FINAL REPORT.

DEVELOPMENT OF AN INFLATABLE RADIATOR SYSTEM

NASA CONTRACT NAS9-13346

REPORT NO. 2-53002/6R-51338

28 MAY 1976

(NASA-CR-150996) DEVELOPMENT OF AN	N76-33434
INFLATABLE RADIATOR SYSTEM Final Report	i
(Vought Corp., Dallas, Tex.) 340-p	
HC \$10.00 - CSCL 20M	Unclas
G3/34	05727

TO

THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
JOHNSON SPACE CENTER
HOUSTON, TEXAS

SUBMITTED BY

Post Office Box 5907 • Dallas, Texas 75222 an LTV Company

FINAL REPORT

DEVELOPMENT OF AN INFLATABLE RADIATOR SYSTEM

NASA CONTRACT NAS9-13346

REPORT NO. 2-53002/6R-51338

28 MAY 1976

SUBMITTED BY

VOUGHT CORPORATION SYSTEMS DIVISION Dallas, Texas 75222

TO

THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION JOHNSON SPACE CENTER HOUSTON, TEXAS

PREPARED BY:

Environmental Systems

REVIEWED BY:

APPROVED BY:

Environmental Systems Project Engineer, ECS

Environmental Systems

TABLE OF CONTENTS

			PAGE
1.0	SUMM	IARY	1
2.0	INTR	ODUCTION	5
3.0	INFL	ATABLE RADIATOR SYSTEM DEVELOPMENT	13
	3.1	Design Requirements	13
	3.2	Initial Conceptual Studies	16
		3.2.1 Screening Criteria	16
		3.2.2 Radiator Concept Formulation and Evaluation	17
		3.2.3 Deployment Concept Formulation and Evaluation .	27
		3.2.4 Radiator Material Evaluation	31
	3.3	Concept Development	35
		3.3.1 Description of Candidate Concepts	37
		3.3.2 Impact of Meteoroid Considerations	50
		3.3.3 Selection of Concepts for Design Studies	52
		3.3.4 Design Studies	54
		3.3.5 Preliminary Designs	68
		3.3.6 Preliminary Design Drawings	78
	3.4	Computer Analysis	83
		3.4.1 Environment Model	83
		3.4.2 Thermal Model	86
	3.5	Materials Evaluation Study	87
		3.5.1 Materials Identification	87
		3.5.2 Materials Screening	105
		3.5.3 Materials Analysis and Selection	111
	3.6	Engineering Model Inflatable Radiators	115
		3.6.1 Soft Tube Test Article	115
		3.6.2 Engineering Model Thermal Vacuum Tests	125
		3.6.3 Hard Tube Test Article	131
		3.6.4 Thermal Vacuum Test Results	150
		3.6.5 Computer Analyses of the Engineering Model	
		Radiators	171
	3.7	Computer Models of Flight Article Inflatable Radiators	180

TABLE OF CONTENTS (CONT'D)

		PAGE
4.0	TECHNOLOGY ASSESSMENT	187
5.0	REFERENCES	191
	APPENDICES	
A	Fluid and Elastomer Property Data	A-1
В	Test Data for The Hard Tube Engineering Model Radiator .	B-1
C	Test Data for the Soft Tube Engineering Model Radiator	C-1
D	Computer Model Listing for the Hard Tube Test Article	P-1
E	Computer Model Listing for the Soft Tube Test Article	I1
F	Computer Model Listing for The Hard Tube Full Scale	
	Radiator	F-1
G	Computer Model Listing for the Soft Tube Full Scale	
	Radiator	G-1

1.1

LIST OF FIGURES

		PAGE
1	Metal Tube Flexible Deployable Radiator System	6
2	Soft Tube Flexible Deployable Radiator System	7
3	Metal Tube Inflatable Radiator Test Article	9
4	Soft Tube Inflatable Radiator Test Article	11
5	Turbulent Flow Pumping Power	23
6	Inflatable Radiator Tube-Fin Concepts	25
7	Gas Radiator Concept	28
8	Typical Gas Radiator Manifolding	29
9	Typical Gas Radiator Deployment Concepts	41
10	Freon E-2/Wire Mesh Concept	42
11	Freon 21/Wire Mesh Concept	44
12	Freon 21/Wire Mesh Manifolding and Deployment	45
13	One-Sided Radiator Hard Manifold Concept	46
14	Laminated Plastic Film Concept	47
15	Alternate Laminated Plastic Film Concept	48
16	Laminated Silvered Teflon Film Concept	49
17	Hard Tube Concept	51
18	Flowpath and Manifold Configurations	63
19	Gas Deployment System for Soft Tube Concept	66
20	Deployment Gas Tubing Design	70
21	STEM Alternate Deployment System for the Soft Tube Concept	72
22	Soft Tube Concept Fluid Schematic	74
23	Hard Tube Concept Fluid Schematic	75
24	Heat Exchanger Sizing	76
25	Fluid Reservoir Sizing for Soft Tube Concept	77
26	N_2 Bottle Sizing for Soft Tube Concept	79
27	Pump Sizing	80
28	Description of Party Whistle Concept Preliminary Design .	81
29	Description of Jack-In-The-Box Preliminary Design	82
30	Shuttle Orbiter Geometric Model	84
31	Geometric Model of Inflatable Radiator on Shuttle	85
32	Photographs of Soft Tube Test Article	116

LIST OF FIGURES (CONT'D)

	PAG
33	Photographs of Soft Tube Test Article 117
34	Photographs of Soft Tube Test Article
35	Photographs of Soft Tube Test Article 119
36	Photographs of Hard Tube Test Article 120
37	Photographs of Hard Tube Test Article 121
38	Photographs of Hard Tube Test Article 122
39	Photographs of Hard Tube Test Article
40	Sketch of Soft Tube Test Article Configuration 124
41	Sketch of Hard Tube Test Article Configuration 132
42	Arrangement of Test Article in Chamber
43	Location of Instrumentation on Hard Tube Test Article 137
44	Location of Instrumentation on Hard Tube Test Article 138
45	Fluid Inlet and Outlet Temperature Instrumentation 139
46	Soft Tube Test Article Instrumentation 140
47	Installation of Hard Tube Radiator in Test Chamber 143
48	Installation of Soft Tube Radiator in Test Chamber 144
49	Surface Definition for Test Environment Analyses 145
50	Analysis of Inflatable Radiator Test Environment 146
51	Hard Tube Test Article Deployment Data 149
52	Heat Rejection for The Hard Tube Test Article 152
53	Heat Rejection for The Soft Tube Test Article 153
5 ⁴	Thermal Resistance in the Hard Tube Inflatable Radiator 155
55	Resistance to Heat Transfer in The Hard Tube Test Article . 156
56	Sensitivity of Heat Transfer To The Joint Conductance at
	The Fin-Tube Interface
57	Experimental Tube-Fin Contact Conductance in The Hard Tube
	Inflatable Radiator
58	Comparison of Predicted and Experimental Temperatures For
	The Hard Tube Test Article 160
59	Comparison of Predicted and Experimental Temperatures For
	The Hard Tube Test Article 161
60	Comparison of Predicted and Experimental Temperatures for
	Test Point 1-B

LIST OF FIGURES (CONT'D)

	<u>Pac</u>	ĴΈ
61	Thermal Resistance in The Soft Tube Inflatable Radiator . 169	5
62	Resistance to Heat Transfer in The Soft Tube Inflatable	
	Radiator	5
63	Comparison of Experimental and Predicted Temperatures For	
	Test Point 1	7
64	Comparison of Experimental and Predicted Temperature For	
	Test Point 1	3
65	Effect of Raised Tubes on Surface Emittance 169	9
66	Outlet Tube Wall Temperatures During Cold Soak of The	
	Soft Tube Test Article)
67	Approximate Stability Curve For Coolanol 15 172	2
68	Approximate Stability Curves for Candidate Inflatable	
	Radiator Fluids	3
69	Symmetry In The Hard Tube Test Article 175	5
70	Computer Model of The Hard Tube Test Article 176	5
71	Node Identification in The Hard Tube Computer Model 177	7
72	Radiating Surface Identification in The Hard Tube Computer	
	Model	3
73	Flow Path Identification in The Soft Tube Computer Model. 179)
74	Computer Modeling of Inflation Tubing and Deployment	
	Drum	L
75	Modeling of Fins in The Soft Tube Computer Model 182	2
76	Node Identification in The Soft Tube Computer Model 183	3
77	Radiating Surface Identification in The Soft Tube Radiator 184	ţ
78	Effect of Cross Conduction Between Adjacent Tubes in The	
	Soft Tube Radiator	5
79	Proposed Radiator Fin Construction 188	3

LIST OF TABLES

	,	PAGE
1	Comparison of Feasibility Demonstration Inflatable	
	Radiators	12
2	Design Requirements Summary	14
3	Radiator Requirements	15
4	Liquid Coclant Characteristics	19
5	Candidate Materials	33
6	Impact of Meteoroid Considerations	53
7	Soft Tube Radiator Configuration Trade Studies	64
8	Materials Manufacturers and Suppliers Contacted by Vought	88
9	Alternate Inflatable Radiator Tube Material Candidates .	90
10	Initial Fluid Screening	95
11	Room Ambient Temperature Chemical Compatibility Tests	107
12	Results of Elastomer Flexibility Tests	109
13	Final Selection Criteria for Transport Fluids	113
14	Tubing Wall Thickness and ΔT Summary	114
15	Hard Tube Radiator Test Outline	127
16	Soft Tube Radiator Test Outline	128
17	Test Points Not Completed	130
18	Density Correction Factors for Flowmeter Readings	141
19	Flow Distribution Test Results	148
20	Summary of Thermal Vacuum Test Results	151
21	Comparison of Experimental and Predicted Thermal Per-	
	formance of The Hard Tube Test Article	154
22	Comparison of Experimental and Predicted Thermal Per-	
	formance of The Soft Tube Test Article	157
23	Sample Measurements of Silver Layer Thickness For The	
	Soft Tube Test Article	162
24	Approximate Fin Efficiency for Soft Tube Radiator	
	Measured Film Thickness	162
25	Predicted Performance of Full Scale Inflatable Radiators.	180
26	Properties of Radiator Fin Materials	188
7	Comparison of Alternate Radiator Construction	о8 г

1.0 SUMMARY

This report describes work accomplished by the Vought Corporation Systems Division in developing an Inflatable Radiator System (IRS) for supplying short duration supplementary cooling of space vehicles. The program, which began in August 1973, was sponsored by NASA/JSC under contract NAS9-13346. It has resulted in conceptual designs of two flight articles, and fabrication and tests of two corresponding engineering model radiators. The designs have been supported by parametric trade studies, materials evaluation/selection studies, thermal and structural analyses, and numerous element tests. Fabrication techniques developed in constructing the engineering models and performance data from the model thermal vacuum tests will be used in refining the designs of the flight articles and in constructing a full scale prototype radiator.

One of the concepts evolved during the program uses soft (polyurethane, perfluoroelastomer, or Teflon) tubing and a thick-silvered Teflon
flexible fin material. It deploys by unrolling like a party whistle, using
a gas pressurant to inflate two tubes on either side of the flexible panel.
Heavier deployment mechanisms such as a Storable Tubular Extension Member
(STEM) may be substituted for the inflation tubes to obtain more positive
control of the radiator displacement. The Teflon tubing-baseline design
has three panels, each 40" wide by 25' long, with a combined 3-panel area
of 250 sq.ft. and weight of 96 lb (including pumping power penalty but
exclusive of fluid loop components). With polyurethane tubing the surface
area and weight are increased by approximately 10%. The baseline design has
a limited meteoroid lifetime (90% chance of surviving 2 days). A materials
study task has been completed to extend the 90% survivability period to
30 days.

The second concept uses hard (aluminum) radiator tubes and Teflon coated silver wire mesh flexible fin material. The tubes are wound in a helical spring configuration, forming a cylinder covered by the fin material. It deploys by the inherent spring force, similar to a jack-in-the-box. The baseline design is a single cylinder 42" in diameter and 42' long, with a surface area of 463 sq.ft. and a weight of 233 lbs. The baseline design has a meteoroid lifetime of 30 days.

Engineering model test articles were fabricated and tested in the Vought twelve foot diameter vacuum chamber. The models have a reduced radiating surface area but are otherwise constructed to be as similar as possible to the flight articles so that fabrication techniques, materials evaluations, thermal performance data, and other information developed is useful for evaluating and improving the basic design. The soft tube model is 40" x 72" and the hard tube model is 28" dia x 45" length. The fin material and inflation tubing for the soft tube model were assembled at Vought using materials and manufacturing techniques expected to be employed on any subsequent prototype articles. Polyurethane tubing was bonded beween two sheets of the fin material with G.E. SR-585, a flexible adhesive. The fin material for the hard tube model was fabricated at Vought in rectangular sections of two square-foot area, and was attached to the helical tubing with nylon thread and SR-585 adhesive. Materials studies and fluid/ tubing compatibility tests were conducted to determine the optimum soft tubing for fluid passages, and for selecting an appropriate transport fluid for the soft tube concept. As a result, polyurethane tubing with Coolanol 15 as the transport fluid was used in the soft tube model. Aluminum tubing with Freon 21 was selected for the hard tube model.

Each of the models was subjected to repeated deployment/retraction cycles to test their durability and tractability in adverse environments. Thermal vacuum tests were performed to evaluate the heat rejection capabilities of the radiators and to obtain data on operating temperature limits, flow distribution in parallel tubing networks, joint conductances at the fin/tube interfaces, and effective surface emissivities. Supporting element tests were conducted to determine material stiffness at ambient and low temperatures and to provide early thermal performance data during design development.

The tests results are very favorable, and give a strong indication that the IRS can be made to be superior in performance, cost and weight to conventional radiator systems. The thermal performance of the hard tube model was very near the expected level, and the radiator could be deployed and retracted in a cold vacuum environment without difficulty. The effective surface emissivity inferred from test data, which includes radiation

transmitted through the surface but originating at other points on the radiator, is approximately 0.83. The average fin efficiency is 0.85 and the average heat rejection for a deep space environment is 87.6 BTU/hr-ft2. The soft tube model also performed approximately as predicted. The surface emissivity of the soft tube model inferred from test data is 0.68, and the average fin efficiency is 0.72. The heat rejection for a deep space environment is 43.4 BTU/hr-ft2. Some difficulties were experienced in attempting to re-deploy the radiator after it had been retracted in a cold environment, and the thermal performance was not as high as had been predicted. However, the radiator construction proved to be more flexible than had been anticipated, and the model showed very little wear or degradation in performance after more than fifty deployment/retraction cycles. The deployment difficulties were caused by gravity effects which were not accounted for in the test setup for simulating the retraction mechanism These difficulties can be corrected in the final design. The reduced thermal performance is apparently caused by out of tolerance variations in the thickness of the silver layers of the fin material, and may require modifications in the baseline design.

Several important facts relavent to the design and construction of a full scale IRS were established. The soft tube concept results in lighter system weight and consequently higher heat rejection per unit mass than the hard tube concept. The soft tube radiator is much easier to assemble from its components than the hard tube radiator. The quality of the silver wire mesh/Teflon fin material is much easier to control than that of the thick film silver backed Teflon material, and has slightly better thermal properties. The soft tube design with polyurethane tubing is very flexible, and it is likely that stiffer tubing with higher strength and capacity to withstand longer durations in a meteoroid environment are

possible. Additional trade studies involving the stiffness of candidate tubing materials, fluid properties, and the weight of deployment mechanisms appear to be justifiable. The operating temperature range possible with Freon 21 as the transport fluid is approximately -125°F to +200°F. The corresponding ranges for Coolanol 15 is -10°F to +160°F.

2.0 INTRODUCTION

Conventional radiators, such as those of the Apollo and Gemini programs, are structurally integral with the vehicle skin, while the Space Shuttle Orbiter radiators line the interior of the cargo bay door. Experiments that exceed the capacity of the primary system require additional radiating surface area which cannot be readily provided with fixed radiators, and thus establish a requirement for a versatile auxiliary radiator system. The flexible deployable-retractable radiator concept permits the packaging of the radiator into a compact unit which can be attached to the vehicle structure or hatch prior to or after launch. On-orbit, the radiator may be deployed or retracted as shown in Figures 1 and 2 to provide the radiating surface area needed for a specific experiment. The unit may be independently developed and qualified as a heat rejection system which will then be ready for any spacecraft or experiment, and which will not require significant structural and systems accommodation.

The flexible radiator fin material should provide high thermal conductance and emittance, resistance to degradation caused by ultraviolet radiation, and strength and flexibility in a cold environment. Transport fluids and tubing materials should be selected for optimum thermal performance and pumping power requirements, operating temperature range, chemical compatibility, and survivability in a micrometeoroid environment. To satisfy these objectives a unique composite fin material has been developed, extensive materials evaluation studies have been performed to select transport fluids and tubing, and numerous tests have been conducted to evaluate radiator thermal performance, materials compatibility, packaging characteristics, techniques for deployment and retraction from a stowed volume, and methods for interfacing with spacecraft coolant hardware. Two feasibility demonstration flexible radiator articles representing alternate deployment concepts and radiator fin/transport fluid/tubing materials combinations have been fabricated and tested in a thermal vacuum environment.

The radiator fin material developed for the flexible radiator system has outer layers of FEP Teflon which provide structural strength and resistance to chemical attack, and increases the radiating surface emittance. The thickness of the layers is computed from effective surface

FIGURE 2 SOFT TUBE FLEXIBLE DEPLOYABLE RADIATOR CONCEPT

emittance data to optimize the performance and weight of the panel. Silver metal is vapor deposited on the interior surfaces of the Teflon to provide thermal conductance and to reflect incident solar radiation. The resulting composite surface has a very high ratio of emittance to solar absorptance, and protects the interior structure from damaging ultraviolet radiation. The thickness of the silver layer may be increased to give high thermal conductance. Alternately, high conductance can be effected through silver wire mesh which is fusion bonded to the interior surface of the Teflon. The transport fluid tubing diameter and spacing are selected to minimize the system weight including pumping power penalty and structural mass for protection from meteoroid penetration.

The basic purpose of transport tubing is to provide long operating lifetime in a meteoroid environment, a wide operating temperature range, pressure retention, and flexibility and strength consistent with the deployment/retraction system. The characteristics of transport fluids which influence fluid selection are: boiling point (or vapor pressure), fire point, pour point, toxicity, thermodynamic and transport properties, and compatibility with the tubing material. A materials evaluation study evaluated metal tubing and a great variety of flexible materials including fluoroelastomers, perfluoroelastomers, thermal and thermoplastic polyurethanes, polypropylenes, polyethylenes, polyester and silicone elastomers, and various types of rubber and fluorinated polymers. Fluids surveyed included fluorocarbons, silicate esters, and silicone fluids. The study identified three fluid and tubing combinations: Coolanol 15 with polyurethane tubing, Freon 21 with aluminum tubing, and Freon 21 with Teflon tubing which satisfy the flexible radiator design requirements. Screening tests consisting of chemical compatibility, flexibility, and long term thermal exposure testing were conducted for selected material combinations, and numerous thermal performance element tests were made to develop the radiator fin materials.

Two feasibility demonstration radiators were fabricated and tested in a vacuum environment to evaluate overall system thermal performance and deployment concepts. The test article shown in Figure 3 is constructed with

FIGURE 3 METAL TURE FLEXIBLE RADIATOR TEST ARTICLE

aluminum fluid passage and deploys from the inherent spring force of the coiled tubing: a motor driven cable or boom compresses the coils to retract the radiator. The other test article, shown in Figure 4, has flexible tubing and is stored on a cylindrical drum. Deployment forces are supplied by a gas pressurant which inflates two tubes or either side of the flexible panel causing the radiator to unroll like a party whistle. Heavier deployment mechanisms such as Storable Tubular Extendible Member (STEM) may be substituted for inflation tubing in the flight design to obtain very precise control of the radiator displacements. Table I compares the construction and performance of the two feasibility demonstration articles. The results show that the metal tube concept has the widest operating range whereas the flexible tube concept has lighter weight.

FIGURE 4 SOFT TUBE FLEXIBLE RADIATOR TEST ARTICLF

TABLE I COMPARISON OF FEASIBILITY DEMONSTRATION FLEXIBLE RADIATORS

	METAL TUBE RADIATOR	FLEXIBLE TUBE RADIATOR
TUBING MATERIAL	ALUMINUM	POLYURETHANE
TRANSPORT FLUID	FREON 21	COOLANOL 15
FIN MATERIAL	SILVER WIRE MESH/TEFLON	THICK LAYER SILVER/TEFLON
DEPLOYMENT FORCE	COILED TRANSPORT TUBING	INFLATION TUBING
MODEL DIMENSIONS	28" DIA X 45" (0.7M DIA X 1.14 M)	40" X 72" (1 m X 1.85m)
TUBE SPACING	1.5" (.038M)	1.0" (.025M)
RADIATOR FIN EFFICIENCY	0.85	0.72
EFFECTIVE SURFACE EMITTANCE	0.83	0.68
UPPER OPERATING TEMPERATURE LIMIT	300°F (450°K)	200°F (367°K)
LOWER OPERATING TEMPERATURE LIMIT	-140°F (178°K)	-20°F (245K)
WEIGHT	4.8 kg/m ²	1.9 kg/m ²

TABLE II

DESIGN REQUIREMENTS SUMMARY - FULL SCALE SPACE APPLICATION

HOT: 55° X 100 N.MI. SUN ORIENTED THERMAL ENVIRONMENT

COLD. FACING DEEP SPACE

4 KW MAXIMUM HEAT LOAD

T

HIGH LOAD DESIGN POINT : 100°F FLUID INLET TEMPERATURE

HOT OPERATING LIMIT : 200°F

GOAL OF 40°F OR LOWER; 50°F MAX FLUID OUTLET TEMPERATURE

VEHICLE PHYSICAL INTERFACE ATTACHMENT TO AND DEPLOYMENT FROM

MINIMUM VOLUME CANISTER. HEAT EXCHANGER

INTERFACE. DESIRE POTENTIAL FOR DIRECT

TIE-IN WITH VEHICLE LOOP.

ACCELERATIONS (DEPLOYED) PER CURVE FOR 950-LB RCS STABILIZATION

(MAX. 0.02-g END OF 50' IRS)

MINIMUM TEMPERATURE (MATERIALS) -250°F

- INCLUDE IN STRUCTURAL ANALYSIS ATMOSPHERIC DRAG

TABLE III
RADIATOR REQUIREMENTS FOR VARIOUS VEHICLES

VEHICLE	FLOWRATE/ FLUID	MAXIMUM HEAT LOAD(BTU/HR)	HEAT LOAD RANGE (BTU/HR)	RADIATOR INLET TEMP. °F	RADIATOR OUTLET TEMP. °F	ENVIRONMENT
Shuttle (Reference 18)	2200 Lb/Hr Freon 21	71,450	7550-71,450	164.0	40.0	100N.M270N.M. Orbits 0-90 Deg. Inc.
Space Station Prototype (Reference 19)	29,200 Lb/Hr Freon 21	155,000	Not Defined	56	34	255N.M. Orbit 55° Inc.
Modular Space Station (Reference 20)	Not Defined Probably Freon 21	27,425 Any One Module	Not Defined	Not Defined	40	270N.M. Earth Orbit
Spacelab (Reference 21)	Freon 21	46,250	Not Defined	Not Defined	40 For man- ned experi- ments; un- defined for unmanned	Same as Shuttle

IRS was selected as the smallest of the potential envelopes of the docking hatch for the Modular Space Station, and airlock for the Spacelab and the docking module of the Shuttle Orbiter. By designing for the smallest envelope this insures the IRS could be integrated into the other potential locations. Capacity for deployment from the stowage compartment is a groundrule, and retractability is a likely mission requirement but was not considered necessary for initial feasibility demonstration.

The requirements summarized in Table II were established early in the development program to provide a starting point for designing the inflatable radiator system. Additional information on groundrule selection and mission requirements has evolved during the course of the program and should be incorporated into the designs of subsequent prototype programs. Of particular importance are constraints imposed by micrometeoroids and ultraviolet radiation. The effects of these environmental factors on the radiator design are discussed in separate sections below. Additional

3.2 Initial Concept Selection

The design requirements and groundrules of 3.1 provided a starting point for the generation of IRS concepts. The feasibility of these various concepts were then evaluated on the basis of screening criteria, which reflected the design requirements and performance evaluation considerations. This section describes the screening criteria and presents a series of concept formulations/evaluations for the two key aspects of an IRS design the radiator system itself and the associated packaging/deployment technique. The "radiator system" consists of the inflatable radiator panel(s), the transport fluid, and any associated pumps, valves, and heat exchangers. Finally, two concepts selected for development and testing are described

3.2.1 Screening Criteria

The screening criteria established for selecting IRS concepts is given in Table III-A. The criteria fall into three general categories, radiator system considerations, radiator panel design and fabrication considerations,

TABLE III-A PROPOSED INFLATABLE RADIATOR SYSTEM CONCEPT SCREENING CRITERIA

RADIATOR SYSTEM CONSIDERATIONS:

- o Thermal Performance
- o Operating Constraints
- o Degradation in space environments
- o Pressure drop/pumping power requirements
- o Heat exchanger requirements

RADIATOR DESIGN & FABRICATION CONSIDERATIONS:

- o State-of-the-art
- o Structural integrity
- o Manifolding
- o Flund compatibility
- o Failure modes
- o Cost

PACKAGING AND DEP OYMENT CONSIDERATIONS:

- o Radiator flexibility
- o Packaged volume of radiator
- Packaged volume of other components
- o Deployed dynamic stability
- o Deployment mechanism complexity
- o Retraction capability
- o Packaged weight of system

ĕ,

and packaging and deployment considerations. Application of the criteria at a general level is demonstrated below for the selected concepts.

3.2.2 Radiator Concept Formulation and Evaluation

Elements to be considered in radiator concept formulation include transport fluids, transport tubing and radiator fin materials, and tube-fin geometric configurations. Documentation supporting the selection of materials for the IRS and detailed technical data on material properties are given in section 3.5. General information on materials requirements relevant to selection of an inflatable radiator concept are given below.

The major considerations in selecting a transport fluid are:

- . Operating pressure (desired <u>low</u> for IRS structural simplicity)
- . Freezing or pour point (condensation temperature for gases)
- . Stability of composition
- . Thermal performance
- . Pressure Drop Performance
- . Toxicity
- . Compatibility
- . Variation of properties over the design temperature range
- . Availability
- . Cost

These considerations reflect application of the general screening criteria (e.g., thermal performance, operating constraints) to the specific task of fluid screening.

Considering these characteristics, three liquids, Freon 21, Freon E-2, and Coolanol 15, were identified for use in design studies of the inflatable radiator. In addition, use of a gaseous transport fluid was considered and one gas (nitrogen) was selected for further evaluation.

Liquid Transport Fluid Screening

The operating pressure required to preclude fluid phase change is a predominant liquid transport fluid screening criterion for inflatable radiator applications, since to be flexible the radiator material must be thin and hence the burst pressure relatively low. Table 4 lists some typical liquid coolants and their vapor pressures at 200°F. This gives an indication of required operating pressure for a test heat source to provide $160^{\circ}F$ inlet temperature.

The freezing point of the fluid is also important for radiator applications since it sets the lower limitation on heat load control, i.e., the lowest amount of heat rejection possible with the radiator still having the capability of recovering to high heat load. Radiator systems are generally sized to reject the maximum heat load under the worst thermal environment which could reasonably be expected for the mission. Heat loads and environments are not usually constant for an entire mission and thus under a lower heat load (lower inlet temperature) at a lower environment the radiator outlet temperature would fall below the design value. If the radiator system is used to cool a EC/LS water system for instance as is the case in the Shuttle, Space Station and Sortie Labs and the return temperature fell below 32°F, the water loop could be frozen and thermal control of the cabin lost. For this reason control of the amount of heat rejected by the radiator is required. The various ways of accomplishing heat load control through fluid system design are discussed in Reference (1), and the limitation of all these methods is the freezing point of the fluid. Since it would be ' desirable to have a wide heat load range for multiple mission capability, it is desirable to have a coolant with as low a freezing temperature as possible. Table 4 gives the freezing point of selected liquid coolants.

The combined requirement of low operating pressure and low freezing point is sufficient to screen the liquid coolants quite extensively. In general, liquids with a low freezing point have a high vapor pressure at design temperatures. Of the fluids listed in Table 4, Freon E-2 and Coolanol 15 were identified as fluids which can be operated at 15 psia and have low freezing points. Freon 21 was also selected for further study although its operating pressure is relatively high (165 psia) for a

TABLE IV
LIQUID COOLANT CHARACTERISTICS

FLUID	VAPOR PRESSURE AT 200°F,PSIA	FREEZING OR POUR POINT °F	BOILING POINT AT 1 ATM. °F
Freon TF-DuPont	54	- 37	117.6
Freon El-DuPont	73	-246	105.4
Freon E2-DuPont	10.3	-190	220.0
Freon E3-DuPont	2.1	-160	306.1
Freon E4-DuPont	.58	-138	380.8
Freon E5-DuPont	.185	-119	435.6
Coolanol 15	.155	-140	440.0
Coolanol 25	.0031	-120	590.0
Coolanol 35	.0031	-120	625.0
Coolanol 45	.0001	- 85	650.0
Therminal FR	.27	- 40	432.
Therminal FR-0	.026	- 15	570.
UCON HTF - L20	.0019	- 40	_
UCON HTF - 10	.0019	- 45	-
UCON HTF - 14	.0019	- 35	_
Freon 112	15	79	199
Freon 113	54	- 30	118
Freon 114B2	54	-167	117
Freon 11	103	-168	75
Freon 21	165	-211	48
Freon 114	180	-137	39
Freon C318	260	- 42	21.5
Freon 12	430	-252	-22
Freon 22	680	-256	-47
RS 89A	17	- 80	240
FC-25	1.9 @ 120	- 80	216
FC-43	5 @ 77°F	- 40	345
Oronite 8786	<]	-100	-
Oronite 7277	<]	- 35	-
Oronite 70	<7	-100	-
FC-77	2.3 @ 120°	-100	-

TABLE IV
LIQUID COOLANT CHARACTERISTICS (CONT'D)

FLUID	VAPOR PRESSURE AT 200°F,PSIA	FREEZING OR POUR POINT °F	BOILING POINT AT 1 ATM. °F
FC-78	<1 @ 77°F	-122	- 1-22
UC LB-165	<.1	- 50	-
SF-85	<.1	-120	
F-50	Low	-100	f _
L-45	Low	- 67	-
Oronite M-2	<.6	-110	
Oronite 8200	<2.0	-100	-
DC 210	<2.5	- 85	-

flexible system. This selection was based on the use of Freon 21 in the Shuttle heat rejection system and its probable use in the Sortie Lab and Space Station Systems. The required operating pressure of F-21 is no problem for a "hard" system such as the Shuttle design and this fluid has significant other advantages which led to its selection for the Shuttle application. Freon 21 has a low freezing point (-211°F) and the viscosity is not sensitive to temperature as are many other low temperature freezing point fluids, including Coolanol 15 and Freon E-2. Freon 21 is compatible with most materials and, although somewhat toxic, is not highly lethal. In addition to these advantages Freon 21 was selected for further study since use of this fluid would make it possible to directly integrate the IRS with the primary fluid system of the Shuttle, Sortie Lab, or Space Station, thus eliminating the requirement for a IRS - primary coolant system heat exchanger.

The fluids selected have good thermal properties, and are not highly toxic, although they would be required to be isolated from inhabited areas. They have stable composition, are compatible with most materials and are available at reasonable cost.

Gas Transport Fluid Screening

Although not generally considered for conventional space radiator systems, gases are worthy of investigation as candidate transport fluids for an inflatable radiator system. Gas storage volume requirements are small, and a gas could act as both the inflation medium and a low pressure transport fluid in an IRS. A gas radiator obviously requires a heat exchanger interface with the spacecraft fluid system, but such an interface may well be a baseline IRS requirement. The primary disadvantage of gases is a potential large pumping power requirement. However, an inflatable gas radiator can potentially be configured with large, low pressure drop flow passages without incurring a severe penalty in radiator weight or transport fluid weight.

An important consideration in the evaluation of gases as inflatable radiator transport fluids is their condensation temperature. If the gas condenses in the operating temperature/pressure range of the radiator system, deflation of the radiator may result, with a coincident decrease in per-

formance. As shown in Table 4, the vapors of most transport fluids have one atmosphere boiling points in excess of 40°F and would condense under low-load radiator operating conditions. Thus the fluid selection is limited to substances which are normally called "gases", such as nitrogen, helium and hydrogen.

These gases can be evaluated from the standpoint of thermal and pressure drop performance in the same manner that liquid transport fluids have been evaluated in the past (Reference 11). Since large convective heat transfer coefficients will be required, it is the turbulent flow performance which is of interest. Values of turbulent flow pump power parameter $(\psi_{\overline{1}})$ and turbulent conductance parameter $(\eta_{\overline{1}})$ are shown in Figure 5 for nitrogen, helium and hydrogen at one atmosphere pressure and as a function of temperature. These parameters are dependent only upon fluid properties and are proportional to the pumping power and conductance, respectively. Low values of pumping power parameter are desirable, while high values of conductance parameter correspond to low fluid-to-wall temperature differences which are desirable. From a pumping power standpoint, nitrogen is seen to be somewhat worse than helium, while hydrogen is the best of the three. It is interesting to note that the pumping power requirement for gases increases with temperature as a result of the increase of gas viscosity with temperature. This effect is the opposite of that experienced in liquids, which require more pumping power as temperature decreases and viscosity increases. From a conductance standpoint, hydrogen and helium are seen to be somewhat better than nitrogen. However, the disadvantages of hydrogen (combustibility) and helium (leakage tendencies) tend to offset their pumping power and conductance advantages. The availability and reasonable performance characteristics of nitrogen make it the logical transport fluid for further design studies of a gas inflatable radiator.

IRS Tube-Fin Concept Screening

For a conventional radiator, the primary consideration in tubefin configuration selection is the detail tradeoff involving radiator weight and pumping power penalty. However, inflatable radiator tube-fin concepts are first subject to a general screening on the basis of their

FIGURE 5 TURBULENT FLOW PUMP POWER AND CONDUCTANCE PARAMETERS FOR GASES

flexibility, fabricability, and structural integrity under the operating temperature and pressure condition of the associated transport fluid. A sequence of concept formulation is illustrated in Figure 6 and the results of the screening process are discussed below.

ţ

Concept A is formed by laminating two sheets of flexible material ("plastic") together in such a way as to form fins and flow passages upon inflation. The area which forms the tube walls may be metallized for use with the liquid transport fluids in order to reflect solar radiation. The fin area (and the tube area in the case of the gas transport fluid) requires no metallization since, in general, the materials utilized will be transparent to solar radiation. It is a very simple concept, but is unsuitable for use with the Freon 21 transport fluid because the high pressures involved are likely to cause delamination or a tearing failure at the flow passage. The configuration is also thermally unsuitable for the low pressure liquid (Freon E-2) and gas (Nitrogen) transport fluids because of the low thermal conductivity and correspondingly low fin effectiveness.

Concept B represents the logical extension of Concept A for the case of the gas transport fluid. Since the transport fluid mass is a small portion of the total mass in a gas radiator system, it is feasible to make the entire radiating area (except for inter-tube seals) tube area. Thus Concept B eliminates the fin effectiveness problem of Concept A by eliminating the fins. Concept B was selected as the baseline configuration for the gas transport fluid, and subsequent materials selection and system optimization studies for it are discussed in Section .

In an attempt to improve the thermal performance of Concept A for the case of the low pressure liquid transport fluid, Concept C was formulated. Here a metal foil is included in the lamination to improve fin effectiveness. The problem which immediately arises is fabrication of the laminate. With the foil in the interface, sealing is not possible. If a gap is left in the foil for heat sealing the resulting fin effectiveness is unacceptable.

This problem is overcome by Concept D, which employs a wire mesh in the laminate. This mesh allows the face materials to be laminated through

FIGURE 6 SOME INFLATABLE RADIATOR TUBE-FIN CONCEPTS

the mesh gaps. A mesh can be selected with high solar reflectivity, and can extend across the tube flow passage and tends to enhance convective heat transfer. Concept D was selected as the baseline tube-fin configuration for the low-pressure liquid transport fluid, and details of materials and system optimization studies for it are also presented in Section

Concept E represents a first attempt at a design for the high pressure transport fluid. It consists of flexible plastic tubes bonded to a plastic-wire-plastic laminate layup such as that of Concept D. This concept was deemed difficult to manufacture. In addition, the thermal performance and flexibility characteristics of the tube-fin bond were considered questionable.

Concept F resembles Concept E except that one sheet of the laminate includes integral extruded tubes. This eliminates the tube bonding problem, but feasibility of manufacturing the required extrusion (with the fin portion thin enough to be flexible) was investigated and found to be poor.

Concept G incorporates the flexible plastic tube of Concept E into the laminate itself. It is essentially the same as Concept D, with the tube inserted in the flow passage to provide structural integrity under the relatively high pressures of the Freon 21 system. This appeared to be a promising concept and was selected for further evaluation in the Design Studies Section.

To illustrate the variety of tube-fin concepts evaluated during this effort, Concepts H and I are presented. Concept H consists of an open cell form inserted in the flow passages of a concept such as B. The intent of this approach is to enhance heat transfer and maintain a favorable flow passage shape. Note that the laminate faces must be metallized for low solar absorptivity, since the foam would be expected to have a relatively high absorptivity. The difficulty with Concept H lies in the fact that the foam tends to deform as the radiator is inflated and the passage tries to assume a circular shape. Concept I represents an attempt to eliminate this problem by bonding facesheets to the open cell foam. Performance calculations showed that the flexibility and pressure drop characteristics are unacceptable, so they were screened out on that basis.

In the concept screening, consideration was also given to use of pyrolytic graphite with its high lateral thermal conductivity, for fin

effectiveness enhancement. The various properties of pyrolytic graphite are discussed in Reference 12. In summary, pyrolytic graphite has a lateral thermal conductivity of 200 BTU/hr-ft-°F as compared with 217 BTU/hr-ft-°F for copper. However, its transverse thermal conductivity is some 200 times lower. It is relatively expensive and its attractive thermal transport properties are offset by a high solar absorptance, which would dictate use of a reflective coating. In addition, it requires a hot substrate (1900°F to 4400°F) for proper vapor phase deposition, thus precluding its use with polymer films. It is brittle, with a typical minimum bend radius of 1/8" for ribbon in the 0.0002" thickness range. This brittleness would make stowage/deployment of the inflatable radiator difficult. Thus pyrolytic graphite was eliminated from further consideration on the basis of this screening.

In summary, a series of tube-fin concepts have been evaluated. Concepts B, D, and G were selected as examples for detail design study for the gas transport fluid system and the low pressure and high pressure liquid transport fluid systems, respectively.

3.2.3 Deployment Concept Formulation and Evaluation

In this section several concepts for deploying the inflatable radiators are discussed and screened in order to select candidates for more detailed analysis in design studies. The screening criteria, as given specific definition for deployment concept evaluation, are

- . Complexity
- . State-of-the-art
- . Volume
- . Weight
- . Power
- . Stowability
- . Installation Complexity
- . Potential for Retractibility

Figures 6-A and 6-B show the concepts considered in this section.

Transport Fluid Inflatation - Figure 6-A shows several panel configurations which could be deployed by filling the fluid passages with

FIGURE 6-A TRANSPORT FLUID INFLATION DEPLOYMENT CONCEPTS

FIGURE 6-B MECHANICAL DEPLOYMENT CONCEPTS

transport fluid. Virtually any panel shape can be folded or rolled into a compact package and deployed in this manner. The package shape would be somewhat dependent upon the deployed panel shape. A means for retracting or stowing the panel after use would have to be provided separately. A simple retraction means for the rectangular panels would be a series of springs integrated into the panel such that when the transport fluid is relieved the panel will return to its stowed configuration. An example of this concept is the inflatable noisemaker seen at parties. There a rolled up paper tube is inflated by blowing on one end. When pressure is released a spring integrated into the tube rolls it up again. Retracting other shapes would probably be more complicated.

Separate Inflation Fluid - Should the filling of the fluid passages with the transport fluid fail to result in a panel rigid enough to withstand vehicle maneuvering accelerations, separate gas cavities could be provided which would make the panel rigid. The panel configuration shown in Figure 6-A would be deployed in this manner.

Mechanical Deployment - Figure 6-B shows several panel configurations which could be deployed mechanically. Particular shapes imply the use of certain types of mechanisms. STEM (Storable Tubular Extendable Member) devices and Astromasts are compactly packaged extension devices, having proven space applications, which are particularly of interest for this deployment application. Both these devices may be obtained for powered extension and retraction or can be spring loaded to the extended position. These devices are applicable for retraction of the panel as well as deployment if they are powered.

Flexible solar cell panels have been deployed in space using the concept shown in A, with parallel stem devices supporting each side of the panel. B is a variation using folded instead of rolled stowage.

C shows a panel rolled for stowage and extended using a single Astromast. This same arrangement could be used with a STEM device also.

The cylindrical panel shown in D uses an Astromast for deployment and retraction. The same arrangement could also be used with a STEM device.

A circular panel could be deployed like an umbrella, as shown in E, and retracted in the same manner.

F uses STEM devices in conjunction with a power drum to unroll and reroll the radiator panel. This would allow the varying of the radiator surface without complicating the transport fluid plumbing.

As an additional concept, the IRS deployment could utilize a recent development of Naval Ordinance Laboratory, 55-Nitinol alloy (Reference 13). This 55% nickel, 45% tutanum alloy has a mechanical memory, i.e., it can be plastically deformed below the transition temperature range and given a permanent set. Application of sufficient heat to warm the alloy above the transition temperature range, (about +150°F) causes the deformed part to return to its original shape. Thermal deployment could be accomplished by electrical resistance heating of the metal itself, by solar heating, by separate heater, or by explosive squib. The resistance to metal fatigue, i.e., endurance limit, is quite good for the alloy, and the transition temperature range can be varied between 300°F and -300°F by changing the nickel to titanium ratio or by partial substitution of cobalt for the nickel. Self-erectable deployment structures of Nitinol alloy have been demonstrated for devices such as antennas, coll-uncoil tape devices, cylinders, extendable booms, mechanical actuators, radar reflectors, rectangular and circular grids, and solar cell arrays. Primary disadvantages of the material are close control requirements on alloy chemistry, and lack of available data on its performance when used on hardware deployed in space. In addition, its requirement for a controlled, external energy source is a significant disadvantage.

Initial Candidate Selection

Based on the screening criteria of Table III, three candidate deployment system concepts (Figure 6-A, Concepts B and F; Figure 6-A, Concept D) were initially selected for additional study and development. Later additional concepts which are able to survive long periods in a micrometeoroid environment were included in the list of candidates. These concepts are discussed in detail in Section 3.3.3, Selection of Concepts for Design Studies.

3.2.4 Radiator Material Evaluation

State-of-the-art plastic films, which are the prime candidate materials for the IRS panels, have been well established as either

inflatable structures and/or thermal control surface materials. The plastic film serves both these functions in the IRS concept. It must act as the primary structure of the IRS itself, while retaining the transport fluid and maintaining a panel configuration which allows heat to be rejected as the fluid in circulated. In addition, the surface of the film must have optical properties which are stable and which allow the IRS to efficiently reject heat. A low solar absorptance and high emittance are thus required.

In any of the IRS concepts considered for system trades, a 'plastic film is required as the prime structural component. Any film considered as an IRS material must have the ability to meet these general and specific criteria

- . Chemical compatibility with the heat exchange fluid
- . Minimum degradation of mechanical and optical properties due to solar ultraviolet and other damaging irradiation
- . Low solar absorptance
- . High emittance
- Mechanical properties to retain shape and fluid pressure at the temperature extremes to be experienced by the IRS
- . Formable by heat sealing to itself or heat bonding to metals or other polymers
- . Flexibility to aid deployment by electromechanical, thermomechanical, or pneumatic techniques
- . Adequate thermal conductivity to allow heat transfer across the film

Table 5 lists candidate film materials with key properties noted. Thermal effects or solar ultraviolet degradation disqualify most polymers except for the polyimides and fluorinated ethylenes and ethylene propylenes. The polyimide film, particularly the polyimide/fluorinated ethylene propylene (FEP) laminate, has attractive mechanical and thermal properties. Un-

TABLE 5 CANDIDATE IRS MATERIALS

MATERIAL	TRADE NAME	PRINCIPAL ADVANTAGE(S)	PRINCIPAL DISADVANTAGE(S)
Polyethylene	Bakelıte	Ease of heat sealing	Brittle at low temperatures
Chloroprene	Neoprene	Flexibility at ambient temperatures	High solar absorptance; brittle at low temperatures
Polypropylene	Clysar	Mechanical strength	Brittle at low temperatures
Polycarbonate	Lexan	High impact strength	Tends to craze
Polyvinylidene fluoride	Kynar	Chemically inert	Limited uv degradation data
Polyvinyl flouride	Tedlar	Chemically inert	Loss of strength after thermal exposure
Polyester	Mylar	Mechanical strength	Loss of strength after thermal exposure
Polyımıde	Kapton H	Mechanical strength	Not heat sealable, high solar absorptance
Polyımıde/FEP lamınate	Kapton HF	Heat sealable, mechanical strength	High solar absorptance
Ethylene tetrafluoro- ethylene copolymer	Tefzel	Mechanical strength reported good optical properties.	Lımıted solar ultravıolet (UV) degradatıon data
Fluorinated ethylene propylene	FEP Teflon	Low solar absorptance, High emittance, uv stable	Relatively low mechanical properties

fortunately, the yellow-gold tint inherent in the film raises the solar absorptance to unacceptable levels as the primary IRS material.

The ethylene-tetrafluoroethylene copolymer (ETFE) is a state of the art fluorocarbon film having mechanical ruggedness, tear resistance, impact resistance, and resistance to degradation by radiation as outstanding properties. The chemical and optical properties are similar to the more familiar FEP. It is considered as an inflatable radiator material since the yield strength in tension is about twice that of FEP. Other factors being equal, this allows a twofold margin of safety or a film thickness of one half that of FEP for a similar fluid operating pressure. In a number of other key properties, the ETFE is superior to FEP. The density is 20% lower. The impact strength is more than twice as large; tear strength is four to five times higher. Fabrication and heat sealing techniques are similar to those for FEP with sealing pressures being somewhat lower on ETFE. Resistance to radiation degradation is improved by a factor of three with little effect being noted on tensile properties of the ETFE after exposure. Unfortunately, little data exists on the effect of solar ultraviolet radiation on ETFE (Reference 14). Primarily for this reason, the ETFE will be considered an alternate material for radiator fabrication until the UV degradation limits are established.

The fluorinated ethylene propylene (FEP) film represents the most chemically inert polymer available as a heat sealable material. FEP film has a service temperature range from -400°F to +395°F. The resistance to tearing, abrasion, and impact is quite high at ambient temperature and remains useful in the cryogenic range. The FEP film resists degradation due to solar ultraviolet radiation better than alternate heat sealable films. (Reference 15). It has been highly successful as a substrate for thermal control coatings on numerous spacecraft and satellites. Flight hardware using FEP film in the thermal control systems includes SAS-A, SAS-B, ALSEP, Skylab, Mariner II, Mariner V, OSO-H, OGO-6, IMP-1, OAO-B, and OAO-C. The combination of low solar absorptance and high emittance found in FEP is more favorable than in other candidates for IRS use. This, couples with the resistance to solar radiation degradation and adequate mechanical properties, leads to selection of FEP film, type A, as the basic material

of fabrication for the inflatable radiator system.

3.3 <u>Concept Developments</u>

Design requirements, groundrules and concepts established in the initial stages of the program served as a starting point for a more detailed development study, the purpose of which was to devise and design two inflatable radiator concepts and demonstrate their feasibility in a thermal vacuum test. This section documents the analysis, concept generation studies, screening studies, design studies, and element tests leading to the selection of the two concepts, and the optimization of their designs. A summary of the accomplishments and milestones of the concept development study is given below.

- (1) Orientation briefing at NASA/JSC on 13 September 1973, at which time design requirements and groundrules were finalized.
- (2) Concept generation studies, under which two basically new tube-fin approaches were added (hard tubes and thick-silvered Teflon fins)
- (3) Concept screening studies, under which tube-fin concepts were evaluated along with potential manifolding schemes and deployment concepts to select five candidate tube-fin concepts for design studies.
- (4) Design studies, under which meteoroid protection requirements have been evaluated, materials space radiation stability has been assessed, materials element tests have been conducted to determine fabricability and flexibility of concepts, and additional trade studies have been carried out leading to the selection of the two most promising concepts to support the Concepts Briefing.
- (5) Concepts briefing at NASA/JSC on 20 November 1973, at which time agreement was obtained to pursue the following two concepts throughout the remainder of the design studies
 - (a) Cylindrical hard tube concept with a silver wire mesh/Teflon film laminate fin material

- (b) A roll-up soft tube concept with an evaporated thick silver/Teflon film fin material.
- (6) Additional evaluation under Design Studies on the evaporated thick silver-Teflon film concept to determine an appropriate compromise between panel area and weight.
- (7) Element tests during December 1973 to evaluate techniques for bonding the Teflon/wire mesh laminate to hard tubes.
- (8) Additional analyses during January 1974 to study the effect of halving and doubling the silver thickness in the thick silver-Telfon film concept.
- (9) Informal Review by NASA/JSC at Vought on 27 February 1974.

 Redirection by NASA at that time to relieve the meteoroid design requirement on the soft tube concept to the point that it does not control tube stiffness.
- (10) Precursor thermal vacuum element test on 5" x 8" thicksilver test article on 27 March 1974. Verified Teflon tube wall and fin temperature drops.
- (11) Receipt of partial order of silver wire mesh (12 ft²) on 14 March 1974. Initiation of Spraylon coating trials with Lockheed Palo Alto Research Laboratory on 2 May 1974.
- (12) Receipt of contract Mod No. 1 on 1 May 1974 to expand the program scope to include digital thermal analysis and fabrication and cold case thermal vacuum testing of a second inflatable radiator concept. Rescheduling during May of expanded program.
- (13) Informal review by NASA/JSC at Vought on 22 May 1974 to review program progress, precursor thermal vacuum tests, preliminary Spraylon coated silver wire mesh elements, and materials for thick silver film test elements.
- (14) Initiation of detailed preliminary design effort in May 1974, with supporting structural, environmental control, and materials analysis. Concept configurations finalized, including sizing of fluid loop components and deployment systems. Rehashed trade studies to incorporate revised meteoroid re-

- quirements (per 27 February NASA redirection) and to incorporate subsystem level impacts for configurational options. Completion of preliminary design drawings in June 1974.
- (15) Element tests during June 1974 for fabricability, flexibility, and mechanical integrity of 9 laminate samples formed of thick silvered Teflon of 3 silver and Teflon thicknesses.
- (16) Notification by Newark Wire Cloth Co. on 11 June 1974 that the expected shipment date of the remaining GFE silver wire mesh has slid to 16 August 1974. Further notification on 23 August of another slide to 15 September.
- (17) Formal Status Briefing at NASA/JSC on 21 June 1974, at which time the preliminary designs were presented, element tests were described, and a formal briefing document was delivered. Concurrence at and subsequent to the meeting was obtained on the preliminary designs.
- (18) Initiation of Steady State Design Routine (SSDR) computer analysis of the preliminary designs in June 1974 to evaluate design parameters in more detail and greater fidelity than by hand.
- (19) Request by NASA/JSC on 26 June 1974 to re-evaluate soft tube concept materials selection. Submission of matrix to NASA on 28 June comparing pertinent evaluation parameters for 19 candidate materials. FEP Teflon remains as choice for current program (per NASA direction).

Details of the concept development study are given in References (2) and (3). The most significant results are summarized below.

3.3.1 Description and Screening of Candidate Concepts

This section describes the inflatable radiator concepts considered in the development study. Candidate designs include concepts formulated in the initial conceptual studies, NASA suggested concepts, and new concepts generated during the design studies.

Figure 7 shows a cross-section of a gas radiator concept. In the manufacture of an IRS for a moderate pressure, gaseous transport fluid, typically nitrogen at 15 psi, the gas flow passages are wide, ca. 2 inches. This IRS would be fabricated by heat sealing a series of parallel passages along the desired length of doubled FEP film or FEP tubing, as shown in Figure 7. Headers, manifolds and gas transfer passages as shown in Figure 8 are formed by heat sealing with thermal impulse equipment. Impulse sealers are now available for curves and irregular contours as well as more conventional linear seals (Reference 16). The structural limit of a heat sealed joint would be defined by tension in the film adjacent to the seal, rather than by peel within the heat seal itself, since the strength of FEP heat seals made using current impulse technology approach that of the film itself (Reference 14). Gas radiator deployment concepts considered in the design studies are shown in Figure 9.

Both moderate pressure, typically Freon E-2 at 15 psi, and high pressure, typically Freon 21 at 165 psi, transport fluids are considered in conceptual IRS designs. High lateral thermal conductivity is required in either of the systems using a liquid heat transfer fluid. The Freon E-2 transport fluid system is detailed in Figure 10. Note that a silver wire mesh is proposed as the high thermal conductivity material. Selection was based on the high thermal conductivity value intrinsic in the silver wires, the low solar absorptance of the silver, and the availability of 0.002" silver wire with adequate strength for weaving into the "open" mesh of 67 wires/inch in the warp direction and 40 wires/inch in the fill or shute direction was dictated by both thermal considerations and current metal weaving technology. The mesh would be laminated within the FEP film by either of two approaches. A hot roll, continuous laminating mill heats and compresses the FEP film to force a bond between and through the open areas of the silver mesh. The roll configuration is fixed so that a continuous pattern of unbonded fluid flow passages in either the transverse or longitudinal direction is produced from the laminating mill. Headers and manifolds are formed on the laminated sheet by configured, impulse sealing equipment. The result is a laminate of silver mesh within the FEP film. A wide strip impulse type heater designed to seal a long, narrow area, typically 2' x 0.25', could also be used to produce the desired

TWO-SIDED RADIATOR DESIGN (OPTIMIZED)

- TRANSPORT FLUID : N2 @ 15 psia, 744 pph
- RADIATOR PANEL AREA : 310 ft²
- PROJECTED TUBING AREA: 97.6%
- WEIGHTS : PANEL AND GAS 16.5 POWER PENALTY - 2.0 18.5 LB.
- VEHICLE INTERFACE : GAS-TO-LIQ. HX

FIGURE 7
GAS RADIATOR CONCEPT
PROPOSAL BASELINE

FEATURES

- SIMPLICITY
- FLEXIBILITY
- COST
- WEIGHT

FIGURE 8 TYPICAL GAS RADIATOR MANIFOLDING

A. FLUID PRESSURE DEPLOY -

800 IN³ PACKAGED VOLUME OF RADIATOR PANEL

C. FLUID PRESSURE DEPLOY, NON-RETRACTABLE

TWO-SIDED RADIATOR DESIGN (OPTIMIZED)

- . TRANSPORT FLUID : E-2 @ 10 psia, 899 pph . RADIATOR PANEL AREA : 172 FT²
- . TUBE SPACING : 1 IN.
- . PROJECTED TUBING AREA: 7,9%
- FLOWPATH : 13 TUBE PASSES, 39" LONG EACH
- WEIGHTS : PANEL + FLUID 14.0 POWER PENALTY - 14:5

28.5 LB

. VEHICLE INTERFACE : LIQ.-TO-LIQ. HX

FEATURES

- . INCREASED FLEXIBILITY OVER FREON 21 VERSION
- . SIZE
- . TUBING VULNERABLE AREA
- . INTEGRAL FLOW PASSAGE
- . COMPATIBLE WITH F-21 VERSION DEPLOYMENT CONCEPTS: POSSIBLY GAS RADIATOR CONCEPTS
- . REDUCED STOWAGE VOLUME OVER F-21 VERSION

FIGURE 10

FREON E-2/WIRE MESH CONCEPT SECOND PROPOSAL ALTERNATE LIQUID RADIATOR pattern of fins and tubes by step-sealing over the surface repetitively. This method allows more flexibility in design and fabrication than the hot roll, continuous laminating mill. The configured impulse sealer is again used to form headers and manifolds.

As shown in Figure 11, the IRS, based on Freon 21 transport fluid, requires a lined fluid flow passage to contain the higher pressure of this fluid. Tubes of several of the polymer candidates outlined in Table were considered. Polymide composite tubes, consisting of polymide film laminated between FEP film, are desirable from the strength and chemical compatibility standpoint. Wall thicknesses in the 0.0003" - 0.005" range are adequate to contain the high pressure refrigerant. The stiffness of these polymide composite tubes presents a design problem in an inflatable, deployable system. Since the tubes would collapse and kink during rolling for deployment. Storage in the collapsed and kinked condition would quite possibly result in deterioration at these highly stressed areas. The polymide tubing is limited to 3' lengths at present technology levels, a serious disadvantage.

A viable alternative is FEP tubing with wall thicknesses in the 0.009" - 0.016" range. It presents favorable optical properties and can be coiled into efficient, packed shapes during storage. It has the added advantage that connections to gas transfer passages, headers, and manifolds could be made by heat shrinking the FEP tubing onto these connectors. The burst strength of FEP tubing with 0.062" I.D. and 0.016" wall thickness is typically 500 psi at ambient temperature (Reference 17). Long lenghts are routinely available for serpentining through a deployable radiator. Heat seals with impulse equipment would be possible immediately adjacent to either side of the plastic tubing, or a continuous mill for encapsulating the FEP tubes in the FEP film/silver mesh laminate as it is formed could be developed with grooved, heated rolls. The grooves would accommodate the FEP tubes without crushing or flattening, while allowing the laminate bond to be made through the silver mesh. Typical manifolding and deployment concepts for the Freon 21 wire mesh radiator are shown in Figures 12 and 13.

Laminated plastic film concepts are shown in Figures 14 and 15.

The tube spacing is reduced so that wire mesh is not required. This reduces

TWO-SIDED RADIATOR DESIGN (OPTIMIZED)

- . TRANSPORT FLUID : F-21 @165 psia, 860 pph
- . RADIATOR PANEL AREA : 172 FT²
- . TUBE SPACING : 1 IN.
- . PROJECTED TUBING AREA: 8.4%
- . SILVER WIRE MESH : 5% FIN CONDUCTION AREA

23% PROJECTED RADIATING AREA FLUID - 17.0

. WEIGHTS : PANEL + FLUID

POWER PENALTY - 9.5

26.5 LB.

. VEHICLE INTERFACE : LIQ.-TO-LIQ. HX

OR DIRECT TIE-IN

FIGURE-11

FREON 21/WIRE MESH CONCEPT PROPOSAL ALTERNATE LIQUID RADIATOR

FEATURES

- . SIZE
- . TUBING VULNERABLE AREA
- . DIRECT ORBITER TIE-IN
 - COMPATIBILITY
- . HEAT SEAL FEP THROUGH WIRE MESH

A. FLUID PRESSURE DEPLOY ~ WIRE SPRING RETRACT

> 3000 IN³ PACKAGED' VOLUME OF PANEL

OUT PASSES EACH

1/2" DIA.

FEATURES

- . ACCOMMODATES STIFF FIN/TUBE CONCEPTS
- . SIMPLE DEPLOYMENT
- . CAN BE RETRACTED
- . RIGIDITY

TYPICAL FREON 21/WIRE MESH DESIGN

- . AREA : 344 FT
- . LENGTH : 33 FT
- . TUBE SPACING : 1.4 IN.
- . MANIFOLD SPACING : 19 IN.
- . PROJECTED TUBING AREA: 6% . FLOWPATH: 13 TUBE PASSES,
 - 39" LONG EACH
- . WEIGHTS : PANEL + FLUID 29
 - POWER PENALTY 14 43LB.

FIGURE 13 ONE-SIDED RADIATOR HARD MANIFOLD CONCEPT

AEROTHERM FLEXITHERM SUGGESTED BY NASA-JSC

FIGURE 14 LAMINATED PLASTIC FILM CONCEPT

747

TYPICAL TWO-SIDED RADIATOR DESIGN

- . TRANSPORT FLUID : E-2 @ 10 psia, 899 pph . RADIATOR PANEL AREA : $154~{\rm FT}^2$
- . TUBE SPACING : 0.2 IN.
- . PROJECTED TUBING AREA: 50%
- . WEIGHTS : PANEL + FLUID -57

POWER PENALTY 25

82LB

. VEHICLE INTERFACE : LIQ.-TO-LIQ. HX

FEATURES

- . SIMPLICITY
- . FLEXIBILITY
- . COST
- . SIZE
- . DEPLOYMENT BY ANY OF PREVIOUS METHODS

FIGURE 15 ALTERNATE LAMINATED PLASTIC FILM CONCEPT

TYPICAL TWO-SIDED RADIATOR DESIGN

- TRANSPORT FLUID : FREON 21 @ 165 psia, 860 pph RADIATOR PANEL AREA : 203 FT²
- . TUBE SPACING : 1 IN.
- . PROJECTED TUBING AREA: 8.4%
- TUBES : 0.066" I.D. FEP, 0.009" WALL
- FILM : 2-MIL FEP TEFLON EACH SIDE, 12,500 Å SILVER EACH
- . WEIGHTS : PANEL + FLUID 20 POWER PENALTY
 - 31 LB
- . VEHICLE INTERFACE : LIQ.-TO-LIQ. HX OR DIRECT TIE-IN
- . DEPLOYMENT : ALL FREON 21/WIRE MESH CONCEPTS (EASIER)

FEATURES

- . FLEXIBILITY
- EASE OF FABRICATION
- POTENTIAL BETTER WEIGHT THAN MOST WHEN OPTIMIZED
- . REMOVE ONE SIDE FOR 1-SIDED RADIATOR
- . DIRECT ORBITER TIE-IN COMPATIBILITY

cost and simplifies the processes required to manufacture the radiators but increases the weight of the panel. The surface properties of the Aerotherm film are not well suited for this application and will degrade to a point where the system will not meet the design requirements. The alternate construction shown in Figure 15 has better surface properties and lower weight than the Aerotherm material.

The laminated silver Teflon film concept, shown in Figure 16, is similar in principle to the Freon 21 radiator of Figure 11. Conductance is effected through two layers of silver metal which are vapor deposited on 2-mil Teflon films. The transport tubes are positioned at optimum spacing between the two films, and the assembly is bonded with a flexible adhesive.

The final concept considered in the development/optimization studies is shown in Figure 17. This system is unique because it retains the capacity for full deployment and retraction with metal transport tubing. The system is attractive because the deployment system is built into the radiator panel and thick metal tubes capable of surviving long periods in a micrometeoroid environment are used without penalty to the deployment/retraction system.

Table V-A compares the system characteristics of the candidate flexible radiator concepts.

3.3.2 Impact of Meteoroid Considerations

Calculations were made to determine the expected lifetime of the candidate inflatable radiator systems in a micrometeoroid environment. The near-earth meteoroid environment defined in NASA SP 8013, "Meteoroid Environment Model - 1969 (Near Earth to Lunar Surface)", was referenced to determine meteoroid flux. This model is groundruled for the Space Shuttle program, and is still considered to be applicable based on Skylab¹ and Meteoroid Technology Satellite² observations.

Meteoroid protection requirements are given by applying the ballistic thickness equation

¹ Telecon, R. L. Cox of Vought to R. J. Naumann of NASA-MSFC, April 1975

² Telecon, R. L. Cox of Vought to D. H. Humes of NASA-LaRC, April 1975

TABLE V-A PRELIMINARY SCREENING OF IRS CONCEPTS

RADIATOR SYSTEM CONSIDERATIONS	GAS RADIATOR(5)	FREON 21/ SILVER WIRE MESH(5)	FREON E2/ SILVER WIRE MESH(5)	LAMINATED TEFLON FILM(5),(6)	LAMINATED SILVER TEFLON FILM ⁽⁵⁾ (6)	FREON 21 HARD TUBE (5): (6)
THERMAL PERFORMANCE(1)	18 5 LB 310 FT ²	26 5 LB 172 FT ²	28 5 LB, 172 FT ²	82 L8 154 FT ²	31 LB 203 FT ²	46 LB 344 FT2
OPERATING CONSTRAINTS	NONE	NONE	NONE	NONE	NONE	NONE
DEGRADATION IN SPACE ENVIRONMENT	STABLE	STABLE ,	STABLE	STABLE	STABLE	STABLE
 PRESSURE DROP/PUMPING POWER REQUIREMENTS 	2 LB PENALTY	10 LB PENALTY	14 LB PENALTY	25 LB PFNALTY	11 LB PENALTY	14 LB PE WALTY
HEAT EXCHANGER REQUIREMENTS	GAS TO LIQUID	NONE OR LIQ TO LIQ	LIQ TO LIQ	L10 TO L10 (E 2)	NONE OR LIQ TO LIQ	NONE OR LIQ TO LIQ
LOW OUTGASSING	GOOD	GOOD	GOOD	GOOD	GOOD	G000
MICROMETEOROID SUSCEPTIBILITY (2)	WORST	AMONG BEST	INTERMEDIATE	AMONG WORST	AMONG BEST	BEST
RAD ATOR DESIGN & FABRICATION CONSIDERATIONS						
STATE OF THE ART	AMONG BEST	WORST	AMONG WORST	AMONG BEST	GOOD	FAIR
STRUCTURAL INTEGRITY	GOOD (15 PSI MAX)	GOOD (165 PSI)	FAIR (10 PSI)	GOOD (10 PSI)	GOOD (165 PSI)	BEST (165 PSI)
 MANIFOLDING 	SIMPLE	FAIRLY SIMPLE	FAIRLY SIMPLE	SIMPLE	FAIRLY SIMPLE	SIMPLE
FLUID COMPATIBILITY	EXCELLENT	EXCELLENT	OK TEFLON	OK TEFLON (E 2)	EXCELLENT	EXCELLENT
FAILURE MODES	EXCELLENT	GOOD	G000	EXCELLENT	FAIR TO GOOD	GOOD
• cost	LOW	HIGHEST	нідн	LOW	MEDIUM TO HIGH	нібн
PACKAGING AND DEPLOYMENT CONSIDERATIONS						
RADIATOR FLEXIBILITY	AMONG BEST	AMONG WORST	FAIR	AMONG BEST	FAIR	AMONG WORST
PACKAGED VOLUME OF RADIATOR [3]	APPROX 800 IN ³	APPROX 3000 IN ³	APPROX 1500 IN ³	APPROX 400 IN ³	APPROX 3000 IN ³	APPROX 5500 IN ³ EXCEEDS CANISTER LENGTH
 PACKAGED VOLUME OF OTHER COMPONENTS 	OK (WORST)	ок	ок	ОК	ок	ок
 DEPLOYED DYNAMIC STABILITY⁽³⁾ 	GOOD	AMONG WORST	AMONG WORST	AMONG WORST	AMONG WORST	BEST
 DEPLOYMENT MECHANISM COMPLEXITY⁽³⁾ 	AMONG BEST	WORST	INTERMEDIATE	AMONG BEST	INTERMEDIATE	AMONG BEST
RETRACTION CAPABILITY	GOOD	FAIR	FAIR GOOD	GOOD	FAIR	GOOD
 PACKAGED WEIGHT OF SYSTEM 	VERY LOW	LOW	LOW	HIGH	LOW	MEDIUM LOW
INTERFERENCE WITH EXPERIMENTS & SPACECRAFT RADIATORS/SYSTEMS	HIGH	LOW	LOW	LEAST	INTERMEDIATE	нісн
● VEHICLE DRAG ⁽⁷⁾	0 29 LB	0 17 LB	0 17 LB	0 15 LB	0 20 LB	011 LB
 ENVIRONMENTAL HEAT FLUX RELATIVE TO THAT ON SPACE CRAFT RADIATORS⁽⁴⁾ 	-	-	_	-	-	-

NOTES

- (1) ALL CONCEPTS SHOWN MEET THERMAL PERFORMANCE REQT'S, THUS EVALUATION IS IN TERMS OF WEIGHT AND AREA WEIGHT INCLUDES TUBE FLUID FINS AND PUMP POWER PENALTY
- (2) REQUIRES MORE DETAILED STUDY AT NEXT LEVEL, COULD DISQUALIFY SOME CONCEPTS
- (3) BASED PRIMARILY ON TUBE/FIN CONSIDERATIONS AT THIS LEVEL OF SCREENING
- (4) OPEN AT THIS LEVEL OF SCREENING, AS SEVERAL OPTIONS ARE AVAILABLE WITH EACH CONCEPT
- (5) ALL CONCEPTS ARE 2 SIDED EXCEPT HARD TUBE
- (6) NOT OPTIMIZED
- (7) AT 100 NMI ALTITUDE

TYPICAL ONE-SIDED RADIATOR DESIGN

- . FREON 21, TRANSPORT FLUID, 860 pph
- . 344 FT² RADIATING AREA
- . 1.4 IN. TUBE SPACING
- . ALUMINUM TUBES, .084" O.D., .009" WALL
- . PROJECTED TUBE AREA: 11.9%
- . WEIGHTS : PANEL & FLUID 29 / POWER PENALTY 17 46 LB
- . VEHICLE INTERFACE : LIQ.-TO-LIQ. HX
 OR DIRECT TIE-IN

FEATURES

- . HARD TUBES (AL OR STEEL) DEPLOY
 BY SPRING FORCE
- . POTENTIAL LOW METEOROID VULUNERABILITY
- . RETRACTABILITY
- . DIRECT ORBITER TIE-IN COMPATIBILITY
- . CAN USE SILVERED TEFLON FILM FINS

$$t = K_1 \rho^{1/6} m \cdot 352 v \cdot 875$$

where t is the thickness for threshold penetration of a plate (cm)

K, is a material constant

 ρ is the meteoroid density (0.5 gm/cm³)

m is the meteoroid mass (gm)

v is the normal impact velocity of the meteoroid (20 Km/sec) along with the meteoroid flux curves of SP 8013 and the following survival probability equation:

$$P = e^{-NAT}$$

where P is the probability of no penetrations

N is the number of particles per unit time and area (from SP 8013)

A is the total vulnerable area

T is the mission time

While the ballistic equation was established for thin ductile metal plates it was determined by consulation with seven leading authorities in the field that it is the best available means of estimating meteoroid behavior of plastics. Similarly, the material constant for plastics is estimated to be proportional to the square root of density.

Table 6 summarizes the impact of meteoroid considerations on the designs of the candidate inflatable radiator systems discussed above. The table shows that micrometeoroid environments prohibit the use of gas radiators, and impact the flexibility and weight of the other systems. Studies documented in Reference (2) showed that meteoroid considerations force the optimum tube diameters to small values of about 0.04" to 0.05" I.D. and tube wall thickness in the 0.030" - 0.040" range. Weight is not impacted drastically compared to non-optimized weights without meteoroid protection. The weight increase for the hard tube concept is approximately 1.5 lb. and the increase for the two-sided silvered Teflon concept is about 3.0 lb.

3.3.3 Selection of Concepts for Design Studies

A concepts briefing was held at NASA/JSC on 20 November 1973, at which time agreement was obtained to pursue the following two concepts

TABLE 6 IMPACT OF METEOROID CONSIDERATIONS

CONCEPT ⁽¹⁾ , ⁽²⁾	90% PROBABILITY LIFETIME ⁽³⁾	TUBE WALL THICKNESSES REQUIRED				CONCLUSION
		30 -DAY, 90%	30 DAY, 99%	5 DAY, 90%	5-DAY, 99%	
GAS RADIATOR	4 MINUTES	0 084"	0 153"	0 052"	0 096"	ELIMINATES CONCEPT
FREON 21/SILVER WIRE MESH	3 HOURS	0 037"	0 069''	0 024"	0 043"	IMPACTS FLEXIBILITY AND WEIGHT, CONCEPT SURVIVES WITH DOUBTS
FREON E 2/SILVER WIRE MESH	1½ HOURS	0 036"	0 068"	0 023"	0 042"	ELIMINATES CONCEPT
LAMINATED SILVER TEFLON FILM	2½ HOURS	0 039"	0 072"	0 025"	0 045"	IMPACTS FLEXIBILITY AND WEIGHT, CONCEPT SURVIVES
FREON 21/ALUMINUM HARD TUBE	3½ HOURS	0 038"	0 067"	0 023"	0 042''	PROVIDES WEIGHT IMPACT ONLY

NOTES

- (1) ALL ARE 2 SIDED RADIATORS EXCEPT HARD TUBE
- (2) ALL ARE TEFLON TUBES EXCEPT ALUMINUM HARD TUBE
- (3) REFERS TO BASIC DESIGNS NOT CONSIDERING METEOROID REQUIREMENTS

throughout the remainder of the design studies.

- (a) Cylindrical hard tube concept with a silver wire mesh/Teflon laminate fin material
- (b) A roll-up soft tube concept with an evaporated thick silver/Teflon film fin material

Figures 17-A and 17-B list the advantages of the two concepts that led to their being selected for further development. The fin material for the two concepts are interchangeable and were not considered to be a fixed part of the designs. Also the tubing and fluids materials may be modified or changed as a result of additional studies and tests.

3.3.4 Design Studies

Analytical trades, system level studies, and numerous element tests were conducted for the two selected concepts. The design studies included analyses to study the effect of changing the thickness of the thick silver-Teflon film concept, consideration of steel tubes for the hard tube concept, tests of Spraylon coated silver wire mesh elements, flowpath optimization, manifolding/deployment/configuration/packaging studies, determination of effects of atmospheric drag and acceleration loads, materials evaluation studies, and element tests to establish fabrication techniques and thermal performance. A detailed account of the design studies is given in Reference (3). The more important aspects are summarized below.

3.3.4.1 Element Tests

Tube-Fin Bonding Tests:

During December 1973 element tests were conducted on specimens which simulated the wire mesh fin material to evaluate tube-fin bonding techniques. Materials on hand were used to permit tests at this time in order to gain early information on potential problems. Test elements were made to simulate the baseline fin material of a silver wire mesh/FEP Teflon film laminate and an alternate fin laminate. The most significant results obtained were:

(1) A satisfactory bond between the FEP Teflon fin surface and the metal tubing can be obtained using 6962 glue strips.

FIGURE 17-A

ADVANTAGES OF THE HARD TUBE CONCEPT

1. EXCELLENT PERFORMANCE :

30-DAY DESIGN (ONE-SIDED)

- . 41 BTU/HR-FT², 284 BTU/HR-LB
- . 326 FT² RADIATING AREA, 47.5 LB
- . 0.05" I.D. ALUMINUM TUBING, 0.033" TUBE WALL, 1.43" SPACING
- . FEP TEFLON FILM/SILVER WIRE MESH LAMINATE FIN, 0.004" TOTAL THICKNESS
- 2. WORK TO DATE INDICATES FEASIBLE TO FABRICATE
- 3. POTENTIAL FOR EXTENDED MISSION DURATION, REDUNDANT FLUID LOOPS, DIRECT TIE-IN WITH ORBITER FREON LOOP.
- 4. POTENTIAL SIMPLE DEPLOY AND RETRACT (CYLINDRICAL SPRING COULD USE STEEL TUBES WITHOUT PROHIBITIVE PENALTY)
- 5. INHERENT RIGIDITY OF CYLINDRICAL SPRING CONCEPT
- 6. BASELINE SILVER WIRE MESH/FEP TEFLON HEAT SEALED LAMINATE FIN
- 7. COMPATIBLE WITH SILVERED TEFLON FILM FINS JF FOUND TO OFFER PRACTICAL ADVANTAGE OR IF OPTIMIZES BETTER

1. EXCELLENT PERFORMANCE

5-DAY DESIGN (2-SIDED)

- . 38 BTU/HR-FT² (PANEL AREA), 430 BTU/HR-LB
- . 345 FT² PANEL AREA, 30 LB
- . 0.05" ID TEFLON TUBING, 0.023" TUBE WALL, 1.43" SPACING
- . 0.002" TOTAL FIN THICKNESS
- 2. WORK TO DATE INDICATES FEASIBLE TO FABRICATE AND MORE FLEXIBLE THAN 2-SIDED SILVER MESH/TEFLON LAMINATE CONCEPTS
- 3. POTENTIAL FOR DIRECT TIE-IN WITH ORBITER FREON LOOP, REDUNDANT FLUID LOOPS.
- 4. POTENTIAL FOR SIMPLE ROLL-UP DEPLOY AND RETRACT
- 5. IDEAL FOR INTERMITTENT OR SHORT USE MISSIONS WHERE RETRACT CAPABILITY IS DESIRED
- 6. RECOMMEND 5-DAY BASELINE FOR THIS CONCEPT

FIGURE 17-B

ADVANTAGES OF THE SILVERED TEFLON FILM CONCEPT

- (2) An alternate fin layup with silver-backed FEP Teflon film bonded to silver wire mesh, both bonded to the metal tubing, can be satisfactorily fabricated using either 6962 glue strips or SR585. The SR585 provides a much more flexible end product.
- (3) Heat shrinkable Teflon tubing collapses during heat cure when bonded in similar layups as above.

In these tests a 100 x 100 weave nickel wire mesh with 2-mil wire was used to simulate the silver wire mesh. The resulting elements were quite stiff. The 40×67 weave silver wire mesh will exhibit much better flexibility due to both its lower weave density (40 per inch in bending crossection vs 100) and its lower modulus of elasticity (10.3×10^6 psi vs 30×10^6 psi). Calculations predict that the silver wire mesh would be 7 times as flexible. Also, the wire mesh test laminates ranged in thickness from 7 to 12 mils, as compared to the projected baseline layup thickness of 4 to 6 mils. Since stiffness varies as the cube of thickness this is also significant.

Precursor Thermal Vacuum Tests.

During March 1973 an opportunity arose to conduct an inexpensive thermal vacuum test using a test article fabricated from sample materials on an IR&D program, and using a test set-up which had been put together for another program. Although the test setup was not optimum for inflatable radiator heat transfer tests it was decided that a simple thermal vacuum test would still be worthwhile to obtain early data to verify fin and tube wall delta-T calculations.

The test article consisted of a 5" x 8" panel section with a single serpentine FEP Teflon tube (0.062" 0.D. x 0.030" wall) flowpath. The panel was fabricated from 2 sheets of 5 mil FEP Teflon, each coated with 14,000 angstroms of silver (determined by electron photomicrograph — see June 1974 status briefing for pictures). The flowpath was sandwiched between the two sheets of silvered Teflon. The test element was mounted in a 24" dia. LN₂ shroud, evacuated, and supplied with heated Freon 21 as the transport fluid. Test article instrumentation consisted of 2 tube temperatures, 2 fin midpoint temperatures, and fluid inlet and outlet temperatures.

Facility instrumentation included fluid supply and return temperatures and pressures, flowrate, test vacuum, and LN2 shroud coldwall temperatures. Tests were run at 133°F and 156°F fluid inlet temperatures, both at a 180 pph flowrate. Comparison of predicted and measured performance showed reasonably good agreement, with the test element performance slightly better than predicted. Comparison results at the 156°F inlet temperature are

	CALCULATED*	MEASURED*
Fin Midpoint Temp.	2°F & 18°F	16°F & 19°F
Tube Wall Plus Fluid ΔT	31°F & 30°F	27°F & 33°F
Total Heat Rejection	58 BTU/hr	21 BTU/hr - 62 BTU/hr
Pressure Drop	61 psi	50 psi

The test successfully demonstrated the validity of the thick silver film concept and established acceptable accuracy of the analytical model. The large test value of tube wall delta-T resulted from two circumstances unique to the test - the thick wall (0.30" vs 0.016" for the baseline design), and the severe combination of average fluid temperature/environment temperature (156°F/-310°F vs 65°F/0°F at the design point). The baseline design wall delta-T calculated at the design point using the same model is only 2.5°F.

Spraylon Tests.

A recent publication by Lockheed (1) described a new spray-on FEP Teflon formulation which was as good as or superior to FEP Teflon film in optical properties and space environment stability. It offered ease of

^{(1)&}lt;sub>L. A. Haslim, et.al., "A Highly Stable Clear Fluorocarbon Coating for Thermal Control Applications", AIAA Paper 74-117, presented at the 12th Aerospace Sciences Meeting, January 30 - Feb. 1, 1974.</sub>

^{*} The dual values are at each of the two instrumentation locations, and reflect small differences in tube spacing.

application by spray, dip, or brush and requires only a low temperature cure. A purchase order was entered with Lockheed (P.O. #P-837895-AER) in May 1974 to coat 2 square feet of silver wire mesh material with Spraylon. The Spraylon would be used as an alternate to the sandwich of heat sealed FEP Teflon films on the wire mesh, and should insure intimate thermal contact between the Teflon and the wires as well as provide a potentially more producible design. Initial silver wire mesh material was delivered during a trip by R. L. Cox to Lockheed on 2 May. Small coupons were coated at that time. The coating on these coupons was very thin (estimated at 0.2 to 0.4 mil) and the composite had good flexibility. Emittance was measured to be 0.37 with a Gier-Dunkle DB-100 emissometer. Subsequent scanning electron photomicrographs (see June 1974 Status Briefing for examples) showed good intimate contact at the wire-Teflon interface and also at a Teflon-wire-stainless steel tube interface provided by weaving a section of tubing into the wire mesh.

Problems have been encountered in coating the 2 sq.ft. of wire mesh to the desired 1-3 mil thicknesses. Only about 1/2 mil of Spraylon was obtained. In addition, the specimens were damaged in shipment to Vought; thus a second 2 sq.ft. of silver wire mesh was sent to Lockheed on 31 May. The second set was coated and returned to Vought-on 1 July. These specimens exhibited considerable wrinkling and were coated to only about 1/2 mil. Multiple coats have been unsuccessful due to solvent attack of the first coat.

Thick Silver Film Elements:

Nine small elements of thick silver coated FEP Teflon were fabricated. Each element was about 4" x 3" square and consisted of two identical layers of thick silvered Teflon film and sprayed-on SR585 silicone adhesive. The test elements were fabricated from 2-1/2 sq.ft. sections of 9 special thick silvered Teflon films ordered from G. T. Scheldahl Co. in nominal guages of 1-mil, 2-mil and 5-mil FEP Teflon, each metallized with 6000, 12,500 and 25,000 angstroms of evaporated silver. The tests demonstrated feasibility of spray application of SR585. Fabrication was somewhat difficult with the 1-mil film. Flexibility was essentially independent of silver thickness and was good on the 1-mil and 2-mil films laminates; the 5-mil film laminate was undesirably stiff. Mechanical integrity of the laminates, after boiling water/LN2 shock, was good in all cases except the

5-mil Teflon/25,000 angstrom silver laminate, in which case slight delamination occurred. It is questionable that this element would have failed under more realistic environmental exposure conditions.

Gas Manifold Meteoroid Bumper Test:

Analysis of meteoroid protection requirements for the gas deployment manifold of the soft tube concept indicated 23 layers of 1/2-mil Teflon bumper wrapping will be required (for the baseline 1.7 day protection). Because of concern that the multilayers would make it difficult to roll up the manifold in the longitudinal direction, a simple test was rum using materials on hand. Forty-six layers of 1/4-mil Mylar were wrapped into a 2-inch diameter tubular shape (simulating the 23 layers of 1/2-mil Teflon). The resulting layup was flexible and easy to roll, indicating that significantly more bumper protection could be added before seriously inhibiting the flexible radiator panel stiffness. This would make it feasible to significantly extend the protected lifetime. Since Mylar has a tensile modulus about 8 times that of FEP Teflon, the test simulation was estimated to be conservative by a factor of 2.

3.3.4.2 Concept Trade Studies

During the December-January 1974 time frame preliminary analytical trade studies were conducted to evaluate the effect of the evaporated silver thickness on the soft tube thick silver film concept. Subsequent trades were performed on both the soft tube and hard tube concepts in the May-June 1974 time period to support the configuration selection for the preliminary design and to refine and update earlier studies.

Silver Thickness Trades:

Silver film thickness of 6,250 angstroms and 25,000 angstroms were analyzed to complement the studies previously done at 12,500 angstroms. In all cases Teflon film thicknesses of 0.0005, 0.001 and 0.002 inches were analyzed. The model consisted of two thick-silver-backed Teflon films sandwiching FEP Teflon tubing of variable diameter and spacing. A glue layer of 0.0005 inch thickness was assumed. Tube wall thickness was determined to provide a 90% probability of a 30-day lifetime in the

meteoroid environment. Area and weight were computed as a function of tube diameter and spacing. Calculated weights included tube, fluid and fin weights plus a pump power penalty based on 100% pump-motor efficiency.

Results show that minimum weight occurs for tube spacing in the 1 to 1-1/2 inch range and for tube inside diameters in the 0.04 to 0.05 inch range. Minimum weight was found to occur at the 25,000 angstrom silver thickness and 0.002 mil (each side) Teflon film thickness. The effect of Teflon film thickness is to minimize weight in the 0.001 to 0.002 inch single-film range. Area is independent of tube diameter, but decreases uniformly with decreasing tube spacing in all cases, with the effect being more pronounced at the thinner silver thicknesses. Area decreases with increasing silver and Teflon film thicknesses.

It was concluded from these studies that silver and Teflon film thicknesses in the range of these analyses are near the practical optimum and should be evaluated experimentally to determine fabricability, flexibility, and mechanical integrity. This led to the previously described element tests, as well as setting the range of variables for final configuration studies.

Soft Tube Concept Configuration Trades

The analysis carried out above was revised to alleviate meteoroid protection requirements (per NASA direction) and to refine studies to include estimated actual pump-motor efficiencies. Tube wall guage was determined as that required to retain fluid vapor pressure at the maximum system temperature of 200°F, using a design ultimate pressure of 4 x Maximum Expected Operating Pressure (MEOP). For Freon 21 and MEOP is 165 psi. From a correlation of data on existing space-qualified type pumps, and pump design conditions of 1.3 gpm and 12 psi delta-P, it was found the requirements fall between the vane and centrifugal pump ranges. Each type is poor in this range, but competitive with the other in efficiency. A canned AC motor centrifugal pump was chosen as typical, with a 13% overall pump-motor efficiency.

From these results a baseline design using 2-mil Teflon films with 12,500 angstroms silver on each film, 1-inch tube spacing, and

AWG #14 FEP Teflon tubing (0.069" I.D. x 0.016" wall) was chosen as the best compromise between optimum weight, minimum area, fabricability, expected flexibility, and expected mechanical integrity. The 0.016" tube wall guage provides 90% probability of meteoroid survival for 1.7 days, a 0.037" wall is required for 30-day protection. The previously described thick silver film laminate element tests and upcoming thermal vacuum element tests are designed to finalize the selection of film thickness and tube dimensions.

Flowpath arrangement trades were conducted on the two basically different configurations illustrated in Figure 18. In the "A" configuration the parallel flowpaths are arranged into serpentine sections with a feed manifold on one side and a return on the other. In the "B" configuration the parallel flowpaths are arranged into single flow loops, each fed from and returning into common manifolds at the base. Two basic arrangements were considered with each flowpath configuration - single panels and multiple panels. In the single-panel arrangement panel widths of 40" to 120" were allowed, while multiple panel widths of 40" to 60" were considered. In each case the previous panel tube diameter and spacing trades were extended to include manifold tube and fluid weights and pumping power penalty. Optimized results for single-panel and three-panel arrangements are given in Table 7. Two-panel arrangements are intermediate.

From the table it can be seen that the single-panel arrangement is not attractive in either configuration A or B for the narrow panels. In configuration A the manifold weight penalty is excessive. Also, the 3/8" ID, 0.083" wall, FEP Teflon manifold tubing presents an impractical stiffness level. In configuration B the weight is high due to a greatly increased pumping penalty for the long tubing run. The increased tube diameter of 0.087" ID with 0.019" wall, required to alleviate this condition, also inhibits flexibility. The wide panel arrangement offers considerable improvement, although configuration A still has a high manifold weight penalty and stiffness. Configuration B now looks practical, although the 120" width may be undesirable.

The three-panel arrangements are basically the wide single-panel arrangements, sliced into three individual panels and modified to accommodate

A. SIDE MANIFOLDS, SERPENTINE TUBES

B. BASE MANIFOLD, LONGITUDINAL TUBES

FIGURE 18 FLOWPATH AND MANIFOLD CONFIGURATIONS

TABLE 7
SOFT TUBE RADIATOR CONFIGURATION TRADE STUDIES

		*
OPTIMIZED	SINGLE-PANEL	CONFIGURATIONS

-	A narrow	A <u>wide</u>	B narrow	B <u>wide</u>
Panel Length Panel Width Panel Area Tube Spacing Tube I.D. Tube Wall Guage Manifold I D. Manifold Wall Guage Manifold Wt. Penalty	65' 42" 228 ft ² 1" 065" .014" .375" .083" 51.5#	25' 109" 228 ft ² 1" .065" .014" .3125" .069"	55.2' 40" 184 ft ² 1/2" .087" 019" .472"A1. .014"A1.	22.8' 120" 228 ft ² 1" .065" .014" .472"Al .014"Al 2.7#
Total Rad. Panel Wt.**	101.7#	80 0#	88.2#	52.9#

OPTIMIZED THREE-PANEL CONFIGURATIONS

	<u>A</u>	<u>B</u>
Panel Length Panel Width Panel Area Tube Spacing Tube I.D. Tube Wall Guage Manifold I D. Manifold Wall Guage Total Manifold Wt. Penalty (3 panels) Total Rad. Panel Wt. (3 panels)**	21.7' 42" 76 ft ² 1" .065" .014" .25" .055" 20# 70.2#	22.8' 40" 76 ft ² 1" .065" .014" .472"A1. 014"A1. 2.7# 52 9#

^{*2-}mil FEP Teflon films with 12,500 angstroms silver, two-sided

^{**}Includes fin material, radiator panel and manifold tubing and Freon 21, and pump power penalty at 2.3 lb/psi.

physical constraints of the flowpath routing. Manifolding is re-optimized. Configuration A is again improved, but still retains the disadvantages of a high manifold penalty and stiff manifold tubing. Type A configurations are also expected to display increased fabrication problems, especially in the area of the tube-manifold junctions. Thus configuration B was selected. Further consideration was given to single vs multiple panels. The advantage of multiple panels is a more desirable width (for packaging), modularity (for greater flexibility in applications over a wide range of heat loads and for potential reliability improvement by panel isolation at failure), and ease of fabrication. The disadvantage is the likelihood of greater environmental heating due to radiant interchange. Three panels were selected for the soft tube concept baseline.

Hard Tube Concept Configuration Trades:

The silver wire mesh analysis for the hard tube concept, summarized in the November 1973 Concepts Briefing, was extended to include a 13% pumpmotor efficiency and to add configurational considerations. Because of the inherent tubing stiffness desired in the hard tube concept for spring action, the metal tube wall guage was sized for 30-day meteoroid protection (at 90% survival probability) at no expected additional penalty. To limit studies to a reasonable scope, only a single cylinder diameter of about 40" was analyzed and only a single tubing "spring helix" angle of 20° was studied. Variables in the trades were tube diameter, spacing and material (aluminum vs steel), flowpath arrangement (all-parallel with a long return manifold vs each tube forming a complete flow loop), and Teflon thickness on the silver wire mesh fin material. Figure 19 illustrates the two arrangements analyzed. Reference (3) presents analysis conditions and selected results from the parametric analyses, which include tube, fluid and fin weights plus the pumping power penalty. Trades at the parametric level did not include manifold weight penalties.

FIGURE 19 HARD TUBE CONCEPT FLOWPATH CONFIGURATIONS

A Teflon thickness of 4 mils was selected for the fin material, and a tube spacing of 1-1/2 inches was selected for the baseline. This spacing provides the minimum weight design and suffers only about a 10% area penalty compared to a 1-inch spacing. It is expected to be easier to fabricate and will package into about 20% less volume than the 1-inch spacing. The corresponding optimum tube ID was found to be 0.108" for one-way flow and 0.130" for a two-way loop.

Comparison of aluminum and steel tubing was made for equal meteoroid protection. Aluminum was found to offer a significant weight advantage (85 lb for the two-way flow loop). Stress analysis indicated acceptable spring stress levels will exist in either material and that usable spring forces can be obtained. Since no significantly different manufacturing problems were identified, aluminum was selected for the baseline.

Manifold penalties were added to the results of the parametric trades in order to make the selection between one-way flow and a two-way loop. In one-way flow this penalty is much larger because of the long return manifold. The return loop was optimized for the one-way flow arrangement and found to impress a penalty of 43 lb, including tube weight, fluid weight, and pumping power penalty for the 2-mil Teflon fin configuration. Since the return loop is arranged in a spiral spring configuration, it likewise experiences stresses due to spring compression. This stress (about 12,000 ps: shear stress in aluminum) limits the manifold to 0.375"0.D. Three return manifold tubes were found to provide the minimum weight subject to this constraint. Adding the 43 lb return loop penalty to the one-way flow arrangement increases its weight to within 31 lbs of the two-way loop. The choice between the flow arrangements reduces itself to a trade between the weight advantage of the one-way arrangement and the greater fabrication simplicity of the two-way configuration. A baseline selection of one-way flow was made on the latter consideration.

3.3.5 Preliminary Design

3.3.5.1 Deployment System

As groundruled at the 13 September 1973 Orientation Briefing, the flight article preliminary design studies defined a deployment system and established a feasible concept for retraction. (Feasibility demonstration tests, however, are only required to prove the deployment aspect.) Accordingly, studies supporting the flight article preliminary design considered both deployment and retraction.

Three concepts to "roll-out" the soft tube concept were evaluated. The first concept used Freon 21 fluid pressure. The second supplemented this by the addition of a larger diameter tube inflated by a gas pressurant. The third mechanically unrolled the panel using a Storable Tubular Extension Member (STEM). It was found that a 165 ps: Freon 21 fluid pressure exerts an unrolling moment of only about 1 inch/lb, compared to 30 inch/lbs needed, thus the first concept is inadequate. Addition of two gas tubes, one to each side of the panel and both of 2-inch diameter, provides the needed 30 inch/lb if the tubes are inflated to 4.8 psi. Studies of meteoroid vulnerability showed that unprotected 5-mil nitrogen gas inflation tubes would incur a 20-35 lb/day makeup gas penalty. Thus this concept is feasible only if a meteoroid barrier is added. Penetration studies indicated that 23 layers of 1/2-mil Teflon wrapped around the 2-inch gas tubes would provide a 90% survival probability for about 2 days, consistent with the 1.7-day lifetime of the soft tube concept main radiator panel Freon 21 tubes. For 30-day survival 59 layers were calculated to be needed. Multilayer meteoroid barrier performance, especially on plastic materials, is poorly understood and based on sparse data (2). Tests are recommended to establish the protection required. It was calculated that two flat steel watchsprings (1/2" x .049"), one combined with each gas inflation tube, would be required to rewind the panels. Figures 19 and 20 show the integration of the gas inflation tube/watchspring deployment/retraction system with the panels.

⁽²⁾ NASA TN D-6989, "Multimaterial Lamination as A Means of Retarding Penetration and Spallation Failures in Plates", by J.D. DiBattista and D. H. Humes, 1972.

FIGURE 19 GAS DEPLOYMENT SYSTEM FOR SOFT TUBE CONCEPT

FIGURE 20 DEPLOYMENT GAS TUBING DETAIL

Evaluation of the STEM deployment system consisted of sizing the units based on data from SPAR Aerospace Products, Ltd. using calculated loads and integrating the STEM with the panels and a retraction system. A buckling load of 3 lbs was found to be required to overcome the roll-up spring force. Bending moments were calculated due to RCS firing (6.8 in-lb), air drag (9.9 in-lb), and the roll-up spring (30 in-lb). The buckling force controls. A model A-631 BI-STEM was selected as typical in performance. This unit weighs about 10 lbs, requires 20 watts, and withstands 10 lbs buckling force at an extension length of 25 ft. However, the packaging configuration of a slightly larger unit, model 5930 F1-1, was considered more representative. This unit weighs about 16 lbs, withstands 15-20 lbs of buckling force, and requires 60 watts. An intermediate design, weighing 13 lbs, packaged similar to the 5930 Fl-1, and performing like the A-631 was assumed. Figure 21 illustrates the design, with a window shade type roll-up spring integrated into the wind-up spool Six B1-STEMS are required, one on each side of each panel. A net weight increase of 75.5 lbs was calculated, based on the removal of 30.5 lbs of gas inflation/ watchspring retraction system parts and fluid loop components, and the addition of 108 lbs of BI-STEMS and rewind system. The gas inflation deployment system was selected as the baseline design, with the BI-STEM system as a feasible alternate.

A structural stress analysis was conducted to determine stresses in the tubing spring members and to estimate the deployment force exerted by the spring in the hard tube deployment concept. For the baseline design with the two-way flow and 30 tubes (0.25" 0.D. x 0.049" wall, 10.6 turns each) was analyzed. This design has an extended length of 505 inches and a compressed length of about 81 inches. The compressed shear stress was calculated to be 6650 psi, and a retraction force of 25 lbs at the fully compressed condition is required. A BI-STEM retraction system, located inside the cylindrical radiator and attached to the upper rim by a harness, was selected as a representative feasible retraction system. The BI-STEM retraction system weight was estimated at 24 lbs. If necessary, the BI-STEM can also assist in deployment. Acceleration and air loads on the hard tube concept are negligible.

FIGURE 21 STEM ALTERNATE DEPLOYMENT SYSTEM FOR SOFT TUBE CONCEPT

3.3.5.2 Fluid Loop

Figures 22 and 23 show the respective fluid loop schematics for the soft tube (Party Whistle) and hard tube (Jack-In-The-Box) concepts. The two systems differ only in the addition of a regulator, valve, and plumbing for the Party Whistle concept inflation system, and in volumes of the Freon 21 and nitrogen gas reservoirs. As groundruled at the Orientation Briefing the Inflatable Radiator System concepts for the current feasibility demonstration program are presumed to always have a sufficient heat load applied to avoid Freon 21 transport fluid freezing in the radiator panels. This permits the simple bypass type fluid temperature control system illustrated in the figures.

The heat exchanger was sized assuming water as a representative vehicle side transport fluid. A minimum Freon inlet temperature of 35°F was defined to avoid possible water freeze-up when control tolerances are considered. Heat exchangers were sized for both 2°F and 5°F log mean temperature differences. Respective weights were found to be 32.8 lbs dry (47.2 lbs wet) vs 13.1 lbs dry (18.9 lbs wet) and envelope volumes of 529 in³ vs 212 in³. This heat exchanger weight savings was traded against radiator weight increases due to the lowered radiating temperature. The corresponding hard tube concept weight and area increases were found to be 8.2 lbs and 26 sq.ft., and the soft tube concept 3.4 lbs and 15 sq.ft. The 5°F heat exchanger design was selected as typical. Details are given in Figure 24.

The Freon reservoir was sized for the soft tube concept.

Figure 25 shows the reservoir design and principle assumptions. The reference 30-day mission is indicated in that it affects the expendable nitrogen requirement, the reservoir design is independent of mission duration. The 30-day capability was chosen because of its small impact on the fluid loop. In the sizing analysis thermal expansion was computed for both the Freon and the radiator/fluid loop components; however, it was found that the Freon expansion/contraction is dominant.

FIGURE 22 PARTY WHISTLE CONCEPT FLUID SCHEMATIC

FIGURE 23 JACK-IN-THE-BOX CONCEPT FLUID SCHEMATIC

REQUIREMENTS:

IRS LOOP FLOW: 910 PPH FREON 21

HEAT TRANSFER: 4 KW

SECONDARY LOOP FLOW: 228 PPH WATER

SECONDARY LOOP TEMPS: 100°F IN, 40°F OUT HEAT EXCHANGER LOG MEAN T = 2°F TO 5°F

MINIMUM NOMINAL FREON TEMP: 35°F

CORES CONSIDERED:

AVCO EASY-WAY & HARD-WAY LANCE FIN SHAH & LONDON LANCE FIN CORE

→ BASIS FOR SELECTION:

5°F LMTD : LOW SYSTEM WEIGHT

TRADES FAVORABLY AGAINST PANEL

. WEIGHT

SHAH & LONDON:: MUCH SMALLER, LIGHTER, AND

LOWER PRESSURE DROP

HEAT EXCHANGER DATA:

O MATERIALS: STAINLESS STEEL WITH NICKEL FINS

o DRY WEIGHT: 13.1 LBS

o WET WEIGHT: 18.9 LBS

o WATER SIDE P = 0.0075 PSI*

FREON SIDE P = 0.0125 PSI*

*EXCLUSIVE OF MANIFOLD LOSSES

14" 12" 3.15COUNTER FLOW HEAT EXCHANGER: 50 PARALLEL F21 PASSAGES

50 PARALLEL H2O PASSAGES

F21 H₂O

FIGURE 24 HEAT EXCHANGER SIZING

REQUIREMENTS:

- MAINTAIN 165 PSI PRESSURE OF F21
- PREVENT OVER PRESSURIZATION OF F21 LOOP
- TEMPERATURE LEVELS
 - + 70°F NOMINAL
 - +200°F MAXIMUM
 - -200°F MINIMUM RADIATOR RETURN
- ONE TEMP. CYCLE PER DAY, 30 DAYS

FLUID VOLUMES (F21):

- SUM OF 3 RADIATORS : 230 in³
- HEAT EXCHANGER : 169 in 3
- LINES AND COMPONENTS : 53 in 3
- VOLUME INCREASE UPON
 - INITIAL PRESSURIZATION: 4 in³

RESERVIOR DATA:

- REGULATED GAS PRESSURIZATION SYSTEM
- BLADDER SEPARATION OF F21 AND N2
- ALUMINUM TANK
- WEIGHTS: *

DRY = 3.75 LBS

AT LIFTOFF = 6.53 LBS

FILLED TO MAX. CAPACITY = 12.1 LBS

• EXPENDABLE N2 REQUIRED = 1.08 LBS

*Exclusive of Regulator & Relief Valve

The nitrogen gas bottle was sized for the soft tube concept using representative state-of-the-art construction materials and a 3000 psi pressure. Figure 26 gives details.

A typical Freon pump was sized based on the type and performance selected and discussed in paragraph 3.2.2, and by interpolation of weight and volume between two similar models in the Pneu Devices, Inc., catalog. Interpolation was between the Pneu Model 2114 pump (weighing 2.5 lbs with an envelope volume of 41.6 in³ and rated 0.5 gpm at 15 psi) and their Model 2116 (weighing 4 lbs with an envelope volume of 62.3 in³ and rated at 7 gpm at 20 psi). Using a semi-log interpolation of weight and volume with rated flowrate (Reference 9), the resulting design shown in Figure 27 was derived. The indicated pump should be representative for either the soft or hard tube concept.

Other fluid loop components were sized based on the above-referenced Vought component study, current in-house electronic controller design studies, data on ECS components supplied by Vought on Apollo and Skylab programs, and recent information obtained from component manufacturers. A tabulation of weights and sketches of representative design envelopes are given in the preliminary design drawing of the soft tube concept.

3.3.6 Preliminary Design Drawings

Results from the Concept Selection Trade Studies, Deployment System Studies and Fluid Loop Studies were translated into scale preliminary design drawings. Drawing No. T-213-SKO1, Inflatable Radiator System - Soft Tube Concept, 19 June 1974, was developed in 1/5 scale. Drawing No. T-213-SKO2, Inflatable Radiator System - Hard Tube Concept, 20 June 1974, was done in 1/4 scale. Both drawings were transmitted to the NASA/JSC Technical Monitor, Mr. B. O. French. Figures 28 and 29, respectively, summarize the designs. During the current reporting period the hard tube drawing was not carried to the same level of completness as that of the soft tube concept.

REQUIREMENTS:

- PROVIDE N2 GAS TO DEPLOYMENT SYSTEM
- PROVIDE EXPENDABLE N2 TO F21 FLUID RESERVOIR
- PROVIDE ONE CYCLE PER DAY FROM MAXIMUM VOLUME TO MINIMUM VOLUME IN RESERVOIR FOR 30 DAYS

CONCEPT SELECTION:

- HIGH PRESSURE GAS SINCE SIMPLE AND PROVEN
- HIGH STRENGTH STEEL BOTTLE FOR LOW COST

N2 BOTTLE DATA:

- PRESSURE: 3000 PSI
- MATERIAL: 4130 STEEL OR EQUIVALENT
- EXPENDABLE N2 : 1.2 LBS
 - (0.08 LB FOR DEPLOYMENT SYSTEM)
- WEIGHTS:
 - DRY 2.8 LBS

WET - 4.0 LBS

REQUIREMENTS:

- . 907 #/HR FREON 21 (1.33 gpm)
- . APPROX. 12 PSI PRESSURE RISE

PUMPS CONSIDERED:

- . VANE AND CENTRIFUGAL
- . REQT'S. FALL BETWEEN
- . BOTH POOR EFFICIENCY REGION

CENTRIFUGAL CHOSEN AS TYPICAL:

- . CANNED AC MOTOR
- . 13% OVERALL PUMP-MOTOR EFFICIENCY TYPICAL

TYPICAL DESIGN INTERPOLATED FROM DEVICES IN. CATALOG

WEIGHT = 3 LB

DESCRIPTION OF PARTY WHISTLE CONCEPT PRELIMINARY DESIGN FIGURE 28

PANEL CONFIGURATION

FIGURE 29

30-DAY METEOROID PROTECTION

3.4 Computer Analysis

Design studies were initiated in June 1974 using the Vought Steady State Design Routine (SSDR). The purpose of this work is to analyze the baseline configurations and perturbations of them to a higher level of fidelity than practical by hand. The principle objectives are to:

- a) account for environmental influx in a more accurate and assymmetric way by using geometric models of the radiator system and the vehicle (vs a 0°F environment sink temperature used in hand analyzes).
- b) trade the soft tube concept relative panel angles including panel-to-panel and panel-to-yehicle radiant interchange effects.
- c) account for the radiator longitudinal temperature distribution by breaking it into several nodes (vs one in hand analysis).
- d) model the fluid-to-tube, tube-to-wall, and wallto-fin thermal resistances in a more precise way than done in hand analysis
- e) determine revised areas required for both radiator systems based on the above analytical refinements

3.4.1 Environment Model

A simplified shuttle orbiter geometric model was developed to include vehicle effects. Figure 30 shows the model geometry and Figure 31 is an isometric sketch showing the location of the soft tube concept relative to the vehicle, and giving vehicle properties. The hard tube concept geometric model is situated in the same location as the center panel of the soft tube concept.

FIGURE 30 SHUTTLE ORBITER GEOMETRIC MODEL

FIGURE 31 GEOMETRIC MODEL OF INFLATABLE RADIATOR ON SHUTTLE

View factors between the inflatable radiator surfaces and vehicle. surfaces were calculated using the Martin Marietta Thermal Radiation Analyzer Program (MIRAP), and view factors between the earth and inflatable radiator and vehicle surfaces were obtained from graphs of published information. Direct incident flux on the inflatable surfaces and vehicle surfaces was calculated considering solar, earth emission, and earth albedo. of one inflatable panel by another was included. A one-bounce analysis was conducted to obtain the component of each of these terms which is reflected from a vehicle or another inflatable panel surface onto an inflatable panel. Primary emission from vehicle radiator panels onto inflatable panels was calculated assuming a mean radiating temperature of 77°F and a fin effectiveness of 0.95. Emission from one inflatable panel onto another was computed (for the baseline soft tube concept) assuming a mean radiating temperature of 65°F, an emittance of 0.675, and a fin effectiveness of 0.77. Re-emission of absorbed flux on vehicle surfaces onto inflatable radiator panels was calculated by assuming adiabatic vehicle surfaces (other than for the vehicle radiator panels described above).

Hot case design orbital conditions were previously groundruled to be 55°, sun oriented, 100 n.mi. altitude, at the 13 September 1973 Orientation Briefing. Current studies determined the 180° orbital position (low side of orbit) to be most severe. Vehicle orientation with the cargo bay facing the sun and the vehicle broadside to the earth was found to approximate the most severe position.

3.4.2 Thermal Model

A radiator panel tube wall model was constructed consisting of a thermal resistance for radial tube wall conduction in series with the fluid-to-wall thermal resistance (already modeled in the SSDR as a function of flowrate). The model includes a glue line resistance, and both the glue line and tube wall thickness and properties may be varied. Peripheral temperature drop in the fin material around the circumference of the tube wall was modeled by assuming that all heat is added at the fin root located at the tube midpoint. The resulting model is somewhat conservative (i.e., computes a slightly larger radiator area requirement than an exact model would determine).

The SSDR accounts for fin temperature gradients by computing a fin effectiveness based on an assumed adiabatic fin condition midway between adjacent tubes. This case does not exist in the soft tube inflatable design near the manifolds, as the adjacent tubes may differ as much as 60°F in temperature.

Lengthwise temperature gradients in the panels were accounted for in the SSDR model by breaking each panel into 10 longitudinal nodes. This provides a much more accurate mean radiating temperature.

3.4.3 Environment Analysis

View factors and environmental fluxes were determined for the baseline soft tube concept at an outer panel dihedral value of 15°.

View factors and fluxes for 30°, 45°, and 60° dihedrals were determined. The thermal model was incorporated into the SSDR for the baseline soft tube configuration. Checkout runs on the modified SSDR were made with the soft tube concept and comparison calculations with a 0°F equivalent environment sink temperature were made to check against hand analysis. Based on the results, a decision was made to ban the flexible radiator designs on a 0°F equivalent environment.

3.5 Materials Evaluation Study

3.5.1 Material Identification

The materials study initiated under the Inflatable Radiator Program has yielded primarily a summary of existing and development transport fluids and flexible tubing materials. Extensive information has been obtained from the suppliers listed in Table 8, and the current sampling is considered to be representative of state-of-the-art materials. A great variety of flexible tubing materials are currently in use, including fluoroelastomers, perfluoroelastomers, thermoset and thermoplastic polyurethanes, polypropylenes, polyethylenes, polyester elastomers and various types of rubber and fluorinated polymers. Specific flexible tubing materials evaluated by Vought in the current materials study are indicated in Table 9. Also included in

TABLE 8

MATERIALS MANUFACTURERS AND SUPPLIERS CONTACTED BY VOUGHT

Allied Chemical Division - New York Moxness Products, Inc. - Racine, WI

Penntube Plastics Co., Inc. - Pa.

Uniroyal Chemical - Conn.
Union Carbide Chemicals Division - New York
E.I.duPont de Nemours and Co., Inc. - Wilmington, Pa.
(Freon Products Group, Elastomer Chemicals Dept.)
Newage Industries, Inc. - Pa.

3-M Chemical Division - Minn.

Chevron-Oronite Division - Ca. Raychem Corporation - Ca. Pennwalt Corporation - Pa. Chemplast, Inc. - New Jersey Resistoflex Corporation - New Jersey Thickol Chemicals Division - New Jersey Dow Corning Engineering Products Div. - Ca. Firestone Central Research Laboratories - Ohio Kırkhıll Rubber Co. - Ca. Rexnord Specialty Chemicals Division - Wisconsin Phillips Petroleum Co., Chemicals Group - Oklahoma U.S. Industrial Chemicals Co. - New York B. F. Goodrich General Products Co. - Ohio Cadillac Plastic and Chemical Co. - Michigan Celanese Plastics Co. - New Jersey Gates Rubber Company - Colorado Monsanto Industrial Chemicals Co. - Houston Hygienic Manufacturing Co. - Ohio J.P. Stevens and Co., Inc. - Mass.

Norton Plastics and Synthetics Div. - Ohio

W

Table 9 are the tensile modulus, applicable temperature range and the more important thermophysical properties of each of the tubing materials. Detailed information concerning the physical properties, chemical resistance, etc. is provided in Appendix A.

The basic objective of the materials study has been to provide for increased meteoroid lifetime of the flexible radiator panel, by utilizing a tube material which is more flexible than the baseline FEP Teflon tubing. It had been previously determined (Ref. 10) that 14 AWG (.069 in. I.D., .016 in. wall) Teflon tubing with a 2-mil silver Teflon fin coating would yield a 90% probable lifetime in the meteoroid environment encountered in a 270 N.M., 78° solar-oriented orbit for only 1.7 days. From element tests conducted by Vought, the stiffness incurred using Teflon as the transport tubing was already severe, increasing the meteoroid lifetime to 30 days by increasing the tube wall would have yielded only a semiflexible radiator. As indicated in Table 9, many materials have been identified with a tensile modulus less than that of Teflon. In the following paragraphs, the general characteristics of each of the flexible tubing materials listed in Table 9 will be considered. Probably the largest variety of elastomer materials available is manufactured by DuPont (i.e., Table 9).

Properties of Elastomers

Polyurethane elastomers (urethane rubber) encompass perhaps the largest range of hardness of any of the existing elastomers. Whereas the hardness range of rubber is generally considered to include Shore A durometer hardness of 20 - 90 and that of plastics to include Rockwell R hardness of 50 - 150, polyurethanes range in hardness from about 55 Shore A durometer to 90 Rockwell R. The hardness of polyurethane is governed by the molecular structure of the prepolymer, and not by the addition of plasticizers and fillers. The operating temperature range of polyurethane elastomers is usually considered to be -80°F to 225°F. Standard compositions normally do not become brittle at temperature below -80°F, although stiffening gradually increases as the temperature is reduced below 0°F

TABLE 9
ALTERNATE INFLATABLE RADIATOR TUBE MATERIAL CANDIDATES

	MATERIAL	TRADE NAME	SPECIFIC GRAVITY	R MODU (PS TENSILE)	LUS	UTS (PSI)	USEFULNESS OVER TEMP RANGE (-211° to 200°F)	COMPATIBILITY	AVAILABILITY IN TUBE	REMARKS
	1 Fluorinated Ethylene Propylene 2 Tetrafluoroethylene 3 Polyimide 4 Polyester 5 Ethylene Tetrafluoroethylene Copolymer 6 Perfluoroelkoxy Fluorocarbon 7 Polyvinylidene Fluoride 8 Polyvinyl Fluoride	FEP Teflon TFE Teflon Kapton H Mylar A Tefzel FFA Teflon Kynar Tedlar	2 15 2 17 1 42 1 40 1 70 2 15 1 77 1 38	50,000 ^T 58,000 ^T 430,000 ^F 550,000 ^F 125,000 ^F 250,000 ^F	60,000 ^T - 200,000 ^T 95,000 ^F	2,000 ^T 2,000 ^F 25,000 ^F 25,000 ^F 6,500 4,000 ^F 7,200 ^F 7,000 ^F	ok ok ok ok Prob ok ok Prob ok "Brittle"8-4°F Simlar Tygon (Brittle) "Brittle"8-68°F	ok ok Unk (prob ok) Unk (prob ok S T) Unk (prob ok) Unk (prob ok) Unk (prob Fair) Unk (prob ok S T) Unk (prob ok S T)	Yes Yes Limited Custom, R&D Yes Yes, Custom Custom, R&D Yes Yes	1 Excellent general inertness 2 Excellent gen inertness 3 Spiral wound tubes only 4 Good general inertness 5 Excellent general inertness 6 New material, prob similar other Teflons 7 Good general chemical inertness 8 Pliable (used for bagging), good inertness 9 Common lab tubing, poor gen inertness
	9 Polyvinyl Chloride 10 Polyethylene Terephthalate	Tygon(R2807) Tenite 7DR0	1 20	3,000 250,000 ^F	-	5,500 ^F		Unk (prob ok S T	Custom, R&D	10 Good general inertness
90	11 Polyamide High Temp Nylon	K49	1 38	-	520,000 ^F	17,000F	Questionable	Unk (prob Fair)	R&D	ll New material (similar to Nomex)
	12 Hexafluoropropylene-Vinylidene	Viton B	1 40	*225 ^F	-	1,400F	Cold Stiff-30°F,	Bad	Yes, Custom	12 Elastomeric seal material, F21 Experience
	Fluoride 13 Chloroprene	Neoprene W	1 25	*150F	_	1,250 ^F	stands LN2 Flex to -40°F	OK (slight swell	Yes,Custom	13 Elastomeric F21 seal, Type GS common tubing
	14 Polyethylene	Bakelite	92	20,000F	-	1,400F	stands LN2 "Brittle"(est	Unk (prob Bad)	Yes	14 Readily available, fair general inertness
	15 Polypropylene	Clysar	90	160,000F	170,000 ^F	4,800F	-40°F) "Brittle"(est	Unk (prob Bad)	Yes	15 Readily available, fair general inertness
	16 Polycarbonate 17 Silicone	Lexan RTV 560	1 20 1 42	340,000F	310,000F	8,000F 800F	-40°F) OK Fair(Brittle -175°F)	Unk (prob Poor) Unk (prob ok S T	Custom) Yes, Custom	16 Poor general inertness 17 Cryogenic exp, shuttle TPS (Elastomer)
	18 Fluorosilicone	рс 94009	1 85	simılar rub	silicone ber	1,000F		Unk (prob ok S T	Yes, Custom	18 Developed as adhesive, poor practical experience (Elastomer)
	19 Trifluorochloroethylene	KEL-F	2 10		200,000F	4,600F	(not as good) OK	Unk (prob OK)	Yes, Custom	19 Predecessor to FEF Teflon (similar)

ST - short term

T - evaluated in tube form

F - evaluated in film form

^{*} _ "100% Modulus" - stress @ 100% elongation

					_							
			' I	ı -	TENSILE	FLEXURAL		Lo	<u> 111</u>			
	20	Polyurethane	Hi-Tuff Tygothane Estane Vibrathane Elastothane Adiprene	1 03-1 4	750- 3000	!	6000 -8500	⊷ 80	225	No Phosphate Esters	yes	Folyether Urethanes have greater low temp flex than polyester urethanes Available in thermoset or thermoplastic, extruded tubing available in thermoplastics only
	21	Perfluoroelastomer (Copolymer of Tetra-fluoroethylene, Perfluoro (Methyl vinyl ether) and Perfluorovinyl ether)	ECD-006	20	2650	-		-30	450	No Fluorinated Ethers	yes, custom	Standard formulations have carbon black as filling agent Low temp formulations available UV stability is unknown to manufacturer
	22	Chlorosulfonated Polyethylene (Synthetic Rubber)	Hypalon	1 1-1 26	4000			-40	325	No Fluorinated Ethers	yes	No phosphates or diesters
	23	Polyester	Hytrel Valox	11-13	5000	7000		-65	300		Aca	Compatible with silicate and phosphate esters and most fluorocarbons Brittle at -90°F
	24	Ethylene - Propylene Diene (EPDM)	Nordel Eplar Royalene	86	3000			-60 -70	250 400	No Fluoro-carbons	yes	Not compatible with diesters or Freens
	25	Butadiene - Acrylonitrile (Nitrile Rubber)	Hycar Paracril	98	3000		5000	-40	300		yes	Very poor resistance to UV degradation, for use as mixture with solid nitrile rubber
1 6	26	Polyolefin Copolymer (Polyolefin Thermoplastic Rubber)	TPR - 1600 - 1800 - 1900	88	650F 1400F 1850F	1500F 10,000F 35,000F		-60	250	Good in Silicate esters, Phosphate esters, & ethylene compounds	уев	No Aliphatic or aromatic solvents, or chlorinated Hydrocarbons
	27	Ethylene Ethyl Acrylate Olefin Copolymer		93				-150	140	No Chlorinated Hydrocarbons	yes	
	28	Ethylene Vinyl Acetate Olefin Copolymer		94				-140	140	No Chlorinated Hydrocarbons	yes	

UTS (PSI)

TEMPERATURE RANGE (°F) COMPATIBILITY WITH TRANSPORT FLUIDS AVAILABILITY IN TUBE

REMARKS

R T MODULUS

(PSI)

SPECIFIC GRAVITY

TABLE 9 (CONT'D)

MATERIAL

TRADE NAME

Some compositions of polyurethane may be obtained that retain a small amount of flexibility at temperatures as low as -125°F. Although not flexible at extremely low temperatures, polyurethane elastomers have successfully been operated at cryogenic temperatures using non-oxidizing liquefied gases. Polyurethanes may be used continuously at 200-225°F and intermittently up to 250°F. Prolonged exposure to ultraviolet radiation usually darkens polyurethane and somewhat reduces the physical properties (i.e., the material may become brittle) due to polymer crosslinking. Ultraviolet screening agents and pigmentation are available in DuPont's Adiprene polyurethane elastomer.

Polyester elastomers range in hardness from about 85 durometer A to 70 durometer D (~80 Rockwell R). Polyester elastomers are thermoplastic, synthetic materials; the softer compositions of polyester elastomers resemble true elastomers more than plastics. The thermal service range of polyester elastomer is approximately -65°F to 300°F. The brittle point of polyester elastomers is about -100°F, but, as with other elastomeric materials, gradual stiffening occurs with decreasing temperatures. The degree to which polyester elastomers are degraded by ultraviolet radiation is a function of exposure time, but screening agents are available for this material.

Synthetic rubber is probably best known for its excellent ageing characteristics and chemical resistance (as compared to natural rubber). Use of synthetic rubber with a transport fluid is limited to nonaromatic hydrocarbons and it will not withstand chlorinated solvents. Acid and salt solutions of a highly oxidizing nature will cause surface deterioration and loss of strength in synthetic rubber. Synthetic rubber gives excellent service in contact with aliphatic hydrocarbons, aliphatic hydroxyl compounds and most fluorocarbon refrigerants. The practical high temperature range for continuous service is about 180 - 200°F. For intermittent use, specially compounded synthetic rubber products can operate at temperatures up to 250°F. Thermal exposure above these limits does not melt synthetic rubber, but it does cause hardening and loss of resilience. The brittle point of synthetic rubber is about -40°F, with gradual stiffening starting at 0°F. Again, specially formulated composi-

tions permit service to about -70°F.

Fluoroelastomer compounds generally offer greater resistance to most fluids and have wider operating temperature characteristics than do most commercial rubber products. Fluoroelastomers (i.e., DuPont's Viton and Norton's Fluran) resist many aliphatic and aromatic hydrocarbons that act as solvents for other rubber compounds. Generally, fluoroelastomers may be used continuously at temperatures to 400°F, and up to 1000 hours at 500°F without affecting the mechanical properties or chemical resistance. Fluoroelastomers remain flexible at about 0°F, and with special compounding, as low as -65°F. They have successfully been used in static applications at cryogenic temperatures. Fluoroelastomers show excellent resistance to degradation via ultraviolet radiation and, under vacuum conditions, experience minimal outgassing.

Silicone rubber compounds consist of silicone polymers mixed with one or more suitable inorganic reinforcing fillers and a vulcanizing agent. While all silicone rubber compounds provide a number of outstanding characteristics, various fillers may be used to improve physical, thermal and electrical properties as well as chemical resistance. Silicone rubber is serviceable up to 500°F, with some formulations useful for limited service to 650°F. Continuous low temperature operation may be obtained to -70°F, with some grades remaining flexible at -150°F. The resistance to degradation by ultraviolet radiation is among the best of the available elastomers. Silicone rubber contains a low percentage of organic materials and contains no plasticizers.

There are several other types of plastic and elastomeric materials, and their physical, mechanical, electrical and thermal properties are tabulated in Appendix A. Included in Appendix A are the characteristics of various types of rubber, fluorocarbons, olefin polymers, polyesters and polyethylenes. A new development material offered by DuPont, ECD-006 perfluoroelastomer, is composed primarily of fluorine and carbon, and combines the properties of a fluoroelastomer (i.e., Viton) with those of a perfluorinated plastic (i.e, Teflon). ECD-006 perfluoroelastomer is based on the copolymerization of tetrafluoroethylene (TFE Teflon), perfluoro (methyl vinyl ether) and a third monomer (a perfluorovinyl ether grouping

with an active cure site monomer). This material, when cross-linked, yields vulcanizates with outstanding chemical resistance and high temperature oxidative resistance. Perfluoroelastomers are chemically inert to most solvents, including polar solvents (ketones, ethers and esters), inorganic and organic acids and bases. Thus, perfluoroelastomers may be used with most transport fluids, excluding fluorocarbons. Generally, perfluoroelastomers are capable of providing continuous service at temperatures of 500 - 550°F and can operate at 600°F for short time durations.

Properties of Transport Fluids

Perhaps the most notable characteristic of the available transport fluids is their chemical variety. The transport fluids evaluated by Vought are listed in Table 10, together with their temperature range and typical thermophysical properties. Most of the transport fluid types represent a family of transport fluids, with a large variation of thermophysical and transport properties. Described in the following paragraphs are the major categories of fluid types evaluated during the materials study. More detailed information concerning a specific fluid is located in Table 10. Fluorocarbons

atoms and fluorine. Chlorine, bromine and hydrogen atoms may also be present. Their physical characteristics include nonflammability, a low level of toxicity, excellent thermal and chemical stability, high density coupled with low boiling point and low viscosity and surface tension. The presence of fluorine atoms in the molecule is responsible for the stability of the compounds and, as a general rule, increased stability may be obtained for increased fluorine content. Toxicity levels of the fluorocarbon compounds

are quite favorable for use and handling, with most of the fluorocarbons

classified in groups 5 and 6 by the Underwriter's Laboratories. (Group 6 is

Fluorocarbons are organic compounds containing one to four carbon

TABLE 10 INTIAL FLUID SCREEDING

														ł	AT 7	700	
-LOID	TUPE	MPTE	n,e⊭	VAPA IOC F	7965		TOKICITY		POUR PT	Be ILILY		Pour P	FT Floor	LBM HR FT	ср <u>өто</u> свм∘ғ	න ප්	sp दह
L 1(をししゃ でい ぐんだなぐん	かいたい か	ı	7 A 4 lp	192 03	-14.50	-(r 5/	~	,	×	×	٧	×	92	70B	050	I 476
. 12			1	1351 ନଦ	1	~てしょ	(qP to	\ \	٠	*]	×	~	×	رجين	とうて	041	1.31
. ነъክ			7_	- IATM	~ ATA	w -2-7		Χ.	~	*	×	/	~	73	186	057	1 83
- 1%BZ		1	z	7 1 ATM	~7 I ATR	W - Z2ラ		×	~	×	×.	~	×	1 % 1	-151	4967	2 275
- 17 ₉			ι	ž.	1	- 7.94		٧.	~	*	×	V	×	357	46	OZZ	1 05
- 17e1			í	370	4	* Z7O	درته ده	×	~	×	*	·	Υ.	2760	21	024.	54
-14			1	2	. 1	- 299	472 4	×	~	×	*	س	×	حتاجا	افد -	END =	- 50 Z°F
- % l				40 5	240	-211	4P 4 5	×	/	×	×		*	80	25	- دومان	1 57
22			i	210 6	L	- 256	41° 5A	×	v	×	×	L	×.	57	30	052.	1 19
なち			t	7	. 4	- 247 4	८५२ ७	×		×	4	-	×	36	1 45%	ంంది.	. 94
- 31 (MET)	we)	Ÿ	3	z	. 4	- 296 4		\	~	*	×	•	*	CRITI	באר דנ	= - 4W=	116 906
112	FLOOROCARBON	Two Pour	ι	1 7-5	34 G	79	QP 4-5	\ \ \	~	-	-	-	~	3 14	7. j7.	029	J 6-3
L-112	!	1	1	10 45	101 -	- 31	GFA 7	×	-	-		•	~	0 ما ا	218	07B	1 56
L 114	i	,	1	465	312	-137	46.0	×	~	-	×	•	*	91	243	o34.	1 45
L-114BZ			1	10 %	162	-1668	47 F 51	×	•	-	-	•	•	174	المله	027	2 14
L - 11->			1	1627	۵	- 159	476	×	۳	×	×	~	×	<i>ω</i> *	7. L	ಎ೭७	134
; ile			3	7	÷ 4	1 - 1491	47.0	*		×	*	~	×	AZ.		٥١٦	
1170			3	7154	4 - 2 6	- z 04		×		*	*	~	×				1-11
HELK			4	17.4 6	4	L - 178 G		*	v	*	×	-	×				90
15.8	¥	1	,	- 14				v		*	· ·	-	~				
. 176 (074			÷	2.	•	-211	५७८ च	~		*	~		~	-	_	-	33
113	FULL RUCKROU	T-64 (**)	÷	1	~10	- 13-5		_	-	~	~	,		うてい	214	44 5	l 69
7.1			3			-112						•		2 25	ていと	.04%	
-	A CENTRAL	<i>t</i> :	=					95			I			l			

Table The property Table										ILI TEM	P APPL	ICATION.		10 750	O A DOL	ICATION !	1	AT 77	~ ~	
LUID 1998 MP.C. REF 1001 2-0CF 01-AM TOXICITY PLAIAIN 4-ADF PT725CF PT700C 10M 0TU 8TU 8TU WET 10M 1 10 10 10 10 10 10 10 10 10 10 10 10 1						VAPOR	トベモン		2,				<u> </u>	T	Pour Pr	BOILING	N.	Cp	- W	
	LUID	7986		MF CL	رو ۲	lont	と うC F	ATA I ES	1			•					LBM	BTU	きてい	ማ ድ ፍଷ
190 Attentions or	- 216	FLUOREC	ARBOU	ひしゃっしゃ	3	156	139 2	-1937	4P 6	×	-	*		*	-	×				1 5040
1990 (XECTIONE C)	- こう18	{			3	ω7 Α).	~ AZ 5	400	×		×		×.	-	*	l oz	27	02 5	1.50
501 (ARECUTEDRE OF RELEAS) 503 (ASSOCIATED SET 18 - 19) 504 (ASSOCIATED SET 18 - 19) 505 (ASSOCIATED SET 18 - 19) 506 (ASSOCIATED SET 18 - 19) 507 (ASSOCIATED SE				i	3	1559	(تدا)	-254	47 34	×	~	*		×		×	ちみて	174	O48	ما ا
903 (ASBOTROPE OF REPORT O	502 (A			1	3	230	Risqu	4	(717 FA	~	~	×		×.	-	×	58	_	097	1 24
- 500 (ARDSTROPE OF R PY ER 115) 2 3764 1 4 108 740 - 51 4 108 740 - 51 4 108 740 - 51 5 125 140 - 746 X	503 (A	40 39037035		1	3	-	4	4	ما ۱۹	×	-	×		×	-	×.	CRITI	نمد ج ھ	. M ነን = ' (a	7 1 =
10	- 504 (A	RECTROPE OF		İ	3	376 4	1	4	(100	*	~	*		*	V	*			-	
-EI (E - JEUES 5 125 140 - 744 X		· .	i		4	108	740	-51		×	V	*		_	×	V	(1 679	213	043)‡	- 1565
- EZ PAMILIÓ DE ZA -190 X X X X X X X X X X X X X X X X X X X	- € (5	12.5	140	-7.46		×	~	×		,	-	~	1 21	24	•	1 54
- 63 ROMONOUY FLUIDS) - 64 - 65 - 65 - 65 - 65 - 65 - 65 - 65 - 65	- ∈ z	FAMILY			5	1 1	24	~ 190		*	~	×		,	v	v	7. 104	2.4	. TGO	. 1 1010
- E 4 - E 5 - E 5 - E 5 - E 5 - E 5 - E 5 - E 6 7 - E 6 7 - E 7	- モカ	Homoroy			5	71	5 A	⇔ 1×0₽		v	~	~		-	-	v	53	24	. 850,	_ 1 72
	- € A	- 2011/9)			5	-		- 17B			~	~		/	V	u	9 92	24	039	1.76
	- E S	ł		+	•	-		- 117			V	-		<u>ب</u>	Ü	~	169	24		
7 210 MM - 10 MM OIL 7 - 210 MM - 10 MM OIL 8 10 MM - 10 MM OIL 8 10 MM - 10 MM OIL 8 10 MM - 10 MM - 70 8 10 7 8 10 7 8 10 7 7 7 7 7 7 7 7 7 7 8 10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		D 01414-25	FWID	שטה כסגרות	લ હ			-148		_	-	,	FLUID /4REASE	-		-	Z 200	-34		
510 A < 100MM < 100MM - 7D X / 4500 - 035 985 - 570 X / 850 35 085 1 065	- 210	(Pory 1-6x	Aue)	1	7	~ 10 mm	- 1UM	م جاد		-	1	~	f	~	×	۲	≥ 230	>4	۵9 .	97
- 570 X / 850 35 085 1 065	- 2104	ı	,	İ	7	~ 10 ALAL	- 10mm	5 15 14		٠	,	,	11.		×	,	- 250	カラ	09	97
-719	510				_ A	<100W	M ~100m	A -70		_	~	-		-	*	-	4500	-	೦ಶಿಕ	989
-710 4 A10 3Z 0-5 105	- 570	-			Δ	-100 44	~10 DM	~~0		-	•	/			*	_	850	35	085	1 005
1 1 1	- 710	4		ŀ	4	~100 ~~	4 4 6 1 C) C) PV A	_C			-	/		-	٧.	-	41 o	32	- رئے۔ ن	1 66

				VA Tron	- PRES	4 4		KLTEM	P ADDL	ICATION		LO TEMP APPLICATION	1	W170F	<u> </u>
LOID	マリアに	MFR.	1Z∈F	loop			>				1	POUR PT BOILING			
)	/ () ()	1667	1001-	てのいF	~ I ATM	TOXICITY	Py-C I ATM	< 40F	やてアをちゅ	d	PYCIATM 100F PTT 100F	1 `	•	
				r			1 ′	İ	~ =	-	1		1	570 BT0	
_							ļ	ļ					4 <u>17. Fit</u> 1,6	BW F WE	™E
F-96 5	خالالامهة جلاله	GEN ELECTRIC	A 4			- 58 TO	ſ	1	• •						
3		(_, -,	ŀ		120	ì		. "	-	HRTG 10			3	
-97-20	**	ч	8,4	ſ		- 85	1	} ~ ~	/ -					354 j	هالف
			-, .			- 85	ļ	-		•	- "		46.09	36	
- 99	4	1,	8,4	1			- 1	-			 			. 20 08:	4
			,	ĺ			!		~		<u></u>	7	- 2 カ. ラ	مور ملات	
- 61	*	#	6,4	ļ		- 120		-			 				4
- 120 1 . 3			·	1 .					•		f " -	V =	_UZ.57	26 .092	~+
- 85 (zo)	4	u	8,4	4167	_ = 10 ⁻¹		"								·
- 1017				1	_						├ <u>"</u> -	<u> </u>	<u></u>	26	1 .94
- 10(7	н	ľ	8,4			- 40			- 	~	 				
(05) 3501	и			[1	' " <i> </i>		<u> </u>		} — —-	X			
(70)	•	,	, в,4			100	. – 1		` ; ~						
- 1053			-	ľ		!				***					
10-5-5		"	8,4	~10"	~ (c ²	- 64									
- 1065	н		-	ł		1]			`		† ·×	^ 7.50.	93	.93
		r ·	0,4			- 67			/			·			
- 44				J											
•		,	۵, 4	l		(00	[✓.			DL PEPCA				`
- 50			-	l		-					47 1-45		<u> </u>	A LOAT	Log
	~	••	છ,ન	[~ \ \\\ .	< I MM	- 100	ı	~		_ フ †					
						į.		**				<u>-</u>		بـــــــــــــــــــــــــــــــــــ	- 89
OULKNOL (5	SILICATE ESTER	Mouseura	9 -	· ~											
	· · · · · · · · · · · · · · · · · · ·		,	٥Z	43	~- <u>140</u>	- 1	/		[1		3.74 .4		
2 5		*	9	< 10	4 10-2									92sv=	
		_	′	~ .0	4 10	<-120_	~	· · · ·		/ -	[10,4	43 .076	
36	14		9	~ 10 *	410.7	. 	-			·			-122-14	43 .076	
			<i>'</i>		IO	< -120		·	· - ·	1	- ~ -		4.7. 4	47 077	
45	14	u	9 J	و دا >	* 10 ²	4-85	‡	- T	ر سم						
	3.			,-			1	•					43.4 . 4	47 076	~ "~~~~~~
ikerminal fr		ı	4	95	66	- 40	1								
			j				1				}		Z1.5 . z	.5007	1.44
44		4	15	ح ات ^ع	7	-80	~	-		~ - - +-				,	
			- 1				- 1	•		• 5-4		×	19.54	7 087	97.
95		**	13	7	7	-40	1	_ `		ノート					1
40			- 1			J	J					X <u>-</u>	.15. 4	14	1 . 69
\$0		п	13	7	7	-90	i i	~, ÷	l.	727	- 1	*			
46			J			į	i	17				·	3.7. 3.5	0761	99
			13	"1	7	-10	ſ	/ **		· 1					,
కు			ļ	7	-	[l		•	1	-	· X	745 ,31		_10_
			13	•	′ -	+293	ł	· · · · · · · · · · · · · · · · · · ·				~ -,			
VP-1	DIDHERUIT DEIDE		j			- 1				_		×	MRLTING PO	0107 = 79	5 ° E
	/PIPILLUGE	•	13	<< A M •	< 1 ATM	9	ļ	~ ~ ;	< (^ኅ)	- 1	- ~	V. X(!)	·		
LUTUYAC 6	1000						ł	_	` '	İ	- [" " Kundarinda manamifus			100
-	,	•	4			+60	I	_	×	- lā	ore io	<i>→</i> ,			*
	ŕfy	< 1 mm Hg 3 30	F-	A	LVAIL		. 97	دإختهرداة			(10	. الــــــــــــــــــــــــــــــــــــ			1

*

													THEEMOPHYSICAL PR	.07 GR TI
								HITEM	P APPL	CATION		LO TEMP APPLICATION	, AT 77°F	
				VAPOR	ኮርድ	F P	2	1	Pour PT	BOILING	1	POUR PT BOILING	t ce ho	
こしいひ	Type	WELL	K G F	IOOF	ZSCF	MTA I [©]	TOXICITY	Py ~ I ATM	440F	PT7250F		Py4 ATM 4 - 100E PT 71001	1 C '	SP 912
PUDITAUL 90	PHOSPHATE	MOUSAUTO	4	OK	د ا ت	- zs				- ,	-	×7-	2150, 38 072	ساتات
13-5	CUTER BANG	н	A	عد	4 5	- 12			~	-/-				 احالات
150	4	16	4	OK	~10	-55	1			1			7199 40 .927	
			4	94	~10 ¹	6			_	- ^ -		'-		
7,30	,,		4		~10 ²		-		,	,		- ~ · · · · · · · · · · · · · · · · · ·	السلاماهي ساتھ يا 7يمانس	17
540	и	"		OK	-10	•			- ,		- "		5000 150 1009 1	
PURATEK 100		"	4	014	**	5			•	- *			7.400	- (2
L- 45 _	. SILICONE PLUIS	DUIDN CAILBIDE	. 10	OK	0	-4570-10	۵ .	-	. <u> </u>	<u>-</u> ×	CLUIS ~		15.5 × 35 074-09	9>-9
-42	u	**	10			- <i>6</i> 3		~			- 91		446 2 = 15	1.03
% -43 ₋	a	н	10			15	_	-		- <u>-</u>	67 RCASE	PITATIZ	2.78104 = -	
- 510	и	ч	10			54	-				۔ باء		7.500092 1	.05
- 522	•	ı	10			- 56		-					740-245	.99_
527	at	•	10	-		- 5-ju	† -	\ <u></u>					149:365	.39
- 570	11	•	10			- 2-9		7.7		÷ _	الاع	<u></u>	4900	. <u>6</u> 9
- 991	•	u	10			20		-	. v.			2 = = = = = = = = = = = = = = = = = = =	340	-e-
~ 5510	41	•	10		+	90		-	. ×		;		-675,	\$7.
UTF - L20	AILICONE FLUID	UNION CAR810€	4		سر ان ^{بر}	-40		-	~		a	4-1×1-1	~2004510	965
- 10	ч	u	4		4 10 L	-45		/	. '				~426. 45 W	02
-14	ц	4	4	+	ح بن ²	- >4		/	1	- -	"	1/1 x1	7999 .45	- 63
- کو	ι	•	4	~ (o"*	410"	٥		\ \r	-	~	٠.	' ×	7.75945	Ø₽"
بادمه - هم اله	- 250		4		IX.	- 75		-	/	~~	,	レ	2 45044 13 1	.es
- LB AU	Nun		4	ıx	н	40		_	~	/	١,	- ×	N450 44, 005	~99
LB 🤊	ら い		4	→ 10 ⁻¹	٠,	- 24			-	-	n		N850 44 084	.99
							1	ì			1	_		

														TH			PROPERTIES
								HI TEMP	APPLI	CATION	LO TEMP	APPL	COLTADE			4.46	
FLOID	TYPE	<u></u>	ROF	VA POR	マックロア	C I ATM	TOXICITU	P4~1 ATM		8012134 2005	PULLATIN		PT 7100F	LBM HE FT	BTO LOMP	ETU NŒFT°F	SP GR
FC - 66	FLUOROCARBOU	3-M	0	720	(8276) -150		*	1	×	×	_	X,		25	032	1 64
- 78	l	1	11	10 63	(122-6) -100		×	v	*	/	-	~	18	24	ಎ% ಎ	1 70
- 77	į		п	MTA I ~	(134 °F) - 100		X	٠	×	ı	•	~	20	25	والآه	1 68
~ 77	i		н	199	(Z07*F	001- (×	-	*	_	~	~	34	てち	074	ነማይ ຼ
- 104			11	1A-M	(214°F) - 100		× .	•	×	_	~	-	37 9	25	977 _	175.
- 79	Paris lynnas		H	135	{ZI40°F) - 135		×		×		ب	~	35	29	037	176
- 40		}	н	12	45	- 70		_	٠	-		*	~	10,9	2.7	.07B	1 88
- 43	į		t f	<<1 ATM	2 12	- 58		_	٠	-		*	~	11.B	27	039	(68]
- 4 <u>&</u>	-		11	12.	3 5 8	- 80		-	*	-		×	~	137	14	.N 04 ~	1 93
% -10	ļ	l l	11	ZZ LATU	~ (ATM	-49		"		_	· ·	×	٧.	16 -5	27	047_	ัเ จิน์ _
REVELUE GLY SOLUTION	con hyproxyl ethe	ת טטוסט כאת:	SIPC 12													-	
10 By W7	o (water)		12	9.5	79 64	32		×		*	-	×	L.	2.35	1,0	د، در	
	50		12	64	てい てむ	- 32		× .	<i>~</i>	×	_	×	7	ግኚ७	B,	16	। ହୁମ
	041		12	~10°	85	10		-	•		\ \rac{\rac{\rac{\rac{\rac{\rac{\rac{	×	٠,	_*75 (4) 75	ماڪي	.145 _	1 II
AQUELLY DIETHYLENE CIL SULUTION	yeoc							i									
10 By wi	50		17.	72	24 Z	-17		! ×	-	×		×	~	97	マウ	23 .	1 07
	90		12	75 7	11 6	-15		•		`	_	*	~	ን ይ.ግ	G	_เร	ı ≏7
	(00		12-	-	17	16			-	۳	_	×	~	47 B	5 4 -	. 14	1 10
المربودات. - الاراد دربودات در	regeot			8.9	47 I	ر			,	*		ν.	-	. 140	77	718	1 97
V od ir	> 0]	ነሂ	41	13 6	~ 7		,		-		٧,	·	678	59	145	1 10
	10	1	1 4		ردن	23			•	v		¥		92	-50	コッラ	1 12
	~ >	¥	14	l			1	I		1	I						

" () " BUILDING THET AT LAIM

															AD PHYSI	eal dro	ショトエガラダ
LUID	туре	MFC	にそら	VAPOR ISI F	アピッチ	E P G1 ATM	TOXICITY	l	POUR PT	BCILIDIA PLASSE		POUZ P	HEATION T BUILING PT7100F		ETO LBM*F	바 BTO 네도루(누	sp ५११
where and	44777744L E168	Saidant colda	12														
scution)	90 ·			77	ሪ ን ፔ	- z t <u>a</u>		*	,	*		≺ .		12 (86	2.7	(CO)
,	۳ د ۹	 		2.6	55 P)	-			v	×		*	,	56 1 87 L	64 60	145	104
ı	00 H			4 11	17.				·	*		^	•	8.1	40	10-3	(09
TRAUL 10-E	рцоврнате в	STER MODALUTO	14	± 10 ° +	4 IQ 4	~70		-	-	-	_	*	_	AZ	AZ	047	1,09
29-6-6	∵ τ '	•	14	~10 ^A	< 10 *	-45		-	-	-	-	×	-	1774	39	ale	1 10
プロ・モ	11	1	14	2 10 A	~10 t	~15			-	-		*	-	157	عادة	074_	1 15
Ģ 0∸C	•		14	<10+	م اڪ ^م	-5		_	-	-	_	*	-	278	37	673	1 15
	•	ŀ	14	4 10-4	410 ³	9		1	-	-	-	*	-	৯ ৪৭	ንይ	, 673 .	1 15
ハラ ~€	И	Ť	14	⊀ انت ⁴	4 10 ³	10		-	-	-	_	×	•	825	78	072	1 15
230- 6	PHOSPHATE & BASE	STER MONSAUTO	14	±10 ⁻²	اقا ≁			-	~			×	-	ఒం కు	41	210	1 09
ラ1 て−C	ц	1	14	~10 ²	ا به ^۱			_				×	-	カコマ、	Al	97 W	1 64
540 C	ti		14	~10°	خړن ²	· 6	1	<u>۳</u>	~			×	•	654.	**	015	1 04
SOLABOL ZO	キルベムても モルエ	ا		- I mm Hy	410	4-140	4P5-4		~	•	_	~	~	51	45	069	88
DOLANGE 40	•	*		4 10 ⁴	~ 10 ²³	` <u> </u>	ı	-	V	٠		×.	r	207	46	ందిం.	90
																*	
										1	Ì						

considered to be the least toxic of gases and vapors.) None of the fluorocarbons have been determined to be flammable or explosive at temperatures to about 210°F. The presence of fluorine in the molecule in many cases has an effect on the boiling point similar to that of hydrogen but at the same time providing a high molecular weight and nonflammability. This effect is even more pronounced when chlorine is also present. The high molecular weight of fluorocarbon compounds also contributes to low vapor specific heat values and fairly low latent heats of vaporization. Fluorocarbons do not conduct electricity and in general have excellent dielectric properties. Compatibility of the fluorocarbon compounds with elastomers is variable, due to chemical structure variations between fluorocarbons but, in general, at least one fluorocarbon compound may be found to be compatible with most elastomers. Obvious exceptions are elastomers for which all fluorocarbon compounds are strong solvents: 1.e., some fluorinated elastomers. Homopolymers or copolymers with increasing polyvinyl alcohol compositions generally offer increasing compatibility with the fluorocarbon compounds. Variation in the thermodynamic and thermophysical properties of certain fluorocarbon compounds may be obtained by substituting (existing) higher homologs of the fundamental fluorocarbon. For example, a family of five (homolog) fluids, the "Freon E-series", is manufactured by DuPont, with higher homologs currently under development. Silicate Esters

Monsanto's Coolanol transport fluid series is a family of silicate ester coolant/dielectric fluids. The Coolanol fluids are characterized by very small vapor pressure and high specific heat as compared to Freon fluorocarbons. These characteristics yield smaller elastomer tube wall thickness (for pressure retention) and excellent thermal performance, respectively. However, pumping power penalties are large for the Coolanol fluids due to their large viscosities. Maximum (recommended) bulk fluid temperatures range from 250°F for Coolanol 15 to 400°F for Coolanol 45. Low temperature operation may be extended to -140°F for Coolanol 15 and to -85°F for Coolanol 45. The Coolanol fluids are compatible with aluminum, iron, copper, copper alloys, silver alloys, brass, cadmium plated steels,

solders and brazing materials. Several elastomers are compatible with the Coolanol fluids, including synthetic rubber, fluorocarbons, nitrile and some fluorosilicones. Compatibility of thermoplastic polyurethane, polyvinyl chloride (Tygon), fluoroelastomer (Viton) and perfluoroelastomer with Coolanol 15 has been demonstrated by Vought for 50-day duration ambient tests. In general, the Coolanol fluids are quite similar to the hydrocarbons in overall flammability characteristics. The products of combustion of silicate esters (i.e., Coolanol fluids) include silica (silicon dioxide), which is usually of small particle size and appears as smoke. Silicate esters are characterized by the tendency to hydrolize when in contact with water, thus requiring some protective measures to avoid water contamination. The Coolanol fluids are essentially nontoxic. Coolanol 15 is somewhat volatile (relative to the other Coolanol fluids), and at high temperatures, the vapor is moderately toxic. Chevron International is also a manufacturer of silicate ester fluids.

Hydroxyl Ethers (Glycols)

Glycols, also called diols, are characterized by two hydroxyl groups. The hydroxyl groups contribute water solubility and hygroscopicity and also provide reactive sites. The extent to which the hydroxyl groups influence the properties of the molecule depends upon the position of the hydroxyl groups, the length of the hydrocarbon chain, and the presence of branched chains and repeating ether linkages. In effect, the more closely the molecule resembles a hydrocarbon, the more it acts like a hydrocarbon. Repeating ether groups in "polyols" introduce hydrogen bonding, with its attendant influence on solubility. The ethylene series is completely water soluable at room temperature. Hygroscopicity does, however, decrease as the chain lengthens. The propylene series loses its water solubility as the chain lengthens. Aqueous glycol solutions exhibit minimum freezing points at about 60 - 65% glycol, by weight. Boiling points of aqueous glycol solutions are increased with increasing glycol composition and are greatly enhanced as the glycol composition increases above 80-90%, by weight. All of the pure glycol solutions have vapor pressures under 0.1 mm of mercury at 20°C (68°F). In order of decreasing vapor pressure, the glycols are grouped as: propylene glycol, hexylene glycol, ethylene glycol,

dipropylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol.

Ethylene glycol is a colorless, practically odorless, low-volatile, hygroscopic liquid. It is completely miscible with water and many organic liquids. Ethylene glycol is the lowest molecular weight fluid of the glycol series, it is about 50% more hygroscopic than glycerol at normal room temperatures and humidities. The appearance and properties of diethylene glycol are similar to those of ethylene glycol. Diethylene glycol is considerably less volatile than ethylene glycol and it dissolves various resins and gums and many organic materials. Diethylene glycol may thus be a poor choice as a transport fluid in contact with elastomer materials. Triethylene glycol is a colorless liquid with a slight, sweet odor. Its properties closely resemble those of diethylene glycol, but has a higher boiling point. Tetraethylene, propylene, dipropylene and hexylene glycols are also similar in behavior to the simpler glycols. 2-Ethyl-1, 3-hexanediol (ethohexadiol U.S.P) differs from the aforementioned glycols by its longer hydrocarbon chain, thus yielding low volatility and limited water solubility. Its compatibility with elastomers is unknown, but is most likely limited. 1, 2, 6 - Hexanetriol is a stable, high-boiling liquid that is completely miscible with water. It differs from the other glycols by having three hydroxyl groups, thus characterizing it as a very strong solvent. Other glycols include polyethylene and polypropylene glycols, characterized by large viscosities, and would therefore be inferior transport fluids (at least from a pumping power and flow stability viewpoint). Elastomer compatibility of all of the glycol fluids would largely be a function of the hydroxyl group inertness with respect to the elastomer material. Silicone Fluids

Chemically, silicone fluids are quite different from all other materials. Whereas organic hydrocarbon fluids have a basic structure of carbon-carbon atoms, silicone fluids have a basic structure of silicon-oxygen linkages similar to the Si-O linkages in other high temperature materials (quartz, glass and sand). It is this linkage that contributes to the outstanding high temperature characteristics and general inertness

of silicone fluids. In addition, many organic hydrocarbon fluids contain

some degree of unsaturation where carbon atoms are joined together by double bonds. The double bonds are the sites of attack by oxygen, particularly at high temperatures. Because most silicone fluids contain no double bonds, they are extremely resistant to oxygen attack - even at high temperatures over long periods of time. Several types of silicone fluids may be synthesized through the use of a variety of organic side groups along the polymer chain: methyl, ethyl, propyl, butyl, phenyl carboxyalkyl, hydroxyalkyl, cyanoalkyl and aminoalkyl. Of these, methyls and phenyls are used most frequently; consequently, the two most common (and most useful) silicone fluids are dimethyl polysiloxane polymer and methyl phenyl polysiloxane polymer.

Silicone fluids offer a relatively small viscosity change with temperature. (Petroleum oils and dibasic acid esters exhibit large changes of viscosity with temperature in relation to most silicone fluids.) Silicone fluids are also characterized by shear stability, excellent resistance to breakdown at high temperatures and low surface tension. Dimethyl polysiloxane fluids have pour points below -120°F and may be operated at temperatures up to 500°F. Methyl phenyl polysiloxane fluids may be used from about -80°F to 500°F. Extended storage of silicone fluids at low temperatures will produce no precipitation since no additives are present. When frozen solld for prolonged periods, silicone fluids do not deteriorate and when returned to operating temperatures will perform as effectively as before. Except for the very low viscosity products, the nominal specific gravity range for silicone fluids is 0.94 to 0.98. Incorporation of phenyl molecules in the polymer increases specific gravity. Dimethyl silicones have the lowest surface tension values and these are largely independent of viscosity. The surface tension of methyl phenyl fluids is somewhat greater than that of dimethyl fluids, but is still much lower than that of organic fluids. Silicone fluids, except for the low viscosity dimethyl materials (20 centistokes), show exceptionally high flash points. The low viscosity dimethyl fluids, being short chain polymers, are more volatile. The self-extinguishing characteristics of non-volatile high molecular weight silicone fluids are due to the large temperature difference between the flash and fire points. Auto-ignition temperatures of both dimethyl and methyl phenyl silicone fluids are above 850°F.

The low molecular weight, low viscosity silicone fluids behave as solvents in the presence of plastics and resins.

3.5.2 Materials Screening

Fluid Selection Criteria

Selection of a transport fluid for the soft tube configuration of the Inflatable Radiator concept is based on several factors. Characteristics of the candidate transport fluids which have a major influence on fluid selection are: boiling point (or vapor pressure), flash point, pour point (freezing point), elastomer compatibility, thermodynamic and transport properties and toxicity. Essentially, all of the fluid characteristics are important in proper fluid selection, but a few minimum requirements must be met for the fluid to be a possible choice. Due to a concurrent requirement in selection of the most flexible elastomer available/possible (and consequently an elastomer of low strength), the criteria for vapor pressure has been defined as being under one atmosphere at 250°F (i.e., normal boiling point of the fluid must be greater than 250°F). Consequent to this restriction on the fluid's vapor pressure, tube wall thickness requirements for meteoroid protection will be inclusive of those for pressure retention. The fluid operating temperature range has been defined as -100°F to 250°F which is considered to be inclusive of high and low temperature applications for the Inflatable Radiator concept.

Selection of the proper fluid for low temperature operation is not entirely dependent upon pour point. The fluid viscosity at low temperatures dictates the minimum allowable return temperature for a given radiator inlet temperature. For heat rejection systems facing deep space, unstable operation of the radiator occurs if the return temperature drops below the minimum allowable temperature which, in most cases, is well above the fluid pour point. The resulting behavior of the radiator, when rejecting heat to an environment with equivalent temperature below the transport fluid pour point (i.e., a radiator facing deep space), has been observed to be freezing in one flow path with subsequent freezing in adjacent tubes, and eventual freezing of at least a large portion of the radiator. The subject of flow stability is addressed later in this report concerning the soft tube Inflatable

Radiator thermal vacuum test and feasibility demonstration and in Reference (8). The flow stability problem limits the choice of transport fluids to fluids other than those with moderate-to-high viscosity at lower temperatures (in addition to the increased pumping power penalty incurred by use of the higher viscosity fluids.)

The data available on toxicity is limited, with the only quantitative data indicated for the Freon fluorocarbons, Table 10. None of the fluids evaluated by Vought appear to be hazardous in handling, assuming normal handling procedures are observed. Table 10 lists the fluids evaluated on an initial screening basis. The fluids which warrant further evaluation are those for which sufficient data are available and which remain liquid at pressures under one atmosphere over the temperature range of -100°F to 250°F. Second level screening and final fluid selection are discussed in Section 3.5.3.

Screening Tests

Screening tests consisting of chemical compatibility, bonding, flexibility and thermal exposure testing have been performed using several of the tubing materials indicated in Table 9. Room ambient temperature chemical compatibility tests have been conducted at Vought using Freon E-2 and Coolanol 15 together with each of the tubing materials listed in Table 11. Also indicated in Table 11 are the results of 11-, 20-, and 30-day chemical compatibility tests. The chemical compatibility tests were conducted at room ambient temperature and pressure using typically a one-inch length of tubing material immersed in a small beaker containing the transport fluid. Chemical compatibility was determined by changes in physical appearance, weight change and swelling of the elastomer. Perhaps the most quantitative measure of chemical compatibility is the amount of elastomer swelling incurred when in contact with the fluid. Swelling of tubing materials is easily measureable and, in the absence of changes in surface appearance, is considered to be indicative of elastomer/fluid compatibility. The two fluids selected

TABLE 11 ROOM AMBIENT TEMPERATURE CHEMICAL COMPATIBILITY TESTS

		% SWE	LLING R _t - F	X 100)	
	Fr	eon E-2		Cod	olanol 15	
Exposure Time (Days)	11	20	30	11	20	30
Tubing Material						
MP-1485 Ester-Based Polyurethane	0	0	~ 2	0	1	1
MP-1280 Ether-Based Polyurethane	0	1	1	1	2 1/2	3
MP-1880 Ether-Based Polyurethane	0	0	0	0	0	0
8831-63A ECD-006 Perfluoroelastomer	(1)	~	-	Θ	0	0
8831-63B ECD-006 Perfluoroelastomer	12	27	28	0	0	0
Viton B Fluoroelastomer	0	1 1/2	1 1/2	0	o	0
SR-200 Silicone rubber	-	5	5	-	38	40
Neoprene W	1/2	1.	1.	(2)	1 1/2	1 1/2
TPR-1600 Thermoplastic Rubber (Polyolefin)	2	2	2	1	14	4
TPR-1900 Thermophastic Rubber (Polyolefin)	1/2	1	1	, 7	7	8
Moxness Silicone Rubber	1 1/2	2	2	39	40	40
R-3603 Tygon Polyvinyl Chloride	1	2	2	0	- 5	-8 1/2 ⁽³⁾

- (1) 8831-63A ECD-006 (Standard grade of perfluoroelastomer) deteriorated in less than three days in the presence of Freon E-2, with complete collapse of the tubing structure.
- (2) Neoprene W is apparently compatible with Coolanol 15, with very little swelling and no obvious loss of flexibility. However, the Coolanol solution became increasingly yellow, whereas Coolanol is normally clear.
- (3) Immersion of Tygon (PVC) in Coolanol 15 caused shrinkage of the elastomer, as well as greatly decreased flexibility. Flexibility decreased to about that of teflon, at room ambient temperature.

with which to conduct the chemical compatibility tests, Freon E-2 and Coolanol 15, were chosen to be representative of the more applicable transport fluids, Table 10. As indicated in Table 11, the MP-1880 polyurethane, 8831-63A and -63B ECD-006 perfluoroelastomers and Viton B fluoroelastomer did not swell in the presence of Coolanol 15. Also, Coolanol 15 had a limited effect on the MP-1485 and MP-1280 polyurethanes and Neoprene W, although discoloration of the Coolanol solution was observed with Neoprene W. Substantial swelling of silicone rubber in Coolanol 15 was observed; whereas diameter reduction and significant loss of flexibility of polyvinyl chloride (Tygon) in Coolanol 15 was observed. Compatibility with Freon E-2 was indicated for MP-1880 polyurethane; and minor effects of E-2 on MP-1485 and MP-1280 polyurethanes, Viton B, Neoprene W, Tygon, one grade of silicone rubber and the polyolefin thermoplastics were noted. Substantial swelling of the low temperature formulation of perfluoroelastomer, 8831-63B, in E-2 was obtained; the standard grade of perfluoroelastomer, 8831-63A, completely deteriorated in the presence of E-2 in about three days. Of the tubing material/fluid combinations tested by Vought, the only resulting tubing material which lost its flexibility was Tygon (polyvinyl chloride) in Coolanol 15. This loss of flexibility is presumably due to loss of the plasticizer while in the presence of Coolanol.

Flexibility tests of the tubing materials listed in Table 11 were conducted at room ambient temperature, 220°F, -100°F and -320°F (LN₂ temperature). With little exception, the tubing materials were more flexible at 220°F than at room ambient temperature. For the high temperature tests, the tubing material samples were placed in individual aluminum containers located in an air-circulating oven maintained at 105°C (221°F). Since immediate provisions for maintaining the transport fluids at elevated and reduced temperatures were not available, the flexibility tests were conducted with the tubing materials in air at elevated temperature, and in air immediately subsequent to immersion in dry ice (solid CO₂)/Acetone and immersion in liquid nitrogen. Results of the flexibility tests are shown in Table 12. Direct comparison of the flexibility of each of the elastomers with that of

FLEXIBILITY

MATERTAL	ID X OD (Approx)	75 ⁰ F	220°F	-100°F	0
_	L	· · · · · · · · · · · · · · · · · · ·	220 1	-TOO H.	-320 ⁰ F
MP-1880 Polyurethane	1/16 X 1/8	Moderately Flexible	Increased Flexibility	Bending over 1/8" Mandrill w/moderate force (by hand)	No Flexibility
MP-1485 Polyurethane	1/8 x 1/4	Moderately Flexible	Permanent Ion- gitudinal Curl; slightly yellowe	(1/4" Mandrill) d.	No Flexibility
MP-1280 Polyurethane	1/16 X 1/8	Moderately Flexible	Increased Flexibility	(1/8" Mandrill)	No Flexibility
8831-63A Perflu- oroelastomer	1/8 x 5/16	Moderately Flexible	Increased Flexibility	No Flexibility	No Flexibility
8831-63B Perflu- oroelastomer	1/8 X 5/16	Moderately Flexible	Increased Flexibility	No Flexibility	No Flexibility
Viton B Fluoroelastomer	1/4 X 9/32	Flexible; Crinkles when bent	Increased Flexibility	No Flexibility Shattered when bent	Shattered when bent
SR-200 Silicone Rubber	1/16 X 5/32	Extremely Flexible	Increased Flexibility	Very Flexible at -80°F	Small Flexibilit
Neoprene W	1/8 X 3/8	Moderately Flexible	Increased Flexibility	No Flexibility	No Flexibility
TPR-1600 Thermo- plastic rubber	1/8 x 7/32	Flexible; crinkles when bent	Elongates permanently when stretched	No Flexibility; Permanent crinkle when bent	Brittle (Shattered)
TPR-1900 Thermo- plastic rubber	3/16 x 9/32	Flexible; crinkles when bent	Elongates permanently when stretched	No Flexibility; permanent crinkle when bent	Brittle (Shattered)
Moxness Silicone Rubber	14 AWG (.069 X .101)	Extremely Flexible	No change from 75°F	Small loss in flexibility from 75 ⁰ F	Small flexibility
R-3603 Tygon Poly- vinyl Chloride	1/8 X 1/4	Moderately Flexible	Increased Flexibility	No Flexibility	No Flexibility

200

the other elastomers was difficult due to the variation of sizes encountered in obtaining samples. Qualitatively, the tubing materials may be ranked in order of increasing flexibility as: thermoplastic rubber, Neoprene W, Viton B, polyurethane, perfluoroelastomer and silicone rubber. Several other materials evaluated by Vought, Table 9, were either nonobtainable or unknown at the time of testing (EPDM, ethylene vinyl acetate, ethylene ethyl acrylate) or were judged to be too stiff to compete as alternate tubing materials (butadiene - acrylonitrile, polyester). As indicated earlier, it was recognized by Vought that a thorough screening of plastic, rubber and elastomer materials may still leave some existing materials unrecognized. It is believed, however, that some variation of most of the available flexible materials has been identified.

Elevated temperature chemical compatibility tests were possible for Coolanol 15 without reflux condensing, due to the low vapor pressure of the fluid, and were conducted using the materials listed in Table 11 for which zero elastomer swelling was observed (viz., perfluoroelastomer, Viton B and MP-1880 polyurethane). Three-day duration tests were performed with samples of Viton B and both grades of perfluoroelastomer immersed in Coolanol 15 at a temperature of 200 ± 10°F. The results of these tests were evaluated in terms of changes in physical appearance (i.e., swelling, color change, etc.). The perfluoroelastomer did not undergo any perceivable changes in surface appearance or size. Thus, at least from data inducated from the ambient immersion tests and the three-day elevated temperature tests, both the standard and low temperature formulations of perfluoroelastomer are quite compatible in Coolanol 15. The usual differences between members of a family of transport fluids (i.e., Collanols 15, 20, 25, 35, 40 and 45) are the transport and thermophysical properties; usually, the solubility of the fluid with other materials does not vary significantly between members of the same fluid family. Thus, it is expected that perfluoroelastomer would be compatible with any of the Coolanol silicate ester fluids. (Similar compatibility is expected of the Freon "E-series" fluids for elastomers which have been shown to be compatible with at least one of the "E-series" fluids.) Behavior of Viton B in Coolanol 15 at 200°F for three days showed a shrinkage of about 8% in diameter, with no apparent loss of flexibility.

Elevated temperature chemical compatibility tests were conducted with several samples of MP-1880 polyurethane immersed in Coolanol 15 for continuous exposure in excess of 500 hours (21 days) at temperature levels of approximately 140, 160 and 180°F. These tests were performed in support of the basic Inflatable Radiator program change to incorporate a more flexible tubing material (as compared to FEP Teflon) in the soft tube design scaled test article. As indicated above, MP-1880 polyurethane was found to be one of the most promising alternate tubing candidates, used in conjunction with Coolanol 15 as the transport fluid. Significant discoloration (yellowing) was observed in the 180°F MP-1880 samples. The 160°F samples were moderately discolored and the 140°F samples were only slightly discolored. It was also observed that longitudinal curling of the polyurethane samples increased with increasing temperature. Earlier hot case exposure test results for MP-1880 polyurethane/Coolanol 15 at 230°F for 72 hours indicated similar behavior in discoloration and curling. Pressure testing of the 230°F - 72 hour sample and the 160°F - 500 hour sample showed no apparent loss in strength, as these samples were capable of withstanding 300 psia burst pressure for approximately one-half hour (virtually equivalent results as for the MP-1880 sample which had undergone no chemical compatibility tests).

3.5.3 Materials Analysis and Selection

The transport fluids in Table 10 that may be considered after applying the fluid selection criteria of Section 3.5.2 are General Electric F-44 and F-50; Freons E-3, E-4 and E-5, and Coolanols 15 and 25. For a given environment heat load and radiator configuration that has tube wall thickness dictated by meteoroid protection (i.e., the tube wall thickness required for micrometeoroid protection is greater than that required for fluid pressure retention), the fluids may be compared directly by requiring equivalent fluid AT thru the radiator. This is tantamount to requiring equal heat removal capabilities for each fluid. Thus for each fluid, the mass flowrate is determined and, together with the fluid transport properties, pressure drop and pumping power penalty may be determined. Table 13 shows the results of this analysis, where the pumping power penalty is compared to the baseline fluid (R-21). Shown in Table 14 are tube wall thickness requirements for the elastomers that were compatible with either Freon E-2 or Coolanol 15 and their associated wall

temperature drop.

The wall AT is essentially the same for all of the final tubing candidates. Table 13 indicates that from a pumping power requirement standpoint, Coolanol 15 is superior to the other fluids. Availability, cost, compatibility and extended testing has resulted in the choice of Coolanol 15 as the preferred transport fluid and MP-1880 polyether urethane as the preferred tubing material.

TABLE 13
FINAL SELECTION CRITERIA FOR TRANSPORT FLUID

FLUID	ΔP(PSI)	PUMP POWER(LBM)	PUMP POWER (PUMP POWER) _{R-21}
E-3	75.1	149.2	5.7
E-4	132.9	259.3	• 9.9
E-5	217.6	417.3	15.9
F-44	3044.	7038.	269.0
F-50	Insufficient	property data (but	similar to F-44)
C-15	58.4	124.7	4.8
C-25	171.9	357.1	13.6

TABLE 14 TUBING WALL THICKNESS AND AT SUMMARY

		THERMAL	30-DAY		
TUBING	DENSITY (SP GR)	CONDUCTIVITY (BTU/HR-FT-°F)	T (IN)	ΔT (°F)	
FEP Teflon	2.15	.11	.037	4.05	
MP-1485	1.04	.12	.053	4.56	
MP-1280	1.04	.12	.053	4.56	
MP-1880	1.04	.12	.053	4.56	
ECD~006	2.0	~ .11	.038	4.13	
Viton B ,	1.4	~ .11	.046	4.71	

3.6 Engineering Model Inflatable Radiators

Engineering model test articles were fabricated and tested in the Vought Space Environment Simulator. Drawing No. T-213-SK03 - Inflatable Radiator Soft Tube Concept, and T-213-SK04 - Inflatable Radiator Hard Tube Concept give full scale details of the test articles. Both drawings have been transmitted to the NASA Technical Monitor. Figures 32-39 are photographs of the engineering models.

3.6.1 Soft Tube Test Article

The soft tube model is 37" wide x 72" long and contains twenty equally spaced transport tubes. The test article simulates one panel of the 3-panel flight configuration defined in Vought drawing T-213-SKO1 and shown in Figure 2. The test article is smaller in size and does not have the watchspring retraction subsystem of the full scale system.

Figure 40 sketches the general overall test article configuration and its principal elements. The article was mounted horizontally in the test chamber, and rolls out on guides with deployment similar to a party whistle. The tubing is constructed from polyurethane and is arranged in U-shaped flowpaths which begin and end at adjacent manifolds located at the end of the panel nearest the deployment box. The tubing is bonded between two sheets of fin material with SR-585 adhesive. The fin material and inflation tubing were fabricated by Sheldahl Advanced Products Division.

Each layer of the fin material consists of two mils of Teflon coated with 12,000 Å of silver. The inflation tubing was inserted into sleeves formed at the sides of the radiator, and the radiator was deployed from a 6" dia. spool by pressurizing the tubing with nitrogen gas at 15 psi. No watchspring retraction system is incorporated in the test article. Instead, the rewind moment applied by the watchspring is simulated by a cable which is wound around the 6" dia. spool and retracted by an electric motor.

The purpose of the deployment box is to permit simulation of deployment from a stowage compartment in the spacecraft into a cold space environment. The box simulates a 20°F stowage compartment and is pulled away from the radiator immediately following deployment so that the inflatable panel can be exposed to a well-defined chamber environment for thermal vacuum heat transfer measurements. A multilayer insulation curtain

FIGURE 32 HARD TUBE FLEXIBLE RADIATOR TEST ARTICLE

FIGURE 33 HARD TUBE FLEXIBLE RADIATOR TEST ARTICLE

FIGURE 34 HARD TUBE FLEXIBLE RADIATOR TEST ARTICLE

FIGURE 35 HARD TUBE FLEXIBLE RADIATOR TEST ARTICLE

FIGURE 36 SOFT TUBE FLEXIBLE RADIATOR TEST ARTICLE

FIGURE 37 SOFT TUBE FLEXIBLE RADIATOR TEST ARTICLE

FIGURE 38 SOFT TUBE FLEXIBLE RADIATOR TEST ARTICLE

FIGURE 39 SOFT TUBE FLEXIBLE RADIATOR TEST ARTICLE

FIGURE 40 SOFT TUBE TEST ARTICLE CONFIGURATION

- 3. Demonstrate structural integrity over the range of expected nominal and limit case operational environments under steady state and transient conditions.
- 4. Obtain experimental data on tube and fin temperature drops and tube-to-tube and longitudinal gradients to evaluate test article integrity and analytical procedures.

Since the engineering models are not full scale it was not possible to test them at the correct flowrates while maintaining the fluid outlet temperatures at the value which would occur with a full scale system. Therefore, test sequences were executed with the flowrate adjusted to give the correct outlet temperature but incorrect Reynolds number, and with the correct Reynolds number but incorrect outlet temperature.

Table 15 summarizes the test sequence for the hard tube radiator. Test points 1-4 were conducted before the radiator was flexed as required in retraction and deployment to obtain baseline performance data for assessing possible damage which might occur in deployment/retraction. For test point 5 the radiator was subjected to several deployment/retraction cycles at ambient conditions to obtain spring force data and to observe how the radiator fin material reacts to the stress of deployment and retraction. Test points 6, 7, and 8 were designed to evaluate the radiator performance after repeated deployment and retraction in a cold vacuum environment.

Table 16 gives the test sequence for the soft tube engineering model. The test article was deployed and retracted approximately 50 times at room ambient conditions prior to thermal vacuum testing, and was deployed from a 70°F box in a -310°F vacuum environment at the beginning of the test. Test points 1, 2, 3, and 7-B were executed to establish the steady state performance characteristics of the fully deployed radiator, and test points 6-B and 6-C to determine the heat rejection at partial deployment. Test point 4 demonstrated that the system would function at the high temperature operating limit, and test point 2-A demonstrated that the system thermal performance had not degraded during the test.

TABLE 15 HARD TUBE INFLATABLE RADIATOR TEST OUTLINE

TEST POINT	TEST CONDITIONS	COMMENTS
1	-310°F Environment, Representative T_{in} and T_{out}	Performance prior to deployment
2	0°F Environment, Representative Tin and Tout	Performance prior to deployment
3	O°F Environment, Representative Flowrate	Design Re., 65°F avg. temp
14	0°F Environment, 160°F Inlet Temperature	Hot Limit Structural Integrity
5	Ambient Retraction/Deployment	Deployment Data
6	O°F Environment, Vacuum Deployment	Deployment Data
6-A	Same as Test Point 1	Effect of Deployment
6 - B	Same as 6-A, But Radiator Half Retracted	Retraction/Deployment in Cold Envirn.
6-c	Same as 6-A, But Radiator Fully Retracted	Retraction/Deployment in Cold Envirn.
6-D	Same as 6-A	Retraction/Deployment in Cold Envirn.
7-B	$-40^{\circ}F$ Environment, Representative T_{1n} and T_{out}	Intermediate Environment
8-A	Same as 7-B After 5 Retraction/Deployment Cycles	Intermediate Environment
8 - B	Same as 7-B After 10 Retraction/Deployment Cycles	Intermediate Environment
7-A	-310°F Environment, Low Flow Cold Soak	Structural Integrity
7-C	Same as Test Point 1	Effects of Test

TABLE 16 SOFT TUBE INFLATABLE RADIATOR TEST OUTLINE

TEST POINT	TEST CONDITIONS	COMMENTS
A	Amblent Retraction/Deployment	Deployment Data
В	-310°F Environment, Vacuum Deployment	Deployment Data
1	-310°F Environment, Representative $T_{ ext{in}}$ and $T_{ ext{out}}$	Steady State Performance
2	$0^{ m o}F$ Environment, Representative ${ m T_{in}}$ and ${ m T_{out}}$	Steady State Performance
3	O°F Environment, Representative Flow Rate	Steady State Performance
7 - B	-30° F Environment, Representative T_{in} and T_{out}	Steady State Performance
6-в	Same as 7-B, but Radiator Half Retracted	Steady State Performance
6-c	Same as 7-B, but Radiator Fully Retracted	Steady State Performance
14	O°F Environment, 160°F Inlet Temperature	Hot Operating Limit
2-A	Same as Test Point 2	Effects of Test

Several test points were planned which could not be completed. Test point 4 of Table 17 was designed to test the hot operating limit of the hard tube radiator. The system became inoperable when the flexible Teflon tubing connecting the aluminum tubing to the manifolds began to leak Freon into the vacuum chamber. The failure occurred when the fittings joining the Teflon and aluminum loosened because of cold flow of the Teflon at elevated temperature and pressure. Test points 7-a and 7-c were designed to demonstrate that performance would not degrade after the radiator had operated at extremely low temperatures. It was not possible to operate the radiator at the conditions of low flow scheduled for test point 7-a because an instability occurred which caused the flow to stagnate in most of the parallel flow passages. Post test analyses showed that the flow stability is predictable from the properties of the Coolanol 15 transport fluid. It was necessary to warm the environment simulation cold walls to allow the radiator to recover from the flow instability. Insufficient LNo remained to re-cool the shroud after the flow had been re-established. Therefore, test point 7-C could not be executed. Test point 2-A was scheduled in place of 7-C to determine the effects of the test on the radiator performance.

3.6.3.1 Test Set-Up

Figure 42 shows the arrangement of the test article and environment simulation shroud in the Vought 12' chamber.

Environment Simulation

Environment simulation was effected with a 6' isothermal shroud. The closed end of the 6' shroud was inserted toward the lamphouse. The back plate was installed so that the veiwing/illumination cutout (about 15-1/2" x 34-1/2") is on the lower half of the plate, and viewing of the test article was through the lower 2 rows of solar ports. (Deployment of the test article is toward the lamphouse). To make room for the test article, deployment box, deployment mechanism and deployment supports it was necessary to "stand off" the 6' shroud door plate several feet. The resulting ring-shaped gap in the 6' shroud cold wall was insulated with

TABLE 17 TEST POINTS NOT COMPLETED

TEST ARTICLE	TEST POINT	TEST CONDITIONS	COMMENTS
Hard Tube	4	0°F Environment, 160°F Inlet	Teflon Tubes Leaked
Soft Tube Soft Tube	7-A 7-C	-310°F Environment, Cold Soak -310°F Environment, Repeat Test Point 1	Flow Instability Occurred Warmed Shroud to Recover Flow

covers the front of the box as shown in Figure 40. The radiator panel pushes the curtain out of the way as it unrolls, then the box is retracted from over the manifold area.

Test article instrumentation consists of thermocouples located on the tubes, fins, and manifold. The thermocouples are designed and fabricated as an integral part of the test article.

3.6.3 Hard Tube Test Article

The hard tube engineering model is 28" dia. x 45" long and contains twenty parallel flow 3/16" dia. aluminum transport tubes. The test article was fabricated as a joint effort of the Vought Materials Laboratory and Space Environment and Systems Test Laboratory. The test article simulates the flight configuration defined in Drawing T-213-SKO2 and shown in Figure 1. The test article is smaller in size and does not have the STEM retraction subsystem or the fluid loop components of the full scale system.

Figure 41 sketches the general overall test article configuration and it's principal elements. The article was mounted horizontally in the test chamber to minimize gravity effects and was supported during deployment on a steel bar passing through the center of the radiator as shown in Figure 38. Loads are transmitted between the radiator and support bar through ball bearings which reduce friction forces during deployment.

The test article cylinder diameter and number of tubes is 2/3 scale relative to the flight article. The coil helix angle is 20° at the extended length of 45", and about 1.4 turns of each coil is required. The spring was wound at a free length of 48" (about 21° helix) in order to obtain a preload of about 1.8 lb at the extended length. Eighteen of the tubes are 3/16" 0.D. 6061-T6 Aluminum, and the remaining two are 3/8" 0.D. 6061-T6. The 18 small tubes carry the transport fluid from the supply manifold to a similar collection manifold at the opposite end of the radiator. The two large tubes pick up fluid at the collection manifold and deliver it to a return manifold at the bottom of the coil. The return tubes are spaced 180° apart. Centerline spacing of the tubes is 1.5" when the coil is extended. A support ring on each end of the cylinder is provided

FIGURE 41 HARD TUBE TEST ARTICLE CONFIGURATION

40 layers of multilayer insulation. All coldwalls of the 6' shroud were also insulated with about 40 layers.

For cold case runs the 6' shroud and chamber cold trap were cooled with $\rm LN_2$. (Cooling of the main chamber walls was not required.) For hot case (TP2, 3, and 4) and intermediate case (TP7B) tests the shroud was cooled to slightly below 0°F and -30°F, respectively, by flowing chilled GN₂ through the 6' shroud $\rm LN_2$ passages. For transition from cold-to-hot conditions (TP1-to-2 and TP7B) and chamber warmup it was necessary to purge the $\rm LN_2$ with GN₂.

The existing chamber ${\rm GN}_2$ warmup system and blower were used for ${\rm GN}_2$ cooling of the shroud, with ${\rm LN}_2$ injection upstream of the heater to provide temperature depression.

A deployment box was used to simulate the Inflatable Radiator stowage compartment. For thermal vacuum deployment tests (TD3, TP5B) it was necessary to heat the box to about 70°F prior to deployment, then retract the box and shut-off its heater power after deployment to thermally remove the box from the test. A multilayer insulation blanket (40 layers) was applied to the front (test article face of box) and sides of the box (extending around the support structure as shown in Figures 40 and 41) to further isolate it from the Inflatable Radiator and the chamber. For the hard tube test article the front of the box was insulated only outside the area defined by the four test article support legs. To compensate an insulation blanket about 28 inches in diameter was applied to the bottom of the hard tube test article "cylinder". A similar blanket was applied to the top. For the soft tube test article the multilayer insulation was installed in such a way to allow the insulating blanket to re-cover the front of the box after deployment.

Deployment/Retraction Mechanism

The previously mentioned guide bar through the center of the hard tube test article was used in connection with appropriate actuators/releases to allow the radiator to deploy by itself from the deployment box. The actuators provided the capability for remotely retracting the radiator for testing in the vacuum environment. A retraction mechanism for the deployment box, which allows the box to be withdrawn

FIGURE 42 ARRANGEMENT IN CHAMBER

clear of the test article, was also provided. During ambient deployment tests (TP5A) the forces required to retract the hard tube radiator (about 30#) were measured with a scale. Forces for full extension to 45" were also measured at that time.

The deployment system and associated support and force measurement equipment for the soft tube test article are defined in the referenced drawings. A nitrogen bottle and regulator/indicator were provided which are capable of pressurizing the 2" gas inflation tubes to up to 30 psig. Weights for the pulley system used to simulate the flight retraction system restraint forces were supplied for calibrating purposes, and restraint forces vs inflation pressure were determined during ambient deployment tests. Actuators for retracting the soft tube radiator remotely were provided for thermal vacuum testing.

Viewing

Final positioning of the test articles and shroud in the chamber considered the necessity to observe the proper deployment during thermal vacuum testing. Lights (remotely switched on), mirrors, and a scale to verify extent of deployment were installed in the shroud in such a way as to provide minimum thermal interference. During ambient tests video-tape and still photography films of the deployment were recorded.

Flow Bench

The hard tube test article was tested with Freon 21 in the flow loop. Flow in the range from about 10 pph to 500 pph was required. System pressure was regulated to avoid damage to the test article. For protection of the Teflon flexlines, the test article inlet pressure was not operated above 100 psig (referenced to vacuum) for any test point except TP4. Test point 4 is a limit case, and pressure at the test article inlet was increased to 120 psig (referenced to vacuum) to avoid Freon 21 flashing.

The soft tube test article was tested with Coolanol 15 in the flow loop. Coolanol 15 is a very low vapor pressure fluid (10 mmHg @ 200°F) and, thus, system pressure was driven by flow pressure drop. Since Coolanol 15 is also highly viscous, large delta-p's occur. Maximum test article pressure drop at the highest flowrate of about 125 pph is approximately 20 psi. Flowbench changes and operating procedures to use Coolanol 15

avoided test article inlet pressures in excess of 70 psia-(referenced to vacuum) to protect the Urethane 1880 tubes.

Hard Tube Test Article Instrumentation

Figure 43 and 44 show the approximate locations of the 50 thermocouples on the hard tube article. The thermocouples attached to the tubes, manifolds, and structure (#36 guage Cu-Cn) were spot-welded. The fin root and midpoint thermocouples (#40 guage Cu-Cn) were sewn into the fin material. Thermocouple leads were run parallel to the tube spirals.

Other test article instrumentation included fluid inlet and outlet temperature and differential temperature, as specified in Figure 45 using the same instrumentation as previously used for element tests of Reference (7). Also, fluid inlet pressure and inlet-to-outlet delta-P should be measured at the test article fluid inlet/outlet.

Soft Tube Test Article Instrumentation

Figure 46 shows the 50 thermocouple locations on the soft tube article. The fin and tube thermocouples were laminated into the test article during fabrication, and are #40 guage Cu-Cn. The installation is like that of the square-foot soft tube test article, Reference (6). Thermocouple leads were made to run parallel to the tubes. Thermocouples attached to the manifolds and other metal structure were spot-welded and are #36 guage Cu-Cn. Fluid temperature and pressure instrumentation for the soft tube test article was the same as for the hard tube article.

Facility Instrumentation

The deployment box was instrumented with three thermocouples, one on the back (facing the supporting plate), one on the side, and one on the front (facing the test article). The existing shroud thermocouple instrumentation was used (17 T/C's). One thermocouple was attached to the structural supporting plate behind the deployment box which mounts the hard tube test article. For the soft tube tests a thermocouple was required on the -155 mounting bracket which attaches the test article manifold assembly to the support rails. In addition, one of the "inverted-V" deployment rails was instrumented about midway between the vertical cross braces.

FIGURE 43 HARD TUBE TEST ARTICLE INSTRUMENTATION SUMMARY

FIGURE 44 TUBE-FIN THERMOCOUPLE LOCATIONS

FIGURE 45 FLUID INLET AND OUTLET TEMPERATURE INSTRUMENTATION

FIGURE 46 SOFT TUBE TEST ARTICLE INSTRUMENTATION

TABLE 18

DENSITY CORRECTION TO FLOWMETER READINGS

HARD TUBE RADIATOR

TEST	TEMPERATURE AT	FLUID	CORRECTION FACTOR
POINT	FLOWMETER (OF)	DENSITY (16/Ft3)	(WIACTUAL) / W (INDICATED))
1	106 L	83.0	0.967
2	113.6	82 4	0.960
3	50	815	1 020
L-A	92	84 1	0.980
6-B	91	' 84 Z	0.981
6-C	91	84 Z	0.981
6-D	91	84 Z	0.981
7-B	99	83.5	0.973
8-A	106	82.9	0.966
8-B	112	82 5	0960
7-A	123	815	0.949
7-6	87	84.4	0.983
	SOFT TUBE RADIA	ATOR	
1	70.	55 ¢	1.00
2	72.	55 6	1.00
3	70	55 6	100
- 7-В	70	<i>5</i> 5	100
6-B	7 ₀	55.4	1,00
6-6	70	5≤. 6	1-00
4	7/	55.6	1 00
2- A	71	55. 6	1 00
•-			

Existing facility instrumentation was used to measure the following.

Flowrate. 10-500 pph Freon 21 (Hard Tube)

15-125 pph Coolanol 15 (Soft Tube)

Fluid System Pressures

Fluid Delivery and Return Temperatures to

Test Articles

Chamber Pressure

GNo Supply Temperature

Data Recording

Test article and facility data were recorded by hand on data sheets and selected data were relayed directly to a computerized data reduction system which stored the test data on magnetic tape and printed tabulated results at regular intervals. The printed output was relayed in real time by closed circuit television to a set at the flow bench. Fluid inlet and outlet absolute temperature and differential temperature using the thermally isolated Swagelock fitting arrangement were displayed on a digital voltmeter capable of reading to 0.001 mv. Both the test article and the fluid temperature indicators had a thermocouple running to an ice bath for a real-time check of accuracy. Flowmeter readings were corrected to account for fluid density variations with temperatures. Table 18 gives the correction factor for each test point.

Analysis of Test Environment

Figures 47 and 48 are approximate scale cross sections of the installations of the engineering model radiators in the test chamber. The figures show that the test environment consists of coldwalls, reflective aluminized mylar surfaces, and an open window. View factors from representative points on the two radiators to the environment surfaces are given in Figure 49. Analyses summarized in Figure 50 show that heat rejection is reduced by approximately 5% because of reflected radiation from the aluminized mylar and irradiation from the open window. Locally the heat rejection is reduced by about 9% near the base of the radiator, and by about 2% near the tip of the radiator.

FIGURE 47
INSTALLATION OF HARD TUBE RADIATOR IN TEST CHAMBER

FIGURE 48
INSALLATION OF SOFT TUBE RADIATOR IN TEST CHAMBER

HARD TUBE RADIATOR

SOFT TUBE RADIATOR

$$F_{6-2} = 0.057$$

FIGURE 49 SURFACE DEFINITION FOR TEST ENVIRONMENT ANALYSIS

•

ANALYSIS OF INFLATABLE RADIATOR TEST ENVIRONMENT

$$\left(\frac{9}{A} \right)_{R} = \frac{\epsilon_{R}}{\epsilon_{R} + \rho_{R}(F_{1} + F_{3})} \left[E_{B_{R}}(F_{1} + F_{3}) - F_{1} E_{R_{1}} - F_{2} E_{R_{3}} \right]$$

$$F_{1} = F_{R-1} + \frac{F_{R-2}(F_{2-1} + F_{2-4}F_{4-1})}{1 - F_{2-2} - F_{2-4}F_{4-2}} + \frac{F_{R-4}(F_{4-1} + \frac{F_{4-2}F_{2-1}}{1 - F_{2-2}})}{1 - \frac{F_{4-2}F_{2-4}}{1 - F_{2-2}}}$$

$$F_{3} = F_{R-3} + \frac{F_{R-2}(F_{2-3} + F_{2-4}F_{4-3})}{1 - F_{2-2} - F_{2-4}F_{4-2}} + \frac{F_{R-4}(F_{4-2} + \frac{F_{4-2}F_{2-3}}{1 - F_{2-2}})}{1 - \frac{F_{4-2}F_{2-4}}{1 - F_{2-2}}}$$

SOFT TUBE RADIATOR (6 = 047)

HARD TUBE PADIATOR (6 = 0.84)

Flow Calibration Tests

Prior to thermal vacuum testing the engineering model radiators were tested for uniformity of flow distribution by measuring the rate of flow in each individual tube. This was done by disconnecting the tubes from the outlet manifolds and flowing water through the radiator. flowrates were determined by weighing the water collected during prescribed periods of time in glass beakers placed under each tube. The samples were collected simultaneously to eliminate the effects of small variations in total flow with time. Table 19 gives the percentage deviations from the mean flow per tube computed from data collected from several flow calibration tests of the two radiators. The results for the soft tube model show that tubes 1, 3, 7 and 13 have relatively low flow, and that tubes 4 and 16 have noticably higher flow than the remaining tubes. The low values of flow are probably caused by flow restrictions where the polyurethane tubing has been flattened or bent about a short radius. The two tubes with high flow apparently have fewer flow restrictions or larger diameters than the remaining tubes. Tubes 15 and 16 of the hard tube radiator have unusually high flow. This is believed to be a result of the diameters being slightly larger for these tubes than for the remaining tubes. There was no crimping of the aluminum which would create flow restrictions in the hard tube radiators, and the manifolds do not favor high flow in any of the tubes.

The flow distribution obtained for the models is sufficiently uniform for obtaining near optimum heat rejection. The nonuniformities that do occur in the engineering models are expected to be more severe than any which might occur in the full scale system. The reason is that the longer tubes of the prototype will induce frictional losses which are large in comparison to the more unpredictable minor losses associated with bends in the tubing.

Retraction Force For the Hard Tube Model

Force versus retraction distance measurements were made for the hard tube engineering model to obtain data for sizing a retraction mechanism for future systems. The test article was supported by a rigid steel bar by means of a ball bearing, and was retracted horizontally to reduce friction and gravity forces. The data presented in Figure 51 shows a linear

TABLE 19
FLOW DISTRIBUTION TEST RESULTS

HARD TU	IBE RADIATOR	SOFT TUE	E RADIATOR
_ 			
TUBE	DEV FROM AVG	TUBE	DEV. FROM AUG
NO.	FLOW (%)	No.	FLOW (%)
1	-1.2	1	-6.2
2	- 1.4	2	- z.4
3	- 2.1	3	-8.8
4	- 0.5	4	8.8
5	0	S	-0,2
6	- 3.3	6	z. 8
7	- 2.3	1	-83
8	0	В	06
9	- 1. 2	9	- 0.2
10	- 3.7	10	- Z 6
Ħ	- 1.5	11	4,5
12	-0.1	IZ '	5. l
13	4-1	13	- 9.0
14	- 1.5	14	3.8
15	10.8	15	-0.4
16	11.7	16	6.6
17	- 2.7	17	- 0.9
18	0.3	18	2.8
RMS =	4.1	19	2.8
		20	1.7
		RMS = 4	•9

relationship between retraction force and displacement for the first 30 inches (67% of the radiator length). At this point the radiator fin material begins to interfer with the motion of the tubing and the force required for additional retraction increases rapidly. It is expected that some damage would occur to the fin material if the radiator were compressed far beyond the linear region.

3.6.4 Thermal Vacuum Test Results

Table 20 summarizes the test conditions and radiator performance in terms of heat rejection for the thermal vacuum test. More detailed information and analyses of the data are provided below. The heat rejection data in Table 20 shows that the radiator performance did not degrade as a result of the test. Test point 7-C for the hard tube radiator has nearly the same inlet temperature, ambient temperature, and flow rate as test point 1, but was executed at the end of the test whereas test point 1 occurred at the beginning of the test. The heat rejection for the two points is essentially the same. Also, test points 7-B, 8-A, and 8-B which show the effects of repeated deployment and retraction on radiator performance indicates no degradation in heat rejection. Similarly, test points 2 and 2-A for the soft tube radiator which were executed at the beginning and ending of the test respectively have approximately equal values of heat rejection.

Test points 6-A, 6-B, 6-C, and 6-D for the hard tube model, and test points 7-B, 6-B, and 6-C for the soft tube model give heat rejection for partially deployed radiator configurations. The results are plotted in Figures 51 and 52. The relationship between heat rejection and extent of deployment is not linear because the average radiator temperature decreases as the radiator is deployed at constant flowrate. Also the average radiator fin efficiency is a minimum when the panels are fully deployed.

Analysis of Hard Tube Model Test Results

SINDA computer models were constructed which account for all forms of thermal interactions between the various components of the engineering model and the walls of the environment simulation shroud. The computer model of the hard tube test article given in Appendix D predicts the radiator performance with great accuracy. Table 21 compares the experimental and

TABLE 20

SUMMARY OF THERMAL VACUUM TEST RESULTS

HARD TUBE RADIATOR

TEST POINT	TINCOFS	Tout (OF)	T00 (0F)	is (16/hr)	RADIATOR CONFILURATION	9 (BTU/ke)
1	94.3	37.4	- 3 (1	164.2	FULLY DEPLOYED	2410
2	946	348	-20	1.54	FULLY DEPLOYED	925
3	704	423	0	516,9	11	1047
4	160	\sim	~	-~	11	N
G-A	94.1	371	- 311	168.2	II	2397
· 6-в	941	51.8	-311	159.5	HALF DEPLOYED	1707
6-C	93.7	761	-311	1478	FULLY RETRACTED	750
6-D	937	385	-311	161.5	FULLY DEPLOYED	2229
7-B	911	217	-40	60.4	u	1039
* 8-A	911	16.9	-40	59 5	<i>II</i>	1090
8-B	914	207	-40	61.0	d	1068
7- A	605	-1042	- 311	14 2	d	, ~
7-c	93.7	37	- 311	175.0	il	2476
SOFT TUBE RADIATOR						
I-B	95.0	36.2	- 31/	63.2	FULLY DEPLOYED	1607
2	92.4	31.5	0	241	u	624
3	972	788	0	1414	11	1147
7-B	90.7	10.2	- 30	22 4	d .	773
6- B	91.1	212	-30	23,2	HALF DEPLOYED	689
6-C	90.7	52 3	-30	<i>23</i> 3	FULLY RETRACTED	3 8 9
4	159.2	44.5	0	23.2	FULLY DEPLOYED	1184
2-A	95.0	301	0	238	//	659

151

	, -							,												r	i	1	1	1		- -
		ļ				*				1,1			7.1	·		=	-	-		- - -	_	<u> </u>	-			ļ_
		Ţ		!		*			;	-,;	•			<u></u> ا				r	Ε_	- 	-	1				
1	,					,			-					 	1	-11	 	ţ -		-		† †	-,	-		(
				l		 			-	<u> </u>					~···	<u> </u>				Ţ	÷!	 		-		Ī
	80¢	0.		<u> </u>								,	<u>.</u>	-			#=	1	-4	77	1-		 	-	<u> </u>	Ė
<u> </u>						+ 1		1 1		-	<u>-</u>	Ţ	-	<u>.</u>	- r	1		* *		ļ! <u>'</u>	<u> </u>	<u> '</u>	<u> </u>	-		<u>!</u>
				<u> </u>		-	ټ ا	1	92	. d'		" 1	- 4	46	ø.	њ.	/ 	<u> </u>	11	4	<u>-</u>	ļ.,	<u> </u>	<u> </u>		╧
1		_	-					1		ī	, ,-) , -	' 	1	-F	'	11	4 T. T.	1 + 	rh	1-	٠,.	<u>.</u>	-	ļ. -		١_
1,			_		<u>,</u> ,				7.4	=	l ⁺⁻ ,	3. J.	۽ ج	F,		, , <u>.</u>	; <u>+</u> -! <u>T</u>	1 .	-7 -	, -	=	ì	_			
- - 	4			 	-	1.				i ·			#:	H.				111			7		=,	-		1
_				<u> </u>	<u>_</u> _	-		!	1		1,1,		; ; .;.		´~						-		- 1			H
					,			ī	+1 -	- <u>F</u>		- T. - T.	1	11	= ±		1 <u>-</u> 1	11	1	1	<u> </u>	-6		 		┞
			-		ļ -		4 -	ļ F	-+	7 7		F .	‡; 	= =		ijt	1	77	11.	72.3		<u>ښ</u>	<u> </u>			L
+								1		:'[':			1 1			1, ,	<u>;-,-</u>	, :	r.		-	<u> </u>	¥			
HR				-	1	_	-	ī		-, T	7	, F-			7	ĦF.	=1-	; <u>.</u>		1	-	:	=	-	-	<u> </u> -
7								,		1	1			L"4		<u> </u>		سيمي	}	 		1	-	-		+
	200	10.		ļ <u> </u>	<u> </u>	 			p	<u> </u>	7	1 !.	+ ++	t'	-	11	<u>, z, </u>	, ===	-			-	-	-	_	<u>1</u> -
7	<u> </u>			<u> </u>		-		ļ		1,-	1-1	1	1, ".	1		 	 .	- - -	<u></u> -	<u> </u>	<u> </u>	 	<u> </u>	-	1	-
8				 -		۱ ۱			- ' - ; ; ;	1 :			: :	-		;-,	[+	Ę.	<u>-</u>				'	1		1
			,	Ξ_							- '	77	7	-1	7-	-3171	-	, 		-	-	-	- 1			!
Z				 ~	-	1		11	, ,	<u> </u>	-		-,	<u>1</u>	- ئ	E		1	1 -		,			 		1
6					-	<u> </u>	,	1	<u> </u>	 	1	1-				- 1	7	! ! T ; , _	ļ		I	-	 		-	
-	ļ			; {			+	ļ,.			Z ,,	<u></u>	11					-1-		 -		 	<u> </u>	 	<u> </u>	<u>i</u>
F				<u> </u>			<u> </u>	<u>'</u>			'			:		1	-		=			<u> </u>	ļ,	ļ		; T
Ĺij.	'					ļ '		,		F ,			ή.		-						<u></u>		<u> </u>			L
				<u> </u>			7	7		7		-	+ -				.+	, -						1		ı
X	-			<u> </u>			/		-	 	,				-	-					<u> </u>					•
				<u> </u>					<u></u>	 '	<u> </u>	ļ		-						 	 	: 	<u> </u>	 		-
	100	0.		<u> </u>		<u> </u>		-		1 .			-	<u> </u>	, -		ļ				<u>!</u>	-		<u>. </u>		
H#A-					1			<u> </u>	ļ	<u> </u>	-										 	<u> </u>				
H.	1		/				<u>[</u>	-	İ	,	Ì	1		ļ		* '				<u> </u>	<u> </u>					
1	,		3												1	١				i				1	İ	1
-	·		_	! . I	-		 -	 		-			<u> </u>		,	,				<u> </u>				1		Γ
,	<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>	 	<u> </u>		<u> </u>		 	-				 	 	<u> </u>	!		i -		-
***	' ا ا			! !	ļ	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		 -	<u> </u>	<u> </u>	 	'	<u></u> -	-	_	 -	 				
	. !		<u> </u>	<u> </u>		 	<u> </u>				<u> </u>	<u>.</u>		<u> </u>	•	ļ					<u> </u>	<u> </u>		·		<u>. </u>
	1					:]	<u></u>	<u> </u>												<u> </u>	<u>.</u>		ļ 1		Ļ.
·	, -i				[<u> </u>		1]			,			ı	í	r		-	Í	 				
	 			<u></u> -		! !	_			<u> </u>	<u> </u>	 	ī	į .			<u> </u>		<u> </u>		ĺ			l i		f
	<u> </u>					'		-	-	-	 	<u> </u>	i							! :					ļ	,
	<u> </u>			1			<u> </u>	<u> </u>	 	 	 			 		-						┼-	1	-		
-	ļ !		<u> </u>		<u> </u>	· 		<u>L</u>	<u> </u>	<u> </u>	ļ	5	0	ļ	ļ 	<u> </u>			 	<u> </u>	<u> </u>	$\frac{1}{2}$	<u>00</u>	-	<u> </u>	
	' i	1	l	•	E	17	EN	1		F	D	E	L	ÞΥ	M	5 A	I	1	07)		!	<u> </u>	<u> </u>		
						· ·	<u> </u>					. •				ļ ļ				1	!			1	 	1
	†		j -	i		 	-	├ [-							 	t —	 	 1		 	 - 	•
	Fra	v_{i}	RE	, ! 5	2	H	EA	7	RE	UE	10	110	N	F	OF	F	AF	(D	7	UE	E	170	OI	ΞE		
_			ļ. <u> </u>	<u> </u>					ļ		ļ	ļ				ļ <u>.</u>						4 -			ĺ	į
•					;	l	[1	'			İ		ŀ		! !		-	<u>L</u> .	<u> </u>	j	1			L	

predicted heat rejection and outlet temperatures for cold (-311°F) and warm (-20°F) environments. The results for the cold environment agree almost exactly, and the results for the warm environment agree within what is believed to be experimental error. The small discrepancy for

TABLE 21

COMPARISON OF EXPERIMENTAL AND PREDICTED THERMAL PERFORMANCE
OF THE HARD TUBE TEST ARTICLE

TEST POINT	TIN (°F)	ŵ (LB/HR)		T _{OUT} (EXP)	T _{OUT} (PRED)		
1	96.3	164.2	-311	37.6	37.6	2410	2410
2	94.6	62.1	-20	34.8	28.6	925	1044

the warm environment is probably caused by inconsistent control or modeling of the cold walls. It is difficult to maintain the environment walls at steady uniform temperatures. At the higher ambient temperatures small variations in the coldwall temperatures have a large effect on the heat rejection from the radiator. Thus any error in modeling or maintaining the environment would be reflected in the test results. For cold ambient temperatures errors in representing the environment have less impact on the radiator performance and the predicted performance depends more on the modeling of the radiator itself. The fact that the experimental and predicted performance agrees for this case indicates that the actual radiator construction and thermal properties are near the design values.

One area of uncertainty in the construction of the hard tube radiator concerns the thermal contact between the tubes and the radiator fins. The fins are glued to the tubes in such a way that it is difficult to predict the exact value of the joint conductance. Figure 54 shows that the contact resistance acts in series with a resistance associated with convection inside the tubing and a resistance associated with radiation from the fins. The values of the series connected resistors are plotted versus the temperature at the base of the radiator fin in Figure 55. For temperatures in the range of the thermal vacuum test the contact resistance

FIGURE 54

THERMAL RESISTANCE IN THE HARD TUBE

INFLATABLE RADIATOR

$$R_1 = \frac{2}{\pi \kappa N_U} = \frac{2}{\pi (.059)(4)} = 2,696 \frac{Ft - 0F - HR}{BTU}$$

$$R_Z = \frac{2}{\eta US} = \frac{2}{(0.825)(4784)(00412)} = 0.828 \frac{Ft-0F-H/2}{BTU}$$

$$\eta = \frac{\tanh(m - \frac{5}{2})}{(m - \frac{5}{2})}$$

$$m = \frac{5}{2} = \sqrt{\frac{5^2}{4(\frac{5_1}{k_1} + \frac{5_2}{k_2})(\frac{k_1}{5_1} + \frac{2k_2}{5_2} + \frac{k_3}{10^2} + \frac{1}{4})}}$$

$$R_{3} = \frac{1}{\eta_{f} \in \sigma\left(\frac{W}{2}\right)\left(T_{g}^{2} + T_{\infty}^{2}\right)\left(T_{g} + T_{\infty}\right)}$$

is a small part of the total so that it has a relatively small effect on the heat transfer from the radiator. Figure 56 shows that if the contact resistance is four times as large as expected the heat rejection is reduced by approximately 10%. Averaged values of the contact resistance determined from thermocouple readings for test points 1 and 2 are given in Figure 57. The results which are sensitive to experimental error indicate that the actual contact resistance is less than is predicted based on a glue contact angle of 45°, as shown in Figure 54. Typical comparisons between predicted and experimental temperatures for the hard tube test article are given in Figures 58 and 59.

Additional test data for the hard tube engineering model are given in Appendix E . All of the test results indicate that the test article performed almost exactly as had been expected.

Analysis of Soft Tube Model Test Results

The SINDA computer model for the soft tube test article is given in Appendix E. Unlike the hard tube model, the soft tube radiator did not reject heat at the predicted rate. Table 22 shows that the experimental heat rejection is approximately 25% lower than predicted.

TABLE 22

COMPARISON OF EXPERIMENTAL AND PREDICTED THERMAL PERFORMANCE
OF THE SOFT TUBE TEST ARTICLE

TEST POINT	TIN TOUT (°F) (°F)	T _∞ (°F)	w(EXP) (LB/HR)	w(PRED) (LB/HR)	Q(EXP) (BTU/HR)	Q(PRED) (BTU/HR)
1-B	95 36.2	-311	63.2	86.0	1607	2219
2	92.4 31.5	0	24.1	31.2	624	781

The low thermal performance of the soft tube test article is believed to be caused by nonuniformities in the thickness of the silver conducting layer in the radiator fin. Table 23 compares the expected and measured silver layer thickness of seven samples taken from the fin stock used to construct the soft tube test article.

FIGURE 56

SENSITIVITY OF HEAT TRANSFER TO THE

JOINT CONDUCTANCE AT THE FIN-TURE INTERFACE

$$q' = \eta e \sigma \frac{W}{Z} (T_{R}^{4} - T_{\infty}^{4})$$

$$q'(R + \Delta R) = \eta e \sigma \frac{W}{Z} ((T_{B} - \Delta T_{B})^{4} - T_{\infty}^{4})$$

$$\frac{\Delta q^{1}}{q^{1}} = \frac{(T_{B} - \Delta T_{B})^{4} - T_{B}^{4}}{T_{B}^{4} - T_{\infty}^{4}}$$

$$\frac{\Delta T_{B}}{T_{F} - T_{\infty}} = \frac{\Delta R_{Z}}{R_{1} + R_{Z} + R_{S}}$$

$$\frac{\Delta q^{1}}{q^{1}} = \frac{[T_{B} - \frac{\Delta R_{Z}}{R_{1} + R_{Z} + R_{S}} (T_{F} - T_{\infty})]^{4} - T_{B}^{4}}{T_{B}^{4} - T_{\infty}^{4}}$$

$$+ 0.10$$

$$-0.10$$

$$T_{B} = 95^{\circ}F, T_{\infty} = 0^{\circ}F$$

$$T_{B} = 95^{\circ}F, T_{\infty} = -311^{\circ}F$$

EXPERIMENTAL TUBE - FIN CONTACT CONDUCTANCE

IN THE HARD TUBE INFLATABLE RADIATOR

$$R = \frac{g'}{T_{TUBE}T_{BASE}} - \frac{mc_{F}(T_{IN} - T_{out})}{L(T_{TUBE}T_{BASE})}$$

$$- K S \left(\frac{\partial T}{\partial X}\right)_{BASE} = \frac{W/2}{S} \in \sigma \left(T^{4} - T_{out}\right) dX$$

$$T_{\text{BASE}} = T_{\text{MID}} + \frac{\left(T_{\text{M}} - T_{\infty}\right)}{\frac{8 \text{KS}}{6 \text{TW}^2} - \frac{4}{3} T_{\text{M.P.}}^3} + \cdots$$

THERMO COUPle	Test	pt 2,9	'= 4.7	BTY m-Fb	TEST	Pt 1	, 9 = 1		<u>1</u> t
PAIRS	TTUBE	T _{M,P}	TBASE	·R2	Truse	TMP	TRASE	RZ	
5-6	82.7	57.8	72	2,5	84.1	41.3	G8	1. 3	
10-11	54 b	41.3	52	06	61.4	32,0	57	04	
12-13	541	390	51	0.7	5.7	26.8	50	1.1	
14-15	518	418	<i>5</i> 3	-0.4	65.0	39,5	63	.2	
15-16	51 8	418	53,5	-04	61-4	395	68	-, 3	
17-18	491	40,9	53	-08	582	348	61	6	
23-24	36.2	278	36	0.1	39.9	136	35	.4	
24-25	347	77.3	36	o Z	40.4	13.6	35	.4	
27-28	367	217	28	1,9	40.9	- 4.3	17,5	2.4	
28-29	348	21.7	28	15	39.0	-43	12.5	2,2	
31-32	32.4	25.9	34	-0.3	39,9	16.5	37	.2	
32-33	33.4	25,9	24	-0.	39.9	165	37	Z	
35-36	36.2	26.4	35	0.3	45,9	169	375	,7	
3L-37	374	26.4	35	-06	39.5	16.9	37,5	.2	
39-40	329	24.5	32.5	01	399	12.1	31	.7	
40-41	33.4	24.5	325	0.2	40.4	12 1	31	8	
••		-		0.32	"F-FI-HE /BTU			0 64	°F-

COMPARISON OF PREDICTED AND EXPERIMENTAL

TEMPERATURES FOR TEST POINT !

FIGURE 59

COMPARISON OF PREDICTED AND EXPERIMENTAL

TEMPERATURES FOR TEST POINT &

TABLE 23
SAMPLE-MEASUREMENTS OF SILVER LAYER THICKNESS
FOR THE SOFT TUBE TEST ARTICLE

	MEASURED THICKNESS	EXPECTED THICKNESS
SAMPLE NO.	(Å)	(Ă)
2604	10,000	12,500
2613	10,000	12,500
2614	5,000	12,500
2610	5,000	12,500
2617	18,000	12,500
2591	9,000	12,500
2528C	11,000	12,500

The sample thicknesses were measured with a scanning electron microscope, and were selected randomly from the seven sheets of fin stock used to construct the soft tube test article. Since the measured thicknesses are much lower than they were designed to be, the radiator would not reject heat at the expected rates. Table 24 compares the fin efficiencies that would result from the silver film thicknesses of Table 23.

TABLE 24

APPROXIMATE FIN EFFICIENCY FOR MEASURED SOFT TUBE
RADIATOR FILM THICKNESSES

FILM THICKNESS	FIN EFFICIENCY
(Å)	(%)
10,000	78
5,000	51
18,000	92
9,000	75
11,000	81

The average fin efficiency from Table 24 is 0.72. This is approximately 15% lower than the expected value of 0.85. The measured heat rejection in Table 22 is also low because the flow rate was lowered during the test to obtain the required outlet temperature. Because of the low flow, the temperatures are lower than predicted at the end of the radiator opposite to the inlet and outlet manifolds, and the emissive power of the radiator is reduced. Figure 60 compares the predicted and experimental temperatures at various locations on the panel for test point 1-B. The results show that the experimental temperatures agree with the theoretical temperatures near the inlet and outlet manifolds, but are about 15°F lower than predicted at the opposite end of the panel.

The radiator fin efficiency has the largest impact of any of the unknowns in the panel construction on heat rejection. Figures 61 and 62 show that the thermal resistance associated with radiation from the fin is much larger than the resistances from other sources. Thus it is likely that the cause of the reduced performance is reflected in this term. The two radiator fin properties which appear in R3 are the surface emissivity and the conductance of the fin material. Separate measurements made by NASA/JSC showed that the surface emissivity is actually slightly higher than expected. Therefore the thickness of the silver film is the most likely source of error.

Figures 63 and 64 compare predicted and experimental temperatures near the manifolds of the soft tube test article. The errors are not large, thus confirming that the thermal resistances are near the expected values.

The tubes of the soft tube radiator are raised so that the actual radiating area is 7.4% larger than the projected area of the panel. However, because the tubes block radiation from the fins and do not have a full view of the environment, the emissive power is not increased by this amount. Figure 62 summarizes an analysis of the non-planar surface which shows that the emitted radiation is increased by only 0.2%.

A flow instability occurred during the cold soak of the soft tube test article which has since been shown to be predictable from the viscosity versus temperature characteristics of Coolanol 15. Figure 66 shows a profile of the outlet temperatures measured during the cold soak. The figure shows

THERMAL RESISTANCE IN THE

SOFT TUBE INFLATABLE RADIATOR

$$R_1 = \frac{2}{\pi \kappa N_u} = \frac{2}{\pi (.065)(4)} = 2449 \frac{\text{Ft-°F-hr}}{\text{BTU}}$$

$$R_2 = \frac{z}{\pi o_0 u} = \frac{z}{\pi (.008442)(0.350)(6338)} = 340 \frac{\text{Ft-°F-hn}}{\text{BTu}}$$

$$h = \frac{\tanh (m \pi D / 4)}{(m \pi D / 4)}$$

$$U = \frac{1/R_3}{\frac{1}{K} \ln(R_2/R_1) + \frac{1}{K} \ln(R_3/R_2)}$$

$$R_3 = \frac{1}{\eta_{\epsilon} \in \sigma(W/2)(T_B^2 + T_{\infty}^2)(T_B + T_{\infty})}$$

FIGURE 63

COMPARISON OF EXPERIMENTAL AND PREDICTED

TEMPERATURES FOR TEST POINT 1

FIGURE 64

COMPARISON OF EXPERIMENTAL AND PREDICTED

TEMPERATURES FOR TEST POINT I

$$A/A_{p} = 1 + (\pi-2)R/W = 1 + (\pi-2)(\frac{.065}{1}) = 1.074$$

$$J_{A_{p}} = \frac{\epsilon \sigma T^{4}}{1 - \rho^{2} F_{p_{2}} F_{2-1}} \left[\left(1 - \epsilon F_{l-2} - \rho F_{l-2} F_{2-1} \right) \frac{A_{1}}{A_{p}} + \left(1 - \epsilon F_{2-1} - \rho F_{l-2} F_{2-1} \right) \frac{A_{2}}{A_{p}} \right]$$

$$F_{1-2} = 0.25$$

$$F_{2-1} = \frac{\pi (.065)}{1-2(.065)} (0.25) = 0.0587$$

$$A_1 = 0.204 A_P$$
 $A_2 = 0.870 A_P$

outlet Temperatures During Cold Soak Tube Wall

that at 10 minutes elapsed time with the flowrate at 31 lb/hr the outlet temperatures for tubes 7 and 12 had dropped below the temperatures of the remaining tubes. Eventually tubes 1 through 15 experienced uniformly low temperatures while 16 through 20 attained a uniform temperature level more than 50°F higher than the colder tubes. A study documented in Ref. (8) shows that this type of performance can be caused by a flow instability which allows the flow to stagnate in the tubes of parallel flow space radiators. Figure 67 defines the approximate limits of stable operation for Coolanol 15 computed from equations in Reference (8). For a 70°F inlet temperature flow instabilities are expected to occur when the outlet temperature drops below -50°F. Thus the operating conditions during the cold soak were well into the unstable region. Table 19 shows that tubes 9 and 13 normally have lower flows than the remaining tubes. Because of this the outlet temperatures of these tubes reached the unstable limit before the others. As the flow stagnated in tubes 7 and 13 the adjacent tubes were cooled and also entered into the unstable region. All of the tubes did not stagnate because the flow lost in the stagnated tubes accumulated in the remaining flowing tubes and kept the outlet temperature above the minimum stable limit.

The stable operating limit depends on the viscosity/temperature relationship of the transport fluid. Figure 68 compares the stability curves of three candidate flexible radiator transport fluids. The figure shows that the stable operating region is much narrower for Coolanol 15 than for the other fluids. This is a significant factor to be considered in selecting the transport fluid for future designs.

3.6.5 Computer Analysis of Engineering Model Inflatable Radiators
SINDA computer models were constructed to provide accurate
theoretical predictions of the test articles transient thermal performance.
The models account for all forms of heat transfer from the elements of the
test articles to the environment simulation walls, and contain logic to
determine the distribution of flow in the parallel passages of the radiators.
Listings of the computer routines for the two test articles and example are

لتنبا	·····	;	, ,		<u>-</u>		1		- 1				111	11.1	.,,	11.	+ -			٠,,	1. '		-11	-,+	7- 7		41]
		·-	-	1 11	7	<u>:</u>	1 - 1		<u>i </u>	• 1	1		-1	-	172-			<u>,</u>	1 1 1 1 1 1 1	1",	,	1	;.	; ;			,
,,		<u>:</u>		,		-	, ,	,	1,51	,	11.	++!'	- '	1	1		- , :			 							
-	-	•	•				-		' ; <u>-</u>		1.72	1.	! . <u>.</u>		-17-	- -1-	; ; ;			= ;	- •		: '			-	
		10	<u>^</u>		,	-	Ē	-		, ,	*	1 17	17	,7 -	' F .	1,1		.ī.,	•						-1		
-		10	<u></u>		-		=	- :-	712	i. =					-1	41 I	†									-=	==
					-		H	·				-,-	-		Ξ	-	=			137			7.	-1.		1 :	-,;
	~						:		- = = =	-1 -1	===				7	177	1=			-	1	, -			<u> </u>	1==	
-			=	- :						<u>=</u>			1		1 :	-=-1	<u> </u>				-1-		• -	-1-	<u> </u>		
==:			-	1-1	-:				1:	===	::=				7	3 <u>=</u>	#15.1		<u></u>						==	172	
-		-	-	-					7 3	==		===						===			; <u> </u>	===		<u></u>	==	===	===
F	To	70	F)	-	= -			==-	1.35		===		7-17			12			,	1-1-	'aΕ:			- 1		===	
-	0	<u>ut </u>		==				-	 	====		===				=-	=			75.		===	- 1			===	ΞΞ
	7		-=-		-			=			==				. =	!		==:			 		= =				
	<u> </u>		-	:	===					- ==																	
	<u> </u>) -	- - -	<u>.:</u>	<u> </u>	!-=== ===	ST	AB	1.F	- 7	PE	R	F.T	701							===				==	
			<u></u>			i==																	E.	==			
			===						-												==			_==	= .=	===	
==	-==	!	<u> </u>	=	-	==	- ;				===											==		===	1		
	E	==	<u> ==</u>		==-				_ =												= -		<u> </u>				
==	Ë		=	===	<u></u> -	-		Ħ						==		===	Œ	匤	<u> </u>				=	<u> </u>			
		==	50	三								 -					+ -	سيتأ	<u> </u>	=	罩	亖					
	; 		50-	-						=			三	E	EF			-3-		-=-		==	12				
	1											===	1===			===								≣			
			1==	1	<u> </u> -			==	-		F							-									
-=-		E	=	=	!	==	丰																	===			
		<u> </u>	L	= -	===	==	 -				1					宣	뮫						=	==			
	 		ρ	==	===	=			~ /		1	₽₽	量	三	==		#=		==			=	===		==		
= ==	T	<u> </u>		= =			 	7	-	==	-	= ,			AB	-	1=-) P (A -		NI.	<u></u>		旨	===	崖
	/- 1- . =	ļ	 	-			 	/_			 '-			الم 			1-5	/			ļ	_ ==		==	=		=
				1 3	= :	 = = = =		/ <u>. </u>	7 -						-		┼┋		=		1	-					
۱ <u>ـ</u> ـــــــــــــــــــــــــــــــــــ		= " <u> </u>	-	<u> -</u>	!		/_	<u> -</u>	·	 		1	 	<u> </u>	 	<u> </u>	<u> = </u>		 - -		-						 =
1	1		- - -		-	<u> </u>	<u> </u>	==		<u> = </u>	<u> </u>	1:			<u> </u>	<u> </u>	Į-F.	[[-=		1= -	=-	-:	=	1 =	==	<u> </u>
	Ţ -						1	 	[= .	=	1				<u> -</u>	ļ., -	<u> -</u> '	<u> </u>	<u> </u>	-	-		<u> </u> -		<u> </u> =	<u> </u>	
L		<u>-</u>	50		 - -	 	 	-	- <u>-</u>				1				, ,	===	,		-	1-7	i i		-	[:	-
-	1	-	1	1-	 	 	 	 	 		17-	-	T	1	 -		-	=	<u> </u>	-	-	-		-		-	-:
<u> </u>	·	-	<u> </u>	 	 			-	-	<u> </u>	1	 	╁	 		ļ.,	+	-			 	 	1	 ' -	:	-	F
	1-	-	ļ	_					‡		+	= '==	<u> </u>	 ==	1	=======================================			!-=-	4- 7	 			 -	 	 - -	#==
-	I		1_					<u> </u>			<u> </u>	- <u>"</u> -	3 1	<u> </u>		11.	<u> </u>	+	:	, ,	<u> </u>				 		1
	ì		200			1-	1	-	-	11.5	ļ: [7	-		1.		'			-	<u> </u>			1	1 7	=_	<u> </u>
	1	<u> </u>	• • • • • • • • • • • • • • • • • • •	F I			;		1	-	-	Ţ.	,	<u> </u>		i	•	Ι.			-		_			.	
-	-	 -	ļ	-20			1	1	00	1		· ; ·	1,	()	i_	1/2	۰۰۱	-	00-	1	-		1	00	,		- 3
-				-	1.1,	17		 -,-	+	-7	+-	-	+	╁	77 1 N	10	-)	-	 	 	+	 	\vdash	 	j 		1
11	1.1-	1	! .		41'	1:	11.	111	 	1::1-	 -	1.		1:1,,	1.	ι,	d'ii-	<u> ''</u>	 		 -	 	 		+	-	
		Ĺ	1	AP	PRO	<u> </u>	[M.	TI	<u> </u>	57	AB	11	ITY	7.	67 .CU	RI	E_	FO	R	100	001	AL	101	-1	5	 	1. 7.
Ţ.,	11,	T .		Ţ •**-'	, _ ,		,	Ţ, ,	-	11	,,,		11'					į ,,				<u> </u>	<u> </u>	<u> '</u> _		<u> </u> '	1,
	111	117.7	100	1.1	 	†	11.		<u> </u>	1111	11,11	1.13	111	, ,		1	1111	1	11:1		1137	ŢŢ	ļ.,,	T	;	1	ı i
	1 ,44	1111	'11' '	'1''	11	l	411.	1	<u> 1111.</u>	1111	111	اسل	1141	نسبل	111		1411	<u> </u>	سلسل	111.		1	1	1	1	<u> </u>	4

given in Appendices D and E. Details of the models are summarized below.

Hard Tube Test Article Computer Model

Because of the way that the manifolds and return lines are designed for the hard tube test article, there is symmetry of flow and temperature so that it is necessary to analyze only one fourth of the radiator. Thus the computer model contains only six tubes as shown in Figure 69.

Each of the tubes was subdivided into twelve nodes and the fins connecting each pair of nodes on parallel tubes were divided into five nodes as shown in Figure 70. The numbering sequence for the fluid, tube and fin nodes is shown in Figure 71. Additional nodes defined for manifolds and support rings are identified in Appendix D. Radiation exchange between elements of the radiator which view each other across the interior of the cylindrical cavity is accounted for by defining three surfaces with averaged properties of the nodes contained by the surface, as shown in Figure 72, and employing SINDA subroutine RADIR. Conduction resistances computed from equations such as are outlined in Figure 54 are given in Appendix D.

Calculations showed that the pressure drop in the manifolds is less than 1% of the pressure drop in the small diameter radiator tubes. Therefore it was possible to simplify the flow model as shown in Figure 72 in the computer simulation. The flow in tube 6 is double the sum of the flows in tubes 1-5 because of symmetry built into the SINDA model.

Soft Tube Test Article Computer Model

The computer simulation of the soft tube test article also takes advantage of symmetry, and does not account for the effects of the manifold on flow distribution. This makes it possible to reduce the number of tubes in the computer model without sacrificing accuracy in the predictions. The model contains five tubes as shown in Figure 73 which represent five tubes on the test article located at the outside edge adjacent to the inflation tubing. Hand analyses showed that edge effects are not significant for the fifth tube so that no loss in accuracy results from assuming that the interior tubes are identical to the fifth tube of the computer model.

FIGURE 69 SYMMETRY IN THE HARD TUBE TEST ARTICLE

$$G(1055) = \eta_0 h_c \left(\frac{\partial D_0}{4}\right) \Delta L$$

$$G(1355) = Kt \Delta L/\Delta X$$

$$G(1455) = Kt \Delta L/\Delta X$$

$$G(1455) = Kt \Delta L/\Delta X$$

$$G(1555) = \eta_0 h_c \left(\frac{\partial P_0}{4}\right) \Delta L$$

FIGURE 70 COMPUTER MODEL OF HARD TUBE TEST ARTICLE

FIGURE 71 NODE IDENTIFICATION IN THE HARD TUBE COMPUTER MODEL

FIGURE 72 RADIATING SURFACE IDENTIFICATION

IN THE HARD TUBE COMPUTER MODEL

FIGURE 73 FLOW ROUTING IN THE SOFT TUBE COMPUTER MODEL

Figure 74 identifies the nodes representing the inflation tubing, the outside transport tube, and the deployment drum. The figure shows that each transport tube is divided into 16 nodes. The fins connecting each pair of nodes on adjacent tubes are divided into five nodes as shown in Figure 75. The numbering sequence for the fluid, tube and fin nodes is shown in Figure 76. Radiation exchange between nodes on the radiator and the walls of the environment simulation chamber is accounted for by defining isothermal surfaces as shown in Figure 77 and employing subroutine RADIR of SINDA. Conduction resistances computed from equations such as are outlined in Figure 61 are given in Appendix E.

3.7 Computer Models of Flight Article Inflatable Radiators

SINDA computer models of the full scale system described in Figures 28 and 29 were developed to predict performance data for typical space environments. The computer models are similar to those developed for the engineering models except that dimensions, conductances, view factors, etc. have been changed to account for differences in size. Listings of the computer models and example runs with typical flowrates and inlet temperatures are given in Appendices F and G. Predicted performance data from the two models is given in Table 25.

TABLE 25
PREDICTED PERFORMANCE OF FULL SCALE
INFLATABLE RADIATORS

TYPE OF RADIATOR	т _∞ (°F)	T _{IN}	TOUT (°F)	ŵ (LB/HR)	Q (BTU/HR)	Q (KW)
Hard Tube	0	95	38.6	1107	15,546	4.55
	-310	95	34	2970	45,111	13.21
Soft Tube	0	95	33	378	10,077	2.95
(Three Panels)	*-310	95	35	1152	29,722	8.71

^{*} Analysis does not consider thermal interactions between panels

FIGURE 74 COMPUTER MODEL OF INFLATION TUBING AND DEPLOYMENT DRUM

FIGURE 75 COMPUTER MODEL OF SOFT TUBE TEST ARTICLE

FIGURE 76 NODE IDENTIFICATION IN THE SOFT TUBE COMPUTER MODEL

FIGURE 77 RADIATING SURFACE IDENTIFICATION IN THE SOFT TUBE COMPUTER MODEL

The results show that the hard tube model rejects more than had been estimated from earlier hand analysis (4 Kw at 0°F environment). main difference between the hand analysis and the computer analysis is that the latter accounts for radiation emitted from the interior surfaces of the radiator which is transmitted through the fin material at other locations. This increases the heat rejection by about 10% as indicated in Table 25. The computer analysis for the soft tube prototype predicts that the heat rejection will be less than 4 Kw with a O'F environment. The low performance results from cross conduction between the cold transport fluid in the return tubing and the warmer fluid in the adjacent outgoing tubing. Figure 78 shows that this causes the average fluid temperature to be low in sections of the radiator away from the manifolds and thus reduces the radiating capacity of the panel. Without regeneration the heat rejection is approximately what had been expected for Coolanol 15. Additional analyses are needed to study the effects of cross conduction and to evaluate possible alternate flow routing for increasing the performance of the soft tube radiator system.

FIGURE '18 EFFECT OF CROSS CONDUCTION BETWEEN ADJACENT
TUBES IN THE SOFT TUBE RADIATOR

4.0 TECHNOLOGY ASSESSMENT

Based on test results and experience gained during the inflatable radiator development program, the following assessment of flexible deployable/retractable radiator technology is given.

- 1) The soft tube radiator concept yields lower system weights and is much easier to fabricate than the hard tube concept. Therefore soft tube designs should be given first priority in future work on full scale prototypes.
- 2) Silver wire mesh/Teflon has more uniform and predictable thermal properties than thick silver backed Teflon and should be used as the fin material in future designs. Additional work is needed to develop methods for attaching tubing to the fin material and for constructing continuous strips of the material with the tubing bonded to the interior of the fin. Contacts with custom laminating vendors have established that it is probably possible with current technology to fusion bond silver mesh and Teflon on a rollto-roll basis in four foot widths. The tubes could then be fusion bonded between the silver mesh/Teflon sheet and an opposing sheet of Teflon on a roll-to-roll basis in 6.5" widths. The risk involved in the second step are somewhat higher than is the first because cooling must be supplied locally at the tubes to prevent them from collapsing during the bonding process. Because of this it is recommended that in future work only the first step (fusion bonding of silver mesh and Teflon) be performed on a roll-to-roll basis. Thus tubing would then be bonded to the interior of the radiator with adhesive as shown in Figure 70. The second step of the process would then be the same as was used in constructing the soft tube test article and would have a high probability In this case each half of the laminate would be of success. coated with 1200 A of vapor deposited silver to protect the adhesive and tubing from ultraviolet radiation.

FIGURE 79 PROPOSED RADIATOR FIN CONSTRUCTION

Table 26 compares the predicted properties of the proposed fin laminate to those of the fin materials of the engineering model radiators. The data shows that the proposed laminate will combine desirable features from both of the previous designs but has a slight weight disadvantage. Overall, the effect on thermal performance is slightly positive and a significant increase in reliability is achieved.

TABLE 26 PROPERTIES OF RADIATOR FIN MATERIALS

FIN CONSTRUCTION	THERMAL CONDUCTANCE (BTU/HR-FT-°F)	AVERAGE EMISSIVITY	WEIGHT (LB/FT ²)
Thick Sılver Backed Teflon	.00080028	0.67	.069
Silver Wire Mesh/Teflon	.0040	0.67	.072
Proposed Hybrid Design	.0042	0.71	.107

3) Polyurethane tubing should be selected as the baseline for designing the full scale radiator. However, additional tests and studies should be made to determine whether Teflon tubing can be used. Teflon tubing would permit the use of Freon 21 as the transport fluid and would extend the operating temperature range. Table 27 compares the tubing dimensions and

TABLE 27 COMPARISON OF ALTERNATE RADIATOR CONSTRUCTIONS

	FLUID		TUBING	LIMITS	SYSTEM VARIABLES						
SYSTEM	MIN (°F)	TMAX (°F)	T _{MIN} (°F)	TMAX (°F)	TUBE I.D.(IN.)	TUBE O.D.(IN.)	w (LB/HR)	Re NO.	ΔP (PSI)	RELATIVE STIFFNESS	RELATIVE AREA
Polyurethane/ Coolanol 15	-20(a)	185(ъ)	-100(d)	225	.090	.205(f)	529	358	7.3	1.0	1.0
FEP/Freon 21	-140(a)	350(c)	-140(d)	225(e)	.069	.143(f)	903	4278	11.2	1.5 - 2.0	0.94

- (a) Limited By Flow Instabilities
- (b) Fire Point of Fluid
- (c) Critical Point
- (d) Limited by Stiffness of Tubing
- (e) Limited by Cold Flow of Tubing
- (f) 30-Day Meteoroid Life

- operating temperature ranges possible with polyurethane and Teflon for 30-day, 90% meteoroid survivability designs. Future studies should consider the impact of the tubing on the deployment mechanism and weight penalties required to accommodate the stiffness of tubing versus advantage of extended operating range.
- 4) Coolanol 15 has the most desirable transport properties of the fluids which are compatible with polyurethane. This fluid would permit stable operation in the temperature range from -20°F to 185°F and is only slightly inferior to Freon 21 in thermal conductance and pumping power requirements.
- 5) Additional work is needed to develop a deployment mechanism for the full scale soft tube inflatable radiator. Engineering model tests have demonstrated that inflation tubes will overcome the stiffness of the soft tube radiator construction, but did not demonstrate retraction or deployment against a spring force. Also fabrication techniques have not been demonstrated for obtaining sufficient straightness in inflation tubing to deploy a full scale radiator. Additional trade studies should consider alternate deployment concepts and account for weight penalties associated with each mechanism versus probability of success. Space deployable booms should be considered as an alternative to inflation tubing.
- 6) Cross conduction between outgoing and return tubes of the soft tube radiator apparently has a larger effect on radiator performance than had been initially estimated. Therefore, additional analyses are needed to study the effects of regeneration in the soft tube concept and to investigate alternate flow routing if required. Radiation interchange between adjacent radiators of the three panel system should be considered in establishing the temperature profiles on various sections of the radiator and in evaluating alternate flow routes. Also, a reoptimization of tube spacing with the proposed fin materials and flow routing will be required to minimize the overall dimensions of the system.

5.0 REFERENCES

- "Modular Radiator System Development for Shuttle and Advanced Spacecraft", J. B. Dietz, M. L. Fleming, R. J. Tufte and D. W. Morris, ASME Paper 72 ENAV-34, May 1972.
- "Development of An Inflatable Radiator System, Concepts Briefing",Vought Presentation at NASA/JSC, November 1973.
- (3) "Development of An Inflatable Radiator System, Progress Report No. 4," Vought Report No. T213-RP-04, August 1974.
- (4) "Inflatable Radiator System Materials Study", Vought Technical Proposal, Report No. 2-53002/4R-51101, December 1974.
- (5) "Inflatable Radiator Quick Look Test Report", Vought Report
 No. T213-RP-07, August 1975.
- (6) "Heat Transfer Element Tests of Soft Tube Inflatable Radiator System", Vought TR No. T-213-TR03, September 1974.
- (7) "Heat Transfer Element Tests of Hard Tube Inflatable Radiator System", Vought TR No. T-213-TR06, September 1974.
- (8) "Flow Instabilities in Spacecraft Radiators", Vought Report No. T169-56, November 1974.
- (9) "Thermal Control System Component Weight and Volume Estimates", Vought Memorándum 2-52200/70IM-116, October 1970.
- (10) "Development of An Inflatable Radiator System, Status Briefing", Vought Presentation at NASA/JSC, June 1974.
- (11) "Basic Subsystem Module Space Radiator Study", Vought Report No. 00.977, August 1967.
- (12) Private Communication, R. W. Froberg, Pfizer Chemical Co., Bethlehem, Pa., 1973.
- (13) "Nitinol Characterization Study", F. J. Stimler et.al., NASA CR-1433, 1969.
- (14) Private Communication, C. K. Nicholson, Plastics Dept., DuPont Co., Wilmington, Del., 1973.
- "Suitability of Metalized FEP Teflon as A Spacecraft Thermal Control Surface", James B. Heaney, NASA/Goddard, ASME Environmental Control Conference, July 1971.

References (Cont'd)

- (16) "Design Feasibility of Sterile Insertion Techniques",J. C. Arnett, et.al., NASA Contract NASW-1621, 1967.
- (17) Private Communication, H. W. Himbert, Fluoro-Plastics Inc., Philadelphia, Pa., 1973.
- (18) "Specification for Orbiter Freon Coolant Loop", North American Rockwell Procurement Specification MC250-0001, 4 April 1973.
- "Space Station Prototype ETC/LSS Radiator and Solar Absorber Subsystems Final Preliminary Design Report", Vought Report No. 00.1380, 4 December 1970.
- (20) "Modular Space Station Phase B Extension Preliminary Systems Design Vol. VI, Trades and Analyses", DRL No. MSC T-575 Line Item 68, North American Rockwell, January 1972.
- (21) "Sortie Lab Program Review", NASA-MSFC, 16 November 1972.

APPENDIX A. PROPERTIES OF PLASTIC AND ELASTOMERIC MATERIALS $^{\underline{1}}$

Data from "1975 Materials Selector", Issue Volume 80, No. 4, Materials Engineering, Reinhold Publishing Co., Inc., Connecticut, and "Engineering Guide to the DuPont Elastomers", E. I. DuPont de Nemours and Co., Inc., Delaware.

इ	The second of th	Land of the same o
	PSI	(Kg./Cm.²)
-	1 000 000— GLASS-REINFORCED_ POLYPROPYLENE 800 000	(70 300) (56 240)
	POLYACETALS 410 000-	(28 623)
le de symmetrischer de	POLYPROPYLENE 200 000 NYLON 66 175 000	(14 969) (12 302)
and the second s	FLUCROCARBON RESINS 100,000 FLEXIBLE NYLON 75,000	(7 030) (5 272)
Andread Andrea (Andrea	55D POLYETHER URETHANE RUBBER 20 000	— 50 000 (3 515) 63D HYTREL —30 000 (2 109) 55D HYTREL (1 405)
il de appendix de la companya de la	EVA COPOLYMERS 10 000 —	(703)
copy of purpose plane deservable.	90A POŁ YETHER URETHANE RUBBER 6,000	7 000 (442) 92A HYTREL (422)
egenetic in the control of the contr		
Commando e e e e e e e e e e e e e e e e e e e		
Flexural Modulus	/OA PUBBER ShOE (IEEL 1 000	(70 3)

comparative properties

of the Du Pont Elastomers and natural rubber

Properties	Natural Rubber	ADIPRENE polyurethane	HYPALON chloro sulfonated polyethylene		HYTREL polyester elastomer		NORDEL ethylene propylene diene polymer	Neoprene chloroprene	VITON co polymer of vinylidene fluoride and hexafluoro propylene
HARDNESS RANGE (durometer A & D)	30 90A	60 99 + A (up to 80 D)	40 95A	92A	55D	63D	40 90A	40 95A	60 95A
TENSILE STRENGTH (psi) Pure gum	Over 3000	Over 4000	Over 2500	5900	6400	5800		Over 3000	Over 2000
Black loaded stocks	Over 3000		Over 3000			_	Over 3000	Over 3000	Over 2000
SPECIFIC GRAVITY (Base Material)	0 93	1 06	1 12 1 28	1 17	1 20	1 22	0 86	1 23	1 85
VULCANIZING PROPERTIES	Excellent	Excellent	Excellent	Un	necessary to vo	ilcanize	Excellent	Excellent	Good
ADHESION TO METALS	Excellent	Excellent	Excellent	t Excel Excel Excel		Good to Excel	Excellent	Good to Excel	
ADHESION TO FABRICS	Excellent	Excellent	Good	Good	Good	Good	Good	Excellent	Good to Excel
TEAR RESISTANCE	Good	Excellent	Fair	Excel	Outstng	Outstanding	Good	Good	Fair
ABRASION RESISTANCE	Fxcellent	Outstanding	Excellent	Outstng	Very Outstng	Very Outstanding	Excellent	Excellent	Good
COMPRESSION SET	Good	Fair	Fair	Fair	Fair	Poor	Good	Fair to Good	Fair to Good
REBOUND Cold	Excellent	Poor at V L. temp	Good	Very Good	Good	Fair	Very Good	Very Good	Good
Het	Excellent	Good at R T	Good	Excel	Very Good	Good	Very Good	Very Good	Excellent
DIELECTRIC STRENGTH	Excellent	Excellent	Excellent	Fair to Good	Fair to Good	Fair to Good	Excellent	Good	Good
ELECTRICAL INSULATION	Good to Excellent	Fair to Good	Good	Fair to Good	Fair to Good	Fair to Good	Excellent	Fair to Good	Fair to Good
PERMEABILITY TO GASES	Fair	Fair	Low to V L	Fair	Fair	Fair	—— Fair	Low	Very low
ACID RESISTANCE		_		_	_	_			
Dilute	Fair to Good	Fair	Excellent	Fair	Fair	Fair	Excellent	Excellent	Excellent
Concentrated	Fair to Good	Poor	Very Good	Poor	Poor	Poor	Excellent	Good	Excellent
SOLVENT RESISTANCE Aliphatic hydrocarbons	Poor	Excellent	Good	Excei	Excei	Excel	Poor	Good	Excellent
Aromatic hydrocarbons	Poor	Fair to Good	Fair	Good	Good	Good	Poor	Fair	Excellent
Oxygenated (ketones, etc.)	Fair to Good	Poor	Poor	Fair	Good	Good	Good	Poor	Poor
Lacquer solvents	Poor	Poor	Poor	Fair	Fair to Good	Good	Poor	Poor	Poor
RESISTANCE TO Swelling in lubricating oil	Poor/	Excellent	Good to Excel	Good	Excel	Excel	Poor	Good	Excellent
Oil and gasoline	Poor	Excellent	Good	Very Good	Excel	Excel	Poor	Good	Excellent
Animal and vegetable oils	Poor to Good	Excellent	Good	Very Good	Excei	Excel	Good	Good	Excellent
Water absorption	Very Good	Good at R T Poor at 212° F	Very Good	Very Good up to 212° F	Very Good up to 212° F	Very Good up to 212° F	Very Good	Good	Very Good
Oxidation	Good	Excellent	Excellent	Excel	Exce!	Excel	Excellent	Excellent	Outstanding
Ozone	Fair	Excellent	Outstanding	Excel	Excel	Excel	Outstanding	Excellent	Outstanding
Sunlight aging	Poor	Good	Outstanding	Very Good	Very Good	Very Good	Outstanding	Very Good	Very Good
Heat aging	Good	Good	Excellent	Good	Excel	Excel	Excellent	Excellent	Outstanding
Flame	Poor	Fair	Good	Will	melt but can b flame retarda		Poor	Good	Good
Heat	Good	Good	Excellent	Very Good	Excel	Excel	Excellent	Very Good	Outstanding
Cold	Excellent	Excellent	Good	Excei	Excel	Excel	Excellent	Good	Good

	parison of				ne wit	:h nat	ural a	and syn	thetic	rubbers
	" H1-TUFF 50				1					
う ⊤€	HENS AND CO	,	Massachu Bunas	〜∈ でて 〜 BUTYL	NITRILE (BUNA N) butadiene	SILICONE polysiloxane	NEOPRENE	VITON co-polymer of vinylidene fluoride and	HYPALON chlorosulfonated	Hı-TUFF
PROPER	RTIES	RUBBER	butadiene styrene	isobutylene isoprene	acrylonitrile	polymer	chloroprena	hexafluoropropylene		polyurethane
TENSILE STRENGTH	Pure gum	Over 3000	Below 1000	Over 1500	Below 1000	Below 1500	Over 3000	Over 2000	Over 2500	5000-8500
(psi)	Black loaded stocks	Over 3000	Over 2000	Over 2000	Over 2000		Over 3000	Over 2000	Over 3000	50 99+
	RANGE (durometer A)	30 90	40 90	40 75	40 95	40 85	40 95	60 95	40 95	(up to 75 durometer D)
SPECIFIC GI	RAVITY (Base Material)	0 93	0 94	0 92	1 00		1 23	1 85	1 12 1 28	1 10 to 1 24
VULCANIZIN	IG PROPERTIES	Excellent	Excellent	Good	Excellent		Excellent	Good	Excellent	Excellent
ADHESION 1	TO METALS	Excellent	Excellent	Good	Excellent		Excellent	Good to excellent	Excellent	Excellent
ADHESION .	TO FABRICS	Excellent	Good	Good	Good		Excellent	Good to excellent	Good	Excellent
TEAR RESIS	TANCE	Good	Fair	Good	Fair	Poor	Good	Fair	Fair	Outstanding
ABRASION I	RESISTANCE	Excellent	Good to excellent	Good	Good	Poor	Excellent	Good	Excellent	Outstanding
COMPRESSION	ON SET	Good	Good	Fair	Good	Fair	Fair to good	Very good	Fair	Good
REBOUND	Cold	Excellent	Good	Bad	Good	Excellent	Very good	Good	Good	Fair at low temp
REBUUND	Hot	Excellent	Good	Very good	Good	Excellent	Very good	Excellent	Good	Good at room temp
DIELECTRIC	STRENGTH	Excellent	Excellent	Excellent	Poor	Good	Good	Good	Excellent	Excellent
ELECTRICAL	. INSULATION	Good to excellent	Good to excellent	Good to excellent	Poor	Excellent	Fair to good	Fair to good	Good	Good
PERMEABILI	TY TO GASES	Fair	Fair	Very low	Fair	Fair	Low	Very low	Low to very low	Fair Good
	Dilute	Fair to good	Fair to good	Excellent	Good	Excellent	Excellent	Excellent	Excellent	Fair Good
ACID RESISTANCE	Concentrated	Fair to good	Fair to good	Excellent	Good	Fair	Good	Excellent	Very good	Poor
	Aliphatic hydrocarbons	Poor	Poor	Poor	Excellent	Poor	Good	Excellent	Good	Excellent
SOLVENT	Aromatic hydrocarbons	Poor	Poor	Poor	Good	Poor	Fair	Excellent	⁾ Fair	Fair to good
	Oxygenated (kctones, etc.)	Good	Good	Good	Poor	Fair	Poor	Poor	Poor	Poor
	Lacquer solvents	Poor	Poor	Popr	Fair	Poor	Poor	Poor	Poor	Poor
	Swelling in lubricating oil	Poor	Poor	Poor	Very good	Fair	Good	Excellent	Good to excellent	Excellent
	Oil and gasoline	Poor	Poor	Poor	Excellent	Fair	Good	Excellent	Good	Excellent
	Animal and vegetable oils	Poor to good	Poor to good	Excellent	Excellent	Fair	Good	Excellent	Good	Excellent
	Water absorption	Very good	Good to excellent	Very good	Fair to good	Good	Good	Very good	Very good	Good at room temp Fair at 175°F
	Oxidation	Good	Good	Excellent	Good	Excellent	Excellent	Outstanding	Excellent	Outstanding
RESISTANCE		Fair	Fair	Excellent	Fair	Excellent	Excellent	Outstanding	Outstanding	Outstanding
.0	Sunlight aging	Poor	Poor	Very good	Poor	Excellent	Very good	Very good	Outstanding	Excellent
	Heat aging	Good	Very good	Excellent	£xcellent	Outstanding	Excellent	Outstanding	Excellent	Good
	Flame	Poor	Poor	Poor	Poor	Fair	Good	Good	Good	Good
	Hea+	Good	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Good
	Cold	Excellent	Excellent	Good	Good	Excellent	Good	Good	Good	Excellent
		Excellent	LACGIGIT	4004	1 4504	LACORETT		L	1	

chemical resistance

of the Du Pont elastomers

Du Pont elastomers are used widely and successfully in contact with a broad variety of chemicals. To assist engineers in selecting the appropriate elastomer for the particular environment, the accompanying tabulation has been prepared. We emphasize that it should be used as a guide only. The tabulation is based on laboratory tests and records of actual service performance. But an elastomer's degree of compatibility with a particular fluid also depends on such variables as temperature, aeration, velocity of flow, duration of exposure, stability of the fluid, degree of contact, etc. Therefore, it is always advisable to test the material under actual service conditions before specification. If this is not practical, tests should be devised that simulate service conditions as closely as possible.

Acetaldehyde G C — C A Acetic acid 20% B A A A A Acetic acid, 30% C A A A A	
	C
Acetic acid 30% C A A A	C
	С
Acetic acid glacial C AB A C B	C
Acetic acid glacial B(100°F)	-
Acelic anhydride T A T A A	С
Acetone C B B A	С
Acetylene – 8 A B A	A
Aluminum chtoride solutions T A T A A	Α
Aluminum sulfate solutions A A(250 F) T A(158°F) A	A
Ammonia, anhydrous T B — A T	C
Ammonium chloride solutions A A A A A	A
Ammonium hydroxide solutions A A(200°F) T A(158 F) A	A
Ammonium sulfate solutions A A(200°F) A A(158°F) A	A
Amyl acetate C C B C A	
Amyl alcohol T A(200°F) A A(158°F) A	A(212°F)
Anline C B C C A	A B
Appline – C(100 F) – – –	B(158 F)
Aniline	C(300-F)
ASTM oil #1 A(158 F) A A(300°F) A C	A(300 F)
ASTM 011 #23 B(158 F) B(156 F) A(300 F) B(158°F) C	A(350°F)
ASTM reference fuel A A A A(158 F) A C	A(030 17)
ASTM reference fuel B B C A(158 F) C C	
ASTM reference fuel C C C A C C	<u>^</u>
ASTM reference fuel C B(158°F)	A(258 F
	A(400 F)
Asphalt — 8 T B X Barium hydroxide	A(400 F)
solutions A A(200°F) T A(158°F) A	A
Beer A A A A	A
Benzaldehyde – C – C AB	С
Benzene C C B C C	8(158 F)
Benzoyl chloride T C - C C	8
Borax solutions A A(200 F) A A(158 F) A	A
Boric acid solutions A A(200 F) A A(158 F) A	A
Bromine anhydrous liquid X B X C C	A(212°F)
Butane A A A B	A
Butyl acetate C C B C B	С
Butyraldehyde T BC - BC B	C
Butyric acid - BC T C X	ī
	A
Calcium bisulfite solutions A A(200 F) - A(158 F) T	A
Calcium bisultite solutions A A(200 F) — A(158 F) T Calcium chloride solutions A A A A A A	
	A
Calcium chloride solutions A A A A A Calcium hydroxide	A
Calcium chloride solutions A A A A A Calcium hydroxide solutions A A(200°F) T A(158 F) A	
Calcium chloride solutions A A A A A Calcium hydroxide solutions A A(200°F) T A(158 F) A Calcium hypochlorite 5% X A A B A	A
Calcium chloride solutions A A A A A Calcium hydroxide solutions A A(200°F) T A(158 F) A Calcium hypochlorite 5% X A A B A Calcium hypochlorite 20% C A(200°F) - B A	A 8(158 F)

Chemical	ADIPREXE	HYPALON	HYTREL	Neoprens	NGROEL	KITON
Carbon tetrachloride	C	С	8	С	C	A(158°F)
Castor oil	A	A(158°F)	8	A(158°F)	В	Α
Chlorine gas dry	×	B	X	В	A	A(212°F)
Chiorine gas, wet	С	В	Х	c	В	A
Chloroacetic acid	X	A	×	A	A	c
Chlorobenzene	X	Х	Х	X	Х	Α
Chloroform	C	С	С	c	С	A
Chlorosulfonic acid	C	С	С	С	С	С
Chromic acid, 10 50%	С	A(158°F)	λ	С	Ç	Α
Citric acid solutions	Α	A	Α	Ā	A	A
Copper chloride solutions	A	A	Α	Α	A	Α
Copper sulfate solutions	A	A	A	Α	A	Α
Cottonseed oil	Ā	A	Α	A	AB	A(300°F)
Creosate all	T			С	С	A(212°F)
Cyclohexane	A		Α	c	C	A
Dibutyl phthalate	C(158°F)			C	A	B
Diethyl sebacate	C	8	A	c	В	
Dioctyl phthalate	C	c	Α	c	В	В
DOWTHERM A	В	8		В		A(212°F)
DOWTHERM A					<u>-</u>	5(400 F)
Epichlorohydrin		T	X		8	C(122 F)
Ethyl acelate	С	Ċ	B	С		C C
Ethyl acetate					B(158°F)	<u>-</u> -
Elhyi alcohol	С	A(200 F)	Α	A(158 F)	A A	A
Ethyl chloride		C C	- c	C C	В	
Ethyl ether		 _ c		c	- c	- B
Ethylene dichloride	C(120°F)	C(120 F)	C	C(120 F)	B(120 F)	A B(120°F
Ethylene glycol	8	A(200°F)	_ _ _	A(158 F)	A A	A(250 F)
Ethylene oxide		X X		X X	- X	C(158°F)
Exxon 2380 turbo oil					^_	0(100 1)
(lubricant)			T	_	x	A(392 F)
Ferric chloride solutions	A	A(200°F)	T	Α	A	A
Fluosificio acid	T	A(250°F)	Т	A(158 F)	Ť	T
Formaldehyde, 40%	С	Α	В	Α	Α	A
Formaldehyde, 40%		C(158°F)		C(158 F)		
Formic acid	С	A	В	A	Α	C(158°F)
FREON*-11	В	Α.	Т Т	ΑB	C	8
FREON 11	B(130°F)	T(130 F)		B(130 F)		T(130°F)
FREON-12	A	A	ī	A	8	AB
FREON-12	A(130 F)	A(130 F)		A(130 F)		B(130°F)
FREON 22	C	Ā		A	С	C
FREON 22	C(130 F)	A(130 F)		A(130°F)		X(130°F)
FREON 113	Α	Α	Α	Α	С	A
FREON 113	T(130°F)	A(130 F)	A(130 F)	A(130 F)		T(130°F)
FREON 114	T	A	T	A	c	A
FREON-114	T(130°F)	T(130°F)		T(130°F)		
Furfural	С	В		В	A	C(158 F)
Fyrquel 220						
(hydraulic fluid)			T			A(212 F)
Gasoline	<u>B</u>	8	A	В	BC	<u> </u>
Glue	A	A(200 F)	Α	A(158°F)	A	Α

^{*}Freon is a registered trademark of E. I. du Pont de Nemours & Co. (Inc.)

VITON	Chemical
A(250 F)	Picric Acid
A	Polassium dichromate solutions
A	Potassium hydroxide solutions
A(230 F)	Pydraul 312C
A(158 F)	Pyridine
B(230 F)	QFI 2023 (silicone brake fluid)
Α	SAE #10 oil
11010 51	

MORDEL

c

Α

Hydrochloric acid 20%	-	A(158 F)	-	_		A(230 F)
Hydrochloric acid, 37%	С	A(122 F)	С	Α	Α	A(158 F)
Hydrochloric acid 37%	-	B(158 F)		. –	-	_
Hydrochloric acid 37%		C(200 F)		C(200°F)	_	B(230 F)
Hydrocyanic acid	T	A	т'	A	Α	Α
Hydrofluoric acid 48%	С	A(158 F)	Х	Α	В	A(212 F)
Hydrofluoric acid 75%	С	Α	X	8	C	B(158 F)
Hydrofluoric acid anhydrous	С	Α	x	В	С	A
Hydrogen	Ä	Α	Α	Α	A	Α
Hydrogen peroxide, 90%	T	А	-	8	Ŧ	Α
Hydrogen peroxide 90%		···-	-	_		C(270 F)
Hydrogen sullide	T	Α	Α	Α	Α	B(270 F)
Isooctane	B(15% 'F)	A	Α	A	Х	Α
Isopropyi alcohol	Ç	A(200 F)	Α	Α	T	Α
tsopropyl ether	В	8	-	С	C	С
JP-4	B	С	A(100 F)	С	С	A(400 F)
						14.55 5

ADIPRENE

B(122 F)

В

Demcal Giycerin

Hydrochloric acid 20%

Mercuric chloride

Nitric acid 70%

n Hexane

Hydraz ne

HYPALON

A(200 F)

Α

HYTREL

Α

Α

C

В

Neoprene

A(158°F)

Α

Ā

C

Α

С

Α

X-No data-not likely to be compatible

tsopropyl eiher	В	8	-	C	Ç	C
JP-4	8	С	A(100 F)	С	С	A(400 F)
JP 5	С	Ç	-	С	C	A(400 F)
JP 6	С	С	_	С	С	A(100 F)
JP 6	_	_		_	-	B(550 F)
Kerosene	В	В	T	C	С	A(158 F)
Kerosene	-	_	_		_	B(400 F)
Lacquer solvents	х	С	В	С	С	С
Lactic acid	T	Α	T	Α	Α	Α
Linseed oil	В	Α	T	Α	8	Α
Lubricating oils	В	B(158 F)	Α	B(158 F)	С	A(158 F)
Magnesium chloride solutions	Α	A(220 F)	Т	A(158°F)	Α	A
Magnesium hydroxide solutions	Α	A(200 F)	ī	A(158°F)	A	Α

Α

Т

С

Mercury	Α	Α	Α	Α	A	Α
Methyl alcohol	С	Α	Α	A(158 F)	Α	A 8
Methyl ethyl ketone	С	С	Α	c	Α	С
Melhylene chloride	С	С	С	C(100 F)	В	B(100 F)
Mineral oil	Α	Α	Α	Α	С	Α
Mobil XRM 206A (aircraft eng lube)	_	_	ī		_	A(350°F)
Naphiha	В	c	A	С	C	A(158 F)
Naphthalene	В	С	В	C(176 F)	Ċ	A(176 F)
Nitric acid 10%	С	Α	BC	В	В	Α
Nitric acid 30%	С	Ā	c	С	В	A
Nitric acid, 30%		C(158 F)			C(158 F)	
Nitric acid 60%	С	8		С	C	A

111110 0010 1070	•	•	•	-	•	•
Nitric acid 70%	-		_	-		8(100 F)
Nitric acid red turning	С	С	С	С	С	В
Nitric acid red furning	-					C(158 F)
Nitrobenzene	С	С	c	C	Α	В
Olek acid	8	В	Α	8	В	В
Oleum 20-25%	C	В	С	С	C	A
Palmitle acid	A	В	A	B(158 F)	В	Α
Perchloroethylene	С	С	C	C	С	A(212 F)
Phenot	С	С	С	С	8	A(212 F)
Phenot		_				8(300 F)

C

С

Phenot		_		_	_	8(300 F)
Phosphoric acid 20%	A	A(200 F)	-	Α	Α	Α
Phosphoric acid 60%	Α	A(200 F)	×	Α	A	A(212 F)
Phosphoric acid, 70%	A	A(200 F)	x	A	Α	Α
Phosphoric acid 85%	С	A(200 F)	Х	A	Α	Α
Pickling solution (20% nitric acid, 4% HF)	С	Α	×	С	С	A
Pickling solution (17% nitric acid 4% HF)	С	A(150 F)	x	Ç	С	А

Pickling solution (17% nitric acid, 4% HF)	 	_,			C(225°F)	Zinc cinoride
RATING KEY			T—No e	data—lil	ely to be o	compatible

A-Fluid has little or no effect B-Fluid has minor to moderate effect C-Fluid has severe effect

Blanks indicate no evaluation has been attempted

Unless otherwise noted, concentrations of aqueous solutions are saturated. All ratings are at room temperature unless specified

ADIPREXE

В

Α

В

C

A(158°F

HYPALON

A(200°F)

A(200°F)

C

C

C

HYTREL

T

ΑВ

x

Α

MORDEL

В

В

C

Heaprene

Α

A(158°F)

c

С

YITOX

Α

Α

С

A(392°F)

Α

Acetals

Malanal . N			Homopolymer (C		Copolymer d	
Material		Standard	20% Glass Reinforced	22% TFE Filled	Standard	25% Glass Reinforced	High Flow
PHYSICAL PROPERTIES Specific Gravity Ther "Cond, Btu/hr/sq ft/"F/	ASTM D792	1 425	1 56	1 54	1 410	1 61	1 410
tt Coef of Ther Exp, 10 s per °F Specific Heat, Btu/lb/°F	D696	0 13 4 5 0 35	2045	45	0 16 4 7 0 35	2247	16 47 035
Refractive Index, n _p Water Absorption (24 hr), %	D542 D570	Opaque 0 25	Opaque 0 25	Opaque 0 20	Opaque 0 22	Opaque 0 29	Opaque 0 22
MECHANICAL PROPERTIES Tensile Strength, 1000 psi	D638						
Ultimate Yield		10 0 10 0	8 5 —	69	8 8 8 8	18 5 18 5	88 88
Elongation, % Ultimate Yield	D638	25 12	7	12	60 75 12	3	40 12
Mod of Elast in Ten, 10 ^s psi Flex Strength, 1000 psi	D638 D790	52 141	_		4 1 13	12 5 28	4 13 13
Mod of Elast in Flex, 10 ⁵ psi Impact Str (Izod, notched), ft	0790	41	88	40	3 75	11	3 75
lb/in Compr Str (1%), 1000 psi Hardness (Rockwell)	D638 D695 D785	1 4 5 2 M94	0 8 5 2 M90	0 7 4 5 M78	1 3 4 5 M80	1 8 — M79	1 0 4 5 M80
Coef of Static Frict (against steel) Abr Res (Taber, CS 17), mg/	_	0103	0103	0 05 0 15	0 15	0 15	0 15
1000 cyc	D1044	14 20	33	9	14	40	14
ELECTRICAL PROPERTIES Volume Resistivity, ohm cm Dielectric Str (short time), vpm Dielectric Constant	D257 D149 D150	1 x 10 ¹⁵ 500	5 x 10 ¹⁴ 500		1 x 10 ¹⁴ 500	1 2 x 10 ° 580	1 0 x 10 ¹⁴ 500
60 cycles 10 ⁸ cycles Dissipation Factor	_	3 7 3 7	4 0 4 0	_	37 @ 100 37	39 @ 100 39	37@100 37
60 cycles 10 ^s cycles Arc Resistance, sec	D150 — — D495	0 0048 0 0048 129 ⁵	0 0047 0 0036 188		0 001 @ 100 0 006 240	0 003 @ 100 0 006 136	0 001 @ 100 0 006 240
HEAT RESISTANCE Max Rec Service Temp, F	_	195	195	195	220	220	220
Deflection Temp, F 66 psi 264 psi	D648 — —	338 255	345 3 5	329 212	316 230	331 325	316 230
APPLICABLE PROCESSING METHODS		Injection molding molding, blow m	g, extrusion, rotatioling	tional	Injection molding molding, blow m	g, extrusion, rotat olding	ıonal
CHEMICAL RESISTANCE		Excellent res to most organic sol vents, including aliphatic and aromatic hydro carbons Not rec for use with strong acids and alkalis		Same as stand ard homopoly mer	solvents including phatic and aror do not seriously	o strong alkalis g alcohols keton natic hydrocarbor y alter propertie in strong mine ts	es, esters, ali is and glycols s Not recom
USES	gears bushings aerosol bottles	high stiffness and dimensional	polymer Where low friction and high resistance	e various automotive, plumbing, textile machinery d and consumer products			

a 10% deformation b 15 mil specimen c' Delrin is most common tradename d' Celcon' is most common tradename

Acrylics

		Cast She	ets, Rods	Moldings			
Type →		General Purpose Type 1*	General Purpose Type II*	Grades 5, 6, 8 ⁶	High Impact Grade	Modified (XT acrylic)	
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu/hr/sq ft/°F/ft Coef of Ther Exp, 10 ° per °F Spec Ht, Btu/lb/°F Refractive Index Transmittance (luminous, 0 125 in), % Haze, % Water Absorption (24 hr), %	D542 D791 D672 D570	1 17 1 19 0 12 4 5 0 35 1 485 1 500 91 92 1 2 0 3 0 4	1 18-1 20 0 12 4 5 0 35 1 485 1 495 91 92 1 2 0 2 0 4	1 18 1 19 0 12 3-4 0 35 1 489 1 493 > 92 < 3 0 3 0 4	1 12 1 16 0 12 4 6 0 34 — — — 0 2 0 3	1 10 1 12 0 13 4 4 4 5 0 33 1 51 86 88	
MECHANICAL PROPERTIES Mod of Elast in Tension, 10 ⁵ psi Ten Str, 1000 psi Elong (in 2 in), % Hardness (Rockwell) Impact Str (Ized notched), ft lb/in Mod of Elast in Flex 10 ⁵ psi Flex Str, 1000 psi Compr Yld Str (0 1% offset), 1000 psi ELECTRICAL PROPERTIES Vol Res ohm cm Dielec Str (short time), v/mil Dielec Const 60 Cycles 10 ⁵ Cycles Dissip Factor 60 Cycles 10 ⁶ Cycles	D638 D638 D638 D785 D256 D790 D790 D695 D257 D149 D150 D150 D150	3 5 4 5 6 9 2 7 M80 90 0 4 3 5 4 5 12 14 12-14 >10 ¹⁵ 450 530 3 5 4 5 2 7-3 2 0 05 0 06 0 02 0 03	4050 810 2-7 M96 102 04 4050 1517 1418 >1015 450 500 3545 2732 005006 002003	3550 95105 35 M80103 0204 3550 1516 14517 >10" 400 3539 2729 004006 002003	2333 5580 >25 L6094 0823 2836 87120 73120 20×10 ¹⁸ 400 500 3539 2530 003004 001002	3 7 4 3 7 0 8 0 12 30 M45 68 1 2 3 5 4 0 11 13 9 5 11 5 >1010 2 78 2 86 0 026 0 029 0 022 0 025	
Arc Resistance, sec APPLICABLE PROCESSING METHODS		No track Thermoforming, casti	No track	No track Injection molding sion, thermoforms molding	No track Injection mold ing, extrusion thermoforming, blow molding		
HEAT RESISTANCE Max Recommended Svc Temp, F Heat Dist Temp, F		140 160 150 180	180 200 190 225	155 190 166 250 ⁴	169 205	160 195 (264 ps)	
CHEMICAL RESISTANCE			acids and aliphatic h ns, chlorinated hydro			÷\$	
USES		Transparent aircraft or radio and television per drafting equipment, s	oarts lighting,	Decorative and functional auto motive parts, reflectors, pro tective goggle lenses, radio and television parts, appliances	Shoe heels, con trol knobs business ma chine and piano keys, pump parts, sprinkler heads, tool handles	Packaging lenses containers, shields	

* ASTM D702 b Range includes typical values for Grades 5 6 and 8 and may be super or to minimum or maximum requirements for these grades as detailed in ASTM D788 c Cenco Fitch d D788 specified values for Grades 5 6 and 8 149 F, 162 F 183 F respectively

Alkyds and Thermoset Carbonate

				Alkyds		
Material →		Allyl Diglycol Carbonate	Putty (encapsulating)	Rope (general purpose)	Granular (high speed molding)	Glass Reinforced (heavy duty parts)
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu/hr/sq ft/°F/in Coef of Ther Exp, per °F Specific Heat, Btu/lb/°F Water Absorption (24 hr), % Transparency (visible light), % Refractive Index, n _b	ASTM D792 D696 D570 D542	1 32 1 45 6 x 10-5 0 3 0 20 89-92 1 50	2 05-2 15 0 35-0 60 1 3 x 10-5 — 0 10-0 15 Opaque	2 20-2 22 0 35-0 60 1 3 x 10-5 0 05-0 08 Opaque	2 21-2 24 0 35-0 60 1-3 x 10-5 0 08-0 12 Opaque	2 02-2 10 0 20-0 30 1-3 x 10-5 0 07-0 10 Opaque
MECHANICAL PROPERTIES Tensile Strength, 1000 psi Tensile Mod, 105 psi Elongation, % Impact Str (Izod notched), ft lb/in Flex Strength, 1000 psi Mod of Elast in Flex, 105 psi Compr Strength, 1000 psi Hardness (Barcol)	D638 D638 D638 D256 D790 D790 D690 D785	5–6 3 0 — 0 2–0 4 — 2 5–3 3 22 5 M95–M100 (Rockwell)	4-5 20-27 	7–8 19–20 — 2 2 19–20 22–27 28 70–75	3-4 24-29 0 30-0 35 7-10 22-27 16-20 60-70	5-9 20-25 8-12 12-17 22-28 24-30 70-80
Volume Resistivity, ohm cm Dielectric Str (step by step), v/mil Dielectric Constant 60 cycles 106 cycles Dissipation Factor 60 cycles 106 cycles Arc Resistance, sec.	D257 D149 D150 D150	4 x 10 ¹⁴ 290 4 4 3 5 3 8 0 03 0 04 0 1-0 2 185 Casting	10 ¹⁴ 300-350 5 4-5 9 4 5-4 7 0 030-0 045 0 016-0 020 180	1014 290 7 4 6 8 0 019 0 023 180	1 x 10 ¹⁴ -1 x 10 ¹⁵ 300-350 57-63 48-51 0 030-0 040 0 017-0 020 180 1 molding, transi	300–350 5 2–6 0 4 5–5 0 0 02–0 03 0 015–0 022 180
HEAT RESISTANCE Max Rec Service Temp, F Deflection Temp (264 psi), F	 D648	212	250 350–400	300 >400	300 350–400	300 >400
CHEMICAL RESISTANCE		Resists nearly all solvents in cluding ace- tone, benzene and gasoline, and practically all chemicals except highly oxiding acids			by alkalis, practical discretion of the state of the stat	ally unattacked by tty acids
USES		Aircraft windows, lenses, marine glazing, vending ma chine windows, slides, watch crystals, safety windows	Encapsulation of resistors, coils and small electronic parts	Molding of tube ets, connectors, electrical inst switches and re transformers, m and automotive in	tuning devices, rument parts, elays Parts for otor controllers	Heavy duty cir- cuit breaker and switchgear, stand off insula- tors, electrical motor brush holders and end plates

Alloys—ABS/polycarbonate, ABS/PVC, Acrylic/PVC, ABS/Polysulfone, ABS/Polyurethane

Material →		ABS/ Polycarbonate	ABS/PVC (rigid)	Acylic/ PVC	ABS/Poly- sulfone (Polyaryl ether)	ABS/Poly- urethane
HYSICAL PROPERTIES Specific Gravity	ASTM D792	1 19	1 21	1 28-1 35	1 14	1 04 1 07
Refractive Index, nD Transparency (visible light), %	D542 D1003	Opaque	Opaque	Translucent to opaque	Opaque	Opaque
MECHANICAL PROPERTIES		-				
Tensile Str (yield), 1,000 psi	D638	80	60	65-70	75	3 7-4 5
Elong (ult), %			_	75 150	25 90	120 200
Modulus, 1,000 psi	P300	370	330	335 370	320	160 220
Flexural Str, 1,000 psi	D790	137	102	10 7 11	11	5371
Modulus, 1,000 psi		380	340	380 400	300	150 210
Compressive str. 1,000 psi (2% offset)	D695	_	74	84	_	3648
Impact str	2050		105	10.15	90100	0.4.10.1
Izod (notched), ft lb/in Gardner, lb/in	D256	105	125	12 15	80100	84101
Hardness		-		_		_
Rockwell	D785	R117	R102	R110 105	R117	R70 82
Shore	D785	_			-	
Bending fatigue str (Woehler), 1,000 psi Abrasion res (Taber, CS 17 wheel, 1000g)	D671 D1044	_	-	_		_
mg/100 cycles	1014	_	_	40	_	30 35
Coef of friction	D1894					
Against self		_	_		0 28 0 31	_
Against steel		_		_	0.51	
ELECTRICAL PROPERTIES		105 105		1 0 1015	1 5 x 1016	
Vol res ohm cm	D257 D149	10 ¹⁵ x 10 ¹⁶	_	16 x 10 ¹⁸	12 x 10	_
Dielec str, v/mil (dry) Short time	0143	1250 1550	600	430 670	430	<u></u>
Step by step		_	_	647	ļ 	_
Dielec constant (dry)	D150	200		3 33 3 86	3 14	
60 Hz 10° Hz		3 08 3 2 3 6		3 06 3 44	3 10	_
Dissip factor (dry)	D150	1 3200		• • • • • • • • • • • • • • • • • • • •		
60 Hz		0 019 0 021		0 016	0 006	
10° Hz	DAGE	0 020	-	0 017 42 80	0 007 180	
Arc res, sec	D495			42.00	100	
THERMAL PROPERTIES	C177	0 95		1 01	2 07	
Ther cond, Btu/hr/sq ft/°F/m Coef of ther exp, 10 ⁻⁵ /°F	D696	37	4 6	3544		11 6 12 1
Specific heat, Btu/lb/°F		0.3	<u> </u>	0 293	0 35	<u> </u>
Heat deflection, °F	D648	***	•	177 005	4 200	214 216
At 66 psi		238 220	<u></u>	177 205 160 185	320 300	214 216 201 207
At 264 psi Brittleness temp, °F	D746		_	-46	500	-
Max temp for continuous use						
(no load), F		190 200		_		
CHEMICAL AND ENVIRONMENTAL						
RESISTANCE	2570	1				
Water absorption, % In 24 hr	D570	_	0 12	0 06 0 09	_	0 35 0 41
Saturation				_	_	_
Weathering	}	Slight effect	Slight effect	Resist	Embrittles	Slight effe
Acids		Resist	Resist	Resist	Resist	Resist
Weak Strong		Attack	Attack	Attack	Resist	Attack
Alkalis						
Weak		Resist	Resist	Resist	Resist	Resist
Strong Organia coluents		Resist Attack	Resist Attack	Resist Attack	Resist Attack	Resist Attack
Organic solvents Fuel						Attack
Oil and grease		-	-	-	_	-
METHODS OF PROCESSING		inj midg	Inj midg, extrusion, thermoforming	Extrusion, thermo forming	Inj mldg extru sion	Inj midg, extrusion, thermo

Cellulose Acetate

ASTM 6	Grade• →	H6-1	H4-1	H2-1	MH-1, MH-2	MS-1, MS-2	S2-1	
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu/hr/sq ft/°F/it Coef of Ther Exp, 10 ⁻³ per °F Refractive Index Spec Ht, Btu/lb/°F Luminous Transmittance, % Haze, % Water Absorption (24 hr), % Flammability, ipm ⁵	D792 C177 D696 D542 — D791 D672 D570 D635	0 10-0 19 4 4-9 0 1 46-1 50 0 3-0 42 75-90 2-15 0 5-2 0	1 29-1 31 0 10-0 19 4 4-9 0 1 46-1 50 0 3-0 42 75-90 2-15 1 7-2 7 0 5-2 0	1 25-1 31 0 10-0 19 4 4-9 0 1 46-1 50 0 3-0 42 80-90 2-10 1 7-2 7 0 5-2 0	1 24-1 31 0 10-0 19 4 4-9 0 1 46-1 50 0 3-0 42 80-90 2-10 1 8-4 0 0 5-2 0	1 23-1 .30 0 10-0 19 4 4-9 0 1 46-1 50 0 3-0 42 80-90 2-10 2 1-4 0 0 5-2 0	1 22-1 30 0 10-0 19 4 4-9 0 1 46-1 50 0 3-0 42 80-95 2-8 2 3-4 0 40 5-2 0	
MECHANICAL PROPERTIES Ten St at Fracture, 1000 psi Hardness (Rockwell R) Impact Str (Izod), ft-lb/fin of notch Modulus of Elast in Flex, 103 psi Flex Str at Yield, 1000 psi Compr Str at Yield, 1000 psi	D638 D785 D256 D747 D790 D695	- - - -	7-8 103-120 1 1-3 1 2 0-2 55 8 1-11 15 6 5-10 6	5 8-7 2 89-112 1 5-3 9 1 50-2 35 6 0-10 0 4 3-9 6	4 8-6 3 74-104 2 5-4 9 1 50-2 15 4 4-8 65 4 4-8 4	3 9-5 3 54-96 2 9-6 5 1 25-1 90 3 8-7 1 3 2-7 2	3 0-4 4 49-88 4 0-6 8 1 05-1 65 3 5-5 7 3 15-6 1	
ELECTRICAL PROPERTIES Vol Res, ohm cm Dielec Str (short-time), v/mil Dielec Const 60 Cycles 10* Cycles Dissip Factor 60 Cycles	D257 D149 D150 D150	1010-1013 250-600 3 5-7 5 3 2-7 0	1010-1013 250-600 3 5-7 5 3 2-7 0	1010-1013 250-600 3 5-7 5 3 2-7 0	1010-1013 250-600 3 5-7 5 3 2-7 0	10°-10° ² 250-600 3 5-7 5 3 2-7 0 0 01-0 06	10°-10°3 250-600 3 5-7 5 3 2-7 0	
10• Cycles APPLICABLE PROCESSING METHODS	D150	Injection m blow moldi		0 01–0 10 n, thermoform	0 01–0 10 ing, rotational i	0 01-0 10 molding,	0 01-0 10	
HEAT RESISTANCE Heat Deflection Temp, F 66 psi 264 psi			172–203 145–188	145–188 120–172	145–170 128–155	136–153 123–141	132–141 117–129	
CHEMICAL RESISTANCE		Unattacked by water, salt water solutions, white gasoline, oleic acid, 5% acetic acid and dilute sulfuric acid Decomposed by 30% sulfuric, 10% nitric and 10% hydrochloric acids, sodium hydroxide, and 10% ammonium hydroxide Dissolved by acetone and ethyl acetate						
USES	Film, tape, blister packaging, appliance housings, optical parts, tool handles, brush handles, toys and novelties, toothbrushes, buttons, tags							

^{*}According to ASTM D706-68 bSelf-extinguishing compositions are available.

Cellulose Acetate Butyrate and Cellulose Acetate Propionate

		Cellut	ose Acetate But	tyrate	Cellulo	se Acetate Prop	ionate		
ASTM Grade• →		H4	мн	\$2	1	3	5		
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu /hr /sq ft /°F /ft Coef of Ther Exp, 10 ⁻³ per °F Refractive Index Spec Ht, Btu /lb /°F Luminous Transmittance, % Haze, % Water Absorption (24 hr), % Flammability, ipm	ASTM D792 C177 D696 D543 D791 D672 D570 D635	1 22 0 10-0 19 (6-9) x 10-5 1 46-1 49 0 3-0 4 75-92 2-5 2 0 0 5-1 5	1 18-1 20 0 10-0 19 (6-9) x 10-5 1 46-1 49 0 3-0 4 80-92 2-5 1 3-1 6 0 5-1 5	1 15-1 18 0 10-0 19 (6-9) x 10-3 1 46-1 49 0 3-0 4 85-95 2-5 0 9-1 3 0 5-1 5	1 22 0 10-0 19 (6-9) x 10-3 1 46-1 49 0 3-0 4 80-92 2-5 1 6-2 0 0 5-1 5	1 20-1 21 0 10-0 19 (6-9) x 10-3 1 46-1 49 0 3-0 4 80-92 2-5 1 3-1 8 0 5-1 5	1 19 0 10-0 19 (6-9) x 10-5 1 46-1 49 0 3-0 4 80-92 2-5 1 6 0 5-1 5		
MECHANICAL PROPERTIES Ten Str at Fracture, 1000 psi Hardness (Rockwell R) Impact Str (Izod), It-lb/in of notch Modulus of Elast in Flex, 10 ³ psi Flex Str at Yield, 1000 psi Compr Str at Yield, 1000 psi	D638 D785 D256 D747 D790 D695	6 9 114 3 0 1 80 9 0 8 8	5 0-6 0 80-100 4 4-6 9 1 20-1 40 5 6-6 7 5 3-7 1	3 0-4 0 23-42 7 5-10 0 0 70-0 90 2 5-3 95 2 6-4 3	5 9-6 5 100-109 1 7-2 7 1 7-1 8 6 8-7 9 6 2-7 3	5 1-5 9 92-96 3 5-5 6 1 45-1 55 5 6-6 2 4 9-5 8	4 0 57 9 4 1 1 —		
ELECTRICAL PROPERTIES Vol Res, ohm cm Dielec Str (short time), v/mil Dielec Const 60 Cycles 104 Cycles Dissip Factor 60 Cycles 106 Cycles	D257 D149 D150 D150 D150 D150	1011-1014 250-400 3 5-6 4 3 2-6 2 0 01-0 04 0 02-0 05	1011-1014 250-400 3 5-6 4 3 2-6 2 0 01-0 04 0 02-0 05	1011-1014 250-400 3 5-6 4 3 2-6 2 0 01-0 04 0 02-0 05	1011–1014 300–450 3 7–4 0 3 4–3 7 0 01–0 04 0 02–0 05	1011-1014 300-450 3 7-4 0 3 4-3 7 0 01-0 04 0 02-0 05	1011-1014 300-450 3 7-4 0 3 7-3 4 0 01-0 04 0 02-0 05		
APPLICABLE PROCESSING METHODS	 	thermoformin	Injection molding, extrusion, thermoforming, rotational molding, blow molding			injection molding, extrusion, thermoforming, rotational molding, blow molding			
HEAT RESISTANCE Heat Deflection Temp, °F 66 psi 264 psi		222 196	171–184 146–160	136–147 118–130	191–201 163–173	169-187 141-157	163 129		
CHEMICAL RESISTANCE	Unaffected by 3% sulfuric, 5% acetic, 10% hydrochloric and oleic acids, discolored by 10% nitric acid. Unaffected by 1% sodium hydroxide and 2% sodium carbonate, slightly softened by 10% sodium hydroxide and discolored by 10% ammonium hydroxide, Unaffected by white gasoline, but swollen or dissolved by ethyl alcohol, acetone, ethyl acetate, ethylene dichloride, carbon tetrachloride and toluene. Unaffected by water, salt water and 3% hydrogen peroxide.								
USES	Vacuum-formed outdoor signs and molded letters, blister packaging, TV and radio knobs, handles, pipe, pens, optical parts, containers Telephones, steering wheels, blister packaging, toothbrushes, pens, knobs, containers, optical parts								

^{*}According to ASTM D707-63 and D1562-50, respectively

Diallyl Phthalates

Туре ⇒ "		Orion-Filled	Dacron-Filled	-Asbestos-Filled	Glass Fiber-Filled
PHYSICAL PROPERTIES Specific Gravity Coef of Ther Exp, per °F Water Abs (122 F 48 hr), %	ASTM D792 D696	1 31-1 35 5 0 x 10 ⁻⁵ 0 2-0 5	1 40-1 65 5 2 x 10 ⁻⁵ 0 2-0 5	1 50-1 96 4.0 x 10 ⁻⁵ 0 4-0 7	1 55-1 85 2 2-2 6 x 10 ⁻⁵ 0 2-0 4
MECHANICAL PROPERTIES Mod of Elast in Tension, psi ^a Ten Str, psi Hardness (Rockwell) Impact Str (Izod notched), ft-lb/in. Flex Str, 1000 psi Compr Str, 1000 psi	D638 D638 D785 D256 D790 D695	6 x 10 ⁵ 4500-6000 M108 0 5-1 2 7 5-10 5 20-25	4600-5500 1 7-4 5 9-11 5 20-30	12 x 10 ⁵ 4000-6500 M107 0 30-0 50 8-10 18-25	5500-9500 M108 0 5-15.0 10-18 25
ELECTRICAL PROPERTIES Dielec Str, v/mi Short Time (dry) Short Time (wet ^b) Step-by-Step (dry) Step-by-Step (wet ^b) Dielec Breakdown, kv Short Time (wet ^b) Short Time (wet ^b) Step-by-Step (dry) Step-by-Step (dry) Step-by-Step (wet ^b) Dissip Factor ^c Dry Wet ^d Dielec Const ^e Dry Wet ^d Vol Res, megohm-cm ^d Surface Res, megohms ^d Arc Resistance, sec	D149 D149 D149 D149 D150 D150 D150 D257 D257 D495	400 375 350 325 65-75 60-65 55-60 46-60 0 023, 0 015 0 045, 0 040 3 9, 3 3 4 1, 3 4 60,000-6,000,000 25,000-2,500,000 85-115	376-390 360-391 350-374 350-361 65 60 60 55 0 008, 0 015 0 009, 0 017 3 8, 3 6 3 9, 3 7 100-25,000 500-25,000 105-125	350-450 300-400 300-400 250-350 55-80 55 38-70 39-60 0 05, 0 03 0 154, 0 050 5 2, 4 5 6 5, 4 8 100-5000 100-5000 125-140	350-430 300-420 300-420 275-420 63-70 45-65 55-65 45-65 0 01, 0 015 0 012, 0 020 4 5, 4 2 4 6, 4 4 10,000-50,000 10,000-100,000 125-135
APPLICABLE PROCESSING METHODS		Injection molding, c	ompression molding	, transfer molding, l	ayup molding
HEAT RESISTANCE Max Recommended Svc Temp, F Heat Dist Temp, F	 D648	300 240-266	300-370 270-290	350-450 300-350	400-450 350-500
CHEMICAL RESISTANCE		Unaffected by wea fected by strong a		is and organic solv	vents. Slightly af-
USES		Molding compound appliance fixtures craft leading edge decorative sheets etc	, resistors, insula s, housings, nose	tors, etc. Prepreg cones, air ducts, o	s—radomes, air- etc Laminates—

a Conditioned 48 hr at 122 F bTested after 48-hr immersion in water at 122 F cValues given for frequencies of 1 kc and 1 mc, in that order d Conditioned 30 days at 100% RH and 158 F eFlame-resistant type is available f 480 hr, 257 F

Epoxies

			Standard	Epoxies (Digly	cidyl Ether of E	Bisphenol A)	· · · · · · · · · · · · · · · · · · ·
Type →		Cast Rigid ^a	Cast Flexibleb	Moldede	Unidirectional Laminate	High Strength Laminates	Filament Wound Composite
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu/hr/sq ft/°F/ft Coef of Ther Exp, 10 s per °F Specific Heat, Btu/ib/°F Water Absorp (24 hr), % Transparency (visible light), % Refractive Index, np	ASTM D792 D325 D696 D570 D542	1 15 0 1-0 3 3 3 0 4-0 5 0 1-0 2 90 1 61	1 14-1 18 3 5 	1 80-2 0 0 1-0 5 1-2 0 3-0 8 Opaque	18 33-48 x 10-6 0 05-0 07 Opaque	1 84 2 35 3 3-4 8 x 10-4 0 21 0 05 Opaque	2 18-2 17 2 6 0 24 0 05-0 07 Opaque
MECHANICAL PROPERTIES Tensile Str, 1000 psi	D638	95–115	14-76	8-11	50–58	160	230–240 (Hoop)
Tensile Mod, 10 ⁵ psi Elongation, % Impact Str (Izod notched), ft-lb/in .	D638 D638 D256	45 44 02–05	0 5-2 5 1 5-60 0 3-2 0	04-05	33–36 12–15	57-58 	72-64
Flexural Str, 1000 psi Mod of Elast in Flex, 10 ⁵ psi Compr Strength, 1000 psi	D790 D790 D695	14–18 45–54 165–24	1 2–12 7 0 36–3 9 —	19–22 15–25 34–38	80–90 36–39 50–60	(edgewise) 165-177 53-55 80-90 (edgewise)	180–170 69–75 —
Hardness (Rockwell) .	D785	106M	50-100M	75–80 (Barcol)	115–117M	70-72 (Barcol)	98-120M
ELECTRICAL PROPERTIES Vol Resist, ohm cm Dielectric Str (step by step), v/mil Dielectric Constant	D257 D149 D150	6 1 x 10 ¹⁵ >400	91×10°— 67×10° 400—410	1–5 x 10 ¹⁵ 360–400	450–550	6 6 x 10 ⁷ –10° 650–750	_
60 cycles 10° cycles Dissipation Factor 60 cycles 10° cycles Arc Resistance, sec	D150	4 02 3 42 0 0074 0 032 100	4 43-4 79 2 78-3 52 0 0048-0 0380 0 0369-0 0622 75-98	4 4-5 4 4 1-4 6 0 011-0 018 0 013-0 020 135-190	5 3-5 4 4 7-4 8 0 004-0 006 0 024-0 026 130-180	4 8–5 2 0 010–0 017	
APPLICABLE PROCESSING METHODS		Casting	Casting	Injection, compression and transfer molding	Layup molding	Layup molding	Filament winding
HEAT RESISTANCE Max Rec Svc Temp, F Heat Deflection Temp (264 psi), F	— D648	175–190 230	100–125 90–155	<400 340-400	250–350	250–350	250–350
CHEMICAL RESISTANCE	20.0	Highly res to			ironments, less	res to sulfurio	280–295 and acetic
USES		Potting and of electronic precision ca	encapsulation components, stings, tools atching com-	Electrical moldings, such as condensers, switch plates, connector plugs, resistor bobbins and wirewound resistors, molded coils, relay assemblies		tools for ig, aircraft s, pipe, leaf ings, high ictrical or stant parts	Rocket motor cases, chemical tanks, pipe, pressure bottles, high strength tubing, shotgun barrels, missile bodies

^{*13} phr of TETA curing agent *30 80 phr of flexible curing agent *Mineral glass reinforced #23 phr aromatic amine curing agent, 12 plies E-181 glass cloth with Volan A finish *36% resin, 64% unidirectional nonwoven glass fiber reinforcement (NOL rings made with 12 end E HTS glass, 15 phr metaphenylenediamine curing agent

Epoxies

Туре →			Epoxy Novolacs		High Performance Resins (Cycloaliphatic Diepoxides)		
-		Cast, Rigid®	Moldedh	Glass Cloth Laminate	Cast, Rigid ^j	Glass Cloth Laminatek	
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Biu/hr/sq ft/°f/ft Coef of Ther Exp, per °F x 10 ° Specific Heat	ASTM D792 — D696	1 24 	17 17-2.2	1 97 	1 22 1 6-3 0	1 97 — — —	
Water Absorption (24 hr), % Transparency (visible light), %	D570		0 11-0 2 Opaque	0 04-0 06 Opaque	0 1-0 7 ¹ —	Opaque	
MECHANICAL PROPERTIES Tensile Strength, 1000 psi Tensile Modulus, 10 ⁵ psi Elongation, % Impact Str (Izod notched), ft-lb/in Flexural Strength, 1000 psi Mod of Elast in Flex, 10 ⁵ psi - Compr Strength, 1000 psi Hardness (Rockwell)	D638 D638 D638 D256 D790 D790 D695 D785	8-12 4-5 2-5 0 5 11-16 4-5 17-19 107-112 ^m	5 2-5 3 0 3-0 5 10-12 22-26 94-96Dn	50-52 32-33 13-17 70-72 28-31 67-71 75-80	9 6-12 0 4 8-5 0 2 2-4 8 12-13 4 4-4 8 30-50	59 2 27 5 — — 84-89 32-35 48-57	
Volume Resistivity, ohm-cm Dielectric Str (step by-step), v/mil Dielectric Constant 60 cycles 10¢ cycles Dissipation Factor 60 cycles 10¢ cycles Arc Resistance, sec	D257 D149 D150 D150	2 10 x 10 ¹⁴ 3 96-4 02 3 53-3 58 0 0055-0 0074 0 029-0 028	1 4-5 5 x 10 ¹⁴ 280-400 4 7-5 7 4 3-4 8 0 0071-0 025 180-185	 5 1™ 0 015™	>1014 444 (short time) 3 34–3 39 — 0 001–0 007 —	4 41–4 43 – – – – –	
APPLICABLE PROCESSING METHODS		Casting	Injection mold ing, compression molding, transfer molding	Reinforced layup mold ing	Casting	Reinforced layup mold ing	
HEAT RESISTANCE Max Rec Svc Temp, F Heat Deflection Temp (264 psi), F	 D648	450 300–400	450–500 300–425	450–500 	450–500 300–525	450-500 —	
CHEMICAL RESISTANCE			rong alkalis, more r izing agents than stand	Outstanding weather res compared to other epoxy systems Highly res to water, strong alkaline environments, less res to sulfuric and acetic acids, oxidizing agents			
USES		Impregnation and potting requiring high heat res, adhesives	Electrical and elec- tronic encapsula- tion designed for high temp	High temp tooling, structural lami- nates, ablatives	Encapsulation, im- pregnation and potting req out- standing arc and tracking res	Electrical lamin- ates req outstand- ing weather res	

\$28 phr methylene diamline, cure—16 hr at 130 F, 2 hr at 257 F, 2 hr at 347 F \(^1\)Mineral-filled proprietary compounds \(^1\)12 plies glass cloth with Volan A finish, 26-27% resin, cure-20 min at 383 400 F and contact pressure, plus 24 min at 419 F post cure \(^1\)12 phr of hexahydrophthalic and anhydride, 12 phr sodium alcoholate accelerator, cure-24 phr at 250 F and post cure of 3 phr at 400 F \(^1\)100 phr resin, 85 parts anhydride curing agent, 181 Volan glass cloth, \(^1\)1 hr at 212 F \(^1\)1 mc \(^1\)Durometer

Fluorocarbons

Type →		Polytrifluoro-	Polytetrafluoro ethylene (PTFE)	Ceramic- Reinforced (PTFE)	Fluorinated Ethylene Pro pylene (FEP)	Polyvinylidene fluoride (PVF.)	ETFE & ECTFE		
		chloroethylene (PTFCE)					Std	Glass reinf	PFA
PHYSICAL PPOPERTIES Specific Gravity Ther Cond, Btu/hr/sq ft/°F/ft Coef of Ther Exp, per °F x 10 ⁻⁵ Refractive Index Specific Heat, Btu/lb/°F Transmittance (luminous) %	D696 D542	2 10 2 15 0 145 3 88 1 43 0 22 80 92	2 1 2 3 0 14 5 5 1 35 0 25	2224 1720 —	2 14 2 17 0 12 8 3 10 5 1 34 0 28	1 77 0 14 8 5 1 42 0 33	1 68 — 14 1 44 — 0 7 0 8	186 — 17 — —	2 12 2 17 6 7 11 1 —
Water Absorption (24 hr), %	D570	0 00	0 01	> 2	0 01	0 03	-	001	0 03
MECHANICAL PROPERTIES Mod of Elast in Compr, psi Mod of Elast in Tension, psi Ten Str, 1000 psi Elongation (in 2 in), % Hardness (Rockwell) Abrasion Res, gm/cycle Impact Str (Izod notched), ft lb/in Mod of Elast in Flexure, psi Flex Str (0 1% offset), 1000 psi Compr Str (0 1% offset), 1000 psi	D638 D638 D638 D638 D785 4 D256 D747 D790 D695	18 x 10 19 30 x 10 ³ 46 5 7 125 175 R110 115 0 0080 3 50 3 62 2 0 2 5 x 10 ³ 3 5 2 0	0 70 0 90 x 10 ³ 0 38 0 65 x 10 ⁵ 2 5 6 5 250 350 52D — 2 5 4 0 0 6 x 10 ⁵ — 0 7-1 8	1 5 2 0 x 10 ⁵ 1 5 2 0 x 10 75 2 5 10 200 R35 55 — 4 64 x 10 ⁵ 1 4 1 8		1 7 2 × 10 ⁵ 1 7 2 × 10 ⁵ 7 2 8 6 200 300 R110 0 0006 0 0012 3 8 2 12 8 14 2	2 4 x 10 ³ 4 0 4 5 150 200WIA R95 0 005 No break 2 4 x 10 ³	11 x 10 ⁵ 12 0 9 7 9 5 x 10 ⁵ 15	4 3 200 060 — — 1 0 x 10 ³
ELECTRICAL PROPERTIES Volume Resistivity ohm cm Dielec Str (short time), v/mil Dielectric Constant	D257 D149	10' ⁴ 530 600	>10 ¹⁸ 400 500	10¹⁵ 300 400	>2 x 10 ¹⁸ 500 600	5 x 10 ¹⁴ 260	10 ¹⁶ 490	<u>-</u>	>10 ¹⁸ 2000
60 Cycles 10° Cycles Dissipation Factor	D150 D150	2 6 2 7 2 30 2 37	2 1 2 1	2936 2936	2 1 2 1	10 0 7 5	2 6 2 5	_	21 21
60 Cycles 10 ^s Cycles Arc Resistance, sec	D150 D150	0 02 0 007 0 010 >360	0 0002 0 0002 >200	0005 0015 0005 0015	0 0003 0 0003 >165	0 050 0 184 50 60	0 0007 0 009 135	<u>-</u>	0 0002 0 0003 —
APPLICABLE PROCESS ING METHODS		Compres sion midg, isotactic pressing	Compression molding, isostactic molding		Inject molding, extrus compres mold ing	Inject moiding, extrus, compres moid ing	Inject, rotational, blow & transfer molding, extrus, thermoforming, foam		injec tion midg, extrusion, blow midg
HEAT RESISTANCE Max Rec Svc Temp, F Heat Dist Temp, F		380	550	450 500	400	340	300 355		500
66 psi 264 psi	D648 D648	196 291 151 178	_	350 480 170 220		300 232	220 240 160 170	285	_
CHEMICAL RESISTANCE		High res to corrosive chemical & most organ ic solvent	Inert to most chemicals and solvents with exception of alkali metals. Halogenated solvents at high temperatures and pressure have some effect.			Res to most acids and bases ex cept fuming sulfuric	most acids		Same as PTFE
USES		Chemical pipes pump parts, cables, tank linings, connectors, connector inserts, valve diaphragms, insulation	Chemical pipes valves and inners, gaskets, packings, pump bearings and impellers, electrical equip, anti adhesive coatings	Bearings, bushings, wear sur faces, elec insulators, gaskets packings, valve seats in corrosive conditions	Electronic instruments, valve linings, laminates, corrosion resistant and non adhesive coatings	Seals, chem ical pipe and fittings gas kets, elec trical jackets and primary insulation, finishes			PTFE uses req more ease of processing

A proprietary material consisting of polyetrafluorocthylene and special constituents designed to improve TFE's mechanical and thermal properties while retaining its electrical and chemical characteristics. Properties for compounds containing from 10-25% glass. Cenco Fitch. Federal Spec LP 406A No. 1092 1. From 73 to 500 F.

Foams-Rigid (no surface skin)

Туре→		ABS	Cellulose Acetate	Ероху		tactic oxy ^a	Phenolic	Poly ethylene	Poly propylene
Density, pcf→		31	68	5-8	36	36 42		34	5
Ther Cond, Btu/hr/sq ft/°F/in Coef of Ther Exp, per °F x 10-5 Water Absorption, % vol Dielectric Constant at 106 cps Dissipation Factor at 106 cps Max Rec Service Temp, F	ASTM 177 D696 C272 — —	0 58 9 7 0 6 1 59 0 007 200	0 31 0 32 2 5 13-17 1 10-1 12 0 003 350	0 24-0 28 2 3 — 2 0 0 005 400 500	4 56 4 5 — 1 55 0 01 300	15 300	0 20 0 22 0 5 < 3 — — 270	0 92 4 18 0 22 1 48 0 0003 195	0 27 — — — — — 230
Tensile Str, psi Ultimate Ten Elong, % Mod of Elast in Tension, 1000 psi Compr Str, psi (10%), Mod of Elast in Compr, 1000 psi Flex Str, psi Mod of Elast in Flex, 1000 psi Shear Str, psi Mod of Elast in Shear, 1000 psi Hardness (Shore 0)	D1623 D1623 D1623 D1621 D1621 D790 D790 C273 C273	1400 2 4 — 2 4 9 — 60	170 — 125 150 5 5 13 150 5 5 140 —	50 200 — 60 90 2 1 6 5 200 800 2 5 6 — —	3300 — 9600 373 3800 — 3800 — 80 85	4600 	20 55 — 20 90 — 25 65 — 15 30 0 4 0 75	1000 	170 — 55 1 2 230 9 6 —

^aGlass microsphere filled epoxy

Туре→				tyrene anded)	Urea	Urethane		
Density, pcf→		3	2	6	0812	2-3	4-7	18 25
Ther Cond, Btu/hr/sq ft/°F/in Coef of Ther Exp, per °F x 10-5 Water Absorption, % vol Dielectric Constant at 106 cps Dissipation Factor at 106 cps Max Rec Service Temp, F	ASTM 177 D696 C272 — —	0 15-0 20 2 0 1 — — 180	0 20 0 28 2 7-4 <0 1 1 02 1 24 <0 0005 175	0 20-0 25 2 7-4 <0 1 — 175	0 18 0 21 — — — — — 120	0 11 0 23 3-4 3 4 — 200 250	0 15 0 28 4 1 5 2 — 250 300	0 29 0 52 4 0 2 — 300-400
Tensile Str, psi Ultimate Ten Elong, % Mrd of Elast in Tension, 1000 psi Compr Str psi (10%) Mod of Elast in Compr 1000 psi Flex Str, psi Mod of Elast in Flex, 1000 psi Shear Str, psi Mod of Elast in Shear, 1000 psi	D1623 D1623 D1623 D1621 D1621 D790 D790 C273 C273	100 200 5 20 3-4 70 100 3-4 120 160 3-4 60 80 2 2 5	50 55 5 740 25 30 0 55 2 55 75 1 3 3 8 35 1 15 1 6	120 2 6100 100 150 3 6 200 300 5 15 150 3		20 70 	90 250 ————————————————————————————————————	700 1300 — 1200 2000 10 40 700 2000 12 100 7600 3 9

Plastics and Rubber Foams — Flexible

Tuna Damashu2	1	Polyethylene (cellular)				thane oamed)	Vinyl (open cell)	
Type, Density ^a →	2.2	33р	41°	10	1520	4050	4 and up	
Max Rec Service Temp, F Elec Res, microhim cm Dielec Str (short time), v/mil Dielec Const, 10° cycles Dissip Factor, 10° cycles	160 1 5 x 10 ¹⁷ 55 1 05 ^e 0 0002 ^e	220 1 5 0 0004	220 1 84 0 0006	500 3 8 x 1018 50 1 17 ^d 0 001 ^d	<u>-</u> - -	 	 	
Tensile Strength, psi Elongation, % Tear Strength, 1b/in Compression Set (22 hr at 158 F), % Compression Deflection, psi Stress for 25% Defl Stress for 50% Defl	20 30 60 6 15 8 5f 17 5	600 300 — — —	2100 350 — — — —	5 40 4 1 3	12-20 150 250 2 0 3 0 4 8 0 35 0 45	18 20 100-125 1 0 2 0 2 9 0 9 2 2	10 200 75 300 — 15 3-500	

aDensity in lb/cu ft bBased on low density polymer, typical expanded insulation (about 46°, gas by vol.) Based on high density polymer typical expanded insulation (about 30° gas by vol.) \$10° cycles eAt 10° cps fRecovery at same temperature as compression

Foams—Rigid (structural, integral skin type) a

Type → Density, lb/ft³ →		ABS 50	Polycarbonate 50	Polyethylene 37 5	Polypropylene 37 5	Noryl 50	Polystyrene 43 5
Ther Cond, Btu/hr/sq ft/°F/in Coef of Ther Exp, per °F x 10 ° Water Absorption, % vol Heat Deflection (264 psi), F Max Rec Service Temp, F	ASTM 177 D696 C272 D648	180		6 7 94	5 2 	 205 	5 0 — 176
Tensile Str, psi Ultimate Ten Elong, % Mod of Elast in Tension, 1000 psi Compr Str, psi (10%) Mod of Elast in Compr, 1000 psi Flex Str, psi Mod of Elast in Flex, 1000 psi Shear Str, psi Mod of Elast in Shear, 1000 psi Hardness (Shore D) Impact Str (Izod, unnotched), ft lb	D1623 D1623 D1623 D1621 D1621 D790 D790 C273 C273	2700 — 1000 — 3700 125 —	5500 ——————————————————————————————————	1300 — — — 2700 120 — 54 25	2100 3200 120 62 1 25	3300 	1800 ———————————————————————————————————

				0	Blass fiber reinfo	orced types	
Type → Density, lb/ft³ →		Polyurethane 34 5	Polyester 56	Polypropylene 45 5	Nylon 54	Polystyrene 52 5	ABS 52 5
Ther Cond, Btu/hr/sq ft/°F/in Coef of Ther Exp, per °F x 10-5 Water Absorption, % vol Heat Deflection (264 psi), F Max Rec Service Temp, F	ASTM 177 D696 C272 D648	 150 	400 (66 psi)	 162 	 390 	 190	 210
Tensile Str, psi Ultimate Ten Elong, % Mod of Elast in Tension, 1000 psi Compr Str, psi (10%)	D1623 D1623 D1623 D1621		8550 — — 9300	3000 	10,000	5000 — —	7000 — —
Mod of Elast in Compr, 1000 psi Flex Str, psi Mod of Elast in Flex, 1000 psi Shear Str, psi Mod of Elast in Shear, 1000 psi	D1621 D790 D790 C273 C273	4200 150	17,000 700 ——————	6000 400 —	16,000 650 —	8500 750 —	12,000 750 —
Hardness (Shore D) Impact Str (Izod, unnotched), ft lb	_	70 		3 5	 3 2	15	— 3 5

^{*} Also samples 0 25 in thick unless otherwise shown

Melamines

Filler an	d Type 🖈	Unfilled	Cellülose Electrical	Glass Fiber	Alpha Gellulose and Mineral
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu hr sq ft/°F/ft Coef of Ther Exp, per 'F Transmittance (luminous), % Water Absorption (24 hr), % Flammability	ASTM D792 D696 D570	1 48 — Good 0 2-0 5 Self extinguishing	1 43-1 50 0 17-0 20 1 11-2 78 x 10-5 Opaque 0 27-0 80 Self extinguishing	1 9-2 0 0 28 0 82 x 10 ⁻³ 	1 49 — — — 0 5 Self-extinguishing
Mechanical Properties Mod of Elast in Tension, psi Ten Str, 1000 psi Elong (in 2 in), % Hardness (Rockwell) Impact Str (Izod notched), ft-lb/in Mod of Elast in Flex, psi Compr Str, 1000 psi Flex Str, 1000 psi	D638 D638 D638 D785 D256 D790 D695 D790		10-11 x 10 ⁵ 5-9 0 6 M115-125 0 27-0 36 1 0-1 3 x 10 ⁴ 25-35 6-15		5 0 30 8
ELECTRICAL PROPERTIES Vol Res, ohm-cm Dielec Str (short time), v/mil Dielec Const 60 Cycles 10 ^a Cycles Dissip Factor 60 Cycles 10 ^a Cycles Arc Resistance, sec	D257 D149 D150 D150	7 9-11 0 6 3-7 3 0 048-0 162 0 031-0 040 100-145	1012-1013 350-400 6 2-7 7 5 2-6 0 0 026-0 192 0 032-0 12 70-135	1-7 x 10 ¹¹ 250-300 7 0-11 1 6 9-7 9 0 14-0 23 0 013-0 03 180-186	1012 375 — 6 4 — 0 031 125
***PLICABLE PROCESSING METHODS		Compression molding	ng transfer molding a	end, in some cases	
HEAT RESISTANCE Max Rec Svc Temp, F Heat Dist Temp (264 ps1), F	D648	210 293–298	250–280 265	300–400 400	275–325 300
CHEMICAL RESISTANCE		Resistant to weak acid acids and strong alka	is, weak alkalıs, organı ıs	c solvents, greases and o	oils Attacked by strong
USES		Pearlescent buttons, moldings ornamen- tal applications	General mechanical and electrical applications, particularly at elevated temperatures. Applications requiring improved holding power for metallic inserts such as electrical and electronic parts.	Applications requiring high shock resistance, good electrical properties, and high resistance to burning Switchgear, terminal strips, stand off insulators, coil forms	Primarily electrical applications requiring low after shrinkage, good dimensional stability and excellent molding characteristics

				Тур	e 6				
Туре→	-	General Purpose*	Glass Fiber (30%) Reinforced*	Cast	Flexible* Copolymers	Type 8 ^b	Type 11	Type 12	Trans parent
PHYSICAL PROPERTIES	ASTM	1 14	1 37	1 15	1 12 1 14	1 09	1 04	1 01	1 12
Specific Gravity Ther Cond , Btu/hr/sq ft °F/in	D792	12	1217	12-17		103	15	17	
Coef of Ther Exp , 10 ^{-s} per °F	D696	48	12	44	<u> </u>		5 5	72	28
Specific Heat, Btu/lb/°F		0'4	-	04		04	0 58	0 28	-
Refractive Index, n _p Water Absorption (24 hr), %	D542 D570	 17-18	13	 06	0814	9.5	0 4	0 25	1 566 0 41
MECHANICAL PROPERTIES									
Tensile Strength (2 in /min) ^d	D638		1						
Ultımate		95125	21 23	128	75100	_		7185	_
Yield	D638	85125	_	128	75100	39	85	5565	98
Elongation (2 in /min), % Ultimate	D090	30 220	2 4	20	200 320	400	100 120	120 350	130
Yield]	-	_	5		_		5 8	
Mod of Elast in Tension, 10 psi	D638	l .	10 12	54	- .	03	1 78 1 85	1721	4 05
Flex Strength, 1000 psi Mod of Elast in Flex, 10 ³ psi	D790	Unbreak 1437	26 34 10 12	16 5 5 05	34-164	04	1 51	_	13 26 3 86
Impact Str (Izod notched), ft lb/in	D256	0812	3 2 3	12	1519	>16	3336	1242	_
Compr Strength (1% offset) ^d	D695	97	19 20	14	_				3 39
Hardness (Rockwell)	D785	R118 R120	R121	R116	R72 R119] —	R100 R108	R106	M93
Coef of Dyn Frict	-	_	_	0 32°	_				_
Abrasion Res (Taber, CS 17), mg/1000 cycles	D1044	5	_	27			_	-	21
ELECTRICAL PROPERTIES Volume Resistivity, ohm cm	. D257	45 x 10'-	2 8 1011 to	26 x 10 ¹⁴	_	15 x 10 ¹¹	2 x 1013	10*-1015	>5 x 1015
Dielectric Str (short time), v/mil	D149	385	1 5 x 10 ¹⁵ 400 450	380	440	340	425	840	670
Dielectric Constant	D150	363	700 730	300	440	340	720	040	075
60 cycles		4053	4656	40	3240		3 3(10°cps)	3 6(10°cps)	3 99
10° cycles	- D1 E0	3638	3954	33	3036	40		_	
Dissipation Factor 60 cycles	D150	0 06 0 014	0 022 0 008	0 015	0 007 0 010	0 19	0 03	0 04(10°cps)	0 028
10° cycles	1	0 03 0 04	0 019 0 015	0 05	0 010 0 015	0 08	0 02		
Arc Resistance, sec	D495		92 81			<u> </u>	_		120
HEAT RESISTANCE			000000	050 000	175 000		010 050	175 230	
Max Rec Service Temp, F Deflection Temp, F	D648	250 300°	250 300	250 300	175 200		212 250	175 250	_
66 psi	1 2040	360	425 428	420	260 350	129	302		284
264 psi	<u> </u>	155 160	420 419	410	115 130	_	131	_	256
APPLICABLE PROCESSING METHODS		Injection in ing, extrus rotational ing, blow in ing	ion, mold	Rota tional mold ing	Extru sion, injec tion mold- ing	Extrusion, in jection mold ing		Extru sion, injec tion mold ing	Injection molding blow mold, extru compr molding
CHEMICAL RESISTANCE			ers, ketones, ak acıds, alco-	Res most organic	, .	Exc res to aqueous af	Res alkalis petroleum	Res alkalıs petroleum	Res weak acios al
		hois and c vents Not to conc mi	ommon sol resistant neral acids	chem, such as alcohols ketones, hydrocar bons and chlor solv Att by str acids, phenols, st oxidizing agents	kalis, weak acids, alco hols and common solvents Not res to conc min eral acids	kalis, ali phatic and aromatic hydrocar bons, ether and mineral oils, poor good res to dil min acids, alco hols, arom acids	products and com mon or ganic sol vents Not res to phe nois and conc acids and oxi dants	products and common or ganic sol vents. Not res to phe nois and conc acids and oxi dants	kali, strong alkali ori greases Attacked by strong acid- alcohols an org solvent
USES		ings, coil forms, brush backs, rod	Gen pur- pose type 6 parts requiring greater stiffness be and dimen stab	Bearings, wearplates, bushings, gears, roll ers, stock shapes	impact	Molded parts re quiring flexibility and chem ical res	Elec insula- tion and other nylon uses where low mois absorp is needed	rod, tubing sheet mold	Lenses, con tainers, gauges, fue tanks

[•] Dry as molded properties • Non-cross linked can be cross linked • Dynamic no lubrication hylon to steel 1000 psi = 0.4 self-ext to slow burn • Heat stabilized

Nylons

			6/6	Nylon	······································	6/10	Nylon		T
Type →		General Purpose Molding*	Glass Fiber Reinforced®	Glass Fiber, Molybdenum Disulfide Filled	General Purpose Extrusion*	General Purpose	Glass Fiber (30%) Reinforced ^c	Nylon	Mineral reinf nylon
PHYSICAL PROPERTIES Specific Gravity Ther Cond Btu/hr/sq ft/°F/in Coef of Ther Exp, 10 ° per °F Specific Heat, Btu/lb/°F Refractive Index, n _b Water Absorption (24 hr), % Coef of Static Frict (against self)	ASTM D792 — D696 — D542 D570	1 13-1 15, 1 7, 4 5, 0 3-0 5 Transluc 1 5, 0 04-0 13,	137, 147 15, 33 21, 14 Opaque 09, 08	1 37–1 41 1 75 Opaque 0 5–0 7 	1 13, 1 15 1 7, — — 0 3–0 5 Opaque 1 5	1 07-1 09, — 1 5 5 0 3-0 5 Opaque 0 4 —	1 30 3 5 2 5 — Opaque 0 2	1 06—1 08 1 5 5 0 0 3—0 5 Translucent 0 4	1 47
MECHANICAL PROPERTIES Tensile Strength, 1000 psi Ultimate Yield Elongation, % Ultimate Vield	D638 D638	11 8, 11 2 11 8, 8 5 60, 300 5, 25	25, 30 — 1 8, 2 2	19–22 — 3	12 6, 8 6 12 6, 8 6 90, 240	85, 71 85, 71 85, 220	19 — 19	8 8, 8 8 8 8, 7 4 150, 340	9–10 10–25
Yield Mod of Elast in Tension, 10 ^s psi Flex Strength, 1000 psi Mcd of Elast in Flex, 10 psi Impact Str (Izod notched), ft lb/in Compr Strength (1%), 1000 psi Hardness (Rockwell) Abrasion Res (Taber CS 17, 1000g), mg/1000 cycles	D790 D790	5, 25 4 75, 3 85 Unbreak 410, 175 1 0, 2 0 4 9,— R118, R108	14, 20 26, 35 10, 18 25 3 4° 20, 24 E60, E80	26–78 11–13 — M95–100	5, 30 — 41, 175 13, — 49 (1%), — R118—108 —, 3–5	5, 30 28–30, — 8 28, 16 06, 16 30 (1%), — R111	23 8 5 3 4 18 E40—50	7, 40 — 29, 18 10, 14 24, — R114, —	50 12–16 33–60 10–15 — R119–121 12–30
ELECTRICAL PROPERTIES Volume Resistivity, ohm cm	D257	1014 - 1015	55 x 10 ¹⁵ , 26 x 10 ¹⁵ ,	_	1015	10 ¹⁵		1025, 1012	1016
Dielectric Str (short time), v/mil Dielectric Constant 60 cycles 10° cycles C ssipation Factor 60 cycles 10° cycles	D150	385 40, — 36, — 0014, 004 004, —	400, 480 40, 44 35, 41 0018, 0009 0017, 0018		_ 	470 3 9, — 3 5, — 0 04, —		4 0, 6 0 3 5, 4 0 — 0 02, 0 03	280—485 — — — —
HEAT RESISTANCE Max Rec Service Temp, F Deflection Temp, F 66 psi	D495 D648	120 250 300 ^d 470	148, 100 250–300 ⁴ 507, 509	135 250–300 ⁴ —	120 250 300 ^d 470	120 225–300 ⁴ 300	250–300 ⁴	350 330	115 400
264 psi CHEMICAL RESISTANCE		220	495, 500 Inert to most Resist alkalis acids and str	and salt solut	hons, but att b	135 sters ketones, a by phenols, form	dechols and lace acid, stro	180 hydrocarbons ng mineral	300
APPLICABLE PROCESSING METHODS		Injection mo			Extrusion	Injection	•	Injection molding, blow molding, extrusion	Injection molding
USES	USES			Mech parts where lubri cation is undesirable or diff	Tubing, rod, pipe, sheet ing, lamina tions	Jacketing for wire and cable special molded parts			Elec housings and mech parts

[&]quot;Where two values are given first is for dry as molded material and second for moisture equilibrium in air single value pertains to dry material for 30% glass fiber and second for 40% All values at moisture equilibrium c 30% glass fiber d Heat stabilized for max heat resistance c 1/2 in

Phenolics

Type and Filler →		General— Woodflour and Flock	Shock— Paper, Flock or Pulp	High Shock— Chopped Fabric or Cord	Very High Shock— Glass Fiber	Arc Resistant Mineral	Rubber Phenolic— Woodflour or Flock	Rubber Phenolic— Chopped Fabric	Rubber Phenolic— Asbestos
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu/hr/sq ft/°F/ft Coef of Ther Exp 10 ° per °F Spec Ht, Btu/lb/°F Water Absorption (24 hr), %	D570	1 32-1 46 0 097 0 3 1 66-2 50 0 35 0 40 0 3 0 8	1 34 1 46 01 0 16 1 6 2 3 — 0 4 1 5	1 36 1 43 0 097 0 170 1 60 2 22 0 30 0 35 0 4 1 75	1 75-1 90 0 20 0 88 0 28 0 32 0 1 1 0	1630 024034 — 028032	1 24 1 35 0 12 0 83 2 20 0 33 0 5 2 0	130135 005 17 — 0520	1 60 1 65 0 04 2 2 — 0 10 0 50
MECHANICAL PROPERTIES Mod of Elast in Tension, 10 ⁵ psi Ten Str, 1000 psi	D638 D638	8 13	8 12	9 14	30 33	10 30	4 6	356	5 9
Elong (in 2 in), % Hardness (Rockwell) Impact Str (Izod notched), ft lb/in Mod of Elast in Flex, 10° psi Flex Str, 1000 psi Compr Str, 1000 psi	D651 D638 D785 D256 D790 D790 D695	5 0 8 5 0 4 0 8 E85 100 0 24 0 50 8 12 8 5 12 22 36	5085 — E8595 0410 812 80115 2435	5 9 0 37 0 57 E80 90 0 6 8 0 9 13 8 15 15 30	5-10 02 E50 70 10 33 30 33 10 45 17 30	6 — E80 90 0 32 10 30 10 20	459 075225 M4090 034-10 46 712 1220	35 — M57 2023 35 7 1015	4 M50 0 3 0 4 5 0 7 10 20
ELECTRICAL PROPERTIES Vol Res, ohm cm Dielec Str (short time), v/mil Dielec Const 60 Cycles 10° Cycles	D257 D149 D150 D150	10° 10° 200 425	1 50 x 10 ¹¹ 250 350 5 6 11 0 4 5 7 0	10 ¹⁰ 200 350 6 5 15 0 4 5 7 0	7 10 x 10 ³² 200 370 7 1-7 2 4 6 6 6	6 x 10 ¹¹ 380 7 4 5 0	10 ³ 10 ¹³ 250 375 9 16 5	10 ¹¹ 250 15 5	10" 350 15 5
Dissip Factor 60 Cycles 10' Cycles Arc Resistance, sec	D150 D150 D495	0 05 0 30 0 03 0 07 5 60	0 08 0 35 0 03 0 07 5 60	0 08 0 45 0 03 0 09 5 60	0 02 0 03 0 02 60	0 13 0 16 0 10 180	0 15 0 60 0 1 0 2 7 20	0 5 0 09 10 20	0 15 0 13 5 20
APPLICABLE PROCESSING METHODS		Injection m molding	olding, com	pression moldin	g, transfer			ression molding to forced layup mold	
HEAT RESISTANCE Max Rec Svc Temp, F Deflection Temp, F	D648	300 350 260 360	300 290 340	250 300 250 340	350-450 600	400 335	212 300 220 270	212-225 220 280	225 360 250 300
CHEMICAL RESISTANCE		vary with ti		hemical resistar				talis and organic s on and not all m	
USES		Mechanical applications include pulleys, wheels, motor housings, handles Electrical uses include conforms, ignition parts, condenser housings, fuse blocks, instrument panels. Thermal applications include handles, appliance connector plugs. Chemical uses include photographic development tanks, rayon spinning buckets and parts, milking machine cups. Decorative uses include radio and television cabine handles, knobs, buttons.							

Phenylene Oxides, Polysulfones, Polyarylsulfone

		Pheny	dene Oxides (Noryl)	Polysu	lfones	
Material —>		SE-100	SE-1	Glass Fiber Reinforced*	Standard ¹	Glass Fiber Reinforced ^b	Polyaryl- sulfone
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu/hr/sq ft/°F/in Coef of Ther Exp, 10 ° per °F	ASTM D792 C177 D696	1 10 1 10 3 8	1 06 1 5 3 3	1 21, 1 27 1 15, 1 1 2 0, 1 4	1 24 1 8 3 1	1 41, 1 55 — 1 6, 1 2	1 36 1 1 2 6
Specific Heat, Btu/lb/°F Refractive Index, n _D Water Absorption (24 hr), %	D542 D570	Opaque 0 07	— Opaquë 0 07	Opaque 0 06	0 24 1 63 0 22	Opaque 0 22, 0 18	18
MECHANICAL PROPERTIES Tensile Strength, 1000 psi Ultimate	D638	— 78	 96	 14 5, 17 0	 10 2	 17, 19	13 8
Yield Elongation, % Ultimate Yield	_	50	60	46	50 100 5 6		15 20 13
Mod of Elast in Tension, 10 ^s psi Flex strength, 1000 psi Mod of Elast in Flex, 10 ^c psi Impact Str (Izod notched), ft lb/in Compr Strength, 1000 psi Hardness (Rockwell) Coef of Static Frict (against self) Abrasion Res (Taber, CS 17),	D638 D790 D790 D638 D695 D785	38 128 36 50 12 R115	3 55 13 5 3 6 5 0 16 4 R119	9 25, 13 3 20 5, 22 7 4, 10 4 2 3 17 6, 17 9 £106, £108	3 6 15 4 3 9 1 3 13 9 R120 0 67	10 9, 14 9 25, 28 12, 15 5 1 8, 2 0 — M84	37 172 40 50 178 M110 0103
mg/1000 cycles		100	20	35	20		40
Volume Resistivity ohm cm Dielectric Str (short time), v mil Dielectric Constant	D257 D149 D150	10¹ 400(⅓ ın)	10 ¹⁷ 500(½ in)	10 ¹⁷ 1020(1/32 in	5 x 10 ¹⁶) 425)0 ¹¹ 480	3 2 x 10 ¹⁶ 350
60 cycles 10" cycles Dissipation Factor	D150	2 65 2 64	2 69 2 68	2 93 2 92	3 06 3 03	3 55 3 41	3 94 3 7
60 cycles 10° cycles Arc Resistance, sec	D495	0 0007 0 0024 75	0 0007 0 0024 75	0 0009 0 0015 120	0 0008 0 0034 122	0 0019 0 0049 114	0 003 0 012 67
HEAT RESISTANCE Max Rec Service Temp, F Deflection Temp, F 66 psi 264 psi	D648	 230 212	212 279 265		340 358 345	350 389 365	500 525
APPLICABLE PROCESSING METHODS		Injection mol forming, foam	dıng, extrus	!	Injection mole sion, thermofor		Injection molding
CHEMICAL RESISTANCE		Excellent residetergents and bases evitures Many hydrocarbons dissolve these	d weak and ven at eleva halogenated will soften	strong acids ted tempera and aromatic	Res to irorgan kalis and alip carbons, parti or swells in aromatic hydro uble in chlorif carbons	hatic hydro ally soluble ketones and carbons, sol	Res to aque ous acids and bases, fuels, oils, fluorinated solvents Dissolvents in highly polar solvents such as DMF, DMAC, NMP
USES		Automotive da nectors, appli- housings, cab coffee brewers plumbing part platforms, coi sulators, swi blocks, tuner	ance & busii inets, consol s & dispenso is, valves, to l assemblies, tch housing	ness machine es & covers, ers, pump & ape cartridge bus bar in es, terminal	Coil bobbins, s minal blocks, b connectors, circ sockets tube t hardware, col parts, sight g parts, lamp craft ducts, h side wall pai housings and projector transp	attery cases, cuit carriers, cases, range ifee maker lasses, auto bezels, air lousing and nels, meter components,	Molded parts requiring str and tough ness at high temps Extrusions, coatings, filled compositions for bearing use

[&]quot;Where two values are given first applies to 20% glass fiber and second to 30% otherwise same value applies to both b Where two values are given first applies to 30% glass fiber and second to 40% otherwise same value applies to both c 10% deformation

Polybutadienes, Polybutylenes, Polycarbonates and Polymethyl Pentenes

	-		Polyb	utylenes	Polycarb	onates	
Materials and Type →		Polybutadienes	Copolymer	Homopolymer	Unfilled	40% gl reinf	Polymethyl pentenes
PHYSICAL PROPERTIES Specific gravity Refractive Index, n _i , Transparency (visible light), %	ASTM D792 D542 D1003	1 6 2 0 — Opaque '	0 894 0 910 — Translucent	0 910 0 915 150 Translucent	1 19 1 25 1 586 87 89	1 52 Opaque	0 83 1 465 90
MECHANICAL PROPERTIES Tensile Strength, 1000 psi (yld) Elongation % (ult) Modulus, 1000 psi	D638	5 12 — 400 1200	0 9 2 2 400 500 12-34	2 2 2 5 300 400 34 36	8 5 9 6 10 115 340 450	23 (ult) 3 5 1680	4 15 210
Flexural Strength, 1000 psi Modulus, 1000 psi Compressive str, 1000 psi		7 21 700 1800	_		12 15 310 500	27 1400	140 200
(2% offset)	D695	11 20	_		10 14	21	_
Impact strength Izod (notched), Ib/In Gardner ft Ib/In	D256	1 10 1 4	=	-	4 16 —	2 5 	08
Hardness Rockwell Shore	D785 D785	E30 70 	34 50D	53 60D	M68 85 	M93 	L67 74 —
ELECTRICAL PROPERTIES Vol res, ohm cm Dielec str, v/mil (dry)	D257 D149	1 5 x 10 ¹⁵			2582 x 1015	4 x 10 ¹⁶	1016
Short time Dielec constant	D150	400 600			380 450	450	700
60 Hz 10* Hz Dissip factor	D150	33 33	2 18 2 25 2 18 2 25	2 25 2 25	3 10 3 17 2 96 3 05	3 53 3 48	2 12 2 12
60 Hz 10° Hz Arc res, sec (tungsten electrodes)	D495	0 009 0 003 —	0 0002 0 0002	0 0002 0 0002	0 0009 0 010 0 0091 120	0 0013 0 0067 120	_
THERMAL PROPERTIES Ther cond, Btu/hr/sq ft/°F/in Coef of therm exp 10-*/°F Specific heat, Btu/lb/°F	C177 D696	- - -	<u>-</u> -	15 71 —	1 35 1 41 1 79 3 75 0 30	1 53 0 93	
Heat deflection temp, F At 66 psi At 264 psi Brittleness temp, F Max temp for cont use	D648 D746	 500 	 _5 to _35	215 235 120 140 -5	180 295 260 288 —200	310 295 —	- -
(no load), F		350 500		225		_	250 320
CHEMICAL AND ENVIRONMENTAL RES Water absorption, % In 24 hr Weathering Acids Weak Strong	D570	0 10 Discolors Resists Resists	0 01 — Resists	0 01 Embrittles Resists Resists	0 12 0 19 Discolors Resists Attacks	0 12 To none Resists Attacks	0 01 None Attacks Resists
Alkalı Weak Strong Organic solvents Fuels Oil and grease		Resists Resists Resists Resists Resists	Resists Resists	Resists Resists Slight swell Slight swell Slight swell	Res attacks Attacks Attacks Attacks Resists	Res attacks Attacks Attacks Attacks Resists	Resists Resists Attacks Resists Resists
METHODS OF PROCESSING		Calendering, casting extrusion compres sion, injection, rotational, trans fer mildg	Extrusion cast- ing thermoform ing, injection, ro tational, compres sion mldg	Extrusion, cast ing, thermoform ing, injection, ro tational, compres sion mldg	Blow, foam, in jection, rotational mldg, extrusion, thermoforming	Injection mldg	Blow mldg, extru sion, injection mldg, thermo forming
USES		Wire and cable jackets, foot wear, floor tiles, gas kets, tires, seal ants adhesive	Polymer additives and blends, hot melt adhesives	Water, gas chemical pipe and fit tings, pressure ves sels, drum liners, construction sheet ing, packaging film	Electrical parts, po housings, light glo sports goods glaz impellers, automo- body armor	bes, lenses, ing sheet,	Laboratory and medical ware light diffusers lenses reflectors vending machines parts packaging

Polyester—Thermoplastic

				Injection Molding	gs					
		Pol	ybutylene Terephth	alates	Polytetran	nethylene Ter	ephthalate			
- Type →		General Purpose Grade	Glass- Reinforced Grades	Glass- Reinforced Flame Retardant	General Purpose Grade	Glass- Reinforced Grade	Asbestos- Filled Grade			
PHYSICAL PROPERTIES Specific Gravity Specific Heat, Btu/lb/°F Ther Cond, Btu/hr/sq ft/°F/in Coef of Ther Exp, 10 in /in /°F Volume Resistivity, 10 ¹⁰ ohm cm Dielectric Str (short time), v/mil	ASTM D792 — C177 D696 D257 D149	1 31 — 1 1 5 3 4 590	1 52 1 3 2 7 3 3 3 2 3 3 560 750	1 58 — 1 3 3 5 3 4 750	1 31 0 36 0 55 — 4 9 13 0* 2 x 10 ¹⁵ 420 540	1 45 — — — —	1 46 ————————————————————————————————————			
Dielectric Constant Dissipation Factor (to 10° Hz) Arc Resistance, sec Water Absorption (24 hr), %	D150 D150 D495 D570	3133 0002 190 008	3 7 4 2 0 002 0 003 130 0 06 0 07	3 7 3 8 0 002 80 0 07	3 16 0 023 125 0 09	0 07	3542 0015 108 01			
MECHANICAL PROPERTIES Tensile Str, 10° psi 212 F 302 F	D638	8	17 17 3 7 5 5	17	82	14	12			
Elongation, % Flexural Str, 10° psi Flexural Modulus, 10° psi 212 F 302 F	D638 D790 D790	300 12 8 0 34 —	1-5 22 24 1 2 1 5 0 63 0 53	5 23 1 2 —	250 12 3 3 —	<5 19 87 —	<5 19 9 0			
Compressive Str, 10° psi Shear Str, 10° psi Impact Str (Izod), ft lb/in Notched	D695 D732 D256	13 77 12	16 18 8 9 1 3 2 2	18 9			— — — 05			
Unnotched Hardness, Rockwell Heat Deflection Temp, F 66 psi	D785 D648	R117	4 2 15 R118 M90 420	15 R119 420	R117	7 R117 M85	6 0 M85			
264 psi Endurance Limit (10 cyc), 10° psi Creep % Abrasion Resistance°, mg/10° cyc Coef of Friction	D671 D674 D1044 D1894	130 2 85 1 1 (1000 psi) 6 5	415 416 5 0 44 (4000 psi) 9 50	415 5 0 44 (4000 psi) 11	122 — — —	380 — — —	330 — — —			
Self Steel		0 17 0 13	0 16 0 14	0 16 0 14	-		_ _			
APPLICABLE PROCESSING METHODS		Injection moldin	g, extrusion, thermo	oforming, foam mole	ling		'			
HEMICAL RESISTANCE		Resistant to aliphatic hydrocarbons, gasoline, carbon tetrachloride, perchloroethylene, oils, fats, alcohols glycols, ethers, high molecular weight esters and ketones, dilute acids and bases, detergents, most aqueous salt sol, at ambient temp. Attacked by strong acids and bases. Resistant to potable water at ambient temp. Prolonged use in water above 150 F not recommended. Swollen by ethylene dichloride, low molecular weight ketones and substituted aromatic compounds.								
USES	SES		valves pump parts y parts, tape casse	, fittings, rollers, ca tites, fasteners	ms, bushings,	electronic par	ts,			

Properties shown are at approximately room temperature unless otherwise noted. For 32 302 F range. b Underwriters' Lab spec. c Taper abrasion. CS 17 wheel 1000 g load.

Polyesters—Thermosets

	-	Cast Po	lyester	Reinforc	ed Polyester Mol	dings	Pultru	Sions
Туре →		Rigid	Flexible	High Strength (glass fibers)	Heat and Chemical Resistant (asbestos)	Sheet Molding Compounds, Genera Purpose	General purpose	High perform ance
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu/hr/sq ft/°F/in Coef of Ther Exp, per °F Specific Heat, Btu/hb/°F Water Absorption (24 hr), % Transparency (visible light), % Refractive Index, np	ASTM D792 — D696 — D570 —	1 12'1 46 0 10 0 12 3 9 5 6 x 10° 0 30 0 55 0 20 0 60 — 1 53-1 58	1 06 1 25 ————————————————————————————————————	1 8 12 0 1 32-1 68 13 19 x 10-5 0 25 0 35 0 5 0 75 Opaque	15175 	1 65 1 80 — 0 20 0 25 0 15-0 25 Opaque	1 61 4 5 x 10 ⁻⁴ 0 28 0 75 Opaque	1 94 5 3 x 10-4 0 24 0 75 Opaque
MECHANICAL PROPERTIES Tensile Strength, 1000 psi Tensile Modulus, 10° psi Elongation, % Impact Strength (Izod notched), it/lb/in Flexural Strength, 1000 psi Mod of Elast in Flex 10° psi Compr Strength, 1000 psi Hardness (Barcol)	D638 D638 D638 D256 D790 D790 D690 D785	4 10 1 5 6 5 1 7 2 6 0 18 0 40 14 18 1-9 12 37 35 50	1 8 0 001 0 10 25 300 4 0 4 16 0 001 0 39 1 17 6 40	5-10 16 20 0 3 0 5 1-10 6 26 15 25 20 26 60 80	4 6 12 15 0 45-1 0 10 13 20 25 40 70	15 17 15 20 	20° 23° — 18° 30° 20° — 50°	100° 60° — 18° — — — 50°
ELECTRICAL PROPERTIES Volume Resistivity, ohm cm Dielectric Str (step by step), v/mil Dielectric Constant 60 cycles 10° cycles Dissipation Factor 60 cycles 10° cycles	D257 D149 D150 D150	10 ¹³ 300 400 2 8 4 4 2 8 4 4 0 003 0 04 0 006 0 04 115 135	10 ¹² 300 400 3 18-7 0 3 7 6 1 0 01 0 18 0 02 0 05 125 145	1 x 10 ¹² 1 x 10 ¹³ 200 400 130 170	1 x 10 ¹² 1 x 10 ¹³ 350	64 x 10 ¹⁵ 22 x 10 ¹⁶ 400 440 4 62 5 0 4 55 4 75 0 0087 0 04 0 0086 0 022 130 180	4 5(1) 0 03(1) 80	4 5(1) 0 03(1) 80
Arc Resistance, sec APPLICABLE PROCESSING METHODS	D433	Casting	125 145	Layup molding, la pression molding, ing, injection moldi	minating, com transfer mold	Matched metal die com pression molding	Pultrusion	
HEAT RESISTANCE Max Rec Svc Temp, F Heat Deflection Temp (264 psi), F	 D648	250 300 120 400	150 250	250 400 400	300 375 400	300 375 400	250 300 400	300 400
CHEMICAL RESISTANCE		Slightly to heav by strong acids, strong alkalis, solvents	attacked by	Good to exc res to weak acids, or- ganic sol vents, weak alkalis, good res to strong acids, poor to fair res to strong alkalis	Good to exc res to weak acids, or ganic sol vents and weak aikalis, good res to strong acids, air to good res to strong alkalis	Good to exc res to weak acids, or ganic sol vents and weak alkalis, good res to strong acids, poor to fair res to strong alkalis	Good to exc weak acids, solvents we kalies good strong acids fair ras to s alkalies	organic eak al res to s, poor to
USES	Electrical components, buttons, decorative architec tural uses	Flooring, tooling en capsulants, buttons and shields		gs, covers, trays , motor shrouds, elmets		Elec components cor rosion res construc tion, high str to wt mech parts		

^{*} Longitudinal direction

Polyethylenes

		T	ype I—Lower Densi (0 910-0 925)	ty	Type 11—Medium Density (0 926 0 940)			
Туре ⇒	;	Melt Index 0 3-3 6	Melt Index 6 26	Melt Index 200	Melt Index 20	Melt Index 1 0-1.9		
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu/hr/sq ft/°F/ft Coef of Ther Exp, 10-5 per °F Refractive Index Spec Ht, Btu/lb/°F Water Absorption (24 hr), %	ASTM D792 C177 D696 D542	0 910=0 925 0 19 8 9-11 0 1 51 0 53-0 55 <0 01	0-918-0-925 0 19 8 9-11 0 1 51 0 53-0 55 <0 01	0 ⁻ 910 0 19 11 0 1 51 0 53-0 55 <0 01	0 930 0 19 8 3-16 7 1 51 0 53-0 55 <0 01	0 930-0 940 0 19 8 3-16 7 1 51 0 53-0 55 <0 01		
MECHANICAL PROPERTIES Mod of Elast in Tension, 10 ⁵ psi Ten Str, 1000 psi Elong, % Hardness (Shore) Impact Str (Izod), ft-lb/in notch Brittleness Temp, F Mod of Elast in Flex, 10 ³ psi Shear Str, 1000 psi	D638 D412 D412 D785 D256	0 21-0 27 1 4-2 5 500-725 C73, D50-52 <-94 13-27 1 6-1 85	0 20-0 24 1 4-2 0 125-675 C73, D47-53 		2 0 200 D55 — <—148 35 50	2 3-2 4 200-425 D55-D56 — <—148 35-50		
ELECTRICAL PROPERTIES Vol Res, ohm-cm Dielec Str (short time), v/mil Dielec Const Dissip Factor	D257 D149 D150 D150	1017-1019 480 2 3 <0 0005	1017-1019 480 2 3 <0 0005	10 ¹⁷ -10 ¹⁹ 480 2 3 <0 0005	>10 ¹⁵ 480 2 3 <0 0005	>10 ¹⁵ 480 2 3 <0 0005		
APPLICABLE PROCESSING METHODS	I		, extrusion, rotation olding, foam moldin		Injection molding, extrusion, thermoforming, rotational molding, blow molding			
HEAT RESISTANCE Vicat Softening Point, F		176-201	176-201		215 230	220-235		
CHEMICAL RESISTANCE		Excellent resistance to acids and alkalis at normal temperature, except oxidizing acids such as mitric, chlorosultonic and fuming sulfuric Below 122 F, insoluble in organic solvents, at higher temperatures, soluble to varying degrees in hydrocarbons and halogenated hydrocarbons, but insoluble in more polar liquids. Generally, a higher melt index material has greater solubility						
USES		Injection moldings kitchen utilityware, toys, process tank liners, closures, packages, sealing rings, battery parts. Blow moldings squeeze bottles for packaging, containers for drugs. Film wrapping materials for food, clothes, other items. Wire and cable, high frequency insulation, jacketing. Pipe chemicals handling irrigation systems, natural gas transmission.						

		Type II	I—Higher Density (0.94	1-0 96 5)	
Туре →		Melt Index 0.2-0 9	Melt Index 0 1-12.0	Melt Index 1 5-15	High Molecular Weight
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu/hr/sq ft/°F/ft Coef of Ther Exp, 10-5 per°F Refractive Index Spec Ht, Btu/lb/°F Water Absorption (24 hr), % Flaminability, ipm	ASTM D792 C177 D696 D542 D570 D635	0 96 0 19 8 3-16 7 1 54 0 46-0 55 <0 01 1 0	0 950 0 955 0 19 8 3-16 7 1 54 0 46-0 55 <0 01 1 0	0 96 0 19 8 3-16 7 1'54 0 46-0 55 <0 01 1 0	0 94 0 19 — — <0 01 1 0
MECHANICAL PROPERTIES Mod of Elast in Tension, 10 ⁵ psi Ten Str 1000 psi Ultimate/Elongation,% Hardness (Shore)	D638 D412 D412 D785	4 4 700 1000 068–70	2 9-4 0 50 1000 D60-70	4 4 100 700 068-70	1 0 5 4 400 60–65

Polyethylenes

		Type III-	Higher Density (0 941 0 9	65)		
Type →		Melt Index 0.2 0 9	Melt Index 0 1 12 0	Melt Index 1 5 15	High Molecular Weight	
MECHANICAL PROPERTIES (Cont'd) Impact Str (Izod), ft lb /in notch Brittleness Temp, F Mod of Elast in Flex, 103 psi	D256 D747	4 0-14 106 to180 130-150	0 4-6 0 <-76 to <-170 90-125	1 2-2 5 -100 to -180 150	>20 <-100 75	
ELECTRICAL PROPERTIES Vol Res, ohm cm Dielec Str (short time), v/mil Dielec Const Dissip Factor	D257 D149 D150 D150	>1013 480 2 3 <0 0005	>1018 480 2 3 <0 0005	>10 ¹⁵ 480 2 3 <0 0005	>10 ¹⁵ 480 2 3 <0 0005	
APPLICABLE PROCESSING METHODS		Injection molding molding, blow molding, blow molding	extrusion, thermoforming, foam molding	ng, rotational	Extrusion, compression molding, and special injec tion molding	
HEAT RESISTANCE Vicat Softening Point, F	- · ·	258 266	240 255	250 260	_	
CHEMICAL RESISTANCE	Same basic chemical resistance as Types I and II, but better resistance to some specific chemicals					
USES	sterilizable housewar	ckaging, structural houses and hospital equipme apping materials, wire an	nt, hoops, battery parts	s, blow molded contain-		

Powder b Flow molding

Olefin Copolymers

Type → PHYSICAL PROPERTIES ASTM		EEA (Ethylene Ethyl Acrylate)	EVA (Ethylene Vinyl Acetate)	Ethylene Butene	Propylene Ethylene	lonomer	Poly allomer	
PHYSICAL PROPERTIES Specific Gravity Tensile Impact.	ASTM D792	0 93	0 94	0 95	0 91	0 94	0 898 0 904	
ft lb/in Tensile Str, 100 psi	D1822 D638	500 2 0	690 3 6	35	150 4	400 4	 30 43	
(notched), ft lb/in Hardness, Shore D Elongation (in 1 in), % Flexural Modulus, psi	D256 D785 D638 D790	 35 650 	36 650 —	0 4 65 20 165	1 1 — — 140	9 14 60 450 —	15 300 400 0 7 1 3 x 10	
ELECTRICAL PROPERTIES Vol Res, 10 ¹¹ ohm cm Dielec Str (short time),	D257	24	0 15	_	_	10	>1010	
v/mil Dielec Const, 60 cps Dissip Factor, 60 cps	D149 D150 D150	550 2 8 0 001	525 3 16 0 003	_ _ _		1000 2 4 0 003	500 650 2 3 >0 0005	
THERMAL PROPERTIES Heat Deflection Temp (66 psi), F Brittleness Temp, F Softening Point, Vicat	D648 D746 D1525	 -155 147			104 	105 160 162	122 133*	
CHEMICAL RESISTANCE		Res most weak min eral acids, alkalis, att by chlorinated hydrocarbons, straight chain paraffinic sol vents, benzene		Generally satisfactory res to chemicals, good res to stress corrosion		Res to or ganic sol vents, att by oxid izing acids	Res to strong alk, weak acids organ ic solvents, att slowly by acid reagents	
USES		Tubing, seal dampening backing, ele tion, floor r flexible iten	pads, rug c insula nats, other	Packaging, a furniture, wi cable insulat rigid parts	re and	Skin pack aging, coat ed sub strates, clear, flex ible parts	Molded parts req tough ness and good hinge properties	

Polyimides, Poly (amide-imide)

Material →			Polyimide	S	Poly(amide imide)		
material >		Unreinforced	15% Graphite	Glass Reinf	High Modulus	High Impact	
PHYSICAL PROPERTIES	ASTM						
Specific Gravity	D792	143	1 51	1 90	1 41	1 38	
Ther Cond, Btu/hr/sq ft/°F/in	Сепсо	2568	60	3 59 ⁵	-	-	
Coef of Ther Exp, per °F x 10 ⁻⁴	Fitch D696	2528	23	08	19	24	
Specific Heat, Btu/lb/°F	D030	0 27 0 31 0 0	23	0 275 °	19	24	
Refractive Index, n _p	D542	Opaque	Opaque	Opaque	Opaque	Opaque	
Water Absorption (24 hr), %	D570	0 24 0 47	0 19	02			
Coef of Friction	—] ~		_] –		
MECHANICAL PROPERTIES							
Tensile Strength, 1000 psi	D638					1	
Ultımate	ŀ				_		
Yield		7 5 13	59	28	133	170	
Elongation, %	D638			` .	<u> </u>		
Ultimate		<18	125	<1	5	15	
Yield Mod of Elast in Tension, 10 ^s psi	D638	4775	546	45		-	
Flex Strength, 1000 psi	D790	11 17	6615	56	23 4	27 4	
Mod of Elast in Flex, 10 ^s psi	D790	4570	5054	38 4	70	5 2	
Impact Str (Izod notched), ft lb/in	D638	054-10	0 5ª	17 ^d	10	30	
Compr Strength, 1000 psi	D695	27 4 40	32	42	35	35	
Hardness (Rockwell)	D785	97 99M	88M	114E	104E	78E	
Abrasion Res (Taber, CS 10 wheel), mg/ 1000 cycles, gm loss	D1044	0 080*		20	_	_	
ELECTRICAL PROPERTIES				 		<u> </u>	
Volume Resistivity, ohm cm	D257	1015 1014	_	9 2 x 1015	0 7 x 10 ¹⁵	0 7 x 10 ¹⁵	
Dielectric Str (short time), v/mil	D149	310 560	_	300	430	440	
Dielectric Constant	D150	1			Í		
60 cycles	}	3641	_	4 84	-	_	
10° cycles		3539	-	4 74	38	39	
Dissipation Factor	D150				ļ	ļ	
60 cycles		0 002 0 003	_	0 0034	0.001		
10° cycles	D495	0 004 0 011 152 230	_	0 0055 50 180	0 001	0 009	
Arc Resistance, sec	D#33	132 230		30 180	<u> </u>		
HEAT RESISTANCE		F00 000	000	500	1		
Max Rec Service Temp, F	D648	500 800	800	200	_	1	
Deflection Temp, F 66 psi	D046	l _ i	_	<u> </u>			
264 psi		582 680	680	660 ,	545	520	
APPLICABLE PROCESSING	l	Compression mo	Iding laminating		Compression molding,	laminating injection	
METHODS		filament winding	, machining, sint	ering	molding, foam moldin		
			 -	 	1		
CHEMICAL RESISTANCE		Resist polar and dilute acids and		: solvents,	Resists most acids, alkalis, oils, fuels, greases and alcohol, attacked by organic solvents		
USES		Rushings valve s	eats and	High temp hearing	Rushings valva casta	annding whose and	
V020		Bushings, valve seats and High temp bearing high temp mechanical parts uses such as jet engine components			Bushings valve seats grinding wheels and other high temperature mechanical parts		

^{*} Extruded sheet b G E test Cal/gm/°C d ASTM D256 • In /1000 hr dry 10 000 PV f This grade is an electrical conductor

Polypropylene, Polyphenylene Sulfide, Polyether Sulfone

			P	olypropylene			Polyphenylend	e Sulfide	Poly
Material →		General Purpose	High Impact	Asbestos Filled	Glass Reinforced	Flame Retardant	Standard	40% Glass Reinforced	ether suifone
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu/hr/sq ft/	ASTM D792	0 900 0 910	0 900 0 910	1 11 1 36	1 04-1 22	12	1.34	1 64	1 37
°F/in Coef of Ther Exp, 10 ⁻⁴ per		1 21 1 36	1 72	_	_	-	20		
°F Specific Heat, Btu/lb/°F	D696	3858 045	4059 045048	2-3	1624	_	3 0 0 26	22	
Refractive Index, n _p Water Ab (24 hr), %	D542 D570	Transl op <0 01 0 03	Trans op <0 01 0 02	Opaque 0 02 0 04	Opaque 0 02 0 05	Opaque 0 02 0 03	Opaque 0 2	Opaque 0 01	Opaque 0 43
MECHANICAL PROPERTIES Tensile Strength, 1000 psi Maximum	D638, C	4855	_	_			-	_	_
Yield Elongation, %	_	4852	2843	3382	6 10	3642	11	21	12 2
Break Yield Mod of Elast in Tension,		30->200 9-15	30 >200 7 13	3 20 5	2 4 —	3 15 —	3 -	3 9	-
10 ^s psi Flex Yld Strength, 1000 psi Mod of Elast in Flex, 10 ^s psi	D638, B D790, B D790, B	1622 67 17-25	13 41 1020	759 3465	812 8 11 4 8 2	1524 — 1961	4 8 20 6 0	11 2 37 22 0	3 54 18 65 3 73
Impact Str (Izod notched), ft-lb/m	D256	0422	1512	0 5-1 5	052	22	30	60	16
Compr Yield Strength, 1000 psi Hardness (Rockwell)	D695 D785	5 5 6 5 R80 R100	4 4 R28 95	70 R90 R110	6 5 7 R90 R115	R60 R105	16 R124	21 R123	 M88
ELECTRICAL PROPERTIES Vol Res, ohm cm Diel Str (short time), vpm Dielec Const	D257 D149 D150	>10 ¹¹ 650(125 mil)	10 ³⁷ 450 650	1 5 x 10 ¹⁸ 450	1 7 × 10 ¹⁶ 317 475	4x10 ¹⁶ 10 ¹⁷ 485 700	10 ³⁴ 595	10³° 490	10"-10"
60 Cycles 10 ^s Cycles		2 20 2 28 2 23 2 24	2 20 2 28 2 23 2 27	2 75 2 6 3 17	2325 225	2 46 2 79 2 45 2 70	3 11 3 22	3 79 3 88	3 5 3 5
Dissip Factor 60 Cycles	D150	0 0005 0 0007	<0 0016	0 007	0 002	0 0007 0 017	0 0004	0 0037	0 001
10° Cycles		0 0002 0 0003	0 0002 0 0003	0 002	0 003	0 0006 0 003	⁻ 0 0007	0 0041	0 006
Arc Res, sec	D495	125 136	123 140	121 125	73 77	15 40		160	
HEAT RESISTANCE Max Rec Svc Temp, F Deflection Temp, F	 D648	230		250	250	205	500	500	
66 psi 264 psi		205 230 135 140	190 235 120 140	270 290 170 220	275 310 250 300	245 280 155	278	425	— 400
APPLICABLE PROCESSING METHODS		Extrusion, inje		~	, rotational r	molding,	Injection mldg, coating, compres- sion mldg	·	Injection mldg, ex trusion
CHEMICAL RESISTANCE		Res to most a temp, res to h 175 F. soluble xylene, and ch	nigher aliphatic to such area	solvents and matic substan	l polar substa	nces Above	Exc res to org sol F Unaff by strong or aqueous morg	g alkalıs	Res most inorg rea gents, org chem Att by conc oxid acids, some org solv, chlor hydro carbons
USES		Hospital ware, house wares, appli ances, radio and TV hous ings, film fibers	Luggage seating packaging, housings, automotive parts, con tainers wire coating	Housings, automobile fan shrouds, covers	Housings, shrouds, cases, panels and mechanical parts	Electrical uses to meet UL require ments, housings and shields	Corrosion resistant pump com ponents, valves and pipe	Pump vahes, valve parts gaskets, fuel cells and auto parts req chem res at higher temps	elec parts, appliance compo

Polystyrenes

	······································		Polysi	tyrenes		Styrene	Glass
Туре →		General Purpose	Medium Impact	High Impact	l Glass Fiber (30%) Reinf	Acrylonitrile	Fiber (30%) Reinforced SAN
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu/hr/sq ft/°F/ft Coef of Ther Exp, 10° per °F Specific Heat, Btu/lb/°F Refractive-Index, no Water Absorption (24 hr), %	ASTM D792 D696 D542 D570	1 04 0 058-0 090 3 3-4 8 0 30-0 35 1 60 0 03 0 2	1 04 1 07 0 024-0 090 3 3-4 7 0 30-0 35 Opaque 0 03-0 09	1 04-1 07 0 024-0 090 2 2-5 6 0 30-0 35 0paque 0 05 0 22	1 8 0 256 Opagire	1 04 1 07 3 6-3 7 0 33 1 565-1 569 0 20 0 35	1 35 1 6 — Opaque 0 15
MECHANICAL PROPERTIES Tensile Strength, 1000 psi Ultimate Yield Elongation, % Ultimate Yield Mod of Elast in Tension, 105 psi Flex Strength, 1000 psi Mod of Elast in Flex, 105 psi Impact Sir (Izod notched), ft lb/in Compr Strength, 1000 psi	D638 D638 D638 D790 D790 D638 D695	5 0-10 5 0-10 1 0 2 3 1 0 2 3 4 6-5 0 10-15 4-5 0 2-0 4 11 5-16 0	60 60 30-40 12-30 39-47 	33-51 28-53 1520 150380 23-40 08-18 4-9	14 14 1 1 1 1 1 2 1 17 12 25 19	95-120 0537 40-50 030-045	18 18 1 4 1 4 17 5 22 14 5 3 0 2 3
Hardness (Rockwell) Abrasion Res (Taber), mg/1000 cycles ELECTRICAL PROPERTIES Volume Resistivity, ohm cm Dielectric Str (short time), v/mil Dielectric Constant 60 cycles	D257 D149 D150	M72 >1016 >500 2 45-2 65	M47-65 	M3-43 	M85-95 164 36 x 10 ¹⁶ 396 31	M80 85 	M90-100
106 cycles Dissipation Factor 60 cycles 106 cycles	D150	2 45-2 65 0 0001- 0 0003 0 0001- 0 0005	2 4-3 8 0 0004- 0 002 0 0004- 0 002	2 5-4 0 0 0004- 0 002 0 0004- 0 002	3 0 0 005 0 002	2 6–3 02 > 0 006 0 007-0 010	3 4 0 005 0 009
Arc Resistance, sec HEAT RESISTANCE Max Rec Service Temp, F Deflection Temp, F 66 ps: 264 ps:	D648	60 135 160-205 220 max	20 135 125–165 210 max	125–165 210 max	28 190–200 230 220	100–150 175–190 1 210–220	230 220
APPLICABLE PROCESSING METHODS	<u> </u>	 				olding, blow m	
CHEMICAL RESISTANCE	:	Res alkalis, s and water Fa and vegetable	salts, low alce ir res to mine e oils Not res d hydrocarbon	ral chemicals to aromatic	No effect by weak acids, strong acids, att by oxid acids, no effect by weak alkalis, att slowly by str alkalis, soluble in aromatic and chlor hydrocarbons	alkalış and	No effect by weak acids, alkalis, strong acids, att by oxid acids, str alkalis, soluble in ketones, esters, some chlor hydro- carbons
USES		Thin parts, I long flow parts, toys, appliances, containers, film, mono filaments and housewares	Radio cabinets, toys, con tainers, packaging and clo sures	Containers, cups, lids, large thin wall parts, auto parts, TV cabinets, trays and appliance housings		Kitchen ware, tumblers, broom bristles, ice buckets, ciosures, film, con tainers, lenses, battery cases	Camera housings and frames, auto bezels, electrical components, handles, auto panels

Polyvinyl Chloride and Copolymers

•		Polyvinyi C	hloride, Polyvinył Chlo	ride Acetate	Vinylidene Chloride	Chlorinated
Type →		Nonrigid—General	Nonrigid—Electrical	Rigid— Normal Impact	Copolymer	Polyvinyl Chleride
PHYSICAL PROPERTIES Specific Gravity Ther Cond Btu/hr/sq ft/°F/ft Coef of Ther Exp, 10 ⁻³ per °F Refractive Index Spec Ht, Btu/lb/°F Water Absorption (24 hr), %	ASTM D792 D325 D696 D542 	1 20 1 55 1 0 07 0 10 — — — — — — — — —	1 16 1 40 0 07 0 10 — — — 0 40 0 75	1 32 1 44 0 07 0 10 2 8 3 3 — — — 0 03 0 40	1 68 1 75 0 053 8 78 1 60 1 63 0 32 >0 1	1 49 1 58 — 3 8 — — 0 02 0 15
MECHANICAL PROPERTIES Mod of Elast in Tension, 10 ⁵ psi Ten Str 1000 psi Elong (in 2 in), % Hardness (Rockwell) Hardness (Shore) Impact Str (Izod notched), ft lb/in Mod of Elast in Flex, psi 100% Modulus, psi Flex Str, 1000 psi Compr Str, 1000 psi Compr Yld Str, 1000 psi Cold Flex Temp, F Cold Bend Temp, F	D412 D412 D638 D785 D676 D256 D790 D790 D695 D695 D1043	0 004 0 03 1 3 5 200 450 — A50 100 Variable — 600 2800 — — — — — — — — — — — — —	0 01 0 03 2 3 2 220 360 — A78 100 Variable — 600 2800 — — — — — — — — — — — 7 to +20 — 49 to -4	3 5 4 0° 5 5 8 1-10 R110 120 D70 85 0 5 10 3 8 5 4 x 10 ³ 11 16 11 12 10 11	0 7 2 0 4 8, 15 40 15 25, 20 30 M50 65 > A95 2 8, 0 053 15 17, flexible 75 85	R117-122 1030 38450 14517 ————————————————————————————————————
Vol Res, ohm cm Dielec Str (short time), v/mil Dielec Const (60 cycles) Dissip Factor (60 cycles) Loss Factor (60 cycles)	D257 D149 D150 D150 D150	1 700 x 10 ¹² 5 5 9 1 0 05 0 15	4 300 x 10 ¹¹ 24 500 6 0 8 0 0 08 0 11 1 0 1 2	10 ¹⁴ ->10 ¹⁵ 725 1400 2 3 3 7 0 020 0 03 0 030 0 072	10 ¹⁴ 10 ¹⁶ — 3 5 0 03 0 15 —	10 ¹² 1220 1500 3 08 0 019 0 021
APPLICABLE PROCESSING METHODS			g, extrusion, thermofor		Extrusion, calendering	Calendering, compression molding, ex trusion, injec tion molding, thermoforming
HEAT RESISTANCE Max Rec Svc Temp, F Heat Dist Temp, F	-	150 220	140 220	150 165	170 212	230
66 psi 264 psi	D648 D648		-	170 185 140 170	190 210 130 150	215 247 202 234
CHEMICAL RESISTANCE		to not resist to str	to alkalis and weak a ong acids Not resista ydrocarbons produce s	nt to keotones and	Excellent to all acids and most common alkalis°	Res to acids, alkalis oil, grease and most organ ic solvents
USES		Parts made by molding high speed extrusion, calendering Blown extruded film Vacuum cleaner parts handlebar grips, doli parts, hair, curlers, safety goggle cups, grommets toy tires, garden hose, and pro tective garments	Parts made by calendering ex trusion Insulation and jacketing for communication and low tension power wire and cable building wiring appliance and machine tool cords and switch board cable	Parts made by calendering lam inating, molding, extrusion Fume hoods and ducts, storage tanks chemical piping, plating tanks phonograph records Sheets and shapes for decorative panels, other building uses	Extrusions gasket rods, valve seats, flexible chemical tubing and pipe, tape for wrapping joints chemical conveyor belts Moldings spray gun handles acid dippers, parts for rayon producing equipment	Hoods ducts exterior bidg components, pipe

^{*} Where two values or ranges are given they represent unoriented and oriented forms respectively b Modulus of elasticity in compression. C Unaffected by aliphatic and aromatic hydrocarbons alcohols esters etc. d Barrel temperature. Stock temperature

Silicones

Type →			Glass Fiber Reinforced Silicones	Granular (Silica) Reinforced Silicones	Woven Glass Fabric/ Silicone Laminate
PHYSICAL PROPERTIES Specific Gravity Ther-Cond, Btu/hr/sq-ft/°F/ft Coef of Ther Exp, per °F x 10 5 Specific Heat, Btu/ib/°F Water Absorption (24 hr), %. Transparency (visible light), % Refractive Index, np	• ••	ASTM D792 D696 D570 D542	1 88 0 18 3 17–3 23 — 0 1–0 15 Opaque	1 86-2 00 0 25-0 5 2 5-5 0 	1 75–1 8 0 075–0 125 — 0 246 0 03–0 5 Opaque
MECHANICAL PROPERTIES Tensile Strength, 1000 psi Tensile Modulus, 105 psi Elongation, % Impact Str (Izod notched), ft lb/in Flexural Strength, 1000 psi Mod of Elast in Flex, 105 psi Compr Strength, 1000 psi Hardness (Rockwell) Abrasion Res (Taber)		D651 D651 D651 D256 D790 D790 D690 D785	65 <3 10 16–19 25 10–12 5 M87 	- 4–6 	30–35 28 — 10–25 33–47 26–32 15–24 75 (Barcol)
ELECTRICAL PROPERTIES Volume Resistivity ohm cm (dry) Dielectric Str (short time), v/mil Dielectric Constant 60 cycles . 106 cycles . Dissipation Factor 60 cycles . 106 cycles . Arc Resistance, sec	•	D257 D149 D150 D150	9 x 10 ¹⁴ 280 (in oil) 4 34 4 28 0 01 0 004 240	5 x 10 ¹⁴ 380 (in oil) 4 1–4 5 3 4–4 3 0 002–0 004 0 001–0 004 250–310	2-5 x 10 ¹⁴ 725 3 9-4 2 3 8-3 97 0 020 0 002 225-250
APPLICABLE PROCESSING METHODS			Compression molding, trans and injection molding	sfer molding	Layup molding, laminating
TRANSFER MOLDING Pressure, 1000 psi Temperature, F Shrinkage, %	•		0 5–10 350 0 0005	0 150-5 310-350 0 004-0 006	=
HEAT RESISTANCE Max Rec Service Temp, F Heat Deflection Temp (264 psi), F		 D648	>500 >900	>500 520->900	450–500 >900
CHEMICAL RESISTANCE			pitted by sodium hydroxide	cids Slightly softened and , except some mineral filled d if resistance to ketones,	Satis res to aviation gas lube oils, 40% sulfurio acid, 5% hydrochloric acid and freon 114 Slightly att by 5% hydrochloric acid Severely att by many organic solvents
JSES			Connector plugs, and other structural electronic parts requiring heat resistance	Electronic component en caosulation such as tran- sistors, diodes, resistors and capacitors	Special high temp struct or elect parts, such as aircraft radomes and ductwork, thermal and arc barriers, covers and cases for high freq equip

Rubber — Molded, Extruded

1	уре →	Naturai Rubber (Cis-polyisoprene)	Butadlene- Styrene	Synthetic (Polyisoprene)	Butadiene- Acrylonitrile (Nitrile)	Chloroprene (Neoprene)	Butyl (Isobutylene- Isoprene)
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu/hr/	ASTM D792	0 93	0 94	0 93	0 98	1 25	0 90
sq ft/°F/ft Coef of Ther Exp	C177	0 082	0 143	0 082	0 143	0 112	0 053
(cubical), 10 ⁻⁵ per °F Electrical Insulation Min Rec Svc Temp, F Max Rec Svc Temp, F	D696	37 Good 60 180	37 Good 60 180	Good -60 180	39 Fair 80 300	34 Fair -40 240	32 Good -50 300
MECHANICAL PROPERTIES Ten Str, psi	D412	2500-3500	200–300	2500 3500	500-900	3000-4000	2500-3000
Pure Gum Black Elongation, %	D412	3500–4500	2500-3500	3500 4500	3000-4500	3000-4000	2500-3000 2500-3000
Pure Gum Black Hardness (durometer) Rebound	D412 D412	750-850 550-650 A30-A90	400-600 500-600 A40-A90	300-700 A40-A80	300 700 300 650 A40-A95	800-900 500-600 A20 A95	750-950 650-850 A40-A90
Cold Hot Tear Resistance		Excellent Excellent Excellent	Good Good Fair	Excellent Excellent Excellent	Good Good Good	Very good Very good Fair to good	Bad Very good Good
Abrasion Resistance CHEMICAL RESISTANCE Sunlight Aging	J	Excellent Poor	Good to excellent Poor	Excellent Fair	Good to excellent Poor	Good Very good	Good to excellent Very good
Oxidation Heat Aging Solvents		Good Good	Good Very good	Excellent Good	Good Excellent	Excellent Excellent	Excellent Excellent
Aliphatic Hydrocarboi Aromatic Hydrocarboi Oxygenated, Alcohols	ns	Poor Poor Good	Poor Poor Good	Poor Poor Good	Excellent Good Good	Good Fair Very good	Poor Poor Very good
Oil, Gasoline Animal, Vegetable Oils Acids		Poor Poor to good	Poor Poor to good	Poor —	Excellent Excellent	Good Excellent	Poor Excellent
Dilute Concentrated Permeability to Gases Water Swell Resistance		Fair to good Fair to good Low Fair	Fair to good Fair to good Low Excellent	Fair to good Fair to good Low Excellent	Good Good Very low Excellent	Excellent Good Low Fair to excellent	Excellent Excellent Very low Excellent
USES		transmission bel belts, gaskets, i chemical tank hin platens, sound or	and tubes, power is and conveyor mountings, hose, ings, printing press shock absorption, moisture, sound	Same as natural rubber	Carburetor dia- phragms, self- sealing fuel tanks, aircraft hose, gaskets, gasoline and oil hose, cables, ma chinery mount- ings, printing rolls	Wire and cable, belts, hose, ex truded goods, coatings, mold ed and sheet goods, adhe sives, automo tive gaskets and seals, petroleum and chemical tank linings	Truck and auto mobile tire inner tubes, curing bags for tire vul canization and molding, steam hose and dia phragms, flexible electrical insulation, shock, vibration ab sorption

Rubber --- Molded, Extruded

- Type ⇒	Polysulfide	Silicone (Polysiloxane)	Urethane (Dilsocyanate polyester)	Polyacrylate	Polybutadiene
PHYSICAL PROPERTIES Specific Gravity Ther Cond, Btu/hr/sq ft/°F/ft Coef of Ther Exp (cubical), 10-5 pet °F Electrical Insulation Min Rec Svc Temp, F Max Rec Svc Temp, F	1 35 Fair 60 250	1 I-1 6 0 13 45 Excellent -178 600	1 25 — — Fair — 65 240	1 09 — — Fair — 20 350	0 91 37 5 Good 150 ^d 200
MECHANICAL PROPERTIES Ten Str, psi Pure Gum Black Elongation, % Pure Gum Black * Hardness (durometer) Rebound Cold . Hot	250 400 >1000 450-650 150-450 A40-85 Good	600–1300 • — 100–500 • — A30–90 Very good Very good	>5000 540–750 A35–100 Bad Good	250-400 1000-2500 450-750 150-450 A40-90 Fair Very good	200-1000 2000 3000 400-1000 450-600 A40-90 Excellent Excellent
Tear Resistance Abrasion Resistance CHEMICAL RESISTANCE	Poor Poor	Fair Poor	Good Excellent	Fair to good Good	Fair Excellent
Sunlight Aging Oxidation Heat Aging Solvents Aliphatic Hydrocarbons	Very good Very good Fair Excellent	Excellent Excellent Excellent	Excellent ^b Very good Excellent ^b	Excellent Excellent Excellent	Poor Good Good
Aromatic Hydrocarbons Aromatic Hydrocarbons Oxygenated, Alcohols Oil, Gasoline Animal, Vegetable Oils Acids	Excellent Excellent Very good Excellent Excellent	Fair Poor Excellent Poor Excellent	Excellent Excellent Poor Excellent Excellent	Excellent Fair to good Poor Good to excellent Very good	Poor Poor — Poor Poor to good
Dilute Concentrated Permeability to Gaes Water Swell Resistance	Good Good Very low Excellent	Very good Good High Excellent	Fair Poor Very low Excellent	Fair Fair Low Poor to fair	Low Excellent
USES	Seals, gaskets, diaphragms, valve seat disks, flexible mountings, hose in contact with solvents, balloons, boats, life vests and rafts	High and low- temperature elec trical insulation, seals, gaskets, di- aphragms, duct- work, o-rings	Fork lift truck wheels, airplane tail wheels, back-up wheels for turbine blade grinders, spinning cots for glass fiber, hydraulic accumulators, shoe heels	Oil hose, search- light gaskets, white or pastel colored goods, and automotive gas- kets and o-rings (especially for re- sistance to ex- treme pressure lubricants and oils containing sulfur)	Pneumatic tires shoe heels and soles, gaskets and seals, belting sponge stocks often used in blends with other rubbers to impart better resilience abrasion resistance and low temperature properties

[•] Reinforced with high temperature non-organic fillers
• Discolors, but no change in properties
• For up to 80% aromatics
• Brittle point< — 150 F may stiffen at higher temperatures

Rubber-Molded, Extruded

Type⇒	Epichlorohydrin Homopolymer & Copolymer	Fluorosilicone	Ethylene Propylene (EPDM)	Chloro sulfonated Polyethylene (Hypalon)	Fluorocarbon Elastomers	Propylene Oxides	Styrene iso- prene Styrene & Styrene Buta diene Styrene Block Polymers
PHYSICAL PROPERTIES Specific Gravity Ther Cond ^a Coef of Ther Exp, 10-s/°F Colorability	1 32-1 49 — — Good	1 4 0 13 45 Good	0 86 — — Excellent	1 11 1 26 0 065 27 Excellent	1 4-1 95 0 13 8 8 Good	1 02 — — Good	0 94 1 15 0 087 7 5 Good
MECHANICAL PROPERTIES Hardness (Shore A) Tensile Strength, 1000 psi	30-95	40 70	30 90	45 95	65 90	40-80	35 90
Pure Gum Reinforced Elongation,%		1 <2	<1 0832	4 1525	<2 15-3	>1 >2	0 7-4 5
Reinforced Resilience Compression Set Res Hysteresis Resistance Flex Cracking Resistance Slow Rate Fast Rate Tear Strength Abrasion Resistance	320 350 Poor Exc Very Good Very Good Very Good Good Good Fair Good	200 400 Good Fair Good Good Good Fair Poor	200-600 Good Good Good Good Good Poor Fair Good	250 500 Good Fair Good Good Good Good Fair Good Excellent	100 450 Fair Good Exc Good Good Good Good Good Good Good Poor Fair Good	500 670 Very Good Fair Very Good Very Good Good Excellent Good	350 1350 Good Good Good Fair-Good Good
ELECTRICAL PROPERTIES Dielectric Strength Electrical Insulation	Fair Fair	Good Good	Excellent Very Good	Excellent Good	Good Fair Good	_	Good Good
THERMAL PROPERTIES Service Temperature, F Min for Cont Use Max for Cont Use Low Temp Stiffening, F	-15 to -80 300 15 to 80	90 400 < 100	60 < 350 20 to 60	-40 <325 -30 to -50	-10 <500 20 to -30	- 80 < 250	- 60 to - 80 150 - 60 to - 80
CORROSION RESISTANCE Weather Oxidation Ozone Radiation Water Acids Alkalis Aliphatic Hydrocarbons Aromatic Hydrocarbons Halogenated Hydrocarbons Alcohol Synthetic Lubricants (diester) Hydraulic Fluids Silicates Phosphates	Excellent Very Good Good Exc Good Good Excellent Very Good Good Fair Good Very Good	Excellent Excellent Good Excellent Very Good Exc Very Good Excellent Excellent Excellent Excellent Excellent	Excellent Excellent Excellent Excellent Good Exc Good Exc Good Exc Poor Fair Poor Good Poor Fair Fair Good	Excellent Excellent Excellent Fair Good Good Excellent Fair Poor Fair Poor Fair Very good Poor Good	Excellent Outstanding Excellent Fair-Good Good Exc Poor Good Excellent Excellent Good Excellent Fair Good Good Poor	Very Good Very Good Very Good Excellent Good Very Good Exc Poor Fair Poor Poor Fair Good	Fair Good Fair Poor Good Good Poor Poor Poor Good Poor
USES	Diaphragms, print rolls, belts, oil seals, molded mech goods, gaskets, hose for petroleum handling, low temp erature parts	Parts requiring res to high temp solv or oils, seals, gas kets, O rings	Elec insul and jacketing, footwear, sponge, proof ed fabrics, automotive weather strip ping, hose, belts, auto, appliance parts parts req outstand ing ozone res and heat res	Flex chemical and petro leum tube and hose rolls tank lin ings, high temp belts, wire and cable shoe soles and heels floor ing building products, extruded and molded parts	O rings, brake seals, shaft seals, gas kets, hose and ducting, connectors, diaphragms carburetor needle tips, lined valves, packings, roll coverings	Electrical in sulation, molded mech anical goods	Thermoplastic grades mold ed mechanical goods, packaging, sports equip, disposable pharmaceutical items Solution grades ad hesives, coatings, caulking, sealants

APPENDIX B. TEST DATA FOR THE HARD TUBE ENGINEERING MODEL RADIATOR (Outlet Temperature versus Tube Number and Map of Thermocouple Readings)

\$104 S

	1 P 1 P 2 P 3 P 3 P		1-1-11	1,1141	 - - - - - - - - - - - - -	1,1 7,1		1		-	- , }	
	 		[' 	$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1-2-1-1	-	 , 	, , , , , ,	[_		 -
<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,,11	1 1	7 7-9	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	-	1:]_		'
	,,_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1-, 1-1	41,1	-1-1		- - - - - - - - - - - - - - - - - - -	1		<u>;</u>]'	7-	Ý	1 1
7 - 1 - 1	-T- T: IT!	11-1-11	FF		[] 	1 1-1 1-1	-	-	j	†=.i	!-	
	1-4-4-	1 - 1 - 1			<u> </u>		- 	 			1 11	
	### i. '-###		+-		1. 7.1-44		T	= -	-		_,_ † ;	; ;
			1.1-	-111-	137-117		1 +1	11-	- 7 -	i-	- 11	-
			μ , <u>1.</u>		<u> - +</u> 		+			++		1
	., 1		1 1 1	<u> </u>		1-51-	<u>:i</u>	1 1 1	 	1	. -	لت
- talk	- 1 1 - 1	- - - -	<u> </u>	4 .		11.	+ , 1 - -		1	į. ;	_'	 ¦
					F1 + -	 	1=,-	1-1-			· [
	1	112-1		4#) - 1-+ j-1	-1.11	11,	157	1 11 -	7-1		
	Term 11 7			1 62	7 F4±	f.iflf	₹, ₹,	[; _]-:		- '	* 1	Ť
1 11 11	1 1 1	馬壁	1		E'FF	1111	 	-1 -			;- -	
	++	17 1 T.T.	1-17	1411	- , 17, L, -+ -17, -r	<u> </u>	+ -			- "	'	
<u> </u>	TEINS 9416	-Territy	F34.	3 Tin	HE37	20 -			- ;	<u>L - </u>	, 1	;
11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	一十二十二十二	15, 1,11				1:-:	11.7	٠, ١,	77	= 1	<u>'</u> -	~, č '
	1	1 -1 -, 44-1- 1 - 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				1 7 1 1 1	1	┞┋╵╏ ╕	- 1	<u>_</u>	-,	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u> </u>	- 1	-1-1-1	<u> </u>	<u> </u>	4	<u> </u>	<u> </u>		- 1 <u>-</u> .	
			当古	7 F. I	n.] ,,	T	\\\	-] -'	. 1	
· · · · · · · · · · · · · · · · · · ·		1 - fr 3	- -	4 1,-15	 	 	-{ - i			·	-' '	! 1
	1, 1,			: الله ما الله الله الله الله الله الله ا	- 111 	; 4-	L-1		. !	<u> </u> -		أـــــ
	十十十二	1-, 11-13	#1	群温	期出	[;], T	14.	1.1	`_ [[] '	7-7	i i	•
, , , , , , , , , , , , , , , , , , , ,	<u> </u>	15. 1.4					\;- - -	; ; ; ; ;			· •	
			111	1 1 1 - 1		<u>- </u>	+	<u> </u>	-	ļ		
	, , , , ,				المسائنة	1			<u> </u>	<u> -</u>		
23	1 - 1 - 1	[1][1:1]	·' ' .	٠	1 1	, ,	1	`ı		1, 1	t =	1 ,
	, , , , , , , , , , , , , , , , , , ,	1 1 1 1 1	+ · · ·	1 - 1 -	L ,	1 11	-	. =	<u>.</u>			
		1 1 .		-i+	1 1	1 1 1		1-1-	<u> </u>	1 1	' ~	,!
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11 - 1	· ii -			t +===	4-	, ! .	' -	[, i
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		, , j - ,	71		+ (.	1	1	~		-	; 	
							+==	-	_	-		1
-26		1 1 1	1 1	<u>' - </u>	<u> </u>					^{†~} [
	'			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.			, [1	,
· · · · · · · · · · · · · · · · · · ·	 	17,	+ +	r i	;	 - 	-,1	 ,		 		
			, -	-! -' -	F ',		<u> </u>	.	1 1	<u> </u>	 ,	
		1 , , ,	<u>.</u> 1	, - ,		7	.	i		-		, ,
		· · · · ·						<u>_</u>	-		- 4	- :
	<u> </u>				 	-						
	ч		H		12		ا ا 	16		-1,	22	1
, , ,		, ' •	LIBI	F N	ŋ [•	[-]	, !	7	1) — +	-
·		!	I		-1	 -	 -					1
	ļ ī - i	<u></u> i	-		<u></u>	<u>.</u>						
	· HAR	DTI	BE	RH	THI	ПÞ				;	1	i
				- 1	, ,				- 			
	,	- +	, 🕂						- L			·
	<u> </u>	<u>. ' . </u>	. 1		-, ·	<u></u>			'	1		
	, -1	, ,			f ; ',	7	1	,			,	
	+		``	111	·		<u> </u>		+	; -		. (1
	+ + -	<u>' , ,' </u>	1 1			 	1, ;			i i	_	,
	1, 46, 15 11	量則計	. .	1.1.	''•]. [, i -	1 .		1		1	
1		', i'i 		 	러다	- -	[i	i-	7!	- -	ı	" _}
·			3-2	2			 -;	_	-	· ·		
I am hay had a had a second		<u> </u>	:'	1 1		. 1	'	1,	i	ł	•	• •
	1, 41 14 14	13-15	<u>;</u> ;	- i, ; 	1 1 1,1	1 -	, -	7-	i	7	1 1	-•¹ '_
	11 11 11	11 11/4	للل	1 4	' ,		L		1			- 1-1

MAN KERNING TOSTANO

THE NIT TIBE REDIETURE HERE NIT TIBE REDIETUR		T. I. T.	-, }	14 1		ft. t - +	
			1 - 1.5		<u> </u>		
THE TIBE REDIFFER				-		1	
			1.1.1.1	加焊性	1-4-7-		
		,		7, 1, 2			
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
			<u> </u>	1,41 1,41		<u>- </u>	
1		<u> </u>	- [-i-	<u>', </u>	1 - 1 - 1	- + +	111 1
		4-1-4-	计 控制			֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	
	1 2 4 2	1. 177					
10					1 1 3		
		•	1 11		1 1 1 1		
	125	i Fi - 4	TUN RAT		-		4-1
		117-1		1-1-11	1 1 2	<u> </u>	<u> </u>
-22828282848484848	W 130		7/1073				
28 -28 -28 -28 -28 -28 -28 -30 -41 -31 -41 -31 -41 -41 -41 -41		-11] =
-28 -49 -49 -49 -49 -49 -49 -49 -49 -49 -49					計量源。	1-1-1	
		11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- 1		11-11-1		+
		;; <u> </u>			1 1 1	1	44444
-23 -38 -4 -4 -4 -4 -4 -4 -4 -4 -4 -		1 1					+ 1 , ,
-23 -23 -24 TUBE ND HERD TUBE REDIGETOR B-4 CORPORTION THY OF THE					<u>`</u>	12-17-1-	<u> </u>
-29 -29 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10			<u> </u>	F F F F F F F F F F			
HARD TUBE RADIATOR HARD TUBE RADIATOR		11, 11111	- 1	-1	41,		
HERD TUBE REDUETION TO PROBLEM THE DESCRIPTION OF THE		-,- 			1 1 1	F 1	
HHRD TUBE RHD HATCH	29	11 11 11	 	1 45 - 4	;	1 1 1 -	
HHRD TUBE REDIBITED OF THE		11, 15 2	, , , , , , , , , , , , , , , , , , ,		<u> </u>		
-EB '4 B' 12 IB ZE TURE NO HERD TURE RED PRODUCTION OF THE		1 1 1			1- ! . !		<u> </u>
HERD TUBE REDUCTED THE			-			- - -	
HHRD TUBE RHD (HTDR			· 			1:- -	· · · · · · · · · · · · · · · · · · ·
HERD TUBE REDURATED THE SECOND CONTINUES OF THE		-!'	+ , +		 -	1 1 1	
HERD TUBE REDURATED THE SECOND CONTINUES OF THE				\- 	<u> </u>	-	
HERD TUBE REDURATED THE SECOND CONTINUES OF THE			. -	 	· - - -	; ! -}	
HARD TUBE RADIATOR		i' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	- '. <u>-</u>			1	<u> </u>
HERD TIBE REDIENTEDE B-4 TURE NO INTERPROPRIEM TRY OF THE	-63			, ,	1 1 1	1 1	1
HARD TUBE RADIATOR B-4 DEPRODUCE BUTTY OF THE	1	1 4	- 8	;- t	1 12]5	22 ,
HARD TUBE RADIATION B-4 DEPENDITOR TOPENDITOR TOPE				P - V I - V		14 , "	1-1-1-1
B-4 - B-4 - DEPRODUCIBILITY OF THE		-!		pe i NLL	•		
B-4 - B-4 - DEPRODUCIBILITY OF THE							
B-4 DEPRODUCIBILITY OF THE				E RED			
B-4 DEPRODUCIBILITY OF THE					<u> </u>		1 1 1 1 1
B-4 DEPRODUCIBILITY OF THE			, — [,	-			, ,
B-4 DEPRODUCIBILITY OF THE		7777			П,	-;	
B-4 DEPRODUCIBILITY OF THE		-1	-		. 1	i ;	
The state of the s				<u> </u>			1 7
The state of the s		, t		''			
The state of the s	1-		B-4	1 1	·	,	
- breading of the	, 1	1	*		į - ·	1	1 1 1
DEPROPICE OF THE				, , ,			
ORIGINAL PAGE IS POOR	i i i i	<u> </u>	11 1	<u> </u>	- brok	DUCBIL	TO DOOD
					ORIGI	NAL PAG.	E 12 LOOK

11		- 13	1 57	<u> </u>		1 1	_] ₋ _!	17-TE			٠	1 1	٠,		-: _		*
	<u> </u>	- 1			1:		1 1-	<u></u>	 - - 	,	-;-			'-	-		ļr,
	<u>'] '</u>	, 	, <u>,</u> ,	` ` `!\ ' -[!\	7.7	- ; ; ; _ ; ; ;		7 - 7	1: ::	1	-	<u> </u>	-		<u>'</u>		1 - 1 -
		1-1-1	<u> </u>	7,5-1,5	!'	-13+	- -	; ; = =		·¹	- :	<u></u>			<u> </u>		
	- [] []	Γ, ,	,		T_=	<u>, </u>	<u>; </u>	Pr. L	,	, ==	: · :	-		` :	~+ <u>~</u>	1 =	1,;
7	-1 -	, <u> 1</u>	F	<u>, </u>	1		7 7	F."	FF	11	#	7;			_.		
111	1""	= - + -	1	; = =	, '	: -	`- -		<u>-</u> ‡;-		11.	î	-			- 4	T = 1
	!		1,,,	1	: : :	415			ئيتات	-	,						7 -
· · · · · · · · · · · · · · · · · · ·			Fr TF1	rt -		7.7	- 	ŦŢ	-11		- ·	 	-1,	÷ ,	-	7 -	1.5
· · · · · · · · · · · · · · · · · · ·		- 1		<u></u>			1+1 -		711			1-		. i.		-	, -
;		<u> </u>	-{ 	+-			 	-114	1		-		1 1 -				
		EST PI	6-A	FLOW	RRI	E į (8.2	<u> </u>	1	111		· ,-		-	·	<u>-</u>	· · · ·
<u> </u>			<u> </u>	٠,٠٠ ٠, ٠ ١,٠٠٠,			-1	F.	1			1-					
<u> </u>		rc inh	94.1	chra	37	1 77	H(B)	3	1	- , ;	-, =	7,	 	- 1		, ;	
	, , , , , , , , , , , , , , , , , , ,							1.71	<u> </u>	- 1	137			- 1			,
	1, 1	-7 F-1		1	-		i -	1	F F.				-		!		-
		- [], []	7 = 7=	7-7-1		· r,				-1		,,	4;	-			
Σ			1 .11	15-			-		i	-		⁻		,	·		
			4 1 +		,	, 4	L E' -	i + i		1	<i>i</i> 4	-	-				<u>t</u>
	ار بر مدد . ا	1					<u> </u>		1				-				
	1; <u> </u>	1				տ +¦	1			\geq	-			- , i	_ ·		
, '-, '-, '-, '-, '-, '-, '-, '-, '-, '-		1 ,	T 122	<u>, i</u> _	_ <u>}</u>	\searrow											
	, , ,	· , [֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		¹ -	1 1	[,		,	٠,		•		ļ .	1		
	[_1 ~,	1- 1-	7!!!	, ,	. " , i	1 , 1	1	1		- [-	ij			
		-1;	1,-1	-	=	77	=	- :								} }	
		- , , ,					 	1	¦ 			-		' !			
	<u>-</u> !		+	+++		-1]	#-		· .						1 	'-	
	·			. 1.	-			, ,	' '				- }			1	
.,, ., ., ., ., ., ., .,		<u> </u>	, -	-	<u>;</u>	;	 		<u>'</u>		·		·	;			*
		. ' '		1 1		. <u>.</u>	-	1				3 1	<u> </u>				
	· _ ;	-	" 	<u> </u>	_r,	, ! 	, 	ر ر	, ;).	, <u>.</u>	, 	
-698	, ,	i ' r	1 1	1	, 1	۱٬۰ ــــــــــــــــــــــــــــــــــــ		,		, '	Ī				•		
	. , 1	- ' ¹ 4 ₁ ,	ı	i	Ð	1	~]	12	,		1	16	7	i	,	-24	THE BUILDINGS
,			,	1 1	1 112	E N	-⊢	1		}	<u>-</u> !			i]	 	
, ,			,	1	тū	<u> E </u>	1	ئــــــــــــــــــــــــــــــــــــ	! i			 					
	'						 		_ 	<u></u>	- 1						
		;_ <u>_</u>	HERD	1 1	BE.	RE	ΙΝ	HI	ЦŔ								
·				• •		 	-				; -			·			
E prime mental mental management time announcement	-: , 		l 		 		i {	<u>'</u>		l				1		,	
1	'	<u> </u> _	/ ;	_	. [']	· 1		j '	. ; , ,	_	į	_ ^	_ 1				,
1		in		- 1	- 7	}	-	,,	,	[;	- 1	- 1			- ,	
		/		· . ~) 1		»				, !	- 1			'	
1	ಓ		<u></u>	4-	-			!	٠- ١	'	í	-				<u> </u>	- '
, , , , , , , , , , , , , , , , , , , ,	, , 1	•	-			. !	i	΄ ι				•		*			
	1		1	j\$	- 5	•	<u> </u>	<u>. </u>					i	:	-		4
	1		1	<u></u>	'- 5 - +	• -	<u> </u>	<u></u> !				!	:	:	- 		

	1	ł 1	11-1-			- 1	-T,											1 !
	, <u>, , , , , , , , , , , , , , , , , , </u>			1		, <u>-</u> -	-1	Ξ	+,	-1.;			-		-		-7-7	
				<u> -</u>				==							<u> </u>	<u>-</u> -	<u>. </u>	
1 27 1		• - i		ļ	<u>' '</u>	-		<u>-</u> -				- A			= -	i		<u> </u>
	-1	, , , , ,			ļ.			=		ا ا	-			- 1	*	-	-41	~; ;
		-				_	7		-i 1 '	-, - <u>-</u>	1	, L	ı L		 - 	- ,	}	·
·		, <u>.</u>		1							-;			- 70	; = , -	·		
	<u> </u>	i	;;;; ;	-,	77		. 7		·	n 14	 		, <u> </u>		1			
, , , ,	- - <u>!</u> - ,	-11 -	+ 1 1	<u> </u>			1		1.	12	•					 	·	
1142	, ,	. ,i ~ ' '		'.		. ~	, -; '		71	=,¦_	11	- -	- 1.	_,1'	<u>-</u>	٠ '	_ !	٠,٠
	1	, ,	<u> -</u>	1,	,	., 1	1 1			<u>. بر .</u>	- 1		'	1",	•	! !	·	- 1
					_		<u></u>		⁴ -	77	11-	-						- -
	_	ह्डा हा	6-8	FI III	RA	Ε	159	5-	1 7	_ 1 - 1	- 1				<u>'</u>	1	:-;-	
10	الــــــــــــــــــــــــــــــــــــ	<u> 1</u> 1	<u> - </u>					1		1 _			<u>,</u>] · ·_			
	` ≀ t 1	c 183- 44	11 71	i' min i	-34	9	TCB	MB)		9 <	1 45			• 	l <u>-</u>	1	<u> </u>	<u></u>
	, ,		, F.	1	:	, ;	[2]			حادثا	1 4			-	1 -	,		3
	j-		, -		! - · ·		 [-	F' ⁻	—— <u>.</u> lı –	' r	- ====			1+	<u> </u>			
	1	- 1::		1 -		 	1,4	-	<u></u>	1-1	1	ــــا	•	<u></u>	ļ,	 		
<u> </u>	'	- '1: 	-	; ·		F1 ;		<u>.</u> -			,	- <u>·</u>	<u> </u>	· 		'		
	1	1	<u> </u>	1 ! 1			1	! , !	11	:				,	<u>;</u>	<u> </u>		
F	·			<u> </u>		-1-1	ار ا				,	-		1	-	_		
	i	,	' ' '	Τ-			,	1		 			1			-	·	
		<u> </u>		1		 	· ,	! .		<u></u>			-					
	'!	'	:-	[1 	· [—		'	 		<u> </u>		-			i		,	~ ·
72	"!		<u> </u>	1 ; ——-		,	ļ 		· 	! - !			, <u>, , , , , , , , , , , , , , , , , , </u>	1	l	1	1	
		- + -'	* * i ; t ,	1		'] 1	١.	ŀ .			•	,			· ·	, ;	_
		1	, -	-		,	: '			i, 1	•				1	1	5	
					<u> </u>			! ; ;										
k	-, ;	}-	ρ: 	<u> </u>			<u></u>		 -						∳ 1	1	1-	_
-20	_ ,		1	111			<u> </u>						,		1 			
	, +		; ;; '	1. '	<u> </u>	1112	i	1	 	, , , , , , , , , , , , , , , , , , ,	,;;				1	- }	~ 1	1,
, ,		,	, ¦1:	į, ',		11-1	٠. ،	+			١	-	,	,	1 .	,	1	•
	· · · · · · · · · · · · · · · · · · ·	111	, '		,	7 1		,		,			[,	, ,	1	
	<u></u> [' 	 	<u> </u>	,									t I	777	:	•
1 - 13			1	1 1.37 (2) (10 				1		 		-			1 4	-		
· · · · · · · · · · · · · · · · · · ·	,	- - 4	<u>-</u>	i 	ė	ļ.,	1.	<u> </u>	12		ا ـــا		15	- '	ļ	. 1	EM,	
			!			3E	\mathbf{N}	口		ļ 	¹	: !!	- 		· 	!	·	u
, 7 — , - , - , - , - , - , - , - , - , - , 	1 1		1			<u> </u>		!	-						· -			
		. 		TI	 			μ. Γ.	ĦТ	ПЕ]	7			i.	1	~,"	, ,
		П	ruz i	∤L Ì				₩ - L	LLI	 	⊾ i	-	r 	;	; (;	{	
		4t '	, I				h =		۱ -				-		-			•
	ļ			1						 							j	-
		, ,	: 	L		<u> </u>		ļ.,'	` ;		`	i '	-] - :		; i	_	l	
, , , , ,	. !	•	1	1	-				:			ļ					-	
					, —									-			1	-
	-i -i	- ₁ -	-1		3	5		 	- 1	'-'	- 1		, 		, - <u>-</u> 1		- 5	
		- }		ļ							d					~	فسمس	
	_ I	!	<i>-</i>	ļ		!		·			_	. :				1	-1	• ~
	1			۱,,						ı . İ :	1							

1	7-21 11, 1-1	1-11-11	7 []	PTC7=1-1174=1-	=	
1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1		- 5,- 1-1-1	1 1 1		-5 11	
	· · · · · · · · · · · · · · · · · · ·	-1, 1-1-	7		45 845	
, , , , , , , , , , , , , , , , , , , ,		1-1-1-	1, - 1,			
, , , , , , , , , , , , , , , , , , , ,		# 	1 1			
			1-11-			
		 	- , , ;		17	
,	1 1 1 1 1 1	++	11 - 1 -1			
	1 - 7 - 7 - 7	<u> 쿠</u> :	إلى أ : : إلاً إ			
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1 - 1		, 17		* 1
1			1 1 1 1 1 1	7-17-17-17	+	
10	<u>्रास्त्रा मा _ह</u>	-C - LTUN B	FITE 1/6/	8		
				- i 11		
	7cm 93	7- 74mir 3-7	72.1 - T(B	131 -311 F	12-7-1	-
		- '	-[]-[',=]-[-]	: T I I		1 5
	·	1	-1-1	<u>- </u>	1	1 - 1
		1			11.	1 }
Σ	_', 	 	·	1	- - - - - - - - - -	
58	<u> </u>		1-111	1 1 1	1 -1 1	
		11 1 1 1			 	-
	, , , ,	<u></u>		1 F. 1] ;	
	h ; ; ; ; ;		1 7-1			, ,
-	, 1	-i		<u> </u>		, !
,, <u></u>		1 ; 7 7 7	1,	- 1	-, -, -, -, -, -, -, -, -, -, -, -, -, -	
						
				- - - - - - - - - -	<u> </u>	
	· · · · · · · · · · · · · · · · · · ·	<u> </u>		- 		·
-22	<u> </u>	1 1 1		<u> </u>	1- <u>1</u> - ;	
+ -4 -		, ,	;	1 ,		-
		·				— — · · · · · · · · · · · · · · · · · ·
		i - i - i - i - i - i - i - i -				
		-,	; - -			
-64		'+		1		
	·	<u>B</u>		- 12.	16	24
	1, ;	<u> </u>	IRE N	1	, , ,	1
t e	r al i	1				
1 1	ЦП	בווד מק	(F' PP))		·
	─┤──┴──┴──┴──┸ぷん╹╏ ┆		134		+	
· · · · · · · · · · · · · · · · · · ·	-,			- , -	1-:	~
			<u> </u>		1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·	i i i i i i i i i i i i i i i i i i i					
1 m A record and a community of the control of the	·	, , , , , , , , , , , , , , , , , , ,		<u> </u>	1	
1		R-	7		7 1 1	ŧ,
1	1	, 	7 7 1			,
		. <u></u>			· · · · · · · · · · · · · · · · · · ·	
+ +	7 7	' _	+			
·		,	<u> </u>		- 1 !	

2127

						
	' - 1 '	·			1 1 1	
		- 		+		
(1 - :) - : : : : : : : : : : : : : : : :	<u> </u>	<u> ' </u>	- 1	1 - 1	1	1 - 1 .
1 11 11		<u>' </u>			"	
	+					
	<u>_</u> },			, 1 " " " " " " "	F : 급	- - - - -
	1 , , , , , , , , , , , , , , , , ,	+1:4	'- - <u>-</u> - '-	1,1	- ' '	- - -
<u> </u>	╌╌┸╶╓╌┼	. . <u>. '</u> -	 			
	1 1 1 -1 -		1,1,1,1,1,1			! !
1-1, - 11,	1 :, 1 1.	-	. 71	F" -(-, ' , '	1-1	
· ! - ' !		<u> </u>	["			
142	1 -1				· -, -;	
	7 7 7 1 1 1			F ¹ ,	+ 1 1	
	1	<u> </u>	<u>' -, ' ' </u>	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		<u> </u>
		'r[,	59.5	1 1 1 1 1		4
10 7 10 7 1	<u> </u>	FI DN RR	19' 97, 9'		;	
		<u>-1. ', i ,</u>			<u>'i, t i</u>	<u> </u>
		.! ` '		-	1 7 7	1 -
Δ 182	<u> </u>	remmy /6	7 T(FNB)	-40	- 1 1	<u> </u>
			[5] 4 £ [*]	" - 1, i	1 1 1	
			1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	[],]	7,5	
		<u> </u>				<u> </u>
		1	ide,- , e'm- -		7 1 - 1	
<u> </u>	TIF	1-1-1		-,-; ;;	- 1	
	<u> </u>		-, 1, 1			
	7 * t - t 'm.	1 10				·
}	1 -1 -1 1 1	 				
		19 19	[;-, ', - ', 	1 1 1		
	· i -	-,		1,11	1 1	
						
22 .			[[] 1	·; ;	; ;	, ,
[-] - [] - [1 1 .	. .	1			
	- · ·	· · · · · · · · · · · · · · · · · · ·	1.,	- 1	1.1	- 1 - 1
تعسك مساسية بأبير والبيار بمناسيتين المسادر						
- Jane ! An office of the party of the house	, , , , ,	- 1 				,
and the first property and the second	<u>'</u> , ' , ' , '				-	
	,					
-28						
-28				12		
-28				12		29
-28				12		
-28	1			12		
-28	1		SE NO.	-,		
-28	1		SE NO	IZ'		
-28	1		SE NO.	-,		
-28	1		SE NO.	-,		
-28	HARD		SE NO.	-,		
-28	HARD		SE NO.	-,		7.9
-28	HARD		SE NO.	-,		
-28	HARD		SE NO.	-,		
	HARD		SE NO.	-,		
-28	HARD		SE NO.	-,		
	HARD	TUB	SE NO.	-,		
	HARD		SE NO.	-,		
	HARD	TUB	SE NO.	-,		
	HARD	TUB	SE NO.	-,		

क र काम्माम	111			. I – ₹ +			·	17 7	,		, 1			7 1	4.3		ŀ t		1 1	
1:5-	1 1	1 1	= 1-	E 1-171-		<u>_</u>	,===	<u> </u>	푸빌		أتسرأ	<u>'</u> '-	1	1	+1 -			: ì	. !	
	╁╷╌╬╌┸╂	1. 14		[[h] =-	f-, T			-111	-7 - 7	1 1			-1	141	-17-7		41	7		٠
1 1-1 1 7 7-2	<u> </u>		* *	†1 <u> </u>		r' []	-	`=,	-!	-,*'	i	+-1	<u> </u>	77.	7,		-". ;	:	•	
-1.			1,	1-11	3.1	, 11		11111	7,,1		; ; ;			+			-			
	[1 ⁷ -1 ⁷]	'. .		<u>- </u>		<u> </u>		7	1, 1	. 1	۱ 4	<u>[</u> -1-1	;			Fi-]	[+	구나	1-	
- TET		7 7		11	li					-t		7 14							<u></u>	<u></u> .
	i- i	l Î.] ,;] 4r		-[-]]	<u>" ''</u>	· ^F r`.]	, j., ,	. ""	ıFı	, ,		7][÷	-
	1			1 1 -1	1111				1 4 1	11-1		1-1		7-1-	. .					
					777	'+: -	1	 F. 	. 7	11		77	#:		1	IL.	-,!	;		
			-;-	1	1	PH				-	-	11 =	I e i	7 5-1				!	-	 -
	1= 1=	Ti-	- 라그:	15 11	-7,5	-	. ar	i''	217	ļ1 ,	-, <u>-</u>	, -	1-22	<u> </u>		ı-^	~ + î			
	1 1			fi-trti	4 4		7	1171	17 -					2450 0			!			
	1:- 1: -		11,1,	ir Tuit	[[<u></u> [:]+]	1-1-1-1	1	<u> </u>	ריי	II 1	!		ا ۽		4 1	7,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 1	{	- ` ¦	
1	}*		71	11111	╌╁┰┰		rrill			+7 **	11	77.	-						 -	
		, ,	'	r = E		1.1	`- 			±	_ '	115-	-10	r	_1	ا ۔ ا	[" .		-1-	•
	F		1.7	+ - + ·			,	TIT.	7777	ŢŢ										-, -
		, <u>, , , , , , , , , , , , , , , , , , </u>	- 1	1,	- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	, 11 1	. ; ;‡	[, ;]	. 1	, ,	-17	- '+		т. "			. , '		1	•
			╌ ┠┲╬╸	}' <u> </u> 	111	;}}				, -,		i			L	<u> </u>	ļ	l		
] - []	٠, ١, ـ	11.4	ᆥᄀᅟᅩᅾᅟᅼᇎᆉ	والتراسط		_ +1	G		Į.,,		. !	, <u> </u>	- i	1-	- !		+1	, '4 ,	2
	} - - 	TE	ज्ञा मा	, 8 15 1	1	- REIT		2429						111	-					
· · · · · · · · · · · · · · · · · · ·	4 7 1	' '	170			7 7 4	14	T 1		-	. , †			, <u>-</u> 1	;	'		·, :1	- :	
			11,14		! 	111	1.1	4 14		بت			{				<u> </u> -			<u>-</u>
		(<u>1</u>) 14	-1: -	.,	i* 1,	크다!	<u> </u>			ر ا	<u> </u>	ļ		1	E, "		. :			
	130 -	T (int d	16-35	mut 1	-20	7	35 #	HĒΣ.	-4	0		-			<u> </u>	<u> </u>	_ <u>i</u>		
	; <u> </u>		, j ^a .	F L:	1	.±, F		H	7.		- [<u>-</u>	.,,,,,	i	- ".		-	, ~.	
	 	-++				<u> </u>				ا -		 -¦			<u> </u> -		 <u>-</u>- 	<u>-</u> -		
	· 1	,	H	i' i''' '	4-1- '	T	- 1	T; 1	(<u>, </u>	† i	التبا	-	!		, ra	- L -	<u> </u>	į.		
	; ,			* p= -	- 1-					أحسك	1	ᆙᆛ	<u> </u>			 		<u>+' i</u>		
1 1 10 10 14 1	' 1 ~!	_ " []':	- [', [-		17		. 1	1			İ	·	-		!	· ,		i t		
	₹ :}- `	+	-	 							- 드	!		1	\vdash					
1 (flow 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	, , ,	[]'.	' i :	<u> </u>	11	7 -		: :-[† 1	-ī i	'	١,	11		١,	7.	-		
	4		بــّــاـــ	 			11	H	[: , , i		- 1			٠			 r		
	¦ 1 . ¹	' t	1 2 2.	{ .	1114.		11, 1	_ 1		- " !		I	•	٠ _ ا		!	۱ ۱			
1	L, ,	<u></u>	للك	<u></u>	<u> </u>	17.1		117	-1"	1" !		-7				1			'	•
	,		. '		i 11	1		1 1	. ,	٠. ا	.	- 171	·~ - 1				, "	۱ - ۱	-	
	'	1 h	<u>, , , , , , , , , , , , , , , , , , , </u>	 	<u>1</u> .	-1		1 -		لـــــا			4 1		- 1 - 1 -		<u> </u>	1 		
1 1 1	' '			1 1-		'		, , ,	,	' 1		ì		ı	1		•	1	,	
·	i	•	, "	1 .				. 1	~ 1	***	·	·	1	1						
				1-7		=		-1 1		1						<u>i</u>				
			·	11-			117	;	''''	·	٦,			-			1			
, , , ,	1		· [<u> </u>				·1		1	٦,	,	- <u>-</u>	, ,	-	<u></u>	, ,			
	1		- 1	1			<u></u>				1,	 - - 1		, ,	•			; ; ;		
	1	,	· 1	1-				; ; ;		1	1 ,	- 1	·	, ,	·			;		~
2	a	,	· 1	1-				; 1			1			, , ,	-		, ,	, 1	- 3	-
2	a	, ,	- 1		11		7.7				1			, ,	- -		, ,	, ;	- 3	-
2	a	7			! → †		· /	;]			7 ,			, , ,	- -		, ,	, 1	- 3	
2	a			1-	! → †		12.7% 25 2-1	7		- 1	1,	1		, ·	-		,	, ;	- 3	
2	a				! → †		· /	17		1	1,	1		- -	-		,	, ;	- 3	
	a				! → †		· /	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 ,			1 ,	-		,	, ;		
					! → †		· /	1		1	1				-		, , ,	1	- 3	-
					! → †		· /	1		1	1 ,		-		-		, , ,		- 3	
					! → †		· /	1			1 ,	1	-		-			, ;	- 3	A second
					! → †		· /	1			1 ,		-		-				- 3	- Annual Control of the Control of t
					! → †		· /	1			1 ,		-		-				- 3	-
					! → †		· /	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 ,		-					, ;	3	2
					! → †		· /	1		1	, , ,		-		-			1	- 3	in the second
					! → †		· /	1			1		-		-			, , , , , , , , , , , , , , , , , , , ,	- 3	
							· /	1	1 1		, , ,	1			-			, , , , , , , , , , , , , , , , , , , ,	- 3	
							· /		1 1	. 12	,	1			-			227	3	F
							· /		1 1		,							28	- 3	F
			-				· /	N	1 1		,							28	- 3	F
							· /	N,	1 1		,							227	- 3	F
							· /	N	1 1									223	- 3	F
							· /	N	1 1		,							20	- 3	F
							· /	N,	1 1		,							200	3	
							· /	N.	1 1									227	3	
							· /	N.	1 1		, , ,							28	- 3	
							· /	N,	1 1		, , ,							223	3	
							· /	N	1 1									223	3	
							· /	N.	1 1									223	3	
							· /	N	1 1									27	- 3	
			H				· /	N,	1 1		,							227	3	
							· /	N	1 1									22	3	
							· /	N,	1 1		, , ,							223	3	
							· /	N	1 1		, , ,							223	3	
			H				· /	N	1 1									77	3	
							· /	N	1 1									227	3	
			H				· /	N	1 1									227	3	
			H				· /	N,	1 1									227	3	
			H				· /	N,	1 1									200	3	
							· /	N,	1 1		, , , , , , , , , , , , , , , , , , , ,							22	3	

	-[-		1	i i john	-, -,	- 1	11-	r÷			1.,	1.		· -	-'-	,		-1
4		,: -1 -],- '	4, 7, 7	1 '	Ť :	٠ ـ ۴	. i,	,	[⁻, [1 .	भू न	,- =	-'	¦- +-,		i .
* ************************************	 	1 1,	· ·	- ; -	1,1		1							1	-1	7 7		
*	1 1	<u> </u>	-	• <u>},</u>	1 1 1		<u> </u>	1 11		_ +	· · · · · · · · · · · · · · · · · · ·		- +-		1"-	<u> </u>	;, i '	. '
	-	1	, 4, 4	, -	, ,-!;	1 41	9 1	- 1	<u>.</u> :			٠	r r	<u>-</u> ,	,	<u> </u>	1	' t
1	┿	1177			:1	ŧ		╎└╌╌┋╸	 -	==1	! ,			- -	 ·			- <u>i</u>
	1 1	.l₂ Hf∂	<u> </u>	1 ji ji r	∜ .	-1	1 <u>1</u> -		.		٠.	-1-	17		- '	- ' t	·- Ḥ-	ļ~
, :-, !-		12 12-12			 		- !	~-,	- {			٠		l —		<u> </u>	 - -	. [
1,1		1172 1277	1-	1 '1	j:		+ -			۲.]	+		-11	j -	Γ, .		1 -	
-1 12	. , .	1 7	П		1 1	- ;	1			1 1.1.	1 -	-	1	17.	7-7-6	- !-		. '
	- السند	1 -		<u> </u>	111					-1	-				<u> </u>	1.		
2	; ,	1 1 1 - "	1'	· 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.7		2.1	-	- 1	+ +	ا '۔ ,		1 1	L		i - `	'	1
	<u> </u>	1,			4-17	1''			=-	- [-1-		 - -	 ,-	<u></u>	
1200		; ~l	L -	[11]	<u> </u>	- 1		1 1	<u>. </u>	.;	; -	7 ,	. . .	-,	1	, ''	-1	٠,
	 -	, - 1-		! !	-1.	 	- Ţ; -	. 1	• -	- 1		•		1- 1		1		7
1.	<u> </u>	, <u>-</u> *F	;	, , , , , , , ,	11		, ;		7. 1		- "							i .
<u> </u>	-			, , ,	-	,			-			_ 1		•	'	•	- 1 -	7
		TEST PT	7-4	F1_0		E	14:		}	T, E	- 15.						14	
	,	1 - F		. 1, 17	计工	i i	r - -	. 1	1	_	;		•		j. ;	٠, ٠	-	i
·		-} 			- 		 -	-, 1	1 1	- !	- ; :			<u></u> -		:		- '
\\ \	-	1	أحنيا	4,	11	<u>,, l</u>	TCE	التينا	抗빛		, [- 1	-4 e-	1	-' :		- 1	_
Δ		-13-1812-4	"- 2+	- 15##4		112	- -1-1 - -1-1		L	44	7	<i>-</i> . 1	١,٢,		<u> </u>	·		
+ - 1 - 1 - 1 - 1 - 1 - 1 - 1	, 1	<u> </u>	; - 	111-11	<u> </u>					. i			1		<u> </u>		1	_
1,			+ - 1	7 1	: .;	!	1	-7	E _t		- ,]	_	_	,	[-"-		J -	
		<u> </u>			·				<u>, </u>	· i					ļ .	L		
L.	1 :	1	·	i ,	17.	1	[-	'ا	' į	t !	- 1			,	-	, ,		
Σ	·	·	<u>, </u>	7 1	 <u> </u>		7									├— <u>-</u> -	<u>-</u>	
		, !	ļ i	7 1/4	,,	1',	11 -	- !	-	," ¦	, , "	1		-	1		; (, -
	T	. 1	: 1	1	1111	. ;	4		, 1	ı	1	1			-	1	1,1	
	<u> </u>	<u> - </u>		' 1'			1		:	ᅺᆩᆏ	: 1	<u> </u>			1 - 1		_ [_	l ,
177 771-17	1		1	1.1	,		Ĺ, '-	i T	- 1	*	٠, ٦	-]			,	1	1	,
	-		<u> </u>	1,1	4		ļ.,		<u></u> i			<u>,+ j</u>			<u> </u>	L		
	1. '	15,	1 1 11' ;				· .	1 1	<u>;</u> ;	. 1	1		7			,,,	4	•
			٠		<u>.</u>		<u> </u>	1 1	<u>'</u> f	· ;					 		— <u>†</u>	~ ! -
22	1 1 , 1	, ,-]	;		۱ - ۱	* 1 ;	T !		<u> </u>	:' .	1.		131-				f	-
	1	F 261	· T					4 , 1	7.	1 1		,	.1	1 į	-		i	1
<u> </u>		- }	1	1	<u> </u>											·	i	
] "]	Į.	` ,	1 1	,	,a	, ,],		;	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	-	٠ :			ı.	i.	
·	 		1 111		+				-	,			1					
	, '	1		,	1	•		' !: 	, i	. 1	1		1 1		ļ 1		ŧ.	
	† ; ; ;	1	+			7			- +								7	[~ ~
-22		j l	<u>, †</u>	<u> </u>	1-		'				{	i	i					
,	T -		1		T					ĺ			, ,		,	. 1		
		1	·		!		1		i					_			i	
	1				i '	٠	٠,	1	Į	• '	.	•		۱.	,		ŧ	!
	·	; 		 	i		<u>`</u>	<u>'</u>	 .	++++				•			,	
	1	1	- 1	1 • •	T		,	5	i	1	11 1	- i			, ,		_ '	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] - r =	17	, 1	,			-				7				r <i>'</i> 	1	171	
	<u> </u>	1 L-	1		1		<u></u> !				1	-1	1 1				<u>.</u>	
100	1 1-	, 'ч	. 1	•	В,	ŀ	:	:	12		ţ	ŀ	ΙĒ	'	١,	ŧ	28:	
- New Bandan - English Band			·	·			,		* ** ;			<u>-</u>						
, ,,	, ,	* * · ·	i	i ·	TIF	45	N	7 !	{	4	1	ł	- , <u>,</u>		,	•,	1	1
	,	<u>: </u>	- 		<u> </u>	-1 b ,	الانــ	—I J				- 1		.			- 7	
		· 'I '	· ·	1	, , , , , , , , , , , , , , , , , , , ,			,				, ,	<u>'</u> i	_			•	_
	1 4					_]		سراری سراری			- - -	1	-	!	1		_	
1-1-1-1	t t) I ==	-1. II	1 1	- 1		Í					
	!	; H	BR	D_T	JEE	البـــا	$Z\square$	<u> 7, 1 !} </u>	-114			‡	;					
	<u> </u>	H	BRI) T	E	<u>.</u>	ΧDJ	<u> </u>	<u> </u>		- - j	‡ 1	- 1		 ;	<u> </u>		-}
	†	H	HR	D T		! !	х П			'			i	 	 			-}
	†	H	HR	I d		! ! 		Z_1;I		! !	 	 	 	·	 	"	·	-}
	<u> </u>	H		I C		<u>- </u>	X			_'			 			"	1	
	1	H		I C		! !	XD			'		 						
	1	H		D T		!	XD)	+		- '								
	1	H	BR	D T	BE			\frac{1}{2} \frac\		'								
		H	BRI	D T	B	! !		+		- '								
		H	ER!	D T	B	!		+-+-										
		H	ER.	D T	B			+										
		H	ER!	D I	B -	12				'								
		H	HR.	D I	B -	12		+					7					
		H		D I	β	12		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\					1 1 1					

41 1 1 1

		31.0
		_
		32.9 24.5 A 32.9
		32.9 24,5 A 32.9
37		324
	(B) 49.1	324
	A 40.9	264 A 35.7 B
0	,	35.2
3 514	© 51,B	32.9 1)
367	À 41,8	25.9 3k 32.4
35.Z	<u>A</u> 41,8 ⊕ 51,8	32,4
		33.4 ₁₀
		34.8 p 21 7 m 36 7 m
(3) (2)		367.0
348' (3) 83.2		38 I _®
1941 ;	<u> </u>	36.7 _®
		27.8 🛦 36.1. 🗓
	À 38,5	36,2.3
		36 ² @-
		34.8 ①
A 57.8	A 41.3	23.5 🚵
A 57.8 6 98.7 12. 41.5 70.2 13.6.7	<u> </u>	***
432.7		

HARD TUBE INFLATABLE RADIATOR THERMOCOUPLE LOCATIONS

TEST POINT 1

HARD TUBE INFLATABLE RADIATOR THERMOCOUPLE LOCATIONS

APPENDIX C. TEST DATA FOR THE SOFT TUBE ENGINEERING MODEL RADIATOR (Outlet Temperature versus Tube Number and Map of Thermocouple Readings)

TUBE RADIATOR **SUFT**

Trans. 90.7 Trans. 10.2 Trans. 130
+ at
Σ
TUBÉ NO:
Ench Tipe rach increas
SOFT TUBE RADIATOR
4-4

TEST POINT 6-B

TEST POINT 6-C

TEST POINT 7-B

TEST POINT 4

APPENDIX D. COMPUTER PROGRAM LISTING HARD TUBE TEST ARTICLE TEST POINT 1

SINDA/S	INFLO PREPROCESSOR	ĐA FE -100975 -	-PAGE-	3 —
(_	BCD 3THERMAL LPCS BCD SHARD TUBE INFLATABLE RADIATOR END	~ · ·	40 m	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BCD 3NODE DATA -10000, -310.;1.			
-	GEN -61GD,12,1,70,1.			·
- State of the same of the	-71,70-11- STUBE NODE / STUBE N			
<u> </u>	GÉN -200,12,1,70,11			
	GEN 5.00.12.1.70.1.			
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	SEN 12,6,1C,7G.,.G544			
	21n - 141 14 14 14 14 14 14 1			
The state of the	SIM 6000,12,1,70,,42,K4 \$TUBE NODE SIM 1100,12,1,70,43,K5 \$FIN NODE SIM 1200,12,1,70,43,K5 \$FIN NODE SIM 1300,12,1,70,43,K5 \$FIN NODE SIM 1400,12,1,70,43,K5 \$FIN NODE SIM 1400,12,1,70,43,K5 \$FIN NODE			
Contract of the contract of th	SIM 2100, 12, 1,70%, A3,K5, \$FIN NODE SIM 2300, 12, 1,70, A3,K5 \$FIN NODE SIM 2400, 12, 1,70, A3,K5 \$FIN NODE SIM 2400, 12, 1,70, A3,K5 \$FIN NODE SIM 2400, 12, 1,70, A3,K5 \$FIN NODE			
	5IM 3100,12,1,70.,A3,K5 #FIN NODE SIM 33300,12,1,70.,A3,K5 #FIN NODE SIM 33400,12,1,70.,A3,K5 #FIN NODE SIM 3400,12,1,70.,A3,K5 #FIN NODE			
	STM 3506,12,1,70.,A3,K5 &FTN NODE SIM 4100,12,1,70.,A3,K5 &FTN NODE SIM 4200,12,1,70.,A3,K5 &FTN NODE SIM 43,0,12,1,70.,A3,K5 &FTN NODE SIM 43,0,12,1,70.,A3,K5 &FTN NODE		-	THE PERSON MAKES AS A SECOND
	SIM 4500,12,1,70.,A3,K5 \$FIN NODE SIM 5100,12,1,70.,A3,K5 \$FIN NODE			(
	J – Q			

SINDA/SINFLO PREPROCESSOR	DATE 105975	PAGE 4
- 1 * SIM 5200:12:1:70:183:K5 SFIN NODE		
SIM 5406,12,1,76.,A3,K5 SFIN NODE SIM 5500,12,1,76.,A3,K5 SFIN NODE [END		
RELATIVE, NODE NUMBERS		
1 THRU 10 80 81 5 6 4 11 21 11 THRU 20 61 16 26 36 46 56 66 66 17 17 27 - 37 - 47	31 41 51 12 22 32 57- 671000	· · · · · · · · · · · · · · · · · · ·
31 THRU 40 1001 1002 1003 1804 1005 1006 1007 41 THRU 50 1011 2000 2001 2002 2003 2004 2005 51 THRU 40 2000 2001 2000 3001 3002 3003	1808 1809 161C 2406 2507 2608 3604 3605 3406 4602 4603 - 4004	
3007 3008 3008 3010 3011 4606 4661 71 71 71 71 71 71 71 71 71 71 71 71 71	5000 5001 5002 5010 5011 6000 6008 6009 6010	
L: 101 THRU 120 1100 1101 1102 1103 1104 1105 111 THRU 120 1109 1110 1111 1200 1201 1202 1203 121 THRU 13C 1207 1208 1209 1210 1211 1300 13C1 131 THRU 140 1305 1306 1307 1308 1309 1310 1311	-1106 1107 -1108 1204 1205 1206 1302 1303 1304 1400 1401 1402	
141 THRU 150 1403 1404 1405 1406 1407 1408 1407 1501 1502 1503 1504 1505 1506 1507 1501 1502 1503 1504 1505 1506 1507 1501 1502 1503 1504 1505 1506 1507 1501 1501 1501 1501 1501 1501 1501	1416 1411 15F6 1508 1509 1510 2106 2107 2108 2204 2205 2206	
201 THRU 200 2305 2307 2308 2309 2310 2311 2311 2311 2311 2311 2311 2311	2204 2205 2206 2302 2303 - 2304 2400 2401 2402 2410 2411 2500 2508 2509 2510 3106 3107 - 3100	
221 1HRU 250 2511 3100 3101 3102 3103 3104 3105 231 1HRU 250 3107 3207 3208 3209 3210 3211 3300 3301 3202 3203 3207 3208 3209 3210 3211 3300 3301 3202 3203 3307 3308 3209 3210 3211 3300 3301 3211 3300 3301 3211 3200 3200	3204 3205 3206 3302 3303 3304 3400 3401 3402 -3410 3411 3500	
271 THRU 280 3501 3502 3503 7504 3505 3506 3507 281 THRU 290 3511 4100 4101 4102 4103 4104 4105 291 THRU 300 4109 4109 4111 4200 4201 4202 4203 4203 4203 4203 4203 4203 4203	3508 3509 3510 4106 4107 4108 4204 4205 4206 -4302 4303 4364	
311 THRU 320 4305 4307 4308 4309 4310 4311 4903 4406 4407 4408 4409 4501 4502 4504 4505 4506 4507	4400 4401 4402 4410 4411 4500 4508 4509 4510	
351 THRU 360 5109 5110 5111 5200 52C1 52D2 52C3 361 THRU 370 52D7 52D8 52D9 5210 5211 53C0 53C1 53D5 53D6 53D7 53D8 53C9 5310 5311	- 5106	
381 THRU 380 5403 5404 5405 5406 5407 6408 5409 7 5409 7 5400 5501 5502 5503 5504 5505 5506 5507 7 5401 THRU 410 5511 10000 90 91 92 93 94 7 5411 THRU 420 1153 1154 1155 1156 1157 1158 1159 7 510 1158 1159	5508 5509 5510 1150 1151 1152 1160 1161 6100 6408 6109 6140	
431 THRU 440 6111 2 3 1 70 71 16 441 THRU 450 5C 60 15 25 35 45 55	20 3L 4L 65 10 111 109 110 111 207 - 208	
451 THRU 460 102 103 104 105 106 107 108 461 THRU 470 200 201 202 203 204 205 206 206 207 207 207 207 207 207 207 207 207 207	306 356 405 456 -	

SINDAY SINFLO PREPROCESSOR	DATE 100975 PAGE 5 1
491 THRU 5500 406 497 408 501 THRU 510 504 505 506 506 506 506 506 506 506 506 506	409 410 411 500 501 502 503 1 S
NODE ANALYSIS DIFFUSION = 401, ARITHMETIC =	507 \$08 509 514 511 603 601
BCO 3CONDUCTOR DATA GEN 11.6.15.11.10.12.10.307. SCOND.STRUCTURE GEN 16.6.10.16.10.17.10.307. SCOND.STRUCTURE GEN 16.6.10.10.17.10.20.00 SCOND.STRUCTURE	
GEN 16:0:10.16:10.17:10.1307 SCOND STRUCTURE GEN 12:5:10:12:10:22.10.9400 SCOND STRUCTURE GEN 17:5:10:12:10:27:10:235 SCOND STRUCTURE GEN 17:5:10:12:10:10:10:12:10:10:10:10:10:10:10:10:10:10:10:10:10:	1" - 1's \
CEN 4988144141588741498111 PASSAE COND	
GEN 2100,11,1,100,1,1,0001 SAXIAL COND GEN 1300,11,1,1201,1,1001 SAXIAL COND GEN 1400,11,1,1600,1,100,1,1001 SAXIAL COND GEN 1500,11,1500,1,1501,1,0001 SAXIAL COND GEN 2000,11,1,200,1,200,1,1,0001 SAXIAL COND GEN 2100,11,1,2100,1,2101,1,0001 SAXIAL COND GEN 2200,11,1,2100,1,2101,1,0001 SAXIAL COND GEN 2300,11,1,2300,1,230,1,0001 SAXIAL COND GEN 2300,11,1,2300,1,230,1,0001 SAXIAL COND	
GEN 2300,11,1,2100,1,2101,1,0001 SAXIAL COND GEN 2300,11,1,2300,1,2301,1,0001 SAXIAL COND GEN 2300,11,1,2300,1,2301,1,0001 SAXIAL COND GEN 2400,11,1,2400,1,2401,1,0001 SAXIAL COND GEN 2500,11,1,2400,1,2401,1,0001 SAXIAL COND	
GEN 3000 11 1 3000 1 3001 1 3011	
GEN 3400,11,1,3400,1,3401,1,0001 \$AXIAL COND GEN 350C,11,1,350C,1,3501,1,0001 \$AXIAL COND GEN 4100,11,1,400,1,4001,1,0001 \$AXIAL COND GEN 4100,11,1,4100,1,4101,1,0001 \$AXIAL COND	
GEN 4300;11;1;4300;1;4301;1;0001;5AXIAL COND GEN 4300;11;1;4300;1;4301;1;0001;5AXIAL COND GEN 4500;11;1;4500;1;4501;1;0001;5AXIAL COND	
GEN 5100,11,1,5100,1,5101,1,0101 \$AXIAL COND GEN 5200,11,1,5200,1,5201,1,0101 \$AXIAL COND	
GEN S500, 11,1,5500,1,5501,1,0001 SAXIAL COND GEN 6000,11,1,0001,5001,1,0001 SAXIAL COND GEN 1050,12,1,100,1,1100,1,122 SRADIAL COND	
GEN 2050,12,1,2500,1,2100,1,1.22 \$RADIAL COND GEN 2050,12,1,2000,1,2100,1,1.22 \$RADIAL COND GEN 2550,12,1,2500,1,3100,1,1.22 \$RADIAL COND GEN 3050,12,1,3200,1,3100,1,1.22 \$RADIAL COND	
GEN. 4C50,12;1,4G00;1,4100;1,1.22	
GEN 1150,12,1,100,1,100,1,1,229 SRADIAL COND GEN 1250,12,1,1100,1,120,1,1229 SRADIAL COND GEN 1250,12,1,1200,1,1300,1,1229 SRADIAL COND GEN 1350,12,1,1500,1,1400,1,1229 SRADIAL COND	
GEN 1458,12,1,1406,1,1506,1,.229 BRADIAL COND	γ

	SINDA/SINFLO PREPROCESSOR	<u> </u>		DATE-10L975	- PAGE- 6
١	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DIAL COND	•	,	
,	GEN 2450-12-1-24CC-1-2500-1229 \$RA	DIAL COND DIAL COND DIAL COND		-	· · · · · · · · · · · · · · · · ·
	GEN 3250,12,1,3200,1,3300,1,.229 \$RA	DIAL CÔND Dial cônd			
	GEN 3450;12,1,3400,1,3500;1,,229,587	DIAL, COND' DIAL, COND DIAL, COND			
		DIAL COND DIAL COND			
١,	GEN 5250,12,1,5400,1,5300,1,229 SRA	DIAL COND DIAL COND DIAL COND			
,	GEN 1100,12,1,5400,1,5500,1,229 SR BEN 1100,12,1,1100,1,18000,0,3.62E GEN 11200,12,1,1200,1,10000,0,3.62E	DIAL COND 11 SEADIATION G	*	, .	
	GEN -11400,1271,1200,1.10000,0,3.62E GEN -11400,1271,1300,1.10000,0,3.62E GEN -11400,12,1,1400,1,10000,0,3.62E				
•	GEN -11500,12,1,1500,1,10000,0,3.62E GEN -12100,12,1,2100,1,10000,0,3.62E	11 SRADIATION G 11 SRADIATION G			
	GEN -12300,12,1,2300,1,10000,0,3,62E GEN -12300,12,1,2300,1,10000,0,3,62E GEN -12400,12,1,2400,1,10000,0,3,62E	11 SRADIATION G 11 SRADIATION G 11 SRADIATION G)	· · · · · · · · · · · · · · · · · · ·	1
	GEN :-12500,12,1,2500,1,10000,0,3.62E	11: SRADIATION G	, 't,		
٠	GEN -13200,12,1,3200,1,10000,0,3.62E GEN -13300,12,1,3300,1,10000,0,3.62E GEN -13400,12,1,3400,1,10000,u,3.62E	11 SRADIATION G 11 SRADIATION G 11 SRADIATION G			
	- 「水 ※ ※ 「 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「	TT AMMUNITALITON O			
`	6EN 14300,12:1,4200,1,10000,0,3662E	11 SRADIATION G 11 SRADIATION G 11 SRADIATION G			
	GEN -14500,12,1,4500,1,10000,0,3.62E GEN -15100,12,1,5100,1,10000,0,3.62E	11 SRADIATION G			
	GEN =15300,12,1,5300,1,19000,0,3,62E	11 TRADIATION G -		· · · · · · · · · · · · · · · · · · ·	
-	GEN -15400,12,1,5400,1,10000,0,3,62E GEN -15500,12,1,5500,1,10000,0,3,62E	TI SRADIATION G			
	RELATIVE CONDUCTOR NUMBERS		ACTUAL CONDUCTOR NUMB	BERS	
`	1 THRU 1C 11 THRU 2C 56	<u>66</u> - 12 -	41 51 61 -22 - 42 -		46
_	21 THRU 333 47 958 6056	, 57 , 950 - 959 , 960 - 6057 , 6058	951 952 953 961 6050 6051 6059 6060 6061	954 955 956 6052 6053 6054 1000 1001 1002	957 6055 1003
	61 THRU 7C 11G2	2190510 06 1104 1105	1007	1179 1110 1200	1003
	71 THRU 8C 1202 81 THRU 90 1301 	1302 1303	12C5	1307 1300 1309	1366 1316 1489 -
_	101 THRU 110 1410 1509	1500 1501	1592 1503 1504 2001 2002 2003	1505 1506 1507	15C8 20C7
			,	- 4	

SINDAYS INFLO-PREPROCESSO	-	 	DATE 100975	PAGE 7
121 THRU 13 131 THRU 14 14 THRU 15	0 - 2008 2009 2016 0 2107 2108 2109	2100 21C1 2102 2103 211C 2200 2201 22C2 2209 -2210 -2300 - 23C1	2104 2105 2106 2203 2274 2205 2302 2364	
151 THRU 16 161 THRU 17 171 THRU 16	C 2305 2306 2307 D 2404 2405 2406 2523 2504 2505	2308 2309 2310 240 2407 2408 2409 2410 2506 2507 2508 2509	2401 2402 2403 2500 2501 2502 2510 300J 3001	
191 THRU 20 191 THRU 201 THRU 21 211 THRU 22	101 3102 3103 200 3201 3201 3210 3300 3301			
221 THRU 23 231 THRU 24 241 THRU 25 251 THRU 26	E 3389 3310 3499 G 3408 3409 341C C 3507 3508 3509	3401 - 340234033404 3500 - 3502 - 3502 3510 - 4000 - 4001 - 4002	- 34053406 -3407 - 3504 3505 3506 4004 4005	-
261 THRU 28 271 THRU 28 291 THRU 29	0 4105 4106 4107 0 4204 4205 4206	-4108 -4109 4209 4210 4207 4208 4209 4210 4306 4307 4308 4309	-4102 4103 4104 -42014202 4263- 4300 4301 4400 4401	:
291 THRU 31 311 THRU 32 321 THRU 33 331 THRU 33 331 THRU 33	0 5000 5001 5002	4405 4406 4407 4408 4504 4505 4506 5005 5003 5004 5005 5006 5102 5103 5104 5105	4310 4400 4401 4409 4410 4500 -4508 -4500 5009 5007 5008 5009 5106 5107 5108	'
JANU 351 THRU 356	5109 5110 5200 5208 5209 5210 9 5307 5308 5309	5201 5202 5203 5204 -5300 -5301 -5302 -5303 - 5310 5400 5401 5402	5205 5206 5207 53045305 -5306 -	
361 THRU 38 361 THRU 38 361 THRU 39 391 THRU 46	5486 5407 5408 9 5505 5506 5507 6605 5606		- 6001 6002 6003 - 1050 1051 1052	
401 THRU 41 411 THRU 42:	3 1551 1552 1553 0 1551 2050 2051 0 2059 2060 2061	1554 1555 1556 1557 2052 2053 2054 2055	1060 1061 1550 1558 1559 1560 2056 2057 2058 2554 -2555 - 2556	
45 THRU 45	2557 2558 2559 2557 2558 2559 2559 2559 2559 2559 2559 2559 2559	2560 2561 3050 3051 3058 3059 3060 3061 3556 3557 3558 3589	3052 3053 3054 3550 3551 3552 3560 3561 4050	
471 THRU 48 481 THRU 49 491 THRU 55	0 4061 4550 4561 0 4559 4560 4561 0 5057 5058 5059		- 4058 4059 4060 4556 - 4557 - 4558 5054 - 5155 - 5056 5552 - 5553 - 5554	
501 THRU 52 521 THRU 52 531 THRU 53		- 5558 - 5559 - 5566 - 5561 1156 1159 1255 1256 1257 1352 1353 1354 1355	1150 1151 1152 1160 1161 1250 1258 1259 1260	
551 THRU 56 551 THRU 56 561 THRU 57	2 1457 1458 1459 2 155 2156 2157	1460 1451 1452 1453 - 1460 1461 2150 2151 2158 2159 2160 2161	1356 - 1357 - 1358 14541455 1456 2152 - 2153 - 2154 2250 - 2251 - 2252	
581 THRU 59	0 2351 - 2352 - 2353 - 2351 2451	2256 2257 2258 2259 2354 2355 - 235 62357 2452 2453 2454 2455 3150 3151 3152 3153	2260 2261 2350 2358- 2359 2366- 2456 2457 2458	
631 THRU 63	9	3160 3161 3250 3251 - 3258 3259 3260 -3261 3350 3357 3358 3359	3154 3155 3252 3252 3350 3350 3361 3451	
641 THRU 65 651 THRU 66 661 THRU 67 671 THRU 68	1 3451 3452 3453 2 3461 4150 4151 5 4159 4160 4161	3454 3455 3456 3457 4152 4153 4154 4155 -42504251 4252 4253 -	3456 3459 346L 4156 4157 4156 -4254 4255 4256	~
, 681 THRU 69	9 4257 4258 4259 1 4355 4356 4357	426C 4261 4350 4351 4358 4359 436] 4361	4352 4353 4354 4450 4451 4452	

SINDAYSING	LO. PREPROCESS	OR	* \\$ \	, , ,		,	· ************************************		*** ***	0/	TE 186975	;	PAGE	8	- :-	
SINDAYSINE	91 VIHRU 7		* 1453 *5151	14454 5152	4455 5153	4456 5154	4457 5155 - 5253	4458 5156	4459 5157	4460 5158	4461 5159	5150 5160			ì	
· '	731 THRU 7	31. 4 E	5357	5260 5358	5261 5354	5252- 5350 5360	5351 5361	- 5254 5352 5456	5353 5451	-5256 5354 5452	- 5257 5355 5453	5258 5356 5454	-		•	
		50 70- pr	5455 -11103 11201	5456 -11104 11202		- 1 1 106 11204	5459 - 11167 11205	5460 -11108 11206 11304	5461 	11100 -11 11 0 11208	11101 11111 11209	11102 11200 11210		-		۲,
	71% THRU: 7 181° THRU: 7 191° THRU: 8	70.	1-1-4 (-/	11300 ° 11310 11408		11302 11400 - 11418-	11303 11401 - 11411	11304 11402 -11506 -	11305 11403 	11306 11404 -11502	11397 11475	11308 11406 1 15 94 —			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
· 8	THRU 8	10 20 30	11505 12103 12201 12211	11506 12104 12202	11507 12105 12203	11508 12106 12204	11509 12107 12205	11510 12108 12206	11511 12109 12207	12100 12110 12208	12101 12111 12209	12102 12200 12211				•
	41 (THRU 8 51 VTHRU A 8	50	12309 12407	12300 12310 212408	12301	- 12302 12400 12410	12363 12401 12411	12402 12500	-12305 12403 12501	12306- 12404 12502	12307 12405 12503	-12308 - 12406 12504				
(2) 175 (3) (4) (4) (4) (5) (4) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	THRU 8	90	12565 13103 13201	12506 13104 13202 13300	12507 13105 13203	13106 13204	- 12509 - 13107 13205	12510 13198 13206	12511 -13169 - 13267	13106 -13116	- 13101 - 13111 - 13209	13102 13215 13215				
~ ~	ກຳ ເພດນ ຄ	18	13555	13310	13301 13311	13302 13400	13303 13401 	13304 13402 13 500	13305 13403 -13501	13208 13306 13404 - 13562-	133č7 13405 —13503——	13308 13406 -13504				
	THRU 3	30 40 50	13505° 14103 14201	13506 14104 14202	<14203	13410 13508 14106 14204	13509 14107 14205	13510 14108 14206	13511 -14109 14207	14100 -14110 14208	14161 14111 14209	14102 14200 14210			1	
ģ	71 THRU 6	85	14407	14300 14310 14408	14301- 14311 14409	14302 14400 14416	-14303 14461 14411	14402 14500	14403 14403 14501	- 14386 - 14484 14502		-14308 14406 14504				
4.32346730.3316	781 IHRU 9	96	14505	14576	14507	10500	14509 15167 15205	14510 - 151 08 - 15206	14511 - 15105 15207	1510C -15116 15208	15101	15162 -1 526 6 15210				
- The state of the	III AHRU SIG	20 %	15211 15309, 15407	15300 15310 15408	15301 15311 15000	15302 15400 15410	15303 15401 	15304 15402 - 1550 0	15365 15463	15306 15404 15502	15307 15405	15308 15406 1550 4				
CON	141 THRU 10 IDUCTOR ANALYS	47 IS LINEA	15505 R = 74	15506 17, RAD	15507 IATION =	15508	_15509_	15518	15511			15564"				
BCE BCE) JELOU DATA DARNETWORK MAI 460-6.0042E10	NY SALANDEAS	- MUZA6 - M	Z,			·								·	
STATE OF THE	2.2.3=20.21.	\$S=100,FRDX= {100,1000,11 {200,2000,21	1,10111,	0.,END 45,16,E	ND										1 	
U ,	3,2,3=30,31, 4,2,3=40,41, 5,2,3=50,51	(300,3000,31 (460,4000,41	1,3011) 1,4011)	35,36,E	ND ND											
	6,3,4=2,5,65 7,1,2=1,-4,E 8,5,3=70,-71	,66,4 611,60 ND	11,600,6	ood,-i,	-11,60,6	1,3,6,EN	0						-		(
BCE	3FLUID LUMP	DATA 5 - 340 - 0 - 0 -	1	-1 2.7	END							-	<u>.</u> .			
13 ° % - 11	.000419,.072 .000419,.072 .000419,.049 .000417,.049	5, 96, 0696, 5, 96, 0696,	5.;6;i.;	1	600,611)	,END			-	•	•		AM .			
, N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	. 656641752	29, 96, 622,	5.;ä;i.;	::::::::::::::::::::::::::::::::::::::	10,0,111)	, (200,21	Tiu, END									
					- ۵ -	· 6 ·		• •						ŧ		

SINDA/SINFLO PREPROCESSOR	o	ATE-108975	PAGE 9	
(300,311),(400,411),(500,511),END				1
DCD 3FLOW-SOURCE DATA		-		
5,36.49,END END				ļ
BCD 3END FLOW DATA BCD 3CONSTANTS DATA TIMEND 5 S DITHEL 005 - 5			-	- 7,
70014100 3			·• ·	 -
ORLXCA,.01 5 ARLXCA,.01 5 OUTPUT,.05 5				
3.000143 4.000338 5.4.19E-6				!
CONSTANTS ANALYSIS USER = 4, ADDED = 1	C P, TOTAL = 4			
BCD SARRAY DATA				
9.45.61,20,45.61,END 2400,15.61,-260.,25.8,0,32.6,200.,36.4				
3 S PCP FIN -400.,34.3,400.,34.3 FND				
211.237.40224, 110228, 50231 01237.40294, 90254, 120264, 140274 180295, 246315		,		
5 \$ P FREON 21 -218.,110.,-211.110.,-160.,104.,-110.,99.3 -60.,96.,0.,91.5,40.,88.5,90.,84.2,120.,81.8			·	

60.,.870,100.,.726,160.,.561,260.,.396 FND	Manual Prince of the San San San San San San San San San San			D
T CONDUCTIVITY EDEAN 21		description to the SMF SMF		
300.00.11.0.,.060.250.7.044,END 6.SPACE,22.END \$ ENTHALPY CURVE 10, *A11.,*A12,*A13,*A14,*A15,*A20,END 11,5,*T90,1.07,1,*T91,2.510,100,*T92,2.510,100,*T93,	2.510,100			ŧ
12,.02,.68,.68,.02,END 1398,.32,.3298,END	10 10 10 10 10 10 10 10 10 10 10 10 10 1			
14,*T90,*T91,*650,*T90,*T92,*205,*T90,*T93,*0377,*T90,*T90,*T90,*T90,*T90,*T90,*T90,*T90	,*T94,.675 93,.196		•	

p-7		-	_	
			-	

-

SINDA/SINFLO PREPROCESSOR				- DATE 105975	PAGE 1U
16,*T1100,.0251,*T2	#112000251.#113000251.#	T140g.:0251:*T1500.:	0251		
*T41000251.*T4	200, 0251, #72300, 0251, #724 200, 0251, #73300, 0251, #734 200, 0251, #74300, 0251, #744	**************************************	1		-
*Ť5100, 6251, *Ť5 *T1101. 6251, *Ť5	230,.C251,*T5300,.0251,*T54 201,.C251,*T1301,.7251,*T14	00, 0251, *14500, 025			
がかめたかい、 (ソ. 本T3101 0251 . *T3	201	01 0251 + 77501 4 025)}	m at	
*T4101, 0251, *14 *T5101, 0251, *15	201, 0251, *†4301, 0251, *†44 201, 0251, *†5301, 0251, *†54 202, 6251, *†5302, 0251, *†54	01,.0251.*T4501025	1		
*T4102.0251.***4	1202 * * 023 1 * * 1 3 3 0 2 * * 0 2 5 1 * 7 1 3 4	NS 0451 , #13502, . 045	!]		
#11103; 0251, #TI	203, 0251, #T1303, 0251, #T14	03, • C251, *T15n3; • C25	1		
# 13 103, 0251, #13	203, 0251, *13303, 0251, *134 203, 0251, *14303, 0251, *144 203, 0251, *15303, 0251, *134	03,.0251,*13503,.025	1		
*12104, 62251, 412 *13104-6251-413	204, 0251, 712304, 0251, 7124 204 - 0251 - 472704 - 2251 - 4724	04, 0251, *T2504, 025	1		
	204, .0251, *T4304, .0251, *T44 204, .0251, *T5304, .0251, *T54 205, .0251, *T1305, .0251, *T14			*	į
	205, 0251, * 11305, 0251, * 114 205, 0251, * 12305, 0251, * 124 205, 0251, * 13305, 0251, * 134		3		
#T51050251.#T5	205, 0251, *T4305, 0251, *T44	05, 0251, *T4505, 025	1		i .
					درج مدسد سیم به سر
	206, 0251, *T2306, 0251, *T24 206, 0251, *T3306, 0251, *T34 206, 0251, *T4306, 0251, *T44			,	ļ
*T11070251.*T1	2071251.xT13000;3261.xT10	07 0251 **1500 ** 025		جي _{چند} مينون جي الله مندهاما ند روجودوا	
†3107,.0251,†3	207, .0251, * 13307, .0251, * 134	070251.*T3507025	1		
18.4Tiin80251	#11208 - 0251 - w11200 - 0251 - w154	Q7,20251,#T55D7,.C29	ZI'END		
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	208 - 0251 - x 1 2 3 0 8 - 1 2 5 1 - x 1 2 4	U8, • U251, *T2508, • C29	1	- t-	
*T51080251.*T5	268 - 0251 - 475308 - 1251 - 4754	08 - 0251 - 714508 - 025	1		
*T31090251.**T3	209,.u251,*T1309,.u251,*T14 209,.u251,*T2309,.u251,*T24 209,.u251,*T3309,.u251,*T34 209,.u251,*T3309,.u251,*T34	09++0251++12509++025	1		·,
* \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	209 - 6251 - 415309 - 6251 - 4154	19, . 1251 . #TEECO	1	4	į
*T211C0251.*T2	/210U201-7-11310U201-*** 2136251-************************************	10-0251,*F1510, C25	<u>.</u>		
*T411C0251.*T4	210,00251,713310,03251,7134 210,0051,414310,3251,414	10, • 0251, * 13510, • 625	1		
- 1 ペランフラン *** サイエエエよりのほどうもの好ます。	210,.0251,*15316,.3251,*154 211,.0251,*11311,.7251,*T14 211,.0251,*T2311,.0251,*T24	11 COE1 ATTETT POR	•		
	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ************************************	7 .		

\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DATE 100975	PAGE .1	<u> </u>
C 1 T D	-		
ARRAY ANALYSIS AN NUMBER OF ARRAYS = 19 TOTAL LENGTH = 818			, '
(PRESSURE NODE LIST	•		· · · · ·
DIMENSION X (1000C)		- 44 - 45-51-54 - 41	
CRVINT(A4,A8) TOPLIN GENOUT(A8+1.1.A8.3HUAR)		## *##################################	
TTEST = 0 F CNE TEST = 1 CNE TEST = 1 F			
BCD 3VARIABLES 1 FORTEST-FO. 11 CALL PARTE AND 17145-8 -460			
**************************************	"		
7 1155 = 11105 11157 = 11107			
T1150=T1100 T1159=T1100 T1160=T1110 T6100=T5500			
T6101=T5501 T6102=T5503 T6103=T5503 T6104=T5504			
T6107=15507-7		- hru -	
T6109=T5509 T6110=T5510 T6111=T5511			•
BCD 3VARIABLES 2	1		

STANDAYSTAIGLO DEFENDACESCAD	DATE 100975	PAGE 12	
SINDA/SINFLO PREPROCESSOR FLOSOL (1,0) FLOSOL (1,0) FLOSOL (1,0)			
TINCHK(K1,0) END BCD 30UTPUT CALLS TPRNT WPRINT(1,1,1,C) TINCHK(K1,1) END			
WPRINT(1,1,1,C) TIMCHK(K1,1) EBD 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	<u></u>		٦
	tab	, -	
aADD,P ECO2-V55008*SINFLO.PROC			
			-
	,		
The parties of the second of t	April Comp about the Laborator Ad-		
Be To be the west of the second of the secon	NAME OF THE PERSON NAME OF THE P		
			\$
			~
		-	
<u> </u>		_	

SYSTEMS IMPROVED NUM	ERICÁL DIFFERENCING A	INALYZER -	SINDA		UNIVAC-1108 F	ORTRAN-V VE	RSION PA	AGE 47
IR CROSS RADIATION DATA					-			.
SURFACE DATA NUMBER OF SURF	Aces 1=6 2 15 4 1 1 1 - 2	i .	<u> </u>	<u>.</u> -			-	
SURFACE NUMBER	SURFACE AREA	NUMBER	OF NODES			•		
90			102					
93	2.51000 2.51000 1.07000	~				**		gm <u></u>
SURFACE EMISSIVITY E								-
2000-01	\$68000\08\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	00 (68000+	20000-	<u>.</u>			*****	•
SURFACE REFLECTIVITY	Y DATA	<u>`</u> _						
•98000+00	.32000+00 .32000+		98000+	o G				
SBRFACE CONNECTION D	ATA COLLEGE	, ,	4					
FROM SURFACE	TO SURFACE	VIEW FACTOR	?				- 4-	/
90	91	•65000+00 20500+00 70000-0 •75000-0	i i	}		·		
91 92 92	94 93 94 96	** 19600+00 - 59000-01 - 31000-01 - 19600+00 - 90000-01 - 28500-01		* * 6		Water and	-	
NODE DATA		5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.			·		-	
SURFACE NO	DE AREA	NODE	AREA	NODE	AREA	NODE	- Area	-
70 71	80 1:07000 00 02510	1200	•02510	1366	-C2510	- 1400	•C251C	
	The state of the s	D	-11					-

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

1500	.02510 2200 .02510 3100 -02510 4500 .02510 5300 .02510 1201 .02510 2101 .02510 3401 .02510 3401 .02510 4301 .02510 4301 .02510 5201 .02510 1502	.02510 2300 .02510 3200 .02510 4100 .02510 5401 .02510 5401 .02510 3101 .02510 3101 .02510 4401 .02510 4401 .02510 5301 .02510 5301	
		* * * * * * * * * * * * * * * * * * * *	
			1
		-	· · · · · · · · · · · ·
		-	-

2202 3102 3502	DIATOR - 2 - D251 - D251	10 2302 10 3202 10 4102	02510 02510 02510 02510	24L2 33U2 42L2 	-12510 -52515 02515	222 2543 4343 4343	.02510 .02510 .02510	
55302 1203 2103 2503	0251 0251 0251		•02510 •02510	55403 1403 2325 		5262 1103 1503 2403 3303		
3403 4303 5203 3 103 1104	.0251 .0251 .0251	10 3503 10 4403 10 5303	.02510 .02510 .02510 .02510	4103 4503 5403		4 7 6 7	.02510 .02510 .02510 .02510	
1504 1504 2404 1200		- H	**************************************	2204 3104 3504 4464	022510 022510 022510 022510 022510 022510	2354 3204 4104 4564 — —	.02510 .02510 .02510	
\$104 5504 14305 23205	.0251 .0251	6 5204 1105 0 1505 0 2405	.02510 	\$314 1205 2105 2505 3405	.02510 .02510 	1305 2205 - 3105	.02510 .02510	
4505	025	0 5105 - 5505	- 02510 - 02510 - 02510 - 02510	3405 4305 5205 1106 1506	.02510 .02510 .02510	3505 4405 5305 —12266 — —	182510 •02510 •02510 •02510 •02510	
1306 2206 3106 3506		0 2306 0 3206 0 4106 4566	.02510 .02510 .02510 .02510	2406 3316 4266 5106	• C2510 • C2510 • C2510 • C2510	2106 2506 3406 4306 5206	.02510 .02510 .02510 02510 -	
9406 5306 1207 2107 2507	025 025 025 025	5406 1307 6	02510 02510 02510 02510	5506 1407		1107 1507 	.02510 .02510 .02510	<u> </u>
3407 4307 25-56 (935) 7-1108	10261		.02510 .02510 .02510 .02510 .02510	32C7 4107 4507 5407	.02510 .02510 .02510 .02510	3307 4207 5107 5567 —	.02510 .02510 .02510 .02510	~ -
935 5207 1108 1508 2408 5108	0251 0251 0251 0251	-R:	.02510 .02510 .02510 .02510 .02510	1308 2208 3108 	- G225110 - G225110 - G225110 - G2255110 - G2255110 - G2255110	1408 2308 3208 4108	.02510 -02510 -02510 -02510	
5108 5508 1469 (2309 4109	.0251 0251 30251	0 2409	.02510 .02510 .02510 .02510 .02510 .02510 .02510	4408 5308 5209 	- 02510 - 02510 - 02510 - 02510 - 02510 - 02510	5408 1309 2209 3109 3409		. _

					• • •			**0
	MERICAL DIFFERENCING	ANALYZER -	SINDA		UNIVAC-1108 FOR	TRAN-V VERSIO	N PAGE	49
!	E-RADIATOR 4509 .02513 5409 .02515 1310 .02510 2210 .02510 3110 .02510 3510 .02510	5109 5509 1411 2310		52L9 1110 1510 -2416 -	.62510 .62516 .62516 	5309 1210 2110 2515 3410	.025510 .0225510 .0225510 .0225510	-
	4410 •02518 5318 • 02518 1211 •02519	3210 3210 4510 4510 1311			.02510 .02510	4310 5210 	.02510 .02510 .02510 .02510	
	2511 •U251U	1311 2211 3111 		- 3211 4111	- P251L	3311 4211- 5111	.02510 .02510 - .02510	
94	4311 \ .02516 5211 \ .02516 1.07000	4411 5311	.02510 .02513	4511 5411	. £2510 . 62510	\$511 	02510	
CONNECTION DATA				-				
* FRON SURFACE	3	SCRIPT FA	·			-		
90 90 90 91	93	44075-02 26658-02 48731-04 34728+00				 -		ga galang da 18 40 4000 10
91 91 92 92 93	93 	18021+00 26974-02 35189+00 45310-02 11019-01			a ske are less experience. The	· ·		
A	,			. 		#	- 	
***						-		
*					-	-	-	
					•			
		D -	- 14					

O SYSTEMS THEROVED NUMERICAL DIFFERENCING ANALYZER SINDA UNIVAC-1168 FORTRAN-V VERSIO	PAGE 71
T 5503= 29.082 T 5504= 29.283 T 5505= 29.404 T 5506= 29.554 T 5507= 29.757 T 5509= 30.274 T 5510= 30.564 T 5511= 30.877 T 6000= 31.447 T 6301= 31.640 T 5509= 32.120 T 6004= 32.420 T 6005= 32.743 T 6006= 33.072 T 6007= 33.432 T 55009= 34.226 T 6000= 34.651 T 6005= 32.743 T 6006= 33.072 T 6007= 33.432 T 55009= 34.226 T 6000= 34.651 T 6005= 32.743 T 6006= 29.555 T 6107= 29.019	T 5508= 30.604 T 6062= 31,864 T 6008= -33.820 T 6102= 29.631 T 6108= 30.605
W 1= 9.1429 W 2= 9.1416 W 3= 9.1375 W 4= 9.1251 W 5= 9.0646	
DP 1= 26074	
**************************************	T 17= 40.115 T 27= 39.976
1 40- 73-351 41- 86-997 42- 78-954 7 45- 37-555 46- 38-456 7 50- 32-962 7 51- 83-752 7 52- 72-934 7 55- 36-967 7 56- 37-394 7 60- 32-962 7 61- 36-011 7 62- 63-673 7 65- 37-521 7 66- 37-589 7 67-37-78-78-78-78-78-78-78-78-78-78-78-78-78	7 37: -39:663
1 209	T 1082 49.872 T 2022 78.283 T 3022 78.155 T 3082 49.713 T 4022 77.849
105- 62-558 T 406- 57-57- T 407- 53-543 T 406- 57-57- T 407- 53-543 T 406- 57-57- T 407- 53-543 T 407- 53-543 T 408- 45-252 T 408- 53-543 T 508- 88-379 T 50	T 502= 76-3324
T 1003= 60.589	T 1002= 66.158 T 1008= 36.423 T 1102= 60.938 -T 1152= 60.936
T 1153= 55.607 7 11154= 250.626 7 1155= 45.779	T 1258= 32.492 T 1202= 45.353 T 1208= -20.648 — T 1302= 40.319
	<u>.</u>

<u>'</u> '	HARD-TUBE-THELAT	NUMERICAL DIFFERENCING ABLE RADIATOR T 1364= 31.065			C-11C8 FORTRAN-V VERSION	
, , , , , , , , , , , , , , , , , , , 	1303= 35.895 1309= 13.895 1403= 40.688 1409= 17.594 1503= 55.561 1509= 29.035 2003= 60.536	T 1504= 14.647 T 1504= 50.582 T 1510= 25.716	T 1411= 11.785 T 1505= 45.737 T 1511= 22.737	T 1306= 24.738 T 1400= 25.108 - T 1466= 28.183- T 1500= 72.177 T 1506= 41.040 T 2009= 77.920	T 1401= 55.148 T 1407= 24.162 T 1501= 66.438 T 1507= 36.447 T 2001= 71.908	T 13C8= 16.6L7 T 1402= 45.329 T 1408= -20.634 T 15G2= 60.668 T 2502= 66.102
- 1	2009= 32.828 2103= 55.554 2109= 29.030 2203= 40.645 2209= 17.564	T 2018= 29.382 T 2104= 50.575 T 2110= 25.711 T 2204= 36.456 T 2210= 14.617	1 21112 22.492	- F- 2606: 45-335 T 2107: 72.170 T 2106: 41.033 T 2207: 55.065 7- 2266- 28-139	T 21C1= 40.544 - 1 21C1= 66.432 T 21C7= 36.440 T 22C1= 50.1C5 T -22C7= -24.417	1 2608= 36.392 1 2102= 60.881 1 2108= 32.461 2202= 45.286 1226828.664
, ,	2303= 35.811 2309= 13.832 2403= 45.578 2409= 17.515 2509= 28.928	T 2304= 31.883 T 2310= 11.003 T 2404= 36.389 T 2410= 14.568 T 2504= 50.434		T 2306 28.139 T 2306 49.539 T 2306 23.952 T 2400 55.000 T 2406 28.068 T 2506 72.033 T 2506 40.884 T 3000 77.766	T 2307 20 112 T 2401 20 112 T 2401 20 140 T 2501 66 294 T 2507 36 290	T 23G2= 40.2367 T 23G8= 16.2367 T 24G2= 45.220 T -24G8=20.554 T 25G8= 32.358
military of the	3003- 60.379 3009= 32.713 3103= 55.394 3109= 28.912 3203- 40.448 3209= 17.411	T 3084 55.145 T 3010 29.268 T 3104 50.413 T 3110 25.593 T 3264 76.55	T 3011= 25.924 T 3105= 45.565 T 3111= 22.372	T 300C= 77.766 -T 3066= 45.468 T 3150= 72.017 T 3106= 40.861 T 320C= 54.897 -T -3206= -27.918 T 3300= 49.337	T 3101= 66.277 T 3107= 36.267 T 3201= 00.027	T 3002= 65.947 T 3008= -36.277 T 3108= 32.341 T 3108= 32.341 T 3202= 45.699
1,7,7,1	3303= 35.557 3309= 13.631 3403= 40.243 3403= 17.249 3503= 54.943 3509= 28.575	T 3210= 14.4620 T 3310= 16.627 T 3404= 36.039 T 3404= 14.310	T 3311= 8.0581 T 3405= 31.885	T 3306= 23.662 T 3400= 54.744 - T 3406= 27.679 T 3500= 71.694 T 3506= 40.359	T 3307= 19.825 T 3401= 49.756 - T - 340.7=23.664 J 3501= 65.917 T 3507= 35.777	T 3202= 39.999 T 3306= 16.543 T 3402= 44.910 T-3408= 20.263
- <u><u></u></u>	4003 59.897 4009 32.338 4103 54.849 4109 28.518 4203 39.509	T 4015= 28.904 T 4104= 49.846 T 4110= 25.220 T 4234= 35.314	T 4105= 44.979 T 4111= 22.613 T 4111= 22.613	T 4100= 71.607 T 4106= 40.250 T 4200= 54.184	T 4901= 71.351 T-4007= 39.829 T 4141= 65.817 T 4147= 35.691 T 4201= 49.114	T 4002= 65.503 T-4008= 35.898 T 4102= 60.218 T 4108= 31.929 T 4202= 44.210
	4209= 164884 4303= 34.135 4309= 12.925 4403= 38.190 4409= 16.364 4503= 52.382	T 4210= 14,006 1 4304= 30.207 1 4310= 10.220 T 4404= 34,013 T 4410= 13,547	† 4305= 26.198 T 4311= 7.5905 T -4405= -29.826 T 4411= 10.871	1 4306= 22.203 T 4400= 53.156 	T 4307= 43.352 T 4307= 18.756 T 4401= 47.938 T 4407= -22.219	T 4302= 38.636 T 4308= 15.725 T 4462= 42.937
T - T	45 03 = 52 082 45 09 = 27 0 362 50 03 = 56 802 50 09 = 30 0 989 51 03 = 51 185 51 09 = 27 0 371	T 4510= 24.265 T 5004= 51.577 T 5010= 27.840	T 4505= 42.327 T 4511= 21.316 -T5605= 46.581	7 4506 37.714 7 5000 74.075 7 5006 41.772 7 5106 67.985 7 5106 37.342 7 5200 43.779	T 4507= 33.870 T 5001= 68.577 T -54007= 37.716 - T 5101= 62.075 T 5107= 33.593	T 4506= 30.481 T 5002= 62.510
		-		·	-	

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Ò	l
	T 52C3= 32.423 T 52U4= 29.455 T 52C5= 26.359 T 5206= 23.379 T 52L7= 20.877 T 52CB= 18.725 T 52C9= 16.703 T 52LC= 14.769 T 5211= 12.902 T 5300= 29.965 T 53L1= 27.484 T 53C2= 25.136
	T 5309= 13:695 T 5310= 12:577 T 5311= 11:507 T 5407= 25:196 T 5407= 23:996 T 5402= 22:878
,	T 5509= 30.263 T 5510= 30.553 T 5511= 37.866 T 6000= 31.435 T 601= 31.678 T 6002= 31.652 T 6003= 32.108 T 6004= 32.427 T 6005= 32.731 T 606= 33.060 T 607= 33.461 T 6002= 33.868 T 6009= 34.215 T 6010= 34.639 T 6011= 35.084 T 6000= 29.034 T 6101= 29.007 T 6002= 29.020 T 6009= 34.215 T 6000= 34.639 T 6005= 39.0395 = T 6000= 29.544 = 1 6007= 29.027 T 6008= 29.020
-	T 6109# 30.263 T 6110# 30.554 T 6111# 30.866 T 10000# -310.00
ر' ،	DP 1= .26072 DP 2= .26772 DP 3= .26772 DP 4= .26072 DP 5= .26772 DP 6= .10727 DP 7= .26114-03 DP 8= .90865-03
	(* P _ 1=136825 4 P
, \	END OF DATA * *DIVIDE CHECK HAS OCCURRED* *
~	aprio, E
, ۱_	SBRKPT PRINTS
Ĺ	
•	
_	
	, , , , , , , , , , , , , , , , , , ,
•	D-17

APPENDIX E

COMPUTER PROGRAM LISTING

SOFT TUBE TEST ARTICLE

TEST POINT 1-B

SINDA/SINFLO PREPROCESSOR	DATE 191775	PAGF 3	
BCD 3THERMAL LPCS BCD 5SOFT TUBE INFLATABLE RADIATOR			
BCD 3NODE DATA GEN -51,13,1,7C.,1. #SURFACE NODES GEN 1000,8,1,7C.,10C7 **STUBE NODE			
GEN 2000;8;1;70.,.0007 \$FUBE NODE GEN 3U00;8;1;70.,.0007 \$TUBE NODE GEN 4000;8;1;70.,.0007 \$TUBE NODE GEN 5000;8;1;70.,.0007 \$TUBE NODE GEN 1083;8;1;70.,.0007 \$TUBE NODE			
GEN 2083,8,1,71,,0007 STUBE NODE GEN 3083,8,1,70,,0007 STUBE NODE GEN 4083,8,1,70,,0007 STUBE NODE	,		ı
GEN 5003;0;1;70:;0007 \$TUBE NODE GEN 999,5,1000,70:,0007\$MANIFOLD TUBE GEN 1091,5,1000,70:,00007\$MANIFOLD TUBE GEN -1,2,1,95.,1: \$FLUID NODE GEN -1,2,1,		•	·-
GEN -191,55,100,70.,1. SFLUID NODE	_	-	-
GEN -400,8,1,70.,1.			
GEN -383.8,1,7C.,1.	m		
GEN 3-2-1-70 SMANIFOLD NODE			
GEN 1850,8,1,70, REGILLY SETN NODE GEN 1950,8,1,70, GEN NODE GEN 1950,8,1,70, GEOLLY SELN NODE GEN 2757,8,1,70, GEOLLY SELN NODE GEN 2757,8,1,70, GEOLLY SELN NODE			
GEN 2750,8,1,7c., TED117 SFIN NODE GEN 2800,8,1,7c., CD117 SFIN NODE GEN 2850,8,1,7c., CD117 SFIN NODE GEN 2900,8,1,7c., CD117 SFIN NODE GEN 2900,8,1,7c., CD117 SFIN NODE GEN 2950,8,1,7c., CD117 SFIN NODE			
GEN 1120,8,1,72COU117 SFIN NODE GEN 1150,8,1,72COU117 SFIN NODE GEN 1250,8,1,72COU117 SFIN NODE GEN 1250,8,1,72COU117 SFIN NODE GEN 1250,8,1,72COU117 SFIN NODE			
GEN 130C,8,1,7C.,.32M17 SFIN NODE GEN 135C,8,1,7C.,.0CC117 SFIN NODE GEN 145D,8,1,72,CUB17 SFIN NODE GEN 145D,8,1,73,CUB17 SFIN NODE GEN 1500,8,1,73,CUB17 SFIN NODE GEN 1500,8,1,73,CUB17 SFIN NODE			
GEN 1570,8,1,75., 200117 SFIN NODE GEN 1550,8,1,70., 200117 SFIN NODE			

SINDA/SINFLO PREPROCESSOR	DATE 151775	PAGE	4
GEN 2100,8,1.70., .000117 SFIN NODE	-		
GEN 2200,8,1,70,,,CG0117 SFTN NODE GEN 2250,8,1,70,,,,D0117 SFTN NODE			
GEN 2310,8,1,70,, 101117 SEIN NODE			•
1 GEN 2450,811,70., ECOLT SFIN NODE CONTROL OF THE			1
GEN 3120,8,1,70,,000117 SEIN NODE	- -		-
GEN 3150,8,1,70.,.000117 SFIN NODE GEN 3200,8,1,70.,.000117 SFIN NODE			~ 1
GEN 3300,8,1,70000117 SFIN NODE			1
GEN 3400,8;1,70.;.000117 SFIN NODE			
GEN 2200,8,1,70., CG0117 SFIN NODE GEN 2250,8,1,70., CG0117 SFIN NODE GEN 2350,8,1,70., CG0117 SFIN NODE GEN 2450,8,1,70., CG0117 SFIN NODE GEN 2450,8,1,70., CG0117 SFIN NODE GEN 2500,8,1,70., CG0117 SFIN NODE GEN 2500,8,1,70., CG0117 SFIN NODE GEN 3100,8,1,70., CG0117 SFIN NODE GEN 3150,8,1,70., CG0117 SFIN NODE GEN 3200,8,1,70., CG0117 SFIN NODE GEN 3250,8,1,70., CG0117 SFIN NODE GEN 3250,8,1,70., CG0117 SFIN NODE GEN 3350,8,1,70., CG0117 SFIN NODE GEN 3450,8,1,70., CG0117 SFIN NODE GEN 3450,8,1,70., CG0117 SFIN NODE GEN 3550,8,1,70., CG0117 SFIN NODE GEN 4100,8,1,70., CG0117 SFIN NODE GEN 4100,8,1,70., CG0117 SFIN NODE GEN 4100,8,1,70., CG0117 SFIN NODE			
GEN 4150.8 1.70. DO0117 SFIN NODE		- ,	
GEN 4250,8,1,70,00117 SFIN NODE			
GEN 4200.8,1,70.,000117 SEIN NODE GEN 4250,8,1,70.,000117 SFIN NODE GEN 4350,8,1,70.,000117 SFIN NODE GEN 4350,8,1,70.,000117 SFIN NODE GEN 4400,8,1,70.,000117 SFIN NODE GEN 4450,8,1,70.,000117 SFIN NODE GEN 4500,8,1,70.,000117 SFIN NODE GEN 4500,8,1,70.,000117 SFIN NODE			
GEN 4500,8,1,7C.,.000117 %FIN NODE GEN-455C,8,1,7C.,.\$DG117.8FIN NODE			-
GEN 455C,8,1,7C.,.000117,8FIN NODE GEN 5100,8,1,7C.,.000117,8FIN NODE GEN 5100,8,1,7C.,.000117,8FIN NODE GEN 5200,8,1,7C.,.000117,8FIN NODE. GEN 5200,8,1,7C.,.000117,8FIN NODE.			1
GEN 5250-8-1-70			an ·
GEN 5330,8,1,7C.,.NDC117 \$FIN NODE GEN -5350,8,1,7C.,.DDC117 \$FIN NODE GEN 998,5,1000,7C.,.DDC117\$\$YMETRICAL NODE GEN 998,5,1000,7C.,.D136 \$MANIFOLD NODE			
:''V : GEN 1752.4.1578110. SURUM.NUUL	10 m a +		
L GEN 9002.2.2.00.D5 * \$SURFACE NODE			•
9003,7C.,1000000. \$SURFACE NODE			
- RELATIVE NODE NUMBERS			- ·
. I IDEA . ID ANNO ANNO ANNO ANNO COLI CICCO ALLA AN	iai 3002 3	001 103	
	JAS 5006 5	ວວິ5 ເປົ້າ ເຮັ້ 4	
41 THRU 50 1083 1084 1985 1086 1087 1083 1083 1085 1087 1083 1083 1083 1083 1083 1083 1083 1083]84 3C85 3]86 4C87 4	-83	
71 THRU 80 4089 4091 5083 5084 5585 5(86 5087 5) 81 THRU 90 999 1999 2999 3999 4999 1091 2021 30	188 5689 5 191 4091 5	L96 C91	1
91 THRU 160 (3 T'4 1650 1651 1652 1653 1654 16	555 1656 1	.657	

ا د	SINDA/SINFLO PREPROCESSOR		-	CATE 101775	PAGE	5
Y	101 THRU 11C 	1700 1701 1701 - 1 752 17 53 1754 1804 1805 1806	1703 1704 1705 1706 - 1755 1756 1757 1850 1807 1850 1851 1852	1777 175 1751 1871 1802 1053		
-	121 THRU 133 131 THRU 146 141 THRU 156	1804 1805 1806 1856 1857 1994 1950 1951 1952	1901 1902 1903 1904 1953 1954 1955 1956	1853 1854 1855 1975 1996 1997 1987 2700 2761		1
1	151 THRU 170	- - 27022703 -2704 2754 2755 2756	2795 2766- 2797 275F 2757 288C 28C1 2802	2751 2752 2753 2873 2804 2805 2855 2856 2857		1
į	171 THRU 180 181 THRU 190 	2806 2807 2856 2900 2901 2902 2952 2953 2 954	2955 - 295 6 - 2957 - 1195 -	2907 2950 2951 -1101 1102 1103		_ '
-	ŽGĪ THRU 21Ğ 211 THRU 22G 221 THRU 23C		1201 1252 1253 1254	1153 1154 1155 1205 1206 1207 1257 1300 1301		**
,	241 THRU 250	1302 1303 1304 1354 1355 1356	-1305 -1306 13671350- 1357 1400 1401 1402	1351 1352 1353 1403 1404 1465 1455 1456 1457		1
	261 THRU 275 	1500 1501 1502 	1503 1504 1505 1506 	1507 1550 1551 2194 2162 2163		J
_	281 THRU 290 291 THRU 30L 301 THRU 313	2104 2105 2106 2156 2157 2200 2250 2251 2252	2107 2153 2151 2152 2201 2202 2203 2204 2253 2254 2255 2256	2153 2154 2155 2205 2206 2207 2257 2300 2301		
. [321 THRU - 330		-	23512352 - 2353 2463 2464 2405 2455 2456 2457		
, [331 THRU 340 341 THRU 350 351 THRU 360	\\ \frac{2406}{2502} \qu	2503 2504 2505 2576 - 2555 2556 - 2557 3 170	7507 2550 2551 3101 3102 - 3103		· ·
	361 THRU 370 371 THRU 380 381 THRU 390	3164 3165 3166 3156 3157 3264 3250 3251 3254 	3167 3150 3151 3152 3271 3262 3203 3204 3253 3254 3255 3256	3153 3154 3155 3275 3206 3207 3257 3300 3301		
ĺ		. 3354 3355 335 <i>6</i>	3305 336633673356 3357 3406 3401 3402	- 3351 3352 3353 3405 3455 3456 3457		 -
	421 THRU 430	35 00 - 3501 - 3502 - - 3552 - - 35 53 - 35 54	3503 3504 3505 3506 -35553556- 3557 -4100	3537 3550 3551 4101- 4102 4103	•	;
٠.	441 THRU 45C 451 THRU 46C 461 THRU 470	4104 4105 4106 4156 4157 4260 4250 4251 4252	4107 4150 4:51 4152 4202 4203 4204 4253 4254 4255 4256	4153 4154 4155 4205 4206 4207 4257 4300 4301		
. [481 THRU 490	4362 4363 4364 4354	4365 4306 4307 - 4350	4351 4352 4353 4403 4404 4405 4455 4456 4457		•
,	491 THRU 500 501 THRU 510 511 THRU 530 521 THRU 530	4502 4501 4502	4503 4504 4505 4506 	4577 4552 4551 5101 5102 5103		
_	521 THRU 530 531 THRU 542 541 THRU 550	4552 4553 4554 5104 5105 5106 5156 5157 5252 5250 5251	5201 5202 5203 5204	5153 5154 5155 5205 5206 52⊾7 5257 530」 53€1		
,	,	5302 53035304 4998 1692 2092	5345 - 5366- 5387 -998 3092 4092 5192 1052	1998 2998 3998 1953 1054 1055		7
_	571 THRU 580 561 THRU 590 591THRU	56 57 58 99	59 60 61 62 399- 499 191 291	$\frac{63}{361}$ $\frac{1}{491}$ $\frac{2}{591}$		
_	691 THRU 615 611 THRU 625 621 THRU 635	101 101 202 203 204 304 305 306	275 276 277 376	107 200 211 301 302 303 403 484 485		
ſ		- 400 407 500 183 184 189	- 501 - 502 503 504 186 187 188 189	5r5 5r6 507 197 283 484		
`	651 THRU 66C	285 286 787 387 388 389	288	384 385 386 485 487 488		
		F - 3				

E - 3

c-4

SINDA/SINFLO PREPROCESSOR	DATE 101775	PAGE	6
671 THRU 68C 489 49C 583 584 585 586 587	588 589 587 688	693	
BCD 3CONDUCTOR DATA	***		
GEN 450,7,1,1750,1,1751,1,16.3E-55AXIAL COND GEN 507,7,1,1801,1,1801,1,16.3E-55AXIAL COND GEN 507,7,1,1801,1,1,5.24E-55AXIAL COND GEN 600,7,1,1900,1,1901,1,5.24E-55AXIAL COND GEN 670,7,1,1900,1,1,5.24E-55AXIAL COND GEN 700,7,1,1900,1,1,5.24E-55AXIAL COND			
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			•
SEN 830,7,1,2850,1,2851,1,5.24E-5\$AXIAL COND GEN 850,7,1,2851,1,5.24E-5\$AXIAL COND GEN 900,7,1,2900,1,2901,1,5.24E-5\$AXIAL COND GEN 900,7,1,2900,1,12,5,24E-5\$AXIAL COND GEN 1100,7,1,1150,1,1,5.24E-5\$AXIAL COND GEN 1200,7,1,1150,1,1,5.24E-5\$AXIAL COND GEN 1200,7,1,1200,1,1251,1,5.24E-5\$AXIAL COND GEN 1200,7,1,1200,1,1251,1,5.24E-5\$AXIAL COND GEN 1250,7,1,1200,1,1251,1,5.24E-5\$AXIAL COND GEN 1300,7,1,1200,1,1251,1,5.24E-5\$AXIAL COND GEN 1300,7,1,1200,1,1251,1,5.24E-5\$AXIAL COND GEN 1300,7,1,1200,1,1251,1,5.24E-5\$AXIAL COND		**	
GEN 1450,7,1,1450,1,1451,1,5,24E-5 SAXIAL COND			1
GEN 1500,7,1,1500,1,1,501,1,5,24E-5 BAXIAL COND GEN 1550,7,1,1551,1,5,24E-5 SAXIAL COND GEN 2150,7,1,2100,11,2101,1,5,24E-5 SAXIAL COND GEN 2150,7,1,2150,1,1,5,24E-5 SAXIAL COND GEN 2250,7,1,2250,1,1,5,24E-5 SAXIAL COND	• • • -	-	
GEN 2501,7,1,2250,1,2251,1,5.24E-5 \$AXIAL COND GEN 2501,7,1,2250,1,2251,1,5.24E-5 \$AXIAL COND . GEN 2501,7,1,2350,1,2451,1,5.24E-5 \$AXIAL COND GEN 2507,7,1,2350,1,2451,1,5.24E-5 \$AXIAL COND GEN 2401,7,1,2450,1,2451,1,5.24E-5 \$AXIAL COND			
GEN 2450,7,1,2450,1,2451,1,5.24E-5 SAXIAL COND GEN 257C,7,1,2500,1,2501,1,5.24E-5 SAXIAL COND GEN 255C,7,1,2550,1,2551,1,1,5.24E-5 SAXIAL COND GEN 250C,7,1,2550,1,2551,1,1,5.24E-5 SAXIAL COND			- ,
GEN-3150,7,1,3151,1,5.24E-5 \$AXIAL COND GEN-3200,7,1,3200,1,3201,1,5.24E-5 \$AXIAL COND GEN-3200,7,1,3200,1,3251,1,5.24E-5 \$AXIAL COND GEN-3300,7,1,3250,1,3251,1,5.24E-5 \$AXIAL COND GEN-3300,7,1,3301,1,5.24E-5 \$AXIAL COND GEN-3350,7,1,3351,1,5.24E-5 \$AXIAL COND	-		1
GEN 3450,7,1,3451,1,5,246-5 \$AXIAL COND GEN 3500,7,1,3451,1,5,246-5 \$AXIAL COND			
GEN 35500,7,1,3551,1,5.24E-5 SAXIAL COND GEN 4100,1,4171,1,5.24E-5 SAXIAL COND GEN 4250,7,1,41501,1,45.24E-5 SAXIAL COND GEN 4250,7,1,4251,1,5.24E-5 SAXIAL COND GEN 4250,7,1,4251,1,5.24E-5 SAXIAL COND GEN 4250,7,1,4251,1,5.24E-5 SAXIAL COND GEN 4350,7,1,4251,1,5.24E-5 SAXIAL COND			1
GEN 44-0,7,1,4401,1,4451,1,5,24E-5 \$AXIAL COND GEN 44-0,7,1,4401,1,4451.1.5,24E-5 \$AXIAL COND			
GEN 4500;7;1;4500;1;5;24E-5 \$AXTAL COND			ı

شم	SINDA/SINFLO PREPROCESSOR .:	DATE 171775	PAGE 7
7	T 3 3 7 GEN 4550,7,1,4550,1,4551,1,5.24E-5 SAXIAL COND		
Ç	GEN 5150,7,1,5150,1,5151,1,5.24E-3 \$AXTAL COND GEN 527C,7,1,52C0,1,5251,1,5.24E-5 \$AXTAL COND GEN 5250,7,1,5250,1,5251,1,5.24E-2 \$AXTAL COND		
	GEN 5259,7,1,5250,1,5251,1,5.24E-5 \$AXIAL COND 		
`	C S GEN 2000; /; 1, 2000; 1, 2001; 1, 4049E=6 \$AXIAL COND GEN 3000; 7: 1, 3000; 1, 3001; 1, 4049E=6 \$AXIAL COND		1 1
	GEN 5000,7,1,5000,1,5001,1,4.49E-6 \$AXIAL COND	-	
'~	GEN 1050,7,1,1083,1,1084,1,4.49E-6 \$AXIAL COND GEN 2050,7,1,2083,1,2084,1,4.49E-6 \$AXIAL COND GEN 2050,7,1,2083,1,2084,1,4.49E-6 \$AXIAL COND		
Ĺ	GEN 3056.771,3783,1,3884,1,4,49E-6 SAXIAL COND """ GEN 4050,7,1,4083,1,4084,1,4,49E-6 SAXIAL COND GEN 5050,7,1,5083,1,5084,1,4,49E-6 SAXIAL COND		(
	GEN 1007,5,1007,1007,1000,1003,1000,4.49E-6 SAXTAL COND GEN 1047,5,1007,1007,1007,1007,1000,1000 SEND COND GEN 52,3,11,1053,1,400253 SEND COND GEN 52,3,11,1053,1,400253 SEND COND		J
٠,	GEN 1097,5,100,1083,1000,1051,0,0003 SENU COND GEN 52,3,1,1053,1,1053,1,00253 SDRUM COND 51,1051,1052,00134 SDRUM COND		
	55,1851,1855, DG134 5DRUM COND 5D		
	GEN, 425,8;11,1650,1;1600,1;160539 ** SSIDE COND SSIDE		
()	GEN 525,8,1,1800,1,1850,1,108 #\$1DE COND (/ GEN 575,8,1,1850,1,1900,1,152 \$FIN COND	· · · · · · · · · · · · · · · · · · ·	
	GEN 625,8,1,1960,1,1957,1,152		
	. 1 % 5 % " "MGEN WAY 5 48 A 1 + 27 5 H + 1 + 28 H 3 + H + 4 T 5 2 % A 5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	GEN 925-8-1-2950-1-2950-1-152 SFIN COND		٠ ــ ١
_	GEN 1125,8,1,110G,1,115G,1,,152		
·	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-
•	CEN' 1425;8,4,1400,1,1450,1,.152		
L	GEN 1525,8,1,1500,1,1551,1,.152		
	GEN 2225,0,1,2200,1,2256,1,250,1,252		۳ ا
Ú	GEN 2375,871,2350,1,240L,1,.152		i
	GEN 247578,1,245071,2506,1,.152		
_	T GEN 317518111315611132861113286		
	GEN 3225,8,1,3250,1,3255,1,1,152 FIN COND		
	GEN 3425,8,1,340C,1,345C,1,.152 SFIN COND		

SINDA/SINFLO PREPROCESSOR	DATE 101775	5 PAGE	8	
GEN 3475,8,1,3450,1,355C,1,.152				
GEN 4175,8,1,425C,1,1,152				[]
GEN 5125,8,1,5100,1,515C,1,.152				
GEN 5275,8,1,5250,1,5300,1,.152 SFIN COND GEN, 975,8,1,2950,1,1090,-1,.0950 STUBE COND GEN, 1325,8,1,1300,1,1090,-1,.0950 STUBE COND GEN, 1325,8,1,1300,1,1000,1,.0950 STUBE COND GEN, 1325,8,1,1300,1,1000,1,.0950 STUBE COND				
GEN 1575,8,1,1550,1,2000,1,0090 STUBE COND GEN 2625,8,1,2000,1,00950 STUBE COND GEN 2725,8,1,2300,1,00950 STUBE COND GEN 275,8,1,2300,1,00950 STUBE COND				ę
GEN 2575,8,1,2550,1,3090,-1,.0950	PLE MANUEL MADE LA MANUEL MANU			1
650 4552 81.4700 1.450C 1.6050		1		,
GEN 4325,8,1,4360,1,469C,-1,.695C				1
GEN 799,5,1000,999,1000,998,1000,.300 SMANIFOLD COND GEN 1399,5,1000,1091,1000,1092,1000,.300 SMANIFOLD COND GEN 899,5,1000,3,0,999,1000,9.6-6 SMANIFOLD COND GEN 1299-5-1000,40,1000,9.6-6 SMANIFOLD COND				
GEN 1299,5,1000,4,6,1691,1656,9,6-6 EMANIFOLD COND GEN 999,5,1000,999,1004,1000,1600,4,496-6 SMANIFOLD COND GEN 1199,5;1000,1091,1000,1090,1000,4,496-6 SMANIFOLD COND END				
RELATIVE CONDUCTOR NUMBERS ACTUAL CONDUCTOR NUMBERS	•		-	-
11 THRU 20 403 404 405 406 450 451 452 4 21 THRU 30 456 500 501 502 503 506 505	4°C 4°C1 453 454 506 550	462 455 551		
	602 603 655 656 751 - 752 874 805	604 700 753 866		_
81 THRU 94 953 944 955 956 956 956 956 956 956 956 956 956	990 953 954 196 1150 202 1203	902 955 1151 1264		I
101 THRU 110 1152 1153 1154 1155 1156 1700 1251 1254 1151 1252 1255 1254 1251 1252 1255 1254 1251 1252 1255 1255	255 1256 351 1352	1300 1553		!

, L		SINDA/S	INFLO	PREP	ROCESSO	R	·····	<i>y</i> ~	,			-		מם	ATE 10177	5	PACE	9	
Ψ,	، د		131	THRU THRU	}	<u>g</u>	1354 1456	1355 1451	1356 1452	1400 - 1453	1451 1454	1402 - 1455	14 23 -1456	1474 1500	1405 1521	14.6 1502			_
-			151 161 171	THRU THRU THRU	J 17	ប	1573 1556 2152	15 14 21 12 2 21 5 3	1505 2101 2154	1576 2102 2155	15 ° u 2193 2156	1551 2104 2200	1552 2175 2271	1553 2126 2202	1554 2151 2203	1555 2151 2154			
ť	3,5	, " , '.,	181 191 201 211	THRU THRU THRU	1 20 20	D.	2245 2301 2354	22551 23551 2451 - 2584	2350 2356	2251- 2304 2400	2252- 2305 2401	2257 2376 2402 2455	2254 - 2350 2403	2255 2351 2404	2 2 5 6 2 3 5 2 2 4 7 5	2300 2353 2406			
	<u> </u>		22 1	THRU THRU THRU) 23 1 24	[2450 2573 2556 3152	3100	* 2452 2505 3161	2453 - 2555 - 25155	2454 2555 3163	- 2455 - 2551- 3104	- 2456 - 2552-	25°0 2553 3106	2501 2554 3155	2502 2555 3151			-
(231 241 251	THRU	J 25 J 26	Ď Ď	3205	3153 3206 3355	3101 3154 3254	3251	3156 3156 3252 	3253 3306-	3271 3254 335 6-	3202 3255 3351 -	3203 3256 -33 52 -	3204 3300 3353			
Ų		il a lating	* 557	THRI	137 38	13 × 13 × 1	3354 * * 3456 * 3503	* 3355 3451 3564	3356 3356 3452 3505	- 3304 3400 - 3453 - 3506	3401 3454 4550	3402 3455 3551	3493 3456 3552	3404 3500 3553	3405 3501 3554	3406 3502 3555			- '
_		نندن هفد	301 311 321 331	THRU THRU THRU THRU) 32 1 33	ບ ບໍ	345050 345050 35555555555555555555555555	* +170 4153 4206 4302	+151 4154 4250 4303	4155 4155 4251 4304	4103- 4156 4257 4305	4200 4200 4253 4306	- 4105 4201 4254 435u	- -41 06 4202 4255 4351	-4150 4203 4256 4352	4151 4204 4300 4353	-		-
J			351	THRU THRU	35		· 		4452 4452 4505	4453 4453 4506	4461 4454 4550	44 0 2 4455 4551	4423 4456 4552	4484 – 4509 4553	4501 4501 4554	- 4486 4502 4555		-	ŋ
ξ.	1.000		391 401	THRU THRU THRU THRU	39 45 1 41	i C	744555 744555 745557 7445557 745557	5100 5153 5206 5302	\5161 -5154 5250 5363	5102 5155 5251 5374	5156 5255 535	5104 -5 205 5453 5306	5105 5201 5254 1070	5106 5272 5255 5255	5150 5253 5256 1072	5151 5204 5300 1003	•	-	L ₋
	alugae (1. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	411 431 431 441	THRU THRU THRU THRU)	<u></u>	1004 3006 44003 5006	- 1005 - 2001 - 4004 - 1050	1006 3002 4005 1751	3003 4006	2971 3084 - 5088 \1053 ^	- 3002 - 3005 5001	2003 	2004 4004 5003 1056	2005 - 4081 5004 2059	2006 4002 5005 2051	-]
`	(2)	1. 2 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	\`45₹\ 461 471	THRU THRU THRU	1		- 2052 - 2055 5051	2053 3056 5052	2054 	1052 2055 4051 5054	2056 	3 C 5 C -4-C 5 3 5 7 5 6	4054 1097	3052 4055 2077	3053 4056- 3077	3054 5050 -			
Ü			481 491	THRU THRU	J 49 J 50	Ö Ö	5707 5799	1049 52 330-	2549 53	3049 334	4749 51 375	5649 55 376	1099 325 377	2099 326 378-	3Č99 327 - 379	4599 328 - 385		_	<u>-</u>
			\^\\\53 I *	THRU THRU	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		381 475 527	382 476 528	425 477 529	426 478 530	427 479 531	428 480 232	429 481 575	430 482 576	431 525 577	432 526 578			
-			541 551 561 571	THRU THRU THRU THRU	561 571	D D	579- 631 725 777	58 む 532 726 778	581 675 727 779	582 676 728 781	625 677 729 781	*626- 678 736 782	6 27 679 731 825	628 680 732 826	- p29 681 775 827	63b 682 776 828			· •
~		**************************************	591 601	THRU THRU THRU	59 60	ğ 8	829 881 1125 1177	- , - 83 6- 882- 1178		7832 922 9128 1180	875- 927 1129	876- 928 1130 1182	825 - 877 929 1131	826 878 930 1132 1226	827 879 931 1175	228 880 932 1176			7
	· · · · · · · · · · · · · · · · · · ·		611 621 631 641	THRU THRU THRU THRU	6-31 64	<u> </u>	1277 1281 1425	1234 1282 1426	1231 1231 1375 1427	1180 1232- 1376 1423	- 1181 - 1275 1377 1429	1182 1276 1278 1430	1225 -1277 1379 1431	- 1278 - 1278 1380 1432	1227 1279 1381 1475	1228 1287 1382 1476			1
			651 661-	THRU THRU	66	L	1477	1478	1479 1534	148° - 1532 2176	1481	1482 -2126 2178	1525 2127	1526 2128	1527 2129	1,20 2133			
-	,		671 681 691	THRU THRU THRU	l	C	1529 2131 2225 2277	153 2132 2226 2278	2175 2227 2279	2228 228 228	2177 2729 2281	2282	2179 2231 2375	2180 2272 237c	2181 2275 2377	2182 2276 2378			

SINDA/SINFLO	PREPROCESSOR				PΑT	L 1~1775	PACE	ΙC
7011 772311 772311 774511 7768 8122312 8456781 8856781 889011 9788 9788 9788 9788 9788 9788 9788 97	THRU 710 THRU 734 THRU 734 THRU 754 THRU 756 THRU 756 THRU 756 THRU 770 THRU 7800 THRU 7800 THRU 800 THRU 800 THRU 800 THRU 800 THRU 800 THRU 800 THRU 800 THRU 800 THRU 800 THRU 910 THRU 971 THRU 971 THRU 971 THRU 971 THRU 971 THRU 971 THRU 980 THRU 971 THRU 971 THRU 980 THRU 971 THRU 980 THRU 980 THRU 971 THRU 971 THRU 971 THRU 980 THRU 1010 THRU 1010 THRU 1010 THRU 1010 THRU 1010 THRU 1010 THRU 1010 THRU 1010 THRU 1010 THRU 1010 THRU 1010	78392668778866877887788778877887788778877887	24 8 124 6 8 12 6 6 12 6 8 12	08, 106 d Q 4 d Q 200 d Q Q 200 d Q Q 200 d Q Q 200 d Q Q 200 d Q Q 200 d Q Q 200 d Q Q 200 d	24517288872468924689724887278887248872788872788728887278872888728887278872888728887288872888728887288872888727887288728872887288728877887728779157791577915779157791577915779157791	38 N73 8 N73 8 N73 8 N73 8 N73 8 N73 8 N73 8 N73 8 N73 8 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 4 5 1 N74 1	-	
`	CTOR ANALYSIS LINEAR	1		TOTAL = 1078,	_ 4199	78		
	FLOW DATA NETWORK MAIN C=6.0042E10,CP=A4,R0=A5, OL=.C1,MXPASS=1LG,FRDX=, 7.2,3=(99,999,107,1007), 7.3=(199,199,207,307,1007), 7.3=(299,2999,307,307,307), 7.3=(499,4999,507,5007), 7.3=(499,4999,507,5007), 7.3=(499,4999,507,5007), 7.3=4,4,END	/,E(4/=U,+END 183,1783,191,10 16283,2983,291, 1(383,3983,391, 1(483,4983,491, 1(583,5083,591,	91),END 2691),END 3091),END 4091),END 5091),END					
BCD 3	FLUID LUMP DATA -1-31E-5,-F16-36,-75,-122 199,207, (283, 291), (299, 499,577), (283,591), END LRC1U65,.03658,							

SINDA/SINFLO PREPROCESSOR	DATE 191775	PAGE 11	'
END SELOW SOURCE DATA	•		1
1,41,END END 3END FLOH DATA			!
BCD 3CONSTANTS DATA TIMEND, 55 % \$ C			<u> [</u>
ARLXCA, -C1 5			1 2
0UTPUT, 85 \$ 1,18. \$		-	
TOTAL = 1			ı - <u>Ş</u>
0.,21.50,20.,21.5D,END			!
4 \$ CP COOLANOL 15 -150.,343,-100.,363,-5~.,385,0.,405,50.,424,100.,444			з
150., 140. 150., 1			
-150:,250:		,	
7 \$ CONDUCTIVITY COOLANDL 15			
*159, 5.719, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	, <u></u>	-s.	;
*165,20/28,12/,ENU			
12, 955, 02;160; 672, 610, 677, 67, 67, 67, 67, 67, 67, 67, 67, 6			1
13. *		_	_ +
*T62; *T57; \$\(\gamma\); *T62; *T62; *T62; *T62; *T62; *T62; *T61; *T62; *T62; *T62; *T62; *T62; *T62; *T62; *T62; *T62; *T62; *T61; *T62; *T61; *T57; *T62; *T61; *T57; *T62; *T61; *T57; *T62; *T61; *T57; *T61;			
T61;*T54;*G43;*T61;*T53;*T61;*T61;*T52;#B88;*T61;*T61;*T61;*T61;*T55;.03 **T60;*T59;0;*T60;*T58;0;*T56;*T50;*T56;*T56;*T56;*T56;*T55;.02;*T60;*T55;.03 **T60:*T54:*1325:*T60;*T53;C:T60;*T55;*T60;*T51;**49			-7 }
**************************************	-	-	·
*T57,*T56,F*T57,*T55,0.,*T57,*T54,0.,*T57,*T53,0.05,*T57,*T52,.2 *T57,*T51,.75,*T56,*T55,.01,*T56,*T54,.05,*T56,*T53,0.,*T56,*T52,.2			
*T54,*T53,.05,*T54,*T52,.05,*T54,*T51,.7,*T53,*T52,.2 *T53,*T51,.7C.*T52,*T51,.73,END 15,*T9001,33.76,END			
La Control (1981) 1 A Department of the control of			

, SINDA/SINFLO PREPROCESSOR	DATE 171775	PAGE	12
16,*T9CD2,17.57,END			
18, *T92C4, ?.649.END			
18;*T99C4;?.649;END 19;*T998;**396;*T1998;*J306;*T7998;**T3998;**316 *T4998;**0396;END			
29: <u>***1,706</u> : <u>-</u> 92156:**1,270; <u>-</u> 92156:**1,2702; <u>-</u> 92156:**1,203::52156	•		
*T1704,.02156,*T1785,.02156,*T1706,.02156,*T1777,.02156 *T1800,.02156,*T1801,.02156,*T1802,.02156,*T1803,.02156			
*T1884C2156.*T1875G2156.*T1886C2156.*T1877C216C.END			
*T1654,.02156,*T1655,.02156,*T1656,.02156,*T1657,.02156 *T1750,.02156,*T1751,.02156,*T1752,.02156,*T1753,.02156			
*11754Q2156.*T1755Q2156.*T1756Q2156.*T1757Q2156.END			
22,**1054,.3595,*T1053,.3595,END 23,*T1052,.3595,*T1053,.3595,END 24,*T1900,.0198,*T1901,.7198,*T1950,.b198,*T1951,.7198			
' ' 24.*TÎ9ÛÛÛÎ98.*TÎ9ÛÎÑÎ98.*TÎ950ù198.*T1951n198 *T2700ù198.*T2701C198.*T2750C198.*T2751ù198			
*T2807;*E198;*T2801;*C198;*T2850;*T08;*T2851;*U199*T2900;*T2901;*C198;*T2950;*T2951;*U198	-		
*T1090,.C198,*T1089,.0198,*T1100,.C198,*T1101,.u198			
*T145C,.Cl°8,*T145:,.Ol98,*T115U,.Ol98,*T1151,.Ol98 	PT-17, Mar 1980 WATER		
*†1300		,	
*T1500,.0198,*T1501,.0198,*T1550,.0198,*T1550,.0198,*T2101,.0198.			
*T21500198.*T21510198.*T7/^**0198.*T22019198			
*T2250,.t198,*T2251,.d198,*T2300,.f198,*T2301,.u198 *T2090,.u198,*T2080,.u198,*T2350,.t198,*T2351,.u198			
*T2400C198.*T24C1C198.*T2451C198.*T2451C198 *I25000198.*I25010198.*T2550C198.*T2551C198		•	
†3090;.0198,†3089;.0198,*†3100;.0198,*†3100;.0198 ************************************			
*T3250,.0198,*T3250,.0198,*T3300,.0198,*T3301,.2198			
†3400,.0198,†3401,.0198,*†3450,.0198,*†3451,.0198 *T3500,.0198,*T3501,.0198,*T3550,.0198,*T3551,.6198			
r			
*T4158; #T4158; #T4151; #T4258; *T4258; #T4258			
*T9090,.0198,*T4789,.0198,*T4350,.(196,*T4351,.0198 			
*T4500,.0198,*T4501,.0198,*T4550,.0198,*T4551,.0198 *T5090,.0198,*T5089,.0198,*T5100,.0198,*T5131198			
\515196,\5151,*\198,*\520U,*\520U,*\520U,*\5201,*\6198			
15250;.0198, 15251;.π198;*15260;.π198;*15331;.π198 *15000;.c198;*15001;.c198,END			
25,*T1902,*T190,*T1903,*T1952,*L198.*T1953,*G193 *T1002,*L198,*T16J3,*S198,*T1552,*G1°8,*T1553,*L198			
*TZ90Z;.rî98,*TZ9C3;.Cî98,*T25SZ;.hi98,*TZ°SZ;.bi98 *I1988,.C198,*T1087,.r198,*T1172,198,*T1173,198			
*T1252,			
*T1452,.C198,*T1453,.C198,*T15;2,198,*T15;3,.£198			

SINDA/SINFLO PREPROCESSOR	CATE 17177	PAGE 1	3
*T7502,.0198,*T20L3,.0198,*T21C2,.0198,*T21C3,198 *T2152,.0198,*T2153,198,*T22C2,0198,*T22C3,198 *T2252,198,*T2253,198,*T23C2,108,*T23C3,0198 *T2088,198,*T24C3,198,*T23C2,198,*T2353,198 *T2402,.0198,*T24C3,198,*T24C2,198,*T24553,198 *T2502,.0198,*T24C3,198,*T24C3,198,*T2553,198 *T2502,198,*T3153,198,*T31D2,0198,*T31C3,0198 *T3152,0198,*T3153198,*T31D2,0198,*T3C3,0198	-		
*T3252,.0198,*T3253,.1198,*T3372,.0198,*T3303,.0198 *T3072,.0198,*T3087,*T198,*T3372,.0198,*T3553,.0198 *T3402,.0198,*T3403,.0198,*T3452,.0198,*T3453,.0198 *T3502,.0198,*T3553,.0198,*T3552,.0198,*T3552,.0198	-		1
*T4002; .0198; *T40.3; .7198; *T4102; .0198; *T4102; .0198 *T4152; .0198; *T4157; .0198; *T4202; .0198; *T4263; .0198 *T4252; .0198; *T4253; .0198; .714302; .0198; .714303; .0198 *T4088; .0198; *T4403; .0198; *T4452; .0198; .714453; .0198 *T4402; .0198; *T4403; .0198; .714453; .0198	-		71
T45f2,.6198,T4562,.6198,**T4552,.6198,**T4553,.6198	-	_	
26,*T1904;.0198,*T1905;.0198,*T1954;.0198,*T1955;.0198 *T1004;.0198,*T1005;.0198,*T1554,.0198,*T1555;.0198 *T2704;.0198,*T2705;.0198,*T2754;.0198,*T2755;.0198 *T2804;.0198,*T2805;.0198,*T2854;.0198,*T2855;.0198 *T2904;.0198,*T2905;.0198,*T2854;.0198,*T2855;.0198 *T1086;.0198,*T1085;.0198,*T1098,*T11098,*T11098;.0198	- -	_	1
*T1154, 0198, *T1155, 0198, *T1204, 0198, *T1205, 0198 *T1254, 0198, *T1255, 0198, *T1304, 0198, *T1305, 0198 *T1354, 0198, *T1355, 0198, *T1404, 0198, *T1455, 0198 *T1454, 0198, *T1455, 0198, *T1405, 0198, *T1505, 0198 *T2004, 0198, *T205, 0198, *T2104, 0198, *T2105, 0198 *T2154, 0198, *T205, 0198, *T205, 0198, *T205, 0198	-	· •	
**T2086,.0198,*T2085,193,*T2354,198,*T2355,198 **T2404,.0198,*T2415,198,*T2454,198,*T2355,198 **T2404,0198,*T2415,198,*T24555,198 **T2504,0198,*T3055,198,*T3154,0198,*T3105,0198 **T3154,0198,*T3155,198,*T3154,0198,*T3105,198 **T3154,0198,*T3155,198,*T31574,0198,*T3355,198 **T3444,0198,*T3555,198,*T3574,0198,*T3355,198 **T3404,0198,*T35055,198,*T3554,198,*T3555,198 **T3504,0198,*T355,198,*T3554,198,*T3554,198	-		
**T4004;.c198;*T4005;.c198;*T4164;.v198;*T4105;.v198 **T4154;.c198;*T4155;.v198;*T4264;.c198;*T4205;.v198 **T4254;.c198;*T4255;.v198;*T4364;.c198;*T4355;.v198 **T4086;.c198;*T4085;.c198;*T4354;.c198;*T4355;.v198 **T4086;.c198;*T4005;.c7198;*T4454;.c198;*T4455;.v198 **T4404;.c198;*T4505;.c198;*T454;.c198;*T4555;.v198 **T504;.c198;*T505;.c198;*T5154;.c198;*T515;.v198 **T5154;.c198;*T5055;.c198;*T5274;.c198;*T5305;.v198 **T5254;.c198;*T5055;.c198;*T504;.c198;*T5305;.v198			
27,*T1906,.6198,*T1907,.1198,*T1956,.1198,*T1957,.61198 *T19066198,*T1007,.1198,*T1556,.198,*T1557,.0198 *T2706,.6198,*T2707,.1198,*T2756,.1198,*T2757,.6198			

SINDA/SINFLO PREPROCESSOR	DATE 151775 PAGE 14
*T2806,.0198,*T2807,.0198,*T2856,.0198,*T2857,.0198	-
*1206,.0198,*12017,.0198,*12106,.0198,*12107,.0198 *1216,.0198,*12017,.0198,*12106,.0198,*12107,.0198	
*T2256, n108, *T2257, n108, *T2306, n1108, *T2357, n1108 *T2084, c198, *T2083, o198, *T2356, n198, *T2357, u198 *T2406, u198, *T2407, u198 *T2406, c198, *T2407, n198, *T2456, n198, *T2457, u198 *T2506, c198, *T2507, n198, *T2557, n198, *T2557, n198, *T3106, v13107, n198 *T3106, v13157, n198, n198, n	
13230*13427************************************	
**T4006,.0198,*T4007,.0198,*T4307,.0198,*T4127,.0198 **T4156,.0198,*T4157,.0198,*T4266,.0198,*T4207,.0198 **T4256,.0198,*T4257,.0198,*T4307,.0198,*T4357,.0198 **T4084,.0198,*T4083,.0198,*T4456,.0198,*T4357,.0198 **T446,.0198,*T4407,.0198,*T4456,.0198,*T4457,.0198 **T4506,.0198,*T4507.0198,*T4456,.0198,*T4557,.0198	
*T5156,.6198,*T5157,.6198,*T5276,.6198,*T5276,.6198 *T5256,.6198,*T5257,.6198,*T5367,.6198,*T5367,.6198 *T5056,.6198,*T5007,.6198,*T1651233.6ND	
END 28, SPACE, 91, END END ARRAY ANALYSIS NUMBER OF ARRAYS = 25 TOTAL LENGTH = 1:	94
TUBE NUMBER LIST 2 3 4 5	5 7
PRESSURE NODE LIST BCO 3EXECUTION DIMENSION X(18090)	
NTH=G RESET CRVINT(A4,A8)	
GENOUT(A8+1,1,A8,3HCA8) FLOSOL ITEST=P	f c
END CNBACK END SVARIABLES 1 IF (ITEST .EQ.1) CALL RADIR (AIC1714E-8,-46) T5351=T3551 T5351=T3551	 м м
E-12	

* * * SINDA/SINFLO PREPROCESSOR	DATE 101775	PAGE	15
15355-13553			
END SYARIABLES 2 FLOSOL			
END THEMKY 17-20 BCD 30UTPUT CALLS TPRINT (11-11-12-12-12-12-12-12-12-12-12-12-12-1	- 17 26		
@ADD,P ECO2-V55008*SINFLO.PROC			
	· · · · · · · · · · · · · · · · · · ·		
		_ ,	-
	-		

SYSTEMS IMPROVED' NO SOFT TUBE INFLATABLE	LE RADIATOR	RENCING ANAL	YZEP	- SINDA -	UNI	VAC-1108 FOR	TRAN-V VERSI	ON PA	GE 58
IR CROSS RADIATION DATA						• •			
* SURFACE DATA	,,, , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		*						1
SURFACE NUMBE		CF AREA	NUMBER OF	NODES					
5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	51 3 52	3.76200 7.57600 2.67400 2.64900		1	<u>-</u> _		A44	S AL	, !
	55	- 15307 - 34500 - 34500 - 71900 - 71900		5 16 16 2		·	. He district to the	-	·
- Ban 1830 by happy and the second of A " I	60 ; 61 ; 62 ; 63	2.49500 2.49500 2.49500 2.72800	*	126 126 126 126		**************************************			-
CUREAGE ENVIOLENCE								ı	
SURFACE EMISSIVITY PRODUCTION OF THE PRODUCTION	20000-01 67000+60	,10000+01 ,67000+01	.28400-01	-10,000+C0	.67EDD+DD	•6708L+DP	 -67580+60	•67800+00	•67000+00
SURFACE REFLECTIVE	ITY DATA							-1 - 2 ty	
-50080-60 -33080+60			.98000+00	.90000+77	•33/0 <u>0+00</u>	-338CC+07	.33000+00	•33000+00	•33000+00 }
SURFACE CONNECTION				·		ny gyt den			d
FROM SURFACE	TO SUPF	ACE V 62 61	.00060					-	}
633733 653733 6633733 6633733 6633733	The same of the sa	05555555555555555555555555555555555555	700000 700000 700000 700000 700000 700000 700000 70000000 700000000			-			-

	61 58	• 07 - 7 t	
x x	61 56 61		
	61		
·	60 56 60 55 40 54		
	51 59 58	.32756+00 .49700+61 .60100 	
44 4	59 56 59 55 59 54	* 2000 • 10000 • 10000 • 10000 • 10000	
	559 559 559 559 559 558 568 568	.50700+°C .377CU 	
<u></u>	55 54 58 58 58 58 57 58	• 800000 • 50000-01 • 00000 • 50000-01 • 600004-00	
	57 57 57 54	• 100 LB • 100 LB • • • 100 LB	
	57 53 57 52 57 51 56——— — — — — — 55	•50,00-01 •2,00-0 •7550-0+00 •	
·	564	•57000-71 •07300 •23005+04 •	
	56555555555555555555555555555555555555	• \$ \tilde{G} \t	

	SOFT TUBE INFLA	ATABLE RADIA 54 54 	TOR 5521	•50-01 •50-04-01 •50-00+00 •70-00+00 •70-004+00	-	-			-
	NODE DATA							.	
`¢ (SURFACE	NODE	AREA	NODE	AREA	NODE	AREA	NODE	- AREA
1,	51 52 53		33.76000 17.57400 2.67400						-
	53 54 	9564 	2∙64900 	19 98 	· 0 3060	2 998 -	03660	3998	03866
	, , , , , , , , , , , , , , , , , , , ,	4998 1700 - 1704	.03156 .02156 .02156	1701 1705	.02156 .02156	1702 1706	.02156 .02156	1703 1737	.02156 .02156
	57	1804 1656		18 L1 1805 1651			92156 - 92156 - 92156 - 92156	1853 1877 1653	02156 .02160 .02156 .02156
		1654 1754 1754 1754		1655 - 1751- 1755	-02156 -02156 -35950	1656 1752	02156 02156 02156	1657 - 175 3 1757	. 02156 . 02156 . 02156
3	58 59 	1052 1052 2700	.35950 .35950 	1055 1653 1901 2701	-35950 0-1980	195n 275C		1951 2751	• 1980
		2800 2900	.01980 .01980 .11980	28 C1 29 0 1	.01980 .01980 .01980	2857 2950	51985- .01981 .01981 .01981	2751 2851 2951	.01980 .01981 .01981
		1457 1457 1200	.01980 - -01980 -01980	1451 1291	01980 - 01980 - 01980	- 1160 1150 1257	.01986 .01986	1151 1251	.01980 .01980 .01980
		1300 1350 1500	.01980 	1301 -1351 1501		1465 - 1550	.01980 -01980 -41980	1201 1451 1551	• 01980 • 01980 • 01980
		2150 2150 2250		2601 2151 - 22 5 1	- 01980 - 401980	2103 2200 2300	.21981 .01981 01986	2101 2201 2301	.01984 .01984 .01984 .01980
		2098 2409 2500 3590	.01980 .01983 .01990 	2.89 2401 2501 - 3089	.01980 .01980 .01980 01980	2359 2450 2550 3100	.01981 .61980 .01985 .J1981	2351 2451 2551 3101	•01980 •01980 •01980 •01980

SOFT TUBE INFLATA	BLĘ RADIATOF	7	7.5.		70.00	***		
	3150 3250	.01980 .01980	3151 2251	•11987 •11987	3300	.º198L .U1986	35-1	.[1986 .1985
\h.	- 3698			F1987- .01980	335A 3450	- • · · · · · · · · · · · · · · · · · ·	3351 3451	.nī980 .n1980
	3500 4000	•01980 •01980	3501 4601	•01987 •01980	3550 4100	.0198C .0198L	3551 4171	.0198C .01980
	4150 4250		415 1 4251	01980- 	4 28 6 4380		- 420î 430î	.ni980 .01980
	4000 4400	.01980 .01980	4589	01980 11980	435n 445n	•01980	4351	•9ī98Ď
`	4505 5090		4561		4 550		4451 -4551	•1'1980 •11986
,	5150	.F1980	5151	11980 11980	5100 5200	.01986 .01980	5±81	• 7198L • 1198 D
<u> </u>	5250	- 01980 - - 01980 -	5251 5681	-01980 01985 -	5300	01980	5301_	11980
61	1902 1002	.01980 .01980	1903 1003	.01980 .01980	1952	•0.984 •01986	1953 1553	• 1984 • 1980
	2702 2862	.01980 	2703 	198n	1552 2752 2852		2753 2653 -	• ni98 j
	2902 1088	01980 01980	2903	.01980	2952	.01980	2953	• 71985 • 1980
	1152 `	01980	1087 1153	.01980 .01980	1102	.01980 .01980	1103 1203	•01980 •01980
	1352 1352 1452		1353		1 302 1462	01986 - - C198C	-1343 1473	01980 -01980
	2002	.01980 .01980	1453 2u03	•01980 •01980	1502 2162	.0198C .0198G	1503 2113	.01986 •01986
	- 2152 2252		2 <u>153</u> - 2253	11986 01980	- 2257 ·		2333	01980 01980
,	2088 2402 	.01980 .01980	2 0 8 7 24 0 3	.01980 .01980	2352 2452	•0198Ö	2353	• nī 98D
	2522 _ 3088	- <u>- 91-96</u>	- 2553		- 2552	- - 1 1480	2453 2553	
	3152	.01980 .01980	3187 3153	.£1980 .01980	3102 3202 3302	• 1198 Ú • 1198 ú	3103 3203	.º1985 •°1986
	3252 - 3 <u>992</u>	•01980 • 198 0			3302 3352		3363 3353	• 01980 • 01980
,	3452	.01980 .01980	3403 - 3503	•01987 •01980	3452 3552	.01980 .01980	3453 35 <u>5</u> 3	. 1980 . 1980
· · · · · · · · · · · · · · · · · · ·	3502 4002 4152	- 01986 01985	3503 4033 4153	01980 01980	4102 4202	. 1980 -01980 -	4103 4203	• £1981
	4252 4,188	.01980	4253	•5198n	4302	•Q198C	4373	•/1980 •01980
	4402	•01980 •01980	4687 4483	.01980 .01980	4352 4452	.1981 .01981	4353 4453	.n1086 .r1985
	4502 5088		4563 5087		4652 - 5102	•01986 •01980	4553 5103	•01980 •01980
*	5152 5252	.C198G .C198B	5153 5253	. 01980 -01980	5202 5302	.01980 .01980	5203 5303	. 01986 . 71986
	5ēēž		- 5003	- +81987-	2205	*44700	2292	* \ 1,70 L

	62	ABLE RADIATO 1904 1904	.0198u .01980	1905 1005	.01980 .01980	1954 1554	• 21980 • 21980	1955 1555	.01986 .01986
		2784	- 01980 - 01980 - 01980	2765 2875 2905		2754 - 2854 2954	⊸€198u •91986 •01988	2755 2855 2955	. rī980 . rī983 . rī980
-	<u> </u>	1086 - 1154	-01980 -1980 -01980	1085	•01987 01989	1104 - 1254-	.UI98∟ #198£ ~	1105 - 12 0 5	• 61983 • 01986
		1254 1354 1454	.01980 .01980	1255 1355 1455	.01980 .01980 .01980	1354 1404 1504	•01983 •01983 •01985	1305 1405 1505	.01981 .01980 .01980 .01980
· ·		2(64	 61986	- - 2005 2155	.01980 	2164 2284 2304	01984 - -01986	- 2105 2205	•01980
, 4 , <u>1</u>	***	2254 2086 	01980 01980 -01980	2255 2085 2465	.01980 .01980 	2304 2354 2454	•01980 •01980 • 	2305 2355 245 5	.01980 .01980 .01980
		2504 3086	.01980 .01980	2505 3L85	.01980 .01980	2554 3104	.1198C .0198C	2555	.01980 .01980
	*	3154 3254		3155 3255		32 <u>04</u> 3304	• 31980 	3205 3305	.01980 - .019 80
, -		3004 3404 3504	.01980 .01980 .01980	3005 3405 3595	.01980 .01980	3354 3454 3554	.01980 .01980 .01980	3355 3455 3555	.01984 .01980 .01980
		4004		- - 4005- - 4155		4184 - 4204		—4- <u>1-</u> 15 4∠15	:01980
- 		4254 4086 4404	•01980 •01980 •01980	4255 4085 4 405- -	.01980 .01980	4304 4354 - 4454	.0198C .0198G	4305 4355 - -445 5	. nî 98 č . nî 98 č
		4504 5086		4505 5085	01980 -01980 -01980	4554 5104		4555 5105,	8198L - r1983 -n1980
		5154 5254 5004		5255		5304	1198U	5205 - 5305 -	.01980 .41980
	63	1906 1006	•01980 •1980 •01980	5505 1907 1607	.01980 .01980 .01980	1956 1556	•1198C •01986	1957 1557 - 2757	. n1980 . n1980 . n1980
		2806	- 61986- - - 51980	2787 2807	<u></u>	-2756 2856	#81986- •01986	2857	•01980
		2906 1084 1184	.01980 	2907 1083 	.01980 -01980 	2956 1106 1206	.01981 .01981 01980 -	2957 1107 1207	. 7198û . 81988 . 81983
			.01980	1257 1357	•01987 •01980	1306 1406	•0198L •0198L	1357 1407	.0198J
	· · · · · · · · · · · · · · · · · · ·	- - 25 66		- 200 7		1506 2106 -	- 01980 	15/7 -2197-	.niosJ .niosd
		2156 2256 2784	.01980 .r1980	2157 2257 2183	01980 01980	2206 2306 2356	.01986 .01980 .01980	2207 2367 2357	. 71980 . 21982 . 71983
		— 2 4 46	• 0 1989-	2407	•n198ñ	2456	- •f.198C	2457	.0198

SOFT TUBE	INFLATABLE RADIAT	UK	2607	21000	2554	11100	2557	010013	
	2506 3784 	.01980 .01980 .0198 0	2507 3483	.01980 .01980 01986 -	2556 3166 - 3286	.0198u . 1982 .01982	2557 3197 3297	. r 198b . r 198c . n 1986	
7	3256	.01980 .01980	3157 3257 3607	.01985 .01980	3306	.01981 .01981	3307 3357	. 1980 . 1980	
	366 3406 3586	01980 01980	3007 3407 	.01989 	3356 3456 3556	•9198£ •9198u	3457 3557	• 01980 • 01980	
	4156 4156	.G1980	4 0 67 4 1 5 7	.01980 .01980	41L6 4206	.0198C .0198L	4227	.71981 .71981 .71984	
	4256 4084		4257 4683	- 1980 1980	4356 4356 -	-01986 01986	4507 4357 -	-01980	
	4406 4566 5084	•01980 •01980 •01980	4487 4507	.01980 .01980 .01980	4456 4556 5166	•01986 •91980 •91986	4457 4557 5107	.01980 .01980	
ž *	5156 5256	01980 -01980	5283 5157 5257	01989 .01989	- 5206 5306		- 5207 5377	•91981 •01986 •01986	
	รีก็นี้ 6	.01980	5007	.0198n	1651	.2330L	33.1	*C1760	
CONNECTI	M SURFACE TO S		GRIPT-FA		 				
CONNECTI FRO	M_SURFACETO S	63 • 63 63 • 63 63 • 63	GRIPT—FA — — — — — — — — — — — — — — — — — —		 				
FRO	M_SURFACE TO S	63 .71 63 .13 63 .62 63 .62	285-U2 7370-U2 7370-U2 2772-U3 3443-U1 2772-U3 5398-U1 2678-U3					-	
CONNECTI FRO	M_SURFACE TO S	63 - 71 63 - 17 63 - 26 63 - 26 63 - 26 63 - 26 63 - 27	1285 - U2 7375 - U2 7375 - U2 73772 - U3 2772 - U3 2772 - U3 2678 - U3 2678 - U3 2772 - U3 2126 - U3						
CONNECTI FRO	M SURFACE TO S	63 .71 63 .11 63 .16 633 .22 633 .22 633 .22 633 .22 633 .22 633 .22 633 .22	GRIPT-FA					-	
FRO	M SURFACE TO S	63 -71 63 -77 63 -77 63 -77 63 -77 63 -77 63 -77 63 -77 63 -77 63 -77 63 -77 63 -77 63 -77 63 -77 63 -77 63 -77 63 -77 63 -77 63 -77 64 -77 65	GR IP I FA					-	
FRO	M SURFACE TO S 62 62 62 62 62 62 62 62 62 62 62 62 62	63 -71 63 -63 63 -63 63 -63 63 -63 63 -63 63 -71 63 -71 63 -71 63 -71 63 -71 63 -71 64 -71 65	GR IP I FA					-	
FRO	N SURFACE 2	63 -71 63 -71 63 -63 63 -63 63 -63 63 -71 63 -71 63 -71 63 -71 63 -71 63 -71 63 -71 63 -71 63 -71 64 -71 65	GR IP T FA					-	
FRO	M SURFACE TO S 62 62 62 62 62 62 62 62 62 62 62 62 62	63 - 71 63 - 72 63 - 63 63 - 63 63 - 63 63 - 71 63 - 71 63 - 71 63 - 71 63 - 71 63 - 71 63 - 71 63 - 71 63 - 71 63 - 71 63 - 71 63 - 71 63 - 71 63 - 71 63 - 71 63 - 71 64 - 71 65 - 71 66 - 71 66 - 71 66 - 71 66 - 71 66 - 71 67 - 71 68	GR IP T FA					-	

	SOFT TUBE INFLATABLE R	62 •15565+6	21	
,,		61 .16287-6 6157947-6	21	
	5.7 5.7 5.6	61 •89813-6 61 •23874-9]3 1	
			.7	
, ,,,	59 59 58	60 -52804-0	13	
,	57 67 55 4 55 4 55 5	60 - 26876- 60 - 5875J- 60 - 52367- 60 - 34978-	2 2 12 11	
	51 58 57	67 •14062+1 59 •12447-1 59 •75134-1	33 14 4	
, , ,	55 54 53	59	5 4 33 5 4	
<u> </u>	51 57 56 54]3 2 }	
	4324 5555 56	58 .57285- 58 .377283- 58 .68260- 557 .886464- 57 .21015- 57 .23347- 57 .23347- 	ft ³	
`'	51 551 551 551	57 •10112-1 57 •29009+1 56 •32273-1	14 12 0 0 13	
		5634438- 56 .33455- 56 .11672- 56 .22074+ - 5516513-	22 22 20	
- -			-	

sys.	EMS IMPROVED NUMERICAL DIFFERENCING ANALYZE TUBE INFLATABLE RADIATOR 52		UNIVAC-1108 FORTRAN-V VERSION	PAGE 65
		,		
- 12	The state of the s			<u>.</u> .
1700				· _ ·
, ,				
	the second secon			
	· · · · · · · · · · · · · · · · · · ·			

E - 22

1			TEMS IMPROV			FERENCIN	` - g ana	LYZER		SINO	A	- UNI	VAC-11	.08 FORT	RAN-V VFRS	310N	P	AGE 93
### 1	<u> </u>	7-51964 512050 512050 512050 7-53350 7-53350 7-7-53350 7-7-5350 7-7-5350 7-7-5350 7-7-5350 7-7-5350 7-7-5350	8.2603 8.2603 22.664 12.515 23.664 26.313	7 T T T T T T T T T T T T T T T T T T T	1671 155 - 8 151 - 8 1571 1571 153 - 3	9.742 .8149 .3615 1.167 1.684 - 5.517 3.277		515C= 5156== 5254== 5346= 5346=	70.692 7.7362 7.6.484 7.6.484 30.197	† - T T T T	5157=== 5157=== 51575=== 552554== 552553554= 5564=	- HO 7269491 - 2005882155 - 217 - 26 - 217 - 26 - 228	† T T T T	5005427 500567 500567 500555 500555 500555 500555	7 ± 3 + 5 + 1 + 5 + 5 + 6 + 9 + 5 + 8 + 1 + 9 + 5 + 1 + 9 + 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	Ť T T	5153= 5211= 5207= 5255= 5303=	18.476 .08.3993 .08.3993 12.44.788 12.49.788 24.29 24.21
P 1= 5.4056 P 2= 5.3746 P 3= .4822~C! P 4= .ccgod ***COMPUTER TIME = .2.302 MINUTES *********** ********** ***TIME =			1= \4.0721 6= 21.590	" #	2= 4 7= 2	.354C 1.500	W	3=	4.3579	ัพ								
COMPUTER TIME : 2.302 MINUTES ********** ********* ******** *****	-		1=-5.3264- 6= .31052-	01 DP	2 =-5 7= •	•3-264- 48220-31	-DP	3=	S.3264	DP	4 =	5.3264	- DP	5:	5 3264			
TIMES - 558 CUC 1					2= 5	.3746	P	_ 3=			4=		- -					
		1390047006706790679067906790679067906790679067	10026433311011111111111111111111111111111111	11.12.00.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	247 507 40 561 41 41 41 41 41 44 54 23 64 64 64 64 64 64 64 64 64 64 64 64 64			701687-707-18208-605-6587-707-18208-1807-805-658-780-180-180-180-180-180-180-180-180-180-1	**************************************	11111111111111111111111111111111111111	450015900887431691792710334 5300719110516516516514449355 32602719116516626726027917965 5500677577577577577657756577 55006775577557767756577			01273771173614974980691218 01858265714471471479231953 019 04 0225816926926926773777 011 1673173473173172237 • • • • • • • • • • • • • • • • • • •	} 	######################################	68148378447452445154369 976998438138148344038765358 856796666776777677771241909 3 -4

ı

•

-88.913 -88.320

-91.324 -96.131 93.760

756.8168 7.8168 7.9255 112.3227 7.3227

-2.J816 .24257 9.4116 14.471

-7C.837

-74.838 -64.6885 -327.6667 -11.7666 49.8667

94

				*			
1250=	19.394	T	1251=	17.935	T	1252=	13.27
- <u>1-256</u> =-	9.7292		1257=-	8-4422	<u>-</u> -	-1 2402-	- 36-48
1304= 1352=	24.488 35.506 "		1305= 1353=		<u> </u>	1354=	
****	22000	<u> </u>		_, 32.302° ⋅		ナックィー	28.97

	5 UF 1	IORE INF	LATABLE	RAUTAI	UR								
]	1250=	19.394	Ţ	1251=	17.935	Ţ	1252=	13.279	T 1257= -T- 1-361=	12.111	T 1254= T 1302=	.766 28.97E	T 1255= T 1363=
	1256= 1304=		· ,,	- 1257=- 1305=	22.577		1306=	36-488 -21.338	1307=	19.024	† 1350=	45.064	† 1351 ±
1 "1	1352=	35.506	۱ ′′ ۲	~1353 =	32.302	` į į	1354=	28.974	I 1355=	26.021	T 1356= T 1404=	43.739	T 1357= T 1405=
	[1400=` [- 1416-	*,33.923	· \	1481= -1487=-	` 30.809 - 10.706 -		1402= - 145 6=-	24.354 	T 1403= F 1451=	21.456 27.356 -	T 1452=	10.357 20.810	1 1453=
1	T 1454=	15.022	⊸ Τ	1455=	12.447	Í	1456=	10.680	Ť 1457=	7.7215 ~	T 1530#	34.080	<u> </u>
-	1562=	24.642 45.388	Ţ	1503= 1551=	21.802 42.077	Ţ	1534= 1552=	18.757 36.101	Î ÎSOS=	16.127 23.018	T 1506= T 1554=	14.262 49.800	T 1507= T 1555=
[- 		24 -73 9	2773 İ 3	-1557 =	··· 21 451	<u> </u>	1-659=-	- - 117-9-1		-11C-77	F 1652=	112-93 -	<u> 1653=</u>
	1654= 1702=	-111.76 -96.904		1655= *1703=	-111.52 -96.501	, \ T	1656= 1704=	-110.84 -96.291	T 1657= T 1705=	-110.65 -95.784		94.69C 94.384	T 1701= T 1707=
1000	1750=	, -110.91	Ť	≥1751±"	-4110.77	Ť	1752=	-112.03	Ť Ĩ7Š3=	-111.86	Ť 1754= -	111.76	Ť 1755=
<u></u>	F1 756 ≈- 1864=	-110.84 -96.291		1757≃ - 1865=	110.65 -95.784		1880 = 1866≂	94 - 690	T 1801=- T 1807=	94.2 68		96.993 89.631	T 1803= T 1851=
i	1852=	-94.112	Ť	1853=	-93.269	ή	1854=	-92.853	T 1855=	-91.863	Ť 1856= -	89.150	Ť 1857=
1	1900= - 190 6=	-88.943		1901= - 19 67=-	-88 168	<u>Ţ</u>	1902= -1950= -	-93.735 86.301	T 1993= 	-92.817 85.444		92.382 91.144	7 1965= 7 1953=
M	1954=	×-89.621		1955=	* ~ 88 . 464	, <u>, ,</u> †	1956=	-85.411	1 1957=	-84.438	Ť 1998=	91.732	Ť 1999=
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[€76.836	, " ~ 1%	~ 2001±-	72.73d	. ፞ ^ጜ ፞ጚ	2002= 2083=	67.875	T 2003= T 2084=	64.077 44.054	T 2004= / T 2085=	6D.333 41.007	T 2005= T 2086=
4 , 1/4	[`` 2006= 2087=	^ {53.614 - 35.455		2007= 	- 32.781	<u> </u>	2089= -	46:372 31:19 4	T 2090=	- 28 • 9 33	- - † 2991-= - ·	37203	†- 20 9 2=
1	r 2100=	38.619	Ť	2101=	36.228	Ţ	2102=	31.254	1 2103=	29.114	T 2104= T 2152=	46.845 16.427	T 2105= T 2153=
•	2106= 2154=	23.639 13.754	T	2107= 2155=	21.29C 12.7C6	Ť	2150= 2156=	22.607 12.401	T 2151= T 2157=	21.126 10.960	Ť 220C=	13.426 -	Ť 2201=
ऽह ५		8-6966	_ 	-22 ∪3 =-	8.2881	——— <u>-</u> <u>i</u> –	- 226 4 2-	7-6544- -	1- 2265= -	- 7.4140		7.9425	T 2207= T 2255=
1 . 4 1 . 5	2256=	10.523	` } ` Ţ,	₹2251= ` ₹2257= `	" 10.643 10.156	· ‡	2252= 23.C=	7.5899 .:\13.730	T 2253= T 2301=	7.9857 14.639	T 2254= T 2302=	8.175C 13.241	T 2303=
3	. *, 2304=	15.347			1×16 × 726	y į.,	2306=	18.679	Ť 2307=	19 633	T 2350=	6.5784	T 2351= -T 2357=
	2400=	-1.5083	T	2401=	- 10.653 22108	T	- 2354 = - 24.2=	-12.111 -1.1121	7 235 T 24C3=	14.427 90807	 2356= - T 2404=	17.299 2.7147	7 2405=
,	T 2456=	7.6624	Ţ	2407=	9.3908	Ţ	2450≃	-4.1501	T 2451=	-2.4656	1 2452= -	4.0450	T 2453=
	2454= -2562=	- 35090 1-0896		2455= -2503=	1.7222 9301-1		2456= - 2554=	4.5194	T 2457= T 2505=	6.1982 - 4.8689		1.4869 7-6838	T 2501= T 2507=
r" 182 h	Z550=	6.6216	ı≺ Î	·2551=	8.4961	Ť	2552=	7 • 9227	T 2553=	10.113	T 2554=	12.156	Ţ 2555=
1 2 00 -	T *2556= T 2704=	4 - 17 - 343 -84 -486		2557= 2705=	19.223	` }	72700= 2706=	-81.627 -80.018	T 2701= T 2707=	-80.662 -78.931		86.262	T 2703= T 2751=
7	r 27 52=-	79.941		- 2753:	77-637	<u>j</u> -		-76.819	-1 -2755=-	75 355 -	T 2756=	72.973	1 2757=
-	7 28 d n = 7 28 C 6 =	-65.553 -61.313		2801= 2807=	-64.269 -59.886	T	28U2= 285U=	-68.951 -53.639	T 2803= T 2851=	-67.438 -52.131		66.374 55.956	T 2805= T 2853=
	Γ 2854=	-52.792	. T	2855=	-50.824	İ	∠856 =	-47.353	T 2857=	-45.683	Ť 290°= +	8.617 د	T 2901=
7 3	2962≥ 1. 2950=	39-48E -19-898		- 298 3: 2951=	37-37- -17-746		-296 4= 2952=	35:561 -18:851	T ~2 9 85= T 2953=	33.234- -16.313		-29.650 -13.958	ĭ 2907≍ T 2955=
, , , ,	T\ 2956=	-19.898 -7.429	1, 1, 2, 1 <u>1</u>	2957=	× =5.0406	Ì	2998=	91.733	T 2999=	92.761	T 3(-បំពុំ=	76.858	T 3001= T 3007=
1'	T 3002=1 T∸ 3483=	67.947 46.4457		3003≈ 3084=-	64.145 <u>44.14</u> 0		3004= 3085=	60.417 - 41.092	"T 3005= T - 3086=	56.911 38.256	T 3906= T 3087=	53.731 35.542	T 3088=
	· - •		·			•							

95

APPENDIX F

COMPUTER PROGRAM LISTING

HARD TUBE FULL SCALE RADIATOR

TEST POINT I CONDITIONS

SINDA/SINFLO PREPROCESSOR	DATE 100975	PAGE 3
BCD 3THERMAL EPCS BCD 5HARD TUBE INFLATABLE RADIATOR		
BCD 3NODE DATA SENVIRONMENT NODE SENVIRONMENT NO		
-81,-20.,.01 SEND NODES -81,-20.,.01 SEND NODES GEN -1153,12,1,70.,1. SSYMMETRICAL NODES		
STAME RICAL NODES SEN -212/1-70-11 SFLUID NODE 70.70 SFLUID NODE \$FLUID NODE \$FLUID NODE \$71,70-11 \$ STUBE NODE		i
GEN -17,6,10,70,10 SFLUID NODE GEN -13,6,10,70,10 SFLUID NODE GEN -200,12,1,70,10 SFLUID NODE GEN -200,12,1,70,10 SFLUID NODE	MI MALLAL ANNIA DE LA SERVICIO DEL SERVICIO DE LA SERVICIO DEL SERVICIO DE LA SERVICIO DE LA SERVICIO DE LA SERVICIO DE LA SERVICIO DE LA SERVICIO DE LA SERVICIO DE LA SERVICIO DE LA SERVICIO DE LA SERVICIO DE LA SERVICIO DE LA SERVICIO DE LA SERVICIO DE LA SERVICIO DE LA SERVICIO DEL SERVI	
\$\frac{\text{\cong}}{\text{\cong}} \frac{\text{\cong}}{\text{\cong}} \frac		•
GEN 11.6.10.70CD25 STUBE NODE GEN 16.6.10.70CD25 STUBE NODE GEN 16.6.10.70CP25 STUBE NODE		,
GEN 12.6,1E-70.,.0544 SSTRUCTURE NODE SEN 1300.70.,0224 SSTRUCTURE NODE SIM 1300.12,1,70.,A2,K3 STUBE NODE	,	
SIM 4000 12:1,70.,A2,K3 STUBE NODE SIM 5001:1:70A2,K3 STUBE NODE SIM 6001:2:1.70A2,K3 STUBE NODE		
SIM 1300, 12,11,70,743,K5 SFIN NODE SIM 1300, 12,11,70,743,K5 SFIN NODE SIM 1400, 12,11,70,743,K5 SFIN NODE		
SIM 1500,12,1,70.,A3,K5 \$FIN NODE SIM 2100,12,1,70.,A3,K5 \$FIN NODE SIM 2200,12,1,70.,A3,K5 \$FIN NODE SIM 2300,12,1,70.,A3,K5 \$FIN NODE		
SIM 2500;12;1;70:,A3;K5 %FIN NODE SIM 3100;12;1;70:,A3;K5 %FIN NODE SIM 3200;12;1;70:,A3;K5 %FIN NODE	en er .	
SIM 33(0,12,1,70.,43,K5 %FIN NODE SIM 3470,12,1,70.,43,K5 %FIN NODE SIM 3500,12,1,70.,43,K5 %FIN NODE SIM 3500,12,1,70.,43,K5 %FIN NODE	-	
SIM 4200,12,1,700,A3,K5 SFIN NODE SIM 4300,12,1,70,A3,K5 SFIN NODE SIM 443C,12,1,70,A3,K5 SFIN NODE SIM 4500,12,1,70.,A3,K5 SFIN NODE		 ,

	SINDA/SINFLOS	, ,	' '*'	<i>></i> (*) (,	k ,	any anion and any gar the		-			DA	TE 17397	5	PAGE	4	
(SIM 520 SIM 540 SIM 550 SIM 550		,1,70 ,1,70 ,1,70	A3;K5~\$FIA A3,K5 \$FIA A3,K5 \$FIA A3,K5 \$FIA	NODE NODE NODE NODE NODE	7	*									-	
	END	ĮĘ, Ņ	DE NUM	BERS 1	, , , , , , , , , , , , , , , , , , ,		· ,	~ ACTUAL NO	DE NUMBE	 PS				1000	-	-	
C	11 21 31	THRE	j 21	Č	85 16 52 1002	262 1003 2001 2011	36 17 1004	46 27 1985	11 56 37 1376	21 66 47 1007	12 57 1008	41 22 67 1979	51- 32 1000 1010	61 42 1601 1611		±± 14	<u>.</u>
Ĺ	517	THRU THRU THRU THRU	1/2/76 7/48		2000 22000 22000 23000 24000 30004	2001 2001 3009 4007 5005	2002 300u 3010 4008 5006	2003 3001 3011 4009 5507	2004 2004 		- 2006 3004 4002 5000	2007 3005 4003 5001 - 5011	2006 3006 4004 5002	2609 3007 4005 5003 6001			- /
Ĺ	· , 101	THRU THRU THRU	11	Ċ Ŭ	6002 1100 1110	60°3	6004 1102 1200	6005 1103 1201	6006 1104 1202 	607 1105 1203	6778 1106 1204 -1302	6009 1107 1205 —1303 —	6010 1108 1206 -1304	6011 1207 1207			
1_		THRU	15		1306 1306 1459 1502 2100	1405 1503 2101	71117-	1309 1477 1505	1310 1478 15 C 6	1311 1469 1507	1400 1410 1508 2106	1401 1411 1509	1472 1500 1510	1403 1501 1511 2109			
ب	181 191	THRU THRU THRU	J 198 J 201	<u> </u>	211 2208 2306 2404	2111 2209 2307	2200 2210 2306	2201 2211 2309 	2104 — 2202 2300 2310 - 2408	2105 2203 2301 2311 2311	2204 2302 2400 2410	2107- 2205 2303 2401 -2411	2178 2276 2304 2402 2508	2207 2305 2403 - 2 501 —			
, ,	741	THRI THRI THRI THRI	JZ 51	<u> </u>	2500	2405 2503 3111 3111 3209	2466 2504 3102 3200 3210	3103 3201 	2506 3104 3202 3300	2507 3105 3273 7371	2508 3106 3204 3302	2519 3107 3205 —3303—	3108 3108 3206 3304 -	2511 3109 3207 -3305			
1	271	THRU THRU THRU THRU THRU	J 270 J 280 J 290	9	33C6 34C4 3502 4100 41108	3307 3405 3503 4101 4111	3504 4102	3379 3467 3505 4163 4201	3310 3408 3506 	3311 3409 3507 4105 4203	3410 3578 -4106	3471 3509 4197 4205	3402 35510 -4108 -	3483 3501 3511 -4189	-		
- susan	- (29) 301 331	THRU THRU THRU THRU	32	υ,	4306 4304 4502	~~ 4307 ~~~ 4405	4200 4210 4308 4308 4564	4211 4309 4407 4505	4202 4300 4317 4498 4506	4301 4311 	4204 4302 4407 4416 4528	4303 4471 	4206 4304 4402 - 4500 - 4510	4207 4305 4403 -4501 4511		-	
	341 351	THRU THRU THRU THRU	351 361 371 381	G ,	5100 5110 5208 5306	4503 5101 5111 5209 4 5307	5256 5216 5308	5103 5201 	5174 5202 5340 5310	5703 5701 5311	5106 5204 5302 5400	5107 5205 5303 5401	5108 5206 5304	5209 5207 - 5305 -			
	381	THRU THRU THRU	」 「今39」 」 、 4記) 」 、 41) 」 42)		75404 5502 10000	\$405 5503 90 1154	1155	5407 5505 	5408 5576 93 1157	5409 5507 - 94	5578 81 1159	5411 5509 1150 1160	5500 5510 - 1151- 1161	5511 5511 - 1152 6100	-	-	
`	411 431 431 441 451 461	THRU THRU THRU THRU) 441 451 , 461	Ğ E	5101 6111 102 200 210	6102 2 - 60 103	6103 3 154	6104 	6105 76 	6306 71 - 45 157	6197 - 558 178	61 78 - 65 179	6179 30 100 110	5110 401 101 209	-		
1	371	THRU	48]	210	201	1 0 4 2 0 2 3 0 0	155 273 301	302	375	206 304	179 217 305	110	209 367			`_`

F-2

MADNIE CONTRACT	/SINFLO PREPRÓC	ESSOR ; %	•	+ 5 1/1				-			DATE	E 133975		PAGE	5	
1 1 1 m 1/4 1	<u>γ 481° % ΤΗΡΟΎ</u>	490	,	388	309	310	311	400	401	402	473	464	4 C 5 5 L 3	_	_	_
	501 THRU 501 THRU 511 THRU Nucl FIALYSIS	51u 52u 52u	FUSION =	404 504 602 460	407 505 603 ARITHME	506 604 TIC =	479 507 605 0, B	775- 578 676 SOUNDARY =	411 - 509 607 120,	7 570 510 678 TOTAL =	511 511 679 520	-502 603 615	601 611	-	_	`
一点人	Br (CDNDUCTO (EN 11.6)10; ([N 11.6)10;	R DATA 1,10,12, 6,10,17,	18:387	∗, st€on	D STRUCT	URE		``,	~	-		• •	 -			-
J	CLN 17,5,10,1	2,10,27, 1150,1,1 16100.1	10,.235 100,1.13 6000,1.1	\$CON •66 \$S 3•66	D STRUCT D STRUCT YMMETRIC \$SYMMETR	URE AL G							<u> </u>			
	CEN 110041141 CEN 110041141 GEN 110041141	1200 1200 1300	1101,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	00001 #A 00001 #A 00001 #A	XIAL CON XIAL CON	Dv 3 ~ 5°,	```}* * ````			,1		,		-		
	N 400, 11, 1 1 1 1 1 1 1 1 1	,2000,1, 1,2100,1	2001,1, 2101,1,	XA&	IAL COND	D										
	CEN - 70,41% FEN - 70,41% FEN - 70,11%	72400,1, 72400,1, 2500,1,	2301,1,. 2401,1, 2501,1,	00001% \$ A 00001#\$A 00001# \$ A	XIAL CON XIAL CON XIAL CON	D		&., ~,		,		- 	, , , , , , , , , , , , , , , , , , ,		,	
	1 N '1 U, II, I	3200,1,	3101,1, 3201,1,	00001 SA 00001 SA 00001 SA	XIAL CON XIAL CON XIAL CON	0							,	1		t
	TEN 3490,1131 TEN 3490,1131 TEN 4900,1131 TEN 4100,1131	,4000,1,	48017.1 416171	1011) \$AX 10001 \$A	IAL COND	D .5		, A				1				
	10 4 70,11,1	L,4300,1,	4361,1,.! 4461,1,.!	DCDC1 SA	XIAL CON	D D					pp					
	Tir "indi(11%) Tib	510011 520011 540011	55.01.11.11	YRUGET NW	XIAL CON XIAL CON XIAL CON XIAL CON	2				170 April 180		~				
	1 n ng,11,1	,5500,1, ,6000,1,	5501,1, 6001,1,	CCCC1 SA DC271 SA 3.66 SR	XIAL CON	D D D D D	·- ·	and an entire of the same of t								
	CLN 1 0,12,1 CN 1 0,12,1 CN 20,12,1	.,3000.1.	3100/1,10	5.66 SR	ADIAL COL ADIAL COL ADIAL COL ADIAL COL	ND ND ND								·	. ,	[
·	10.12.1	.,45nd,1,	5000,1,1; 5160,1,1;	3.66 \$R 3.66 \$R	ADIAL COL ADIAL COL ADIAL COL ADIAL COL	ND ND NO					AT-	,				
	11 1 0,12,1	,1205,1, ,1205,1, ,1300,1,	138G, 1, Z:	564 SR	ADTAL COL ADTAL COL ADTAL COL	ND,	~ ****** #							•		

ζ.	T														
- [·Adnie XX.	THELL PREPRO	CESSOR TELL	"(, , , , , , , , , , , , , , , , , , , 		-				DAT	E 102975	PA	GE	6	
-	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TEN MERCETT.	. ซึ่ง ซนากรัฐได้ แกกรัฐ	2.564 . \$RAD	IAL COND									_	
,		250,12,	1,2100,1,22CC,1 1,22CG,1,23CG,1 1,23CU,1,24GG,1 1,24GG,1,25GG,1	,2.564 SRAD	IAL COND		-								
-		1 45C,12	,1,2300,1,2400,1 ,1,2400,1,2560,1	,2.564 SRAD.	IAL COND					_				,	
		IN 250,12	1,3100,1,3200,1 1,3200,1,3300,1 1,3300,1,3400,1	,2.564 . TRAD	IAL COND *					-					
	Extraction Am	11 458-12	. I • 3488 • I • 3388 • F	· Z · ODY " DRAU.	THE POND **					_					
1	2.	150,12	,1,410G,1,42CC,1 ,1,42CD,1,43GO,1	12.564 SRAD	TAL COND										
<u> </u>		13 4450,12	,1,4400,1,4500,1	,2.564 SRAD	IAL COND										
		250 12	1,5200,1,5300.1	2.564 . SRAD	IAL COND	, ,									
		(fr 4450 12)	1,4200,1,4300,1 1,4200,1,4500,1 1,4500,1,4500,1 1,5500,1,5360,1 1,5500,1,5500,1 1,5500,1,5500,1 1,5100,1,1	2.564 SRAD	TAL COND " — sradiati on			·							!
(3°		ffn -112nc,1	12,1,1200,1,1033 12,1,1300,1,1035	3,0,4.05E-10 8.0.4.05E-10	SRADIATION SRADIATION	! G									
, ,	PASSIVE OF THE SAME	(n −11400.) - n + 11500.	12,1,1300,1,1000 12,1,1400,1,1000 12 ,1,1 500,1,1000	0,0,4.05E-10	SRADIATION SRADIATION	G				·					
ال		121003	12,1,1500,1,1000 12,1,2000,1,1000 12,1,2200,1,1000 12,1,2300,1,1000	0.0.4.05E-10	SRADIATION SRADIATION	i, G	>	ı	` .						1
Ľ	AND THE ASSESSMENT	TN -12300,1	12, 1, 2300, 1, 1000 12, 1, 2400, 1, 1000	90,40,05E-10	*#RADIATION ************************************	;G									I
U		(it -12500,	12,1,2400,1,1000 12,1,2500,1,1000 12,1,3100,1,1000	0,0,4.05E-10 0,0,4.05E-10	#RADIATION	l G									
5	STATION STATE	13200,	12,1,3200,1,1000 12,1,3300,1,1000	#+0+4+05E-10	SRADIATION SRADIATION	 -6									
[がは	-13500	12,1,3300,1,1000 12,1,3400,1,1000 12,1,3500,1,1000	C.O.W. 05E-10	> SRADIATION SRADIATION SRADIATION	G					2				,
Ł	2" 12 1 15 1 1 2 2 2		17. 1. 471111. 1. 1. 1. 1111	1 - 11 - 11 - 11 - 1		 -6	·							_	
$\overline{}$		(Lp -14400,	12,1,4390,1,1000 12,1,4400,1,1000 12,1,4500,1,1000	0.0.4.056-10	SPADIATION SPADIATION	! G									
ſ	2014 14 10 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	15200	12:1:5:110:1:100	5.6.4.05F-16	SRADIATION	}~ @						 			
,		TEN -15300.	12, 1, 5300, 1, 1000 12, 1, 5400, 1, 1000	7.9.4.055-10	SRADIATION SRADIATION	G									
£	411.00		12;1;3500;1;1000	0,0,4,05E-17	- BRADIATION										
		RELATIVE CO	NDUCTOR NUMBERS			A C TU	AL CONDUC	CTOR NUMP	ERS						
	"点"。"是有有的	THRU	14.40	11.	21 31	91	51	61	16 52	26	36 27	46 37			,
i~ [1 THRU 21 THRU 21 THRU 41 THRU		等。"	57 ~ 95ú	951 961	952 -6050	955 6251 -	954	955 6053	956 6354 -	957 6u55 -			1
		41 THRU 51 THRU		6ť\56 6	959966 057 6058 u35 1700	ร์ เรื่อ ในกั	6760 1708	6 6 1	าัฐกัก เก๋ โร	1001 1100	1002 1101	1103 1102			
Γ,		61 THRU	75	1103	104 1105 2931204	1106	1107 1206	1108 1207	1199 1298 -	111, 1209 -	1257	1 <u>481</u> 1 38 0-	-		_
ال		" ("BÎ THRU > 91 THRU	99 % % % 1 % 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1	1382	302 1303 401 1402		1305 1404	1306	1377 1406	13°8 1407	1309 1408	1310 1409			\circ
Ľ	1 1 1 1 2 3 4 1 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, 101, THRU	<u>. 116 , </u>	, 4416 , i	500 1501	<u> 15°2</u> _	1573	11.04	1575	1576	1577	1508			-
-					F	·- 4									

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

. SINDA/SI	LO PREPROCESSOR '	PATE 1°1975 PAGE 7
3 4 4, ,	11 THRU 120, 1519 1510 2000 2001 2002 20	03 2004 2005 2306 2007 02 2133 2134 2135 2706
	51 THRU 14c 21P7 21D8 21U9 211C 22DB 22U	ni 2702 n2n3 22n4 22G5 nn 2301 2302 2303 2364
V	41 THRU 150 2206 2207 2208 2209 2210 23 51 THRU 160 2305 2306 2307 2308 2309 23 51 THRU 170 2404 2405 2406 2407 2408 240	1 ^a 240 3421 2402 2403
- 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	51 THRU 170 2408 2405 2405 2407 2408 2507 2508 2507 2508 2507 2508 2507 2508 2507 2508 2507 2508 2507 2508 2507 2508 2507 2508 2507 2508 2507 2508 2507 2508 2507 2508 2507 2508 2507 2508 2508 2508 2508 2508 2508 2508 2508	08 2509 2510 3000 3601 07 3008 3009 3010 3100
-	01 1980 210 3205 3205 320	n6 3107 3108 3109 3110 05 3206 -3207 32083209
-	21 THRU 236 3309 331(3400 3401 3402 34) 31 THRU 240 3408 3409 3410 3506 3501 350	03 3404 3475 3406 3407 02 7503 3504 3505 3506
	11	00 4191 4102 4103 4144
The state of the state of	81 (HRU 290 43)13 43U4 43U5 43U6 43U7 43	09 , 4210
∵	01 THRU 316 45PÎ 45D2 45D3 45D4 45D5 45	07 4408 4409 4410 4500
17. 340-57.50	71 - 71011	04 5105 5106 5107 5108
	21 THRU 3330 5103 5100 5100 5100 5101 5102 5103 51 31 THRU 5 340 5202 520 414 THRU 5 350 5201 5202 5209 5200 5201 5202 520 514 THRU 5 350 5301 5301 5301 5301 5301 5301 530	02"
	51 THRU 374 5446 5407 5408 5419 5410 55 71 THRU 380 5505 5506 5507 5508 5519 55	<u>00 </u>
-	31 THRU 390 6004 6005 6006 6007 6006 62 21 THRU 40C 1953 1654 1055 1056 1057 10	09 6010 1051 1051 1052 58 1059 106C 1C61 1553
	11 THRU 120 1551 1551 1552 1553 1554 1555 151 1561 2050 2051 2052 2053 27 215 1 2050 2051 2051 2051 2051 2051 205	\$6 - 1587
	04 x d f MKU 104 m 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1	65
~	51 THRU 460 3553 3554 3555 3556 3557 35 51 THRU 470 4051 4052 4053 4054 4055 40	56 4057 4558 4559 4663
	71 THRU 486 4061 4553 4552 4553 45 21 THRU 490 4859 4560 4561 5050 5061 55 21 THRU 500 5061 55	5253535054 58555656
- 14 pr 1/2 ft 20 3	71 *; THRU	60 5561 1150 1151 1152 88 1156 1160 1161 1250
<u></u>	21 THRU 53U 1251 1252 1253 1254 1255 12 31 THRU 54D 1261 1350 1351 1352 1353 13	56
<u></u>	11 THRU 550 1359 1360 1361 1450 1451 14 51 THRU 560 1457 1458 1459 1460 1461 21	52 1453 1454 1455 1456 51 2151 2152 2153 2154
Employed in	51 THRU 570 2155 2156 2157 2156 2159 21 11 THRU 580 2257 2254 2255 2256 2257 22 21 THRU 591 2351 2352 2353 2354 2355 23 21 THRU 600 2355 2351 2452 2453 24	58 2259 2260 2261 2350
	51 THRU 600 \ \ \ \ 2361 \ 2450 2451 2452 2453 24 51 THRU 619 2459 2460 2461 3150 3151 31 51 THRU 620 3157 3156 3159 3160 3161 32	54 2455 2456 2457 2458 !
~	21 THRU 630	50 3251 3252 3253 3254 60 3261 2352 3351 3352
,	FI ````THRU````````````````````````````````	56 ~ 3457 3458 3459 3460 ~
-1	51 THRU 666 3467 4153 4151 4152 4153 41 51 THRU 679 4159 4160 4161 4250 4251 42 51 THRU 688 4257 4258 4259 4260 4261 42	52 4253 4254 4255 4256
	The state of the s	" - - ⁻

SINDA/SINFLO PREPROCESSOR	PATE 10/1975	PAGE 8
1 THRU 100 4361 4356 4357 4356 4359 4360 4361 4459 4459 4459 4459 4459 4459 4459 445	4450 4451 4452 4460 4461 5150	<u>.</u>
701 THRU 716 5151 5152 5153 5154 5155 5156 5157 711 THRU 726 5151 5255 5251 5252 5255 5255 711 THRU 726 5259 5260 5261 5350 5351 5252 5353	5158 5159 6160 5256 5257 5258 5354 5355 5356	
71 THRU 740 25, 5357 5359 5361 5450 5451 -	-54525453 5454- 11177 11101 11122 11110 11111 1120	
11207 11207	112/8 11209 11210 11306 -11307 -11308	a Minis
7-1 THRU 866 11407 11408 11409 11410 11411 11500 11501	11572 11503 11504 12170 12171 12102	
11 THRU 820 12169 12165 12166 12167 12168 12169	12216 — 12111 — 12200 — 12208 — 12208 — 12208 — 12208 — 12406	
1 THRU 860 12467 12406 12405 12416 12411 1256 12561 12561 12565 12505 12506 12507 12508 12509 12510 12511 12505 12505 12509 12510 12	-125021250312504 13105 13101 13102 13115 13111 13200 13228 13209 13210	
13211 13300 13301 13303 13303 13304 13305 13305 13305 13300 13310 13401 13401 13401 13401 13401 13401 13401 13501 13401 13501 13401 13501 13501 13501 13501 13501 13501 13501 13501 13501 13501 13501 13501 13501 13501 13501	- 13396 13307 13308 - 13404 13404 13503 13504 13502 13503 13504 14100 14101 14102	1
14103 14103 14104 14105 14107 14108 14109 14108 14109 14108 14109 14108 14109 14108 14109 14108 14109 14108	- 14110 - 14111 - 14209 - 14210 14306 14307 14308 14406 14406	
14505 14405 14407 14406 14407 14407 14407 14407 14407 14407 14505 14505 14505 14506 14507 14506 14507 14506 14507 14508 14507 15108 15109	14502 — 14503 14504 15100 15101 15102 15100 15111 15200 15208 15200 15210	
16.1 THRU 103J 15379 15310 15361 15400 15401 15402 15473 15500 15501 17500 175	- 15366 15367 - 15368 - 15464 15465 15466 15502 15503 15504	The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second
THE THE PARTY OF T	0NS-31047	<u> </u>
TOL=.01, MXPASS=100, FROX=.7, P(4)=0., END 1,2,3=10,11,(1P0,1000,111,1011),15,16,END 2,2,3=20,21,(200,2000,211,2011),25,26,END		
\$\\\2\\3\\2\\3\\0\\3\\0\\\\\\\\\\\\\\\\\		
8,5,3=70,-71,END		
BCD 3FLUID LUMP DATA .001,113,1.5,.340,0.7,1.,1.,1.,1.,2.3,END .00419,.725,10.75,.786,2.,0.,1.,1.,1.,2.7,END .00419,.0725,10.75,.787,0.,0.,1.,1.,1.,2.7,END .0070194,.0492,.50,164,0.,0.,1.,1.,1.,2.7,END .0070194,.0492,.50,164,0.,0.,1.,1.,1.,1.,1.,1.,1.,1.	-	
F-6		

E SINDA/SINFLO PREPROCESSOR	DATE 100975	PAGE 9	

END BED 3FLOW SOURCE DATA			
END SEND FLOW DATA A BED SEND FLOW DATA A BED SEND FLOW DATA A BED SEND FLOW DATA A BED SEND SEND SEND SEND SEND SEND SEND SE	· · · · · · · · · · · · · · · · · · ·		-
OTIMEI,:055			
AREX A: 01 1710 1 1 1710 1 1710 1 1710 1 1710 1 1710 1 1710 1 1710 1 1710 1 171			
5,4.69É-5 s			
CONSTANTS ANALYSIS USER = 4, ADDED = 0 0 0, 7, TCTAL = 4			
BCD SARRAY DATA TE VS TIME VS			
-400.,15.6,-200.,25.8,0.,32.6,200.,36.4 END 3 \$ PCP FIN			,
-408.34.37.40034.3 END : CP FREON 21 : 22411922860231 -21122316022411922860231 U.S. 1.27.4.27.4.27.4.27.4.27.4.27.4.27.4.27.			
t FAID			
5" S P FREON 21 -218.110.,-160.,104.,-110.,99.3 -60.,96.,0.,91.5,40.,88.5,90.,84.2,120.,81.8	- -	1	
k.F° °			
-211.;19.17-200.;13.7;-188.;10.1;-166.;6.36 -154.;5.21;-142.;4.32;-130.;3.68;-118.;3.16 -112.;2.81;-76.;2.(2;-49.;1.62;0.;1.17;30.;.994 60:,870;190.;.726;160:,.561;260.;.396	* NI FLOWN WIS 1788		
7 % COMDUCTIVITY FREON 21 -300.40.11.006%.250044.END300.40.11.006%.250044.END300.40.11.006%.250044.END300.40.11.006%.250044.END.	_		}
11,5,*T9G,3.2U7,1,*T91,51.31,1GG,*T92,51.31,1UG,*T93,51.31,1FP *T94,3.2U7,1;END 12,.U2,.68,.68,.68,1.G,END	"		
13; 98; 32; 32; 32; 03; END 14, XT9C; xT9I; 984; XT92; 0712; XT93; 002; XT9C; XT94; 0702 XT91; XT92; 061; XT93; XT93; 00; XT91; XT94; 00; XT92; XT93; 061 XT92; XT94; 060; XT93; XT94; 062; END			 ,
- F - 7			

- SINDA/SINFLO RREPROCESSOR S. S. S. S. S. S. S. S. S. S. S. S. S.	DATE 196975	PAGE 13
16;*T1100;*51*1.*T12C1;*5131;*T13G0;*5131;*T14*0;**131;*T15*n;*5131 *T2100;*5131;**100;*5131;*T23G0;*5131;*T24G0;*5131;*T25G0;*5131 *T3100;*5131;**143G0;**5131;*T33G0;**5131;*T34G0;**5131;*T35G0;**5131 *T4100;**5131;**143G0;**5131;**144G0;**5131;**145G2;**5131		
** ** ** ** ** ** ** ** ** ** ** ** **		
*T9101, .5131, 01, .5131, *T9301, .5131, *T9401, .5131, *T9501, .5131 *T5501, .5131, 0		÷ ••• ••
**I\$102; \$131; =14702; \$131; **I\$302; \$131; **I\$402; \$131; **T3502; \$131 **I\$102; \$131; =14702; \$5131; **I\$402; \$131; **I\$502; \$131; **I\$502; \$5131 **I\$102; \$5131; =1 02; \$5131; **I\$502; \$5131; **I\$502; \$5131; **I\$502; \$5131		- · · · · · · · · · · · · · · · · · · ·

**************************************	timente ere publication of up	
**************************************	** ** ***	,
*15105, 5131, 11 205, 5131, 415305, 5131, 415405, 5131, 415505, 5131 *11106, 5131, 11 06, 5131, 411306, 5131, 471406, 5131, 471506, 5131 *12106, 5131, 12406, 5131, 471306, 5131, 471406, 5131, 471506, 5131 *13106, 5131, 12406, 5131, 471506, 5131, 471506, 5131		
** ***********************************		
12107.*5131.	THE ALGOR IN PARTY	
#T21085131, 1, 18,.5131, *T23085131, *T2408,.5131, *T25085131 **T35085131 **T35085131 **T31085131, *T35085131 **T35085131 **T41085131*T41085131, *T44085131*T45085131 **T45085131		
T5108*5131********************************		1
*T1110, •5131, 1, 1, •5131, *T1310, •5131, *T1410, •5131, *T1510, •5131 *T2110, •5131, 1, •5131, *T2310, •5131, *T2410, •5131, *T2510, •5131		
**************************************		Ĺ

F - 8

•	·		
i			
	STATE SINDA SINFLO PREPROCESSOR	DATE 100975	PAGE 11
	*T21115131,*T22145131,*T2311,.5131,*T2411,.5131,*T2511,.5131		1
	*\\dili,\dili,\	-	
	*T5111,.5131,*T5211,.5131,*T5311,.5131,*T5411,.5131,*T5511,.5131,ENC		
	END, ZÚ, SPÁČE, ISTÉNŮ, ARRAYS, ANALYSIS, NUMBER OF ÁRRAYS = 19 TOTAL LENGTH = 818		
_			
١.,	TUBE NUMBER LIST 1 2 3 4 5 6 7	8	8
	PRESSURE NODE, LIST		e 1
<u>_</u>	PRESSURE NODE, LIST		•
	NOTH = 10000 F		
C	RESET CRYINT (A4, A8)		
	GENOUT (A8+1, 1748, 3HDA8) FLOSOL CSGDMP TIFST=1		
•	FLOSOL TEST TO THE		
Ĺ	, CÚBACK		•
	END SYRIABLES 1 PARTONALS 17145 OF THE PROPERTY OF THE PROPERT		<u> </u>
_	### BUD 3VARIABLES 1		;
,	11153= <u>71173</u> H		
	. T1154=T1124 M T1155=T1175 M		
	T1156=T1106 T1157=T1107		
-	11158=T1108 T1159=T1108 T1160=T1110		
	T1161=T1111 M T6100=T5500 M		
1	Tejüz=15501 M	abot on Minute Printer	
	T6103=T5503		t
1	T6106=T5506 M T6107=T5507 M	- 10 Mar	
-	T6128=15508 T6109=T5509		
	T6111=T5511 M T611=T5511 M T77=(T111+T211+T311+T411+T511)/5. M	*	(
1	1/3=(11:1+12:1:+13:1:+13:1:+13:1:1/3: END	•••	

-	· T			
	I to Antital Mark Well Machina and	TE 100975	PACE 12	
	BCD 3VARTABLES Z			
	END TOUTPUT CALLS			
-	WPBINT(1,1,1) TIMCHK(K1,1) END			-
ŧ~	6ADD,P ECG2-V55008*SINFLO.PROC			
`				1
9	<u>e</u>			
٩				
(
				<u>.</u>
`		,		 -
		-		-
				- - 3
	<u> </u>			•

Ï								
SYSTEMS ÎMPROVED NUM	HERICAL DIFFERENCING AND	ALYZER	- SINDA -	U	NIVAC-11C6 FOR	TRAN-V VERSI	ON PAGE	_47 ;
HARD TUBE INFLATABLE								
IR CROSS RADIATION DATA						-		
SURFACE DATA	PACE'S			and the second s	n ama ya ka amaar .			
SURFACE NUMBER	R SURFACE AREA	NUMBER OF	NODES					
	0 - 3.21700 1 - 51.31000 51.31000 51.31000	1, 2	100 100 100			and white the same to the same		
SURFACE EMISSIVITY	DATA \$68000+0	q 168000+00	.10000+61					
SURFACE REFLECTIVI								
SURFACE CONNECTION	a fry V	10						
FROM SURFACE	TO SURFACE	VIEW FACTOR						
90	92 " 93 "						gp. of 10 Mar November 10 Martin 10	
91	9 4 9 3	.00366						
92 293	73	.61270-01 -50060-03 -62000-01		_ ,		-		7
	· , , , , , , , , , , , , , , , , , , ,				<u>.</u> .	•		
NODE DATA					4054	NODE	AREA	
SURFACE	HODF ARTA	NODE	APEA	NODE	AREA	MODE	80¥8	tere r
90	1100 3.21600 1100 .5131C	12.0	.51317	1204	•5131F	1400	.*1316	

12.5 F-11

I						
1500 - 51318 2160	.51317	220"	.51314	2500	.5131 .5131	
2400 -51310 2500 3300 -51310 3400 4200 -51310 4300 51310 -51310 5200		-3167 3550 4420 5367	.51311 .51311 .51312	3203 4505 5400	#171A	
5500 1401 2301 51310 51310 2401 31310 31310 31310 31310 31310 31310		7201 2101 2501 3401	.51316 .51316 .51316	1301 2201 3101 3501		 I
4101 .51310 4201 4501 .51310 5101 5401 .51310 5501 1302 .51310 1402	.51317 .51310 .51310 .51310	5201 1102 1502	- 51310 - 51310 - 51310 - 51310	4471 5371 1202 2172	######################################	
	1					
€.			·			
	•					
•						
			agan ayan ba majan ugan di Al Bal Balan da Jamanan ban majan un u			
	t					,
						-
			. <u></u> .	.		
	مع مدستند د جنب پ				-	
			-			
		-				•

F-12

1,	SYSTEMS THE PROVED NUM	t '' ERICAL DIFFERENCI	NG ANALYZER	SINDA		UNIVAC-11F& FORT	RAN-V VERSIO	ON_ PAGE	48	١
	HARD TUBE INFLATABLE	RADIATOR								
٠,	₹	202 •5131 102 •5131	u 3705 u 3205	•5131n	2402 3302		2572	•51310 •51310		
~	A CONTRACT OF THE STATE OF THE	502 5131 402 5131 302 5131 203 5131	0 4102 7 4502 0 5402 0 1303	- 55110 - 55110 - 55110 - 55110 - 55110	- 4762 5102 5502 1403 	•51316 •51316 •51316	43 r 2 43 r 2 11 0 3 15 0 3 24 f 3	51316 -51310 -51310 -51310 51310		
1_	2 3 4 4 4 4 5 5	503 -5131	0 3103 0 3503 0 4403	.51310 .51310 .5.310	3203 4103 4563 —5403 —	.51310 .51310 .51310	3303 4403 5173 -5583	.51316 .51316 .51310		
C	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	3003 3131 31313 3131 31313 3131 31313 31313 31313 31313 31313 31313 31313 31313 31313 31313 3131 31313 3131	0 / ^\2504 G 	51310 51310	1304 2204 3104	.51316 .51310 .51310	1494 2304 3264 -4194 -4504	.51310 .51310 .51310 .51310		
ζ	5 5	\$ \frac{1}{2} \fra	D 5204	.51310 .51310 .51310 .51310	4404 5304 1205 2105 2505	.51310 .51310 .51310 .51310	5474 1395 -2475 3195	-51310 -51310 -51310 -51310		1
C		205 5131 105 5131 505 5131		51310 51310 	23405 4305 	.51310 .51310 .51310	3505 4405 -5365	-51310 -51310 	- -]
٢	12	405	0 1406 0 2306 0 3206	.51310 .551310 .551310 .51317 .51317	1506 2406 3306 4206	-51310 -51310 -51310 -51310	2106 2506 3466	51316		
-	(1) 1 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	207 5131	0 4576 \ 0 5406 \	51310 51310	\$106 5506 1407 2307	•51310 •51310 •51310	5276 1107 -1507 2417	.51310 .51310 .51310 .51310 .51310		
!	23	507 407 -5131	0 7197 0 3507 B	:51310 :51310	3207 4107 4507 5407	-51310 -51310 -51310 -51310	33r7 4297 5107 5507	.51310 -51310 -51310		 1
	93 (1	207	C 2108 C 2508	•51310	1308 2208 3108 3508	•5131C	1408 2378 3278 — — 4108	.5131u .51310		
-	45	208 -5131 108 -5131 188 -5131 1809 " : 5131	0 4308 0 5278 0 110 0 -	-51310 -51310 -51310 -51310	4408 5308 		4508 5408 1359	-51310 -51310 -51310 -51310 -51310		
, , , , , , , , , , , , , , , , , , ,	2 2 3	309) .5131 2095131 109 .5131	0 2409 0 3309	.51310 .51310	2109 2509 3409 	.51310 .51310 .51310	3109 3509 4409	•51310 •51310 •51310 -		J
-									. <u>-</u>	
1		<u> </u>	~ <u></u>	k Agama er er			a	-		Ų

F-13

	T .							
7 C 19 19 19 19 19 19 19 19 19 19 19 19 19	SYSTEMS THPROVED NUMERICAL DIFFERENCING ANALYZEP	SINDA		UNIVAÇ-1188 FQ	RTRAN-V VERS	ION PAGE	49	1
_	HARD TUBE INFLATABLE RADIATOR +51310 5109	-51310	5209	•51316	5309	•F131C		
[V V X	5409 .51310 5569	.51310 .51317 5131C	1110	.51316 .51316 .51316	1210 2110	.51310 -51310	-	-
- 270	1310 2210 2210 3110 3110 3110 3110 3110	51310 51310 51310 - 51310	1510 2410 3310 4210	.51316 .51316 .51316	2510 3410 4310 5210		-	
J	5310	.51310 .51310	5516 1411 2311 3211	.5131L .5131L .5131C 	1111 1511 3311 -	.51310 .51310 .51310		. _ -
	2511 51310 3511 3511 3511 4411 53310 53310 53310 53310 53310	51310 51310 51310	4111 4511 5411	.51310 .51310 .51310	4211 5111 5511	- 51310 -51310 -51310 -51310	,, _	
ي -	94 81 3.21000							
	CONNECTION DATA TO SURRACE SCRIPT FA	۷	+					
<u></u>	9c 91 •43776-01 • 90 92 •13903-02 •90 93 •11606-63					t		
~ 1/2 / 1/2 / 5/4/2	91 91 91 91 91 91 91 91 91 91 91 91 91 9		*				, <u></u>	
V	92 93 •14485+01 92 94 •59857-01 93 94 •21644+01							
_							A Bu	ì
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A CONTRACT OF THE PROPERTY OF							•
۲						_		
		وه محمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحم						
	F-14							

V			
SYSTEMS IMPROVED NUMERICAL DIFFERENCING		UNIVAC-11CS FORTRAN-V VERSION	PAGE 71 '
HARD TUBE INFLATABLE RADIATOR		•	and and part ye
T 5503= 31.576 T 55.4= 31.740	T 5511= 333-381 T 60000= 33 T 6205= 35.297 T 6706= 33 T 6011= 3-37.914 T 6100= 33 T 6105= 3-31.912 T 6106= 33	2.116 T 5507= 32.343 T 3.740 T 6001= 34.333 T 5.675 T 6007= 36.074 T 1.332 T 6101= 31.380 T 2.112 T 6107= 32.339 T	5508= 32.438 6002= 34.290 6008= 36.485 6102= 31.461 6108= 32.435
W 1= 110.59 W 2= 110.55 W 6= 991.49 W 7= 549.29	u e nac no	10.48 W 5= 109.90	
DP 2 4055.2 DP 2 7 7 7 7 7 1 5 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DP 3= 4055.2 DP 4= 46	055.? DP 5= 4°55.2	
	P	ngtag P 5=-64.343	
COMPUTER TIME = 1.763 MINUTES			
550005 DTÄMEU= /2. SUOCE -	(1100) = 9:86330-05 TEMPCC(81 1	C)= 2.28424-C2 RELXCC(66)= 4.999	6.66428-93 6= 33.949 17= 39.413/ 27= 39.155
T 20= 94.907 T 21= 94.224 T 30= 92.056 T 31= 76.517 T 40= 94.856 T 41= 93.798 T 50= 94.808 T 51= 93.395	1 42 81.29 1 37 37 37 37 37 37 37 37 37 37 37 37 37	7.647 T 56= 37.691 T	37= 38.589 47= 38.660 57= 38.253
71 70 33.950 1 761 34.418 71 70 38.733 1 771 771 17000 72 444 1 771 17000 73 74 74 75 771 17000	T 80= 54.231 T 81= -26 T 94= -19.897 T 100= 65 T 105= 64.612 T 106= 66	8.727 T 66= 38.723 T 1 0.000 T 90= 54.374 T 1 9.551 T 101= 64.190 T 107= 55.839 T	67= 38.534 91= 52.795 102= 79.028 108= 51.562
T 203= 73.923 T 204= 69.795 T 209= 47.233 T 219= 43.245 T 303= 71.683 T 304= 67.003	T 205= 64.447 T 206= 59 T 211= 39.373 T 300= 86	9-496 - 1 - 201 - 84.105 - 7 9-967	202= 78.918 208= 51.366 302= 76.520 308= 49.764
1 409= 46.909 T 404= 68.888 1 409= 46.909 T 404= 68.888 1 503= 71.978 T 504= 66.941	T31138-(141-405= -89 T 405= 64.210 T 406= 58 T 411= 39-025 T 500= 58 T 515= 52.162 T 506= 57	9-418 -1 401=	402 78.777 448 51.056 502 77.280 508 49.120
T 603= 34.816 T 604= 35.164 T 609= 37.196 T 617= 37.676 T 1003= 64.902 T 1004= 59.990	T	3.910 - 1 -601=34.188-	602= 34-491 608= 36-738 1002= 69-944 1008= 41-599
* 1 1009= 37.306	T 1012=	9.969 7 1101= 59.761 T 6.254 T 107= 41.975 T 9.977 T 1151= 69.769 T 6.260 T 1157= 41.981 T	1102= -64.737
T 1159= 33-150 T 1167= 29.133 T 1203= 44.739 T 12:4= 40.515	T 1261= - 25.217 T 1200= 59 T 1265= 36.511 T 1276= 32	8.078	-1202= 49.042 1208= 24.217 1302= 43.936
		• •	- -
<u> </u>	F- 15		No.

SYSTEMS IMPROVED NUMERICAL DIFFERENCING ANALYZER SINDA UNIVAC-1	1118 FORTRAN-V VERSION PAGE 72	
HARD TUBE INFLATABLE RADIATOR		
T 13C3= 39.805 T 13C4= 35.751 T 13C5= 37.949	T 1307= 24.521 T 13.8= 19.943 T 1401= -53.423 - T 1402= -48.969 - T 1407= 28.718 T 1408= 24.111	
1413= 13.294 T 1500= 74.860 T 1500= 15.00= 74.860 T 1500= 74.860 T	i 1501= 60.628	_1
T 2003 64.711 T 2004 59.785 T 2005 55.075 T 2006 528 T	i 2007= 46.077	
† 2103= 59.635 † 2104= 54.880 T 2105= 50.353 T 2106= 45.978 T 2105= 12.005= 32.005 T 2106= 45.978 T 2105= 57.439 T 2105= 24.909 T 2206= 32.008 T 2206= 32.00	7 2201= 52.863-	-
7 2209 20.015 16.432 1 2304 31.022 1 2306 27.325 1 2306 27.325 1 2306 27.325 1 2306 27.325 1	; 2307= 23.697	, i
T 2403= 43.197 T 2404= 39.657 T 2405= 35.121 I 2406= 21.289 I T 2409= 19.334 T 2410= 15.785 T 2411= 12.282 T 2509= 72.355 I T 2603= 57.651 T 2504= 57.622 T 2505= 48.605 T 2506= 44.310 T	T 2407= 27.535 T 2408= 22.982 T 2501= 67.284 T 2502= 62.386 T 2507= 40.117 T 2508= 35.501	
7 2509 1 3006 48 670 T 3006 48 670 T 3006 T	1 - 3001 - 72 - 503	: _}
T 3209 19.243 T 3210 15.693 T 3211 12.188 T 3300 51.408 T 7.175 T 7.175 T 7.175 T	T	
13.981 13.981 143.981 15.3410	† 3407= 28.039	·
† 4003= 64.450 † 4004= 59.488 † 4005= 54.744 † 4006= 59.163 † † 4009= 36.632 † 4010= 32.465 † 4011= 28.394 † 4100= 74.673 † 4103= 59.373 † 4104= 54.578 † 4105= 57.015 † 4106= 45.606 †	† 4507= 45.687 † 4008= 40.941 † 4101= 69.386 † 4102= 64.290 † 4107= 41.297 † 4108= 36.589 † 4202= 49.247 — —	_
10.003	† 4207= 27.835	
† 4403= 42.775 † 4404= 38.489 † 4465= 34.456 T 4466= 27.579 T 4409= 18.846 T 4410= 15.471 T 4411= 12.178 T 4500= 73.117 T	T 4407= 26.840 T 4408= 22.368 T 4501= 67.498 T 4502= 62.169 T 4507= 39.223 T 4508= 34.730 T 5001= -72.739 - T 5002= 67.488	3
1 5003= 1 5003= 1 5006= 47.688 T 5006= 47.688 T 5006= 47.688 T 5006= 47.688 T 5006= 47.688 T 5006= 47.688 T 5006= 47.688 T 5006= 47.688 T 5006= 47.688	T 5007= 43.376	1
7 3104 30.001 7 311.2 21.022		-

F-16

- 1	
SYSTEMS IMPROVED NUMERICAL DIFFERENCING ANALY HARD TUBE INFLATABLE RADIATOR	ZER SINDA UNIVAC-1198 FORTRAN-V VERSION _ PAGE 73 _ 1
T S2L3= 36.375	25= 31.306
TONPUTER TIME = 1.864 HINDTES	3= 63.080 P 4= .00000 P 5= 64.287
# *DIVIDE CHECK HAS OCCURRED* *	
ABRKPT PRINTS	
· <u></u>	F-17

APPEN DIX G

COMPUTER PROGRAM LISTING

SOFT TUBE FULL SCALE RADIATOR

TEST POINT I CONDITIONS

77

- [SINDA/SINFLO PRÉPROCESSOR	DATE 120475	PAGE	3
- - [BCD 3THERMAL LPCS BCD SOFT TUBE, INFLATABLE RADIATOR END BCD 3NODE-DATA			-
	GEN -51,13,1,70.,1. SSURFACE NODES GEN 1000,8,1,70.,.002917 STUBE NODE GEN 2000,8,1,70.,.002917 STUBE NODE GEN 3000,8,1,70.,.002917 STUBE NODE GEN 4000,8,1,70.,.002917 STUBE NODE	- -	uz.u. u	
-	GEN 5000,8,1,70.,002917 STUBE NODE GEN 1083,8,1,70.,002917 STUBE NODE GEN 2083,8,1,70.,002917 STUBE NODE GEN 4083,8,1,70.,002917 STUBE NODE		-	
Γ	GEN 5083,811.70002917 STUBE NODE GEN 999,5,1000,700029175MANIFOLD TUBE GEN 1091,5,1000,700029175MANIFOLD TUBE GEN -1.2,1,951 SFLUID NODE GEN -995,100,701 SFLUID NODE GEN -191,5,100,701. SFLUID NODE	.		
- [GEN -100,8,1,70.,1.	-		:
. [GEN -500,8,1,70.,1.			
F	GEN 3,2,1,70002917		ı	
- [GEN 1850,8,1,70.,.000488 \$FIN NODE GEN 1900,8,1,70.,.000488 \$FIN NODE GEN 1950,8,1,70.,.000488 \$FIN NODE GEN 2700,8,1,70.,.000488 \$FIN NODE GEN 2750,8,1,70.,.000488 \$FIN NODE			1
ر د ا	GEN 2800,8,1,70.,.000488 \$FIN NODE GEN 2850,8,1,70.,.000488 \$FIN NODE GEN 2900,8,1,70.,.000488 \$FIN NODE GEN 2950,8,1,70.,.000488 \$FIN NODE GEN 100,8,1,70.,.000488 \$FIN NODE			
	GEN 1150,8,1,70.,000488			-
_ -	GEN 1400,8,1,70000488			•

SINDA/SINFLO PREPROCESSOR	DATE 12047	75 PAGE	4
GEN 2100,8,1,70.,.000488 \$FIN NODE GEN 2150,8,1,70.,.000488 \$FIN NODE GEN 2200,8,1,70.,.000488 \$FIN NODE GEN 2250,8,1,70.,.000488 \$FIN NODE			
SEN 2350-8-1-70000488 SFIN NODE GEN 2400-8-1-70000488 SFIN NODE GEN 2400-8-1-70000488 SFIN NODE	-	•	•
GEN 2550,8,1,700,.000488 SFIN NODE GEN 3100,8,1,70000488 SFIN NODE GEN 3100,8,1,70000488 SFIN NODE			
3250 x8+1,70., 200488; SFIN NODE 3250 x8+1,70., 200488; SFIN NODE GEN 3350 x8+1,70., 200488; SFIN NODE	-		!
GEN 3450,8,1,70.,.000488 %FIN NODE GEN 3550,8,1,70.,.000488 %FIN NODE GEN 3500,8,1,70.,.000488 %FIN NODE	-		
GEN 4150, 8:1, 70 - DD0488 SFIN NODE - SEN 4200, 8:1, 70 - DD0488 SFIN NODE - SEN 4200, 8:1, 70 - DD0488 SFIN NODE - DD0488 SFI		7 77 7 7 30 40 40	1
GEN 4350,8,1,70.,.000488 \$FIN NODE GEN 4350,8,1,70.,.000488 \$FIN NODE GEN 4400,8,1,70.,.000488 \$FIN NODE		,	
GEN 4550,8,1,70,.000488 \$FIN NODE SEN 4550,8,1,70,.000488 \$FIN NODE GEN 5100,8,1,70,.000488 \$FIN NODE GEN 5150.8,1,70,.000488 \$FIN NODE	"		
GEN 5250,8,1,70.,.000488 \$FIN NODE GEN 5300,8,1,70.,.000488 \$FIN NODE GEN -5350,8,1,70.,.000488\$FIN NODE			
GEN 998,5,1000,70,00136 \$MANIFOLD NODE GEN 1092,5,1000,70,00136 \$MANIFOLD NODE GEN 1052,4,1,70,1110 ; \$DRUM NODE 1051,70,0028 ; \$SEND NODE GEN 9002,2,2,0,0,0,50 \$SURFACE NODE 9001,-311,10000000 \$SURFACE NODE		n= #*	ا
9001,-311.,1000000. SSURFACE NODE 9003,-311.,1000000. SSURFACE NODE			
RELATIVE NODE NUMBERS	b 334	·	
20 2002 2004 2005 2006 2007 3000 3 21 THRU 30 3004 3005 3006 3007 4000 4001 4002 4 31 THRU 40 4006 4007 5000 5001 5002 5003 5004 50	007 - 2000 001 - 3002 003 - 4004 005 - 5006	2001 3003 4005 5007	1
41 THRU 50 1083 1084 1085 1086 1087 1088 1089 11 51 THRU 50 2085 2086 2087 2088 2089 2090 3083 30 51 THRU 70 3087 3088 3089 3090 4083 4084 4085 41 71 THRU 80 4089 4090 5083 5084 5085 5086 5087	090 2083 084 3085 086 4087 088 5089	2084 3086 4088 5090	t.
81 THRU 90 999 1999 2999 3999 4999 1091 2091 3	091 4091 655 1656	5091 1657	

ŜĨNDA/SII												DA	TE 1204	7 5	PAGE	5
	111 121 131	THRE THRE THRE THRE	J 120 J 130 J 140)))	1700 1752 1804 1856	1701 1753 1805 1857	1702 1754 1806 1900 1952	1703 1755 1807 1901	1704 1756 1850 1902 1954	1705 1757 1851 1903 1955	1706 1800 1852 1904	1707 1801 1853 1905	1750 1802 1854 1906	1751 1803 1855 1907		
	.151 .161 ^ 171 \	THRI THRI THRI THRI	J 160 J' ∜~170 J\- , 180		1950 2702 2754 2806	1951 2703 2755 2807 2901	1952 2704 2756 2850 2902	1953 2705 2757 2757 2851	2706 2800 2852	2707 2801 2853	1956 2750 2802 2854	1957 2751 2803 2855	2700 2752 2804 2856	2701 2753 2805 2857		
	201 211	THRU THRU THRU THRU	J 200 J 210 J 220		2900 2952 1104 1156	2953 1105 1157	2902 2954 1106 1200 1252	- 2851 2903 2955 1107 - 1201 - 1253	2904 2956 1150 1202	2905 2957 1151 1203	2906 1100 1152 1204 1256	2907 1101 1153 1205	2950 1102 1154 1206 - 1300	2951 1103 1155 1207		N# 14
	231 241 251	THRI THRI THRI	1 1 1 261	-(1) ×	1250 1302 1354 1406	1303 1355 1407	1252 1304 1356 1450 1502	1253 1305 1357 1451 1503	1254 1306 1400 1452 1504	1203 1255 1307 1401 1453 1505	1256 1350 1402 - 14 <u>54</u> - 1506	1257 1351 1403 1455 1507	1352 1404 1456	1301 1353 1405 1457		
	261 271 261 291	THRI THRI THRI THRI	U 280 U 290 U 300	0 1 1	1500 1552 2104 2156	1501 1553 2105 2157	1554 2106 2200	1555 2107 2201	1504 1556 2150 2202 2254	1505 1557 2153 - 22255 - 2307	2100 2152 2204	1507 2101 2153 	1550 2102 2154 	1551 2103 2155 2207 2301		
M 64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	321 331,	THRI THRI THRI THRI) + \ 32() - \ 33() \ 34(2350 2354 2406	2251 2303 2355 2407	2252 2304 2356 2450 2502	2253 2305 2357 2451 2503	2306 2400 2452 	2401	2256 2350 2402 2454	2257 2351 2403 2455 - 2507	2352	2301 2353 2405 2457 - 2551		
	37Ī	THRI THRI THRI THRI	J 366 J 370 J 380)))	2500 2552 3104 3156	2501 2553 3105 3157	2554 3106 3200	2555 2555 3107 3201 3253	2556 3150 3202 - 3254	2453 2505 2557 3151 3203	2506 3100 3152 3204 3256	3101 3153 3205	24502 3154 3154 3206	3103 3155 3207		
	401 · 411	THRI THRI THRI THRI	420) -**	3250 3302 3354 3406	3251 3303 3355 3407	3252 3304 3356 3450	3305 3357 3451	3306 3400 3452	3255 3307 3401 3453	3350 3402 3454	3257 3351 3403 3455	3300 3352 3404 3456	3301 3353 3405 3457	ş	
	451	THRU THRU THRU THRU	; 440 ; 450 ; 460)))	3500 3552 4104 4156	3501 3553 4105 4157	3502 3554 4106 4200	3503 3555 4107 4201	3504 3556 4150 4202	3505 3557 4151 4203 4255	3506 4100 4152 4204	3507 4101 4153 4205	3550 4102 4154 4206	3551 4103 4155 4207		<u></u>
· · · · · · · · · · · · · · · · · · ·	471 \ 481 491	THRU THRU THRU THRU	が、全480 1、2年9日 1、2年9日		4250 4302 4354 , 4406	4251 4303 4355 4407	4252 4304 4356 4450	4253 4305 4357 4451	4254 4306 4400 4452	4307 4401 4453	4256 4350 4402 4454	4257 4351 4403 - 4455	4300 4352 4404 4456	4301 4353 4405 4457		
	521 531	THRI THRI THRI THRI	520 530 540		4500 4552 5104 5156	4501 4553 5105 5157	4502 4554 5106 5200	4503 ~ 4555 5107 5201	4504 4556 5150 5202	4505 4557 5151 5203	4506 5100 5152 5204	4507 5101 5153 5205	4550 5102 5154 5206	4551 5103 5155 5207		
	561	THRI THRI THRI THRI THRI	560 570 570) :	5250 5302 4998 1051	5251 5303 1092 9002 57	5252 5304 2092 9004 58	5253 5305 3092 9001	5254 5306 4092 9003	- 5255 5255 5257 5051 - 61	5256 998 1052 52	5257 1998 1053	5300 2998 1054 54	5301 3998 1055 55		
	591 601 611	THRU THRU THRU THRU) 600 J 610 J 620		100 202 304	199 101 203	299 102 204 306	59 399 103 205 307	499 104 206	191 105 207	62 291 106 300	391 107 301	491 200 302	591 201 303		
	631 7	THRU THRU THRU THRU) 640) 650) 660] ']] '	406 183 285 387	305 407 184 286 388	500 185 287 389	501 186 288 390-	400 502 187 289 483	401 503 188 290 484	402 504 189 383 485	403 505 190 384 486	404 506 283 385 487	405 507 284 386 488	,	,

-	SINDA/SINFLO PREPROCESSOR	DATE 120475	PAGE 6
1	671 THRU 680 489 490 583 584 585 586 587 681 THRU 688 5350 5351 5352 5353 5354 5355 5356 NODE ANALYSIS DIFFUSION = 575, ARITHMETIC = 0, BOUNDARY = 113, TOTAL =	588 589 5357 688	590
•	8CD 3CONDUCTOR DATA GEN 350,7,1,1651,1,3,912E-55AXIAL COND GEN 400,7,1,1700,1,1701,1,3,912E-55AXIAL COND GEN 450,7,1,1750,1,1751,1,3,912E-55AXIAL COND		-
Ĺ	GEN 500,71,1800,1,1801,1,3.912E-5\$AXIAL COND GEN 550,7,1,1856,1,1851,1,1.258E-5\$AXIAL COND GEN 600,7,1,1900,1,1901,1,1.258E-5\$AXIAL COND GEN 650,7,1,1950,1,1951,1,1,258E-5\$AXIAL COND		, -
ر	GEN 700,7,1,2700,1,2701,1,1,258E-5\$AXIAL COND GEN 750,7,1,2750,1,2751,1,1,258E-5\$AXIAL COND GEN 800,7,1,2800,1,2801,1,1,1,258E-5\$AXIAL COND GEN 850,7,1,2850,1,2851,1,1,1,258E-5\$AXIAL COND		!
Ç	GEN 900,7,1,2900,1,2901,1,1.258E-55AXIAL COND GEN 950,7,1,2950,1,2951,1,1.258E-55AXIAL COND GEN 1100,7,1,1100,1,1101,1,1.258E-5 \$AXIAL COND GEN 1150,7-1,1150,1.1151,1.1.258E-5 \$AXIAL COND		· · · · · ·
	GEN 1200,7,1,1201,1,1,1,258E-5 \$AXIAL COND GEN 1250,7,1,1251,1,1,258E-5 \$AXIAL COND GEN 1300,7,1,1300,1,1301,1,1,258E-5 \$AXIAL COND GEN 1350,7,1,1350,1,1351,1,1,258E-5 \$AXIAL COND		, and the state of
(GEN 1400,7,1,1400,1,1401,1,1.25BE-5 \$AXIAL COND GEN 1450,7,1,1450,1,1451,1,1.25BE-5 \$AXIAL COND GEN 1500,7,1,1500,1,1501,1,1.25BE-5 \$AXIAL COND GEN 1550,7,1,1550,1,1551,1,1,25BE-5 \$AXIAL COND	- -	1
,	GEN 2150,7,1,2150,1,2151,1,1.258E-5 \$AXIAL COND GEN 2200,7,1,2200,1,1,1.258E-5 \$AXIAL COND GEN 2200,7,1,2200,1,1,1.258E-5 \$AXIAL COND GEN 2250,7,1,2250,1.1.1.258E-5 \$AXIAL COND		
, , ,	GEN 2300,7,1,2300,1,2301,1,1.258E-5 \$AXIAL COND GEN 2350,7,1,2350,1,2351,1,1.258E-5 \$AXIAL COND GEN 2400,7,1,2450,1,2451,1,1.258E-5 \$AXIAL COND GEN 2450,7,1,2450,1,2451,1,1,258E-5 \$AXIAL COND GEN 2500,7,1,2450,1,1,1,258E-5 \$AXIAL COND GEN 2500,7,1,2501,1,1,1,258E-5 \$AXIAL COND		
* _	1 /	- 4	
A GOLD	GEN 3150,71,3150,11,1258E-5 \$AXIAL COND GEN 3200,7,1,3200,1,3201,1,1.258E-5 \$AXIAL COND GEN 3250,7,1,3250,1,3251,1,1.258E-5 \$AXIAL COND GEN 3350,7,1,3350,1,3351,1,1.258E-5 \$AXIAL COND GEN 3350,7,1,3350,1,3351,1,1.258E-5 \$AXIAL COND GEN 3350,7,1,3350,1,3351,1,1.258E-5 \$AXIAL COND		_
2 4400.5	GEN 3450,7,1,3450,1,3451,1,1,258E-5 \$AXIAL COND GEN 3500,7,1,3500,1,3501,1,1,258E-5 \$AXIAL COND GEN 3500,7,1,3550,1,1,1,258E-5 \$AXIAL COND		1
7	GEN 4100,7,1,4100,1,4101,1,1.258E-5 \$AXTAL COND GEN 4150,7,1,4150,1,4151,1,1.258E-5 \$AXTAL COND GEN 4200,7,1,4200,1,4201,1,1.258E-5 \$AXTAL COND GEN 4250,7,1,4250,1,4251,1,1.258E-5 \$AXTAL COND GEN 4300,7,1,4250,1,4301,1,1.258E-5 \$AXTAL COND		
, -	GEN 4350,7,1,4350,1,4351,1,1.258E-5 \$AXIAL COND GEN 4400,7,1,4401,1,1.258E-5 \$AXIAL COND GEN 4450,7,1,4450,1,4451,1,1.258E-5 \$AXIAL COND GEN 4500,7,1,4500,1,4501,1,1.258E-5 \$AXIAL COND		
~	G-4		

SINDA/SINFLO PREPROCESSOR GEN 4550,7,1,4550,1,4551,1,1.258E-5 SAXIAL COND GEN 5100,7,1,5100,1,5101,1,1.258E-5 SAXIAL COND GEN 5150,7,1,5100,1,5101,1,1.258E-5 SAXIAL COND GEN 5250,7,1,52500,1,5251,1,1.258E-5 SAXIAL COND GEN 5250,7,1,5250,1,5251,1,1.258E-5 SAXIAL COND GEN 5300,7,1,5250,1,5251,1,1.258E-5 SAXIAL COND GEN 1000,7,1,5300,1,5301,1,1.258E-5 SAXIAL COND GEN 1000,7,1,1000,1,1001,1,1.258E-6 SAXIAL COND	DATE 120475	PAGE	7
GEN 5100,7,1,5100,1,5101,1,1,258E-5 \$AXIAL COND GEN 5150,7,1,5150,1,5151,1,1,258E-5 \$AXIAL COND GEN 5250,7,1,5250,1,5251,1,1,258E-5 \$AXIAL COND GEN 5250,7,1,5250,1,5251,1,1,258E-5 \$AXIAL COND GEN 5250,7,1,5250,1,5251,1,1,258E-5 \$AXIAL COND			
FN 1000.7.1.1000.1.1901.1.1.078E≃6 SAXIAL CONU			
GEN 2000,7;1,2000;1,2001;1,1,1,078E-6 \$AXTAL COND GEN 3000,7;1,3000,1,3001,1,1,078E-6 \$AXTAL COND GEN 4000,7;1,4000;1,4001;1,1,078E-6 \$AXTAL COND GEN 5000,7;1,5000;1;5001;1,1,078E-6 \$AXTAL COND GEN 1050,7;1,1083;1,1084;1;1,078E-6 \$AXTAL COND	-		
GEN 2058.7.1.2083.1.2084.1.1.078E-6 SAXIAL COND GEN 3050.7.1.3083.1.3084.1.1.078E-6 SAXIAL COND GEN 4050.7.1.4083.1.4084.1.1.078E-6 SAXIAL COND GEN 5050.7.1.5083.1.5084.1.1.078E-6 SAXIAL COND GEN 1007.5.1000.1007.1008.1083.1000.1.078E-6 SAXIAL COND		-	}
GEN 1099,5,1000,1083,1000,1051,0,.003 SEND COND SORUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND STRUM COND			·
GEN 375,8,1,1650,1,170d,1,02246		,	
GEN 625,8,1,1900,1,1950,1,633			
GEN 925,8,1,2900,1,2950,1,633	-	-	
GEN 1375,8,1;1350:1;1400-1;.633		•	
GEN 2225,8,1,2250,1,2350,1,633			1
GEN 2475,8,1,2450,1,2500,1,.633			

G-5

	T	-								
	SINDA/SINFLO PREPROCESSOR					DATE	120475	PAGI	. 8	
- - -	GEN 3475,8,1,3450,1,3500,1,633 SFIN GEN 3525,8,1,3500,1,633 SFIN GEN 4125,8,1,4150,1,633 SFIN GEN 4175,8,1,4150,1,4250,1,633 SFIN GEN 4275,8,1,4250,1,4250,1,633 SFIN GEN 4275,8,1,4250,1,4350,1,633 SFIN	COND COND COND COND COND								
,- <u> </u>	GEN 4375,8,1,4350,1,4400,1,633	COND COND COND COND COND COND		- -		-		<u>.</u> .		
-[GEN 5275;841,5250;1;5300;1;633 SFIN GEN 975;8;1;2950;1;5300;1;633 SFIN GEN 975;8;1;2950;1;090;-1;0:396 STUE GEN 1325;8;1;1300;1;1000;1;0:396 STUE GEN 1025;8;1;1350;1;1000;1;0:396 STUE GEN 1025;8;1;1350;1;1000;1;0:396 STUE	COND COND BE COND BE COND BE COND BE COND BE COND					-			_
	GEN 2025,8,1,2100,1,2000,1,0,395 \$ U GEN 2325,8,1,2300,1,2000,-1,0,396 \$ U GEN 2075,8,1,2350,1,2090,-1,0,396 \$ U GEN 2575,8,1,2550,1,3090,-1,0,396 \$ U GEN 3075,8,1,3100,1,3090,-1,0,396 \$ U GEN 3075,8,1,3300,1,3000,1,0,396 \$ U	BE COND BE COND BE COND BE COND BE COND BE COND BE COND			-					
ر [GEN 4025,8,1,350,1,4000,1,0,370 \$100 GEN 4025,8,1,4100,1,4000,10,376 \$100 GEN 4325,8,1,4300,1,4090,-1,0,396 \$100 GEN 4075,8,1,4350,1,4090,-1,0,396 \$100 GEN 4575,8,1,4550,1,5090,-1,0,396 \$100 GEN 5075,8,1,5100,1,5090,-1,0,396 \$100	BE COND BE COND BE COND BE COND BE COND							* *	
,-[GEN 799,5,1000,799,1000,1092,1000,300 \$MAN GEN 1399,5,1000,1091,1000,1092,1000,300 \$MAN GEN 899,5,1000,3,099,1000,9,6-6 \$MAN GEN 1299,5,1000,4,0,1091,1000,9,6-6 \$MAN GEN 999,5,1000,40,1091,1000,1000,1.078E-6 \$MAN GEN 1199,5,1000,1001,1000,1000,1.078E-6 \$MAN	BE COND IFOLD COND IFOLD COND IFOLD COND IFOLD COND NIFOLD COND	-	٠				-	-	
`	RELATIVE CONDUCTOR NUMBERS	ACTU	AL CONDUC	TOR NUMBER	'S					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11 THRU 20 403 404 4 21 THRU 40 456 500 5 31 THRU 40 552 553 5 41 THRU 50 605 606 6 51 THRU 70 701 702 7 61 THRU 70 754 755 7 71 THRU 80 850 851 8 81 THRU 90 903 904 9 91 THRU 100 956 1100 11	54 1155 50 1251	354 5536 55555 6552 78054 8554 11056 11056 11056 11056 11056	1200 1 1253 1	601 654 750 803 856 1105 1201 1254	4456251 4500551 4500551 45500551	40503625140362 560525140362 7800562 112055	4025 4551 4551 7003 7055 80955 112305 11335		
<u>_</u>	G-6									

SINDA/SINFLO PREPROCESSOR	DATE 120475	PAGE 9
131 THRU 140 1354 1355 1356 1400 1401 1402 1403 1404 141 THRU 150 1450 1451 1452 1453 1454 1455 1456 1500 1551 1552 155 1550 1551 1552 1555 161 THRU 170 1556 2100 2101 2102 2103 2104 2105 2104 171 THRU 180 2152 2153 2154 2155 2156 2200 2201 2203	1 1501 1502 3 1554 1555 5 2150 2151	
181 THRU 190 2205 2206 2250 2251 2252 2253 2254 225 191 THRU 200 2301 2302 2303 2304 2305 2306 2350 2350 201 THRU 210 2354 2355 2356 2400 2401 2402 2403 2401	5 2256 2300 1 2352 2353 1 2405 2406	-
221 THRU 230 2503 2504 2505 2506 2550 2551 2552 255 231 THRU 240 2556 3100 3101 3102 3103 3104 3105 3100 241 THRU 250 3152 3153 3154 3155 3156 3200 3201 3200	3 2554 2555 3 3150 3151	
251 HRV 2607 3205 3206 3250 3251 3252 3253 3254 3252 3253 3254 3252 3253 3254 3252 3253 3254 3252 3253 3254 3255 3301 3302 3303 3304 3305 3306 3350 3350 3350 3350 3350 3350	1 3352 3353 4 3405 3406 3 3501 3502	
301 THRU 310 3556 4100 4101 4102 4103 4104 4105 410 311 THRU 320 4152 4153 4154 4155 4156 4200 4201 4201 321 THRU 330 4205 4206 4250 4251 4252 4253 4254 4251	4 150 4151 4 203 4204 5 4256 4300	
331 THRU 340 4301 4302 4303 4304 4305 4306 4350 435 4354 4355 4356 4400 4401 4402 4403 440 4450 4451 4452 4453 4454 4455 4456 4503 4504 4505 4506 4550 371 THRU 380 4556 5100 5101 5102 5103 5104 5105 5106	4 4405 4406 3 4501 4502 3 4554 4555	;
381 THRU 390 5152 5153 5154 5155 5156 5200 5201 520 391 THRU 400 5205 5206 5250 5251 5252 5253 5254 525 401 THRU 410 5301 5302 5303 5304 5305 5306 1000 100 301 THRU 410 1004 1005 1006 2000 2001 2002 2003 200	2 5203 5204 5 5256 5300 1 1002 1003 4 2005 2006	
- 421 THRU 430 3000 3001 3002 3003 3004 3005 3006 4000 431 THRU 440 4003 4004 4005 4006 5000 5001 5002 500. 431 THRU 450 5006 1050 1051 1052 1053 1054 1055 1055 451 THRU 450 2052 2053 2054 2055 2056 3050 3051 305 461 THRU 470 3055 3056 4050 4051 4052 4053 4054 4059	4001 4002 5004 5005 5 - 2050 - 2051 2 - 3053 - 3054	<u> </u>
471 THRU 480 \$051 5052 5053 5054 5055 5056 1007 200 481 THRU 490 5007 1049 2049 3049 4049 5049 1099 209 491 THRU 5005 5099 52 53 54 51 55 325 326 501 THRU 510: 329 330 331 332 375 376 377 37	7 3007 4007 9 3099 4099 6 327 328	7
381 382 425 426 427 428 429 431 521 THRU 530 475 476 477 478 479 480 481 48 521 THRU 540 527 528 529 530 531 532 575 575 575 541 THRU 550 579 580 581 582 625 626 627 62	525 526 577 578 6 629 630	
551 THRU 560 631 632 675 676 677 678 679 68 561 THRU 570 725 726 727 728 729 730 731 73 571 THRU 580 777 778 779 780 781 782 825 82 581 THRU 590 829 830 831 832 875 876 877 87 591 THRU 600 881 882 925 926 927 928 929 93	2 775 776 6 827 828 8 879 880	
\$\begin{array}{c ccccccccccccccccccccccccccccccccccc	2	:
641 THRU 650 1425 1426 1427 1428 1429 1430 1431 143 651 THRU 660 1477 1478 1479 1480 1481 1482 1525 1526 661 THRU 670 1529 1530 1531 1532 2125 2126 2127 2126 671 THRU 680 2131 2132 2175 2176 2177 2178 2179 218	2 1475 1476 5 1527 1528 8 2129 2130 2181 2182	
681 THRU 690 - 2225 2226 - 2227 2228 - 2229 2230 2231 2237 2277 - 2278 - 2279 2280 - 2281 2282 2375 2376 - 7		

SINDA/SINFLO PREPRO	OCESSOR	1			Į	DATE 120475	PAGE	10
701 THRU 711 THRU 711 THRU 711 THRU 721 THRU 731 THRU 751 THRU 751 THRU 761 THRU 771 THRU 791 THRU 801 THRU 801 THRU	710 2379 720 2431 730 2525 740 3127 750 3179 760 3231 770 3375 780 3427 790 3479 800 3531 810 4175 820 4227	2380 2381 2432 2472 2526 2527 3128 3129 3180 3181 3232 3275 3376 3377 3428 3429 3480 3481 3532 4127 4176 4177 4228 4229	24257 2476 24776 24729 31312 31277 33277 33378 3430 34527 4178 4178 4178	2475120351707073517070735170707075170751	9 245768 245768 2251228826 33228826 35238768 35238 352	24291 24291 24125 311777 32281 32477 32477 34529 41227 42277	82 278 30 826 73 30 73 30 278	-
821" THRU 831 THRU 851 THRU 861 THRU 871 THRU 881 THRU 881 THRU 881 THRU	# 4830 # 4279 # 4850 # 4477 8850 # 4577 880 870 890 52757 900	4280 4281 4382 4425 4476 4477 4528 4529 5130 5131 5182 5225 5276 5277 978 979	4282 4375 4428 4427 4478 4479 4530 4531 5132 5175 5277 5277 980 981	4376 4428 4482 44832 51276 5228	7 4378 9 4482 1 5126 7 51780 9 5282	4379 4431 4431 4525 4527 5127 5179 5231 5231 5231 1077	80 32 26 28 83 37 78	
901 THRU 911 THRU 921 THRU 931 THRU	910 1930 1575 1575 1575 1575	1080 1081 / 1332 1025 1576 1577 2028 2029	1082 1325 1026 1027 1578 1579 2030 2031	1326 132 1028 102 1580 158 2032 232	9 1030 1 1582	1329 13 1031 10 2025 20 2327 23	32 26	
941 THRU 951 THRU 961 THRU 971 THRU	950 2329 960 2081 970 3075 980 3327	2330 2331 2082 2575 3076 3077 3328 3329	2332 2075 2576 2577 3078 3079 3330 3331	2076 207 2578 257 3080 308 3332 302	7 2078 9 2580 1 3082	2079 20 2581 25	80 82 26	
981 THRU 991 THRU 1001 THRU 1011 THRU	990 1800 1800 1810 1910 4325 4077	3030 3031 3582 4025 4326 4327 4078 4079	3032 3575 4026 4027 4328 4329 4080 4081	3576 355 4028 402 4330 433 4082 455	7 3578 9 4030 1 4332	3579 35 4031 40 4075 40 4577 45	80 32 76	_
1021 THRU 1031 THRU 1041 THRU 1051 THRU	1030 4579 1040 5081 1050 5025 1660 2799	4580 4581 5082 5325 5026 5027 3799 4799	4582 5075 5326 5327 5028 5029 1399 2399	5076 501 5328 532 5030 503 3399 439	7 5078 9 5330 1 5032	5079 50 5331 53 799 17 899 18	8D 32 99	* =
1061 THRU 1071 THRU CONDUCTOR AI	1010 k 5844	3899 4899 3999 4999	1299 2299 1199 2199 G, TOTAL =	3299 429 3199 419	9 5299	999 ⁻ 19	99	
BCD 3FLOW DI BCD 3FLOW DI BCD 3FLOW DI TOL = 01 192,33 = 1 2,23 = 1 44,23 = 1 5,1,2 = 1 7,3 + 4 = 2	ATA ATA 4 2E10, CP=A4, R0=A5, MU=A6, 4 2E10, CP=A4, R0=A5, MU=A6, 4 2E10, CP=A4, R0=A5, MU=A6, 4 2E10, CP=A4, R0=A5, MU=A6, 4 99, 1999, 107, 1007, (183, 10) 199, 1999, 107, 2007), (283, 10) 299, 2999, 307, 3007), (383, 10) 299, 2999, 407, 4007), (483, 499, 499, 507, 5007), (583, 499, 507, 5007), (583, 499, 507, 5007), (583, 47, 600) 44, 600	<u>=0.,ENO</u> 83,191,1091),ENO 2083,291,2091),ENO 3083,391,3091),ENO 4083,491,4091),ENO				-	-	-
BC0 3FLUID 2:131E- (199,20 (499,50	LUMP DAYA 5.01636,3.125,.0511,0., 7],(283,291),(299,307),(7),(583,591),END 5,.03658,.50,.01829,0.,0),(183,191) ,(483,491)					

G - 8

· [
sı	NDA/SINFLO PREPROCESSOR -	DATE 120475	PAGE 11	
<u> </u>	END BCD 3FLOW SOURCE DATA 1,A1,END			
	END BCD 3END FLOW DATA BCD 3CONSTANTS DATA TIMEND, 5 \$			
<u> </u>	DTIMET: 005 % NLOOP: 100 \$ ORLXCA: 01 \$ ARLXCA: 01 \$,
C -,,	OUTPUT, 05 s 1,10		<u> </u>	
ا	BCD 3ARRÂY DÂTA 1 \$ FLOWRATE VS TIME 0.196.0,20.,96.0,END			'
U ~`. ^`	4 \$ CP COOLANGL 15 -150343,-100363,-50.,.385,0.,.405,50.,.424,100.,.444 150465,200483,END 5 \$ RHO COOLANGL 15	·		
(_	-150°,63°,4°,-100°,62°,3,-50°,60°,2,0°,58°,3,50°,56°,5,100°,254°,7		v = u -	
	150.2.4.200.1.9.END 7			
	10,*A11,*A12,*A13,*A14,*A15,*A28,END 11,13,*151,140.7,1,*152,73.2,1,*153,71.14,1,*T54,T1.04,1 *T55,0.638,5,*T56,1.438,16,*T57,1.438,16,*T58,2.996,2 *T59,2.996,2,*T60,11.446,126,*T61,11.446,126,*T62,11.446,126 *T63,12.417,127,END	, ,		!
-	12,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	- -		
<u></u>	**763,**754,.0016,**763,**763,.006,**763,**752,.057,**763,**751,.869 **762,**761,0.,**762,**760,0.,**762,**759,0.,**762,**758,0.0 **762,**757,0.,**762,**75602,**762,**755.0.,**762,**7540016	-	- **	
	*T62,*T53,.002,*T62,*T52,.057,*T62,*T51,.890,*T61,*T60.0. *T61,*T59,0.,*T61,*T58,0.,*T61,*T57,0.,*T61,*T56,.02,*T61,*T55,0. *T61,*T54,.0035,*T61,*T53,.001,*T61,*T52,.088,*T61,*T51,.848 *T60,*T59,0.,*T60,*T58,0.,*T60,*T57,0.,*T60,*T56,.02,*T60,*T55,.03 *T60,*T54,.010,*T60,*T53,0.,*T60,*T52,.3275,*T60,*T51,.49		•	
<u> </u>	*159;*158;U*;*159;*159;*159;*159;*156;U*;*159;*155;U*;*155;U*;*159;*154;U* *T59;*T53;U*;*T59;*T59;*T59;*T59;*T51;*59;*T51;*57;U*;*T58;*T56;*D2 *T58;*T58;*T58;*T50;**U*;**T50;**T53;	•		
	*157,*156,0.,*157,*155,0.,*157,*154,0.,4157,*153,0.5,*157,*152,.2 *157,*151,.75,*156,*155,.01,*156,*154,.05,*156,*153,0.,*156,*152,.2 *156,*151,.6,*155,*154,.5,*155,*153,0.,*155,.*152,0.,*155,.*151,.5 *154,*153,.05,*154,*152,.05,*154,.*151,.7,*153,*152,.2 *153,*15170.*152.*15170.END			
	*153; *151; ·70; *152; *151; ·70; END			_

G-9

SINDA/SINFLO PREPROCESS	OR				DATE	120475	PAGE	12
16,*T9002,73 17,*T9003,11		. =			-			
18.*T9004.11	.D4.END		-					
#143304#17(2	• ENU	198 . 1275 . *T3998 127						
20,*T17000 *T17040898	8983.*T170108963.* 3.*T170508983.*T17	*T170208983.*T1703. *0608983.*T170708	.08983					
	.5 • T [18]]	\U2**U8983*#T18D3**U8	987				-	
21, 471650, 0	8983, *T1651, 08983, *	06,.08983,*T1807,.08 T1652,.08983,*T1653,	08983					
	.5.*1175108983.*117	56, 08983, *T1657, 08 52, 08983, *I1753, 08	983					
**************************************	3,*11755,.08983,*T17 4979,*T1055,1.4979,E	(56**(18983**T1757**N8	983,END		-		-	
234¥11852*1*	49794×T1053.1.4979.E	ี พถ						
#12/UU••U988	•*!2/U1••0908•*T2750	<u>9500908.*T195109</u> 10908.*T27510908	u <u>s</u>	- -			·	
*12800,.0908 *T29000908	.*128010908.*12850 .*T29010908.*12950],.U908,*T2851,.U908						
	.**!11089U9U8.**T1100	1	سد يب ند سند	_		-		- Nam
*, 4 ***********************	*T1451,.0908,*T1150 *T1201,.0908,*T1250]••U908•#T1251••O908						
*113U0, 0908 *113500908	*T1301.10908,*T1000 *T1351.0908.*T1400],						
#!15UU+#U9U8	<pre>,*T1501,.0908,*T1550 ,*T2001,.0908,*T2100</pre>	1		- -	~ -	-		
!Z13U;&UYU8	•!Z151••U9U8•*T2200	11908.************************************					•	
*122500908 *12090,.0908	*12089 10908 *12360 *12089 10908 *12350	0.0908.*T2301.0908		-				
**************************************	,*12089,:0908,*72350 ,*12401,,0908,*72450 ,*12501,.0908,*T2550	1, 0908, +12451, 0908						
<u>*13090.0908</u>	*T30890908.*T3100 *T3151.0908.*T3200	1. 0208. *I3101. 0208		_	_			
#1325U••U9U8	• * 3251•• 0 908• * 3308	10908.*T33010908						
*13000 •• 0908	,*T3001,.0908,*T3350 ,*T34010908.*T3450	1D908.#T33511.D908						
~ ₹₹\$500 9±0908	•*13501••0908•*T3550	10908.*T35510908		•	•	-		
#xT415ft.≥_ftQftR	*T4001,.0908,*T4100 *T4151,.0908,*T4200	άδος Τος ΤΑ΄ απόπ ΄						
~!4U7U9.U7U8	. <u>*14251</u> .0908. <u>*143</u> 00 .*14089.0908.*14350	1			=			
* 1 4 4 U U • • U 9 U 8	**T4401,.0908,*T4450 **T4501,.0908,*T4550)D908.*T4451D908						
15090.0908	.[50890908.*[5100	0908.*[51010908						
* *1515U;*U9U8	**150890908.**T5100 **151510908.**T5200 **152510908.**T5200	1,.0908,*T5201,.0908 10908.*T53010908						
		9520900,*[195309	70					
# [1 HU / a a H 9 H 8	**!!!!!!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		36					
*T2802,.0908	.*T2703,.0908,*T2752 ,*T2803,.0908,*T2852 ,*T2903.0908,*T2952	2,.0908,*12753,.0908 2,.0908.*T28530908						
*T2902,.0908 *T10880908	*12903 . 0908 * 72952 *11087 . 0908 * 11102	0908 *72953, 0908						
# + 1152 • • 090B	*T11530908.*T1202	!0908.#T12070908						
11352,.0908	.!12530908.*!1302 .*T13530908.*T1402	2,.0908,*!1303,.0908 20908.*T14030908						
*T1452,.09Jo	.*T1453,.0908,*T1502	2,.0908,*T1503,.0908						
		G- 10						

SINDA/SINFLO PREPROCESSOR	DATE 120475	PAGE 13
*T2002,.0908,*T2003,.0908,*T2102,.0908,*T2103,.0908		
*T2152,.0908,*T2153,.0908,*T2202,.0908,*T2203,.0908		
*T2252,.0908,*T2253,.0908,*T2302,.0908,*T2303,.0908		
*T2088,.0908,*T2087,.0908,*T2352,.0908,*T2353,.0908 *T2402,.0908,*T2403,.0908,*T2452,.0908,*T2453,.0908		_
*12402,.0908.*12403,.0908.*T2452,.0908.*T2453,.0908 *T2502;.0908.*T25030908.*T2552,.0908.*T25530908		
**13084, 40708, *13087, 10708, *13102, 10708, *13103, 10908		
* * * * * * * * * * * * * * * * * * * *		
*T3152,.0908,*T3153,.0908,*T3202,.0908,*T3203,.0908 *T3252,.0908,*T3253,.0908,*T3302,.0908,*T3303,.0908	• •	
*T3002,.0908,*T3003,.0908,*T3352,.0908,*T3353,.0908		
*T3402, •0908, *T3403, •0908, *T3452, •0908, *T3453, •0908		
*T3502,.0906,*T3503,.0908,*T3552,.0908,*T3553,.0908 ***********************************		
* * 14 1 5 2 ; 10 9 0 8 ; * 14 1 5 3 ; 10 9 0 8 ; * 14 20 2 ; 10 9 0 8 ; * 14 20 3 ; 10 9 0 8		
* <u>14252(*Q908;*t4253;*0908;*t4302;*0908;</u> *t43 <u>03;*</u> 0908		
**T4088,*0908,*T4087;.0908,*T4352;.0908,*T4353;.0908		
*14402,0908,*14403,0908,*14452,0908,*14453,0908		
*T4502,.0908,*T4503,.0908,*T4552,.0908,*T4553,.0908 *T5088,.0908,*T5087,.0908,*T5102,.0908,*T51030908		
*T5152,.0908,*T5153,.0908,*T5202,.0908,*T5203,.0908		
*15252,.0908,*15253,.0908,*15302,.0908,*15303,.0908		
*T5002G908.*T5003O908.END		
` 26}*TI\$QUETE PER CONTROL TO CON		
*T1004, \0908, \T1005 \0908, \T1554, \0908, \T1555, \0908 *12704, \0908, \T2705, \0908, \T2754, \0908, \T2755, \0908		
*12804; .0908; *12805; .0908; .12854; .0908; .12855, .0908		ı
*T2904,.0908,*T2905,.0908,*T2954,.0908,*T2955,.0908		
*T1086,.0908,*T1085,.0908,*T1104,.0908,*T1105,.0908		
:1154,,0908,:1155,.0908,*T1204,.0908,*T1205,.0908		
` *T1254, 60908, *T1255, 60908, *T1304, 60908, *T1305, 60908 *T1354, 60908, *T1355, 60908, *T1404, 60908, *T1405, 60908		
1454,*0908,14555,*0908,**11504,**0908,**11505,*0908		
*12004; 5908; *12005; 6908; *12104; 5908; *12104; 6908		- '
*T21540908.*T21550908.*T22040908.*T22050908		
*12254**0908**12255**0908**T2304**0908**T2305**0908		
*T2086, 0908, *T2085, 0908, *T2354, 0908, *T2355, 0908		
*12404,.0908,*12405,.0908,*12454,.0908,*12455,.0908 **12504,.0908,*12505,.0908,*12554,.0908,*12555,.0908		
- *13086, 0908, *13085, 0908, *13104, 0908, *13105, 0908		
**************************************	_	
*13254b9U8.*13255b9U8.*13304U9U8.*F3305b9U8		
*T3004; 0908; *T3005; 0908; *T3354; 0908; *T3355; 0908		
*T3404,.0908,*T3405,.0908,*T3454,.0908,*T3455,.0908 *T3504,.0908,*T3505,.0908,*T3554,.0908,*T3555,.0908		
* 4004; 0906; * 4005; 0908; * 4104; 0968; * 14105; 0908		
*†4154, 0908, *†4155, 0908, *†4204, 0908, *†4205, 0908		
*T4254; •D9D8; *T4255; •D9D8; *T43B4; •D9D8; *T43D5; •D9D8		
*T4086; 0908; *T4085; 0908; *T4354; 0908; *T4355; 0908	_	
*14404, 0908, *14405, 0908, *14454, 0908, *14455, 0908		
*T4504,.0908,*T4505,.0908,*T4554,.0908,*T4555,.0908 *T5086,.0908,*T5085,.0908,*T5104,.0908,*T5105,.0908		
*T5154, .0908, *T5155, .0908, *T5204, .0908, *T5205, .0908		
*15254,.U9D8,*15255,.09U8,*15304,.U9U8,*T5305U9U8		
*T5004,.0908,*T5005,.0908.END		
27,*T1906,.0908,*T1907,.0908,*T1956,.0908,*T1957,.0908 *T1006,.0908,*T1007,.0908,*T1556,.0908,*T1557,.0908		

T	
SINDA/SINFLO PREPROCESSOR	DATE 120475 PAGE 14
*T2806,.0908,*T2807,.0908,*T2856,.0908,*T2857,.0908 *T2906,.0908,*T2907,.0908,*T2956,.0908,*T2957,.0908 *T1084,.0908,*T1083,.0908,*T1106,.0908,*T1107,.0908 *T1156,.0908,*T1157,.0908,*T1206,.0908,*T1207,.0908 *T1256,.0908,*T1257,.0908,*T1306,.0908,*T13070908	
*T1356,.0908,*T13570908,*T1405,.0908,*T1407,.0908 *T1456,.0908,*T1457,.0908,*T1506,.0908,*T1507,.0908 *T1206,.0908,*T2007,.0908,*T2106,.0908,*T2107,.0908 *T2156,.0908,*T2157,.0908,*T2206,.0908,*T2207,.0908 *T2256,.0908,*T2257,.0908,*T2306,.0908,*T2307,.0908	
*T2084,.0908,*T2083,.0908,*T2356,.0908,*T2357,.0908 *T2406,.0908,*T2407,.0908,*T2456,.0908,*T2457,.0908 *T2506,.0908,*T2507,.0908,*T2556,.0908,*T2557,.0908 *T3084,.0908,*T3083,.0908,*T3106,.0908,*T3107,.0908 *T3156,.0908,*T31570908,*T3106,.0908,*T32070908	
13256.0908.13257.0908.**13307.0908.**13307.0908 **13006.0908.**13007.0908.**13456.0908.**13457.0908 **13406.0908.**13407.0908.**13456.0908.**13457.0908 **13506.0908.**13507.0908.**13556.0908.**13557.0908 **14006.0908.**14007.0908.**14106.0908.**14107.0908	
*14156.*0908.*T4157.*0908.*T4206.*0908.*T4207.*0908 *14256.*0908.*T4257.*0908.*T4307.*0908 *14084.*0908.*T4407.*0908.*T4356.*0908.*T4357.*0908 *T4406.*0908.*T4407.*0908.*T4456.*0908.*T4457.*0908 *14506.*0908.*T4507.*0908.*T4556.*0908.*T4557.*0908	<u></u>
*T5084,.0908,*T5083,.0908,*T5106,.0908,*T5107,.0908 *T5156,.0908,*T5157,.0908,*T5207,.0908,*T5207,.0908 *T5256,.0908,*T5257,.0908,*T5306,.0908,*T5307,.0908 *T5006,.0908,*T5007,.0908,*T1051,.9710,END 28,SPACE,91,END END ARRAY ANALYSIS NUMBER OF ARRAYS = 25 IQTAL LENGTH = 1594	
TUBE NUMBER LIST 2 3 4 5 6	7
PRESSURE NODE-LIST 3 4 BCD 3EXECUTION 2 3 PRESSURE NODE-LIST 2 3 PRE	4)
NDIM=10000 NTH=0 RESET CRVINI(A4,A8) CRVINI(A4,A8) TOPLIN GENOUT(A8+1,1,A8,3HDA8)	F
TTEST=0 CSGOMP ITEST=1 CNBACK	F F
BCD 3VARIABLES 1 IF(ITEST.EQ.1) CALL RADIR(A10,.1714E-8,-460.) 15355=13555 T5351=73551	M M M
- G-12	

, SINDA/SINFLO PREPROCESSOR	DATE 120475 PAGE 15	15	
T5352=T3562 T5353=T3553 M T5355=T3556 M T5355=T3556			
T5356=13566 T5357=T3557 END 3VARTABLES 2	-		•
FLOSOL TIMCHK(K1+0) END	·		
TPRNT (1,1,1,0) WPRINT (1,1,1,0) FINCHK (K1,1):	, <u></u>	·	
@ADD.P EC02-V55008*SINFLO.PROC			
AADD-P ECUZ-VSSUUB#SINFEU-PRUL			
		•••	
	-		j
	<u> </u>		AN 1-4 A-1807A MATE
	-		
			<u></u>

Γ	T.	
,	SYSTEMS IMPROVED NUMERICAL DIFFERENCING ANALYZER SINDA UNIVAC-1108 FORTRAN-V VERSION PAGE 58 SOFT TUBE INFLATABLE RADIATOR	
, [IR CROSS RADIATION DATA SURFACE DAIA	
	NUMBER OF SURFACES = 13	-
_ 	SURFACE NUMBER SURFACE AREA NUMBER OF NODES	
<u>ا</u> ر	51 140.70000 1 52 73.20000 1 53 11.14000 1 54 11.04000 1 55 .63800 5 56 1.43800 16	7
	57 1.43800 16 58 2.99600 2 59 2.99600 2 60 11.44600 126 61 11.44600 126 62 11.44600 126	;
را	63 12.41760 127	
	SURFACE EMISSIVITY DATA	
	SURFACE REFLECTIVITY DATA .00000 .00000 .00000 .98000+00 .33000+00 .00 .00 .00 .00 .00 .00 .00 .00 .	
	SURFACE CONNECTION DATA FROM SURFACE TO SURFACE VIEW FACTOR	-
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	63 62 00000 63 60 00000 63 59 00000 63 57 00000 64 56 20000-01 64 56 20000-01 65 55 00000 65 55 00000 66 55 00000-02 67 56 00000-02	

Ţ	-
63 51 62 61 60 59 62 58 57 62 56	\$7000-01 86900+00 00000 00000 00000
62 60 58 58 56 62 55 56 62 55 54 62 62 54 54 60 50 50 60 50 60 60 60 60 60 60 60 60 60 60 60 60 60	57000-01 86900+00 00000 00000 00000 00000 20000-01 00000 16000-02 20000-02 20000-01 89000-01 89000-01
	G-15

				.50000-0 .50000-0 .70000+0 .20000+0 .70000+0	1 1 0		UNIVAC-1108 F	NSV Y-M≗NINC	SION PAGE	. 60
*	NODE, DATA SURFACE	NODE	AREA	NODE	AREA	NODE	AREA	NODE	AREA	
	51 52 53 54 55 56 57 58 59 60	9001 9002 9003 9008 9098 17004 18000 18000 16550 17554 10500 28000 28000 12000 13500 12500 22500	140.70000 773.2140000 11.0475503 .0898833 .0898833 .0898833 .0898833 .0898833 .08998833 .08998833 .0899880 .0990880 .0990880 .0990880 .0990880 .0990880 .0990880 .0990880 .0990880 .0990880 .0990880	1 9 9 1515155311111111111111111111111111	12758333333333333333333333333333333333333	8 262626 9 000000000000000000000000000000000000	.1275	3 9 9 8 17037 18037 18557 16557 1775 197851 11751 129501 11451 114	12750 -089833 -089833 -089833 -089883 -089883 -0899880 -0990880 -0990880 -0990880 -0990880 -0990880 -0990880 -0990880 -0990880 -0990880 -0990880 -0990880 -0990880 -0990880 -0990880 -0990880	

EMS IMPROVED NUMERICAL Tube inflatable radia		NALYZER -	SINDA		UNIVAC-1108	FORTRAN-V VE	RSION	PAGE	61
3150 3250	.09080	3151	• 09080 • 09080 • 09080 • 09080	3200	09080	3201	.090		
3000	•09080 •09080	3251 3001	•09080	3300 3350	•09080	3301	•090	60 °* "	مَّادِ رِيَّةِ بِ
3400	•09080	3401	.09080	3450	.09080 .09080	3351 3451	090		123
3500	• 8988	3501		3550	09080_	3551	090	ån 🚉	<u>, , , , , , , , , , , , , , , , , , , </u>
4000 4150	• 09080 • 09080 • 09080	4001	•09080	4100	.09080 .09080	4101	.090		
4250	*04080	4151 4251	.09080	4200 4300	•09080	4201	•090	ğΩ	
4090	09080 09080	4089	.09080	#300 #350	.09080 .09080	4301 4351		8 U 9 N	
4400	•09080	4401	• 09080 • 09080 • 09080 • 09080 • 09080	4350 - 4450 -	.09080		.090		₹ ; * ,
4500 5090	•09080 •09080	4501	•09080 •09080 •09080	4550	+09080	4451 4551	ໍ ".ດອກ:	ጸጠ 🖟 🐣 🐣	و فرام با
5150	09080	5089 5151	.08090 88888	\$100 5200 _	. 09080 09080	5101 5201	. 090	8 <u>0</u> , 🚬	<u> </u>
5150 -5250	08080	5251	•07080 •09080	5300		5301	.090		
5000	•09080	5001 1903	-09080 -09080 -09080 -09080		•		+070	04	
61 1902 1002	.09080 	1903	•09080	1952 1552	.09080	1953 1553	•090	80	
2702 -		_1003 2703	-00000	- 1352 2752	- 09080	2753 °	.090 2090		
2802	.09080	2863	-09080 -09080 -09080 -09080 -09080 -09080	2852	-09080	2853	->s _0901	an ** .\w\ - * .	
2202	•09080	2903	08000	2952	•09080 •09080 •09080	° 2953.	090	BÖ V K ""	المتراجع والأثام
- 1088 1152	09080 -09080	1087 1153	•09080	- <u>liož</u> -	05080	1103		8 <i>0</i> . '	20 80 27
1252	.09080	1253	•U9080 -09080	1202 1302	.09080 .09080	1203 1303	•090	80	
1352	• 09480	1353	.Déga	1402	-09080	1403	.090 .090	en en	
1452 2002	• 92 08 0	1453	+09080 •09080	1502 _	09080	1503		80	
2152	•09080 •09080	2003 2153	•09080	2102	•09080	2103	< 090 090 090	BO 🦿 🐤	يكريو المجلور بالج مايده يو
2252	.09080	2253	.09080 .09080	2202 2302	.09080 .09080	2203	(** *.090) 090)		The same of the same
2088	.0908.0	2087	1908⊞	_ 2352		2303 2353		BUL 16. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	LA KENT
2402 2502	-09080	2403 2503	•09080 •09080	2452	•09080	2453	.090	80	
2302 3088	.09080 .09080	2503 3087	•09080 •09080	2552 3102	.09080 .09080	2553	•090	80	
3152	•09080	3153	.09080 _	3202		3103 3203	.090	8D	
3252	• 80 60	3253	nanen.	3302	•09880	3303	090		1 Pres \$2 350 "
3002 3402	•09080	3003	.09080 .09080 .09080 .09080	3352 3452 3552	.09080	3353	+090	BO. '_	- 4 3 4 5 W
3502	• 09 08 0 • 09 08 0	3403 3503	*D4080	3452	•09080 •09080	3453 3553		8 <u>0</u> -	* * * * * * * * * * * * * * * * * * * *
4002	• 69080	4003	08080	4102	09080	4103	090		
4152	• ១១ ១៩ ០	4153 4253	•09080	4202	•09080	4203	•890	80	
4252 4088	.09080 .0908u	4253 4087	08000	4302	.09080	4303	.090	80	
4402	.09080	4403	• 09 08 0 • 09 08 0	4352. 4452	09080	4 <u>353</u> 4453	.090		
45ŪŽ	. 09080 . 09080	4503 5087	409080	4552	.09080 .09080	4553	.090	80 -	~ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
5088	•09080	5087	•09080	5102	+09080	5103	.090	80	
5152 5252	•09080 •0908u	5153 5253	•09080 •09080	5202 5302	09080	- <u>5203</u> - 5303			
รีอินีว์	.09680	5003	•09080 09080	2202	.00080	5303	•890	នប	

	SYSTEMS	IMPROVED	NUMER	CAL DI	FÉRENCI	ที่ตั AN	IALYZER		- SINDA		UNIVAC-1108	FORTRAN-V	VERSION		PAGE	62
	SOFT TUE	E INFLAT				_										
		62	- 190°	i — ——	:0908 0908	Ð	-190 <u>5</u> 1005		.09080 .09080	1954 1554	.09080 .09080	1955 1555		.09080 .09080	-	-
	•	* *	2704 2804	1	.0908 .0908	0 /	2705 2805		.09080 .09080	2754 2854	.09080 .09080	2755 2855		.09080 .09080		
~		<u>-</u>	<u> </u>		.0908 .0908	o o	2905 1085	-	.09080 .09080	-2954 1104	.09080 .09080	2955 1105		.09080 .09080		***
			1154 1254	ĺ	.0908 .0908	8	1155 1255		.09080 .09080	1204 1304	.09080 .09080	1205		.09080 .09080		
	Y - 43 \	777	1354 145		.0908	Ō	1355 1455	-	- •09080 - •09080	1404 1504	.09080 .09080	- 1405 1505	-	.09080 .09080		-
~ <u>k</u>			200	'n, ε'ς τ Let	0908	Ď,	2005 2155		.09080 .09080	2104 2204	.09080 09080	2105 2205		.09080 .09080		
		<u> </u>	208)	0908 0908	Ö	<u>2255</u> 2085		_ <u>•09080</u> -•09080	2304 2354	_09080_ 09080	2305. 2355	<u> </u>	.09080 .09080		
			2404 2504	 	.0908 .0908	0	2405 2505		.09080 .09080	2454 2554	.09080 .09080	2455 2555		.09080		
- 1	48.0	, ~ , , , , , , , , , , , , , , , , , ,	3086 3150	1 " F	0908	0	3085 3155	~	.09080 .09080	- <u>3104</u> 3204	09080 09080	<u>- 3105</u> 3205		.09080 .09080		
, 11/2	1 (4	x* ** '	** 3251 3004		` *0908 0908	Ď Đ	3255 3005		.09080 .09080	3304 3354	.09080 .09080	3305 3355		.09080 .09080		
* 4	<u> </u>	·, (£)	2, 3401 3504	Pt 12	30908 0908	0	3405		09080	- 3454 - 3554	02080 09080	_ 3455 3555		.09080 .09080		
			4004 4154	1	.0908	Ď	4005 4155		.09080 .09080	4104 4204	.09080 .09080	4105 4205		09080	t	
		u .	4254	1	- 0908 - 0908	8	- 4255 4085		. 09080	4304 4354		_ 4305	-	.09080		
ر ء ر ء	•	AN 18-	4404 4504	ا ددک ا	.0908	0	4405 4505		.09080 .09080	4454 4554	.09080 .09080	4355 4455 4555		.09080		
		,×	~5086 515	, Y	.0908	٥	` 5085 5155		09080	- 5104 5204	.09080 .09080	5105 5205	_	.09080 .09080		
			5251 5004	l	.0908	0	5255 5005		.09080 .09080	5304	09080	5305		.09080		
		63	1906		0908	Ō	1907		09080 09060	1956 1556	- 09080	1957 1557		.09080 .09080		
	•	7	2706 2806 2906		0908	Õ	2707 2807		.09080 .09080	2756 2856	.09080 .09080	2757		.09080		
			2906	" _{7 2}	0908	Ū.,	- 2907 1083		.09080 .09080	2956 1106	• 09080 • 09080 • 09080	2857 2957		.09080 .09080	_	
			1156 1256	5	.0908	Ō	1157		.09080	1206	•09080	1107 1207		.09080 .09080		
			$\frac{1236}{1356}$.0908	Ō	1257 1357 1457		09080 09080	1306 1406	• 09080 • 09080	1307 1407		.09080	-	
		4	2006 2156	ı ` +	.0908	Ö,	2007		.09080 .09080	1506 2106	.09080 .09080	1507 2107		.09080		
			2256		8090 <u>8</u> 8090 <u>8</u> 8090	Ü	2157 2257		.09080 .09080	2206 2306	.09080 .09080	2207 2307		.09080 .09080		-
			2084 2406	 	.0908		7083 2407		.09080 .09080	2356 2456	.09080 03095	2357 2457		.09080 .09080		

	SYSTEMS IMPROVED NUMERIC		G ANALYZER	SINDA	 -	UNIVAC-11C8 FO	RTRAN-V VER	SION PA	AGE	ε
	SOFT TUBE INFLATABLE RAD 2506 3084	DIATOR	2507 3083	•09080	2556 3106	• 69080 • 69080	2557 3107	•09080		
•	3156 3256	.09080 .09080 .09080	3157	•09080 •09080 •09080	3106 3206 3306	• 09080 • 09080 • 09080	3107 3207 3307	.09080 .09080 .09080		
	3006 3406 3506	0 <u>9080</u> 09080	3407	09080 09080	3356 3456	- 109080 109080	3357 3457 3557	•09080 •09080		
	4006 4156	09080 09080 09080	4007	.09080 .09080 .09080	3556 4106 4206	09080 09080 09080	3557 4107 4207	•09080 •09080 •09080		
	4256 4084	•09D80 •09D80	4257 4083	•09080 •09080	4306 4356	•09080 •09080	4307 4357 4457 4557	•09080 •09080	-	
	4406 4506 5084	.09080 .09080 .09080	450.7	•09080 •09080 •09080	4456 4556 5106	• 09 0 8 0 • 09 0 8 0 • 09 0 8 0	4457 4557 5107	•09080 •09080		
	5156 5256 5006	• 09 08 0 • 09 08 0	5157 5257	.09080 .09080	5206 5306	• 09080 • 09080	5207 5307	•09080 •09080 •09080		
	*		5QÖ7 .	09.080_	1051,	.971CO	•	-		
	CONNECTION DATA									
	FROM SURFACE T	O SURFACE	CONTRA DA		-	_				
	I NOTI SURFACE I	O SURFACE	SCRIPT FA					1		
	5.2				- ×				_	
	62 61 60	63 63 63	•59004-02 •59225-02 •63651-02	_			٠		-	
	62 61 60 59 58	63 63 63 63	•59004-02 •59225-02 •63651-02 •52012-06 •23997-01			-	-		-	
	62 61 60 59 58 57 56	63 63 63 63 63 63	•59004-02 •59225-02 •63651-02 •52012-06 •23997-01 •38952-06			-	٠		- -	
	62 640 599 58 57 557 554	63 63 63 63 63 63 63	•59004-02 •59004-02 •59025-02 •52012-06 •238952-06 •11189+00 •11330-03			-		- <u>-</u>	- -	
	62 640 640 58 57 557 554 533 532 531	63 63 63 63 63 63 63 63 63	•59004-02 •59025-02 •536512-06 •52012-06 •23792-01 •11130-03 •11330-03 •50792-01 •48832+01			-	٠		- •	
	62 61 60 59 58 57 55 55 54 53 53 53 53 61 61	63 63 63 63 63 63 63 63 63 64 64	59004-02 59025-02 59225-02 52051-06 -238957-06 -111399-03 -11139-03 -1446-03 -54792-01 -72914-01 -72914-01			-	•		-	
	62 660 59 587 555 544 552 51 600 558	633 6633 6633 6633 6633 6666 6666 6666	59004-02 59025-02 59225-02 525-02 526512-06 527997-01 311330-03 311330-03 34792-01 46832+00 472909-02 58515-06			-	-		-	
	62 610 559 58 57 565 54 551 60 559 56	633 6633 6633 6633 6633 6633 6633 6633				-	•		-	
	62 64 659 58 557 555 557 554 553 551 66 69 55	66666666666666666666666666666666666666	59025-002 59025-002 59025-006 5320997-016 -111399-003 -111394-003 -114792+00 -548714+01 -548714-002 -472505-006 -47616-06			-	•		-	

Ţ SYSTEMS IMPROVED NUMERICAL DIFFERENCING ANALYZER UNIVAC-1108 FORTRAN-V VERSION PAGE SOFT TUBE INFLATABLE RADIATOR .68757+01 .60928-02 .46824-06 .16941-02 .35563-06 61 61 61 58 57 10307+00 14509-03 .60252-03 .91743-02 .68608-00 .65641+01 .28913-06 55 54 52 51 59 58 61 / 60 / 60 / 57 56 55 54 . 27556-06 .10748+00 .23712-01 .37310-02 .91715-02 .25455+01 .40531+01 .92524-07 60 60 53 52 51 51 51 60 60 60 59 ,, .51545-07 .56579-07 .43662-08 .11552-07 55 54 59 59 59 58 .58808-06 .37916-05 .10037+01 53217 5555 55543 ₹12 .69715<u>-</u>07 .27588-01 .30851-03 .20501-02 .50968-02 58 58 58 58 10944+00 12971+01 46777-07 33593-08 52 51 51 56 55 58 58 57 57 54 53 52 51 57 57 57 57 .91168-U8 .48173-U1 .19269+U0 .72259-U0 .12813-U2 .12813-U2 .12813-U2 .32U67-U2 .2247+U0 .79315+U0 .65265-U3 55 54 53 52 56 56 56 56 56 56 55

	C	1 1												
-[E INFLATA	BLE RADIAT	OR	15925-02	~ ~ -	- SINDA		UNIVAC-11	D8 FORTRAN	-v version	PAGE	65
,	,		52 51 53 51 51 51		555544 555544 555555555555555555555555	15975-02 .55702-02 .61208-01 .11190-01 .11995-01 .16195+00 .22440+01 .53153+02					-			
			** E	* *	t		.	-						.
-[, t							an annual an an annual an	-					
.[-						
								~ ~				•		_
	\							-						~
						- 								

	T														
*	77-1-1-1-1 4-1				A		-								
<u> </u>		AS IMPROVED		DIFFERENCIN	G TAÑALYZER Î		- SIND	Λ	- UNI	VAC-11	C8 FORTI	RAN-V VERS	SION	PAGE 9	3
w x	T 5202=7 T 5250= T 5256= T 5304= T 5352= T 9001=	12.059 15.605 4.1823 4.5795 21.536 8.3301 23.663 32.663	T 51107 H 10	4.1959 18.373 7.2375 21.870 29.630	T 5150= T 5150= T 5150= T 5204= T 52052= T 5300= T 5306= T 9003=	10.058 8.5546 5.9500 3.3603 12.6213 20.519 26.273 -311.00 = 19.415	Ţ	9004=	11.327 7.44842 3.415423 11.4523 11.4553 11.4553 18.548 -23.451 -11.834	- I	5152= 5200= 52004= 52004= 52005= 53350= 53350=	12 · 281 3 · 7429 11 · 6754 9 · 57524 28 · 3392 21 · 223 -	T 5105 T 5207 T 5207 T 52307 T 53357 T 53357	= 4.1718 = 9.7318 = 3.2901 = 8.7105 = 26.254 = 39.541	
(5)		- 95.999 - 99.778 15804		2= 99.778 = .21680	DP 3	= 99.778	DP	4:	- 99•778	DP	5:	 = 99.778		W 211 - W 21 - W	
7 7 10-1	P COMPUTER	100.15 · 2 11463=2 · 22	.345' MINUTE	:= 99.994 :s`	P 3	= .21680	P		00000		. we render a				
	10067 10067	.50000 DT 95.000 -311.00	IMEU = 2.2 = = = = = = = = = = = = = = = = =	0000 - 03 CSGM 34.856 -13.022 ,14.445 ,14.445 ,14.445 ,15.470 ,15.47	TN(2451)= T 55:= T 612:= T 1892:= T 1892:= T 2832:= T 2832:= T 2832:= T 4839:= T 55889:= T 100839:= T 100839:= T 100839:= T 100839:= T 110839:= T 110839:= T 110839:= T 110839:= T 110839:= T 11084:= T 11084:= T 111564:=	521804773232204378547488696 48598109498514574259786996 8.687988308318428321585778698 8.052.00491891891892832158057442 3789885385385385547432 37898538538538538547432 	T T	119340340340340317 60890890890890890890890890890890890890890	75314860349127913550966331 75314860349127913550966331 18.66	. 96 748	015560890890890890890890890890890890890890890	10747893923812860884554463228 107189392716205332200393638228 113108844545655665343438225 11310885316655665534441225 1131085316655665534441225 1139156556655342715655145 11391565566553438525 1139156556655344163228	T 52 T 58 T 99 T 105 T 186	2176877417040076427597621212655622741758775375375065556274175877457750756556274275964497644975946427594649764497642759464974857485	1

2	~						-											
•			, , , , , , , , , , , , , , , , , , ,	1														
1			MS IMPROVE			RENCING	ANALYZE	R	- SINDA		- UNIV	/AC-11	D8 FORTE	RAN-V VER	SION	PA	GE 95	
C		SOFT	TUBE INFLA	TABLE RA	ADIATOR		_											
<i>ب</i>	# T	3089= 3102= 3150= 3156= 3204= 3252=	29.889 9.2964 6.9442 5.3020 2.7235 11.972	T 31	103= 10. 151= 7.0 157= 5.8	589 569 918 128 050 756	T 3091: T 3104: T 3152: T 3200: T 3206: T 3254:	11.529 3.0600 1 _ 2.7011 2.9573	T T	3092= 31053= 3153= 3201= 3207=	36 • 562 12 • 957 3 • 4923 9 • 0646 2 • 6780	† T	3100= 3106= 3154= 3250= 3250=	10.727 14.887 3.5088 3.9336 19.162 7.7052	T 3 T 3 T 3	101= 107= 155= 203= 251= 257=	11.668 16.221 4.0950 3.5533 17.704 6.6182	
-	. <u>į</u>	3300= 3306=	35.916	7 3	301= 33.	541	† 3302: 13350:	27.699 42.778	į	3255= 3303= 3351=	8.0861 25.565 39.528	Ť	3256= 3304= 3352=	23.123	T 3	305=	21.199	
, C	2 1	3354= 3402= 3450= 3456= 3504=	19.848 26.262 20.395 26.915 6.3565	T 31	55= 23 103= 17 151= 24	439 643 056 234	T 3356 T 3404 T 3452 T 3500 T 3506	21.207 14.455 16.402 30.815	Ť - T T	3357= 3405= 3453= 3501= 3507=	18.342 11.888 13.741 27.862 7.3986	T T	3406= 3406= 3454= 3500=	30.814 10.009 10.607 20.397 42.780	T 3 T 3 T 3	401= 407= 455= 503= 551=	27.860 7.3952 8.1229	
	į	3552= 3998=	32.657 85.763	T 39	53= 29 99= 93	623	T 3554:	26.267	ţ	3555= 4001=	23.445 72.057	ţ	3556= 4002=	21.213	T 3	557= 003=	39.531 18.349 63.050	
, •	,	4004≡ 4085≡	- 59.211 - 39.735	<u>T 40</u>	105 <u>=</u> 55. 186= 36.	<u>648 </u>	T - 4006	52.398 34.086	Ţ	4007= - 4088=	48 .813 31 . 343	Ţ	4083= 4089=	45.624	T 4	0847 090=	-42-837 27-675	
,	- " †	4091= 4104= 4152= 4200=	36.621 23.139 11.994 9.7338	T 40 T 41 T 41	36. 192= 36.	630 214 77 6	T 4100 T 4106 T 4154 T 4202	35.931 19.863 - 9.1430	. <u>†</u> †	4101= 4107= 4155=	33.557 17.898 8.1043	Ť	4102= 4150= 4156=	29.967 27.715 19.186 -7.7226	T 4	103= 151= 157=	25.581 17.726 6.6347_	1
i	, į	4206= 4254= 4302= 4350=	2.9782 3.5408 9.3448	T 42 T 42 T 43	207= 2.6 255= 4.1 303= 10.	971 231 614	T 4250; T 4256; T 4304;	5.3276 11.570	- <u>T</u>	4203= 4251= 4257= 4305=	3.5800 7.1321 5.8356 12.993	T	4204= 4252= 4300= 4306=	2.7486 3.0971 10.785 14.919	7 4 1 4	205= 253= 301= 307=	2.5274 3.5269 11.720 16.249	,
_	1	4356= 4404= 4452= 4500=	3.7644 13.677 -1.6551 -8.4267 -4.5936	T 42 T 41 T 41	551= 5.6 57= 15. 105= .49 53= -6.4 01= -2.8	916 169 402	T 4400 T 4406 T 4454	= -4.8404 = 3.2241 = -4.8991	- I	4455=	6.5834 -3.1160 5.2715 =2.8206	Ţ	40562	8.4996 -5.3324 -7.5769 -11254	T 4 T 4 T 4	451= 457= _	10.848 -3.2876 -5.9084 -1.8658	1
	, <u>†</u>	4506 <i>=</i> 4554 <i>=</i>	3.4382 8.9626	T 45	507= 5.4 555= 11.	844 291	T 4502: T 4550: T 4556:	4.2716 14.119	Ť	4551= 4557=	-3.0629 6.1032 16.356 63.875	T	4504= 4552= 4998=	-1.4306 4.8196 85.766	T 4 T 4	505= 553= 999=	.70614 7.0464 93.847	
•	T	5000= 5006= 5087= 1	80.434 53.197 34.978	1 5	101= 72. 107= 72. 188= 321	903 602 233	T 5002: T 5083: T 5089:	67.732 46.474 30.854 17.051	. <u>T</u>	5003= 5084= 5090=	63.875 43.690	Ţ	5004= 5085= 5091= 5104=	60.027 40.589 37.637	1 5	0057 086=	56.456 37.708	-1
ي د	1 ‡	5100= 5106=	12.048	T 51	di= 12.	435 922	T 5102:	17.051 B.5118	† †	5103= 5151=	43.690 28.646 11.320 7.7818	ţ	5104= 5152=	12.275 3.7347	† 5	092= 105= 153=	37.645 13.670 4.1637	i
£		<u>-5154⊒</u> 5202≔	15.596 4.1748 4.5711	Ť 5	07= 16. 55= 4.7 203= 4.1	357	T 5150: T 5156: T 5204:	5.9391 3.3525 12.613	† T	5157= 5205=	6.4431 3.1146	ţ	5200= 5206=	11.608 3.5639	T 5	201= 207=	9.7184 3.2785	-
: -	· İ	5250= 5256=	21.524	T 52	251= 18.	36D	7 5252 T 5300	12.613	Ì	5253= 5301=	11.393	Ť Ť	5254= 5302= _	9.7552 28.386	T 5	255= 303=	8.7033 26.248	
اء را	- 1	5304= 5352= 9001=	23.800 32.657 -311.00	7 53	257= 7.2 105= 21. 353= 29. 302= -207	865 624 •84	T 5306: T 5354: T 9003:	20.510 26.268	† T T	5307= 5355=	18.539 23.445 -13.084	Ť	5350= 5356=	70.000	T 5	351= 357=	39.531 18.349	!
		- 1 6	= 18.131 = 95.999	W	2= <u>19</u> 7= 96	401 C01	w	3= 19.417	W	4 =	19.426	W	5=	19.627				
۲	DF	·1	= 99.789	_ DP	2 <u>=</u> 99.	78 <u>9</u>	D <u>P</u>	3=_99.789	DP	4=	99.789	ÐР	5=	99.789				
	İ																	

,	
	SYSTEMS IMPROVED NUMERICAL DIFFERENCING ANALYZER SINDA UNIVAC-1108 FORTRAN-V VERSION PACE 96 SOFT TUBE INFLATABLE RADIATOR DP 6= 15804 DP 7= .21684
~	P 1 = 100.16 ,P 2= 100.01 P 3= .21684 P 4= .00000 COMPUTER TIME = 2.521 MINUTES
	END OF DATA * *DIVIDE CHECK HAS OCCURRED* *
	aPMD,E -
~	GBRKPT PRINTS
_	
J	
_	
J	
~	
۲	,
 -	G-26
J	