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PREFACE

The author wishes to express his gratitude to Mr. W. Q. Depperman for his

contribution to the development of the fluidic sensor used in these prototype

detectors.
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I-	 ABSTRACT

This report describes the work performed by McDonnell Douglas Astronautics Company,

TICO (MDAC TICO), under Contract No. NASIO-8764 to the National Aeronautics and
F

Space Administration, Kennedy Space Center, Florida, for the development of pro-

duction prototype fluidic hydrogen gas detectors. The effort was sponsored by NASA

to develop a reliable and relatively maii,tenance free hydrogen gas sensor that can

replace catalytic combustion sensors presently used to detect leaks in the liquid

hydrogen transfer systems at Kennedy Space Center. This work culminates previous

efforts by MDAC TICO under Contract No. NASIO-8373 to NASA "Fluidic Hydrogen

Sensor Development Study" and studies conducted by the University of Florida.

A fluidic sensor concept, based on the principle that the frequency of a fluidic

oscillator is proportional to the square root of the molecular weight of its

operating fluid, was utilized. To minimize sensitivity to pressure and temperature

fluctuations, and to make the sensor specific for hydrogen, two oscillators are

used. One oscillator operates on sample gas containing hydrogen, while the other

operates on sample gas with the hydrogen converted to steam. The conversion is

accomplished with a small catalytic converter. The frequency difference is taken,

and the hydrogen concentration computed with a simple digital processing circuit.

The output from the sensor is an analog signal proportional to hydrogen content.

Functional and environmental tests have shown the detector to be very accurate,

and relatively insensitive to severe environmental disturbances. It is also

specific for hydrogen, even with large helium concentrations in the sample gas.

The performance of the sensor is adequate for the intended application, and the

basic concept can be adapted to provide a reliable gas detector for numerous

government and commercial requirements.
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SECTION 1

INTRODUCTION

For over a decade, it has been recognized that fluidic technology offered promise

in the area of gas detection. An application of the phenomena involved exists at

Kennedy Space Center (KSC) where the detection of trace amounts of hydrogen gas

is required as a safety precaution, since the existence of such gas would indicate

a potentially dangerous leak. Realizing this application of fluidics to a hydrogen

sensor for the Space Shuttle era, KSC sponsored a study in 1971-72 with the

University of Florida to investigate promising but untried theories which might

yield such a sensor. Numerous fluidic techniques were considered, and of the

three which showed promise the study indicated the concept which utilized the

principle that the frequency of a fluidic oscillator is proportional to the square

root of the molecular weight of its operating fluid was the most practical.

Although this study demonstrated the feasibility of a fluidic sensor, it also

identified several problems inherent to this approach.

In 1973, a study was conducted by MDAC TICO for NASA under Contract NAS10-8373

to develop an engineering prototype sensor using the fluidic oscillator principle,

but designed to overcome these inherent problems. This study successfully demon-

strated a sensor which was capable of measuring hydrogen concentrations over a

range from 0 to 10% by volume with an accuracy of t 500 ppm. The sensor was

essentially unaffected by changes in launch site variables, such as inlet gas

temperature, humidity and helium concentrations.

In 1974, a development program was started by MDAC TICO, which this report describes,

to develop production prototype models of a relatively inexpensive hydrogen sensor

which could be used at KSC. Program objectives were to "production engineer" the

electronic and fluidic circuits so that a simple, reliable and inexpensive end

product could be realized, to obtain extensive environmental test data that will

be required to establish a production configuration, and to de-Lermine maintenance

and calibration requirements. The program was conducted in the four phases

described below.

L
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Phase I consisted of production engineering and designing, the electronics, tluidi{

circuit, catalyst system, and the transducers. 	 In addition, operating envircn,'Fent

life tests of the fluidic system, including oscillators, heat exchangers, and the
catalytic converter, were conducted to determine, early in the program, if any

design refinements must be incorporated to compensate for specific environmental

conditions.

Phase II consisted of fabrication and testing a design verification model, whictl

incorporated the results of the production engineering and design recommendations

obtained during Phase 1, and updating this model as required by results of the

environmental life test units. Functional tests were then performed on this unit,

and a production prototype design established.

During Phase III, environmental perturbation tests were conducted on the design

verification model. The unit was subjected to extreme temperature, pressure, and

humidity environments to determine their effects on system operation. Various

gas background concentrations, dust and salt spray environments were also

investigated.

In Phase IV, seven production prototype fluidic hydrogen detectors were built

and functionally tested.

A block diagram of the hydrogen detector developed	 is	 given	 in	 Figure	 1-1. 4J

Development and testing of each component is described in Sections 2 through	 5.

Section	 2 discusses	 development of	 the	 fluidic	 sensor,	 including	 an edgetone .

oscillator,	 reluctance	 pick	 up, heat exchanger,	 catalytic converter, and	 1"ani	 id

assembly.	 Section	 3 describes the electronic processing of 	 fluidic signals,

heater	 control	 circuit,	 self test circuit and	 thermal	 control	 assembly. Inte-

gration of these two systems	 into a	 relatively	 small	 self-contained packa,,e	 is

covered	 in	 Section	 4.	 Testing is	 discussed	 in	 Section	 5,	 including both	 functional

and	 environmental	 evaluations. Conclusions and recommendations derived fro4T	 ti--e i

program are given in Section 6.
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SECTION 2

FLUIDIC SENSOR

The heart of the hydrogen detector is a fluidic sensor that is used to detect

variations in sample gas composition. This sensor works on the principle that

the operating frequency of a fluidic oscillator is primarily a function of the

speed of sound in the gas used as the working fluid. To make a sensor selective

to hydrogen only, two oscillators are employed, where one oscillator operates on

the sample gas mixture and the other operates on the sample gas mixture with the

hydrogen removed from it. This technique also renders the sensor insensitive to

pressure and temperature fluctuations, assuming the oscillators track each other

as these parameters are varied. Test results indicate that good frequency cor-

relation can be expected if the circuit design has similar flow paths and employs

a heat exchanger to match the temperature of the gases entering each oscillator.

Successful operation is predicated upon removing hydrogen from the sampled gas

supplied to one oscillator. This is accomplished by a catalytic reaction of the

hydrogen with oxygen in the background gas using a platinum and palladium compound.

This type of catalytic converter can be made practically 100% efficient as long as

the background gas contains enough oxygen to oxidize the hydrogen. When hydrogen

is present in the sample gas the oscillator receiving the gas mixture of air and

hydrogen increases in frequency, while the frequency of the oscillator receiving

the gas with hydrogen removed will remain constant. The magnitude of this change

in frequency between the two oscillators is directly proportional to the hydrogen

concentration in the sample gas.

The fluidic hydrogen sensor utilizes two manifold blocks and a series of etched	 >'3

laminae that comprise the heat exchangers and oscillators. The etched laminae 	 f

are mounted between the manifold blocks and the components are bolted together 	 a.A

to form an assembly. The bottom manifold contains flow passages, the active and

inactive catalytic converters, and sintered metal input and output filters that

also serve as flame arrestors. The top manifold contains flow passages and two

variable reluctance pressure transducers. The assembly measures 2-1/4" x 3" x

1-112" and is made from type 302 stainless steel. An exploded view of this

z 
L%f d•

?^ r

2-1	 ^j
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assembly is shown in Figure 2--1 and a schematic of the fluidic circuit is given in

Figure 2-2. The theory of operation of the fluidic hydrogen sensor is contained

in Appendix A. A discussion of the development of each component follows.

2.1 FLUIDIC OSCILLATORS

Previous development efforts had been directed toward using a bistable element

with negative feedback as an oscillator. During this program an edgetone oscil-

lator was evaluated for use in the sensor, because of its high frequency capabilities

and construction simplicity. The edgetone oscillator developed has a higher gain

and better signal-to-noise ratio than was obtained from the bistable element

oscillator. In addition, the edgetone unit did not require a buffer amplifier,

which reduced system complexity and power consumption.

An edgetone oscillator was tested in the oscillator evaluation studies conducted

during the previous hydrogen sensor contract, but poor ^)erformance was obtained

from the particular design that was used at that time. The edgetone concept was

abandoned at that time in favor of the feedback oscillator concept. However, the

advantages offered by the edgetone concept indicated that further development

effort was indicated in this area. This work was conducted under IRAD funding,

at no cost to the government, and resulted in an edgetone oscillator design that

is superior to the feedback oscillator for the hydrogen sensor application.

Four edgetone oscillator configurations were tested to optimize the oscillator

cavity shape. A rectangular cavity, a circular cavity, and variations of these

basic cavity shapes were investigated, reference Figure 2-3. In all cases, the

vacuum port was on the centerline of the oscillator. These investigations were

undertaken to determine which cavity shape would produce the best signal quality,

that is, a fundamental wave with minimum distortion. Test results indicated that

a variation on the rectangular cavity shape (Figure 2-3c) produced the best

fundamental signal.

This configuration was selected for additional optimization with respect to loca-

tion of the vacuum port. As stated, the first design had the vacuum port on the

centerline of the device. This porting arrangement had the potential to cause a

problem with oscillator response, since the basic sample flow is through the

center of the oscillator and the resonant cavities are essentially closed volumes

2-2
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FIGURE 2-1 FLUIDIC HYDROGEN SENSOR

2-3



UUM
iC E

REFERENCE

FILTER	 OSCILLATOR

T 'O T

z Cn Ô 0
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on each side of the jet. Since the cavities are not actively purged, the gas

composition in the cavities could tend to stagnate and would not rapidly track

changes in sample gas composition. This stagnation could cause a delay in

reaching the proper operating frequency as the sample gas composition changes.

To eliminate this potential problem vacuum ports were positioned on the extreme

outboard ends of the re inant cavities, as shown in Figure 2-4. An oscillator is

made by stacking six 5 mil thick laminae which results in a sample port size of

10 x 30 mils. If the laminae are alternately flipped 180° when stacked, vacuum

ports at the outboard end of each resonant cavity will effectively purge the

cavities and eliminate any potential response problem.

Test results of these oscillators operating on calibrated hydrogen-nitrogen

mixtures are shown in Figure 2-5. The frequency output as a function of hydrogen

concentration is extremely linear over a 0 to 10% hydrogen concentration range.

Figure 2-6 shows the frequency characteristic as a function of oscillator exhaust

pressure while operating on air. The frequency output is pressure dependent until

choked flow is achieved at approximately 15 in. Hg below atmosphere. From this

point on, the frequency is independent of pressure. A sonic orifice is installed

downstream of the oscillator in the final design to provide frequency regulation

at the low pressure drops across the oscillator. As long as the pressure ratio

across the orifice is critical, no regulation would be required in the power system.

An investigation was made to determine if the changes in oscillator frequency with

pressure were caused by changes in nozzle velocity or mass flow through the system.

The curves of Figures 2-7 and 2--8 are the results of this effort. In Figure 2-7,

the input and exhaust pressures were simultaneously controlled so that a constant

pressure differential was maintained across the oscillator. Under these conditions,

the jet velocity will increase and the mass flow will decrease as the absolute

exhaust pressure is decreased. The curves all indicate an increase in oscillator

frequency, which would indicate the frequency is more dependent on jet velocity

than mass flow through the system.

2-6
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A constant exhaust pressure was then applied to the oscillator and the input

pressure varied. Curves for three different exhaust pressures were developed,

and are shown in Figure 2-8. As long as the critical pressure ratio is main- 	 I

tained across the oscillator, output frequency is practically independent of

input pressure. This indicates the oscillator can be made insensitive to up-

stream pressure, and therefore will not respond to day-to-day changes in the

barometric pressure level.

An evaluation of the edgetone oscillator output signal was also conducted at

varying oscillator exhaust pressures. A plot of transducer output voltage,

depicted in Figure 2-9, shows that amplitude is also pressure dependent and

becomes constant when the critical pressure ratio is reached. This would

indicate the amplitude of oscillation is a function of either the jet velocity

or mass flow through the system.

A significant improvement in magnitude and quality of the edgetone oscillator

and reluctance transducer (described in Paragraph 2.3) output signals were

obtained. Magnitude of the transducer output, under equivalent operating con-

ditions, was approximately four times the value obtained from the bistable

elenlent oscillator and piezo-electric crystal transducer combination used in

previous work. The photograph of transducer output wave-form in Figure 2-10

shows the unfiltered output to be sinusoidal with practically no distortion.

This was an improvement over the previous system and eliminated the need for

filter circuits in the transducer amplifiers.

The final oscillator configuration is shown in Figure 2-11. Each oscillator is

comprised of three of these elements alternately stacked. It should be noted

that the two oscillator laminae shown in Figure 2-11 contain chambers of different

sizes. Original development work used oscillators with similar sized chambers,

which is normal in fluidic systems. However, when an oscillator is designed for

the high frequencies used in the hydrogen sensor, any minute differences in the

laminae used to build up an oscillator can cause instabilities. These instabilities

were observed when a group of oscillators were being built up. Oscillators using

laminae with similar chamber sizes develop a relatively high Q circuit and any

2-12
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departure from the oscillator's design frequency causes an abrupt change in output

amplitude and/or frequency which is seen as instability. To correct this problem,

an oscillator was designed which incorporated two chamber sizes. This, in affect,

detuned the chamber, or reduced the circuit Q. This method produces a stable

oscillator at the sacrifice of a small amount of gain or output signal amplitude.

An analogy of this detuning is common in the high gain I.F. amplifiers used in

radio and television receivers.

A problem was discovered with these oscil 4tors when placed in the manifold blocks

to make a sensor. When the five environmental test units were built up and tested

with various hydrogen-air mixtures, two of the sensors worked properly and three

did not. The three units that malfunctioned worked correctly on 2% hydrogen in air,

but usually would not function on 0.5% or 1% mixtures. It appeared the catalyst

was not operating efficiently on the low hydrogen concentrations, as the frequency

of both oscillators was increasing, but they were remaining balanced. In this

situation there was no difference frequency and the processor electronics output

remained at zero. At the 290 level, however, a difference frequency was produced

and the correct output was observed.

These observations led to the conclusion that the catalyst was marginal. In order

to further verify this theory, one of the inoperative sensors was packed with a

catalyst that was known to be functional, and retested in the oven. This time,

the sensor worked properly, which seemed to substantiate the inactive catalyst

theory. New catalyst was ordered and installed in one of the sensors. This unit

was tested in the oven and proper operation was obtained. The other four sensors

were packed and tested in the same manner. Functional problems were again observed

with two of the sensors not removing the hydrogen at low concentration levels.

These sensors were packed with catalyst that had worked properly in the Other

sensors. However, this time the problem remained, as the units still did not

function at hydrogen concentrations of 0.5°0.

At this point, it seemed apparent the catalyst was not at fault, but that there	 ni

was a basic problem with the oscillators. Analysis showed the units that worked

well were not snatched in frequency, while the ones that malfunctioned were either

centrations. The oscillators appeared to "lock on" each other when their natural
s

2-16'
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frequencies were near each other, which resulted in no system output. Low hydrogen

concentrations would not cause a large enough difference frequency to break the

oscillators apart, which resulted in erroneous outputs. The oscillators were

apparently being acoustically coupled through the thin plate that separates the

two circuits. This plate was made thin to promote heat transfer between the two

circuits in an effort to minimize thermal effects caused by the hydrogen-oxygen

reaction. The circuit was modified so that the thin separator was retained between

the secondary heat exchanger passages, while an additional 20 mils separation was

added in the area directly between the two oscillators. This change eliminated

the acoustic coupling problem while retaining adequate heat transfer capability

to minimize thermal drift. The additional 20 mils thickness was the two No. 4

laminae discussed in Paragraph 2.6.

2.2 CATALYTIC CONVERTER

Initial development efforts indicated a catalytic reactor, made from a combination

of metal ribbon based and ceramic pellet based materials, should be used. This

combination was selected for a number of reasons. First, a reactor made only from

the metallic ribbon based catalyst had to operate at about 290°F to be 100% efficient.

Since the transducers used in early units were rated at a maximum temperature of

265°F, this reactor could not be used. A reactor made entirely from the ceramic

pellet based catalyst was 100% efficient at temperatures as low as 225°F, but

caused the output voltage to overshoot and undershoot when step changes were made

in the sample gas composition. Therefore, a reactor made from this catalyst was

not suitable until a reason for the transient response problems could be identified

and corrected. It was assumed the response problem was caused by the hygroscopic

nature of the catalyst carrier material and could not be easily resolved. however,

a catalystic reactor using a mixture of the two materials could be used, since it

was 1M efficient at 240°F; and with a minimum amount of the ceramic pellet based

catalyst, the transient response problem was reduced to an acceptable level. This

design was used in the engineering prototype model.

In the interest of simplicity, and to eliminate the transient response problem,

it was decided to investigate further a reactor made entirely from the metallic
i

ribbon catalyst material for the production prototype sensors. This was possible

because the new reluctance transducer design would allow operating temperatures in
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excess of 300°F, so the sensor could be operated where the reactor was 100%

efficient. However, the manufacturer quoted a price of $118 for the five grams

of catalyst material required to pack each reactor tube. This quote of approxi-

mately $10,758 per pound was unrealistic, and about two orders of magnitude higher

than an equivalent amount of ceramic pellet based catalyst. This dictated that a

new catalyst source was required, or a reasonable quotation had to be obtained.

Both avenues were investigated.

A platinum plated expanded metal screen used as a catalyst for other processes was

investigated. Two screens were obtained for testing, one Tantalum base and the
other Columbium base. Since the catalyst carrier was metal similar to the ribbon
catalyst, a transient response problem was not anticipated. A reactor tube was

fabricated and efficiency tests conducted on these catalysts. Neither platinum
plated metal screens would initiate a catalytic reaction at any useful temperature.

Two new types of ceramic pellet catalysts functioned very well as far as removing
the hydrogen was concerned. However, these catalysts had essentially the same

carrier material as the ceramic pellet catalyst evaluated previously and transient

response was again a problem.

Transient response problems with the pellet catalyst had previously been attributed

to the fact that the porous ceramic carrier material was hygroscopic, and absorption`;
!4

of steam generated during the reaction was causing the problem. Analysis indicated
that improper simulation of the active reactor time delay in the inactive reactor

could also cause the same indication it readout voltage. To evaluate this possi-

bility, additional testing was indicated. Untreated pellets, pellets without

catalysts, were obtained and a test model of the sensor fabricated. The inactive

reactor was filled with untreated pellets, and the active reactor filled with

catalyst treated pellets. This sensor was tested with hydrogen-air mixtures and

the transient response problem still remained. Two additional types of catalysts,'

using a ceramic pellet as the carrier material, were also tested. In all cases, n;

the response was the same. Next, the active ceramic based catalyst material was

replaced by the metal ribbon based catalyst material, while the untreated ceramic
a:

pellets were retained in the inactive reactor. The transient response problem now

disappeared when step changes were made in the hydrogen concentration levels.

y'
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Since the system was no longer responsive to water generated in the hydrogen-oxygen

reaction, this indicated that the ribbon based active reactor was not humidity

sensitive. However, when this configuration was alternately supplied with dry and

humid air, transient response problems were again observed with the humid air.

This indicated that the inactive reactor was affecting the output signal response.

Next, the untreated ceramic pellets were removed from the inactive reactor, and

the reactor packed with stainless steel wool material to simulate the physical

characteristics of the metal based catalyst. In this configuration, transient

reponse problems were eliminated under all conditions. From these tests, it was

concluded that the hygroscopic nature of the ceramic pellets caused the transient

response problem, and that it could not be corrected by physical simulation in the

inactive reactor loop.

The need to avoid this response problem, coupled with a somewhat more realistic

price quote of $1200 per pound or $13.21 per sensor for the metal ribbon based

catalyst, dictated the use of the platinum and palladium coated ribbon catalyst

exclusively.

2.3 RELUCTANCE TRANSDUCER
.y:

Initial development efforts used a reliable and accurate pair of piezoelectric

crystal transducers. This insured that transducer problems would not jeopardize

system operation during demonstration tests of the fluidic sensor. These trans-'!

ducers were, however, expensive and limited to a maximum operating temperature of 	 V
265°F. A breadboard model of a potentially inexpensive variable reluctance magnetic 	 r

transducer was fabricated and tested under Internal Re,;earch and Development (IRAD)

funds. Test results were encouraging, and indicated such a transducer could with-

stand the temperature requirements, had a relatively high output signal with low

distortion, and could easily be employed in a hydrogen sensor.

This low cost variable reluctance pressure transducer was then adapted for use with

the hydrogen sensor. The transducer consists of an Alinco ring magnet, a metal

core coil, and a diaphragm that is driven by the oscillator. The diaphragm, made

from type 910 stainless steel, is part of the etched laminae stack. The magnet

and coil assembly are mounted in a hole in the top manifold block (reference

Figure 2-1).	 This design is particularly well suited for this application since
a
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it does not require a power source, has no electronic circuitry other than a simple

coil and can be economically produced in quantity. Examples of signal fidelity and

amplitude are shown in Figure 2-10.

A cutaway view of the transducer is given in Figure 2-12. Operation of the fluidic

oscillators causes variations in their respective chamber pressures which flex the

diaphragm laminant. Since this laminant is made of a magnetic material, these

flexures change the air gap between the diaphragm and pole piece, which in turn

varies the reluctance of this magnetic path. These reluctance changes create a

fluctuating magnetic field surrounding the coil and induce a voltage into the coil.

The frequency of this voltage is identical to the fluidic oscillator frequency.

This analog is then used in the processor electronics described in Paragraph 3.1.

2.4 HEAT EXCHANGERS

Two heat exchangers are employed in the hydrogen sensor; i.e., a primary exchanger

to condition incoming sample gas and the secondary exchanger to insure thermal

stability between the two fluidic oscillators.

The primary heat exchanger is located directly atop the lower manifold which in turn

is atop the heater. This arrangement provides maximum conditioning to the incoming

gas floe, before it is divided and routed to the active and inactive catalyst, as

shown in Figure 2-2. As the sample gas passes through the active catalyst chamber,

fte gas temperature will rise if hydrogen is present due to the exothermic nature

of the reaction. When this happens, the reference oscillator frequency will

increase due to this temperature rise. To minimize this effect, a secondary heat

exchanger is utilized. This exchanger is comprised of two adjacent channels, one

for each oscillator input flow, separated by a 0.010 inch thick laminant. This

allows any heat picked up by the one gas during the catalytic reaction to be trans-

mitted to the Other. This assures that both oscillators receive gas at an equivalent

temperature and no difference frequency is generated due to thermal differences.
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FIGURE 2-12 RELUCTANCE TRANSDUCER
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2.5 MANIFOLD BLOCKS

The manifold blocks serve as a means to clamp the fluidic laminae together, contains

the chambers for the catalyst, and provides mounting receptacles for the reluctance

transducers and filters. A view of these details and their interconnecting passages

is given in Figure 2-1. Detail drawings of these blocks are provided in Appendix B.

The lower manifold receives the incoming sample gas and filters it through the

center filter. From this filter, the gas passes through the primary heat exchanger

laminae and is then divided and returned to the active and inactive catalyst chamber

in the lower block. Upon passing through these chambers, the gasses are filtered

through the two outer filters and sent to their respective fluidic oscillators.

The oscillators are powered by a vacuum applied to a port in the upper manifold.

The upper manifold also contains a reluctance transducer for each oscillator.

These blocks are bolted together with six 10-32 screws torqued to 7 t 0.5 ft./tbs.

2.6 FLUIDIC LAMINAE

Fluidic laminae are used in the hydrogen sensor to provide heat exchangers, oscil-

lators and a driving element for the reluctance transducer. The oscillators are

described in Paragraph 2.1, the heat exchangers in Paragraph 2.4, and the transducer

in Paragraph 2.3. The physical relationship of each of these laminae is shown in

Figure 2-13, and described below.

Starting in the center left hand side of Figure 2-13, laminant 1 is a blanking

plane used to provide the necessary passages to the lower block and a smooth

mounting surface for laminant 2. Six No. 2 laminae make up the primary heat

exchanger. Laminant 3 is another blanking plane. Laminant 4 is utilized on both

the upper and lower sides of each oscillator to increase the cross sectional area

of their heat exchangers and reduce cross coupling between oscillators. Three

alternations of the 5 Q and 7 laminae comprise a reference oscillator. A No. 4

laminant is used as described and then a No. 6 blanking plane is inserted between

the two oscillators. This laminant is the heat exchanger for the two channels of

the secondary heat exchanger. Three alternations of the 5 and 70 laminae flanked

by a No. 4 laminant make up the signal oscillator. A No. 8 blanking plane is next.

The No. 9 laminant provides a chamber which is continually charged and discharged

2-22

4_1	 _1 ..
	 ;4,,,



REPORT L 0341
15 APRIL 1975

FIGURE 2-13 FLUIDIC LAMINAE STACKING ORDER

RFd'RODUC
PAGE IS P

^Ri.

ORIGiN^



FLUIDIC HYDROGEN DETECTOR	 REPORT L0341
PRODUCTION PROTOTYPE DEVELOPMENT
FINAL REPORT	

16 APRIL 1976

by each oscillator to flex the No. 10 laminant which drives the reluctance transducer.

The No. 10 laminant also contains a 0.0225 inch diameter orifice provided to minimize
the effects of fluctuations in vacuum level. Another No. 9 laminant is used to

provide an air gap between the transducer and the No. 10 laminant.
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SECTION 3

DETECTOR ELECTRONICS

Hydrogen detector electronics accepts signals from the reluctance transducers,

within the fluidic sensor, and processes them to provide an output signal which
is proportional to the frequency difference between the two signals. The elec-

tronics also provides thermal control of the fluidic sensor and generates a signal

{

	

	 reflective of system operating status. In this section, a digital processor is

described which gives an output signal proportional to hydrogen concentrations in

the sampled air. Temperature control of the fluidics block by a heater circuit

which senses block temperature to control heater power is explained. A self test

circuit is discussed which monitors critical system parameters and generates a

bilevel signal representative of system condition to assure output signal integrity.

A thermal control asser.ibly is described which contains three thermally activated

system components. Figure 1-1 shows the relationship between these four functions
and the fluidic sensor.

The detector design utilizes state-of-the-art circuits described here at a

functional block diagram level. Detailed circuit analysis can be obtained

from the component manufacturers' data books. Schematics of the three printed

circuit boards and the package are given in Appendix C. Electronic requirements

arz listed in Table 3-1.

3.1 PROCESSOR ELECTRONICS

Initially, the processor electronics design used a phase lock loop to amplify

input signals and the initial output signal requirements were for a nine bit

digital word whose value indicated the hydrogen level present. The reference

and signal frequencies were amplified and filtered in buffer amplifier-filter

stages. These outputs were routed to two identical phase locked loop (PLL) circuits
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TABU 3-1

ELECTRONIC REQUIREMENTS

Function	 Specification

Input Signal

Voltage	 10 my p/p minimum

Frequency	 Between 15 kHz avid 17 kHz

Scale Factor	 Difference frequency between

40 and 50 Hz per percent hydrogen

Power

Voltage	 28 ± 2 Vdc

Current	 1.7 amps including heater power

Output Signal

Voltage	 0-5 Vdc

Scale Factor	 1 Vdc per percent hydrogen

Linearity	 ±20 my of nominal

Sampling Time	 Less than 2.5 seconds

Self Test Signal

Operational	 12 
+0.5 

Vdc

Failed	 0 ± 1.0 Vdc

Heater Control

Temperature	 245 ± 1°F

4
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n

which incorporated divide-by-four counters in their feedback loops such that their

output frequency, Fa , was four times the input frequency. The digital processor

of the ini tial design used the same basic processor as the present design. The

output stage, however, incorporated a buffer storage register and line drives to

provide a nine bit, parallel output, digital word. Changes in system output

requirements and problems encountered with the PLL dictated chan ges that evolved

to the present design.	 j'y

Fundamental to proper operation of the digital processor is control of a timing

gate. Proper control of gate opening permits enough pulses to reach the digital

'

	

	 to analog (D/A) convertor to achieve the desired output voltage. The D/A output

scale factor is one volt per 50 input pulses; therefore, with a system requirement

of one volt per % H 2 , 50 pulses/% H 2 must enter the D/A. A simplified block diagram

of the processor (Figure 3--1) shows difference frequency (,^f) pulses are gated to

the D/A. These Af pulses are generated in a difference circuit which is fed by two

comparators. Low level signals from both transducers are applied to the comparators

whose high gain causes their uutpuL to switch between full on and off. These square

wave signals thus generated are applied to the difference circuit whose output

frequency is equal to the difference between the twc input frequencies. For an

initial explanation it is assumed, with no H 2 present, the two oscillators	
k

operate at the same frequency of 16 kHz, and that the signal oscillator frequency

increases 50 Hz per % H 2 . Under these assumptions, with no hydrogen, the ,f will

be zero and operation of the gate is irrelevant, since open or closed, the D/A

input and thus output will be zero.

With hydrogen present, assume 1%, the signal frequency now becomes 16,050 Hz and

of becomes 50 Hz. Now, control of the gate time is very important. The gate is

opened when the input from the divide by M (:M) circuit is high. This :M circuit

is a switch selectable divide circuit whose input is from the reference comparator.

For the assumptions made, M must equal 32,000 and the frequency of the gate control

3-3
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signal will be 0.5 Hz, which gives a period of two seconds. This means the gate

is open one second and closed one second. During the one second open period, the

gate will allow 50 of the 50 Hz of pulses to reach the D/A, causing a one volt

output signal to be obtained representing one percent hydrogen.

Above assumptions, made to simplify circuit explanation, are not practical in

normal operation. For example, a difference of 50 to 100 Hz is normal between

the two oscillators with no hydrogen present; also, the fluidic sensor scale factor

is not 50 Hz per % H2 , which conveniently coincided with D/A gain. A detailed block

diagram of the processor electronics, given in Figure 3-2, shows the additional

functions necessary to make the processor practical. A Schmitt trigger is used

at the comparator outputs to provide a Last rise time square wave to the difference

circuit which is necessary for proper operation. The :M circuit is now followed

by a divide by 10 {a10} circuit, which was necessary to achieve a capability of

dividing by 100,000 and to provide reset signals. Counter and storage capability is

required at the timing gate output to change the data format from serial to parallel

since the D/A input requires an eight bit binary word. D type latches are used to

provide temporary data storage during that portion of time when the gate is closed.

Without this storage, the output signal would drop to zero while the gate is closed.

A line driver is added to the D/A output to drive some 1,200 feet of line in actual

application. A significant change in this diagram is the addition of up/down

counters and zero offset switches. A third input to the timing gate from the

up/down counters is used to hold the gate closed for a specified period. During

this period, of pulses generated at 0% H 2 , due to the difference between the signal

and reference oscillator frequencies, are blocked from entering the output stages.

As stated earlier, the fluidic sense- scale factor is not equal to the required

scale factor at the D/A input. Therefore, gain must be provided by the processor.

This is accomplished by control of gate times. From the diagram, it is seen that

the of pulses into the gate are defined as D, which is the fluidic sensor scale

factor; i.e., D = of/% H 2 . Also, the D/A input scale factor is shown as N, where

N is the binary word required by the D/A tc give the necessary output scale factor

3-5
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of 1 Vdc/% H 2 . For the selected D/A, N = 50. Since D is nominally about 45, it

can be seen that a gain factor (J) must be incorporated. The derivation of these

parameters is discussed in Appendix D.

The zero offset circuit utilizes up/down counters to count Af pulses which delay

the timing gate opening. These counters are connected in the up mode and their

output goes high when the counter, reaches 255. The counters have jam inputs to

allow a preset number to be inserted. Assuming of = 60 Hz at 0% H 2 , the jam

switches would be set to 255 - J60; therefore, the counter output goes high when

J60 of pulses have been counted. Ncw, with no H Z present, the gate will remain

closed during the period of the first J times 60 of pulses. After these Af pulses

have arrived, the up counters are filled and the output goes high, trying to open

the gate. However, as shown in Appendix D, at 0% H 2 this time equals the on time

of gate pulse T g2 from the ^M circuit which now turns off and no of pulses are

I	
passed to the output stage ,: . When, for example, 1% H 2 is present, the difference

I

	

	 between the fluidic oscillators becomes 105 Hz, 60 Hz due to their difference at

0% H 2 and 45 Hz due to the 1% H 2 . Since Af is now 105 Hz, the zero offset circuit

will hold t:,- gate closed for a period equal to J times 60 Af pulses, after which

it will open. Since Af is 105 Hz, where in the 0% H 2 example it was 60 Hz, the

elapsed time for these first J 60 pulses is less than before. Now, the gate will

open and let a burst of Af pulses through to the output stages. The gate times

are controlled so J times 45 pulses will pass through, or for this example

J = l.illl. Since 1.1111 x 45 = 50, the gate will let 50 Af pulses into the

binary counter, which in turn presents the binary word 50 to the D/A input. With

the D/A scale factor (N) of 1 Vdc out for each binary word 50 in, the output

becomes 1 Vdc; and the system scale factor of 1 Vdc/1% H 2 is obtained. From this

it can be seen that system gain is achieved by applying the factor J to the quantity

of Af pulses which is allowed through the timing gate such that the output circuit

receives 50 Af pulses/1% H 2 . This in effect raises the fluidic sensor output scale

factor D to equal the D/A input scale factor N, or N = JD.

The value to be inserted into the zero offset switches is:

Z = 255 - JX

where: Z = the number inserted into the zero offset switches

J = D system gain factor

3-7
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X = of at 0% H2

and for this example:

Z = 255 - JX = 255 - (1.11111(60)

Z = 188

The value of M can be found from:

J 

M=	
r

5

where: M = number inserted into M switches

J = system gain factor

f  = reference oscillator frequency

and for this example:

M = J f  = (1.1111)(16000)
5	 5

M = 3556

The derivation of these expressions is shown in Appendix D.

During breadboard development of the processor electronics a problem was encountered 11:.:

with the difference circuit. 	 The difference circuit would intermittently generate

an erroneous of and this error was always an increase in frequency. 	 Logic indicated `I

that noise was present at the inputs, which was causing false triggering of the "D"

type latch and generating extra output pulses.	 This was confirmed by viewing of

on a scope where the extra, short duration, pulses could be seen. 	 The solution to

this problem appeared to be a neat circuit board layout as opposed to the bread-

board which had been modified several 	 times and invited noise problems.	 The

design was then committed to a printed circuit (PC) layout to eliminate these
ac

problems.	 After build up of the first set of PC cards, 	 initial	 testing did not

reveal	 the noise problem and it was thought to be solved.	 However,	 further testing

with different fluidic sensors caused the problem to return.	 Since the cause now

could be	 identified with some,	 but not ail,	 fluidic sensors,	 the sensors were _.

investigated.	 After considerable investigation the fluidic oscillator signals i^

were evaluated with a tunable discriminator. 	 The discriminator provided an output n1

voltage which was pr^portional 	 to input frequency.	 This output was then recorded
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on a strip recorder and is shown in Figure 3-3. These traces show that the

instantaneous stability of the fluidic oscillators can vary as much as 30 Hz.

In all previous work with these oscillators the output was viewed on a scope

for wave shape and the frequency checked with a counter. The counter, however,

counted over a one second period and always showed a frequency stability of t 1 Hz,

which was the counter accuracy.

Once this instability was discovered, the difference circuit was modified to

incorporate a delay in the latch reset so instantaneous changes of of could noc

retrigger the circuit.

Processor electronics is contained on printed circuit cards I and 2 shown in

Figures 3-4 and 3	 respecti^nly. Schematics of these cards are provided in

Appendix C.

3.2 HEATER CONTROL CIRCUIT

A thermistor which senses the fluidic hydrogen sensor block temperature is used

to control the pulse width of the power applied to the heating element. A block

diagram of this control circuit is shown in Figure 3-6. The thermistor is located

in one leg of a bridge circuit whose output is sensed by a high gain op amp. Proper

operating temperature is selected by adjusting potentiometer RI until the brid ge is

balanced when the desired temperature is reached. The op amp is biased such that

this balanced condition will provide the Pulse Width Modulator (PWM) with an input

voltage that yields an output pulse with a fifty percent duty cycle. The heater

is selected, or trimmed with a resistor, to where this fifty percent duty cycle

maintains system temperature. Any changes in fluidic block temperature is sensed

by the thermistor which upsets the bridge balance. This unbalance is in turn

sensed by the op amp, amplified and a new input voltage level is applied to the

PWM. This change of input voltage results in a change in output pulse width to

correct the block temperature. The oscillator shown in Figure 3-6 provides the

base frequency to the PWM circuit for modulation. Power transistor Ql is used to

switch heater current.

3-9
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The thermal response of a typical system is shown in Figure 3--7. Although this

curve shows that stability is reached in 80 minutes, it is recommended that during 	 1

normal usage the detectors be allowed a two hour warmup period.

3.3 SELF TEST CIRCUIT

A self test circuit monitors operation of the signal and reference amplifiers and

heater oscillator within the detector. Loss of any one of these would cause the

resulting output to be questionable. By monitoring the signal and reference ampli-

fier outputs, a failure of reluctance transducers, amplifiers, or the Schmitt

trigger circuit can be detected. The most critical of these is a loss of reference

signal which stops the generation of reset pulses. Should the refer nce signal be

lost when the sensor was at null, the most probable condition, and no reset pulses

generated, then the sensor output is locked at null. If hydrogen later becomes

present, the detector output will not indicate this.

The loss of a heater oscillator will cause the fluidic sensor block temperature

to slowly decrease. A decrease in temperature below 212°F places the catalytic

converter in an operating range where the generation of steam cannot be assured,

making the detector unreliable.

Circuit operation of all three detectors is basically the same. The monostable

oscillators shown in Figure 3-8 operate at a slightly lower frequency than the

circuit they are monitoring. Output of the monostable oscillator is high until

the voltage across the capacitor (C) is sufficient to reset the oscillator.

During normal operation the capacitor is continually discharged by transistor (Q)

before this reset voltage is reached, since the monitored frequency is higher than

the monostable oscillator frequency. Should the monitored signal fail, then the

monostable oscillator- will reset, causing the output voltage to drop to zero.

The output voltage of each self test circuit is applied to the input of a nand

gate. When any one of these inputs goes low, the output goes high, indicating

a system malfunction.

Both the heater control circuit and the self test circuit are implemented on

Card 3, shown in Figure 3-4, with a complete schematic giver in Appendix C.

3-14
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3.4 THERMAL CONTROL ASSEMBLY

A potted module, containing three temperature sensitive devices, is bonded to the

fluidic sensor upper manifold. The first device is a thermo fuse designed to open

at 300 t 2°F and remove all heater power, should a malfunction cause a temperature

rise to this level. This level was selected since it is slightly below the KSC
safety requirements for equipment operating in a possible hydrogen ricn atmosphere.

Secondly, this as,embly contains the thermistor used as the control element in

the heater control circuit discussed in Paragraph 3.2.

The assembly's third sensor is a thermocouple brought out to a connector J5 within

the lower half of the package. This thermocouple is not used during normal operation

of the detector, but is provided as a convenience to monitor fluidic sensor block

temperature during test ard calibration. The couple is an iron-constantan type,

which operates the J Type pyrometers.

3-18
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SECTION 4

PACKAGING

The fluidic hydrogen detector packaging concept was selected to meet the basic
I

requirements of: (1) safety - the system had to be either intrinsically safe or

explosion proof; (2) Cost - an inexpensive design was required since a large

number are required; and (3) Maintainability - the package must be designed to

require minimal and simple maintenance.

4.1 PACKAGE DESCRIPTION

To meet the three requirements, two identical cast aluminum boxes are used as

the upper and lower housings. These two boxes are separated by a flat aluminum

plate which has two neoprene gaskets bonded to it. The gaskets form a seal between

the plate and the upper and lower housings, providing two isolated chambers.

Figure 4-1 shows the two housings before the installation of components while

Figure 4-2 shows the housings clamped against the center plate and gaskets by

four latches. Removal of the upper housing, or cover, as shown in Figure 4-3,

allows access to the three printed circuit cards. These cards are installed into

slides on each side and an edge connector at the rear. The edge connectors are

mounted on a single sided printed circuit card which contains a majority of the

package wiring. The center plate and circuit card rack are pictured in Figure 4-4

without the cards installed.

ThL lower housing contains the fluidic sensor s thermal control assembly, wire

harness, and thermocouple connector. A view of the lower housing interior is

shown in Figure 4-5. Access into the lower housing is obtained by removing the

four screws which mount the center plate to the lower housing. The fluidic

hydrogen sensor, shown in Figure 4-6, along with the heater, reluctance trans-

ducers, Wind thermal control assembly, shown in Figure 4-7, are all mounted in a

thermally insulated section of the lower housing. 	 Internal temperature of this

section is controlled to 245°F. The in /out connector and wire harness shown in

Figure 4-7 can be seen installed in Figure 4-5.

The package has a volume of 216 cu. in. and weighs 7.1 pounds.

4-1
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4.2 ACCESSIBILITY AND SERVICE

Access to detector electronics is achieved by the simple removal of the cover.

As can be seen in Figure 4-3, the installation and removal of printed circuit

card for testing, maintenance or service is extremely easy. Troubleshooting is

accomplished, on site, by card substitution and repair by card replacement,

requiring only minutes. Card repair can be accomplished in a laboratory where

time and equipment are available.

Access to the fluidic hydrogen sensor is not accomplished on site, since the

process is more detailed. It is necessary to remove the four screws holding the

center plate and the four screws which secure the sensor mounting brackets. The

sensor is then held only by the tubing fittings at each end. By removing both

fittings, the fluidic sensor can be removed. The entire procedure is detailed in

the Operation and Maintenance Manual and requires less than five minutes.

4.3 SAFETY

To insure a safe design that will not trigger an explosion, the package is con-

tinually purged with compressed air. The purge air raises the internal package

pressure above ambient to eliminate any hydrogen flow from ambient into the

package. A purge rate of 0.635 SCFM is used which completely changes the air

within the package every 12 seconds. Purge flow is controlled by a 0.031 inch

orifice in a voi-shan washer placed in the purge inlet fitting. Purge flow

calculations are given in Appendix G. 	 --

Purge air enters a fitting in the upper housing, reference Figure 4-2, which is

separate and isolated from the lower chamber by four orifices. These orifices

provide a flow path for the purge air into the lower chamber. Also shown in

Figure 4-2 is the purge vent fitting on the side of the lower housing.

4.4 COST

Budgetary cost estimates for the fluidic hydrogen detector in low volume production

is $1500.00 with the cost of materials comprising about half that figure. In high

volume production, 500 units or greater, the cost should drop to about $1150.00.

4-9
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Testing performed on the hydrogen detector or individual components included long 
term environmental evaluation of the fluidic sensors, functional testing of each 
prototype system, and the environmental evaluation of a prototype system. Each 
of these will be discussed. 

5.1 LONG TERM EVALUATION 
To determine the effects of the KSC environment on the fluidic hydrogen sensor. 
five units were built up and operated continuously at a KSC location. The 
sensors were considered to have three possible areas of susceptibility; i.e., 
filter clogging due to dirt and dust, poisoning of the catalysts due to salt 
spray or other contaminants, and degradation of the fluidic elements performance 
due to contamination. 

After build up the sensors were mounted in a temperature controlled enclosur~ 
and calibrated on three hydrogen-air mixtures. Actual values for the mixtures, 
as determined by the manufacturer, were 0.5%,1.08% and 1.87%. Figure 5-1 shows 
a typical calibration curve for a sensor with these gas mixtures. Sensor output 
was determined by using the electronics developed on a previous contract. The 
curve has been corrected for zero since the oscillators were not initially 
operating at the same frequency. Curves for the other four units were remarkably 
similar with the outputs accurate to about ± 0.05% of the actual hydrogen concen
tration, assuming the gas calibration was accurate. These results were satisfactory, 
and the sensors were installed at KSC. 

After installation at KSC, the sensors were recalibrated using ambient air to 
establish a zero reference, and sample gas mixtures of 0.55%,1.03% and 1.98% 
of hydrogen in air. In each calibration run, the sensor outputs were decoded 
using the engineering prototype signal processor, and the processor output 
measured with a digital voltmeter. 
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The signal processor was not calibrated specifically for any one of the five

sensors. Therefore, to establish a consistent method for presenting data, the

baseline data was corrected to make the output zero for the ambient air reading

of each sensor. The correction factor for each sensor was then applied to all

subsequent readings taken on that sensor for both air and hydrogen-air mixtures.

This method allows one to observe any drift in sensor output that may occur from

one reading to another.

A straight line calibration curve was computed for each sensor between the ambient

air zero point and the 1.983 hydrogen-air mixture point. This calibration was

based on the initial calibration and assumed the hydrogen concentration values

supplied by the manufacturer were absolutely accurate. Output levels were then

computed for the 0.55% and 1.033 hydrogen concentrations. These levels are shown

by the horizontal dashed lines across each graph which is labeled theoretical

output on the right hand side of Figures 5-2 through 5-6.

o plot te d  3r 3	 f	 t^	 n 	 signal	 Nrucass;,r output voltage,	 ratherThe	 outputs	 ar	 ^unc., o..	 o f

than hydrogen concentration.	 This was done because the scale factor of the pro-;

censor is fixed and cannot be changed to accommodate small 	 variations in gain'

between the sensors. 	 By using the voltage output,	 a similar scale for all 	 sensors

can be used.	 The sensors were operated continuously from the time of the baseline

data	 reading until	 data point 6 was plotted,	 resulting in an operating time of

approximately 430 hours.	 In addition,	 it is estimated they were oparated inter-
'T.

mittently for about 240 hours while problems with the installation factilities

were being resolved.	 This	 represents a total	 operating time of 670 hours.

Inspection of the data through reading 6 plotted 	 in Figures 5-2 through 5-6

indicates that a 	 large percentage of the data 	 points are within 0.1;" of the

computed	 theoretical	 value.	 If	 linearity only	 is	 considered,	 practically all

data	 points are within this tolerance.	 When	 zero shifts were experienced, 	 the

other data	 points follow the zero	 shift pattern.	 Only with sensor r4 was this

problem pronounced, where the worst case zero shift was a 	 value equivalent to

0.25-	 hydrogen.
F.	 .

r.
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The discontinuity in the theoretical output that appears at reading 7 was caused

by the installation of a new vacuum pump. The original vacuum pump required the

addition of oil almost daily; therefore, an oilless pump was purchased and
1

installed to eliminate this maintenance problem. The second pump produced a

vacuum level which was two inches of mercury lower than the original. This

increase in vacuum resulted in a change in sensor performance. Therefore, to

provide a fair sensor evaluation, new straight line calibration curves were

computed for each sensor between the ambient air zero point and the 1.95%

hydrogen--air mixture. This calibration was based on the data of reading 7,

taken after the new pump installation. These calibration points for the three

hydrogen concentrations are the horizontal dashed lines on each graph from

reading 7 on.

Over 2700 hours of operation, or approximately 14 years at the predicted usage

Nn
rate, was accumulated on the five sensors with no malfunctions. Although zero

shift was experienced with four of the sensors, it should be noted that sensor

linearity normally varied less than 0.10 percent with a few points being within

Y '	 a 0.15 percent range. This is exemplified best by sensor two. Although this

sensor displayed the largest zero drifts, had it been given a zero calibration

a.	 prior to testing, the output would have remained within a O.1u band of theoretical

values in all cases. Performance of the other sensors is comparable.

^a

No failure of sensor components, no indication of catalyst degradation, and no

significant changes in sensor gain or linearity were exhibited by the sensors.

Testing of the five sensors was terminated to investigate the problem of zero

shift being experienced in the units. The evaluation started by confirming the

sensors operated the same at TICO as they did at KSC. Once this was confirmed,

An	 the signal frequency, amplitude, and wave shape of each signal and reference

oscillator was checked at three levels of H 2 concentration. All this was done

Y6	 before the enclosure was opened.
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After opening, a visual check revealed nothing unusual; however, before the sensors

were disconnected, each was flooded externally with H 2 while operating with a pure

air input to determine if the sensors had developed any leaks. No leaks were

detected. Each lead of the reluctance pickups were flexed to uncover intermittent

connections and magnets were checked for proper seating. Tests were made of the

thermal gradient across each sensor for uniformity.

At this point, the sensors were disconnected electrically and pneumatically and 	 }`

removed from the enclosure. Torque levels of the six assembly screws of each

sensor were checked. All were tight. The sensors were then disassembled and

inspected. Contamination was found in both the signal and reference osicllators

of all five sensors. Photographs of each oscillator showed the type, coloring,

distribution patterns, and quantities of contaminant in each oscillator to be

very similar. Figures 5-7 and 5-8 are photographs taken of reference and signal

oscillators of system 6. An analysis of the contaminant was performed by the KSC

Microchemical Analysis Section to determine its makeup. The Microchemical Analysis

Laboratory report is included as Appendix E.

To determine if the observed contaminant had started to clog the three filters

used in each sensor, pressure drops and sensor flow requirements were checked.

System flow and pressure at the four points shown in the schematic of Figure 5-9

were recorded for each sensor. These values were compared to readings taken

previously on new sensors and found to be within the normal variations of a clean

system. The three filters were also removed from each sensor and checked indivi-

dually for clogging. Although contamination was visible on the filters, no

increase in pressure drop across the filters could be detected at flow rates

five and ten times larger than normal. A summary of the filter tests is presented

in Table 5-1, where individual filter pressure drops are shown for a clean sensor

and sensors 2 and 6, those with the poorest and best performance, respectively.

The extensive investigation of system pressure drops and flow requirement was

conducted to determine if a change in mass flow had occurred in the sensors which

displayed a zero shift. Any change in mass flow through either the reference or

signal oscillator will manifest itself as sensor zero shift. If this zero shift

was caused by partially clogged filters, there should be a detectable difference

5-10	 r
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SENSOR

FLOW FILTER POOREST PERFORMANCE BEST PERFORMANCE CLEAN
[SCCMJ P05iTI0N

PRESSURE DIFF PRESSURE DIFF PRESSURE DIFF
(PSIG) (PSIG) (PSIG) (PSID) (PSIG) (PSID)

Input .027 .032 .035

5800 Signal .026 .003 .027 .004 .028 .004

Reference .029 .031 .024

Input .045 .054 .057
8550 Signal .043 .004 .045 .007 .046 .006

Reference .047 .052 .040

Input .065 .077 .082

11250 Signal .064 .005 .064 .013 .064 .005

Reference .069 .077 .059

TABLE 5-1

FILTER FLOW EVALUATION
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between the flow capabilities of the signal and reference oscillator filters.

However, an examination of Table 5-1 shows that sensor 6, which displayed virtually
no zero shift, had the greatest difference in pressure or flow impedance between

.Y,	 the two filters; and sensor 2, which displayed maximum zero shift, had a better

pressure balance between the signal and reference filters

Although the contaminant buildup in each oscillator appeared to be the same, the

exact amount deposited in each is unknown, and even if the quantities were known

and equal, their effect on each oscillator would not necessarily be the same.

This contaminant buildup was, however, suspected to be the primary factor con-

tributing to sensor zero shift.

5:2 FUNCTIONAL EVALUATION

Each hydrogen detector was functionally evaluated after buildup for proper

operation. The units were tested for fluidic sensor scale factor, processor

electronics linearity, complete detector linearity, output scale factor,

operation of the self test circuit, and performance and adjustment of the

heater control circuit. Performance of the following tests is described in

the Operation and Maintenance Manual.

5.2.1 Fluidic Sensor Linearity

Three air-hydrogen mixtures were used to establish the scale factor of each

fluidic sensor. This was accomplished by determining the fluidic sensor differ-

ence frequency for pure air and the three mixtures. These mixtures were certified

standards with concentrations of 0.50, 0.99 and 1.98%. First, the difference

frequency (Af) between the signal and reference oscillators for pure air and the

three hydrogen concentrations was recorded. Then the value of Af at 0% H 2 was

subtracted from each reading giving the actual Af change from zero due to each

concentration. These Af changes were then normalized and averaged to find the

scale factor value of each sensor to be used in switch setting calculations.

.	Lx,

5-15
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5,2.2 Processor Electronics Linearity

Processor electronics linearity was established by applying simulated reference 	 v.

and difference frequencies to the processor from signal generators. First, a

simulated reference oscillator frequency of 15 kHz was applied to the processorq	 y	 pp	 P  	 ^

and the divide by M switches set to 3000. This forced the maximum gate time;

i.e., if -r g = T , to become one second. The zero switches were set to 255, or

zgl = 0; this makes z g	Tg2 and allows all of pulses generated to pass through

the gate. In this mode of operation, a simulated difference frequency applied

to the processor will appear at the D/A input as a binary number equal to that

frequency. Therefore, full scale output can be attained with a Af cf 250 Hz, 	 1

half scale with 125 Hz, etc. Six points were checked on each processor from

0 to 5 volts output in one volt increments. Differences of less than 5 milli-

volts were experienced on all units.

5.2.3 Self Test Circuit

Operation of the self test circuit was insured by disabling the signal to each

detector in the circuit. The input from each reluctance transducer to their

respective amplifiers was shorted to ground sequentially and the output signal

monitored. The heater circuit oscillator output was then shorted to ground and

the self test signal output again monitored.

5.2.4 Heater Control Circuit

Heater circuit operation was monitored from initial turn on of each detector.

until operating temperature was reached and stability achieved. The pulse 	 t p

duration of heater power was monitored along with fluidic sensor block tempera-

ture during warm up. The oscillator frequency and pulse width modulator output

signal were checked under both cold and hot conditions. As the proper temperature

was reached (245°1= ) potentiometer R-1 on circuit board 3 was adjusted to maintain

this temperature. Temperature was monitored throughout the remainder of testing

to detect any shift in operating point. No changes-were observed.
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5.2.5 Detector System

After checkout of the electronics and fluidic sensor, the detector was evaluated

as a system. This entailed the calculation of the values to be set into the zero

offset and M switches and the operation of the detectors on three hydrogen concen-

trations. The same air-hydrogen mixtures of 0.50, 0.99 and 1.98% H 2 were used.

Since the detector output scale factor is I volt per percent hydrogen, the output

voltages ideally would be 0.50, 0.99 and 1.98 Vdc, respectively. Results of the

functional evaluation of each system along with a varying number of additional

checks on each detector are given in Figures 5--10 through 5-15. These figures

show the turn on to turn on stability for six of the seven delivered detectors.

Detector number 3 was used for environmental evaluation and its performance curve

is shown in Paragraph 5.3.

Performance curves of Figures 5-10 through 5-15 are plotted from data taken by

reading detector output with a digital voltmeter. While taking these readings,

output drift was observed when the detector was operated for 30 or 40 seconds at

a given H2 level. To better visualize what was happening, traces were made on an

X-Y recorder. The Y axis was made to sweep at a fixed rate, while detector output

was applied to the X axis. Results are given in Figures 5-16 through 5-19 for

three of the sensors evaluated. Hydrogen concentrations in air of 0.00, 0.50,

0.99 and 1.98 percent were used with each level being applied for 100 seconds.

The smallest incremental change in output voltage in these figures is equal to

20 mVdc, which is the minimum D/A output voltage change. Also, the smallest

duration of voltage change is the duration of minimum system sampling time.

Evaluations were made with both increasing and decreasing hydrogen concentration

levels.

Since the drifts could be caused by either the fluidics or electronics, additional

`	 curves were made to evaluate only the electronics. The detectors were operated

with simulated inputs, as described in Paragraph 5.2.2, for linearity checkout, so

the output voltage was controlled by the of signal generator. A simulated of of

100 Hz was applied, which gives an output voltage of 2.00 volts. Figure 5-20

shows the variations in two system outputs. The single step changes observed in

these curves can be caused by either the D/A, whose output is accurate to within
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one input bit or by instability in the signal generator simulating Af. The slow

drift shown in the upper curve of Figure 5-17 was caused by improper alignment

,•	 of the paper on the X-Y recorder, since the digital voltmeter used to monitor

.,	 the voltage read 2.020 Vdc at the start and finish of this curve. These curves

place the primary cause of output voltage drift on the fluidic sensors.

a	 au

5.3 ENVIRONMENTAL TESTING

An environmental evaluation was performed on the hydrogen detector production

prototype design to establish system susceptibility to a KSC environment. Units

were exposed to temperature, pressure, humidity, salt spray, sand and dust, and

a helium background. Test descriptions, setups, sequences and data sheets filled

out during each test are included in Appendix F.

Detector serial number 3 was exposed to the environments of temperature, pressure.

humidity, and salt spray. To expedite testing, detector number 4 was exposed to

sand and dust, and system number 6 was used in the helium background tests. Two

problems were encountered during environmental testing; i.e., the selection of

N`	 detector number 3 and the use of a particular hydrogen-air mixture.

-	 The tests were conducted using certified air-hydrogen mixtures of 0.50, 0.99 and

1.87 percent. However, the 1.87% mixture proved to be ,questionable. During

environmental testing, output voltages indicating that the 1.87% gas mixture was

2.0% or greater were consistently being observed. An investigation of this showed

the mixture to be in error. A total of 24 tests were conducted on different

detectors using air-hydrogen mixtures of 0.50, 0.99, 1.87 and 1.9K'. In all cases,

the 1.87% mixture and the 1.98`4 mixture gave the same, or very close to the same,

output values. And in each case, when the data was plotted for the four mixtures

and pure air, linearity between the mixtures of 0.00, 0.50, 0.99 and 1.98` was very

good, while the 1.87;0 mixture always fell away from a straight line through the

other points. To make the data which was recorded during environmental testing

usable, an average was taken of the 24 indicated hydrogen levels from the above

tests. This average was 1.99925 percent, which was rounded off to 2.00 percent.

Therefore, in the performa, , .^. curves of system number 3, given in Fi g ure 5-21, a
M	

hydrogen level of 2.00 per_, ': , ' 3r used to presEnz th._ results.
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The second problem encountered during environmental testing could not be easily

rectified. During checkout of detector number 3, prior to environmental testing,

system performance appeared normal; however, as environmental testing proceeded,

a null shift problem became apparent. Examination of Figure 5-21 shows the problem

to be null shift since at any individual set of readings, the linearity is accept-

able. During testing when the changes were observed and conditioning did not

require hours of chamber time, i.e. high and low pressure, the unit was conditioned

and operated on air from within the chamber, then alternately from air external o

the chamber and in both cases, the null shift was observed. This indicated that

the shift was not environmentally caused. Further support of this was verified

with the post Bait spray readings. These readings have the greatest deviation

from normal and they showed a change in of of 19 from the value obtained in

detector checkout prior to environmental testing. This was the first time since

original detector checkout that the system was back into the laboratory where Af

readi^gs could be verified. There is little doubt that the variations observed

durir.g environmental evaluation are the result of null shifts experienced in the

fluidic hydrogen sensor and not caused"uy the environment. To further check this,

detector number 3 was operated under ambient conditions each day for four days

after the final environmental test, readings 15 through 18 of Figure 5-21, and a

null shift was again observed during reading 16. Performance of detector number 3

on an average was within specification as shown in Table 5-2.

Exposure of detector number 4 to a sand and dust environment caused no degradation

in performance. System performance before and after the environment is shown in

readings 3 and 4, respectively, of Figure 5-12. This testing was performed by an

outside laboratory under the procedure given in Appendix F.

Operation of the hydrogen detector with helium background was performed on

system 6. This system was selected since it had demonstrated better null

stability than detector 3. The detector was subjected to five helium background

levels and four hydrogen concentrations at each level. Tha flow requirements for

each gas at the different concentration levels was calculated. To accurately

produce these flow rates, a group of orifices were calibrated. This was done by

applying a known upstream pressure to ar, orifice and collecting the output flow
:; G

7	 }

i	
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H2

Concentration
M

0.00

0.50

0.99

TABLE 5-2

SYSTEM 3 PERFORMANCE

Specification
Range	 Mean	 Standard	 f

(Volts dc)	 (Volts dc)	 Deviation

	

0.000 ± 0.050	 0.020	 0.030

	

0.500 ± 0.050	 0.469	 0.068

	

0.990 ± 0.050	 1.010	 0.066
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in a 400 cc cylindrical flask that was suspended over water. Initially, the flask

^j	 was filled with water and submerged to the water level. When flow was initiated

the flask was withdrawn so the water level inside the flask was the same as the

surrounding water level. This procedure insured that the pressure inside the

flask was atmospheric. The time required to fill the flask was timed with a stop

watch. Three runs were made for each data point, and the results were averaged

to determine the flow rate.

During conduction of these tests, a reduction in output voltage was observed at,

the higher helium concentrations. At first, it was thought that with larger

percentages of helium, there was not enough oxygen present to support complete

hydrogen reduction. The amount of air needed for complete reduction was cal-

culated to be less than that present with the maximum helium level. Another

consideration was the molecular weight of the gas mixture at high helium

concentrations would be less than normal and therefore the fluidic oscillator

frequency will increase. This increase in frequency can affect a•detector in

two areas.

First, if the two fluidic oscillators are not extremely well matched they will

not track, or maintain a constant of at 0% H25 as the level of helium increases.

To check on this, the signal and reference oscillator frequencies were recorded

for the five helium levels with 1.98% H 2 present. Under perfect conditions, the

output voltage should remain at 1.98 Vdc; however, with 70% He background the

output had dropped to 1.466 Vdc. In checking the variations in Af at the different

s	 helium levels, it was found that of had changed 11 Hz over an oscillator frequency

change of over 6700 Hz. This was considerably better than expected, but did not

explain the problem.

The second effect of an increase in oscillator frequency is the resulting change F.J..
F '::	 7

in basic system timing when the reference frequency is changed. From equation (2),

Appendix D, it can be seen that as f  increases, T r decreases and therefore, the

length of time the timing gate is left open is reduced while all other processor

times remain constant. This results in early gate closing and therefore a decrease

in output voltage. To verify this, changes in fr and detector output voltage were

of

z	
5-33	 a
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plotted as shown in Figure 5-22. Although these curves do not coincide, they do

have considerable similarity, implying that variations in f r were the primary

cause of loss in output. Additional confirmation of this was found by calculating

the theoretical output voltage at each helium level for f r values recorded with

a 2% H2 concentration present. These results are given in Table 5-3. The initial

increase in output voltage at five and ten percent helium, in Figure 5-22 and

Table 5-3, were caused by the change in of. Change in of occurred simultaneously

with changes in fr and had a greater effect on output, since the decrease in total

gas mass per unit volume was small at the low helium concentrations. To check

this, the theoretical fr was calculated and plotted with the actual f r , as given

in Figure 5-23. Actual fr increase was slightly lower than theoretical; however,

the calculations were based on perfect gas conditions of constant temperature and

pressure, which may account for this difference.

These tests demonstrate the hydrogen detector can identify H 2 in an atmosphere

with 70% He present. At this level, however, the detector experiences a loss in

scale factor of approximately 25°,b. If high helium concentrations are anticipated,

this loss can be compensated by the selection of alarm levels.

^. v
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TABLE 5-3

DETECTOR THEORETICAL OUTPUT

H	 Recorded	 Number	 Theoretical	 Actual

Concentration	 f 	 Af	 z T g2	 37 T of	 T 	 Into	 Output	 Output
M	 (Hz)	 (Hz)	 (Sec)	 (Sec)	 (Sec)	 D/A	 (VDC)	 (VDC)

0 16099 127 1.0985 0.2913 0.8072 102.5 2.050 1.964

5 16313 129 1.0835 0.2868 0.7967 1	 2.8 2.055 1.983

10 16497 130 1.0714 0.2846 0.7868 102.2 2.046 1.986

30 17429 132 1.0141 0.2803 0.7338 96.9 1.937 1.937

50 19442 134 0.9091 0.2761 0.6330 84.8 1.696 1.700

70 22800 138 0.7752 0.2861 0.5071 69.9 1.399 1.466

:r
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w
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and ,Tg2 = 5M-cr 	of Tg.

T gl = JxTof

The theoretical output is the number

and JX = 37; M = 3537 into the D/A times 0.020 volts the

D/A scale factor.
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SECTION 6

CONCLUSIONS & RECOMMENDATIONS

f

6.1 CONCLUSIONS

q	 The basic program objective to advance the hydrogen detector development from

the engineering prototype stage to the production prototype stage has been

achieved. A detector system has been developed which meets the accuracy re-

quirements, is inexpensive to manufacture, easily maintained, insensitive to

the KSC environment, relatively unaffected by a helium background, and has

demonstrated a long term operational capability.

._	 A detector accuracy of 500 ppm has been demonstrated at hydrogen concentrations

up to one percent and within five percent of reading above that level. This

accuracy has been repeatable in day-today stability evaluation and over long

term continuous operation. When produced in large quantities, the system cost

will be approximately $1150. Detector maintenance is minimal; i.e., periodic

calibrations and annual input filter replacement. These are both accomplished

without removing the package cover or disturbing the package installation.

Environmental testing demonstrated the hydrogen detector capability to perform

in a KSC environment. Evaluation in an atmosphere with a high concentration of

helium revealed a small degradation in performance at concentrations above 30

percent.

. r
6.2 RECOMMENDATIONS

If further effort is to be expended on the fluidic hydrogen detector, two primary

tasks should be accomplished. First, a method should be developed to bond the

eight laminae that comprise each fluidic oscillator. Second, a small sintered

metal input filter should be developed which has an absolute rating of 10 microns

or less.

During the etching process of the active fluidic elements, which make up the

oscillators, tolerances of 0.0002 inch are maintained. These tolerances are

necessary to provide a stable oscillator. Oscillator stability is required

since only a relatively small change in oscillator frequency is experienced per

6-1
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percent of hydrogen. Therefore, a change of only a few cycles in one oscillator

can produce a relatively large erroneous indication of hydrogen. For example,

if a fluidic sensor provides a difference of 40 Hz per percent hydrogen, then a

4 Hz change in one oscillator gives a 0.1% error in the hydrogen level detected.

In this sensor where the error is to be less than 500 ppm, or 0.05%, that means

the two oscillator frequencies cannot change, relative to each other, more than

2 Hz. This extremely tight tolerance demands stable oscillators. It is believed

the zero shift, experienced with some detectors, would be minimized if the oscil-

lator laminae were bonded. Bonding would eliminate minute creeping or slippage

between laminae which can now occur primarily during the thermal cycling from

turn on to turn on.

Investigations to establish the cause of null shift experienced with five sensors

used for long term environmental evaluation revealed a contamination deposit in

all fluidic oscillators. From numerous studies on the effect of contamination

within fluidic elements, performed by MnAC TICO, it is known that a contamination

buildup affects oscillator frequency. Extreme cases have displayed an increase in

frequency of 800 percent. Again, in our application a relative frequency change

of only 2 Hz is acceptable. Therefore, any method to reduce the contamination

rate will extend the operational life.

During evaluation of the filters used in the five sensors the manufacturer of

these filters was contacted and the filtration level established at a nominal

rating of 50 microns. A general rule of thumb for most filters is an order of

magnitude increase in rating from nominal to absolute; therefore, the filters

were considered to be 500 micron absolute filters. Further investigation indi-

cated that two to five micron nominal filters were the smallest sintered metal

filters available.

To minimize contaminant buildup rate in the fluidic oscillators, it is recommended

that a sintered metal filter be developed which has an absolute rating between 5

and 10 microns.

1	 ^s;
^r
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APPENDIX A

	

,	
HYDROGEN SENSOR THEORY

The development of the hydrogen sensor theory will be based on inviscid flog

since it has been shown that this is a valid and reasonably accurate assumption

which also considerably simplifies the mathematics without sacrificing an under-

	

Ls	 standing of the principles. [p

It has been shown that the frequency of a fluidic oscillator is proportional to

the speed of sound in the working gas. This can be stated as:

	

v^	
(1) F = CKM

Where: F = oscillator frequency

	

^.>	 K = ratio of the specific heats of the gas

M - molecular weight of the gas

	,a	C = constant, of proportionality, depending upon the oscillator

physical parameters and the temperature

For hydrogen and air:

KH2 - Kair = 1.4

a

Therefore, for a given oscillator at a specific temperature:

it

(2) F
air ^ C1
	

M 1
	

where C l - ^rl .4 C	 !

air

(air + H2)	
7M(air + H)

	

__	 y

(4) F	 +	 = F	 Mair	
i	 8

	^.	 {air	 H2 )	 air	
M (air + H )2

 
i

which can be restated tur the signal oscillator as: 	 p
s	 i

	

M	 ^
_

	

b	
(5) 

Fs	Fso	 M
{air + H2)!

A-1 	 ,F

a
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Where:	 F s = frequency of the signal oscillator on any air + hydrogen mixture f

F
so - frequency of the signal oscillator on air only

In this application the reference oscillator operates on the exhaust products

of a catalytic converter. 	 Therefore, the equation for the reference oscillator

can be written as:

Mair
a

(6)	 Fr = Fro
	 M

exh.	 gas

Where:	 F r = frequency ofthe reference oscillator for any air + hydrogen

mixture entering the catalytic converter

Fro = frequency of the reference oscillator on air only

F Mexh. -s =	 gas{7}

F

so .,,
F r	

ro	 M (air + H2}
J `^

a^

Since the mass of the gas passing through the catalytic converter does not

-	 change, a mass balance equation can be written as:

Mass (	}
air + H2

(exh gas)
($}	

M	
=Mass

=
exh. gas	 Moles

(exh gas)	
Moles

(exh gas)

If a mole of an air and hydrogen mixture enters the system, then CH 2 moles of

H2 enter the catalytic converter, where CH2 is the concentration of hydrogen

by volume.	 The reaction in the converter is:

(9)	 H2 + 1/2 02 } H2O

which, when expressed in terms of molar concentrations, becomes:l`,

(10)	 CH 2 (H 2 ) + 1/2 CH	 CHCH2(H20)
^..

Therefore, the number of moles of exhaust gas is 1/2 CH 2 less than the one mole

of the air and hydrogen mixture that entered the system. 	 Then:

Mass
(air + H2}

s-	 1

( 11)	 Mexh gas =	 1-1/2 CH
2

RBpRODUCL'3ILjTy OF THE
ORIGINAL PAGE IS POOL

A-2
^	

^
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Since the mass is equal to the molecular weight for 1 mole, one can state:

M(air + H2;

(12) Mexh gas r	 -1/2 CH2

Substituting this value in Eq. (7):
i
i

(13) Fr Fro 
11 -11	

r =_

F s 	 Fsa	
2

Thus, the frequency ratios are related ^y the function11-1/2 	 and are

independent of the composition of the input gas. Therefore, additional gases

in the input mixture, such as helium, should not affect the accuracy of the

instrument as long as there is sufficient air (oxygen) in mixture to support

reaction of Eq. (9). If this function is plotted against the hydrogen concen-

tration, as in Figure A-1, an approximate:y linear function results. From this

figure, it can be seen that:
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APPENDIX S

MANIFOLD DRAWINGS

Drawings of the fluidic hydrogen sensor manifold blocks are presented in this

appendix to provide a complete understanding of flow paths and component

locations.



s

QQ

0

0o	
^^

h	
o

^	
a

aa

t
i
t
^
j
 
Q

`te
e
 4

^^w

RlV
	^
O

W

hV
u^Q

 `
^	

o•

^
L
^
•.-^

t
t^

v

^o
	

y
o

W
^
p
q

^
a

Q
444^^4C

_^:...111

^
QJ

Q
^}

F
IG

U
R

E
 B

-1

B
-
2

FLU
ID

IC
 H

YD
R

O
G

EN
 D

ETEC
TO

R
	

R
EPO

R
T L0341

P
R

O
D

U
C

T
IO

N
 P

R
O

T
O

T
Y

P
E

 D
E

V
E

L
O

P
M

E
N

T
	

j
FIN

AL R
EPO

R
T	

6
 A

P
R

IL
 1

9
7
6

1

h
	

°
o

^i.

u
t
	

i
a	
,
!
f

, 	
—

I-

R
E

P
R

O
D

U
C

IB
IL

I' T 'Y
 O

P
 T

H
l±

;
O

R
IC

-S
A

L
 P

A
G

E
 IS

 P
O

U
R



SAG Zk f 2 Nom E,r

.. ra

X . ZBQE_5P

W 
EEPt

. S[a0

• SOv

^ "

^	 ./^aa x./2s^a
TltB/N6

i #V7 ---^

Ne 7E =
/. To^lQAn/CfS: . XX . 3. Ot

. XXI( • s• ooS
t * £. MArEQ/AL : 7YPi .^01 c.PES c^P

tq v^ 3ALENT

CA

r-,

T
C
fT1

W
N

_ /S9 IO/A C. NO-4 --S
/a _ir 7w. o c ,k.rcEs

ar— /aoo

I

I
.471

2.2¢

.475

CD p0

m C) C)

1 2 ^

^m
OZ
^O
a^m
rF ^
<Ommr

m
Z4

- /ZS O/./ 2NOLES -'
M./TG/LyP/L L fY/T. 3
LH4P MANIA14 J

-f..041

SuPFACE -/N/,SH /7 ^xcBPT

	

ply NOTED•	 -r^ ^--•%

"lam	 -	 [/fJPf•PiL1,4i1//FDLD,BL4C.^
 S,,5 W- 919

wrcvoarwrnLi a43PL10a.Aa
w siraowr Imes coAWe a r

r^-co
1

r•

111{ ^ s ^ ,^„	 FS/^Gb.569

T

r ^
^ O
T ^	 -

..„... _...,.,..	 ..	 ...	 :...,. 	 ..	 -,	 .:	 +,.K+rx?,nv:^:,m.w;a .^...--=.,m 	..	 ^w„...^^..	 K^a.._.y-^,wx>::^:w1iA^•We+^rr^aas .oga.^+ 	̂ °-;3^.•^A9Ni^i^.



—, DooS

.9/Z D/,I.9,yOLES'	 , 7Sa

r-. ^6BQL^ X . /ZS/.11	 ^^ /"_ t	 // TUG/NG	 - y/

t L :r ' T ^' 4	 __ - ^	 *	 ^ .ss,ITC.P^rJL - TT'^` Jot c.PES `- - - - ^

—Z 22 Xxx -aAS.j sacicACE fiNis v i2 j/ rEpy F+- 5516

T_

W C
m
m
w

1 875

y

A

\	 . /25O/^ x , 9(OOEf^ 2 fY,.ICES
M.I 7L-N Ap/G L iY 1N [.444—^R/
N.L4.3/FQC^ BGOC.Ir'

	

A SEE SY Z 	``	 I+----/aOO--^ .

	

87.5	
I

Z. 24

zC

mynn
O^<

Oz

^v^ m

m^r,
O
i
rrl
z

iZ

/ZS DiA x, 30
PEEPo

SEE Sf/ Z LJ k--,-

3.00

D`YE.P iY1Ais^/FGll L^BLD^if

,V,, S,ENSD/P
RIc:ooiarraLL s IDUCS.as
.assxrcWtAC CS COMPAMr

rs-co
.tw.e^.mc a ►r

^ ^	 .^ rSf^00568

m m

D

^ r
r ^

G
wV A

Qi

.F	 r 	 a	 i _,	 ,	 ^ _..	 ..	
j -.o.	 _ ,	 y 	 i	 s 	 ^	 t	 a	 ya;:c^.wy	 ...	 r.,.,...o.,	 p^	 ..



Si

to)
\t 	

q
4
 $O

O
 a

Q
 s

^

^	
w

k
 h
	

^	

V
	

`^
 Q

 Q
	

i

Q
 
G

0
Q

^ O y

h

Q
o
^̂
	

O

Q

	

^
k
	

e

h

a
^

n^

^a



FLUIDIC HYDROGEN DETECTOR	 REPORT LO34"
PRODUCTION PROTOTYPE DEVELOPMENT 	 16 APRIL 197f>
FINAL REPORT

1

R i..

APPENDIX C

i.'
SCHEMATICS

- Schematics of each printed circuit card and package wiring are given in this

appendix.	 Photographs of each printed circuit card are provided.with active j:

circuit components identified.	 The photographs are included to aid in the

translation from schematic to hardware when locating components.
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APPENDIX D

PROCESSOR ELECTRONICS OPERATION

T g = 50HTAf

T g = time gate is open

H = percent hydrogen concentration

(1)

T g2 = 1WEr
	

(2)

T g ry = period of one cycle of control 2 input frequency

Tr = period of reference frequency

M = number selected by M switches

i

T g I = JXTAf (3)

D-1

t-,
Operation of the timing gate, used to control the quantity of difference frequency

Jj
(of) pulses reaching the output digital to analog convertor (D/A), is the heart of

the processor electronics. System requirements for an output voltage of 1 Vdc per

1% H Z coupled with the selected D/A dictate that the D/A input scale factor must

be a binary value of 50 per 1% H 2 . Therefore, the timing gate control signals

must open the gate for a time equal to 50 times the period of one Af cycle, times

the percent of hydrogen present, or:

TAf = period of of

.	 The duration of T g is a function of both T gl and T g2 control signals, as shown

in Figure D-1. The expression for T g2 is:

fThe expression for the delay in T gl coming on is:
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where:	 Tgl = delay period from rise of 
Tq2
 to rise of Tgl

TAf = period of Af

X = Af at 0% H2

J = system gain factor

Gain factor (J) is the ratio between the scale factor of the D/A input (N) and

the scale factor of the fluidic sensor output (D) or:

J = 
D	

(4)

where:	 N = binary number into the D/A/1% N,, to achieve proper
2

output, in present application N = 50

D = Af/1% H 2 from the fluidic sensor

System gain is achieved in the processor by applying this gain factor to the

difference frequency signal. 	 The weighting of Of pulses by the factor J causes

the gate control times to be increased such that J times D Af pulses pass through

the timing gate.	 This means the electronics has made the fluidic hydrogen scale

factor (D) equal- to the D/A input scale factor (N).

From the timing diagram:

Tg 
= 2 

T g2 -	 T gl	 (5)3

where:	 Tg = time gate is open

Substituting equations 	 (1)	 (2)	 and	 (3)	 in	 (5):

50HT of = 5M-1	 - JXTAf	(6)

D-3E'R0?rc$I" orr
'..
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At 0% H2 , H = 0

0 = 5MT r - JXT6f

or
	

5MT r = JXTof

Solving for M:

J X-C Of
M _ 

5T r

r

Jof fr
Substituting	 M = 50

J 
or	 M - 5r	 (7)

Equation (7) becomes the method of determining the M switch settings when
calibrating a system.

Equation (3) was introduced earlier; however, implementation was not discussed. 	 ';I

Figure D-1 shows of pulses entering two up/down counters, which also have an input

from the zero set switches. These counters, used in the count up mode, will provide
an output level change when switch inputs plus some quantity of of pulses total 255.

The function of this circuit is to delay the start of T g for a period of time equal

to the period of XAf pulses, times the system gain factor, or:

T gl = JXTaf

The zero offset switches are connected to the up counter jam inputs, and each

time the counters are reset the switch values are preset into them. Mathemati-

cally, the output goes high when:

Z + JX = 255

D-4	 ,:

?a lso at 0% H2 , X = Af by definition, T r = -	 and Tof	
1
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where:	 Z = nw:!ber selected by zero offset switches,

and the time it takes for this to occur is JXT of .	 Rewriting equation (7) gives

the method of selecting the zero offset switch values.

Z = 255 - JX (9)

To show how equations (7) and (9) are used to calibrate a system, typical system

parameters will	 be assumed.	 From initial testing of a sP	 9	 stem theY reference

frequency, difference frequency at 0% H 2 and change in difference frequency per

percent hydrogen are known. 	 Therefore:

Let,	 fr = 16 kHz

X = 60

D = 45

And from the chosen D/A and output scale factor

N - 50

From equation (4)

.^._

J= D - 45 =	 1.1131 y

From equation (7) the -M switch values are:

M =	 fr = 
1.1111	 x 16,000

5	 5

M = 3556

p:

-	 -

From equation	 (9) the zero offset switch values are:

Z = 255 - JX

Z = 255 - 1.1111	 x 60

^V
Z	 188

D-5

':
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st6

Eight switches are provided in component U10 where the values for 7 are inserted

t

as a binary number, with switch no. 8 the most significant bit. Values of M are

inserted in the switches of components Ull	 and U12. These values are entered as

a binary coded decimal as follows. P	 '
^^ F

Component Switches	 LSB MSB Value

U12 5,6,7,8 5 8 1000'"

U12 1,2,3,4 1 4 100

Ull 596,7,8 5 8 10

Ull 1,2,3,4 1 4 Units

TABLE D-1

M SWITCH FUNCTIONS

To demonstrate the effect of different hydrogen concentrations on system timing,

Table 0-2 has been developed using the assumed values from above..

s

4

4

D--6



n

^H 2
Signal

Frequency
Reference

Frequency - of

Pulses

Required

at D/A

1

2 T g2

[5ec

Tgl

Secs
T 
Sec

Tof

Sec

Pulses

Reaching
D/A

0 16060 16000 60 0 1.11125 1.11110 0.00015 0.01667 0.009

1 16105 16000 105 50 1.11125 0.63491 0.47634 0.009524 50.01

2 16150 16000 150 100 1.11125 0.44444 0.66681 0.006667 100.02

Q
V

andc_
^00

oa-4=0o
^a
DM
OZ
ze,a
d!j
m
vnM-4
Gfl
M ^o

0
M

TABLE D-2 SYSTEM TIMING TABLE

n	 P	

R.	

G	

_	 I

Given or calculated constants:

X = 60 The number of pulses passing through the a
gate to reach the D/A will be:

0=45

J = 1.1111
I Tof

M = 3556

'-1

Z = 188

l"

r

js
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APPENDIX E

CONTAMINANT ANALYSIS

MICROCHEMICAL ANALYSIS SECTION
SO-LAB-32, Room 1274, 0&C Building

NASA/hSC
Oct. 8, 1975

SUBJECT:	 Analysis of Contaminants on Oscillator Plates

LABORATORY REQUEST NO: MAS-6734

RELATED DOCUMENTATION:	 DAANO1-68-C-0282

1.0 Foreword

1.1 Requester:	 R. bright/MDAC/257-4100 Ext. 7467

1.2 Requester`s Sample Description: 	 Dirt on oscillator plates
(1) Top, #1 and #4 (2 Plates Each)
(2) Bottom, #1 and #4 (2 Plates: Each)

1.3 Requested:	 (1) Chemical analysis of contaminant
(2) SEM for rough estimate of particle size

Chemical Analysis and Results

2.1 Procedure

(1) The contaminant on each of the plates was noted to consist of

^b
dark and light zones.

A composite sample of each of these zones was randomly selected
from the contaminated surface region of each. pair of plates and
was analyzed by an electron microprobe technique.

(2) X-Ray diffraction analysis was performed on a composite sample
of light and dark zone contaminant from the Top #4 Plates.

(2) SEM was performed on the Top #4 Plates.

t=	
E-1

^I
z^
^i
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2.2 Results

2.2.1 Electron Microprobe Analysis

i

I
E

r	 _

l

^s	 'E

i

^o

7	 9	 !	 7

possible traces of Pd.	 ^n

A comparison of element relative concentrations in the
light and dark contaminant zones reveals the following
differences:

^	 3

Light Zones: Relatively greater C1 concentration;
lower Fe, r, Ni concentrations.

Dark Zones: Relatively greater Fe, Cr, Ni concentrations;
lower C1 concentration.

	

	 a

L
2,2.2 X-Ray Diffraction Analysis 	 -^

!	 f	 ^

(1) Composite sample of light and dark zone contaminants,
Top #4 Plates.

A computer search of the X-ray data suggests the following
possibilities:

1. FeS2
3

2. (,NH4) 2 Fe(S03) 2	H2O

X

1

y	 ,

F-2	 i
A.

V^

(1) Four Composite Samples of Contaminant From Light Zone.:

Top #1. Plates, Top #4 Plates, Bottom #1 Plates, Bottom
#4 Plates

All four samples generally similar, containing hetero-
geneous major S, Si; low major to strong minor Ca, Cl,
Fe, K; low minor to strong traces Cr, Ni; traces Cu, Zn,
Ti; and possible traces of Pd,

(2) Four Composite Samples of Contaminant From Dark Zone:

Top #1 Plates, Top #4 Plates, Bottom #1 Plates, Bottom
#4 Plates.

All four samples generally similar containing hetero-
geneous major S, Fe, Si, Ca; low major to strong minor
K • minor to trace Cr Nit traces Cu Zn Ti Cl! and
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2,2.3 SEM Examination of Contaminant on Top 7#4 Plate

(1) The single particles range in size from approximately
0.5 microns to 3.0 microns.

(2) Particle clusters range in size from approximately 3.0
-	 microns to 20.0 microns in their longest dimension.

(3) The bulk of the particle; measure between 0.5 and 3.0
microns.

(Photomicrographs are attached to report)

3.0 Conclusions

-^ 3.1 The oscillator plate contaminants are speculated to consist prir,,arily
of an aggregate of environmental debris and steel corrosion products.
The observed element distributions and relative concentrations in

r

f'

'	 the contaminant suggest the following:

w	
(a)	 Principal	 Environmental	 Debris:	 Sand	 (Si02 ), Salt (HaCl),

^.	 Coquina	 (CaCO3).

.	 (b)	 Principal	 Steel Corrosion Products: 	 Iron oxic:es, iron sulfides.

3.2	 The bulk of the particles comprising the contaminant range in size
from approximately 0.5 microns to 300 microns.

Particles clusters, ranging in size from approximately 3,0 r,icrons
in their longest dimension, were also observed in the contaminant
population.

r Chemist:	 ^',	 9
R. Gurton

1	 i

Approved:

I

J. F. Jones

z;

E-3	
.;

g	 _
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APPENDIX F

ENVIRONMENTAL. TEST PROGRAM

Environmental testing was conducted to demonstrate the ability of the design

verification detector to sense the required range of hydrogen concentrations

in a simulated launch environment.

f_a

ut7

_v

Prior to each environmental test described below the design verification sensor

was subjected to a baseline performance test. In this test the unit was supplied

with calibrated mixtures of air and hydrogen of 0.5, 0.99 and 1.87% H 2 and the

output recorded.

The environments to which the design verification sensor was subjected and the

procedure used for each environment are:

1. Temperature

a) Place the test item in the test chamber with applicable instrumentation.

b) Raise the test chamber to 150"F and maintain until temperature stabili-

zation is attained; run the unit at a minimum of three hydrogen levels

and record performance.

c) Return the test item, nonoperating, to standard ambient conditions and

restabilize.

d) Repeat baseline test.

e) Place the test item in the test chamber with applicable instrumentation.

f) Lower the test chamber to 0°F and maintain until temperature stabilization

is attained, run the unit at a minimum of three hydrogen levels and record

performance.

g) Return test chamber to ambient conditions and stabilize.

h) Repeat baseline test.

2. Pressure

a) Place the test item in the test chamber with applicable instrumentation.

b) Increase pressure in chamber to 31 in. Hg absolute, operate unit at a

minimum of three hydrogen levels and record performance. Return chamber

to ambient.

c) Repeat baseline test.

F-1
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d) Return test item to test chamber with applicable instrumentation.

e) Lower pressure in test chamber to 29 in. Hg absolute, operate unit

at a minimum of three hydrogen levels and record performance. Return

chamber to ambient.

f) Repeat baseline test.

3. Humidity

a) Place test item in humidity chamber with applicable instrumentation.

b) Gradually raise internal chamber temperature to 100°F and the relative

humidity to 95% over a period of two hours.

c) Maintain condition for not less than six hours.

d) Maintain 80% relative humidity, or greater, and reduce internal chamber

temperature to 80°F for 16 hours.

e) Operate unit at a minimum of three hydrogen concentrations, record data.

Return chamber to ambient.

f) Repeat baseline test.

4. Dust

The dust test will be performed using equivalent 140 mesh silica flour.

a) Place test unit in test chamber at 75°F and less than 22% relative

humidity. Adjust air velocity to 1750 ± 250 feet per minute. Adjust

dust feeder to control dust concentration to 0.3 ± 0.2 grams per cubic

foot. Maintain conditions for six hours. Unit nonoperating.

b) Turn off all controls; allow chamber to return to ambient conditions.

Remove accumulated dust from test item by brushing, Wiping, or shaking;

care should be taken to avoid introduction of additional dust into the

test item.

c) Operate unit at a minimum of three hydrogen concentrations, record data.

d) Repeat baseline test.

F-2
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5.	 Various Gas Backgrounds

Performance of the design verification sensor will be determined for gas

mixtures conta ining W	 H	 and	 i a i r as specified in the following table.2,	
e

Percents are by volume.

Test	 Air	 He H2

1	 Balance	 5 0.5

Balance	 5 1.0

Balance	 5 2.0

2	 Balance	 10 0.5

Balance	 10 1.0

Balance	 10 2.0

3	 Balance	 30 0.5

n Balance	 30 1.0

Balance	 30 2.0

4	 Balance	 50 0.5

Balance	 50 1.0

^ c Balance	 50 2.0

5	 Balance	 70 0.5

Balance	 70 1.0 -`

Balance	 70 2.0

After the five tests outlined above, the unit will be subjected to a baseline

test as before and the results compared to determine the effect of helium in

the atmosphere.	 The test setup is shown in	 Figure F-1.

6.	 Salt Spray

In the salt spray test the solution shall be a 5% salt solution prepared by a

dissolving five pounds of salt in 95 pounds of distilled water. 	 The fog rate

shall	 be 0.5 to 3 milliliters 	 of solution per' hour for each 80 square centi-

meters of horizontal collecting area.

7
F-3

yLL ^
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a)	 Place the test unit in the salt spray chamber.

b)	 Establish salt fog and stabilize flow conditions. 	 Expose the test

unit for 48 hours.

cj	 Remove test unit and operate at a minimum of three hydrogen concentrations;

record data.

d)	 Allow unit to air dry for 48 hours.	 Repeat step c. r

e)	 Repeat baseline data.

The testing sequence and system exposed to each environment is shown in Figure

F-2.	 Results of each test are contained in the data sheets on the following

pages of this Appendix.	 The detectors were connected in the test chamber as

shown in Figure F-3 for the environments of temperature, pressure and humidity.

The connections for salt spray and sand and dust are given in Figure F-4.

F-5
y
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SYSTEM 3

PRESSURE

SYSTEM 6

LOW TEMPERATURE
HELIUM
BACKGROUND
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HUMIDITY
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SALT SPRAY
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FIGURE F-2 ENVIRONMENTAL TESTING
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HYDROGEN SENSOR

ENVIRONMENTAL EVALUATION

DATE	 3/3/76

SYSTEM NO.	 3	 ENVIRONMENT	 Temperature

VACUUM LEVEL	 17.5	 in. Hg

TEMPERATURE	 245	 OF

H 2

OUTPUT VOLTAGE

Pre-test

Ambient 150°F

Post Hi Temp
Ambient

*
0°F

Post Lo Temp
Ambient

0 0.053 0.057 0,053 -0.010 -0.008

0.50 0.512 0.517 0.511 0.429 0.391

0.99 1.072 1.062 1.072 0.969 0.951

1.87 2.132 2.123 1	 2.131 2.008 1.989

DATE
	

3/3/76
	

3/3/76	 3/4/76	 3/5/76	 3/5/76

TIME	 14:20	 18:30	 01:30	 13:05	 17:30

COMMENT:

*Chamber would not operate properly at low temperature. Proceeded to pressure

test between hi and to temperature. Therefore, pre-lo temp ambient test results

are post-lo pressure ambient readings.

F-9
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HYDROGEN SENSOR

ENVIRONMENTAL EVALUATION

DATE	 3/4/76

SYSTEM NO.	 3	 ENVIRONMENT	 Pressure

VACUUM LEVEL 	 17.5	 in. Hg

TEMPERATURE	 245	 tir

% H2

OUTPUT VOLTAGE

Pre-Test
Ambient 31" Hg

Post Hi Press.
Ambient 29" Hg

Post Lo Press.
Ambient

0 0.013 -0.007 -0.007 -0.007 -0.007

0.50 0.452 0.432 0.393 0.373 0.372

0.99 1.013 0.973 0.912 0.911 0.912

1.87 2.072 2.032 1.992 1.992 1.992
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HYDROGEN SENSOR	 t

ENVIRONMENTAL EVALUATION

DATE 3/8/76

SYSTEM NO.	 3	 ENVIRONMENT	 Humidity

VACUUM LEVEL	 17.5	 in. Hg

TEMPERATURE	 245	 OF

H2

OUTPUT VOLTAGE

Pre-Test
Ambient

80% Rel.	 Hum.
80°F

Post-Test
Ambient

0 -0.007 x-0.012 +0.051

0.50 0.430 0.489 0.508

0.99 0.969 1.047 1.066

1.87 2.025 2.101 2.140

4

DATE	 3/8/76	 3/9/76	 3/9/76

TIME	 08:10	 09:25	 13:30



y

	

FLUIDIC HYDROGEN DETECTOR	 REPORT L0341
PRODUCTION PROTOTYPE DEVELOPMENT 	 16 APRIL 1976
FINAL REPORT j

HYDROGEN SENSOR

ENVIRONMENTAL EVALUATION
L :i

DATE	 3/9/76

...	 V!	 w,
SYSTEM NO.	 3	 ENVIRONMENT	 Salt Fog

VACUUM LEVEL	 17.5	 in. Hg	 Started 13:30 - 3/9/76 	
m.

TEMPERATURE	 245	 OF

H 2

OUTPUT VOLTAGE

Pre-Test
Ambient

Post Test
Wet

Post Test
Dry

0 +0.051 +0.374 +0.025

0.50 0.508 0.910 0.521

0.99 1.066 1.429 1.060

1.87 2.140 2.444 2.115

DATE	 _ 3/ 9/76_ _ -	 3/11/76 	 3/ 13/76

TIME	 13:30	 14:35	 14:30

of = 82	 of = 65

COMMENT: Post Test Wet; Temp. 230°F, cannot analyze until after Post Test Dry
on 3/13.	 (3/11)

i

Problem may be just wet thermocouple wire since power supply current is correct. 	
3

(3/11)

3/12 Temperature reads correct today; suspect wire was wet.
3/12 of today = 100.	 r

3/13 System looked good today; temp. was correct, problem was thermocouple wire
since it is double cloth covered.

F-12
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HYDROGEN SENSOR

ENVIRONMENTAL EVALUATION

DATE	 3/15/76

r ; SYSTEM NO.	 3 ENVIRONMENT Ambient

VACUUM LEVEL 	 17.5 _.	 in.	 Hg Check of system drift with heater

TEMPERATURE	 245	 O F left on continually.
t

o  H 2

OUTPUT VOLTAGE

0 +0.024 +0.086 +0.025 +0.027

0.50 0.540 0.621 0.481 0.523

0.99 1.039 1.139 1.019 1.042

1.87 2.093 F2.153 2.093 2.077

;n	 DATE	 3/15/76 3/16/76 3/17/76 3/18/76

a^	
TIME	 12:00 14:05 10:10 15:00

-

of = 65 of = 67 df = 65 Af = 65

COMMENT:	 3/19	 Sent to lab for cleaning. When returned insure switch settings

are correct.

A

~ F--13



DATE	 3/2/76	 3112/7§	 a

TIME	 10.20

H2

OUTPUT VOLTAGE

Pre-Test Post-Test

0 +0.012 +0.013

0.50 0.453 0.416

0.99 1.016 0.934

1.87 2.081 2.024

COMMENT:



%H
e

H 2

OUTPUT VOLTAGE

0 5 10 30 50

0 0.012 0.033 0.011 0.0!0 0.012

0.5 0.456 0.519 0.523 0.445 0.465

1.0 0.968 1.018 0.987 0.948 0.872

2.0 1.964 1.983 1.986 1.937 1.700

SIG
a-

16226 16442 16627 17561 19576
-

Check
at	 REF
2% Hz

16099 16313 16497 17429
-

19442

T	 RIFF 127 129 130 132 134

° 	 COMMENT:

Due to loss	 in gain at high He concentrations made check of f s & fr at 2% H2.

^e

i

F-15



REPORT L0341

16 APRIL 1976

% He

% H2

OUTPUT VOLTAGE

70

0 0.011

0.5 0.326

1.0 0.740

2.0 1.466
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FINAL REPORT

HYDROGEN SENSOR

ENVIRONMENTAL EVALUATION

DATE	 3/23/76

SYSTEM NO.	 6	 ENVIRONMENT	 He Background (Continued)

VACUUM LEVEL	 17.5	 in. Hg	 ^,,	 n

TEMPERATURE	 245	 of
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APPENDIX G

GAS DYNAMICS

HELIUM BACKGROUND CALCULATIONS

it was mentioned in Appendix A that the frequency of a fluidic oscillator is

proportional to the speed of sound in the fluid flawing through it. 	 Thus,

f = c where f = frequency

c = speed of sound in fluid

c = kg3^RT where k = ratio of specific heats of gas

flowing
g = acceleration of gravity

R = gas constant for gas flowing

T = temperature of gas flowing

It is assumed that temperature remains constant; the speed of sound is

proportional to the product kR which is a function of the mixture of gases

flowing.

q-4

Figure G-1 presents a graphical representation of the five test mixtures used

when H 2 = 2%.

Table G-1 summarizes the calculations made for frequency variation for the five

mixtures.
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FIGURE G-1 TEST MIXTURES :> WPRODUCIBILITY OF THE,
C;I7.GUNAL PAGE IS POOR,

G-2



^ L^^

..^ M
m

oz'" ojmM
^^ ma^
M MrO
m
z

w

Mixture

it
8H2

% by Vol.

sHe

% by Vol.

Bair

% b	 Vol.

Rmix

ft lbf/lbm°li

kmix kmixRmix
% Increase

In Frequency

1 2 5 93 56.797 1.411 8.952 2.57

2 2 10 88 59.52 1.419 9.190 5.29

3 2 30 68 73.73 1.455 10.357 18.66

4 2 50 48 96.64 1.499 12.036 37.9

5 2 70 28 141.01 1.552 14.79 69.45

*Based on frequency of a mixture of 2% H 2 and 98% air by volume.
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C;?7	 J

Sample Calculation for Gas Mixture #3

Given:	 The gas mixture consists of 2% by volume hydrogen, 30% by volume helium,

and 68% by volume air.

The following data is taken from Young's "Basic Engineering Thermodynamics", j

McGraw-Hill.

Gas	 Mol. Wt.	 Gas Const. Cv	 k'

Hydrogen	 2	 766.6 3.42	 2.43	 1.41

Helium	 4.002	 386.0 1.25	 01755	 1.66

5

Air	 28.97	 53.3 0.240	 0.171	 1.40
^a

where Cp = specific heat at constant pressure

CV = specific heat at constant volume

k	 = ratio if specific heats = Cp/Cv

The first step is to convert from percents by volume (B) to percents by weight (G).

BH2MH2

GH2 + B
	
airBH2MH2 +BHeMHe ^nai r

BHe MHG	 = e u .

BHeMHeHe	
BH2MH2 +
	 + B air Mair

_	 $airMG	 air

.y

+ BMair
air	 B

H
 MH	

+ BH 
MH

air2	 2	 e	 e

where B	 = % by volume hydrogenH2;a

i
GH	 = % l:y weight hydrogen

2

MH	= molecular weight hydrogen

r 2

nPRODUGIB Lyry OF THE

• y	 Y TS PWRrri z - ^L PAGE
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G	 _

	

0.02(2)
H2 -	 02(2) +	 .3(4.002) +	 .68(28.97T

0.00191=.191%

^ 	 G	 =	 ^3(4.00
+	 28.97

= 0.0573 = 5.73%
'.He

	
.02(2) +	 .3(4-002)	 068

0.68(_2.8.97)
Ga 	 7O-i r	 2	 + . 3 4.002	 + . 58 X28.97 = 0.9408 = 94.08% f

Rmix - GH2RH2 + GHeRHe + GairRair

= 0.00191(766.6) + 0.0573(386) + 0.9408(53.3) = 73.73

C	 = G	 C	 + G	 C	 + G	 C
H2	 He	

air fairmix	
PH2	 PHe

= 0.00191(3.42) + 0,0573(1.25) + 0.9408(.24) = 0.3039

Cvmix - 
GH2CvH	 + GHeCvH	 + Gaircvair

2	 e

= 0.00191(2.43) + 0.0573(0.755) + 0.9408(.171) = 0.2088

C
pmixk	 _	 = 0.3039 = 1.455

mix	 C v	 0.2088
mix

kmî  =	 1.455 x 73.73 = 10.357

% increase in f = 10.357 = 18.66%8.728

wi

E
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PURGE CALCULATIONS

KSC safety requirements dictate that enclosures containing possible ignition

sources in a possible explosive atmosphere must be subjected to a continuous

purge during hazardous operations, ref. DTI-M-23.

Purge Requirement:
s

Flow Rate - 0.5 to 1.0 SCFM through enclosure to atmosphere

Min. Pressure - 0.5"H 20 positive pressure, enclosure to atmosphere

Calculation based on purge source being a regulated supply (50 psig) of nitrogen	 =°

with 10°F dewpoint.

The purge philosophy chosen has the purge flow (50 psig dry N 2 ) entering the

purge inlet fitting, which incorporates a flow control orifice, into the

electronics half of the detector assembly which will be maintained at 2.0"H20

gage with respect to ambient. From thle el ectr-ort i cs side of detector purge flow

will	 enter the sensor half via flow orifices; the sensor side will	 be controlled

to 1.0"H 20 gage with respect to ambient.	 Finally, the purge flow will 	 exit the

detector via the vent outlet orifice to ambient.	 Thus, the pressure differentials

are such that infiltration of ambient gases into detector is precluded as is

infiltration of gases from sensor side of the detector to the electronics side.

A schematic of this system is given in Figure G-2.

Flow Conditions for Orifice "A"

P 1	= 50 psig P2 = 2.0"H 20 gage

Q = 0.5 - 1.0 SCFM
iite

te

^1,	 F

Orifice Size Selected D = 0.031"

Q = 0.635 SCFM
+J'Fr'([L

i

G-6 ^	 R
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