upon, the- surface region current.
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Figure 5.4 Buildup of diffused region current as a function of the
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Table.5'.2 Summary of terminal. haracteristics
 

Structure Heavy Diffusion Efficiency -Open Short Total Suffaqe 'Region 
Doping Length ('%) Circuit Circuit, Current Current Component, 
-Effects Ratio Voltage Current @ 0.7v. @ 0.7v ark 

(L /Lp )n" 
(Volts) (mA/cm2) Dark 2_

(mA/cm2) (mA/cm ) 

+ + 
n -p-p 

(Constant 1 nsec 
No 1 20.0 

' 
0.70 , 
• 

46.9 53 12 

n+ region life- Yes A19* 0.68 46.9 86 39' 
time) 

: No 1 20.3 0.,70 46.9 46 5.3 

n -p-p Yes 1 18.8 0.65, 46.6 270 230 

(N = 2) 

Yes 2 17.6 0R63 45.8 730 680 

p -n-n. No 1 20.8 0.71 46.7 31 19 

(N = 2) Yes 1 19.3 0.67 46.7 150 130 

Yes 2 18.8 0..66 45.8 190, 130 

n+-p-p+ No 1. 20.5 0.70 47.0 43 2.3 
(N = 2x10- 9/cm 3 ,

N = 2) Yes 1 20.2 0.69 47.0 63 17 

L9 
M) 
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2 2
The increase in surface injection from '12- mA/cm. to 39 :mA/cm when heavy 

doping is included causes about a 3 percent decrease iithe ojen circuit 

voltage for this'constant lifetime case. However, the-equivalent structure
 

with a spatially dependent lifetime-(N = 2) illustrates a very large
 

increase (a factor of 43)'in surface region current when heavy doping is
 

included. For this case these two effects have combihed to cause'a
 

7 per cent decrease in the open circuit voltage. Comparing these results
 

+ +
 
to the first -two rows of the p -n-n cell it can be seen that the heavy,


•+ ++ + 

doping effects are less significant in p -n-n cells than in n -p-p --cells
 

as expected. However, all these results are quite lifetime dependent-.
 

For example, if the assumption is made that the hole diffusion length is
 

half the electron diffusion length (where the electron diffusion length
 

for the bulk material is taken from the data of Iles) then more severe..
 

results are obtained as seen from the table. It can also be concluded
 

- that greater band gap reductions than thoseused in the present work will 

also tend tb ificrease the severity of these heavy doping effects,. However,
 

the severity of the effect is not as great as one might expect. For
 

example, a 10 per cent increase in the'amount of band gap reduction resulted
 

in an-increase of injection current density by a factor of about 1.5. The
 

recent data on band gap reduction by.Slotboom and Graaf [12] resulted in a
 

reduction of-this same current component by,afactor of 0.7. This can be,
 

expected from their data since-it indicates less of a band gap shrinkage at
 

higher doping but more shrinkage at lower doping than the present model.
 

(See Figure 5.1).
 

Godlewski [13] found that-an optimum surface doping level could be
 

established which removes any retrograde fields in the n surface region
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due to heavy doping effects. That work was based on a uniform diffused.
 

region lifetime and the pessimistic model for band gap reduction presented
 

by Van Cverstraeten.[l!]. The last entry in Table-2 indicates the present
 

computer results for-a cell with-an optimum surface concentration, Indeed,
 

less of a dependence on heavy doping effects can be~seen. H6wever, this is
 

likely,caused in the present studyby a combined increase'in diffused region
 

lifetime as well as-the overall reduction.in.band gap shrinkage. Both of
 

these effects tend to hold the open.circuit voltage at a higher level,
 

contributing to the effects of removing the retrograde'field. In addition,
 

it is significant that the removal of the retrograde field did not-produce
 

any significant change in the short circuit current density. Spectral
 

response calculations have further indicated that the combined effects of a
 

spatially dependent lifetime and heavy doping effects do reduce the- short
 

wavelength response to values about 25% below that of the constant lifetime
 

case with heavy doping., The amount of reduction however is dependent upon
 

the surface recombination velocity and the band gap ,reduction model utilized.
 

5.4 Summary 

It has been .found that 'band gap reduction and a spatial decay.in :lifetime 

can combine-to produce significant effects upon the spatial nature and
 

magnitude of the injection current density into the diffused surface region
 

of solar cells. The spatial nature of the injection current is primarily
 

dependent upon the rate of decay of the.lifetime with impurity concentration.
 

The magnitude of this current component is dependent upon both the magnitude 

of the lifetime parameter and the-amount .of.hand gap shrinkage in the-region. 

In all cases-except for that of a constant lifetime it has been found that 

regions away from the injecting junction and close to the surface play a far 

http:decay.in
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more.important role in carrier injection than previously expected. These
 

effects differ for n-and p-type-surface regions with the,p-type'surface
 

region producing smaller components.of back injected current. These,
 

conclusions depend somewhat upon the~lifetime-values-aelected and these
 

effects can be reduced,through the selection-of-a lowered impurity
 

concentration at the semiconductor surface. This both reduces the band gap
 

reduction and increases the lifetime,in that region at--the cost of an
 

increase In-sheet resistivity of the-surface layer., Oyerall it can be
 

concluded that the diffused surface region can reduce the open circuit
 

voltage as experimentally observed-due to the combined effects of heavy doping
 

and a-spatial dependence of lifetime. Furthermore, spectral response.
 

calculation indicate that these same mechanisms can combine to reduce the
 

short wavelength response. These.results indicate that yery careful
 

attention must.be. given in solar, cell. fabrication to minority carrier-.­

lifetime in the diffused-surface layer very near the solar cell surface 

if the ultimate potential of silicon 'solar cells is to,be realized, 

http:components.of
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6. SPECIAL DEVICE STUDIES
 

6.1 Epitaxial.Structures'
 

Epitaxial silicon solar cell structures, of late have attracted
 

some interest due to the ability to take advantage of equilibrium field
 

effects made possible by tailored doping profiles.- Two such structures
 
+ + 

have been analyzed. The-first -of these is a.p -p-n-n device presented
 

by R. V. D'Aiello et a. which includes a graded-base region as well as
 

a high-low junction. The second structure is somewhat similar except for
 

geometric changes in order to further enhance-the efficiency.
 

The doping profile of the D'Aiello structure is a relatively narrow
 

device, with a 15 pM wide back region high-low junction and a graded base 

region. The overall device is 50 pM in width, with a 1 pM wide diffused 

surface region. The base grading varies -exponentially from 1018/em3 to 

'1016/cm3 . The surface region is p-type, with a region of uniform doping 

along with that of a Gaussian diffusion. In analyzing this structure,
 

the lifetime-data of Iles was used throughout the base and high-low junction
 

region. However, two models were used within the surface region. The first
 

of these was that of a constant lifetime (1 nsec) and the other utilized the
 

spatial form described in the previous chapter (N=2). No heavy doping effects
 

were-included in the surface region.
 

The.-restflting dark characteristics are indicated in Figure 6.1. The
 

large difference in these,results is due to the surface region lifetime
 

model. The dashed-curve is for the constant lifetime case (l nsec) whereas
 

the solid curve is for the case where the lifetime is spatially dependent.
 

In the latter case injection into the surface region amounts-to only about
 

2 per cent of the total dark current density whereas this component is the
 

predominant component in the constant lifetime-situation. The constant
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low lifetime -assumptionis-probablynot appropriate for this structure due 

to the uniformly doped segment of the surface region. Figure 6.2 indicates 

the calculated.electrestatic.potential within the base region. Figure 6.3­

and 6.4 indicates the"electron and hole carrier densities within both the 

base and surface regions for.various.appliedwvoltages, Due to the light­

doping at the-junction interface.itLcan be seen from these figures that a 

region of-high injection is beginning to occur.at around.0.7 v. 

The illuminated characteristics for these structures are indicAted in 

Figure 6.5. Again, the surface region lifetime has an appreciable effect 

upon both the open.circuit voltage and the short circuit current. The 

effect of low lifetime on short circuit current is large due to the rather 

wide (1 p14) surface region width. In both cases however, the short circuit 

current'density is low as compared-to the available optical current-for a 
0 

device with an 800 ASiO antireflection layer, which is in a range from 40 to
 

about 45 mA/cm . There are several reasons,for this? Most importantly, the
 

device is quite -narrow for optimum. collection and in- addition there is 'no 

reflection at the back contact. Secondlt, the highly doped:n + region is 

quite wide, being of the order of 15 pM. With'this high -adoping, collection 

efficiency is degraded due to recombination in the region. This is illustrated 

in Figure 6.6 which indicates the absolute value ofthe minority carrier 

density under short circuit conditions. The:point at which -the current density 

changes sign indicates the.maximum.depth of carrier collection which is just 

over 40 pM. It is clear the carriers generated in -theback surface n+ region 

are lost due to recombination. The-lifetime in such a.low resistivity region
 

is approximately 35 nsec. Figure 6.7 indicates .the carrier density
 

distribution throughout the devideo The effect of the built in potential
 

http:occur.at
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within the-base region is apparent in the..nonupifor carrier density due
 

to the field-pulling the.carrieis toward the,collecting junction. With; 

regard'to the surface region, the .advantage of having a-region of-uniform 

doping is not readily apparent. .For -the lew lifetime case,there is no 

advantage.. For the spatial-lifetime mod l,.the results which follow
e


indicate that-there is little diffetence between this profile and one
 

which simply.has a-thin-diffused-region. Figure 6.8indicates the-carrier
 

distribution in the surface region for-illuminated conditions.­

-The values of open circuit 'voltage and short circuit,current calculated
 

conipared.quite wel 'with the. measured. data, for the case where the spatial 

lifetime model is included. D'4iellosdata indicates.an open circuit­

2.
v~ltage of 0.64 v~and shortcurrentdensity of,about 34 mA/cm1. The
 

calculated open citcuit 'voltage was0.65.V with a short circuit current
 

density of 36 mA/cm2 with a peak efficiency of 14.5 per.cent.1 The inclusion
 

of heavy doping effects would,have lowered the-calculated open-circuit
 

voltage somewhat,-but the effect,would not be gredt since the amount 'of
 

surface injection is-not a large fraction of the,total current density,
 

In addition, heavy doping effects in a p-type region are not as ,severe as in a
 

n-type region.
 

The second epitaxial typestructure analyzed is a modification of-the 

prior-structure. However it still inclues a high-low junction as well as a 

graded base-region., The,,profile.selected for-this device is shown in 

Figure 6.9. - The-four base,region-profiles indicate additional variation 

in.thenature of the-graded-base region as represented by the -0.3, 1, 10, and­

100 ohrd-cm base resistiIity at-the junction, The everalldevice -is much' 

wider .thanthe prier structure in order to collect more.of the available
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+ +
 
current. However, the back surface p and front surface n regions are
 

narrower than the prior device. In addition, the doping in these regions
 

has been reduced.due to lifetime and bandgap reduction considerations.
 

The grading in the -base region does not extend throughout the region in
 

order to maintain a reasonable lifetime -deep in the device and'still set
 

up a large electric field within the center region.. The surface region
 

profile -is exponential as opposed to Gaussidnojn order to reduce the
 

extent of severe heavy doping effects and give..a constant built-in field.
 

The surface concentration of 2xO19/cm3 was selected to minimize heavy
 

doping effects. A 5 per cent film was assumed as anantifeflection layer.
 

The dark characteristics of thesedevices are shown in-Figure 6.10. 

As seen from .these cuved the more lightly doped-devices tend to approach 

a-common curve at large currents. Due to this:the open iscuit voltage 

is not-changed significantly for these doping ranges. The surface region 

lifetime was modeled spatially through an application of the doping 

dependent data of Iles. With this model, theback injection component 

of current-was about 20 per cent of the total dark current. However, 

heavier doping at the junction does not reduce the forward current density 

significantly for the 0,6 V to 0.7 V region. 

The illuminated results are collected in Figure 6.11. It can be seen
 

that the ,efficiency peaks when the resistivity near the p-n junction is
 

about 1 ohm-cm. This peak is due to the removal of high injection
 

operating conditions as evidenced by the rise in the curve factor. A
 

high&r doping at -thejunction further increases the curve factor and the
 

open circuit "voltage but-at the expense of short circuit'current.
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In comparing this structure with D'Aiellots configuration, the
 

effect of the 800 A Si0 layer must be compensated for since the latter
 

structure utilized the 5 percent layer. In doing this, the D'Aiello
 

structure results in a peakefficiency of about 16.4 percent as
 

compared to the 20 percent efficiency with the latter structure. This
 

difference is due primarily to the loss of collection efficiency in
 

the D'Aiello structwe. In spite of the gradedbase region in.the
 

structure, the wide back surface region and front,surface region
 

simply allowed too much recombination of the optically generated
 

carriers. 

6.2 "Upside Down" Structure 

.The ,so called "upside down" structure shown inFigure 6.12 has 

attracted some interest'in the literature due mainly to the removal
 

of shadow effects caused-by irradiated surface contact geometries.
 

There is also the ability to reduce-series resistance effects by means
 

of thicker contact fingers on the back surface. Such a structure has,
 

been analyzed. This 100 pM device includes a 5 pM, n region with an
 

exponential doping profile, a uniform p region, and a narrow -2 pM,
 
+ 

exponential p region at the surface to reduce losses to surface
 

recombination. The center region resistivity is 0.3 ohm-cm, whereas
 

19 3the surface and junction region are exponentially gradedto 2xlo /cm
 

Heavy doping is included-through6ut the device, and a total 5% surface
 

reflection plus total optical reflection at the back surface is also 

included. The back surface is considered ohmic, while the front 

surface was modeled with a surface recombination velocity of 100 and 

1000 cm/sec. The lifetime for all regions was taken from the data of 

Iles.
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Figure 6.12 General arrangement of the ."Upside flown" structure. 
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The analysis is a one dimensional.analysis of a p -p-n device of 

area A (see Figure 6.12),. Due to. this method of analysis, area 

corrections must be made to take into account the effect of the additional 

area A2. For example the total electron current injected-into the-center 

p region will consist of the depletion region reconTination current 

(J (dep)) and the bulk region recombination-current, J (rec). The former 
nku,') n , -, 

is dependent upon the junction area A, while the latter is dependent upon
 

the total area; A2 . Both components of the hole current are dependent on
 

the junction area.AI These components "are shown in-Figure 6.13. Using
. 

these definitions, the total forward current can be written as: 

If = Jn(rec) A + J (dep);A + J -A (6.1)
Wly 2- n, - 1 pil (6. 

Or,- reducing this-to a current density Mased.upon the.area A1 , 

Jf= J2n(re) 
A
Ai + Jn(dep) t J . (6.2) 

Consequently, the bulk electbon currefit must be 'isolated and multiplied
 

by the area ratio. This is readily done in the complete computer analysis.
 

Likewise the short circuit current must be broken up into the two
 

components of hole and electron current:
 

Isc : Jn(sc). A2 +Jp((sc)'A 1
 

Or,
 
A 

J = J n(so ) +.J p(s6 ), (6.4) 

where J is based upon A1 .- Since J (so) in that current collected within
s sc p
pA + 2 

the narrow n region,,it--can be neglected as compared to Jn(sc) -

Consequently the total current may.be written as 

=JTOT Jso - JfV (6.5)
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Figure 6.13 Area dependence of the current components of the
 
"upside down" cell.
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or,
 
A2 A2
 

Jn r c
JToT'= Jn(S) A' ~ Ai n( P p •(.)
 

In addition, the spctral irradiance.factor must-be reduced.to the
 

area Al. This -allqws the overall efficiency to'be.written as:'
 

* TQT' W A.L

Efficiency (6;7)

135.3. m/cI& A 
- 2-

Themresults of the analysis is'illustrated in Table,6.1.. It s seen 

that-the 0,1 ohm-cmtase resistivity is.toolow for the.lifetime model, 

and device width utilized. -It is also: seen that the area.ratio is not. 

a strong factor inthe overall efficiency..' If one combined Equation 6.6 and 

6, neglgcting J(dep) and J, it can be seen that the 'dependence.upon~the 

area-ratio is quite small .,As expect!d,,there is little dependence-on surface 

recombination. 

6;3 Summary
 

The various structuralmodifications studied in this-chapter resulted
 

in some devices with conversion efficiencies-in the.range of 19 to 20 percent.
 

These structures.howeverranged from rather complex epitaxial type tailored
 

profiles to-the relatively simple upside down structure. One conclusion
 

from this'study subsequently tends to cast doubt upon the feasibility of
 

resorting to tailored doping profiles for the purpose of increasing collection
 

efficiency.- Prior chapters have illustrated efficiencies within the same
 

range ,withrather conventional, optimized structures.- However, the.question
 

of-lifetime dependence-is still a.variable which can-effectthese.conclusions.
 

Structures:with. relatively largecenter region lifetimes- will have good
 

collection efficiencies.regardless of aodoping profile., Likewise,-for poor
 

lifetime material;' the -colection efficiencywill not be substantially
 

increased through tailoring techniques,.
,
 

http:reduced.to


Table 6.1 Summary of the terminal characteristics for the "upside down" cell. 

0.1 ohm-cm 0.3 ohm-cm 0.3 ohm-cm 
p region p region p region 

S=I02 cm/sec S=102 cm/sec 

A2/A, 30 10 5 30 10 5 30 10 5 

Voc 697 694 690 704. 700 696 702 698 694 

Efficiency
(%) 

15 15 14o9 19.5 19.5 19.4 19.2 19.2 19.1 

Jsc ,based 

upon A1 

2 
(mA/cm) 

1044 348 174 1350 450 225 1332 442 222 
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The-exception to.this is 'of.course'the fields associated with a 

back surface high low junction; This has been seen to~be.necessary. 

to obtain reasonable collection efficiencies..
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7. SUMMARY,
 

The overall objective of the present work is to continue the
 

identification and characterization of various mechanisms which limit­

the conversion efficiency of silicon solar cells. In addition, various
 

geometric factors were studied with regard to optimization of the
 

conversion efficiefcy of silicon solar cells. This includes doping/
 

width modifications on the basic three layered BSF type of cell and more
 

complex modifications which, involve tailored doping profiles and four
 

-I + 
layered structures.' This'includes'both the n -p and p -n polarity
 

devices. This study has been accomplished by means of a computerized semi-*
 

conductor device afilysis program which obtains a-complete.numerical
 

solution of the general semiconductor device-equations including an
 

excess carrier generation rate due to full.spectrumsolar irradiance.
 

One overriding factor in the analysis igthe lifetime dependence on
 

doping. Virtually all of the work reported here has beencarried down
 

to. the-point where decisions regarding-an optimum geometry or doping profile
 

is limited by uncertainty pertaining to lifetime. This includes not-only
 

the lifetime of the bulk'material but,alsa the nature of the lifetime in
 

heavily diffused regions.
 

With regard to geometric-and doping variations.aimed at the optimiza­

tion of the basic three 'layered BSF'device, the resultsgcanbe'summarized
 

with reference to Figure 7.1. This figure depicts the improvements in
 

efficiency predidted'by.the various processing optimizations.-The peak
 

efficiencies shown do-not include shadow or series-resistanqe effects'due
 

to contact finger arrangementsi These effects can combine to ,lowe 'the
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calculated, efficiencies -from l to 1.5 percentage points from the values.
 

indicated in Figure 7.1. The-plot begins on the left With the predicted
 

efficiency of a 10 ohm-cm, 250 PM n 'p-p solar cell. This-initial cell
 

had a n+ region width of 0.25 VM, and a p+ width of 0.5 pM with a doping
 

of 018/cm . For comparison, the 10 ohm-cm n+-p cell without W'high-low
 

junction resulted in efficiencies below 13 percent. All the results shown
 

include heavy doping effects,-but-have a constant lifetime model in the
 

.diffusedregion.
 

The first improvement on this basic cell involvedthe optimization
 
+ --I­

of the p-p high-low junction. This entailed a widening of the p width
 

to 5 pM and an increase of doping to 10 1/cm . The next aspect is'th 

selection of a 0.3 ohm-cm base resistivity. At this point,, the forward
 

injection component'of dark current has-been so reduced that the back
 

injection component becomes very significant. Since"this component is
 

strongly dependent upon surface region lifetime, the results at-this­

,point must-be split into high and low lifetime cases. 'It isevideht 

that a low n 
+ 
region lifetime overcomes'almost ail of the advantages 'df 

optimizing the base resistivity The.next processing improvement-is the "two
 

pass" model which includes reflection at the back.aontact. The improvement
 

gained in the 250 iM cell is slight, butfor a narrower cell the impr'6vement
 

is significant as described in the main body of the report. s also-seen,
 

the 5% reflecting coating improves"the efficiency very signititantly.
 

The-next improvement is an optimization of the base rdgiob width
 

which -shows some improvement in efficiency-provided back sui face reflection
 

is included. Realize that as one progresses to the right on the. chabt;
 

process modificationsto the left are included. The optimization of the
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n+ region width did not have significant effects for the high lifetime
 

case but it did aid in the case of a low lifetime -surface region. The
 

last two modifications include an optimized surface profile (with respect
 

to retrograde field effects) and a look'at a uniform profile in the surface 

region.
 

A major result of the foregoing modifications is the conclusion that 

narrow base width (100 pM)--selar cells -cantbe fabricated without a loss
 

in conversion efficiency if optical reflection can be obtained at the back
 
+ + 

surface. Essentially the same results are obtained with the p -n-n
 

polarity device. However, the differences..in doping-magnitudes which would
 

+ + 
produce optimum operation in comparison to the n -p-p device depend
 

strongly-upon lifetime assumptions.
 

A major aspect of the present work is related to the problems
 

revolving around the lifetime in the-surface region. Optimization of the
 

base region resistivity always leads-to the-situation -where the ,component
 

of dark current'which is injected into the surface region becomes dominant.
 

The-magnitude of this component is dependent not-only upon-the magnitude
 

of the lifetime within the.surface region but also upon:its spatial nature. 

Also, heavy doping,effects in this region tend to interact with a spatial. 

lifetime to produce significant increases in dark current. These increases-are 

exhibZed..as,reductions in :ogen.cirquit voltag4. These results are
 

summarized in Figure 7.2.- The devicescompared in this figure.are optimized
 

narrow base 0.3 ohm-cm solar .cells. From this figure, the reduction in
 

open circuit'voltage due to heavy doping effects are'evident. However,
 

with the model for a constant lifetime in the surface region it can be
 

seen that heavy doping effects are not as severe as in the case where a
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spatially dependent lifetime is.included. Also included in the-figure
 

is the case in which the ,hole and electron diffusion lengths differ by
 

a factor 'of, two. This -difference reduces the lifetime 'in n-type material. 

For the n+-p-p+ structurethe-overall'magnitude of the spatially dependent 

lifetime-in the surface region is,reduced. -This causes high dark surface 

region currents and consequently reduces the ;openicircuit voltage. For 
+ + 

the p -n-n structure -the-unequal diff.usion-length approximation -reduces
 

the base regionlifetiie/ causing mainlytan.increase in-the dark current
 

component injected into the base region, againlowering.the open circuit'
 

voltage. These comparisQns are illustrated-in Figure 7.3. Note also
 

that heavy-doping effects are less severein a p-type region.
 

from these',calculations it'can be concluded that heavy doping effects;
 

combined with a spatially dependent'lifetime can form a severe limitation
 

to the open circuit'voltage. Spectral'response:calculation have also
 

indicated that a dead layer can also-be formed through'the interaction of
 

lowered lifetime and retrograde fields due toband gap reduction at the,
 

surface. As shown in Figute,7.4 these effects can~be overcome to a large extent
 

' 
in the'n+-p:p device through .aselection of a surface'con6entttibn which would
 

eliminate the'retrograde field.
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