
i

NASA TECHNICAL

MEMORANDUM

NA SA TM X- 73307

ASTRONAUTIC STRUCTURESMANUAL

VOLUMEIII

(NASA-T _-X-733|. 7) AS_FCNAUTIC ST?UCTUE_S

HANUA/, 90LU_E 3 (NASA) 676

00/98

N76-76168

Unclas

_4u02

Structures and Propulsion Laboratory

August 197 5

NASA

marshall Space

Space

_..,=-- I'IASA ST| FAClUiY '-"'

\% i.Pu_B_.c. i/

Flight Center

Flight Center, Alabama

MSFC - Form 3190 (Rev June 1971)





NASA TM X-73307

TECHN_,_AL REPORT STANDARD TITLE PAGE

2. GOVERNMENT ACCESSION NO. I 3. RECIP)ENT'S CATALOG NO.

15. REPORT DATET'.TLE "NO SUBTITLE

ASTRONAUTIC STRUCTURES MANUAL

VOLUME Ill

A____ust 197 5
6. PERF0qh_ING DPGANIZATION CODE

7. AI;T ur'P : 8._i-'_FORMING O_CANIZATIL')N REPD_r

t 9 _"PFC'-'.'ING ORGANIZATION NAME AND ADDRESS 10. _©Pt_ UNIT NO.
i •

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

" " S;-{,_JRING _,_JZ_N_,Y NAME AND AI3nREc;S

t National Aeronautics and Space Administration

i Washington, D.C. 20546

1. CONTRACT OR GRANT NO,

13. TYPE OF REPRR'_ & PERIOD COVE_ED

Technical Memorandum

I.% " ",,_O_," L, A,SENCY CCDE

• : ", '_LEMENTA:(" NCTLS

i , .

I

Prepared by Structures and Propulsion Laboratory, Science and Engineering

! This document (Volumes I, II, and III) presents a compilation of industry-wide methods in

; aerospace strength analysis that can be carried out by hand, that are general enough in scope to

I cover most structures encountered, and that are sophisticated enough to give accurate estimates

I of the actual strength expected. It provides analysis techniques for the elastic and inelastic
P

stress ranges. It serves not only as a catalog of methods not usually available, but also as a

i reference source for the back_zround of the methods themselves.

i An overview of the manual is as follows: Section A is a Keneral introduction of methods
used and includes sections on loads, combined stresses, and interaction curves; Section 13 is

devoted to methods of strength analysis; Section C is devoted to the topic of structural stability;

Section D is on thermal stresses; Section E is on fatigue and fracture mechanics; Section F is

on composites; Section G is on rotating machinery; and Section H is on statistics.

These three volumes supersede Volumes I and II, NASA TM X-60041 and

NASA TM X-_on42, respectively.

17. KE_ WC_DS

OR_GII,_AL P._,.C._ ,Z,
OF POOR QUALITY

!0. DI_T/{IGUT" "_ 5,,:T__',. :

Unclassified -- Unlimited

19. SECURITY CLASSIF.(of thll report_

Unclassified

SECURITY CLAS3IF. (,J _htl pa{_)

Unelas sifted

• -_I. "_3. OF _;,,ES 22. PRICf

673 NTIS

MSFC- Form 3292 (R..v December 1972) F'.)r,_ale by National 'reehnicnl lnf,,rm :,on ¢. ..,,,. c; i rm.-fi,'hl, Vir_,ini;, 221¢1



._i-



APPROVAL

ASTRONAUTIC STRUCTURESMANUAL

VOLUME III

The information in this report has been reviewed for security classifi-

cation. Review of any information concerning Department of Defense or

Atomic Energ:/ Commission programs has been made by the MSFC Security

Classification Officer. This report, in its entirety, has been determined to

be unclassified.

This document has also been reviewed and approved for technical

accuracy.

A. A. McCOOL

Director, Structures and Propulsion Laboratory

•t_ U.S. GOVERNMENT PRINTING OFFICE 1976-641-255,P448 REGION NO. 4



j



TABLE OF CONTENTS

Do THERMAL STRESSES ........

1.0

2.0

3.0

INTRODUCTION ....................

THERMOE LASTICITY ..................

2.0.1 Plane Stress Formulation .............

2.0.2 Plane Strain Formulation .............

2.0.3 Stress Formulation ................

2.0.3.1 Sohuli,'m (,f AiryVs Stress Function .....

I. Plane Stress .............

II. Plane Strain .............

STRENGTIt ()1,' MA'I'I,:I{IAI,b S()I,U'II()NS ..........

3.0.1 Unrestrained I_eam-Therm'd I,oads ¢)nly ......

3.0.1.1 Axial Stress .............

3.0.1.2 lfisl>lace)nmlts ..............

Page

1

1

3

3

4

4

5

5

5

7

7

7

:)

3.0.2 l/cstrained Bealn--Thernml I_(m(ls ()r, ly . ...... l(i

3.0.2.1 Ewlluation()f InteRrals for Vqrying

Cross Sections .............. 12

, • ) l,:xamples ........ 143.0.2.2 l,cstr;ine(1 Beam

Io

II.

lIl.

IV.

Simply Supported Beam ........ 14

Fixed- Fixed L_mm

F ixe d- 11in ged Be a m

......... 53

......... 56

Deflection Plots ........... 58

D-iii



TABLE OF CONTENTS (Continued)

Page

3.0.2.3 Representation of Temperature

Gradient by Polynomial .......... 70

I. Example Problem 1 .......... 74

II. Example Problem 2 .......... 76

3.0.3 Indeterminate Beams and Rigid Frames ....... 78

3.0.4 Curved Beams .................. 80

3.0.5 Rings ...................... 80

3.0.6 Trusses ..................... 80

3.0.6. i Statically Determinate .......... 80

3.0.6.2 Statically Indeterminate .......... 8i

3.0.7 Plates ...................... 81

3.0.7.1 Circular Plates .............. 81

I. Temperature Gradient Through
the Thickness ............ 81

II. Temperature Difference as a Function
of the Radial Coordinates ..... 91

III. Disk with Central Shaft ........ 101

3.0.7.2 Rectangular Plates ............ 104

I. Temperature Gradient Through
the Thickness ............ t04

II. Temperature Variation Over
the Surface ............. 119

D -iv



4.0

TABLE OF CONTENTS (Continued)

3.0.8

Page

Shells .................... . . 131

3.0.8.1 I,_(_tr()pic Circular Cylindrical Shells .... 132

],

II.

IlI.

Analogies with Isothcrnml Pcoblems . 133

Thermal Stresses and l)cllcctions--

Linear Radial Gradient, Axisymmctrie
Axial G radie.nt ............ 149

Thermal Stresses and Deflections--

Constant l{adial Gradient,

Axis 5 mmetrie Axial Gradient ..... 170

3.0.8. '2 lsotropic ('onical Shells ..........

3.0.8.3 lsotropie Shells of Hevolution of

Arbitrary Shal)e .............

I. Sphere Under l{:,lial Temperature

Variations ..............

179

191

201

THEHM()EI,ASTIC STA BII3TY .............. 20"_

4,0.1 lleated lk;am Colunms .............. 20.'l

d.0.1.1 Ends Axially Unrestrained ........ 203

1. B,,)th Vnds Fixed ........... 20(;

II. Both Ends Simply Supported ..... 20(;

206III. Cantilever ...........

,1.0.1.2 Ends Axially Restrained ........ 20

209
4.0.2 Thermal Buckling of Iqates ............

4.0.2.1 Circular l'latcs ............. 209

D-v



TABLE OF CONTENTS (Concluded)

Page

4.0.2.2 Rectangular Plates ............ 222

I. Heated Plates Loaded in Plane--

Edges Unrestrained in the Plane .... 222

II. Heated Plates Loaded in Plane--

Edges Restrained in the Plane ..... 225

III. Post-Buckling Deflections with

All Edges Simply Supported ...... 230

4.0.3 Thermal Buckling of Cylinders ........... 234

5.0 INELASTIC EFFECTS ................. 245

5.0. 1 Creep ...................... 246

5.0.1.1 Design Curves ............. 248

5.0.1.2 Stress Relaxation ............. 251

5.0.2 Viscoelasticity ................ 253

5.0.3 Creep Buckling .................. 253

5.0.3.1 Column of Idealized H-Cross Section .... 255

5.0.3.2 Rectangular Column ......... 255

5,0.3.3 Flat Plates and Shells of Revolution ..... 256

6.0 THERMAL SHOCK .................. 263

6 0.1 General ..................... 263

6.0.2 Stresses and Deformations ............. 264

REFERENCES .......................... 2_

D-vi

J



SECTION D

THERMAL STRESSES





r-

Symbol

A

A0

Amn,

DEFINITION OF SYMBOI_S

A
Pq

Ai, A2, A3, A4

1

a

a0

a 0!

al

Bran, Bpq

Definition

Cross-sectional area; area

Cross-sectional area of beam at x = 0

Coefficients for the series by which the stresses are

expressed, in.

C(mstants based (m the boundary conditions, equations (9?0

and (96). dimensionless

Constants, psi (Figs. 5.0-8, 5.0-9)

l,imiting value (lower) for radius; inside radius or radius

of middle surface of cylinder

Maximum value of initial imperfection

Constant, ° l"

Constant, o F/in.

Coefficients lov the series by which the stresses arc

cxprcs3ed, in.

NOTES:

1. Bars over-'any lcttc)rs denote mi(hlle-surface_ values.

2. The subscript er denotes eritic:_l _alues for buckling.

3. The superscripts I' and C identify quantities associated with the

particular and complementary :mlutions, respectively.

4. The subscript R denotes w_lucs required to completely suppress

thermal deformation_.
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Symbol

BI, B2, BS

b.

b 0, bt, b_

C
P

C1, C2t C3t C4

C-I'Co'Ct"'"

D

d ,d d,...
-1 O' !

E

Eb

E
P

DEFINITION OF SYMBOLS (Continued)

Definition

Constants, in./(in. ) ( hr)(Fig. 5.0-i0)

Breadth (or width) of cross section; limiting value (upper)

for radius; outside radius

Constants in polynomial representation of the temperature

T1(x ) ; ° F, o F/in., and • F/in.2, respectively

Specific heat of the material, Btu/(Ib) (°F)

Constants of integration, in.

Coefficients in polynomial representation of U P, In.-Ib, Ib,

Ib/in.,..., respectively, refer to equation (106)

Diameter

Plate bending stiffness or shell-wall bending stiffness

Constants in polynomial representation of the function T2(x ) ;

o F, ° F/in., and ° F/in. 2, respectively

Coefficients in polynomial representation of V P, in.,

dimensionless, 1/in. ,..., respectively; refer to

equatton (106)

Young t s modulus of elasticity

Young t s modulus of support-beams, psi

Young t s modulus of plate, psi
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Symbol

E
S

E t

e

F. E.M.

FF

FS

G

G T

H

It A , H B

I

I b

I,I
y z

i

K

k

DEFINITION OF SYMBOLS (Continued)

Definition

Secant modulus, psi

Tanzcnt modulus, psi

llasc for natural logarithms, dimensionless (2. 718)

Fixed-end morn(rot

I" ixc(I- fixed

Fixed- s upl)ort ed

Variation in (lepth of beana along the length

Modulus of rigidity or shear modulus

V:/riation ha width of beam along the length

Running c(Igc forces acting normal to tile axis of r(woluti()n at

positions A and B , respectively (Figs. 3.0-51 and 3.0-52),

lb/in.

Moment of inertia

Support-beam centroidal moment of inertia

Area moments of inertia taken about the y and z axes,

respectively, in. 4

Imaginary number, _.-rTT-

Thermal diffusivity of the material, ft2/hr = k/C p
P

An integer (1, 2,3,,1, ,5) exponent
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Symbol

k'

L

L( )

M

M A, M B

M T

M b

Mr, M0 , Mx, M_

Mr0

M r' ' M0'

M t

Mx, My

M
Y

M
z

M0

DEFINITION OF SYMBOLS (Continued)

Definition

Thermal conductivity of the material, Btu/(hr) (ft) (o F)

Length

Operator defined by equation (103)

Moment

Running edge moments acting at positions A and B ,

respectively ( Figs. 3.0-51 and 3.0-52), in.-lb/in.

Thermal moment

Thermal bending parameter, in.-Ib/in.

Running bending moment.';, in.-Ib/in.

Running twisting moment, in.-lb/in.

Bending-moment parameters (Table 3.0-5 and Figs. 3.0-15

through 3.0-19)

Temperature resultant, in.-lb/in.

Running bending moments acting on sections of the plate

which are perpendicular to the x and y directions,

respectively (positive when associated upper-fiber stresses

are compressive), in.-lb/in.

Moment about y axis

Moment about z axis

Moment in beam at x = 0

j"
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Symbol

m

m k

me

N

N T

Nr, N O , N x, N

Nr0

N ' , N 0'
r

N t

n

n k

l )

PT

P0

P

P,q

Q

DEHNITION OF SYMBOLS (Continued)

Definition

Temperature distribution in the z-direction

Moment coefficients, plotted in Figure 3.0-46, dimensionless

Surface moment (Fig. 3.0-53) in.-lb/in. 2

Exponent of thermal wtriation along the length of the beam;

also upl_er limit for summation indices, dimensionless

Axial load per unit length on plate edge

Ilunning mernbran(, loads, Ib/in.

ilunning membrane shear load, lb/in.

Membrane-force parameters (Table 3.0-6), dimensionless

Temperature resultant, lb/in.

Temperature distribution in the y-direction

Hoop-force coefficients, plotted in Figure 3.0-49,

_li mensionless

Axial Io r_'_

Axial Ior_'c resultin_ From temperature

Column load

Ila,lial pressure, psi

Summation indices, dimensionless

Heat input
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Symbol

Qx

q

qk

r

SS

S

S*

T

I

T

T D

Tedges

Tf

T i

T
m

I)E FINITION OF SYMBOLS (Continued)

Definition

I{unning transverse shear load, lb/in.

Temperature distribution in the x-direction

Shear coefficients, plotted in Figure 3.0-46, dimensionless

Radius

Simply supported

Meridional coordinate measured downward from top of the

truncated cone (Fig. 3.0-50), in.

Meridional coordinate measured upward from bottom ol the

truncated cone (Fig. 3.0-50), in.

Temperature

Average value for T, OF

Weighted average value for T, °F

Temperature difference between the plate faces, o F

Temperature at edges of the plate, °F

Final uniform temperature which the body reaches at

sufficiently long times

Inside temperature; also initial uniform temperature of

the body, ° F

Average value for temperature distribution across the wall

thickness at any single position, o F
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r-

.F

Symbol

T
S

T
xy

T O

T 1, T2

t
er

u

V

Vp

V T

Vo

V

W

W i

I)EFINITION OF SYMBOLS (Continued)

Definition ..

Temperature of the supports, *F

Temperature at any location in the plate, ° F

Outside temperature

Temperature functions, °F

Time (hr) or thickness

Time to the onset of creel) buckling, hr

l)isl)lacement in the x-direction or r-direction .for

circular plate

Function representing temperature variation in y- and z-

directions; also rotations in a meridional plane for a shell

Component of deflection without therm_tl ('floors

Component of (h_flcction ineludin4a?" tbermal effects

Shear at x= 0

Displacement in lhc v-Hirection or O-direclion for

circular plate

Displacement in the z-direction

Deflection parameter (Table 3.0-5 and Figs. 3.0-15

through 3.0-19), (timcnsi<mlcss
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I)I,',I,'INI'I'I(}N()F SYMBOLS(Continued)

Symbol

W

A
W

w k

x

Y

Z

c_

(orT0b2/t2) cr

F

%

Definition

Displacement, in the z-direction, for the case where all edges

are simply supported, in. ; also radial deflection for shell

Displacement component, in the z-direction, in. (Note: The

superscript A is merely an identification symbol and is not

meant to be a generalized exponent.)

Deflection coefficients, plotted in Figure 3.0-45, dimensionless

Coordinate axis

Coordinate axis

Upper limit for the summation index k , dimensionless;

also surface loads, psi

Coordinate axis measured normal to undeformed plate

Coefficient of linear thermal expansion, in./(in. ) (° F)

Critical value of temperature parameter (value at which

initial thermal buckling occurs), dimensionless

Knockdown factor, dimensionless

Knockdown factor (Fig. 4.0-17), dimensionless

Shearing strain in planes parallel to and including the

x-y plane, in./in.

Time rate of change for "Yxy' in./(in.)(hr)
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DEFINITION OF SYMBOLS(Continued)

Symbol

6

V

•°

1

_o

1

x y

0

o( )

Ok

X

F

P i

Definition

Maximum absolute value for deflection measured normal to

the x-y plane, in.

Del-operator

Unit strain

Strain intensity defined in equations (1), in./in.

l"ime rate of change for c. , in./(in.)(hr)
1

Normal strains acting in the x and y directions,

respectively (positive when fibers len_hen), in./in.

Time rate of change for

in./(in. ) (hr)

• and E , respectively,
x y

Function defined t)y equations (56) and (76), dimensionless

Plasticity reduction factor, dimensionless

Angular coordinate (Fig. 3.0-14), rad

Vunction defined by equ_tions (58) and (78), dimensionless

Slope coefficients, pl_tted in Fixture 3.0-46, dimensionless

A constant in str:_in--su,'ess re_l:_tionship

Poisson v s r'ltio (s(,me_imes written ;_,m )

,/(1-,)

l)en_ilv (>f l m,o matc':i:_l, It)/ft:
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Symbol

o'f

0",
1

( i)cr

%,%,%,%

O"
yz

T

xy

I)I,:FINITI()N()I,' SY M I_()I,S(Continued)

l)cfinition

Stress induced by restraint

Stress intensity defined in equations (1), psi

Critical value for the stress intensity

Axial stress due to the artificial force

(r i , psi

i

PB ' psi

Normal stresses acting in the r, t, O, and 0 directions,

respectively (positive in tension), psi

In-plane shear stress, psi

Normal stresses acting in the x an(1 y directions,

respectively (positive in tension), psi

Critical axial stress for buckling of the cylinder, psi

Lateral axial stresses

Plane stress

Shearing stress acting in planes parallel to and including

the x-y pl,'me, psi

Stress function [Airy* s stress function I(x,y) ] ; also denotes

"meridional"; also angular coordinate

Function defined in equations (76), dimensionless

Paramctcrs tabulated in Tables 6.0-1, 6.0-2, and 6.0-4,

respectively, dimensionless
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Symbol

%,%

)

DEFINITION OF SYMBOLS (Concluded)

Definition

Parameters tabulated in Tables 6.0-3 and 6.0-5,

respectively, dimensionless

Parameter tabulated in Table 6.0-1, dimensionless

Value of _I,2 at r/R = 1, dimensionless

Value of _3 at r/R = 1 , dimensionless

Function dcfined in equations (78), dimensionless
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D° THERMAL STRESSES.

Section D

October 15,

Page 1

1970

1.0 INTRODUCTION.

Restrictions imposed on thermal expansion or contraction by continuity
of the body or by the conditions at the boundaries induce thermal stresses in

the body. In the absence of constraints at boundaries, thermal stresses in a

body are self equilibrating.

Except for a few simple cases, the solution of the thermoelasticity

problem becomes intractable (see Ref. 1). Therefore, for thermal stress

analysis, further approximations leading to the strength of material and finite

element methods are used extensively. Depending upon its geometry, a

structural clement is classified as one of the following: rod, beam, curved

beam, plate, or shell. If a structure consists of one of the elements named

above, or of some simple combination of them, the metimd of strength of mate-

rials will yield good results. However, if the structure has a complex geomet-

rical shape, the finite element metimd is easier to use and yields satisfactory

results. The method of finite element analysis is suggested [or use on _n

idealized structure which can be represented by a large number of smaller,

simpler elements (rods, beams, triangular plates, rectangular plates, etc.)

connected at a finite number of points (e.g., only at vertices of triangles or

rectangles, or ends of rods, etc.) to provide approximately the configuration
of the actual structure.

In a constrained structure, compressive stresses resulting from ti_cr-

real, or thermal and mechanical, loading may produce instability of the struc-

ture. The linear thermoclastic formulation of tile problem excludes the ques-

tion of large deformations. Thus, for buckling, or for problems where loads

depend upon deformation, nonlinearity ti_at is due to large deformations must

be incorporated in the problem formulation (e.g., beam-column analysis).

The extreme difficulties involved in solving the nonlinear thermoelastieity

problem have led the researchers to resort to the approximate methods of

streng*h of materials and finite elements.

One of the important problems associated with high temperature is th:_t

of creep deformation :md relaxation. The phenomenon of the increase in str:_ins

with time when the specimen is subject to constant stress and constant higl_

temper;tturc is called croci>. The general formulation remains the same :_s in

thcrmoclasticity or strength of matcri:_ls, except theft the stress-strain rela-

tion is expressed by a viscoelastic mode/. The linear viscoelastic model does

not represent many materials; but the complexities multiply if the nonlinear
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model is used. Relatively little work has beendonetowards the solution of

nonlinear viscoelastic theory.

Vibrations that result from thermal shock are quite small in comparison

with those resulting from mechanical load. They are not considered here.
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2.0 THERMOE LASTICITY.

Three-dimensional equations for equilibrium, displacement, stress,

and strain can be found in Ref. 1 in terms of rectangular, cylindrical, or

spherical coordinates. Formulas given below are, for the most part, two-

dimensional expressions for rectangular coordinates.

2.0.1 Plane Stress Formulation.

For a temperature distribution of the form T(x, y)

body, eight quantities, axx , Cryy, axy' Exx' eyy, Exy, u,

in plane stress concept, the following eight equations.

in a long prismatic

and v satisfy,

Equations of equilibrium (no body forces),

0a 0_
xx + xy

Ox 3y
= 0

Off _ff
_÷ YY

Ox Oy
= 0

Stress -Strain Relations,

1
= _ (or - 1,a )+ aT

xx E xx yy

1

Cyy= _ (O-yy- vO-xx)+ ceT

1 1

¢xy = 2-Yxy- 2G axy '

Strain-Displacement relations,

Ou Ov
E =I ;¢ =_ ;

ax yy Oy

1

Exy = _ Yxy 2 3x



and in the case of plane stress,

Section D

October 15, 1970

Page 4

i

ff =ff =ff =0
zz xz yz

v
¢ - + aT

zz E (axx ayy)+

2.O. 2 Plane Strain Formulation.

In the case of plane strain defined by equations

u = u(x, y)

v = v(x, y)

w=O

replace E, v, and a of the stress-strain relations of plane stress formula-

E I'

tion by E 1, vl, and al, respectively, where E 1 = _ ; "1 = i--Z"_v ; and

a 1 = a( 1 + v). The equations of equilibrium and strain-displacement relations

remain unchanged.

2.0.3 Stress Formulation.

The solution of three partial differential equations satisfying the given

boundary condition gives the stress distribution, (r , (r , and (r in the
×x xy yy

body. The equilibrium equations are

xx+ xy +
ax Oy

X=O

a_ _cr

xy+ YY + Y=O
ax 0y

and the compatibility condition is, for a simply connected body

(V 2 (axx + cr + o_ET)+ (t+ v) OX +
yy ax

= o



Solution of Airy's Stress Function.

Plane Stress.

Section D

October 15,

Page 5

1970

For simply connected regions in the absence of the body forces, X, Y,

the solution of this problem is simplified considerably by using Airy's stress

function $(x,y). (See Section AI.3.6) Then

o- - OyV ; o • a -xx yy = _ ' xy Ox0y

The relations above satisfy the equilibrium equations identically, and substitu-

tion of these relations into the stress compatibility equation yields

V 44) + (xg V2T = 0 ,

whe re

V 4 4) - V2(V24)) =

i)24) 2 024) 044,

O-_x + + Oy-__)x_)y

For this problem the boundary conditions should be expressed in terms of the

stress function 4).

II. Plane Strain.

For plane strain problems the governing equation can be obtained from

those above by substituting E 1 and c_1 for E and _ respectively, where

E

El- 1 -y _ ; _1- _(1÷ p).

c_E
V44) + _ V2T:: 0
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3.0 STR ENGTH OF MAT ERIA LS SOLUTIONS.
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The assumption that a plane section normal to the reference axis be-

fore thermal loading remains normal to the deformed reference axis and plane

after thermal loading, along with neglecting the effect on stress distribution of

lateral contraction, lays the foundation of the approximate methods of strength

of materials. The exact results obtained by the methods of quasistatic thermo-

elasticity show that the accuracy of the strength of materials solution improves

with the reduction of depth-to-span ratio, if the variation of temperature along

the length of the beam is smooth. As in the case of mechanical loads, a con-

siderable error results in the vicinity of abrupt changes in the cross sections.

If the temperature is either uniform or linear along the length of the

beam, the assumption of a plane section is valid, and the strength of materials

method gives the same results as those given by the plane stress thermoelastic
method.

Since the effect of lateral contraction is neglected, lateral axial stresses

are zero; e.g., (r = a = 0 in the case of a beam with x-axis as the refer-
yy zz

ence plane.

3.0.1 Unrestrained Beam -- Thermal Loads Only.

3.0.1.1 Axial Stress.

For an unrestrained beam (Fig. 3.0-1) the longitudin;d stress (axx)
is given by

PT Iy z

(_ =-_ET+ --_-- +xx II -I z
yz yz

y+ / Iz

M T - Iy z MTz_

where

T = T(x,y,z)

PT = f aETdA Iz : f y2dA
A A

MT = J' (_ET dA I = f z 2dA
z A Y Y A

MT = f aET dA I = f y zdA
y A z yz A
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' /r_-A CENTROIDAL AXIS

I

o I

I,I_A

X,U Z,W

y,¥

z 1

\
\

Figure 3.0-1. General unrestrained beam.

CASE a. The y-z axes are principal axes (I = 0)
yz

PT MT MT
z y

(rxx = -viEW+ _ + --T--y+--T- z
z y

Yl

J

CENTROIO

(2)

CASE b. The y-z axes are not principal axes. A new coordinate system

Yl, zl is chosen which makes an angle 0 with y-z axes such that

tan 0 -

I MT - I MTy yz
y z

I MT - I MTy yz
z y

(3)

In the new coordinate system, which in general does not constitute

principal axes, the z axis becomes the neutral axis, and equation (1) in

this coordinate system reduces to

PT M T Yl
a = -aET + + zl

xx -7" I '
Zl

(4)

where

M T = f
z 1 A

c_ ET (x 1 Yi zt) Yi dA1

f 2I = Yl dA1
zl A



3.0.1.2

by

x is

Displacements.

Axial displacement u(x, y, z)

u(x,y,z) =u(0, y,z) +

Section D

1 April, 1972

Page 9

with respect to the u(0, y, z) is given

-g o

+ t Iz

The average displacement

+
I MTz -Iy zM Yl

y T

IyI z - Iyz2 Y

(5)

dx

Uav(X) of the cross section at a distance

u (x) : u (o) +
_tV aV

x P

1 T dx (6) f-x-
0

Displacements v and w oftherefereneeaxis[v(x,y,z) v(x, 0,0);

w(x,y, z) = w(x, 0, 0)] are given by the following differential equations:

I M T - Iy z MTy 1

d2v 1 Y z

dx T- I-_, I I -I 2
y z yz

dxYd2w E1 l Iz MTIIyS'z--I2IyzyzMTzt

(7)

If the y-z axes are principal, equations (7) reduce to

d2v

d2

M
T

z

EI
z

M

d2 w T y
d2 l,:I

Y

(s)
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yl-zl axes, defined by equation (3), equations (7) reduce to

MT
d2v

z£
"_x - EI

zi

=0

(9)

3.0.2 Restrained Beam -- Thermal Loads Only.

Considered henceforth in this paragraph are cases of beam cross sec-

tions having y-z axes for the principal axes.

The values P, M , and M are the axial force and bending moments
y z

at any cross section resulting from the external forces and the reactions to the

restraints against thermal expansion; therefore, M and M depend only on
y z

the constraining moments and shears at the restraints.

Mz = M°z + V°z x ,

My = MOy + VoyX ,

(10)

where the sign convention on moments and shears and M0 and V 0 are shown
in Fig. 3.0-2.

y

M 0 V0

Figure 3.0-2.

v v

M M V
M

Sign convention of moments and shears.



The displacements

M T + M z
Z

EI

M +M

d2w T yY
dx _" - EI

Y

v,w are given by
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(ii)

Solutions of equations (ii) for the special case described by equation

(10) are

x x2 M T (Yi)

z dx 1 dx 2 + + xv(x)=- f f _I (xl) c°z c'z - M°z
0 0 z

x (x2_
fo _) EIz(xl) dx2

X X 2

Xl dx 1 dx 2
-V°z f f 'EI (x,)

0 0 z

x x 2 MT (xl)

w(xt =- f f _i y
0 0 y (xl)

dx 1 dx 2 + +
Coy Cly

X X 2
x 1

-Voyf f l,:I (x,)
0 0 y

dx 1 dx 2

x - Moy

(12)

X X 2

f/
El (xO

0 0 y

The bending moment and shear force at any cross section are

d2v

M : - E1 - M TZ Z -_X '

Z

d2w
M = -EI _ -M
y y dx _ T

Y

dM dM
z =V = _ ; V

z dx y dx

(13)
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Each of the two equations (12) has four unknowns, Co, C1, M0, V0,

which are calculated from four boundary conditions, two at each end of a beam.

3.0.2.1 Evaluation of Integrals for Varying Cross Sections.

For a general cross section as shown in Fig. 3.0-3 the following
notation is chosen:

b=boh (xl) h(xl) = 1+ H (-_)

d=dog(xl) g(xl) = i+G(-_) ,

x
where b o and d o are reference width and depth at x_ O;x l- L

d o

b_

A = Aoh(xl) g(xl)

I I h(xO g3(xl)
Z z 0

I = I h3(xl) g(xl)
Y YO

....._,¢

Figure 3: 0-3. General cross section.

Letting the temperature variation bc represented by

T(x,y,z) = f(x l) V(y,z) ,



the necessary integrals become:
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2 T = f agTdA = ag f(xl) g(xl) h(xl) f VdA o ,

A A o

M T = f crETzdA = al_f(xl) g(xl) h(xl) f VzdA o
y A A o

M T = f crET dA = crEf(xl) g(xl) h(x_) f VydA o ,
z A Y A o

M
x T x 1

Ydx= ---E-a
J' EI f V zdA° J' _h (x1) dxl
0 y Ioy A o 0

M Tx x 1

z dx o!f EI = _-- f VydA o j"
0 z z o A 0 0

dx 1

x xl x x 1
f xdx 1 x l (Ix) . ,f dx 1 dx 1
0 I_I - gI J h(xl) g°(xl) ' lg-"-i-"- gI 'f h(x 1) g'a(x 1)

z z 0 0 0 z z 0 0

The integrals necessary to evaluate PT' MT and M for a' T
y z

particular cross section and temperature distribution can be evaluated as

follows :

Let

F o = f VdAo ,

Ao

Fly : f VydAo ,
Ao



and
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/.

F1 z = J V z dA 0
A0

n m

Then, letting V(y, z) = VmnY z , which is a polynomial representation of

the temperature variation in the y- and z-directions, F0, Fly , and Flz can

be evaluated for common shapes. Table 3.0-1 gives these evaluations for

several common shapes and various values of m and n. Table 3.0-2 gives

values of F 0 and Fly for rectangular, triangular, elliptic, and diamond

cross sections when m= 0 and n= 0- 5. Table 3.0-3 gives values of F 0

and Fly for several standard shapes for various values of m and n.

3.0.2.2 Restrained Beam Examples.

In the following examples, since deflection, moment and shear equa-
tions along the y- and z-directions are similar, only the results of the bound-

ary value problem in the y-direction are given (i. e., m = O).

I. Simply Supported Beam.

¥

t
A i, .&--- "

I. I

A. Boundary Conditions:

v = 0@x=0, L

d2v

Mz = -EIz _ - MT =O@x=O, L

V o = M o = 0



TABLE 3.0-I.
EXPRESSIONS FOR F0, Fly, AND Flz

RECTANGULAR
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FOR COMMON SHAPES.

F 0 =

Fly=

FIz=

• t

I_ I_

V_T
2

7-

I 2

!

, 2

_I_

_N=I
2

4V
mll

(re+l) (n+l)

,ITI- n+l

m, n: 0, '2, 4, 6..

m or n=l, 3, 5..

4V
inn

(m+l) (n+2)

n+2

re=l, :3, 5,.. n=0, 2, 4, 6

4V m+ 2

mo
(m+2) (n+l) ' 2 ; ,

n+ 1



TABLE 3.0-1. (Continued)

TRIANGULAR
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Z =

Y

/ {°\
I: "1

2 2

"_d o

do

F 0 =

2Vmn (__) m+l

0

where

]3. =

1

(n+l) '.

(m+2-i) I

["m+l

d°n+l [] _=1 B.+(-2)L

n! (_ _)n+,(n+i) I

n+m+2

m: 0,2,4

re=l, 3, 5

3,?

where

C. =
1

2Vmn

I

(m+l) !

(m+2-i) '

d0n+2 [ _ +2- C. + (-2)

Lil '

n+m+3

,_+,,,(__)n+,+,_(n+l+i) :

Cm+2]
m=0, 2, 4

m 1,3,5

FI2

0

2Vmn_ (_)m+_
i_l Di+(

where

= _ n'. (, _)n+i_Di (m+3-i) ! (n+i) '
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F 0

Fly

FI Z

r -r
2 2

n

m--TT-\ =,/ \ _! (_)z
n'. (re+n-l) (m+n-:l) .... (7) (:-,) (:_) (1)

n+m-l) v, (in+n÷2)(nl+n) .... (H)(I;)(,I)

m I)]" II 1, :;, 5...

Ill,n IJ,2,.l,(;

;In(l nI+ll II

m

7rVmn( 1_2)n/+l [d \n+2 ,-Tm+l \ 2 /"-_) (')"

(n+l)! (n+m)(n+m-2)... (7)(5)(:_)(t) .I o,2, 1,t;

(n÷m)_ (n+m+:_ (m+n+l)... (_)((;)14) u t,:l,5

n 0,2,.1,(i ¢_z" nl 1,::,S..

m+ l

"v,,,.( ,,,'CI+?.(__?'_'

o

n_ (n+nl)(n+,u-2)... (7)(5)(::)(1) m 1,::,7,

(n+Ili}'. (rn+n+:_) (llt_ll÷l)... (x)(I;)(.I) n O, 2,4

I) l,:t, 5 or m 11,2,4,1;



TABLE 3.0-I. (Continued)
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2

FO

Vmn mi n!

4\ 2] \2]
m, n=O, 2, 4..

m orn=l,3,5

4Vmnml(n+l) !

m=l, 3, 5..

Flz =

4V (m+l) !nl
mn

(n+m+3) !

m=l, 3, 5..

n=0, 2, 4..

or n=0, 2, 4



TABLE 3.0-1. (Continued)

T-SECTION
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F 0

Fly

w

b

_t

J

r

Z _----- 0 I
¢

I I

I' '1b

2V
mn

(re+l) (n+l)

2V
mn

(re+l) (n+l)

0

,+,)_ +'
m 1,3,5

c+w) n+l- c n+l]

n=0, 1, 2, :1

2V
mB

(m+l) (n+2)

2V
mn

(re+l) (n+2)

0

{(-_--)m+l(an+2-cn+2)+ (-_-b2)m+l[cn+2- (c+w)n+2 ]

m 1,3,5 n 0,1,2,3,4

m O, 2,4, 6

n O, 2, 4, (i

m 0,2,4,6

n:l, :3, 5..

m 0,2,4

n 0,2,4

m:0, 2, 4

n 1, :3, 5



TABLE 3.0-1. (Continued)

I-SECTION
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_ [

• o o-t

w

t

b "[

F0

4 Vm n(_-) n+

)(m+l) (n+l)

0

1

m or n odd

m, n : even

Fly =

4V (d'_ n+2

mn\,-£-]
(m+l) (n+2)

n+2] } m=:evcn

0 m : odd or n even

NOTE: z-Section can be :Ipproximated by I-Section with respect to its

principal axes. The results above are applicable to this section.
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HAT -SECTION
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F 0

Fly = o

FIz - 0

y

L+ t
d

C

IT

b •

0

2V
mn

(n+l)(m+l)

m 1, 3, 5...

{ [(-c) n+l o (-c-w) n+L] I(_- + t + i)m÷ l - (_ + 1)m+ l 1

(_)'n+l[ n+l (a_k)n+l] } n, o. 2,,1...n 0,1,'> 3,4.

2V
Inn

(n+2) _ m+l)

m 1,3,5...

,, m,,(_5°+,]
(.__)m+ 1 [; (a_k)r_21 } ,,

n+2 m 0, 4.
n 0,1, 2, 3, ,1. . .

2V
mn

(n+l) (m+2)

m 0,2,4...

{ [(-c) n+l- {-c-w)n+l] [(_-+ t +p) m+2 -([2 )-- +t) m+2]

[3 2 I m+2+ [an+l - ( -c-wj n+l] f{b + t)m+2 - ( J_-) ]
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CHANNE L
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1

_------ d -------_

F o = 0.0

2V
mn

(n+l) (m+l)

n=1,3,5...

{I(c_w)m÷i-cm+ll (b)n+i+ Ccr_l -(d-c-w)m÷ll,

. _ _ n:0,2,4...

m 0,1,2,3,4,5...

Fly = 0.0

2V
mR

(n+2) (re+l)

n0,2,4...

I_c,+w ) m+l _cm+l 1 (__)b n+2 + [cm+l(d_c.w)m+l],

[(2b_) n+2 (b t)n+2]} m=0, I,2,3,4,5...n:1,3,5...

Flz = O. 0

2V
mn

(n+l) (m+2) { [(c+w)m+2- cm+2 ] (_-2b) n+l

r b ,+I b "+: ]

•

n-I,3,5...

+ [cm+2 - (d-c-w) m+2] *

n 0,2,4...

m:0,1,2,3,4,5...
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RECTANGULAR TUBE
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T = Z

_t
2

F0 0.0

= 0.{}

n 1,3,5...

m J,3, 5..

n 0,2,4...

m 0,2,4..

Fjy
: 0.0

O. 0

4V
m n

(n+2} (re+l)

• n_2 b m+ 1

FI z
0.0

0.o

4 Vmn

(n+l)(m+2)

n 0,2,4...

m 1,:LS..
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CIRCULAR TUBES
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¥

b Z

m=5

F0 0.0 n 1,:1,5...

: 0.0 m l,:t,5

I'd "m+n+z b rn+n4 2 ] I_._4_mo[(:_)(b J' ....'m÷| - - Z{ 114 :l) ÷ _ (I',') ;_ )

- (m+l_l'n-!)_r_l-:l) {m÷J)(m-l_{m-:_(m-5 ) ]

4_(n+7) ÷ :IM4( n* !*)

n (1+2,4, , .

m 0, 2, 4

Fry
0.0 n 0,2,4. ,

- 0.0 m 1,3,5

'Vmn [(_-)m+n+:'m+, -\-_](b_ .... IllljL n'-_z - _! • (re+l) { n,-l)_{ n*,i)

(n*¢l)(m-l)_n_-?:l + im*I)(_l_l)lm-:_}ln_-,%l /

4_(n+:_) :l_4(n+ 10) ]

n 1,:_,5 . .

m _L2.4

FIz = O. 0 n 1, :J, 5...

fl.O ell II, Z, 4

'"_,,[cor''_ c,,_....'][, o,._,.,,-,,,,
- (*nlC2) illQ{in-2) (In¢2)(rni(_ll-_)itln-4) /

l_(n+7) + ;g_4l n*!O --J

n II+Z.4..,

m 1, :_, r,
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FOR FOUR

TRIANGULAR

1970

Z I

I- ._ -: b0
2 3"

m--O

2

%
2

2

m=O

_I
-I

b_o
2

1

2

Fo

bodo Voo

1 bd 3
"_ o oVo2

Fly n

0 0

bod _ Vol 1
12

0 2

I bod_ Vo3 3

0 4

Fo

1

-_- bod o Voo

0

1 3
b0do '_ o2

1 4
bodo Vo3

27O

bod _ Vo4
270

2 bod6o
7(243) V°5

Fry

0

1 bod_ Vol

1 4

27"-_ b°d° v°3

1 bod_ Vo 3
270

2 6

7(243) b°d° V°4

31 b dTv
 o(729) o o
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DIA MO ND

Z =

2

2 2

m--O

n F o Fly

0 lr bod0 Voo 0

32 V°I

I b_ o2 _ 7r Vo2

bod_Vo33 6 12-_

b_ o4 I-_ V°4

5 0 15 _r bod_ V05
32(256)

Z m

¥

J_

r

p

m=0

n Fo Fry

I bodo Voo 0o
1 3

1 0 4--8 b0d0 v0l

I bod_Vo_ o2 4-_"

1 bod_ Vo 33 0 48--'6"

4 t__ bod_Vo4 o
480

5 0 1 b "_
28(i20) _oVo5
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TABLE 3.0-3 VALUES OF F o AND AND FOR• Fly F1 z

COMMON SECTIONS.

*----b = 2.00----_

! ,I

d!+
I/ L

| I

!

F°- V 1 f VdAo
mn

0 2 4 6

0 0.531 0.207 0.121 0.093

2 0.084 0.030 0.011 0.004

4 0.050:0.018 0.006 0.002

6 0.036 0.013 0.004 0.002

1 f Vy dA o
Fly - V

mll

1 3 5 7

0 0.207 0.121 0.093 i0.084

2 0.030 0.011 0.004 0.001

4 0.018 0.006 0.002 0.001

6 0.013 0.004 0.002 0.001

--b = 2.00-----_

!

o+t 
o.,f,1/

I

t

m_ 0 2 4 6

0 0.719 0.784 1.379 3.117

2 0.084 0.079 0.075 0.073

4 0.050 0.047 0.044 0.042

6 0.036 0.034 0.032 0.030

i

t
d = 3.75

1
I

m_ 1 3 5 7

0 0.784 1.379 3. 117 8. 152

2 0.079 0.075 0.073 0.076

4 0.047 0.044 0.042 0.039

6 0.034 0.032 0.030 0.028
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_'-- 3.00 ---_

| |

3.
0.1

| |

!

F o- V 1 fVdA o
mn

m_ 0 2 4 6

0 1.043 1.085 1.731 3. 603

2 0.352 0.326 0.303 0.285

4 0.474 0.438 0.405 0.376

6 0.762 0.704 0.652 0.605

1
f Vy dA oFly:

mn

m_ 1 3 5 7

0 1.085 1.731 3. 603 8. 892

2 0.326 0.303 0.285 0.277

4 0.438 0.405 0.376 0.350

6 0.704 0.652 0.605 0.563

-- 3.5 ------_

I !

0.

L

t

m_ 0 2 4 6

0 t.750 1. 663 2. 323 4. 198

2 0.898 0.791 0.705 0.639

4 1.641 1.445 1.279 1.139

6 3. 590 3. 160 2. 798 2. 492

I
3.5

l
|

m_ 1 3 5 7

0 1.663 2. 323 4.198 9.096

2 0.791 0.705 0.639 0.600

4 1.445 1.279 11.139 1.021

6 3. 160 2. 798 2. 492 2. 232
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_---- 4.50 -_

o.. p
5"11
|

t

1
4.624

L
|

0

2

4

6

1 $F 0 : _-- V dA o
mn

0 2 4 6

1.715 2.774 6.745 21.551

1.430 2.072 3.014 4.416

4.336 6.279 9.110 13.245

15.681 22.705 32.942 47.892

0

2

4

6

1 J VydAo
Fly -- V

Inn

1 3 5 7

2.774 6.745 21.551 82.620

2.072 3.014 4.416 6.584

6.279 9.110 13.245 19.295

22.705 32.942 47.892 69.767

0

2

4

6

---- 5.00 ----_

!

!

I

#__

I
4.376

1
1

0 2 4 6

2. 925 4.325 9. 228 25. 533

3. 261 4.488 6. 237 8. 783

12. 188 16. 766 23. 199 32. 289

54. 408 74. 845 103. 564 144. 135

0

2

4

1 3 5 7

4. 325 9. 228 25. 533 85. 468

4. 488 6.237 5. 783 12. 697

16.766 23.199 32.289 45.199

74.845 103.564 144.135 201.741



TABLE 3.0-3. (Continued)

t
0.923 _ .,--- 0.125

t 0.125

0.202
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1
go= W- fVaAo

mn

0 1 2 3 4

0 0.328 0.001 0.046 0.019 0.018

2 0.035 -0.009!0.003 -0.001 0

4 0.012 -0.003i0.001 0 0

6 0.005 -0.001 0 0 0

1
_1: V- fVydAo

inn

m_ 0 2 3 41

0 0.001 0.046 0.019 0.018 0.013

2 -0.009 0.003 -0.001 0 0

4 -0.003 0.001 0 0 0

6 -0.001 0 0 0 0

I
----,. _ 0.125

1.191

0.309 0.125

__k .. !

_---- 1.75 -_

m_ 0 1 2 3 4

0 0.406 0.001 0.102 0.051 0.064

2 0.056 -0.021 0.008 -0.003 0.001

4 0.026 -0.010 0.004 -0.001 0.001

6 0.014 -0.005 0.002 -0.001 0

m_ 0 1 2 3 4

0 0.001 0.102 0.051!0.064 0.058

2 -0.021 0.008 -0.003 0.001 0

4 -0.010 0.004 -0.001 0.001 0

6 -0.005 0.002 -0.001 0 0
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1
O.788

t
0.087

|

-.--- 0.125

0.125

|

2.oot---_

1

F°- V
mn

_ __ fVdA o

m_ 0 1 2 3 4

0 _.359 0.001 0.026 0.011 0.008

2 D. 083 -0.0 12i0. 020 0 0

4 D.050-0. 007 0. 001 0 0

6 0. 036 -0. 005 0. 001 0 0

0

2

4

6

F 1 -

0

0. 001

-0. 012

-0. 007

-0. 005

1
f Vy dA 0

V
mn

1 2 3 4

0.026 0.011_0.008 0.005

0.020 0 0 0

0.001 0 0 0

0.001 0 0 0

1
0.985

t
0.109

I

_'-"-- 2.50

m_ 0 1 2 3 4

0 0.561 0.002 0.064 0.034!0.030

2 0.203 -0.038 0.008-0.001 0

4 0.190 -0.036 0.007 -0.001 0

6 0.213 -0.040 0.008 -0.002 0

.,,-- 0.156

0.156

m_ 0 1 2 3 4

0 0.002 0.064 0.034 0.030 0.024

2 -0.038 0.008-0.001 0 0

4 -0.036 _.007-0.001 0 0

6 -0.040 D.008 -0.002 0 0



TABLE 3.0-3. (Continued)

Section D
October 15, 1970
Page32

1
1.544 ......4 _ 0.156

t
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mn

m_ 0 1 2 3 4

0 0.756 0.002!0.261 0.195 0.284

2 0.352 -0.132 0.051 -0.019 0.008

4 0.474 -0.179 D.069-0.027 0.011

6 0.762 -0.288 0.110 -0.043 0.017

i/F 1 = _-- Vy dA o
mn

m_ 0

0 0.002

2 -0.132

4 -0.179

6 -0.288i

1 2 3 4

0.261 0.195 0.284 0.348

0.051 -0.019 0.008 -0.002

0.069 -0.027 0.011 -0.004

0. II0 -0.043 0.017 -0.007

m_ 0 1 2 3

0 1.281 0.007 1.049 1.115

2 1.004 -0.614 0.383 -0.233

4 2.406 -1.478 0.914 -0.570

6 6.875 -4.222 2.612 -1.629

I
-- ',,--.-0.188

2.292

t 0.188

0.52

_t_, .. ] ,

4 m_ o

2.492 0 O.007

0.156 2 -0.614

0.358 4 -1.478

1.023 6 -4.222

1 2 3 4

1.049 1.115 2.492 4.471

0.383 -0.233 0.156 -0.081

0.914 -0.570 0.3581-0.226

2.612 -1.629 1.023 -0.647
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0.125 ]

olYi
0._25 L--1.75J _-1.0]

0

1

2

3

4

5

IllI]

0 1 2 3 4 5

0.656 0.7:}4 x 10 -3 0.55 _ 10 -I 0.165 × 10 -2 O. 559 x 10 -2 0.34 x 10 -3

0.0 0.0 0. [) [}. l) 0.0 0.0

O. 804 -0. 152 0.659 x 10 -1 -[). 135 × 10 -1 0.(;27 :,: 10 -2 -0. 125 x 10 -2

O. 0 O. 0 [I. l} [I. (} O. 0 O. 0

O. 172 × 101

0.0

-0. 449

0.0

0.14

If.I)

-I
-0. 409 _ 10

IL l}

0. 1,1 / 10 -!

O. 0

-2
-0. 393 _ 10

0. 0

0

1

2

3

4

5

0. 734 × 10 -3

O. 0

-(}. 152

1 f Vy (bX o

121n

O. 55 y 10- !

O. 0

0.66 × 10 -1

U. 1(;5 ,( 10 -2

0.0

-0. 135 x: 10 -1

-2
I).559 x lO

0.0

O. 627 x 10 -j

o. 34 x 1 u -3

O. 11

-2
-t}. 125 x 1(}

-3
l)._;IZ - 10

0.0

,0. (;;_K x 10 -3

0, 0 O. 0 (}. (} 0. (} 0.0 0.1)

-0. 449 O. 1,Is -0. 409 x 10 -I 0. 14 x 10 -t -0. 393 x 10 -z 0.13U x 10 -z

0.0 0.0 0.0 0.0 0.0 0.0

1

.I' Vz (b% oFI A
Ii'(n

0 1 2 3 4 5

0

1

2

3

4

5

0.0 O. 0

0. G39 -0. 155

0.0 0.0

0. 158 × 1() 1

0.0

0. 455 x 101

-0.451

O. f}

-0. 134 x 101

O. 0 O. 0 O. 0 (}. 0

0.5S1 x 10 -I -0. 138 × 11) -1 O. 561 < 10 -2 -0. 13 10 -2

0. 0 0. 0 O. 0 0.0

O. 141

(1.0

0.40(i

-0.41:1 • 111-1

0.0

-(}. 123

-t
0. 131 < 10

O, 0

O, :I,_|,_ 111-1

-0.397 z 10 -2

(1.0

-1
-0. 11!1 _ 10
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0

1

2

3

4

5

0

1

2

3

4

5

Fo = _-L fvdAo
mn

0 1 2

0.972 -0.901 × 10 -z 0.603

0.0 0.0 0.0

1. -0.534 0.554

0.0 0.0 0.0

O. 209 X 101 -0. 148 x 101 O. 118 × 101

0.0 0.0 0.0

3 4 5

0.161 0.517 0.289

0.0 0.0 0.0

-0.273 0.352 -0.121

0.0 0.0 0.0

-0.838 0.094 -0.476

0.0 0.0 0.0

0 1

-0. 901 × 10 -2 O. 603

0.0 0.0

-0. 534 O. 554

0.0 0.0

-0. 148 × 101 0. 118 × 101

0.0 0.0

Fly= _- fVydAo
n_n

2 3 4 5

0. 161 0. 517 0. 289 0. 514

0.0 0.0 0.0 0.0

-0. 273 0.352 -0. 121 O. 247

0.0 0.0 0.0 0.0

-0. 838 O. 694 -0. 476 O. 422

0.0 0.0 0.0 0.0

1 fVz dA_Flz =
mn

0 1 2 3 4 5

0.0 0.0 0.0 0.0 0.0 0.0

0.82 -0.565 0.487 -0.305 0.304 -0.155

0.0 0,0 0.0 0.0 0.0 0.0

0.2×101 -0.140× 101 0.115×101 -0._54 0..67 -0.493

0.0 0.0 0.0 0.0 0.0 0.0

0.572×101 -0.431×101 0.327x 101 -0.248× 101 0.19×101 -0.145×101

r
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1
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5

1 f V dA oVo _-

IIIII

0 1 2 3 .t 5

0.157× 101 0,:135 x 10 -1 I}. 79,', 0.23 0.584 0.32(;

0.0 0.0 0.0 0.0 0. l} 0.0

O. 24_ x I_P -0. 109 × 10 t O. 1_ J >: 1_) t -0. 445 _). _)02 -_. 142

O. 0 O. 0 O. 0 O. 0 1).0 O. 0

0.777< 1<) l -1/..t8(; x 1111 0.3(; x_ I01 -(J. ZZT_ 101 0. 17 '_ ," ](jl _it. 10G ,_ iijl

0. 0 (I. 0 0. 0 (!. 0 t). (I 0. II

Fly & fVY,bXo

0 1 Z 3 4 5

0. 335 x 1() -1 0.7!)_ 0.23 0. 5_,t 0. 326 (I. 502

0. 0 0. 0 0. 0 0. (} o. 0 O. (_

-0.109_ 101 0.111 x 101 -I).445 0.fi02 -0.142 ().37

0.0 0.0 0.0 0.0 0+ (} (}. I)

-0.486 × 101 0.36x 101 -0.227 _ 101 0.178 _ l(i 1 -0+ 10(i'_ 101 (I.9:'1

0.0 0.0 0+ 0 0. <) II. 0 II. II '

0

1

2

3

4

5

0

1

2

3

4

5

0.0

0. 19 x 101

0.0

0. 728 x 101

l'Iz' _i •I V;' dA o

11113

0.0

-0. llS x 101

0. I)

-0. 494 x 101

0. 0

0+ 9:3

0.0

O. 345 _ i0 !

O. 0

-0. 529

U. 0

-1). 234 × I01

O. 0

0. 485

0.0

O. 16_ x I0 i

0.0

-0. 221

0.0

-0. 113 x 101

O. 0 O. 0 O. 0 O. 0 O. 0 O. 0

O. 327 x I02 -0. 224 x 102 O. 15,1 × 102 -0. 107 × 102 O. 745 x I01 -0.52 x 101
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1
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o

0.425 x lO 1

o.0

0. 318 x lO 2

o.o

0. 959 x 102

o.o

O. 604 × 10 -l

0.0

-0.112 4 10 2

0.0

-0.109 x 103

0.0

2 3

0.668 x 101 0.331 x 101

0.0 0.0

0,197 4 10 z -0. 149 4 102

0.0 0.0

0.142 x 103 -0.164 x 103

0.0 0.0

0.157 4 102

0.0

0.337 × 102

0.0

0. 223 x 10 ?

0.0

0. 159 × 102

0.0

-0. 159 × 102

0.0

-0.246 x 103

0.0

o

1

2

3

4

5

1

}'l.y : ,-7=-vn_nf Vy (tA 0

0 1 2 3 4 5

0.6044 10 -1 0.6684 10 t 0.331 4 101 0.157 × l0 t 0.1594 10 z 0.440 x 10 z

O. 0 O. 0 O. 0 0.0 0.0 O. 0

-0. 112 × 102 0.197× 102 -0.1494 102 0.337 x 102 -0. 159 :< 102 0.(;574 102

O. 0 O. 0 O. 0 O. 0 0.0 O. 0

-0. 109 x 103 0. 142 4 103 -0. 164 4 103 0. 223 x 103 -0. 246 x 103 0. 365 x 103

0.0 0.0 0.0 0.0 0.0 0.0

0

1

2

3

4

5

1
1"1 : V-fw.,_

mn

0.0 0.0 0.0 0.0 0.0 0.0

O. 106 × lO t -0. 122 x 10 z O. 164 4 102 -[). 177 4 102 O. 269 x 102 -0. 246 × 10 /

0.0 0.0 0.0 0.0 0.0 0.0

0.911× 102 -0.111 × 103 0.137 × 10 a -0.168x 103 0.212x 103 _-0.259× 10 a

0.0 0.0 0.0 0.0 0.0 0.0

0.914×103 -0.1124104 0.138×104 -0.17×104 0.212×10 ¢ -0.264x 104

J
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0.05
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1 2 3

I). 0 -0. 709 < 10 -_ O. 0

0.0 -0.24_ < 10 -:_ 0.0

-4
0.0 -0.598 x 10 0.0

O. 0 -0. 13.1 ,< It) -'i O. 0

-5
0.0 -0.2t)7 _ 10 0.0

O. 0 -0. (;65 × 1() -_ O. 0

4

-0. 15(J / 10 -3

-0.36(; _ 10 -¢

-0.792 ¢ 10 -t_

-0. 17 ,: 10 -5
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0

1

2

3

t

5

0

O. 0

0.0

0.0

O. 0

O. 0

O. 0

1

-3
-0. 709 x 10

-0. 248 x 10 -3

-fi.5!)8 x 10 -4

-0. 1:3.1 × 10 -4

-I). 297 x 10 -5

-0. I;65 × 10 -6

1

Fly _-- .¢Vy dA o
t;131

2 3

-3
O. 0 -0. 156 x 10

O, 0 -0.3fit'i ," 10 -4

0.0 -0.792 _ 10 -5

O. 0 -(I. 17 y 10 -r)

-6
0.0 -li.371 x 10

o.4) -ll.82G × 10 -7

t

(I. 0

O. 0

{I. li

II. II

l).II

O. 0

5

-0.23 < 10 -4

-0. ,186 -.e 1[) -5

-0.101 < ll) -J

-6
-0.214 _ III

-7
-0. l(it .: 10

-7
-0. 10:i ." 10

0

1

2

3

4

5

I I Vz cbk o
]"l z _ .

ii111

0 1 2 3

-0.375,'< 10 -5 0.(} -0.248 :" 10 -3 0.0

-3
-0. 307 × 10 O. 0 -0.59_ - 10 -4 O. 0

-0. 925 × 10 -¢ O. 0 -0. 13,1 ,< 10 -i O. 0

-4 r
-0. 226 × 10 13.0 -0. 297 ,- 10 -_ O. 0

-0.527 )< 10 -5 [I.O -0.(765 _ I0 -G 0.0

-0. 122 x 10 -5 0,0 -0. 151 _ 10 -6 0.0

4

-0. 366 _ 10 -4

-5
-0. 792 × 10

-0. 17 × 10 -5

-0. 271 '< 10 -6

-7
-0. 826 _ 10

-7
-0. i_8 x It)

5

O. 0

O. l)

O. 0

O, (I

o. 0

O, ()



OF POOk OIJAL_TY

TABLE 3.0-3. (Continued)

y

_ _ 0.125

! I
I

L

1.75

Section D

October 15, 1970

Page 38
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m'_ 0 l 2 3 4 5

0 0.885 × [0 -1 0.0 -0.31)3 _ 10 -1 0.0 -0.318 × 10 -i 0.0

1 0,175× 10 -I ().1) -D. 3tD _ 11)-I (I.() -0.209× tO -I 0.0

2 -0. llH _< 10 -I U.0 - II.._!)_' - lU -1 0.0 -0. Z23 X 10 -1 0. U

3 -0.223 x 10 -1 I).0 -0.254 • lq) -I 0.0 -0.183 x l0 -1 (3 (I

4 -0. Z46 × lO -L (L0 -0._15 _ 10 -t 0,0 -0.15× 10 -i 0.0

5 -0,_35 _¢ |0 -I 0.(} (), ];"49' : 1() -[ I).1) -I). 125 × 10 -1 0.0

]1," Vl- f VydAo

n_n

m_ 0 1 2

0 0.0 -0.30:] _ 10 -_ 0. o

1 0.0 -0.311- lo -1 o.o

2 0.0 -0.292 _ 10 -1 O.r)

3 0.0 -(3. 254 _ 10 -t 0. I)

4 0.0 -o. _'15 _ lO 't o.o

5 0.0 -0. 1H2 - 11) I 0,11

3 4 5

-I
-0.318 × 10 11.0 -0.24(;',, lU -I

-o.21i9 × 10 -1 (3.11 -0.197× JO -1

-0.223 _" i0 -! 0.0 -0.157 _ I0 -1-

-0. iN:| x* 11) -1 O. 0 -0. 127 y 10 -1

-0.|5 × 10 -1 0.0 -0.103 :< 10 -I

-0.125 _ tO -I 0.0 -0.847 , 10 -2

lrl z _- .I VZ d2_.0

ntn

m_ 0 1 " 3 4 5

O 0.175 _ 10 -t 0.0 -0.319x to -z 0.0 -I). 21;9 × 10 -! O.O

1 -0,118< 10 -I 0.0 -I). 292 x 11)-1 0,1) -U. 223 × 10 -1 0.0

2 -0.223 x 10 -1 0.0 -0.25.l × II) -I 0.0 -0. 1H3 × |0 -1 0.0

3 -0.246 x 10 -t 0.0 -0.215× I0 -1 0.0 -I).15 _ 10 -1 0.1)

4 -0.215 x 11) -t 0+0 -0. is2 × i0 -t o.0 -Ib+ 125× 10 -t 0.0

5 -(I.212× 10 -t 0.0 -0.154 _ [o -t 0.0 -0.104 × 10 -t 0.0

vl
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th ql -o..14x o. f)
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I).0 -11. 9_| ,I 111-1 (L0 -0. l(J_ 0, ql

0 1

(9 (I. _1 -[I. 12;_

1 o, f) -[I. 1 _,1

2 I). I) -I). 11;7

3 lJ. 11 -(h 1,1
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,5 11.0 -I).l)7;I _ 119 I

Fly F f VydAo
Ill II

V 3 4 5

4hO -0.50 0.0 -0. 123 + 131 +

¢). [1 -II..34_ I[. 0 -[h 977

I). i) -0. ;If|3 I). II -Ih 7ll

I[. [I -[J. 2ill IJ. 1) -(). (i([1

I). II -I1+ 2L_X IL l) -II. J,h7

[t. 0 -q[, 19_+ q). I_ -Ih loft

II

1

3

4

5

I)

-[9. 1_1 ,t |0 -3

-<h 51 -" 10 1

-0. 7)I+_ _ l0 -I

-[}. 542 / i() -I

-0. 471 _ 10 -1

-0.41t7 _ 10 -1

l"lz 1-- f Y_'. dAO

rllll

l 2 3 4 5

(i.o -i). lh4 (J.(P -0..|4_+ 0.0

iJ. 19 -th l[;Y I). _ -I;. 3(J3 I), l)

0.0 -0. 14 ()+ 0 -0. 291 O. 0

It. (3 -(1. 111; 0. [) -1t. 2;Ih 11, II

0. D -r+473 y 1[) -1 0.1) -[). 19_ 0.0

0.0 -[). 831 ;,+ 10 -1 0.0 -0, l[;h (I.0
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0.161 _ IO _ o.0
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-1}, :149 _ 101 0.{I
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O. (e -0. 171 , lie:'

0.0 -0.31 _ Ill:_

O. 0 -(e. 562 _ 10 e

(}.{} -0.103× 103
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0 0.375 _ 111-3 0.(}

1 -o. 149y 101 0.0
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4 -(}. 12X _ 10" (I.O

5 -0.243× 10 _ 0,0

1 /. VdA0
F° V---
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2 3

-(}. 197 • 1() O. le

-fl _52 _ |01 I}.(e
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FI Tn j V"r dA 0
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I}.O -(e, 25:1 × 103

I}. (e -(). 451 x 10 3

le. (1 -0. 89t; • 103
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-(I. XSZ < 101 (LIe

-0.171 ¢ 11}? (e.(}
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-(L 1!}:1 _ 103 O. {I

4 5

-(}.:IXX • II) 2 1}.0
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4 5
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x x2MT (xl) L x 2 MT (xl)
Z

z ax,dx ÷±f fv(x) =-f0 f0 EIz (xl) L 0 0 z
dx 1 dx 2

v(x) ="_ (_-II-IIx)L 2Io z

where

fl flI 1 =
0 0 g'(Xl)

X X 2

dxldx 2 and Ilx= f f _ dxldx 2
0 0 g (xl)

u (x) 1 ?1 f
_v :_-0_A

o_ET dA dx a F 0 L xj_= f(xl) dx 1
A° 0

M (x) =0
Z

PT

a = -nET+ -_ +XX

MT + My

Y + y
I
Y

M
Y

may or may not be zero, depending upon the boundary condition.

If end B is hinged, then

Uav(X) = 0 ,

V 0 = M 0 = 0 ,

v(x) = same as above,

a = -nET+ +

= Iy \
axial force P = /" c_ ETdA

A

Y _
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II h(Xl ) g_(xO gZ(xO

0 0

I2/ h(Xl)xldXt f'g _'xA_11 - I3
0 0

dx 1

t_(xO g_(xl)
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(Table 3.0-4 gives values for F2 and F 3)

M0z c_ E F 1 F 2 ,

o_

Voz = --_ E F 1 F3

Mz(X ) = MOz + x Voz

Uav(X)= _ "Jxl
• A° 0

f(x 1) dXl

If the end B is restrained against longitudinal motion, then

Uav(X) = 0 ,

(.) (.M)M T My MT z
z

cr = -a ET + Y z ÷ y
xx I I

y z

v(x), Mo, Vo

CASE a: EI (x) = constant,
z

(__) c_ F 1 x 2v - I
Z

are same as above.

+n

2 _ E Fl(q-1)
M° z - (q+l) (q+2)



TABLE 3

ORIGINI_.L PZ._E {3

OF POOR QUALITY

• 0-4. VALUES OF CONSTANTS F2, F3,
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6_EF1 q
V°z = - (q+l) (q+2)L

M = 2_EF| F(i -
z (q+1) (q+2)

CASE b:

M T (xl)
Z

EI (xl)
Z

= constant

v(x) = o ,

M0z = -M T ,
Z

V0z 0 Mz = -M T = constant.
Z

A

III.

Y

t

Id

Fixed-Hin_d Beam.

B

"l

A. Boundary Conditions:

dv

v- dx-0, @ x=0

MT
d2v z

v= -_x + EI -0,
Z

(_x=L
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L2[ ( )]v = - I Ix 1+ F4 Ix 2 -Ix 3
z0
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where

F4 = I1 (refer to Table 3.0-4 for values of
(I3 - IJ

= _ _ E F_ F 4
V°z L '

F4) ,

M0z = c_ E F 1 F 4

FQ L {-I
x

Uav(X) = j f(xl) dx I
A° 0

PT z y
(r =-a ET+ -_ + y+xx I I

z y

If the end of B is hinged,

Uav(X) : 0 ,

MT z T My

:-aET+ z Y z
xx I Y+ I

z y

CASE a:

EI = constant
Z
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+ t >3t}Io z -

3_ EF 1
V°z = (q+l) (q+2) L

3_EFI
M°z - (q+l) (q+2) '

M -- -

z (q+l) (q+2)

CASE b:

MT
Z

EI
Z

(x) = constant ,

v(x) = aft xZ ( x)I _ 1--y
Z

3 o_EF t
V°z = L

3
MOz = - __2 _EF1

Z _(,-_) o_,
IV. Deflection Plots.

From the previous cases the deflection expressions were found to be

A. Simply Supported Beam:

v<_,:_ (_ _,-_,x)
I0 z



B. Fixed-Fixed Beam:

v(x) :- F'L2
I0z (Ilx+ F212x+ F313x)
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C. Fixed-Hinged Beam:

These expressions have been plotted for parameter variations (ff beam width,

depth, and degree of thermal gradient along the beam length. The plots are

made in nondimensional form with tile following designation:

and

FF:_- (Ilx + F212x + F313x )

Therefore the deflection,

FS, or FF by

Ia z

v(x), for any case can be found by multiplyinK, SS,

Figures 3.0-4 and 3.0-5 show the variation of FF and FS as a

function of lengthwise temperature gradient. In the figure, G II _- 0 (con-

stant cross section) and N equals the exponent of the thermal variation along

the leng_h of the beam;e.g., N= 0 means constant variation, N 1 means

linear variation, etc.

Figures 3.0-6 through 3.0-13 show the three deflection parameters SS,

FS, and FF for variation of parameters G, It, and N, where II equals

variation in width of beam along the length, G equals variation in depth at

x= O) (refer to Paragraph 3.0.3.1).
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Figure 3.0-4. Deflection parameter FF versus distance along beam for

variation of lengthwise temperature gradient.
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.01_4

.ors

Figure 3.0-5. Deflection parameter FS versus distance along beam for

variation of lengthwise temperature gradient.
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Figure 3.0-8. Values of SS, FS, FF versus values of T

for H= 0, G= 0.5, N= 1.
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Figure :_.0-9. Values of SS, FS, FF versus values of T
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Figure 3.0-10. Values of SS, FS, FF versus values of T

for H= 0, G= 1.0, N= i.



P:_,',;_. {LORIGINAL ""_: ....

OF POOR QUALET't'

Section D

October 15, 1970

Page (;7

919 919

VALUe'S* OF T

Figure 3.0-11. Values of SS,
for It : O, G

FS, FF versus vulues of T

1.0, N =- 2.



Section D

October 15, 1970

Page 68

.Ol4

.Oil

.OIO

.0OQ

.OOq

,OQ(

on

i ( , __

LLi- ....

iii i /
iii
!ii i /!
!II I ,_
[ i i /

i i

I

ii i :!
i i [

______._ ._ _ ,*
(

i : ; A

_-II /
iii ii f
!_ i! /

Lii /ii.-_- l r

F._-. !

r-iF

,-iW- / _.::J'-t-- ,2...

_" '--t _ ...........
_ ._'_,l,,d--- _ _ "_
-___ _ ......

b,,
J-" !

/ i

i

[
i

r _

f"

/-

/

-I

i ! ......

j

\

-\
\

m__

J

-t- " "

q:: -
.,I I

1_

i

FI

\
\

\
\

[
\ \

\
\
\

3(_1Z_

[ : i

--j

i

!
I

J
1

i

i

I
1

-t-"

g

!,

-4

i
i :

I I
i I

)

Figure 3.0-12. Values of SS, FS, FF versus values of T

for H= 0, G= 2.0, N= 2.
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Figure 3.0-13. Values of SS, FS, FF versus values of
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Representation of Temperature Gradient by Polynomial.

A temperature profile obtained analytically or experimentally can be

approximated by a polynomial of the form

N M

omT= V y z +T Omn
n=l m=l

Accuracy of this approximation increases with the increase in the

number of terms of the polynomial; but, since the temperature distribution

is to be integrated in the process of obtaining the stress distribution, the

accuracy of the resulting distribution using a low-order polynomial improves.

The total number of grid points required to determine the coefficients V
nl n

uniquely is equal to (M + N).

The coefficients V are obtained from the following relations.
mn

VIN

V21

V22

V2N

VMN

al, ll al 12 al, 13" . a a a, " 1,1N 1,21 ..... 1, MN

a2,11 a2,12a2,13" " " a2,1Na2,21 ..... a2, MN

a a •
N, 11 N, 12 .................... aN, MN

a(M+N) II a(M+N) 12 .......... a(M+N) MN

T I-T0

T2-T 0

TN-T o

M+N)-T0



n rn

where a. = Yi z.1, mn 1

point at temperature T.
1

section.
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The values (Yi' z.)t = coordinates of the ith grid

and T o = temperature at the centroid of the cross

If the temperature difference (T.-T0) is continuous and symmetrict

about the z-axis, then Vml= Vm3 = Vm5 = . . . = 0, and if it is continuous

and antisymmetric Vm2 = Vm4 = Vm6 = . . . 0. Similarly, for temperature

differences that are symmetric about the y-axis, Vln = V:I n = Vsn = . . . 0,

_ : . • •and if it is antisymmetrie about the y-axis, V2n V4n V6n _ 0.

If the temperature varies only in one direction (e.g., for w_riation

along the y-direction only) along either the y- or z-axis, the polynomial
reduces to

N

)2 nT-T0= V y
n

n--1

V 1

V 2

V n

"all a12 ...... aln

a21 a22 ...... a2n

anl an2 ...... ann

/ T1-T 0

T 2.T 0

T -T
n 0

n

aln Yi

As before, if the temperature difference is continuous :md symmetric,

V l= V 3= V 5= . . . 0; and for continuous antisymmetrictemperature dif-

ferences V2 = V4 = V6= • • • 0.

If the grid points are equally spaced on the cross section, say at
distance dl, then the polynomial can be written in nondimensional form as

T 1 - TO= . V di n
n=l n d I
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1. Continuous Symmetric Temperature

Y T 4

2

T_-_
%,o! _,

a. Nine Points:

T. -To=
l

n=2, 4, 6

V2 dt 2 12 14

V4 dl4 22 24

V6 di e 32 3 4

V 8 di s 42 44

( Vn di n)

-1

16 18"

2 e 28

36 38

4648"

n

(i)

T 1 - T O

T 2 - T O

T3 To

T4 To

V 2 dl 2

V 4 dl4

V 6 die

V 8 dis

O. 16000+01

-0. 67778+00

0. 80556-01

.-0. 27778-02

-0.20000+00

0.23472+00

-0.36111-01

0.13889-02

0.25397-01

-0.33333-01

0.83333-02

-0.39683-03

-0.17857-02"

0.24306-02

-0.69444-03

0.49603-04

b. Seven Points:

,v2,21[iiloo ololoo ooo.11111_ot1V4dl41 = - 54167+00 0.16667+00 -0.13889-01

IV dl eJ 41667-01 -0.16667-01 0.27778-02J
TI-T o

T2-T o

T3-T o

c. Five Points:

:
[TI-To

T2-T

TI-To 1

T2-To /



I

2. Continuous Antisymmetric Temperature
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-l--

d 1

!-

#--

Vi dl

V 3 dl3'

V s dis

V 7 dl7

a. Nine Points:
T 4

V1 dl /

V3 dl3 / =

V s dls

V 7 dl 7

1 13 15 17-

2 23 25 27

3 3 3 35 37

4 43 45 47

-I

Ti-T o

T2-T 0

T3-T o

T4-T o

0.15003+01

-0.54209+00

0.41787-01

-0.86045-05

-0. 30031+00

0.33375+00

-0. 33454-01

0. 86045-05

0.33466-01

-0.41847-01

0.83850-02

-0.36876-05

-0.22126-04"

0.30116-04

-0.86045-05

0.61461-06

b. Seven Points:

Vld

V 3 d

V s d

:}[_!.i oo+oi= 54167+00

41667-01

c. Five Points:

I'd
d. Three Points:

-0.30000+00

0.33333+00

-0.33333-01

0.33333-01

-0.41667-01

0.83333-02

+L++0/
T 2-T 0)

T1-T° [

T2-T o

T3-T 0 [

TI-To ]

T2-To

T3-T 0

T4-T 0

Vi dl = T i - T O



3. Arbitrary Temperature Distribution
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Y

1
T 2

1 ! T1
2

3

4

/
r

a. Five Points:

Vi dl 21

V 2 dl 2 11

V3 dl 3 -1) i

! 4
iV4 dl -2) 1

2 2

12

(-1) 2

(-2) 2

2 3

13

(-1) 3

(-2) 3

24

14

(-1) 4

(-2) 4

-1,

T2-T 0

T1-T 0

T-i-T° ]

T-2-T0 I

VI dl

V2 dl 2

V 3 dl3

V 4 dl 4

-0. 66667+00

0. 66667+00

0. 16667+00

-0. 16667+00

-0. 83333-01

-0. 41667-01

0. 83333-01

0. 41667-01

b.

'lId l i t

dl 2 (-I) 1

0. 66667+00

0. 66667+00

-0. 16667+00

-0. 16667+00

Three Points:

-1

(-1),v Ii;]17 /

0.83333-01"

-0.41667-01

-0.83333-01

0.41667-01

T2-T 0

T1-T 0

T_l-To

T_2-T0

Once the polynomial coefficients are determined, refer to Table 3.0-2

or 3.0-3 for constant F 1. Refer toTable 3.0-4 for the constants F2, F3, and

F 4 to be used to find the fixed-end moments, reactions, and deflections of
the beam.

I. Example Problem 1.

Given: The beam of rectangular cross section with a temperature distribution

constant in the x-direction and varying linearly from 500 ° F on the top surface

to 80°F on the bottom surface.

v"



f

Y T 1 = 5N0 OF

L = 100 IN.
,I

5
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T 1 = 500 OF

TO =_

80 OF

a= 6x 10 -6

E = 30 x 106

Find: Maximum stresses and maximum deflection v(x) in center of beam.

Solution:

1. Find the polynomial expression representing the given temperature

distribution in the y-direction. Refer to Paragraph 3.0.2.3, Continuous

Antisymmetric Temperature, Three Points

vt dt = T i - T O

Therefore

Vl(5) = 500 - 290

v 1 = 42

Therefore expression for T- v 0+ v ly- 290+ 42y

2. Find wllues of F0, F1, F2, and F 3 for each term of polynomi:ll.

Refer to Table 3.0-2.

F 0:= 290 × b0d 0 = 2')0 > 10(5) =--50 × 290

F0= 0

F1 (42) b0d30 4212 -- 1-_ (5) (10) 3= 415.67(42)

Fl= 0

Refer to Table 3.0-4:

(q-: 0, It= 0, G- 0)

F 2 = -1. 000

F3= 0

f(x) 500 (--_) q

since const_lnt in x-direction

q=0

constant depth G - 0

constant width II - 0
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3. Refer to Paragraph 3.0.2.2 II (Case b)

M0 z

M0 z

= _ EFIF 2

= 6× 10-6× 30× 106× 416.67× 40× (-i.00)

= 3.15× 106

Mo z Y
= - o_ET +

xx I
Z

Top Fiber: a = -6 × 106× 30 × 106× 500 +
XX

(-3.15x 106 ) × 5
416.67

a = -127 800 psi
XX

Deflection: v(x) = 0

Therefore the beam remains straight.

II. Example Problem 2.

Given: The I-beam shown below with a linear varying temperature in the

x-direction and varying as shown in the y-direction.

Y

!_ L - 100 IN.

_'-_ 1'00°

| X

q

Y

t 350o

! 4.5 -*

Find: Stress
xx

Solution:

and deflection v(x).

1. Find the polynomial expression representing the given temperature

distribution in the y-direction. Refer to Paragraph 3.0.2.3, Arbitrary
Temperature Distribution, Five Points.



r

fr

V i d_

V 2 dl2

V 3 dl 3

V 4 dl4

%0.08333

-0.04167

0.08333

0.04167

0.6667 -0.6667 0.0833_

0.6667 0.6667 -0.04167

-0.16667 0.16667 -0.08333

-0.1667 -0. t6_67 0.04167

350-150

225-150

100-150

100-150
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62.5

10.42

: I0

2. 083

62.5 10.42 y2 2.083 y4
T = 150+ 1.156 Y + (1.156) y + (1.156) 4

T = 150 + 54.1y + 7.81y 2 + 1.168y 4

2. Refer to Tables 3.0-2 and 3.0-4 for values of F0, F1, F2, F3, and

F 4 for each term of polynomial.

n = 0 V0 = 150 F 0 = 150(1. 715) = 257.3 F 1 = 0

n= 1 V l= 54.1 F 0= 54.1(0) = 0.0 F 1= 54.1(2.774)=150.0

n= 2 V2 = 7.81 F 0= 7.81(2.774)= 21.6 F l= 0

n = 4 V 4 = 1. 168 F 0 = 1. 168( 6. 745) - 7.9 F 1 = 0

Z F 0 = 286.8 F 1 = 150.0

.... 350 - 250f , L/

q= 0 F 2= -1.000 F 3= 0.0 F 4= -1.502

q= 1 F 2= 0.0 Fj = -1.0 F 4= -0.502

F 2= -1.000 F 3= -1.0 F 4= -2.004

3. Refer to Section 3.0.2.2-III (Case b).

M0z = -3/2 oL EF 1 = - 3/2 (180) (150)= - 40,500

M = M0z (1 -x/L) I = 10.55 in 4.
Z Z



a (@x = 0) = - t_ET+
XX

Moz Y

I
Z
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& t'_ I't I ¢3t _" t',t _,

(7 = -_ou,..,ou, -
_ F

XX

= -71 860 psi
XX

Deflection:

40 000(2.312)
10.55

v(x) = _ x2/4(1 -x/L) : 21 35 × 10 -6
I

Z

x2( 1 - x/L)

x v(x)

0 0
-6

10 90 × 21.35 × 10

20 320 × "

40 960 "

50 1250 "

60 1440 "

80 1280 "

90 810 "

100 0

Refer also to Fig. 3.0-6 for the deflection.

3.0.3 Indeterminate Beams and Rigid Frames.

Continuous beams or frames can be analyzed by the method of moment

distribution described in Section B5.0, Frames. In this method a continuous

beam is fixed against rotation at all the intermediate supports over which the

beam is continuous; and, in the case of a frame, all the rigid joints are also

fixed against rotation and displacement. For each beam segment the moment

required to keep the slope at each of the two supports unchanged is called a

fixed-end moment. According to the convention of the method of moment

distribution, the fixed-end moment, which is an externally applied moment,

is positive if it is clockwise and negative if it is counterclockwise. This con-

vention should not be confused with the convention of strength-of-materials for

internal movement (refer to Paragraph 3.0.2). Fixed-end moment is desig-

nated by the subscript, F, and is abbreviated F.E.M.
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A B C A B C D

A B C A B C D

NO F.E.M.
MFAB MFBA MFBc MFAB MFBA MFBc MFcB MFcD

1970

The magnitude of F. E. M. is obtained by analyzing the fixed-fixed

beam or the fixed-hinged beam cases of Paragraph 3.0.2. In that paragraph,

M0z is positive when counterclockwise; so, to convert M0z to F.E.M., one

must multiply by -l.

FIXED - FIXED BEAM FIXED - END MOMENTS

A B A B

V VLz = -M 0 = M LM0z °z MFAB z MFBA

M L =M 0 +L V 0
Z Z z

FIXED - HINGED BEAM FIXED-END MOMENTS

A B A

T-. )
M0 z V0 VL z = -M 0z MFAB •

A B A B

V 0 • MFBA
= M o

With this information, a normal moment distribution technique can be

performed to solve any continuous beam or fr_ime.
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For a free curved beam of arbitrary, constant cross section, the

centerline of which is an arc of a circle lying in one of the centroidal principal

planes under a temperature distribution T(r, 0), the following comments can
be made.

J

1. For a small depth-to-radius ratio, straight-beam theory can be

used instead of the curved-beam theory.

2. Forlineartemperaturevariation(T=Ti-_-), theresultsof

curved-beam theory compare well with the solution obtained by exact thermo-

elasticity method; e. g., for a rectangular beam where the ratio of outside radius

to inside radius is equal to three, the maximum stress obtained by the curved-

beam theory differs from the maximum stress obtained by exact solution by
only 2.4 percent. Straight-beam theory, however, gives _ = 0, which is

00

considerably erroneous.

z 2

3. For quadratic temperature distribution T = T2 "_ , the difference

in maximum stress obtained by curved-beam theory and exact solution is only
4.9 percent for a rectangular section where the ratio of outside to inside radius
is equal to 3.0.

For solutions other than those mentioned above, see Ref. 1.

3.0.5

A ring may be regarded as a closed, thin, curved beam, and can there-
fore be studied by the methods given in 3.0.4 and in Ref. t.

3.0.6 Trusses.

3.0.6.1 Statically Determinate.

Every member of a pin-jointed determinate truss is not constrained to

elongate because of thermal loading. As a result, the net axial force in each

member is zero. Therefore, members of a pin-jointed determinate truss are

regarded as simply supported beams under thermal loading and should be

analyzed accordingly.

Deflections of joints of a truss can be obtained by the conventional
"dummy-load" method described in Section B4.2.2.
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3.0.6.2 Statically indetermin'lte.

The forces in the bars of a statically indeterminate pin-jointed truss

are not zero, but are easily determined from the results of the previous

paragraph.

3.0.7 Plates.

The analysis of plates presented in this section is based on the

following classical theory of plates assumptions:

1. The material is isotropic, homogeneous, and linearly elastic.

2. The constant thickness of the plate is small when compared with its

other dimensions.

3. Plane sections, which before bending are normal to the median

plane of the plate, remain plane and normal to the median plane after bending.

4. The deflections of the plate are of the order of magnitude of the

plate thickness.

Solutions are given herein for circular and rectangular plates with

various boundary conditions ,_nd temperature distributions.

Analysis techniques for plates made of composite materials are given

in Section F.

3.0.7.1 Circular Plates.

I. Temperature Gradient Through the Thickness.

A. Configuration.

The design curves and equations presented here apply only to flat,

circular plates having central circular holes (Fig. 3.0-14). The plates must



Section D
July 1, 1972
Page 82

be of constant thickness, be made of an isotropic material, and obey t]ooke_s

law. Curves are given which deal with bendingphenomenafor a/b r._tios of

0.2, 0.4, 0.6, and0. San(! are basedon the assumption that v = 0.30. These

plots cover only n portion of the boundary conditions considered in connection

with bending behavior. The remainder of these conditions, as well as all the

membrane solutions, are given as closed-form algebraic equations which arc

valid for arbitrary values of Poisson t s ratio and the inner and outer radii of

the plate. When the ratio a/b approaches unity, the member is more properLy

identified as a ring.

N I

N8

N8

POSITIVE DIRECTIONS OF THE

I STRESSRESULTANTS
.

_'_._.... SUR--FACE
MIDDLE

NOTE: r, 8, z, u, v, and w
z,w are positiveasshown.

N r

Figure 3.0-14. Circular flat plate.
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B. Boundary Conditions.

Solutions are given for various combinations of the following boundary

conditions for bending and membrane behavior, respectively.

Bending Phenomena.

1. Clamped, that is,

0w

- - 0 at r = b and/or r = a ;w Or

2. Simply supported, that is,

w = M = 0 at r = b and/or r = a ;
r

3. Free, that is,

M = 0
r

aM OM
r rO

Or ;)o
: o
I at r : b and/or r a .

Membrane Phenomena.

1. Radially fixed, that is,

= _ = 0 at r = b and/or r = a ;

2. Radially free, that is,

Nr = Nr0 = 0 at r = b and/or r = a
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C. Temperature Distribution.

Arbitrary t_mperaturc variations may be present through the plate

thickness. However, it is required that there be no gradients over the surface.

Hence, the permissible distributions can be expressed in the form

T = T(Z) .

D. Design Curves and Equations.

In Ref. 2, Newman and Forray present the simple method given here

to determine the thermal stresses and deflections for stable plates that satisfy

the foregoing requirements. This technique is based on classical small-

deflection theory and is an extension of the procedures published in Refs. 3

through 5 by the same authors. To perform the analysis, use is made of a

number of equations and design curves. These are provided in the summary

which follows.

It is assumed that Young's modulus and Poisson' s ratio are unaffected

by temperature variations. On the other hand, the temperature-dependence

of the thermal-expansion coefficient can be accounted for by recognizing that

it is the product _T which governs; that is, the actual temperature

distribution can bc suitably modified to compensate for variations ,:_ ,_.

E. Summary of Equations and Curves.

W _

w t a2M T

Db(1- v2)
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% 1 NO + +7_ M0 + _= (i-.)

where

Et 3

Db -- 12 (1- p2)

t/2

= F_M T
-t/2

Tz dz

t/2

= E_ I-NT
-t/2

Tdz

M = -12 MTM" r
r

M_ = -12 MTM 0' ,

N = NTN" rr

and

N O = NTN 0'
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The values for w', Mr' ' and M0t are obtained either from Table 3.0-5

or Figures 3.0-15 through 3.0-19. When the figures are used, Poisson' s

ratio must be taken to be 0.3 throughout the analysis of bending phenomena.

When Table 3.0-5 is employed, there are no restrictions on v . Also note

that, in most of the plots, the parameters include multiplication factors. The

values for N t and 1_ are obtained from Table 3.0-6 and are also valid "or
r

any value of Poisson' s ratio.

F. Linear Gradient.

For the special case of a linear temperature gradient through the

thickness for a solid plate represented by

T(z) -- TO ÷ Tl + T° - T1
Z2 2

the following solutions apply.

Unrestrained Solid Circular Plate.

0 =(7 = 0
r 0

The plate becomes curved and fits a sphere _f radius inversely

proportional to the difference in surface temperatures and direct:y

proportional to the thickness.

Clamped Plate.

w = 0

7
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NONDIMENSIONAL PARAMETERS FOR

BENDING I)IIENOMENA

P

Boundary Conditions

Outer Edge Inner Edge

Free

Clamped

Simply

Supported

Free

Free

Clamped

l,'rec

Simply

Supported

W !

1(__ 1) (Relative toInner Boundary)

0

2

M t
r

12(1- v)

0

Mo,

i.o(i- .)

TABLE 3.0-6. NONDIMENSIONAL PARAMETERS FOR

MEMBRANE PHENOMENA

Boundary Conditions

Outer Edge Inner Edge

Radially Free Radially Free

Radially Fixed

Radially Free

Radially Fixed

Radially Free

Radially Fixed

R,_dially Fixed

N !
r

' 1 -_(1-v_

V(I
L

No,

(i_-.) . (i- .)

• - +

(i-,)
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f

rl %1
max max

Simply Supported Plate.

Crr = _0 = o

and

W -ol (T,- T,,) (a2 r2 )
2t

II. Temperature Difference as a Function of the Radial Coordinates.

A. Clamped Plate.

For the variation of temperature, ,assumed to be linear through the

thickness, and the variation with r given by the monomial,

Z K
T = ---Ar +c

h K

where A and c are constants.
K

I(
: A r ,TD K

K

TD(a).. = AKa



Section D

July 1, 1972

Page 92

A

w = (K÷ 2)2 - + +2 '

Mr = 12(K + 2) +

and

Eh2OtTD(a) I ( K l+ulM0 - 12(K+2) K+ 1)(r) +l---'_J

where T D is the temperature difference between the surfaces.

Curves of nondtmenslonal deflection and moments are presented in

Figures 3.0-20 through 3.0-22 for K = 1,2,... 5 . Superposition may then be

used for T D given by polynomials in r. The determination of a polynomial

describing the radial variation of T D can be obtained in the same manner as

shown in Paragraph 3.0.2.3.

B. Radially Fixed or Radially Free Plate.

Configuration.

The design equations provided here apply only to flat, circular plates

which may or may not have a central circular hole. The plate must be of

constant thickness, be made of an isotropic material, and obey Hooket s law.

Formulas are given which cover the range

a
0 _ - < 1

b
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w'--

3.2

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0

Figure 3.0-20. Nondimensional deflection.



Section D

July 1, 1972

Page 94

1.4

1.2

1.0

x'0

0.8

0.6

0.4

0.2

ii
I l I I

0.2 0.4 0.6 0.8

r

Figure 3.0-21. Nondimensional radial moment.

1.0
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f

1,4

1.2

1.0

0.8

0.S

0.4

0.2

x_0

| ! I I

O_ 0.4 0.6 0.8

f

II

1.0

Figure 3.0-22. Nondtmensional tangential moment.
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As this ratio approaches unity, the member is more properly identifiod as

a ring.

Botmdar_ Conditions.

Solutions are given for each of the following types of boundary

conditions.

1. Radially free; that is,

ar = ar8 = 0 at r = b

and

_: (rr = 0 at r = a(rr 0

if hole is present.

2. Cuter boundary radially fixed (if hole is present, the inner

boundary is radially free) ; that is,

u =v = 0 at r = b

and

ar _: ar^u = 0 at r a

ifhole is present.

Temperature Distribution.

The supposition is made that the temperature is uniform through the

thickness. However, the plate may be subjected to a surface distrioution

r
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which has an arbitrary radial gradient but no circumferential variations.

Hence, the permissible distributions can be expressed in the form

T = T(r) .

Design Equations.

In this section, it is assumed that Youngts modulus and Poissonts

ratio are unaffected by temperature changes. Therefore, the user must select

single effective values for each of these properties by using some type of

averaging technique. The same approach may be taken with regard to the

coefficient of thermal expansion. On the other hand, the temperature-

dependence of this property can b_; accounted for by recognizing that it is the

product _T which governs; that is, the actual temperature distribution can

be suitably modified to compensate for variations in _.

The design equations are given in the summary which follows and are

based on classical small-deflection theory.

free plates were taken directly from Ref. 1.

The expressions for the radially

The equations for plates with

radially fixed outer boundaries were derived by superposition of the free-plate

formulas and the relationships given in Ref. 6 for cylinders subjected solely

to external radial pressure. Depending upon the complexity of the temperature

distribution, the required integrations may be performed either analytically

or by numerical procedures.
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1. Radially frec boundary:
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(lb lr )0"r = o_E _'_ f Trdr-r-- _ f Trdr
O O

I_ I b I r z_a0 = c_E T+_ fTrdr+_ fTrd
O 0

and

u = -- 1 + P) Tr fir ! (1 - v Tr d
r

o o

These three equations are indetcrminate at r : 0 . However, by the

application of I t Hospital t s rule, it is found that [1]

(ar) = (aO) = orE 1 f Tr dr- _(T)r=O
r=O r:O o

and

U ---"0 .
r=O



2. l_adially fixed boundary:

r
=_E

b 11 f Trdr-_
Po

r _ _ _]f Trdr- b2(1 - v) f Tr
O O
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= aE
f b 1

1 f Trdr+_-_
T+_-_ °

b ]r 2 f Tr dr
f Wrdr-b2(l_v/ o

O

and

U = ot 1 +v) Tr dr- (1 +v)
r o

b ]f Tr dr
O

These three equations are indeterminate at

of 1' Hospital' s rule, it is found that

r=0 . However, by the application

b

1

(ar) : (a0) -- aE _-_ f
r=0 r=0 o

2

Tr dr -%2(1 _ v) b 1 1f T rdr-_Tr= 0
O

and

U = 0 •

r=[}

Plates with Central Hole.

1. Both boundaries radially free:

O"
r

= -_y ., f
,q

Tr dr - r )f Tr dr
a

e
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and

_°[( iU = _ l+p) Trdr+
(1- v) r 2+(l+u) a 2

b 2 _ a 2 b ]f Tr dr

a

2. Inner boundary radially free and outer boundary radially fixed:

Cr = _ Lb-t--_-f a Trdr- a/Trd +(O'r)r= b bS__ a I-_-_ ,

aE_ fbTrdr+ /Trdr_Tr2 ]

+ (err)r=b b2 - a2 + r7

U a [(1 +_)r

r (1- u)r 2+(l+v) a2 b

f Tr dr+ (b2- a_ f Tr dr
a a

where

o, 1 I + _)
b

f Trdr
a
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and

III. Disk With Central Shaft.

Boundary conditions for this plane-stress problem are u[ r=a

= 0 •

Crrr [ r=a

=0

r - a_ I1

T = T b \b - a/ '

arr 1 \_-v- v

- 2 (l+v

¢rO0

ET b

rr

a ET b

+ r-2 T* [ a 2

_) - _ _-7_+_

2[Tb

r=a

a'/ T* 2T•_ (_-_)-_

= - +a 2 '-_ (i+_) _ (i-_)

°00IaET b r=a
= _ + a2

r=b I_(1 _)[
Tb 1 + (,_/a'-'__

and

r

T* =" 2
r 2 _ a 2 f

a

Tr dr 2Tb (r- a_n [(n+l) r +a)
- r + a \b-_-a] -(n+l)'(n+2)
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where

2 b 2T b

T: = r_-_ _ f Trdr - a+ b
a

[(n+l) b + a]

(n+l)(n+2)

Curves showing the variations of
rr

ETb r=a
and

r=b

with n

and a/b are given in Figures 3.0-23 through 3.0-25.

_.ll!

-0.7

"0-6 1

-0.5

0

a/b
0.8
0.6

0.4
0.2
0.1

2 3

Figure 3.0-23. Variation of tangential stress at outer boundary with n

and a/b for a disk on a shaft.

Additional cases that may be obtained from Refs. 7 and 8 are as follows:

1. Circular plate with asymmetrical temperature distribution

2. Circular disk with concentric hole subjected to asymmetrical

temperature distribution

3. Circular plate with a central hot spot.
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P

0.7

0.6

0.5

0.4

0.3

0.2

0.1

a/b+-0

0.1
0.2

_ 0.4

_ 0.6

0.8

0 1 2 3

0.2

o_

0.1

Figure 3.0-24. Variation of radial and tangential stress at inner

boundary of disk with n and a/b for a disk on a shaft.

-1.0
zlb

-0.9 _ 0.8

.o.e _ _ o.6

•0.7 C O.2
(ic o,

-0.5 -

/.
.o.,. /Z _
-0.3

-0.2 _

-0.1 ....

0 I 2 3

Figure 3.0-25. Variation of tangential stress at outer boundary

of disk with n and a/b for a disk on a shaft.
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3.0.7.2 Rectangular Plates.

I. Temperature Gradient Through the Thickness.

A. Configuration.

The design curves and equations provided here apply only to flat, rect-

angular plates which are of constant thickness and are made of isotropic

material. The two long edges of the plate are supported by flexible beams.

It is assumed that both the plate and the support beams are free of holes and

that no stresses exceed the elastic limit in either of these members. The

design curves cover aspect ratios b/a of 1.0, 1.5, and 3.0.

B. Boundary Conditions.

The edges x = 0 and x = a are elastically supported by beams having

equal flexural sttffnesses EbI b . Both beams are simply supported at their

ends (Fig. 3.0-26) and are frec to undergo axial expansions or contractions.

These members offer no constraint to cnch of the following pl'itedeformations:

I. Edge- Hotntion

2. In-Place Edge-Displacements u and v.

The beams resist only transverse deflections w . The edges y = 0

and y = b are simply supported; that is,

w =My -- 0

along these two boundaries.
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ARBITRARY
ONE-DIMENSIONAL
TEMPERATURE
DISTRIBUTION

r

o

x, y, z positive

m shown.

Figure 3.0-26. Rectangular flat plate with one-dimensional

temperature distribution over surface.

C. Temperature Distribution.

Separate coverage is provided for each of the following temperature

distributions through the thickness:

1. Linear gradient T = aJ + a{z

2. Arbitrary gradient T = f(z) .

It is assumed that there are no temperature variations in directions parallel

to the middle surface of the plate.

D. Design Curves and Equations.

In Ref. 9, Forray, et al., present the simple methods given here to

compute thermal stresses and deflections at virtually any point in fiat,
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rectangular plates which comply with the foregoing specifications. These

techniques consist of a varicty of equations and curves, all of which arc based

on the conventional small-deflection theory of plates. It is assumed that

Young t s modulus and Poisson t s ratio are unaffected by temperature variations.

Hence, the user must select single effective values for each of these properties

by employing some type of averaging technique. The same approach may be

taken with regard to the coefficient of thermal expansion. On the other hand,

the temperature-dependence of this property can be accounted for by recogllizing

that it is the product T which governs; that is, the actual temperature distri-

buti(m can he suitably modified to compensate for variations in _. When this

approach is taken, the user must adopt the viewpoint that any mention of a

linear temperature distribution is actually referring to a straight-line variation

of the product a T .

Linear Temperature Gradient.

For a linear temperature gradient expressed by

T = a_ + a_ z

and with

T D = T(z=t/2 ) - T(z__t//2 )

E t _

D b = 12(1 p_ v2)
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F
4Db_ TD(1 - u 2)

M =

The transverse deflections are expressed by

w = :(x,y) +wA(x,y) +wA(a-x,y)

where

W(x,y)

n=l, 3, . . .

sin osh n__: _a Y

nacosh n7r____bb.
2a

wA(x,y) = _, G ,[__Xcoshmrrx ( 2 mTra mTra) _._]
re=l,3 .... m ---_- 1--_+---_coth---_--- sinh sinm----_b

and

G *

121

4 M x_ mr a
- _ sinh

mira k=l,3 .... 1 + b
\ma/J

Db_._) sinhmTra (l_u)m_.a] ÷ 2 (Eblb_

The component N(x, y) is the deflection where all edges are simply supported.

The bending moments M and M can be obtained by substituting the
x y

final deflection relation into the following equations:



F a2w a2w aT D "]
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and

[02WO_w OZTl) ]
Y [(9.--7 I v _3x----7t t (1 + v

J

Forray et ",!. 191 used these (h;fh.ction and mom(;nt ex3_ressions to

generate the design eurw;s of l.'il,_ures 3.0-27 through 3.0-35, where it is

assumed that v _: 0.30 . Some of the curves are discontinued near the corners

of the plate x/a ---0, y/t) _ 0 since the conventional th. ,15. breaks ,',own at

these locations. Certain of these results also appear in Ref. 10, where a

different plotting format was used. In addition, the latter reference includes

supplementary curves for the c:::;c where EbIb/Dbb --- ¢0 This correspon(Is

to the condition of simple support on :dl four edges.

Because of symmetry about the centerlines (x = a/2 , y = t)/2) , it was

necessary to show only one quadrant of the plate in Figures _;. 0-27 -hr,_ugh

3.0-35. The assortment of curves covers a wide range of values in the vari-

ables and should accommodate most practical problems of this p,_rticular class.

For any situations where the plots prove to be inadequate, the equations c;m be

used to obtain solutions. However, a considerable amount of rather coutine

mathematics wouhl bc required in making the necessary substitutions to obtain

bending-moment equations in series form. Once the_e were available, it might
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0.24

0.20

0.16 x ,, 0.50

0 0.1 0.2 0.3 0.4 0.5
y/b

0.24

0.20_,r?"'
0.12_

0.__

0 0.1 0.2 0.3 0.4 0.5
Y_

0.24

0 0.1 0.2 0.3 0.4 0.5
y/b

0.24

0.20 _

,L?

0.__
0.04 -= "

0 0.1 0.2 0.3 0.4 0.5
y/b

• "0_

0 0.1 0.2 0.3 0.4 0.5
y/b

Figure 3.0-27. Nondimensional deflections for a plate with two

opposite edges elastically supported and the other

two edges simply supported; b/a -- 1.0, v = _). 30.
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Figure 3.0-28. Nondimensional bending moments Mx/M for a plate

with two opposite edges elasticallysupported and the other

two edges simply supported; b/a = 1.0, v = 0.30 .
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Figure 3.0-29. Nondimensional bending moments M /M for a plate
Y

with two opposite edges elastically supported and the other

two edges simply supported; b/a -- 1.0, v = 0.30 .
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Figure 3.0-30. Nandtmensional deflections for a plate with both

long edges etasticaUy supported and the short edges

simply supported; b/a = 1.5, v = 0.30.

+



F

_ :._'_ _'-

.OF POOR QUAL_y

O.28

0.24

O.2O

,,i z o.1e
0.12

O.(Z

O,O4

0
0 6.1 0.2 0.3 0.4 _5

ylb

O.28

6.24

O.2O

60 0.1 6.2 0.3 0.4 0.§

y/b

0.28

0.24

6.20

0.16

0.12

0,04

Section D

July 1, 1972

Page 113

O.28

O.24

O.20

0.16

0.12

0.08

0.04

0
0 0.1 0.2 0.3 0.4 O.6

y/b

0.24

0.20

0.16

:F"I"
0.12

o.'._.o.2o4_

0.04 _

0 0 O.1 0.2 0.3 0.4 0.5

y/b

0.24

0.20

0.16

6o._,_ _-_ _ oJ
y_

Figure 3.0-31. Nondimensional bending moments Mx/M for a plate

with both long edges elastically supported and the short

edges simply supported; b/a = 1.5, v = 0.30.



Section D

July 1, 1972

Page tl4

LM

- 6.OO

Figure 3.0-32. Nondimensional bending moments My/M for a plate

with both l(mg edges elastically supported and the short

edges simply supported; b/a = 1.5, v = 0.30.
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Figure 3.0-33. Nondtmensional deflections for a plate with both

long edges elastically supported and the short edges

simply supported; b/a = 3.0, v = 0.30.
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• X

Figure 3.0-34. Nondimensional bending moments M /M for a plate
x

with both long edges elastically supported and the short edges

simply supported; b/a = 3.0, v = 0.30.
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Figure 3.0-35. Nondimensional bending moments My/M for a plate

with both long edges elastically supported and the short edges

simply supported; b/a = 3.0, v = 0.30.
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prove profitable to develop a simple digital computer program to perforn" the

summations embodiedboth in the deflection and momentexpressions.

It is import:mt to note th:lt the peak momentsalways occur ;it the simply

supported boundaries :rod .re' oricnt(_d s,_ that the corresponding peak valtlcs

for the stresses tr and ¢r :_ct p:_r_lllel to the edges. The maximun_ m,)ments
x y

can be computed from tile following [11] :

_ J

C_Tl)(l- v2)D b t_T D
M .... E t 2

x(max) t p 12

These moments result from the boundary condition, which demands that w - 0

along the simply supported edges. This imposes a straightness constraint that

completely suppresses the therm:dly induced tendency to dcvelo|) curvatures in

vertical planes which pnss through these edges.

Arbitrary Temperature Gradient [T =- [(z)].

The following procedures may be used for the ;malysis of plates having

arbitrary temper.'|ture distributions through the thickness T = f(z) :

1. The deflections w and bending moments M and M may be
x y

obtained from the cquntions ,_md figures given for the linear temperature

gradient, provided lhat TI) is repl:lced by T* , which may be computed troln

the following:

t/2
T* 12 ;

tz !_ Tz dz
-t/2



r

2. The normal stresses x and y

relations hips

x x _,"_-/ (l-v) +"_-
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may then be established from the

and

r + P -T+--- T
Cry = My _'_-7 (1- v) t

where

d/z
-- 1 ?T Tdz

- d J
-d/z

II. Temperature Variation Over the Surface.

A. Edges Free or Constrained Against In-Plane Bending.

Configuration.

The design equations provided here apply only to flat, rectangular plates

which are of constant thickness and are made of isotropic material. It is

assumed that the plate is free of holes and that no stresses exceed the elastic

limit. The equations are applicable only for large values of the aspect ratio

a/b .
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Boundary Conditions.

Consideration is given to each of the following two types of boundary

conditions:

1. All edges are free.

2. Plate is fully constrained against in-plane bending but is otherwise

completely free.

Temperature Distribution.

The supposition is made that no thermal gradients exist through the

plate thickness but a one-dimensional, arbitrary variation occurs over the

surface; that is, the temperature is a function only of either x or y .

Design Equations.

It is assumed here that Young' s modulus is unaffected by temperature

changes. Therefore, in applying the contents of this section, a single effective

value must be selected for this property by using some type of averaging

technique. On the other hand, the results arc presented in a form such that

the user may fully account for temperature-dependence of the coefficient of

thermal expansion _.

The appropriate stress formulation is developed as follows for the

problem which was illustrated in Figure 3.0-26, which shows a rectangular

plate with a temperature distribution T(y) and free of any external constraints.

The results may be obtained by first imposing a fictitious stress distribution

J



a A on the edges x=4-a/2

suppressed. It follows that
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such that all thermal deformations are entirely

_A = - sET(y) .

These stresses may be integrated over the width b

arrive at the force

and the thickness t to

b/2

PA = - Et f sT(y) dy
-b/2

and the moment about the z axis

b/2

= - Et if sT(y) ydyM A
-b/2

Since, at this point in the derivation, it is assumed that no constraints are

present, the actual plate must be free of forces and moments on all edges.

To restore the plate to such a state, it is necessary to superimpose both a

force PB equal and opposite to PA and a moment M B which is equal and

opposite to MA . Hence,

PB = -PA

and

M B = -M A •



The stress corresponding to I' B is easily found to be
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PB PB

qPB =: _A : _bd ::

b/2
E
b f c_'l'(y) dy

-b/2

The stress corresponding to M B is

b/2

MBY 12MBY, 12y E !" c_W(y)ydya - I - tb_ b 3
MB z -b/

It should be noted thnt the procedure I)cing used constitutes an apl)lic:ation c_[

Saint-Venant Is principle. Hence, the stresses arid will i)c
°'p B ffM B

accurate representations only at sufficient distances from the edges x = _ a/2 .

Subject to this limitation, the actual thermal stresses at various points in the

plate may be computed from the relationship

qA + CrPB += _MB

or

I)/2 t)/2
F

a : -o_l':T(y)I f (_'l'(y) dy +1b-_3 E f (_T(y)y <iv
x b- -b/2 -b/2

The foregoing discussion has been restricted to those cases where tne

temperature varies only in the y direction. How(:,:er, the same method



can be used to arrive at the following expression when T

of x:
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is a function only

a/2tr -or ET(x) E 2 12x
-- +-- oIT(x) dx+7 E f aT(x) xdx

y a -a/2 -a/2

Complex one-dimensional temperature distributions may often be encountered

which make it difficult to perform the integrations required by the preceding

equations. In such instances, numerical techniques can be used whereby the

integral signs arc replaced by summation symbols.

The equations were derived for rectangular plates having no edge

restraints. However, these relationships can easily be modified to apply when

the plate is fully constrained against in-plane bending but is otherwise

completely free. This is achieved simply by deleting the final terms from

each equation.

Summary of Equations.

1. All Edges Free.

T = T(y) ,

E b/2 12y _2a : -aET(y) + f aT(y) dy + b3 E crT(y)y dyx b-
-b/2 -b/2

T = T(x) ,
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and

a/2 a/2
E 12x

o" = -aET(x) +-- f aT(x) dx+--_ E f ¢rT(x) xdx
y a -a/2 -a/2

2. Plate Fully Constrained Against In-Plane Bending But Otherwise

Completely Free.

and

T = T(y) ,

b/2

l,: f ,v'l'(y) dy ,
x : - a'ET(y). _ -b -b/2

T = T(x) ,

O _ .-

Y

a/2
--o_H'(,,) , t._: f _'l'(×),I.,,

n -a/Z

1L l,:_l_cs Fixed.

Configuration.

The equations and sample solution provided here apply only to flat,

rectangular plates which are of constant thickness .and are made of isotropic

material (Fig. 3.0--36). It is assumed th, t the plate is free of holes and that

no stresses exceed the elastic limit. The _ c:uatians are applicable to any

aspect ratio a/b .
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r

FIXED

_= '

IXED
y,v

v

X,U

r,
uJ
x
m

LL

ill ii I I ii l

NOTE: x, y, z, u, v, andw are
positivem shown.

Figure 3.0-36. Rectangular fiat plate: all sides fully constrained

against in-plane displacements.

Boundarlr Conditions.

Consideration is given only to plates having all sides completely

restrained against in-plane displacements (fixed) ; that is, both of the

following conditions must be satisfied by each edge:



and

U = 0
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V " 0 .

Temperature Distribution.

The supposition is made that no thermal gradients exist through the

plate thickness, tfowever, temperature variations over the surface may bc

arbitrary.

Design Equations.

As noted previously, a so-called body-force analogy exists between

certain isothermal problems and thermal stress problems for flat plates

which experience no transverse displacements w . This method is derived

in a number of different references [12, 13, 14] and is frequently referred to

as Duhamelts analogy. In Ref. 15, this approach is used to solve the

problem being treated here. Assuming that buckling does not occur, solutions

in series form were obtained for the in-plane stresses q , a and r
x y xy

The series coefficients can be obtained by solving the following simultaneous

equations:

+ _ 2(1 • v) _ \_ mnpq
mn 4 --_ /' Bpq(p2-m2)(n2-(l:')

p-1 q=l

= + v)

b b

f f_T mnx nny_x sin _ sin dx dya b
0 0



r

and

_2ab
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co co

p=l q=l pq (P2-m2)(n2-qZ)

b a aT m_rx

= -_(1 +v) 0f 0f _y sin--a sin b dxdy ,

where the indices m, n, p, and q each take on the values 1,2,3,...

subject to the restriction that those values of p and q must be deleted for

which (m 4. p) and (n ± q) are even numbers.

For any given temperature distribution, the right-hand side of the

preceding equations must be integrated. In many cases it will be desirable to

perform these operations by numerical procedures. The integers m, n, p,

and q may be assumed to vary from unity to any value N. This will result

and N 2 coefficients B .
in 2N z equations involving N 2 coefficients Anm mn

This set of equations can be solved simultaneously to determine appropriate

values for the coefficients. Once this has been accomplished, the stresses

at any point may be computed from

m_xm___A cos -- sin
°'x - I- a mn a

I n=l

N _ n_ m_x n__h_ E c_
+ V Z -'_ Smn sin-- cos - T(x,y)

m=l n=l a ../ _ '



{7
Y

E

1 - v2 n_-_-B sin
\m=l n=l mn

N N

+ P _ COS
a mn

m=l n=l

m_x
COS

a b

\
mrx sin n-n--_] Ea

a l-p

Section D

July I, 1972

Page 128

T(x,y) ,

and

NN( "rxy mn _ sin
m=l n=l

mTrx
COS

a b

m cos _ sin
mn a a

Then the strains at any point can be determined from

| - PO" )
-- (Or x yx !':

1
f _ (IT -

y E y IP°'x) '

and

T

_ x3,
Txy - G' "

Example.

Let a rectangular plate having ali [our edges fixed (refer to Fig. 3.0-36)

be subjected to a temperature gradient



T(x,y) = T. -:,
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Then

0T 3'" and 0T
0x a 0y

O •

Substituting these expressions into the right-hand side of the design equation,

the following is obtained after integration:

A _2ab 2 1 - v
mn--4 ÷---_ -t 2(1 +u) _

p=l q=l

mnpq
Bpq (p2_m2) (n2_q2)

14(1 + u) b_T u

mn _2 if m and n are odd numbers

0 if m and n are even numbers ,

and

_2ab[(b)2 1-v(-_) 2]mn 4 2

N N
nm pq

+ 2 (1 + v) _ _ Apq (p2_m2)(n2_q2)
p=l q=l

= 0

Let N = 2. Then the preceding equation becomes

_2ab4 A11 +--_ + 2(1 + _) B22 (22_1) ( 1_22) = 4 _2 ,



Section D

July 1, 1972

Page 130

1,:
2×2

2(1 _ v) B2,_(22-I)

0 t

l 2x2 = 0

A21

0 ,

and

(li_1 2x2 = 0 ,

7r2ab Bi2 +
4

Solving these equations gives the results,

At2 = A2t = A22 -= Bt I = B2t = B12 = 0 ,

and B22 earl be obtained [rorn the following relationships:
while At_

_¢2a_b (1 ' 1 - v_ 8
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and

8 (i + p) Air- _Zab B22 d = 0
9

For any plate dimensions and material properties, the stresses may then be

determined by hsing the appropriate design equations. This gives

O"
x

- - -- cos -- Sin + v sln-- cos
1 v 2 All a a -b- B22 a

-1?_

E (_ 2___ + p_ A11cos__ sin b__)- - p--_ B22 S in 2____XX _ _Xy 1 a cos b a a

- (1- v) T. 1--a '

and

Txy il_sin? cos ÷ B22 a cOS--a sin a "

R can be seen that, for more complicated temperature distributions and higher

values of N, efficiency considerations would dictate the use of a relatively

simple digital computer program in applying this method of analysis.

3.0.8 Shells.

The analysis of shells subjected to temperature variations has, for the

most part, taken the approach of treating thermal loadings as equivalent
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mechanical loadings and hence solving the stresses and displacements by

techniques such as in Section B7.3. These approaches are discussed in

Refs. 7 and 8. Some of the more common temperature distributions in shells

will be discussed in the following section.

3.0.8.1 Isotropic Circular Cylindrical Shells.

This section covers the thermostructural analysis of thin-walled,

right circular, isotropic cylindrical shells. The middle-surface curvilinear

coordinate axes (x and y) are alw:lys taken parallel to the axis of revolution

and the circumferential direction, rcsl)eetively.

The organization of this section is somewhat different from that of

the sections which cover isotropic flat plates. This is due to certain funda-

mental differences between the physical behavior of flat plates and shells.

Flat-plate deformations are of such a nature that it is helpful to group the

solutions for stable constructions into the following categories:

1. Temperature gradients through the thickness

2. Uniform temperatures through the thickness.

Except for the special case of self-equilibrating gradients through the thick-

ness (N T -- 0, M T -- 0), the first of thcsc two cases involves out-of-plane

bending which is, of course, accompanied by displacements normal to the

middle surface of the undeformed plate. In case 1, the plate remains flat;

that is, the only displacements occur in directions parallel to the original

middle surface and no _ut-of-plane bending occurs. The governing differential
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equations in these two instances arc quite different and the indicated separation

of the cases is a logical format for the sections dealing with flat plates.

However, the situation is not the same for circular cylindrical shell structures.

For these components, a single governing differential equation includes the

phenomena related to both cases 1 and 2 and there is no need to isolate

these two types of thermal conditions. This is because either type of

temperature distribution, in conjunction with clamped or simply supported

boundaries, will lead to both membrane loading and bending about the shell-

wall middle surface. Consequently, for stable constructions which comply

with either case 1 or 2, the solutions are given in a single grouping as follows.

I. Analogies with Isothermal Problems.

A. Configuration.

This discussion is restricted to thin-walled, right circular cylinders

which are of constant thickness and are made of isotropic material. It is

assumed that the shell wall is free of holes and that it obeys Hooke t s law.

Figure 3.0-37 depicts the isotropic cylindrical shell configuration.

Figure 3.0-38 shows the sign convention for forces, moments, and pressure.

B. Boundary Conditions.

The following three types of boundary conditions are discussed:

1. Clamped edge; that is,

dw
w --u = 0 at x=0 and/or x= L (1)

dx



L
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NOTE: u, v, w, x, y, z, and
are positive as shown.

MIDDLE SURFACE

Figure 3.0-37. Isotropic cylindrical shell configuration_ for

analogies with isothermal problems.

P(P*)

x

/_Mx(M x_ I

N X

" QxIQx*) I
f

QxIQx*]

N x

NOTE: All quantities are positive as

shown. Internal pressure is
positive N indicated.

Y N_

Figure 3.0-38. Sign convention for forces, moments, and pressure

for analogies with isothermal problems,



2. Simply supported edge; that is,
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w = M = 0 at x--O and/or x= L
x

(2)

3. Free edge; that is,

Mx = Qx = 0 at x =0 and/or x= L .

All possible combinations of these boundary conditions are permitted.

it is not required that those at x = 0 be the same as those at x = L.

every case, it is assumed that the cylinder is unrestrained in the axial

direction (N x = 0).

C. Temperature Distribution.

The temperature distribution must be axisymmetric but arbitrary

gradients may be present both through the wall thickness and in the axial

direction.

(3)

Hence,

In

The permissible distributions can therefore be expressed in the

form

T = T(x,z) . (4)

Any of the special cases for this equation are acceptable, including that where

the entire shell is at constant temperature.

D. Analogies.

It is helpful for the user to recognize that, for circular cylinders,

analogies exist between problems involving axisymmetric temperature
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distributions and certain problems where mechanical loading is present but

thermal effects are entirely absent (isothermal problems). The various types

of correspondencc are discussed herein where it is assumed that Young t s

modulus and Poissont s ratio are un_dfectcd by temperature changes. On the

other hand, one can account for temperature dependence of the thermal-

expansion coefficient (_ by observing that it is the product sT which governs;

that is, the actual temperature distribution can be suitably modified to

compensate for variations in c_. When this approach is taken, the user must

recognize that any reference to linear temperature distribution is actually a

reference to a straight-line variation of the product aT.

It is also helpful for the user to recognize that, regardless of the

complexity of a thermal gradient through the thickness, at any location (x,y)

the distribution can be resolved into

1. A self-equilibrating component, and/or

2. A uniform component, and/or

3. A nonuniform linear component passing through T = 0 at the

middle surface.

A self-equilibrating tempcr_t_ L-c component is one for which

t/2

-t _/2 T dz : 0



and
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t/2

_t/i2 Tz dz = 0 .
(5)

An example of such a distribution is illustrated in Figure 3.0-39.

j j
T=0

Figure 3.0-39. Sample self-equilibrating temperature distribution.

From a practical viewpoint, it may be assumed that gradients of this type will

not cause any deformation of the cylinder. Their only influence will be on

and If, for example, a solution is available for anythe stresses crx a .

arbitrary temperature distribution T = T(x, z) , the effects can be easily

superimposed from a component Tl(x,z) which satisfies equations (5). It

is necessary only to algebraically add the stresses

E_TI_
-- = - (6)

X 0-@ (1- V)

to the previously determined values for the appropriate locations (x, z).
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In this section, the following two categories are treated separately:

1. Uniform temperatures through the thickness with or without

axisymmetric, longitudinal gradients; that is,

T = T(X) . (7)

2. Nonuniform linear temperature gradients through the thickness,

passing through T = 0 at the middle surface with or without axisymmetric

longitudinal variations and possibly including self-equilibrating components;

that is,

Z

T = TI(X,Z ) + T2(x ) _- (8)

where T 1 satisfies equations (5).

Uniform Temperatures Through the Thickness IT = T(x)].

In Ref. 16, Tsui presents the small-deflection governing differential

equation for the subject shell. After conversion to the notation and sign

convention used here, this expression becomes

NT d2M Td4w p _ 1

+4_4w = - Db _b a- Db(_- - .) dx_"
(9)

where

fl = _]'4D_a - _/ a't "_ '



and

t/2

N T = Ea -t/_2

MT = E_ t/j2

-t/2

Tdz

Tz dz
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(10)

Et 3

Db - 12(1- v 2)

An inspection of equation (9) reveals the key to an analogy which applies to

the problem under discussion. Note that, for the isothermal problem, this

equation reduces to

d4w .E... (11)
_T +4_4w = - Db

For thermostructural problems where pressure differentials are absent and

the temperature is uniform through the wall thickness (M T = 0), one obtains

d4w N T

+4f14w = Dba (12)

A comparison of equations (II) and (12) suggests that the latter problem may

be treated by means of an isothermal model that is loaded by a pressure

differential, p = p*, where
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N'r Tt
p*(x) a a "

With regard to the edges, it should be noted that, since M T = 0 , the boundary

conditions for the actual cylinder can be expressed as follows [16] :

1. Clamped edge:

dw . (14)w = m = 0 at x=0 and/or x= L
dx

2. Simply supported edge:

d_v (15)
w - dx 2 -- 0 at x-=O and/or x--L

3. Free edge:

d2w daw

dx2 - dx3
- 0 at x=-- 0 and/or x = L (16)

These relationships do not contain any temperature terms and arc therefore

identical to those for the corresponding isothermal cases. Therefore, the

major equivalence between the subject temperature distribution [T = T(x)]

and the isothermal model is bound up in the governing differential equation (9).

ttence, the desired :malogy is achieved by simply substituting p* for p in

equation (11). When this pressure is positive, it acts radially outward. It

is important to note, however, that the analogy is complete only insofar as

the radial deflections and the a):ial stresses are concerned; that is, the thermal



Section D

July 1, 1972

Page 141

deflections w and the thermal stresses _ will be identical to those due
x

solely to a pressure p* acting on a cylinder having the same geometry and

boundary conditions as the actual structure. On the other hand, to determine

the thermal stress _@ , the quantity (-E(_T) must be added to the correspond-

ing value obtained from the pressure solution. This accounts for the fact that

strains _@ in the amount aT arc associated with stress-free thermal

growths or shrinkages.

To facilitate the application of this analogy, the user should refer to

Section 2.40 of Ref. 17, which includes solutions for numerous cases of

pressure-loaded cylindrical shells (a wide variety of pressure distributions

and boundary conditions are treated).

Temperature Gradients Through the Thickness [T = T(x, z)].

This subsection discusses factors associated with cylindrical shells

having nonuniform linear temperature gradients through the thickness, passing

through T : 0 at the middle surfacc, with or without axisymmetric longitudi-

nal variations, and possibly including self-equilibrating components; that is,

z (17)T = Ti(x,z) + T2(x) _-

where

t/2

-t ff2 T l dz = 0
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t/2

-t 1/_2 Ttz dz : 0
(18)

Here again, it is helpful for the user to study the following small-deflection

governing differential equation which was obtained by converting the

corresponding formulation of Ref. 16 to the notation and sign o _l.vention 6f

this section:

where

d4w _ _J2 NT d2MT
dx---Y + 4 fl4w --- 1

D b Dba- Db(1 - v) dx 2 (19)

4/ Et 4/3(1- v 2)

fl = _/ 4Dba2 - 4 aZtZ

t/2

/NT = Ea T dz , (201
-t/2

t/2

M T = Ec_ f Tz dz
-t/2

and

Et :_

Db - 12(1- z,2)
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t,/-'_ d4w -P- (21)
+4,_V = - Db

while, for the subject thermostructural problem,

NT = 0
(22)

and equation (19) becomes

d_w 1 d2MT

_-T +4_ 4w = - Db({_ o) dxT "
(23)

A comparison of equations (21) and (23) suggests that the latter problem may

be treated by means of an isothermal model that is loaded by a pressure

differential, p = p*, where

1 d'MT (24)
p*(x) - (l-v) dx T- "

This does not, however, provide a complete basis for the desired analogy

since the boundary conditions which are likewise part of the problem formu-

lation must be considered. From a study of conventional types of boundaries,

it is clear that the simplest form of the subject analogy is that associated

with a cylinder having both ends clamped. In this case, both the radial

deflection and the related slope must vanish at the boundaries; that is,
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at x = 0 nnd x- L . (25)

The simplicity of the analogy for this situation comes about because these

relationships do not contain any temperature terms and are therefore identical

to those for the corresponding isothermal problem. As a result, the major

equivalence between the subject temperature distribution and the pressure

loading is bound up in the governing differential equation (19). Hence for

cylinders clamped at both ends, the analogy is achieved by simply substituting

p* for p in equation (21). When this pressure is positive, it acts radially

outward. It is important to note, however, that the analogy is complete only

insofar as the radial deflections are concerned. That is, the thermal

deflections w will be identical to those due solely to a pressure p* acting

on a cylinder having the same geometry and boundary conditions as the actual

structure. On the other hand, to determine the thermal stresses a and cr ,
x

the quantity [-E_T/(1 - r,) ] must be addcd to each of the corresponding values

obtained from the pressure solution. This accounts for the possible presence

of a self-equilibrating temperature component and for the fact that strains c x

and _ , in the amount c_T , are due dolely to stress-free thermal growths

or shrinkages.

Although the analogy under discussion takes on its simplest form where

both boundaries are clamped, this general method need not be ruled out for a
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simply supported shell. In the latter case0 the _malo_ with respect to

equation (19) still holds true. The a_lcd complexity is introduced only thrtmgh

the boundary-condition formulations. In this connection, the bending moment

M may be expressed as follows [16i:
X

M -- - Db d2w MT
x _ - (i-v) ' (26)

This relationship is applicable anywhere in the shell, including positions

around the boundaries. Only the latter locations need be considered here. It

should be recalled that the condition of simple support includes the requirement

that

M = 0 at x=0 and/or x= L (27)
X °

Suppose a uniformly distributed external bending moment

around such a boundary, as defined by the equation

M * is applied
X

, MT

MX - (1- v) " (28)

The user must remember that the sign convention being used specifies that

a positive bending moment causes compressive stresses ou the outer surface

of the shell wall (refer to Fig. 3.0-38). By superimposing moments M *
X

around a simply supported end, the related expressions for the boundary

-- ccmdittons become
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and/or x = L

(29)

M = -D b 0 at x = 0 and/or x=: Lx dx 2 (30)

Equation (30) is the same as that for a simply supported boundary of a

cylinder which does not experience any thermal influences. Hence, for a

circular, cylindrical shell having both ends simply supported and subjected

to the temperature distribution defined by equations (17) and (18), thermal

deflections w can be obtained by superposition of the following:

1. The radi,_l de.flcctions of a siml)ly supported cylinder which is

Identical to the actual structure but is frec of any thermal influences and is

subjected to a pressure p* where

1 d2MT

p*(x) - (1- v) dx=_ (31)

and bursting pressures are positive.

2. The radial deflections of a cylinder which is free of thermal

influences,, is identical to the actual structure, and whose boundaries conform

with the condition of simple-support except for the application of uniformly

distributed moments M * at each end, where
X
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MT
M * (32)x - (l-v) "

The thermal stresses
X and cr_ are found by adding the quantity

{-Ec_T/(1 - v)] to the algebraic sum of these stresses associated with steps

1 and 2. To facilitate the application of this analogy, the user should refer

to Section 2.40 of Ref. 17, which includes numerous solutions that will often

be useful in performing step 1. In addition, Hefs. 17, 11, and 18 provide

simple methods by which step 2 may be accomplished.

A sLtuation similar to the foregoing arises when both boundaries of

the shell are free. As before, the analogy with respect to equation (19)

remains valid but still greater complexity is introduced through the applicable

boundary-condition formulations. In this case, when the cylinder is subjected

to the temperature distribution defined by equations (17) and (18), thermal

deflections w can be obtained by superposLtion of the following:

1. The radial deflections of a cylinder which has both ends free and is

identical to the actual structure but is free of any thermal influences and is

subjected to a pressure p* where

1 d2MT

p*(x) - (1-v) dxT (33)

and bursting pressures are positive.
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2. The radial deflection of a cylinder which is free of thermal influences,

is identical to the actual structure, and has the prescribed boundary conditions

except for the application of uniformly distributed moments M * at each end,
X

where

MT
M * (34)

x - (1-.)

3. The radial deflection of a cylinder which is free of thermal influences ,

is identical to the actm,l structure, and has the prescribed boundary conditions

except for the application of uniformly distributed shear forces Qx* at each

end, where

1 dMT
Qx* -- (1- .) " (35)

The thermal stresses Crx and a9 are found by adding the quantity

[-Ee_T/(1 - v) ] to the algebraic sum of these stresses associated with items

1 and 2. To facilitate the application of this analogy, the user should refer

to Section 2.40 of Ref. 17, which includes numerous solutions that will often

be useful in the accomplishment of step 1 . In addition, Refs. 17, 11, and 18

provide simple methods by which steps 2 and 3 may be accomplished.

Analogies of the types presented in this section perform a two-fold

function in that they can help the user to develop some physical insight into

thermostructural behavior and also enable him to solve thermal stress
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problems by using existing solutions for members subjected solely to

mechanical loading. Although the emphasis has been on cases where both

ends of the cylinder have the same boundary conditions, the user should find

it relatively easy to apply the same basic concepts when the two boundaries

are not identical (for example, one end clamped while the other is simply

supported).

If. Thermal Stresses and Deflections -- Linear Radial Gradient_

Axisymmetrlc Axial Gradlont.

A. Configuration.

The design equations provided here apply only to long (L -> 2_/_),

thin-walled, right circular cylinders which are of constant thickness and are

made of isotropic material. It is assumed that the shell wall is free of holes

and that it obeys Hookets law. Figure 3.0-37 depicts the lsotropic cylindrical

shell configuration. Figure 3.0--38 shows the sign convention used for the

stress resultants of interest.

B. Boundary Conditions.

The following types of boundary conditions are discussed:

1. Free edges

2. Simply supported edges

3. Clamped edges.

All possible combinations of these boundary conditions are permitted; that is,

it is not required that those at x = 0 be the same as those at x = L. However,
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in every case, it is assumed that the cylinder is unrestrained in the axial

direction (N-- 0).

C. Temperature Distribution.

The following types of temperature distributions may be present:

1. A radial gradient which is linear through the wall thickness and

need not vanish at the middle surface

2. Axisymmetric axial gradients.

The permissible distributions can therefore be expressed in the form

Z

T -- TI(x ) +T2(Y ) _- . (36)

Certain restrictions must sometimes be imposed on the complexities of the

functions Tl(x ) and T2(x ) , depending upon the method of analysis employed.

These conditions are explained in a subsequent paragraph. Any of the special

cases for equation (36) are acceptable; that is, either or both of Tl(x ) and

T2(x ) can be finite constants and either can be equal to zero.

D. Design Equations.

Throughout this section, it is assumed that Young ts modulus and

Poisson' s ratio are unaffected by temperature changes. Hence, the user

must select single effective values for each of these properties by employing

some type of averaging technique. The same approach may be taken with

regard to the coefficient of thermal expansion. On the other hand,
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the temperature-dependenceof this property can beaccountedfor by

recognizing that it is the product of aT which governs; that is, the actual

temperature distribution can be suitably modified to compensate for variations

in a. When this approach is taken, the user must recognize that any

reference to a linear temperature distribution is actually a reference to a

straight-line variation of the product aT .

In addition, the several types of solutions cited here are based on

classical small-deflection theory. Therefore, it is important for the user to

be aware of this when applying the given methods to pressurized cylinders by

superimposing the thermal stresses and deflections upon the corresponding

values due solely to pressure; that is, because of their dependence upon

classical theory, the methods presented here cannot account for nonlinear

coupling between thermal deflections and the pressure-related meridtonal

loads.

The small-deflection governing differentialequation for the subject

cylindrical shell (refer to Fig. 3.0-37) can be written as follows [19]:

d4w NT 1 dZMT

+4_4w = -_- Db(1- v) dx 2
(37)

where
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'  ll-v'l
fl = 44Dba2 - q a2t2

t/2

= Ea f T dz
N T

-t/2

t/2

M T = E__t/f Tz dz ,

(38)

and

Et a

D b - 12(1 v2) •

If L >-2_/fl , then overlapping effects from boundary conditions at the two

ends of the cylinder can be neglected and the following approximate solutions

to equation (37) apply to each half of the structure:

CASE I (0 -< x -_L/2):

-fix aNT _ a 2 d2MT
w = e (C 1 cos fix+ C 2sin fix) - Et Et(1- v) dx 2 ' (39)

CASE [I (L/2 -<x -< L):

e -fl(L-x)[C a cos_(L- x) +C 4 sinfl(L- x)|

aN T a 2 d2M T

Et Et(1 - v) dx z
(40)
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The terms e'_X(Cz cos _ + C 2 sin/3x) and e-_(L-X){c s cos _L - x)

+ C 4 sin _(L - x)] comprise the respective complementary solutions to

equation (37)..All of the boundary-condition influences are embodied in these

terms. The remaining portions of equations (39) and (40) are the so-called

particular solutions and those given here are somewhat inexact. They were

obtained by Przemienieckl [20l as first-order approximations from an

asymptotic integration process and will give exact results only if the functions

Tx(x ) and T2(x ) are truly polynomials of second degree or lower; for example.

Ti(x ) =b 0+blx+b_ 2 and T2(x ) =d 0+dlx+d_ z.

When the temperature dlstrllmtlon Is such that polynomial expansions

of T I and/or T 2 require terms higher than the second degree, approximate

soluUons can be obtained by using either of the following two procedures:

1. Truncate the series by eliminating terms having exponents greater

than two and perform the analysis as though the resulting series were exact

representations of T1(x ) and T2(x ) .

2. Ignore the stated restriction on the polynomial expansions and use

the actual higher-degree formulations.

Either of these two possibilities will introduce inaccuracies and, at present,

no studies have been performed to determine the orders of magnitudes for

the errors associated with various ranges of the parameters involved. For

those cases where accurate results are required but equations (39) and (40)
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are inexact, the user can always resort to an alternative procedure whereby

these expressions are suitably modified. This can be accomplished by

retaining the foregoing complementary solutions but introducing more

appropriate particular solutions. The latter can be established by standard

mathematical operations such as variation of parameters or the method of

undetermined coefficients [21, 22].

For any case, the constants C 1 through C4 in the deflection relation-

ships must be evaluated from the boundary conditions. It therefore becomes

necessary to express the various physical possibilities by means of the

following •formulas:

1. Free edge:

Qx?M =0 .
'°. X

2. Simply supported edge:

w -- M = 0 . (41)
X

3. Clamped edge:

dw
W - - 0 .

dx

where
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dM
X

Qx dx

and (42)

dZw MT

M = -D bx v)

The method to be used will be illustrated by using the example of a cylinder

having a simply supported'edge at

the portion of the cylindcr where

x= 0 and a clamped edge at x= L. For

0--x'_ L/2, the values x=:0, w =0

would be inserted into equation (39) to obtain a relationship which may be

identified as equation (39a). Following this, equation (39) must be substituted

into

d_v MT

Db_-_+(1- v) - 0 (43)

and x must then be set equal to zero in the resulting formulation to obtain an

equation which may be identified as (39b). The constants of integration C 1

and C 2 can then be determined by the simultaneous solution of equations (39a)

and (39b). For the portion of the cylinder where L/2 -<x -< L , the values

x = L, w = 0 would be inserted into equation (40) to obtain a relationship

which may be identified as (40a). Following this, equation (40) must be

substituted into
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dw
- 0 (44)dx

and x must then be set equal to L in the resulting formulation to obtain an

equation which may be identified as (40b). The constants of integration C 3

and C4 can then be determined by the simultaneous solution of equations (40a)

and (40h).

Once the deflection equations have been found for both halves of the

cylinder, the bending moments M and M at any point can be established
x

from

d2w M T

M = -D bx -(i

and (45)

dZw M T

M b = -uD b'_T- (I- p)

Then the stresses at any location are given by the following:

12z
- t3 MX X

and (46)

12z
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N¢ .N T w Eta
(47)

Example No. i.

A thln-walled, right circular cylinder of length L(> 2_/fl) has both

ends simply supported and is subjected to the temperature distribution

z

T = do_- (48)

where d o is a constant, it is desired that the deflections and extreme-fiber

stresses be found, assuming that L = 40 in. and /3 = 0.2.

For the given temperature distribution, equations (38) yield

N T = 0

and (49)

E c_t2dR
MT - 12

Then, for 0 _x -<L/2 , equation (39) becomes

-_x
w = e (CIcosflx+c 2sln_x) .

At x = 0, the boundary condition of simple support requires that



Section D

July 1, 1972

Page 158

w = M = 0 (51)
x

where

d2w MT

M : -D b - _-'--7-- . (52)x "_ (1 v)

From equations (50), (51), and (52), the constants C t and C 2 arc found to

be

CI = 0

and (53)

C2
ataz_2

- (i(1- v) d0

Hence, equation (50) may now be rewritten as follows:

eet a2/_2
w - 6(1 - Vi d° e-Bx sin fix . (54)

The function _(_x), tabulated by Timoshenko and Woinowsky-Krieger [111

may now be introduced to obtain

at a2_ 2

w - 0(1 - v) d,, ;(/ix) (55)

where

;(_x) = e-_x sin _x . (._.) -_
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By substituting equation (55) into (45), the bending moments can be expressed

as

M E°tt2d0 [00_x) - lJ
× - 12(1- v)

and (57)

E _ t2d II
M 12(1 - v) [v0(flx) - 1]

where the function _)(flx) is tabulated by Timoshenko and Woinowsky-Kricgcr

[11] and is defined _,s follows:

0(_×) = o-_X cos _x . (5s)

The extreme-fiber stresses can then be determined from

6M
X

O" :: :Fx t-V-

and (5:))

where the upper signs correspond to the outermost fibers. By substituting

equation (55) and the first of equations (49) into (47), the following expression

is obtained for N9 :
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E a_!a_2
N_ = - 6(1 ' _) do _(_x) . (_o)

For the other half of the cylinder (1,/2 " x :_ L), equation (40) must be used,

which, in view of equations (49), becomes

-_(L-x)
w = e [Ca cos _(L- x) +C4 sin/3(L- x)] . (61)

At x = L , the boundary condition of simple support requires that

w = M -- 0 (62)
X

where

(1% MT
M =- - Db ([;:l)x (-_x2 -(1- v) *

From equations (61), (fi2), and (63), tile constants C 3 and C 4 are found to

be

C 3 = 0

and (64)

ata2_ 2
C4 - 6(1-p) do "

Then, proceeding in the same manner as for the other half of the cylinder, the

following expressions are found for the deflections, moments, and extreme-

fiber stresses:
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c_t a2_ 2
w -- (_(1-v)d,, _(l,- ×)1 , ((;._)

E at2do

Mx - 12(1-,,) {O[O(L- x)l - 1}

E_t2d° (u0[fl(L- x)] - 1}
M_b - 12(1- u)

6M
X

O'x = TT '

((;6)

and 0;7)

where

N 6M

t t _

Eo_t2,a_ 2
N@ =- 6(1- u) do r_[_(L- x)] . (68)

Here again, the upper signs in the stress formulas correspond to the outer-

most fibers.

The foregoing relationships for the two halves of the cylinder wcrc

used to obtain the nondimensionnl solution listed in Table 3.0-7. These

results are plotted in Figure 3.0-40.

Example No. 2.

A thin-walled, right circular cylinder of length L(> 27_/_) has both

ends clamped and is subjected to the temperature distribution

T = b 0+ blx (G9)
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where b 0 and b I are constants. It is desired that the deflections and

extreme-fiber stresses be found, assuming that L = 40 in., fl = 0.2,

bl/bo= 2 .

For the given temperature distribution, equations (38) yield

N T = Eat(b 0+blx )

and

and

(70)

MT = 0 °

]B 0.4

P
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Figure 3.0-40. Nondimensional deflections and axial bending

moments for example problem No. 1.
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w = e-#X(clcosflx+C 2sin fix) - acz(b 0+bix ) . (71)

At x = 0 , the clampc_l condition rcquircs that

dw
w .... o . (7:_)

dx

From equations (71) and (72), the constants C t and C 2 are found to bc

C t = ezab o

and (73)

C 2 = aab 0 +-==-=_-_

Hence, equation (71) may now be rewritten as follows:

lw = e o_ab0(cosflx+sin_x) +_abt sinflx -_a(b0_btx ) . (74)

The functions 9(fix) and _(flx) , tabulated by Timoshdnko and Woinowsky-

Krieger [11], may now be introduced to obtain

+_abt _(flx) - o_a(b 0 + blx )
w = cxab09(flx) (7_)

where

¢(#_)= e-_X(cos _x +_m _x) (7s)
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P ;(Ox) -- e-Sxsin_x .

By substituting equation (75) into (45), the bending moments can be

expressed as

(76)

(Col_.)

M× Z {v:ll,,,J)tf_ [¢(fJ×)_ b-_Lb,,_o(r_x)]

and (77)

M = vM
x

where the functions ¢(/3x) and 0(Bx) are tabulated by Timoshenko and

Woinowsky-Krieger [11] and are defined as follows:

¢(_x) : e-_*_(co._l*x- sin _x)

and (7S)

0(_x) : e-_x cos/_x

The extreme-fiber stresses can then be determined from

6M
X

(7 X -- :1:-7. (79)
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and

N (;M

--_ :_ t2 (79)
a 0 t ( Con. )

where the upper signs correspond to the outermost fibers. By substituting

equations (75) and (70) into (47), the following expression is obtained for NO :

No = -Et_b0tO(13x) - Etrblt_ _(_x) . (so)

For the other half of the cylinder (L/2 _ x -< L), equation (40) must be used,

which, in view of equations (70), becomes

w = e -_(L-x) [C a cos_(L- x) 4 C 4sin/3(L- x)] -_a(b 0+bix) . (Sl)

At x = L , the clamped condition requires that

dw
w - - 0 . (82)

dx

From equations (81) and (82), the constants C a and C 4 are found to be

C 3 = c_a(b o + blL)

and (8:J)

C4 = _ _abt + aa(b 0 + btL) .
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Then proceeding in the same manner as for the other half of the cylinder, the

following expressions are found for the deflections, moments, and extreme-

fiber stresses:

F

W -"

_ab°( 1 + b--ll')o[_(L-x)]brJ -_abf _[_(L-x)] -_ab°(l+b-_x)fl b:_

M 2a,_/t:"l,,I)l) {(l _-h 10 ¢[[_(1.- x) J t--h=0[_(l,-x) l _x I lJ(, - bfj_ I

M vM ,
x

6M
X

(y .-_× -it-

and (8(;)

N GM

where

NO -F_bl, t (1 + F-hboI_/ _l/3(l,-x) J + _fl _[/3(1,- x)] . (87)

Here again, the upper signs in the stress formulas correspond to the outer-

most fibers.

The foregoing relationships for the two halves of the cylinder were:

used to obtain the nondimensional solution shown in t_able 3.0-_. These

results are plotted in Figure 3.0-41.



BecUon D

July 1, 19'/2

Pap 168

TABLE S. 0..8. [_OIlDIMi_NSIONAI, TABULAR 90LT_rYION FOR

w M (eXJLM1,LENO. 2)
x

1 3 3

0 0 1.000

0.5 0.1 0.9110'1'

1.0 0.8 0.9651

8.0 0.4 0.85'84

8.0 0.8 0.'7628

6.0 1.0 0.6O03

10.0i 2,0 0.0607

15.0'3.0 -0.0423

20.0 4.0 -0. 036O

4

jb. r.(ox)

o

o. 0o3

1, 4:r?

2,81o

3.099

3.o!14

1.86o

o.o71

-o, 117

,. ,, . (,,/a-%) - (3) +(4)÷(8)

b. X, - (,,,_'lo-'.,nb_') - (7) ."(S)

X

x (L..q #(L-x) _l,e(_,0!

1 2 3

20 20 4 -3.06O8

25 16 8 -8.4283

30 10 2 5.4027

35 8 1.0 41.1';'1_

37 8 0.8 61.7849

88 8 0.4 71.1504

H LO 6.| 18.17:11

81, | O. $ 0.1 80. Me7

40 0 0 81,00

3

-I

-8

-$

-6

-7

-11

-91

-31

-41

0 7 8

A," ,(_) _ o(,e,0

0 1.0 10.0

-0.1063 0.61 9. 003

-O. 40'70 O.6308 8. OM

-1. 8118 O. 35414 6. 174

-8. 1382 O. 1431 4. 530

-?.9067 -0.1108 1.086

-19. 7033 -O. 1796 -0. 543

-80.0713 -O. ON3 -0.498

-41.1438 O. 0019 -0. 120

0

Asb

11.0

9.613

8.6638

6.53o4

4.6731

1.8772

-0.7424

-0.5493

-0.1181

_b,
boD

X

_(p(L-x)] _x) uabo-{1+ -(4)+(_)+(0)

(,+L,,)
X

_,1p(t,-x)I

b,

x

elp(L,-x)l

M
X

2o_aboDbd_z

= 18) - 10)

4 5 6 7 8 9 10

0.11'/ -41 -49, 9'/28 0.1539 -0. 120

- 54.4073

- 56. 8273

- 32.995t7

-16.3121

-8.4506

-3.4639

-0. 8668

0

-4.5603

-14.5314

-8.9748

11.6Oll

28.8084

81.8238

68.610

61.0

-0.49_

-0. 563

1.988

4,530

0.174

8. 0P,4

9. 003

10.00

-0.071 -61

-1,230 -61

-8.0Oil -71

-8.099 -78

-2.010 -77

-1.037 -79

-0.908 -80

0 -81

0.0?39

-4. 0078

-13.9684

- 10, 9628

7, 0611

22. 6944

43.7988

56. 007

71.00
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Figure 3.0-41. Nondtmensional deflections and axial bending

moments for example problem No. 2.
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III. Thermal Stresses and Deflections - Constant Radial Gradient,

Axisymmetric Axial Gradient.

A. Configuration.

The design curves and equations presented here apply only to thin-

walled, right circular cylinders which are of constant thickness and are made

of isotropic material. It is assumed that the shell wall is free of holes and

that it obeys Hooke v s law. The method is valid only when h - _ . Figure 3.0-

42 depicts the Isotropic cylinder shell configuration. Figure 3.0-43 shows the

sign convention for forces, moments, and pressures.

B. Boundary Conditions.

The following types of boundary conditions are discussed:

1. Free edge; that is,

Qx = Mx : 0 (88)

2. Simply supported edge; that is,

w = M = 0 . (89)
X

3. Clamped edge; that is,

dw

w - dx 0 . (90)

All possible combinations of these boundary conditions are permitted.

itisnot required that those at x= 0 be the same as those at x= L.

Hence,

However,
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NOTE: u,v,w,x,y,z, and _) are
positive as shown.

t

MIDDLE SURFACE

Figure 3.0-42. Isotropic cylindrical shell configuration for
thermal stresses and deflections.

N_

Y _ Nx

x

N Mx_ J

NOTE: All quantities positive as shown.

N_

Figure 3.0-43. Sign convention for forces, moments, and

pressures for thermal stresses and deflections.
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in every case, it is assumed that the cylinder is unrcstr:dnetl in the axial

direction (N x 0) .

C. Temperature i)istribution.

The supposition is made that no temperature variations occur through

the wall thickness. However, the cylinder may have any axisymmetrie surface

gradient for which the product tyT can be adequately represented by a fifth-

degree (or lower) polynomial. Therefore, subject to that restriction, the

permissible distributions are of the form

,,'r : (x) "r(×) (.0

I). I)esig'n Curves and I,:qu:ltions.

In Ref. 23, Newman and Forray present the practical methtxl given

below to compute the thermal stresses, deflections, and rotations in circular

cylindrical shells which comply with the foregoing specifications. The primary

relationships are expressed in series form and the necessary term-by-term

coefficients can be obtained from Figures 3.0-44 through 3.0-49. As indicated

by equation (91), the product c_T will be a function of x and, in order to

apply this method, this function must first be approximated by the polynomial

where

Z

(_T = d 0+dz_ _ (12_ 2 _ °.. dz z = _ dk_k (:)2)
k=0

is a dimensionless axial coordinate defined by the relationship

x (93)
!
!
O

!
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0.48

I.l..

,.. 0.32
0

0.16
.m

I,,t..

0 I 2 3 4 5 6
_;_ or _'X

Figure 3.0-44. Functions F..
1

For the purposes of the technique given here, the following inequality must

be satisfied:

z -<5 . (94)

After the coefficients d k have been established, the thermal stresses

and distortions can be determined by using equations (96) through (98) in

conjunction with the design curves. The constants A 1

the boundary conditions at x = 0 (_ = 0)

boundary conditions at x = L (_ = 1) .

are listed in Table 3.0-9.

and A 2 are based on

while A 3 and A 4 depend on the

The formulas for these four values



I

i-" o.I
l
II1

..- o.s
.J
0
u

0.4

r.
0
w

_ 0.2
Ul
Q

1

o.e
II1
m
cJ
-- 0.6
IL
Ut

0
¢J

_ O.4

ul

0.2
W
Q

-O.2

1

,n 0.8
I

Z

_ 0.6

ul

_ 0.4

I-
o 0.2
W
.J
Lk

0
0

-0.2 (_

/

"I_.o_

/
/ //

/
/
,/
/

_'3 -_._//
3.5,

X> ,ss_

_._...._ _ "

i

,4
//
!

A
i
H

j//
/

AXIAL COORDINATE,

3.5

I...3.2 ,

i 3.5'-
L 4-_
[ 15"-.

,11

'_- 2.5

Z
.J

w. 2
iu

0

.1

_ 1.5

' /
J

o/-

A z
6
I
U.

! °
0

0.2 0.4 0.6 0.8 1

Section D

July i, 1972

Page 174

Figure 3.0-45. Deflection

coefficients and k = 5, the

coefficient depends on h .
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Figure 3.0-46. Slope coefficients

(for k = 5 , the coefficient

depends on )_ ) .
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Figure 3.0-48.
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Figure 3.0-49. Hoop-force coefficients.
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TABLE 3.0-9. FORMULAS FOR THE CONSTANTS A 1 THROUGtt A 4

Cylinder

End

l

_=0

(x = o)

4=1

(x = L)

4=1

(x = L)

_=1

(x - L)

A 1

Boundary

Condition Constants A t

Free

Si mph'

support

(!l;iml)ed

F re(,

Simple

support

Clampc_J

A 2

A I

Z

1 _ dkmk(0 )i-'ix'_I ,

z ] %(0)"
_1 k_ dk mk(O) 4X" 2k_" =0 i

Z

2A_ k=0

Z

A:_ - _' dkWk(0 )
k =0

z - IOk(O}..A t :: _ _ dk Wk(O) '
k---O

Z

dkWk(0)
k -o

A 3

Z
1

2_----_ _ dkmk(1)
k-0

,zA 1 = _ _ dk qk(1) - ink(l) r
k---O

Z

A_- _ E %%(_)
2)'2 k=0

Z

A,=- Z dk_k(1)
k=0

Z "1 "IA_ = _ d k i kOk(1) -Wk(1)
k=0 -

Z

A, - - 2 _k (1)
k=0
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The solutions arc b:ised on cl:lssical small-deflection shell theory.

Therefore, it is important for the user to be aware of this when the method is

applied to pressurized cylinders by superimposing the thermal stresses and

deformations upon the corresponding values due solely to pressure; that is,

because of the dependence upon classical theory, the method presented here

cannot account for nonlinear coupling between thermal deflections and the

pressure-related mcridional loads.

In addition, it is assumed that Youngt s modulus and Poissonl s ratio

are unaffected by temperature changes. Hence, the user must select single

effective values for each of these properties by employing some type of

averaging technique.

E. Summary of Equations and Nondimensional Coefficients.

Z

.T :: d o_ d_ _ d_ :+... d _z = _ _k , (95)
z

k=0

Z

w _ AlI,,2(/;_. ) i A2F4(_h. ) , A:lF._(t_'X ) + A4F4(_'_. ) + _ dkW ka
k=0

Z

L 0 = XIA1F3(_, ) - A2Fi(_)C ) - A3F3(_'_. ) + h4Fl(f'X)l +
a k=0

dk0 k

L2M
x

aD b
_ 2;tZl-AiIe4(_2t) _ A.,F2(_X ) - A3F4(_l)t)

Z
\,
' diem k ,

k 0



Section D

July 1, 1972

Page 178

MO = VMx ' (96)

aD b

Z

2)_3[AIFI(_k) + A2F3(_)_) - A3FI(_'_,) - A4F3(_'k)]+ _ dkq k
k=0

and

a2D b
:: 4k4[AiF2(_2t) +A2F4(_k ) +A3F2(_tk ) 4 A4F4(_'X)] -

Z

dkn k
k=O

where

h

Et 3

Db - 12(t- v2) (97)

x

L '

and

It = 1-4 •

The stresses at any location are given by the following:

12z
% -- -V- M (98)
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'79 Not -712z:: - M 9 . (98)
(Con. )

3.0.8.2 Isotropic Conical Shells.

This section concerns the thermostructural analysis of thin-walled,

right circular, isotropic conical shells. The organization here is somewhat

different from that of previous sections which cover isotropic flat plates.

This is due tG certain fundamental differences between the physical behavior

of flat plates and shells. Flat-plate deformations are of such a nature that

it is helpful to group the solutions for stable constructions into the following

categories:

1. Temperature gradients through the thickness

2. Uniform teml)eraturcs through the thickness.

Except for the special case of self-equilibrating gradients through the

thickness (N T -: M T : 0), the first of these two cases involves out-of-plane

bending which is, of course, accompanied by displacements normal to the

middle surface of the undeformed plate. In case 2, the plate remains flat;

that is, the only displacements occur in directions parallel to the original

middle surface and no out-of-plane bending occurs. The indicated separation

of cases is therefore a logical format for the sections dealing with flat pl:_tes.

However, the situation is not the same for shell structures. For these com-

ponents, there is no need to isolate the foregoing types of thermal conditions.
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This is because either type of temperature distribution, in conjunction with

clamped or simply supported I)ounti:_ries, will load to both membrane loading

and bending about the shell-wall middle surface. Consequently, for stablc

shell constructions which comply with either case i or 2, the analysis methods

are given as follows as a single grouping.

Configuration.

The design equations provided here apply only to long (L -> 21r/hB),

thin-walled, truncated, right circular cones which are of constant thickness,

are made of isotropic material, and satisfy the inequality

xA>atcot . (9.'))

It is assumed that the shell wall is free of holes and obeys Hooke' s law.

Figure 3.0-50 depicts the subject configuration, as well as most of the nota-

tion and sign conventions of interest.

Boundary Conditions.

The method presented herr, can be applied where any of the following

boundary conditions are present:

1. Free edges

2. Simply supported edgcs

3. Clamped edges.

All possible combinations of these boundaries are permitted; that is, it is not

required that those at x A be the same as those at x B . However, in every

case, it is assumed that the cone is unrestrained in the axial direction.
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R2

NOTE: 1. s* = L-s

2. H A , HB, M A, M B,

V, and W are axisymmetric.
3. All coordinates, forces,

moments, and deformations are
positive as shown.

, x HA

(R2)

a. Overall truncated cone.

HB

Me

Ne

N x

b. Positive directions for the stress resultants and coordinates.

Figure 3.0-50. Configuration, notation, and sign convention for conical shell.
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Temperature Distribution.

The following types of temperature distributions may be present:

1. A linear gradient through the wall thickness subject to the provision

that the temperature change T need not vanish at the middle surface.

2. Axtsymmetric meridional gradients.

The permissible distributions can therefore be expressed in the form

Z

T = TI(s ) _ T2(s ) _- . (100)

Naturally, any of the special cases for this equation are applicable; that is,

either or both of Tl(s) and T2(s ) can be finite constants and either may bc

equal to zero.

Design Equations.

A number of methods for solving the subject problem have been pub-

lished, including those of Refs. 24 through 27. In the approach presented

here, particular solutions to the governing differential equations are found in

the manner suggested by Tsui [16]. As in Refs. 25 and 28, the complementary

solutions are obtained by an equivalent-cylinder approximation. When greater

accuracy is desired, the exact complementary solutions published by Johns

and Orange [29] may be used.

Throughout this section Itis assumed that Young' s modulus and

Polsson' s ratio are unaffected by temperature changes. Hence, the user must

select single effectivevalues for each of these properties by employing some

type of averaging technique. The same approach may be taken with regard to
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the coefficient of thermal expansion. On the other hand, the temperature-

dependence of this property may be accounted for by recognizing that it is the

product sT which governs; that is, the actual temperature distribution can

be suitably modified to compensate for variations in _. When this approach

is taken, any mention of a linear temperature distribution is actually making

reference to a straight-line variation of the product o_T .

In addition, the method outlined here is based on classical small-

deflection theory. It is important to keep this in mind when applying to

pressurized cones by superimposing tbe thermal stresses and deformations

upon the corresponding values due solely to pressure; that is, because of the

dependence upon classical theory, the method of this manual cannot account

for nonlinear coupling between thermal deflections and pressure-related

meridional loads.

The governing differential equations for the subject cone are given by

Tsui [16] as follows:

L'(U) - VEt tan
dN T

dx

and (101)

1 1 cot__ dMT

L'(V) , U_b b cotO- -Db (1- _) dx

where
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Et 3

Db - 12 (I- v"_)

t/2

MT = E_ f
-t/2

t/2

= E(_ fN T
-t/2

Tz dz

Tdz

(102)

and

v -xQ x

and L' is the operator,

...,,=oot,[. (103)

To obtain the desired solution, a three-step procedure is employed as out-

lined below:

step 1,

Step 2.

Find a particular solution to equations (101).

Find a solution to the homogeneous equations,

L'(U) - VEt tan q) = 0

and (lO4)

L'(V) +U_bbCOtib -- 0 ,
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such that superposition of these results upon those of Step 1 satisfies the

boundary conditions which can be expressed as follows:

Free edge: Q = M = 0 .
"X X

f- Simply supported edge: W = M = 0 (105)
X

Clamped edge: W = V = 0 .

The results from this step are referred to as the complementary solution.

Note that equations (104) are obtained by setting the right-hand sides of

equations (]01) equal to zero.

Step 3. Superimpose the particular and complementary solutions.

To accomplish the first of these steps, the functions N T and M T are first

approximated as polynomials. It is then assumed that the particular solutions

U P and VP can be expressed in the form

P n
U = C_lx-l+ C 0÷ C1x+ C2x2+ C3x3+ . . . + C x

n

and (I0,;)

V P n= d_ix -i + d o t dlx _ d2x 2 + d3x 3 + . . . + d x
n

where n is an integer whose value is a function of the polynomial degree

required for a sufficiently accurate representation of NT and MT . If these

formulations for N T, MT, U P, and V P are substituted into equations (101)
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and like powers of x are equated, a system of simultaneous equations is

obtained where the unknowns are the various polynomial coefficients. These

equations can be solved for C( ) and d( ) and hence U P and V P . The

associated radial deflection and stress resultants of interest can then be deter-

mined from

dU P P)--P c°s2 P x vU + aRT
W - Et stn¢ _ - m

Qx P - U P
X t

P
N = Qx cot ¢X

(107)

d (R 2Qx)Nop
])

dU
=cotO dx

and

P
M

X (d_+ v V P ) MTDb "_2 cot0 - (1:v)

where

PM 0 = Db
P

V dVP) MTcot_b + v--'-_- - (;- _)

t/2

T =1 _m t -t
T dz (108)
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The complementary solutions corresponding to the edge-loaded cone of

Figure 3.0-51 are given as equations (109) and (110). Those corresponding

to the edge-loaded cone of Figure 3.0-52 are given as equations (111) and (112).

HA A

Figure 3.0-51. Truncated cone edge-loaded at top.

_C = sin 9
2A/ D b (_'A MA + ItA sin _b)

V: - 1 (2_,A MA d HA sin q)
2?,/ Db

--c sin9 [xA -
W - 2A/D b MA¢(AA s)

V C _ 2_:2D b [2AAM AO(XAs)

m

+ HA (sin _) 0 (XAs)]

+ HA (sin q) 9 ()tAS) ]

(109)

C
Qx = [2k AM A_ (AAS) - H A (sin _b) _ (),AS)]
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C
Nx = Qx cot

N C WEt- R +vN X

C 1

Mx = -_2k "[2hA
A

MA¢ (XAs) + 2HA (sin ¢) _(XAs) J

(109)
(Co..)

and

C
M 0 = vM x

where

RA

(R2) A - sin9 (110)

and

Et 3

Db - 12(1- v 2)

E m

and 9, 3, O, and _ are the functions 9, @, 0, and _,

which are tabulated on pages 472-473 of Ref. 11.

respectively,
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MB }4B

HB

Figure 3.0-52. Truncated cone edge-loaded at bottom.

= (ABM B + HB sin _) .

V: =- _ (2ABMB + H B sln_) ,

_C = s___ b [ ABMB_(KBS,) + HB (sin _b) O (ABS')J

vC 1 - _.

= - _kB-'_Db [2ABMBS (ABe*) +HB(ehl _) ,,',(7,Be,*); :

_c . . [2AsMs _ (AS,,}. "B (sm_) _'(Ass*)j

= Q_, cot

w

c wzt (_i)N ---'_-+VNx '
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+ 2 HB (Sin ¢) "_ (ABS*)I

and

where

M c = vM x (111)

(Con.)

B B

(B2)B = s-_n¢ ' (112)

and

Et 3

Db - 12(1- v 2)

and 9", _', 0", and _" are the functions ¢, _, 8, and _, respectively,

which are tabulated on pages 472-473 of Ref. 11.

After the particular and complementary solutions have been super-

imposed, the final thermal stresses can be computed from the following

formulas:

12z N N 8x 12z
cr = M +-- and (113)X _ X t or8 - ta MS+-_-.. '
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3.0.8.3 Isotropic Shells of Revolution of Arbitrary Shape.

The discussion presented here is concerned with approximate small-

deflection solutions for thin-walled shells of revolution having otherwise

arbitrary shapes and made of isotropic material. A typical configuration,

along with pertinent notation and sign conventions, is shown in Figure 3.0-53.

It is assumed that the shell wall is free of holes and obeys Hooke' s law. The

temperature distribution must be axisymmetric but arbitrary gradients may

be present both through thc wall thickness and in the meridional direction.

To determine the thermal stresses and deformations for the structures under

discussion, the following sets of equations are available:

1. Equilibrium equations

2. Strain-displacement relationships

3. Stress-strain relationships.

In principle, together with prescribed boundary conditions, these formulations

should provide a sufficient basis for the development of closed-form, small-

deflection solutions to the subject problems. However, it will often bc

extremely difficult, if not impossible, to achieve such solutions. Thcrcfore,

numerical integration procedures in conjunction with a digital computer pro-

gram are frequently used to achieve the desired solution. On the other hand,

still another approach may be taken by using approximations such as those

cited by Fitzgerald in Ref. 30 or Christensen in Ref. 31. Since these approxi-

mations avoid the need for sophisticated mathematical and/or numerical
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- f3 * ....

= •

MIDDLE
SURFACE

rl, r2, and _ are

positive as shown.

a. Overall shell of revolution.

MIDDLE de
SURFACE

NOTE: x, y, and z are
positive asshown.

be Positive directions for forces,

moments, pressures, and

coordinates.

c. Element of shell wall.

Figure 3.0-53. Configuration, notation, and _ign convention for

arbitrary shell of revolution.



f"

/

Section D

July 1, 1972

Page 193

operations, they are well suited to a manual of this type. It would therefore

be desirable to prepare a section which outlines detailed procedures along

these lines. However, from a brief study of Refs. 30 and 31, it was concluded

that they should be thoroughly explored before specific recommendations arc

made. Consequently, in the following paragraphs only the related broad con-

cepts are presented.

The method of Ref. 30 relies heavily on the following set of equilibrium

equations, which, except for the term involving m_ , are derived in Ref. 11:

d__ (N_r0) _ N0rl cos _ - r0Q_b _ r0r 1 Y = 0

d

N br 0 +N0r 1 sin_ +_ (Q_br0) +Zrlr 0 : 0 , (114)

and

d = 0
-_(M_r O) -Mor lc°sO-%rlrO+m_brlr 0

These expressions are used in the following manner:

1. First the assumption is made that membrane forces

N O = N0 = N R (115)

and bending moments



SectionD

July 1, 1972

Page 194

M 0 = M --- M R (116)

ar_: present which completely arrest all thermal displacements.

These forces and moments simply furnish a starting point for the com-

putations and do not represent the actual values which will be determined later

in the procedure.

It follows that

E t/2

N R = f _T dz (117)
(1- v) _ti../_

and

t/2

MR = __1E- V) -t
_Tz dz . (118)

2. In general, the above type of force and moment distribution will not

be in equilibrium unless one or more of the following is applied:

Q_ = (%). ,

Y = YB ' (,19)

Z = ZR ,

and

n1_ -- m r .
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At this point, in order to achieve an approximate solution, Fitzgerald [30]

makes the assumption that

% = (Q_)R = 0 (120)

and justifies this practice by performing an order-of-magnitude study of the

error introduced. Then, proceeding with the analysis, equations (120) and

(115) through (118) are substituted into the equilibrium relationships (114) to

arrive at simple formulas for YR ' ZR ' and m R .

3. Recognizing that the actual shell is free of any of the above types of

loading, it is necessary to restore the structure to this state by application

of the following:

-YR; -ZR; -mR

This is done in a two-step procedure as outlined below.

4. The expressions

Y = - YR

and (121)

Z = -Z R

are inserted into the first two of the equilibrium equations (114) while the

assumption that
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Qo = o (122)

is retained. The resulting equationB are then solved for N 0 and N 0 . From

the stress-strain relationships, the corresponding strains can be determined.

After this, the strain-displacement formulations may be used to express the

related rotations and deflections of the shell wall in terms of N 0 and N0 .

The bending moments M8 and _ can then be established from the equations

M 0 = _ Db(X 0 +vX O)

and (123)

M 0 = - Db(X 0 +vX 0)

where

Et a

Vb -- 12(1- v2) ' (124)

while Xe and X0 are the curvature changes of the hoop and meridional fibers,

respectively.

5. One may now proceed to substitute

m 0 = - m R (125)

into the third of the equilibrium equations (114), along with the assumption

that

_o = Mo = o . (126)
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Simple transformation thon yields a formula for Q_ which, together with

equations (126) and the first two of (114), leads to simple expressions for

N O and N_ in terms of M R . The use of equations (126) in this phase of

the development is justified by Fitzgerald [30] on the basis of an error-

magnitude study. Using the stress-strain and strain-displacement relation-

ships, practical formulations can bc derived for the rotations and displacc-

ments associated with the membrane loads N O and N_ obtained in this step.

6. The final approximate values for the membrane loads, bending

moments, rotations, and displacements are found by superposition of appro-

priate values from steps 1, 4, and 5. The stresses due to these membrane

loads and bending moments must be augmented by those stresses associated

with any self-equilibrating temperature distributions which exist through the

thickness.

To focus attention on the general concepts involved in Fitzgeraldl s [30}

approach, no mention is made in the foregoing steps of the need to satisfy

prescribed boundary conditions in the problem solution. Therefore, it might

now be helpful to note that, for this method, it is probably best first to obtain

results under the assumption that no external constraints are present.

Following this, edge forces and/or moments may be superimposed which

enforce the required conditions at the boundaries.

The general philosophy behind the approach of Christensen [31] is

very similar to that of Fitzgerald, although the details are quite different.
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Chrimtmmen also relies heavily upon the equilibrium equations (114) but, for

pure thermostructural problems, he makea no use of the loadings Y, Z ,

and m#. Hence, these quantities are taken equal to zero throughout the

entire analysis, which is performed in the following manner:

1. First the assumption is made that

M e = M b = M B (127)

where

t/2
E

f c_Tz dz . (128)
MB = - (1- v) -t/2

Here again, these moments simply furnish a starting point for the computations

and do not represent the actual values which will be determined later in the

procedure. These moments are inserted into the equilibrium equations (114).

The third of these equations is then combined with the other two and two equa-

tions in the unknowns N 0 and N¢ are obtained.

2. By using the stress-strain and strain-displacement relationships,

the two equations from step 1 are rewritten in terms of the temperature dis-

tribution and the middle-surface displacements v and w, where v is

measured in the meridional direction and w is taken normal to the middle

surface.
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3. The two equations from step 2 are combined to arrive at a single

formulation in terms of v and the temperature distribution.

4. The equation from step 3 is then solved subject to the boundary con-

ditions at the shell apex. This is accomplished by assuming that v car be

expressed as a polynomial and then callingupon the method of undetermined

coefficients. The resulting expression for v must then be substitutedinto the

appropriate equation from step 2 to obtain a solution for the displacement w .

5. From Timoshenko [11], the bending moments M 0 and M_ which

are associated with the displacements v and w can be determined.

Christensen [31] refers to these as corrective moments and, ifthey are not

small with respect to M R , an iterativeprocess must be used whereby the

initiallyassumed moments are successively revised. However, the study

reported in Ref. 31 seems to indicate that the first cycle will oRen be suffi-

ciently accurate for most engineering applications.

6. From the stress-strain and strain-displacement relationships, the

membrane loads N O and N_ due to v and w can now be found.

7. The finalapproximate values for the bending moments, membrane

loads, and displacements are found as follows:

a. Final M 0--M R+corrective M 0 .

b. Final Me = M R + corrective M¢ .

c. Final N 0 and N¢ = obtained from step 6.

d. Final v and w = obtained from step 4.

(129)
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The total approximate values for the stresses are obtained by superimposing

those associated with the final bending moments, final membrane loads, and

any self-equilibrating temperature distributions through the wall thickness.

To focus attention on the general concepts proposed by Christensen

[33], no mention is made in the foregoing steps of the need to satisfy pre-

scribed boundary conditions at locations removed from'theapex. Therefore,

it might now be helpful to note that, for this method, it is probably best first

to obtain results under the assumption that no external constraints are

present at such positions. Following this, edge forces and/or moments may

be superimposed which enforce the required conditions at the boundaries.

The foregoing approaches are only two of a number of possibilities for

the subject problem and can be used to obtain approximate values without the

ueed for sophisticated mathematical and/or numerical operations. However,

solutions can also be obtained by the use of existing digital computer programs,

many c _which use either discrete-element or finite-difference methsds. Such

programs are probably the best approach for obtaining rapid, accurate solu-

tions. However, to retain a physical feel for the problem, it would be helpful

to convert temperature distributions into equivalent mechanical loadings, such

as was done for isotropic circular cylinders. It is recommended that future

efforts include work along these lines to arrive at the equivalent pressures for

shells of revolution having arbitrary shapes.



I. Sphere Under Radial Temperature Variation.

A. Hollow Sphere.

Inside radius = a.

Outside radius = b.
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2+F r3a3b rcr - - 1
rr 1- _ (b_- _r_ f Tr2 dr - _-_ f It2 dr

a a

olE [ a3 + 2r3 f Tr 2 dr _5 Tr 2 dr
aO0 = _ - 1- u [(b 3- a3)r 3 a + a -

U --
1 + p_ 1 I a3 b b3 r_'__p/b3_a 3 "_ fTr2dr+ri fTr2dr

r a

b2(1- 2v)r f Tr2d r
(i +p) a

T(r) : t o : constant,

_rr = a00 : _ :: o

and

u = _Tor .

I

I+

f
I



B. Solid Sphere.
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l_'l b 1 r T/aS 2 f Trldr+._ f Tridr_
°'00 = °'¢_b - 1-v 0 0

/l+v_[ 1 f Trldr +U = "_-_.v/ r-'i a (1 + v) Tri

Crrr(0 ) = _r0e(0) = _(0) - i-_" b1 0 - 3 '

T(r) = To = constant ,

Crrr = _00 = _ -- 0 ,

and

U = _Tor •
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4.0 THERMOELASTIC STABILITY.

The thermoelastic problems considered in the previous paragraphs

have followed formulations of the linear theory of thermoelasticity; they have

thus excluded questions of buckling, problems in which the effect of the loading

depends on the deformations (as in the case of beam-columns), large deflec-

tions, and other similar effects. It is the purpose of this paragraph to discuss

some of the principal problems of this type. It should be remembered that

the solutions are approximate from the viewpoint of an exact thermoelastic

formulation. The nature of these approximations was treated in the previous

subsections,

4.0.1 Heated Beam Columns.

If a beam-column is subjected to the action of heat, the influence of

temperature must, in general, be taken into account, The analysis in the

cases in which the ends of the beam are restrained in the axial direction is

slightly different from that used when the ends are free to displace in that

direction. The latter case will be considered in paragraph 4.0.1.1 while the

former is considered in paragraph 4.0.1.2.

4.0.1.1 Ends Axially Unrestrained.

The buckling behavior of beams (and therefore also their behavior as

beam-columns under any combination of transverse and axial loads) depends

on the shape of the cross section: For example, a beam whose cross section

possesses no axes of symmetry can buckle only by a combination of twisting
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and bending, whereas in other cases some of the uncoupled modes arc also

possible. The general lormulation and solution of this problem are discussed

in Ref. 1, but for simplicity, the following analysis is restricted to doubly

symmetrical beams, with least principal moment of inertia under a transverse

distributed load p = p(x) acting in the xy plane, and subjected to a tempera-

ture distribution such that MT = 0. The beam will thus bend in the xy plane
Y

without twisting and with w = 0. The governing differential equation is

d_M T

(12 (_: d_v._ -, j, d'v z

It is convenient to obtain the solution in two parts, by separating the effects of

temperature and of transverse load• For this purpose vT is the deflection the

beam would undergo if only temperature and the axial load P were present

(transverse loads absent); it therefore satisfies the differential equation

dZ (E (12V'l' % (IZv'[' d2MT_7 l_.,-;_T_/ , I, - zdx _. dx 2 • (Z)

The quantity Vp is the dcl'lcction th(, Ix,,am would undergo if only transvers(:

loads and the axial load' P were present (temperature effects omitted); it

therefore satisfies the differential equation

d z (_ d2vp_ d2vp

_r \,:Iz_ / + P ,_--T-- p • (3)
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With the definitions, the solutions of the combined problem in which all loa(Is

are acting is

v= v T + vp .

The component deflection Vp represents the solution of the ordinary

!

isothermal beam-column problem and can often be found in the literature (see

Section B4.4). The determination of v T musjt, in general, be carried out

t

anew for each new problem, lIowcver, in the special case of uniform beam

under a temperature distribution of the form of a polynomial of a degree not

higher than the third in the spanwise direction, that is, when

MT = a 0 + alx ÷ a2 X2 + a3 X3 ,

z

then

MT
Z

vT = _ p + % + clx + c 2 sin kx + c 3 cos kx

where k = _ and the constants ('0, ct, c2, and % are determined
Z

from the boundary conditions. Solutions for v T for three important special

examples for which

M T = a o + alx
Z

are given as follows.
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I. Both Ends Fixed.

_--_ i- _ _.
L

L.. -I

F -!

4_ 2 EI
Z

= - L2v T 0for P<Pcr

II. Both Ends Simply Supported.

and

y

I
P ---b_,

t.

P
•---.--e. X

VT /co.kL-1 )=- P \" si_kJ_ sinkx+l- coskx - P sinkL

7r2EI
z

p - L[cr

III. Cantilever.

a0 1 - cos kx

VT = - _ cos kL

P

al[<kL_siokL) ]"_ cos kL (1 - cos kx) + kx - sin kx

and



f

lr_ EI
Z

Pcr =

The axial stress is given by

=-_ET + _ +- MT +M + P{7
xx A z v

Z Z
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In these analyses, the beam-column has been assumed to carry a compressive

axial load. If the load is tensile, the appropriate results may be obtained by

replacing the quantity P by (-P) in the corresponding expressions valid for

a compressive load: accordingly, the quantity (k) must be replaced by (ik),

(k 2) by (-k2), (sin kx) by (i sinh kx), (cos kx) by (cosh kx), (tan kx)

by (i tanh kx), etc. Here i = x/L'i- and the symbol k denotes

k= _ .
'4 EI

Z

4.0° 1 ° _. Ends Axially Restrained.

In this case, the basic equation to be solved is still equation (1) o[

4.0° 1.1, but the magnitude of the load P is unknown and must be determined

from an additional condition concerning the axial displacements of the ends.

If both ends are rigidly fixed in the axial direction, these conditions shall be

stipulated: The axial distance between the ends of the bar must remain

unchanged and temperatures must remain constant along the span. Expressed

mathematically,
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L
(P- PT ) A-'_ +A =0 (4)

- f dx . (5)
A = 2 0

The analogous condition appropriate to the case in which the ends of the

bar are elastically restrained in the axial direction is easily derived. If, for

example, the ends are attached to linear springs with modulus K,

takes the form

P ÷ - A-E ÷ A -- o . (6)

The transverse deflection v appearing in the quantity A must be

calculated by the equations given in the preceding paragraph (4. 0. t. 1) ; as a

consequence, the analysis of beam-columns which have ends fixed in the axial

direction is quite cumbersome, since the unknown P and v must be deter-

mined by the simultaneous solution of equations (1) and (6). However, if the

temperature is expressed as a polynomial, the calculations are greatly facil-

itated by the use of a series of graphs in conjunction with a rapidly convergent

iteration procedure. This technique and its results are available in Ref. 7

within the following limits:

1. Distributed transverse loads are uniform over the span, whereas

equation (4)

concentrated loads are at the midspan.
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2. The temperature varies linearly through the depth and is constant

in a spanwise direction.

3. The beam is assumed to be simply supported at its ends for

bending and elastically restrained axially.

Tables of numerical results in nondimensional form are presented for

the cases of zero and full axial end restraint in rectangular beams. These

tables may be used to determine maximum deflections and bending moments.

4.0.2

4.0.2.1

General.

Thermal Buckling of Plates.

Circular Plates.

This section contains curves and data based on nonlinear, elastic be-

havior and involving the use of large-deflection theory. This is because plate

stresses and deflections in the post-buckled state represent the major

considerations. The basis for this is the well-known fact that certain com-

pression structures can support some increment of additional loading before

complete collapse and, in the process of so doing, accept increased stresses

and deflections. This can be readily seen by an inspection of the plate buckling

stress and allowable compression stress for specific materials, taken as a

function of the crippling parameter (a/t_. Particular considerations and

background, as developed by Newman and Forray in Refs. 32 and 33, are given

in the following paragraphs, along with the solution of an example problem for

demonstration of the methods involved.
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Confl_,uration.

The design curves and equations provided here apply only to fiat,

circular plates which are of constant thickness and are made of an isotropic

material. It is assumed that the plate is free of holes, obeys Hooke' s law,

and that Poisson_s ratio is equal to 0.3.

Boundary Conditions.

The solution is valid only where both of the following conditions are

satisfied:

1. The boundary is simple supported; that is,

w=M r=0atr=b . (7)

2. The middle surface of the plate is radially fixed; that is,

_=_'= 0 at r = b . _8)

Temperature Distribution.

The plate may have a thermal gradient through the thickness, provided

that the distribution is symmetrical about the middle surface. However, it is

required that the temperature be uniform over the surface. Therefore, the

permissible distributions can be expressed in the form

T = T(z) (9)

subject to the restriction that

T(+z) = T(-z) . (10)

Obviously, the special case of a plate at uniform temperature complies with

these specifications.
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Design Curves and Equations.

If a heated plate is constrained against free, in-plane expansion, com-

pressive stresses are developed in the plate. Initial out-of-plane buckling

occurs at very low temperature increments in the case of thin plates con-

strained in this manner. However, in many structural situations, the useful-

ness of the plate is not completely lost as a result of this initial buckling since

it is able to carry some additional load after it has reached the buckled state.

In view of this, cases may arise in which a knowledge of the magnitudes of the

post-buckled stresses and deflections would be most helpful. To determine

the stresses and deflections of a plate after initial buckling has occurred,

large deflection theory must be used in the analysis since the actual deflection

at that stage may be several times the thickness of the plate.

In Ref. 33 Newman and Forray present a large-deflection analysis of a

circular plate under mechanical and thermal loading. Since a closed-form

solution of the basic differential equations was not possible, they used a finite-

difference procedure to set up the governing differential equations for digital

computer solution. Numerical results were then obtained for a wide range of

temperature resultants, NT'. These results are presented in curve form in

Figures 4.0-1 through 4.0-5 for deflections, radial and tangential forces, and

moments for various temperature gradients, as defined in equations (9), (10),

and (16).
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Ip- 0.3.-- _

NT' " 100

1.0 _'_

U

0

\\

0.2 0.4 O,I 0,8 1.0

Figure 4.0-.1. Nondimennional deflection parameter.

i_ven though nonlinear analysis methods are used to find the post-

buckling deflectlonJ and stresses, these solutions hold since it has been shown

an Ref. 34 that initial buckling can occur when the edge compressive stress

oxceedm the lowest eigenvalue of the small deflection buckling prohtem.

Timoahmflco [ 35] ihows that this critical compressive stress for a circular

plate wtthv - O. 3 is given by
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D b

(ar) = (2.05) 2
cr

(11)

For the thermal problem, the compressive stress just before buckling is

given by

-N
__T__= (12)

r t(1-v)

where

t/2

= Ea f T dz . (13)N T
-t/2

From equations (11) and (12), the critical nondimensional value for N T at

buckling is given by

b 2
R

(NT') = (NT) Db = 2.94 . (14)cr cr

Equation (14) shows that initial buckling of the plate will occur when

N T' = 2.94, provided that _ = 0.3. Hence, when N T' < 2.94, the plate will

remain fiat and the deflection w, as well as the bending moments M and M 0r

must equal zero. An inspection of equations (17) and (18) together with

Figures 4.0-4 and 4.0-5 reveals that this requirement is essentially satisfied

by the given method.

The deflection pattern of the buckled plate will consist of an axisym-

metric bulge which can occur in either the upward or downward direction.

In actual practice, the direction will be determined by the type of initial
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imperfections present in the plate, the nature of external disturbances, etc.

The formulas and design curves associated with the deflections and the bending

moments are based on the assumption that the plate deflects downward. On

the other hand, the sense of the membrane forces (compressive versus tensile)

at any point will be independent of the bulge direction. Hence, the expressions

for N r and N_, taken in conjunction with Figures 4.0-2 and 4.0-3, are valid

for both types of deformation.

R is assumed that Young t s modulus and Poisson t s ratio are unaffected

by temperature variations. On the other hand, the temperature-dependence of

the thermal-expansion coefficient can be accounted for by recognizing that it

is the product _T which governs; that is, the actual temperature distribution

can be suitably modified to compensate for variations in _.

It should be noted that there is a typographical error in equation (5)

of Ref. 32 where the quantity (1 - v) z should be changed to (1 - v2). The

contents of this section have been corrected accordingly.

Example Problems.

For the first example problem, consider a circular steel plate which

is 0. t0 in. in thickness and has an outer radius a of 10.0 in. The outer

edges are fully restrained against in-plane expansion; however, they are

simply supported otherwise. The plate is heated such that the temperature

gradient is given by

T ffi 3.0 + G.0 (z/t) ! .
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Using a = 6.0 × I0"s in./(in.) (*F), P = 0.30, and E = 30.0 × 106 psi,

determine whether buckling has occurred and find the stresses and deflections.

From equations (16)

NT,= 12(1-Et 3V2) b 2 F_ ttf/2
- 2

and

12(I.0-0.09)(i0.0)2

(30.0 × I0_)(0.I0_)N T '

[3.0 +6.0(z/t) 2] dz ,

(30.0× 106)(6.0× i0 -6)

6.0(z3)1 t/23.0(z) + (-iVS'J
-t/2

[ (t t) ,t-)2"0 (__
N ' = 6.55 3.0 + + ,_-':_,

T

NT' = 2.29 .

6.55(3.5) (t)

Since this is less than the critical buckling value given by equation (14), the

plate has not buckled and thus the deflection, as well as the bending moments

M r and M 0, are equal to zero.

However, from an inspection of equations (17) for the stresses and

knowing that, for NT'= 2.29, Mr' = M 0' = 0 and the values of Nr' and N 0' can

be obtained from Figures 4.0-2 and 4.0-3 as a function of (r/b), the stresses

may be easily calculated by inserting the appropriate values in the equations.

For a second example use the same plate as for the first; however,

apply a temperature gradient to the plate as follows:

T= 33.0+66.0(z/t) 2 .
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For this thermal loading

NT'= 6.55 [33.0(t) + 5.5(t)] = 6.55(38.5)(0.10)= 25.2 .

Since this is greater than the critical buckling value of 2.94, as given in

equation (15), the plate has buckled. Then, using Figures 4.0-1 through

4.0-5 the deflections, stress resultants and moments may be obtained for" the

4

calculated v'.due of NT . These values may then be substituted into equations

(17) to obtain the stresses and deflections. For this problem assume that the

stresses and deflections are needed for values of (r/b) = 0.3 and = 0.6. Then,

on the basis of NT' = 25.2, the following table gives values for the terms

needed in the stress and deflection calculations.

r/b

0.30

0.6O

1.75

1.2O

i !

r

(Fig. 4.0-2)

1.40

-1.70

N0 '

( Fig. 4.0-3)

-1.20

-10.00

M 5

r

(Fig. 4.0-4)

-12.7O

-12.0o

M 0 '

(Fig. 4.0-5)

Setting up equations (17) for calculation of the stresses and deflections lot this

problem,

w= w' (t) : o.10(w')

I -12z (M ')r (NT') (bt_T./= + -- - 12(1+v) c_T * (Nr')
r t_j 6(1_v2) (l-v)

and

ff

Letting z = t/2; T = [33.0 + 66.0(0.5) =] = 49.5
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Thela,

Db 30. 0 x 10_ x (0.10) 3
b_ = z2(z.o- 0.09) (]0.0)' (o.zo) = 27_.0

= 2750.0
r

-12(0.a)(Mr')

_/6(z.o - 0.09)

25.2

+ (z.o- 0.3)

Z

(io.o 
- z2(z.o + 0.3) \o-T_/ (e.o x zo-'

r = l- 7060 (Mr') + 99000- 127 320+2750 (N r')]

(49. 5) + (N r'

, 1

and

= [-7060(Mr' ) + 2750 (Nr') - 28 320]r

Also,

a 0 --- [-7060 (M0') + 27_) (No') - 28 320]

Then, for (r/b) = 0.30,

w = o.zo (w') = o.zo (z.75) = 0.z75 in.

r

and

-- 70eo (-lz. 70) + _750 (z.40) - _8 3_0

= + 80 660 4 3850 - 28 320 = + 65 190 psi

Similarly,

¢0

for (r/b) = 0. 60

=+ 55 220 psi (Note that these are tension stresses. )
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w ffi 0.120 in.,

= + 51 720 psi,
r

_0 = ÷ 31 720 psi .

The previously calculated stresses represent the critical tension values.

Critical compression stresses are found by letting z = - t/2 in the first stress

term. Then

_r = [ 7o60 (Mr') ÷ 2750 (N r' ) - 28 320]

and

cre = [ 7060 (Me') +2750 (Ns') - 28 3201 .

The following table gives the critical tensile and compressive stresses and

deflections at the plate stations.

w

(r/b) (in.) cr
r

0.30 0.175 +65 190

0.60 0.125 +51 720

Summary of Ecluations and Curves.

Critical Condition for Buckling.

(NT') = (2.94)
cr v= 0.3

where

Tensile Stress (psi)

+55 220

+31 720

Compressive Stress (psi)

ff
r

-114 130

-117 720

0"
0

-118 460

-143 360

(i5)
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Postbuckling Deflections and Stresses.

W= wVt

_etion D

July 1, 1972

Page 221

(16)

and

where

r

12zM t N '
r T

- I

td'_(1- ,,_) (1 - ,,)

o'0= 12 z M 0' N T '
- +

t46(1 - ,,_) (1 - v)

M b 2

M '= - r 46(1 - v 2)
r Dbt

d .(1- .
M 0' = - I}bt

N b z
r

r D b

t] l)b
T + N r bZ---_-

(17)

b2 D b

- 12(1+ v) _ _T +N 0' b2--_-

and

N O b 2

NOt -
D b
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The values for w', Mr,' M0' , Nr,' and N 0' are obtained from Figures

4.0-1 through 4.0-5 for the case of u = 0.3.

For values of u other than 0.3, the values of Mr' and M 0' may be

found by using equations (18) as shown:

v = 0.3 (

Similarly,

(Mo')v-- 1.o49 J (1- v2)

N ' and NOt are independent of v.r

4.0.2.2

I.

(M 0' )
v= 0.3

= 1.049 _(1- v2)(M ')
l"

Rectangular Plates

Heated Plates Loaded in Plane -- Ed[_es Unrestrained in the Plane.

Consider the plate strip, shown on the following page, loaded at the

ends by a uniformly distributed stress _0, subjected to a uniformly distributed

heat input Q, and reinforced along the edges (y = 0, y = b) by longitudinals.

The temperature in the plate will be higher in the center of the panel than near

the edges because of the heat sink provided by the longitudinals. For the

present purposes the temperature will be taken to be uniform across the

thickness and of the form

v=0.3 .

T=T0_TI co s (._) (19)
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in the plane of the plate, where T o and T 1 are constants to be adjusted to fit

the available data.

GO

a

I Oo

The following solution pertains to a single panel of the strip, extending

from x = 0 to x = a. This panel is assumed to be at a sufficient distance from

the ends of the strip, so that the stresses may be taken to be independent of

x. Transverse displacements are prevented at x = 0, a.

From the solution in Ref. 1 the critical combination of a and T
0 1

(note: T Ohas no effect on buckling) is found by obtaining the determinant of

simultaneous equations. It was shown that the symmetric case corresponds

to the lower buckling load and that the problem can be solved approximately

by the interaction of two special cases. These cases are (1) T 1 = 0 and a 0

is acting alone and (2) a 0 = 0 and T is acting alone.

The solution to (1) is the standard plate buckling expression found in

Ref. 1; that is, when T 1 = 0,



where

=_ k_'lE 1 [ _ _
(7

cr 0 12(1 - v z)

a

k =4 for b
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(20)

and

k= + for b

The solution to (2) when ¢r0

T 1 (= Tcr0 ).

•

= 0 is as follows. The critical value of

o Tor0
2 - 12(1- v _)

where k I is determined from Figure 4.0-6.

(21)

12

10

0 1 2 3 4 5

Figure 4.0-6• Values of the coefficient k t.

Then, for the general case in which both heat and edge stresses are

acting, the following interaction curve is used:
__jr
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- 1 . (22)

cr 0

IL Heated Plates Loaded in Plane -- Edges Restrained in the Plane.

A. Configuration.

The design curves presented here apply only to fiat, rectangular plates

which are of constant thickness and are made of isotropic material. It is

assumed that the plste is free of holes and that no stresses exceed the elastic

limit. The edge support members must have the same coefficient of thermal

expansion as the plate proper. The design curves cover aspect ratios a/b

from 1 through 4. tlowcvcr, since these plots become quite fiat at a/b = 4,

they must be used to obtain appro×imate results for aspect ratios greater than

4.

B. Boundary Conditions.

Solutions arc given for each of the following two types of boundary

conditions:

1. Type I -- The boundaries satisfy both the following conditions:

a. All edges of the plate are simply supported.

b. The edge Supports fully restrain in-plane plate displacements

such that these displacements are equal to the free thermal expansions (or

contractions) of the supports.

2. Type [I -- The boundaries satisfy both of the following conditions:

a. All edges of the plate are clamped.
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b. The supports fullyrestrain in-plane edge displacements of the

plate such that these displacements are equal to the free thermal expansions

.. (or contractions) of the supports.

C. Temperature Distribution.

Itis assttmed that no thermal gradients exist through the plate thickness.

The following three types of temperature distributionsover the surface are

considered and are iDustrated in Figure 4.0-7:

1. Sinusoldal distributionswhich can be expressed mathematically as

T = T + T 1 sin 7r--_x_sin _y (23)
o a b "

2. Parabolic distributions which can be expressed mathematically as

-T=To+T 1 1- -_'-1 1- 2Yb 1 . • (24)

3. Tent-like distributions which can be expressed mathematically as

a. b. Tent-like distribution.Sinusoidal or parabolic

distribution.

Figure 4.0-7. Selected temperature distributions over the

surface of a rectangtflar plb.te.
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D. Design Curves.

In Ref. 36 Forray and Newman present the simple means given here to

compute the critical temperature values for the initial thermal buckling of fiat,

rectangular plates. Curves are given for the combinations of boundary condi-

tions and temperature distributions tabulated in Table 4.0-1. The temperature

variations were chosen to Ix; representative of what would be expec;tc(I if the

panel were subjected t(_ vapid heating. This condition is conducive to thcrm:d

buckling since it will usually cause the plate to be much hotter than the supports.

The results of Forray and Newman are plotted in Figure 4.0-8 for plates having

v = 0.3. The curves do not account for nonuniformities in the material proper-

ties such as those variations that arise because of temperature-dependence of

the material behavior. Hence, the user must select a single effective value

for _ by employing some type of averaging technique.

TABLE 4.0-1. " COMBINATIONS OF BOUNDARY CONDITIONS ANI)

T E M I)E ItATU RE DISTRIBUTIONS

BoundatT Conditions

Temperature Distributions

Over the urface

Type I

Sinusoidal

Parabolic

Tent-Like

Type lI

Parabolic

A nondimensional plot of the deflection at the center of rectangular

plates of various aspect ratios against temperature level is presented in Figlare

4.0-9 where
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SIMPLY SUPPORTEDPLATE, |IMPLY fd.JPPORTEDPLATE,
1.20 TENT DI|TRIBUTION 1.20

L uo _ L

+o. .To_ To--)- x__.= o.\
0,410+ _ _ 0.40

0.20,

0 0
$ 2 3 4 1 2 3 4

(I/hi (a/b)

1.20
liMPLY KIRIOIPlTED PLATE.

81NUIQIDAL DIITRIBUTION

tOO '_
2.40 .._

To--"--- ._

.._ ---.,+_... 0.61-- _oI - I..P 1.20 _,.+

_._ 2 OJlO

&m
l_,U._m'"'""PED PLATE, ' "

2.10_ I PARAB.gLIC DISTFUBUTION

.\ ,,To _
0

O.Sl

2

0.40 ¸

0i
1 _1 3 4 1 2 3 4

Is/b) (fro)

Figure 4.0-8. Critical temperature parameter for rectangular plates.
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1.0

" i//
J

o.e _j- 1_.///

0.2 _ " __ .

0 0.2 0.4 0.6 0.8 _.U

Figure 4.0-9. Deflection w at the center of a rectangular plate for loads

In plane of plate (Poisson' s ratio v=l).

NT=a E

t/2
f T dz, (26)

-t/2

and

t/2

-t/_.
Tz dz , (27)

Et s

Dh" 12(1- vl)

In this figure, the noadimensional parametric indicating the temperature level

) , where N T , the value of N T at which buckling occurs, isIs NT/NTc r cr
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1 aZ ) X2DbNT = (1- u) + b-_ _ " (28)
cr

Plots showing in nondimensional form the variation of M in one
x

quadrant of a square plate and presented in Figures 4.0-10 and 4.0-11 for two

different temperature levels. Because of the double symmetry of the plate,

such a plot is sufficient to determine the distribution of both M and M
x y

throughout the entire plate. These plots indicate that the maximum bending

moment occurs, for the cases considered, in the center of the plate. Curves

showing the variation of center moment with temperature level for various

aspect ratios are shown in Figure 4.0-12.

It should be noted that the preceding results were obtained on the

assumption that nonlinear terms in the strain-displacement relations could be

neglected. Therefore, as is usual in problems of this type, the results are

valid only for values of NT sufficiently small relative to N T .
cr

III. Post-Buckling Deflections With All Ed_es Simpl_, Supported.

A. Configuration.

The design curves presented here apply only to fiat, rectangular plates

which are of constant thickness and are made of isotropic material. It is as-

sumed that the plate is free of holes and that no stresses exceed the elastic

limit. The edge support members must have the same coefficient of thermal

expansion as the plate proper. The design curves cover aspect ratios a/b

of 1, 2, 3, and a/b - 5.
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0 0.1 0.2 0.3 , 0.4 0.5

-o.61' 2,T _":'_I I I I . l ]

"0.25

Figure 4.0-10. Distribution of the bending moment M in a square plate for
x

(
NT - 0.25 Poissonts ratio v =

cr

B. Boundary Conditions.

The solution applies only to cases where both the following boundary

conditions are satisfied:

1. AU edges are simply supported.

2. Supports fully restrain in-plane edge displacement of the plate

such that these displacements arc equal to the free thermal expansions (or

contractions) of the SUl)lmrts,

C. Temperature Distribution.

It is assumed that no thermal gradients exist through the plate thickness.

Temperature distribution over the surface is taken to be parabolic (Fig.

4.0-13) and can be expressed mathematically as

(29)
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J

D. Design Curves.

In many aerospace applications, thermal buckling of flat, rectangular

plates can be tolerated if the post-buckling deflections do not cause excessive

losses of aerodynamic efficiency, do not produce destructive aerodynamic

disturbances, etc. In Ref. 37, Newman and Forray present the simple means

given as follows to compute absolute values of the maximum post-buckling

deflections for such plates. The temperature variation was chosen to be

representative of what would be expected when the panel is subjected to rapid

heating. This condition is conducive to thermal buckling since it will usually

cause the plate to be much hotter than the supports.

Figure 4.0-13. Parabolic temperature distribution over

the surface of a rectangular plate.

The maximum post-buckling deflection occurs at the center of the plate and

can be calculated from the relationship
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bZ/] 6z+4v a-"_ "_

+ (3-_r) _z,

(_0)

J

where

b 2

K-- 1 + _ (31)

and

/_ - • (:_2)
a (I-,,_)

Solutions to equation (30) arc plotted in Figures 4.0-14 and 4.0-15 for plates

having v = 0.30. Itis useful to note that, for given values of T O/Tl, initiai

thermal buckling occurs at T1/fl values corresponding to 6/t = 0. The

curves do not account for nonuniformiUes in the material properties such as

those variations that arise because of temperature-dependence of the material

behavior, Hence, the user must select a single effectivevalue for _ by

employing some type of averaging technique.

4.0.3 Thermal Buckling of Cylinders.

Configuration.

The design curves and equations provided here apply only to thin-

walled, right circular cylinders which satisfythe relationship

L/R _ 3.2 (33)
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Figure 4. O-.1S. Post-buckling parameters for heated rectangutar prates.

.o



Section D

July 1, 1972

Page 236

and are made of isotropic material. It is assumed that the sheU wall is frcc

of holes, obeys Hooket s law, and is of constant thickness. Figure 4.0-16

depicts the isotropic cylindrical shell configuration. Figure 4.0-17 shows the

sign convention for forces, moments, and pressures.

Boundamj Conditions.

The following types of boundary conditions are covered:

1. Siml)lv supported c(Ige; that is,

w:- M :_ 0 :tt x 0 and/or x l,. (:_4)
X

2. Clamped edge; that is,

w= -- = 0 atx= 0and/orx= L . (35)
Ox

It is not required that the conditions at the two ends be the same. In ever),

case, it is assumed that the cylinder (including any end rings) is not subjected

to external axial constraints at any location around the boundaries at x = 0 and

x= L.

Temperature Distribtttion.

The supposition is made that no thermal gradients exist through the

wall thickness and in the axial direction. However, arbitrary circumferential

variations may be present.

expressed in the form

T=T (¢) .

The permissible distributions can therefore be

(36)
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F

P

Figure 4.0-16.

MIDDLE SURFACE

. NOTE: x, y, z, _, and ax are positive

as shown. In addition, P, M y,

lind Mz are fictitious Ioldings

used in derivation ond are likewise

poeitive asshown.

Isotropic cylindrical shell configuration for thermal buckling.

Figure 4.0-17. Sign convention for forces, moments, and pressure

for thermal buckling.
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Hoop membrane compression may develop in regions adjacent to the two ends

becaus_ of e_ernal radial constraint. However, the buckling mode associated

with this condition is not considered. Because of this and the lack of external

axial constraints, the special case of a uniform temperature is of no interest

here.

Design Curves and Ec_uaUons.

It is assumed that Young' s modulus and Poisson' s ratio are unaffected

by temperature changes. Hence, in using the contents of this manual, the

user must select effective values for each of these properties by applying

engineering judgement. It will sometimes be desirable to employ different

effective moduli in each of the following operations_

1. Computation of the stresses _ present in the cylinder
x

2. Computation of the critical buckling stress (_x) .
cr

On the other hand, the results are presented in a form which enables the user

to fully account for temperature-dependence of the thermal-expansion coeffi-

cient a .

The appropriate formulation for _ can be obtained by first imposing
x

a fictitious stress distribution _A around the boundaries at x = 0 and x = L

such that all axial thermal deformations are entirely suppressed.

that

(r A=-_ ET (9) •

R follows

(37)
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These stresses may be integrated around the circumference and through the

wall thickness to arrive at the force

"PA =- EtR f aT(_) d_ (38)
0

and the moments

2_

A 0
aT(_) sin _ dcb

and
(39)

A 0
aT (_b)cos _ d_b

Since it is assumed that the shell is free of external axial constraints, the

conditions

=g = o (40)
y z

must be satisfied at x = 0 and x = L. To restore the shell to such a state,

it is necessary to superimpose a force PB equal and opposite to as well

as moments (_,)y and (_z) , which are equal and opposite to (_)z and
B B A

(_z) respectively. Hence,P

A

(41)



Section D

July 1, 1972

Page 240

and

.
B A

The stress corresponding to "PB is easily found to be

The stresses due to (My) are
B

E
2_ j" aT(_) de . (42)

0

B I : -_R_t = _r\ y/ y 0 (43)

and thoJe due to (M) are
Z

B

B (44)

The procedure being used constitutes an application of Saint-Venant' s principle.

Hence, the stresses from equations (42) through (44) will be accurate repre-

sentations only at sufficient distances from the ends x = 0 and x = L. If end

rings are present, the greater their resistance to out-of-plane bending, the

shorter will be this distance. Subject to these conditions, the actual longitudinal

thermal stresses at various points in the shell may be computed from the

relationship
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F

f,

or

_r X + O' ÷ + O

B B B

2z r

O.x=- aET(¢) + ;_-._ aT(c)

(45)

4-

2_

E sin _ f

0
aT(_) sin_ d_

27

Ecos 9 f÷ a T (_) cos # d@ . (46)
0

Complex distrihuUons may be encountered which make it difficult to perform

the required Integrations. In such instances, use can be made of numerical

techniques whereby the integral signs are replaced by summation symbols.

To investigate the stability of a particular shell, the maximum longi-

tudinal stress (Crx) must be compared against the critical value which can
max

be obtained from the formula

Et
(or x) = y • (47)

er RJ 3(1 - v z)

For the design to be satisfactory, It is required that

(%) < (%) • (4s)
max cr
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The quantity _/ appearing in equation (47) is a so-caUed knockdown factor,

which mainly accounts for the detrimental effects from initial imperfections.

Note that equation (47) is identical to that used for uniformly compressed

circular, cylindrical shells. Its application to the present problem is justified

on the basis of small-deflection studies reported in Refs. 38 and 39. From the

results given in these references, it can be concluded that, regardless of the

nature of the circumferential stress distribution, classical theoretical insta-

bility is reached when the peak axial compressive stress satisfies the expres-

sion

(O.x) _ Et (49)
max R_] 3(1 - v 2) "

In view of this, the values used here for _, were determined from the 99 per-

cent probability (confidence = 0. 95) data for uniformly compressed cylinders,

as reported in Ref. 40. The resulting T values are plotted in Figure 4.0-18

for L/R ratios of 0.25, i. 0, and 4.0.

Summary of Equations and Curves.

2_
E

¢r =-aET(¢) + _ f aT(C) d<bX
0

÷

2_

E sin _. [
J

0
_T(¢) sin _ d¢

÷
E cos

27r

f _T(_)cos¢
0

d_ (50)
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and

((7X) = T
cr

Et

R"]-3 (1 - v2)

When v = O. 3 this gives

(51)

Et

(Orx) = - 0.606T _"
cr

The knockdown factor y is obtained from Figure 4.0-18.

(52)

1.0

_,- 0.1 0.25

1.0

4.0

,,.,1 I , , , , _ , , ,,,i , , ..... i ,,.
o.v 102 101 104

R
Y

Figure 4o 0-18. Knockdown factor.
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5.0 INELASTIC EFFECTS.

In the preceding paragraphs, elastic behavior was assumed. This

assumption is sufficiently accurate for large classes of materials at relatively

low temperature and stress levels.

At higher temperature and for higher stress levels, however, the

divergence betweenthe behavior of real solids and that of the ideal elastic

solid increases and the elastic idealization becomesinadequate; the behavior

of the real solid is then said to be inelastic. To predict the inelastic behavior

of a solid under given thermal andloading conditions, it is necessary to

generalize the stress-strain relationship. There are three types of approaches

to this generalization, although the borderlines betweenthem are not well

defined.

1. The most basic studies of this problem make use of the concepts

and methods of solid-state physics. In this approach, the microstructure of

the material is taken into consideration and it is attempted to predict the

mechanical behavior of materials from this information.

2. It is also possible to disregard the microstructure of the material

and to regard it as a continuum; the general principles of mechanics and

thermodynamics as applied to continuaare then usedto determine the forms

of stress-strain relations which are compatible with theseprinciples.

3. The most direct procedure is to postulate simple inelastic stress-

strain relations; these define various ideal inelastic bodieswhich, thoughnot
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representing any actual materials, nevertheless incorporate in simple com-

binations some of the different types of inelastic phenomena, such as creep,

relaxation, plastic flow, or work-hardening,

Although considerable progress has been made in methods 1 and 2,

thus far only the third approach has yielded information of direct utility to

the stress analyst. In this paragraph, inelastic stress-strain relations are

discussed from the third of these viewpoints.

s0.1

Creep is the time-dependent deformation that occurs under stress.

Creep is normally observed by placing a constant load on a specimen and

measuring its deformation with time at a constant elevated temperature. The

curve showing the deformation as a function of time is known as a creep curve.

Creep curves obtained for various materials, temperatures, and stresses have

certain common features, which are illustrated in Figure 5.0-1. These are:

1. From A to B, the specimen undergoes an initial, almost instan-

taneous, extension on loading.

2. From B to C, the specimen creeps at a rate that decreases with

time (primary stage or transient creep).

3. From C to D, the specimen creeps at a rate that is nearly con-

stant (secondary stage or viscous creep).

4. From D to E, the specimen creeps at a rate that increases with

time (tertiary stage or accelerating creep).

5. At E, the specimen fractures.
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0

B

A
INITIAL ELONGATION ON LOADING

TIME AT CONSTANT LOAD AND CONSTANT TEMPERATURE

Figure 5. 0-1. The idealized creep curve.

The rate of creep changes in the manner shown in Figure 5.0-2.

During the secondary stage, the rate of creep drops to a minimum value that

is approximately constant, as shown by the essentially straight line of the

curve (refer to Fig. 5. 0--1).

The primary stage of creep is a work- or strain-hardening stage,

during which the resistance of the material to further creep is being built up

by vlrture of its own deformation. For this reason, the rate of creep continual-

ly decreases. The secondary stage of creep (C-D) represents a balance be-

tween strengthening by work-hardening and weakening by thermal softening.
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i
8

TIME AT CONSTANT LOAD AND CONSTANT TEMPERATURE

Figure 5.0-2. Variation in rate of creep with time.

The tertiary stage, or accelerating rate of creep immediately before

fracture, is often caused by an increase in stress that accompanies the de-

crease in cross-sectional area of the specimen during creep under a constant

load. This decrease in the load-carrying area may be due either to the

decrease of the diameter of the specimen as it elongates or to the formation

of intercrystalline cracks. These cracks can also act as stress-raisers. In

other cases, the accelerating creep rate is due to a change in the metaUurgical

structure, such as recrystallization.

5. 0.1.1 Design Curves.

For engineering purposes, the results of tests at various stresses and

temperatures are summarized in more convenient form. Figure 5.0-3 shows
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a plot that is most useful when the temperature and the lifetime of a part :ire

fixed by the eoaditions of operation, and an allowable stress must be determined

so that the part will not fracture or deform more than a certain amount during

service. Having a set of these curves at the proper temperature, the designer

can set off the lifetime along the abscissa and project it upwards; the intersec-

tion of this vertical line with the proper curve then determines the maximum

allowable stress, and the design stress will be this quantity less a suitable

factor of safety. Time and stress are usually plotted on logarithmic scales,

where stress is the load divided by the original cross-sectional area. Fre-

quently the data points on the rupture curves are identified with a number that

gives the percent elongation, or reduction In area, at fracture; thus, some

meuuremeat of the ductility of the material is provided.

When the requirements are simply that a part must not fracture in

service, and there are no limits on the amount of tolerable deformation, only

the rupture curve in Figure 5. 0-3 is needed. In such cases, the rupture curves

for a number of temperatures can hc collected on a single diagram, as in

Figure 5.(_-4, which is usually km_wn as a"stress-rupture diagram." These

curves show the variation in the time to fracture as a function of stress at

several eotmtaat temperatures, and they are used in the same manner as the

curves in Figure 5.0-3.

There are various ways of cross-plotting the prev/ous figures. Plots

of the stress versus temperature for lines of coutant rupture life or constant
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T- CON$T. e3 > e2 > el

LOG t

Figure 5.0-3. Schematic presentation of creep-rupture data showing effect
of stress at constant temperature on the time to rupture or specific

amounts of strain.

minimum creep rate are common, These curves are sometimes plotted on

the same diagram with curves showing results from short-time tensile tests,

as in Figure 5.0-5. Such diagrams give complete descriptions of the mechan-

ical behavior over wide temperature ranges. At low temperatures, where

creep is unimportant, designs are based on the results of short-time tenlile

tests; at higher temperatures, where the creep-rupture strength curves are

below the tensile test curves, designs must be based on the creep-rupture

behavior.

Curves of this type are readily available for most common metals in

MIL-HDBK -5 [4i].
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b

LeQ tA

Figure 5.0-4. Schematic presentation of creep-rupture data showing

effect of stress on the time to rupture at various temperatures.

5.0.1.2 Stress Relaxation.

Creep assumes a constant force; if, on the other hand, a bar is sub-

jected to a constant elongation and the temperature is raised to a high level,

with the elongation being maintained constant, the force required to produce

this elongation will be observed to decrease continuously with time (Fig.

5. 0-6). This mode of inelastic behavior is known as stress relaxation.

An important characteristic of both creep and stress relaxation is

that time is required for their action. Thus, it may be expected that effects

of this type will be unimportant for processes of relatively short duration.
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m
w
E

ULTIMATE TENSILE STRENGTH

YIELD STRENGTH

/

TEWERATURERANGE

FOR CONVENTIONAL DESIGN

100 - hr RUPTURE LIFE

10000-hr RUPTURE LIFE

TEMPERATURE

Figure 5. 0-5. Schematic presentation of tensile and
creep-rupture properties.
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, f LOW TEMPERATURE

P

!

Figure 5.0-6. Stress relaxation under constant deformation.

5. 0.2 ViscoelasUcit_:

Often, idealized bodies are defined which exhibit the characteristics of

creep and stress relaxation. These idealized bodies take the form of simple

mechanical models composed of springs and dashpots, whose deformation

defines the stress-strain relationship for the given material. This approach

is called viscoelasticity.

To represent the creep behavior of a material, many various mechanical

models can be formulated composed of different combinations of springs and

dashpots. Some of the more common ones can be found in Refs. 1 and 42.

5. 0.3 Creep Buckling.

Consider a column under a constant axial compressive load; if the

column is not perfectly straight initially (as is always the case because of

unavoidable manufacturing inaccuracies), then some bending will occur. The
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bending stresses are accompanied by a certain strain rate, which irnjdies

increasing dellcctions; these in turn _.aust: higher stresses so that a self-

excited or unstable situation arises. This process leads to collapse at a

rialto critical time and is known as creep buckling.

The following observations apply to creep buckling (Ref. 1) :

1. The phenomenon of creep buckling is, both physically and mathe-

matically, quite different from the usual type of buckling phenomenon. The

usual buckling load represents a "point of bifurcation" on a load versus

deflection plot, a point beyond which more than one equilibrium configuration

is possible; _recp #m_'kiing is char:tctcrizcd by deflections increasing bcy,_n_!

all bounds.

2. Mathematic'_lly, creep buckling can occur at a finite time only if

the material follows a nonlinear creep law.

3. The column will undergo creep buckling at any value of the com-

pressive axial load, no matter how small.

4. Creep buckling will occur whenever the column has initial imper-

fecUonm, and only then.

5. The value of t depends on the initial deflection and on the
cr

magnitude of the load; it has been found to be not too strongly affected by

changes in the former but very sensitive to changes in the latter.

6. The small-deflection analysis is, of course, not valid in the

immediatc neighborho_l of the critical time because the deflections are then
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large, tlowever, calculations based on a small-deflection theory arc vali,I

up to times very close to the critical; they thus cover, in effect, the entire

range of practical interest.

5.0.3.1 Column of Idealized H-Cross Section.

The critical time for creep buckling to occur for a simply supported

column of idealized H-cross section [ two concentrated flanges, of area (A/2)

each, at a distance h apart] is given by:

where

k- 24

and

L = length of column ,

P0 = column load,

a 0 = maximum wdue of initial imperfection,

k = constant in the strain-stress relationship.

n

5.0.3.2 Rectangular Column.

Analysis of the critical buckling time for rectangular columns is very

difficult. A way of circumventing this difficulty has been established, whereby
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and lower bounds lot the critical time arc obtained (t*) and arc s,upper
1 •

desigm_ed by the use o[ an as_rlsk.

Per a column with a rcctana_ar cross section of height h and wi_h

b, subjected to an average stress (r 0 = P0/bk and obeying a stress-strain

law of

= ( Ix) n ,

upper and lower bounds for the nondimensional critical time t*
cr

are plotted

in Figure 5.0-7 against the ratio (z0/h) of the initial center-deflection to the

height of the bar. For small values of this ratio (say z0/h < 0.015) these

bounds may be determined from the asymptotic expression

h
t* --log _ -,'_
cr z0

with the values of the coefficient c listed in Table 5.0-1.

The spread between the bounds may be seen from Figure 5.0-7 to vary

with the ratio z0/h. However, from Ref. I, if cr o/or E > 0. 8, then the lower

bound will be a good approximation for t*cr, whereas if _ 0/_ E < 0.2, the

upper bound on t* will be a good approximation to the actual value of the
cr

critical time. GrE = Euler buckling stress = _/ .

5. 0.3.3 Flat Plates and 8hells of Revolution.

The method presented here may be used to predict critical conditions

for the creep buckling of fiat plates and shells of revolution which satisfy the

followiJN; requirements:

\
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f-
n

3

4

5

6

7

For Lower Bound

,,

0.987

1.57

1.95

2.26

2.45

For Upper Bound

0.26

O. 56

O. 81

I.02

1.16

5,0 ./-- n = 3

/ '_ " _'' UPPER BOUND ON tcr I

4°1" -- I
I --£2_ _ /

1.0 _0_

0.006 0.01 0.02 0.04 0.06 0.10 0,20

=.___0
h

Figure 5.0-7. Upper and lower bounds for the critical time t':-" for
cr

creep buckling of a rectangular column.

1. The member is made of an isotropic mat,_11al.

2. The stress intensity a i [see equations (1)] is uniform throughout

the structure.
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3. The configuration, boundary conditions, and type of loading are

such that appropriate formulas are available for room-temperature values of

both the critical stress intensity _l [ see equations (1)] and the plasticity re-

duction factor.

Temperature Distribution.

R is assumed that the member is at a uniform elevated temperature.

Method.

The method presented here is essentially that which was published by

Gerard in Ref. 43 and constitutes a classical stability approach based on the

concepts set forth by Rabotnov and Shesterikov [44]. In Ref. 45, Jahsman and

Field show comparisons of various theoretical predictions with column test

data. The theory attributed there to Gerard is that of Ref. 46, which was

published before llcf. 43 and has a different basis. On the other hand, the

curves which Jahsman and Field [4.r_] identify with the Rabotnov-Shcsterik_)v

label were developed from the method given in this paragraph. The afore-

mentioned comparisons seem to indicate that this technique will give con-

servative predictions. However, this conclusion could possibly be because:

1. The test data were corrected to eliminate the effects of initial

imperfections.

2. The analysis is concerned with the onset of instability, whereas

the experimental data arc for final collapse.
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The presentation by Jahsman and Field includes plots obtained from each of three

different theoretical approaches [43, 46, 47]. Of these, the approach of Ref.

43 gave the most conservative predictions, This is a desirable situation in

view of the uncertainties associated with classical stability approaches to

creep buckling problems. For one thing, this general theoretical concept ignores

the detrimental effects from initial imperfections. However, to properly account

for this influence, much more complicated methods would be required and these

would not fall within the intended scope of this handbook. Therefore, in the

procedure recommended below, an attempt is made at least to partially account

for the imperfection effects in shells of revolution. This is done by the intro-

duction of available room-temperature knockdown factors.

Recommended Procedure.

Obtain from the literature, or a suitable test program, a family of

creep curves for specimens made of the desired material and subjected to

unaxial loading while at the appropriate service temperature. These curves

should be o[ the type shown in Figure 5.0-8 where a. and E. are the stress
1 1

intensity and strain intensity, respectively, and are defined as follows for

plane- st ress conditions:

O', ---: O" + 0 .2 - or O" + 3T 2

l y x y xy

and

2 E2 +¢ £ +
¢i- ,,f-3" + y x y

1/2
(i)
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Using data obtained from these plots, create a family of curves similar to

those of Figure 5.0-9 where _i is the strain-rate intensity defined as follows

for a state of plane stress:

ci - +_2+_ _ + . • (2)
_/-3 y x y

The dots indicate differentiation with respect to time; for example,

C /'a£ X
_2x = k-_-/ • (3)

The results embodied in Figure 5.0-9 are then used to develop still another

family, which is illustrated in Figure 5.0-10. Following this, select appro-

priate formulations for conventional room-temperature values of both the

critical stress intensity (cri) and the plasticity reduction factor q. For
cr

example, in the case of an axially compressed, moderate-length, circular

cylinder, one obtains

=

(_i) = _ r Eh
cr RJ 3(1 - V_e) (4)

and

1/2

_--'_ 1 E

where I" is the room-temperature knockdown factor and

E

v=o.5o- _ (0.50E - re)

(5)

(6)
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Figure 5.0-8. Constant-load creep curves.

u_- , °i " A3"

. ,, A2"

i iiii

,,J

T - CONSTANT

LOG SCALE

Figure 5.0-9. Curves derived from Figure 5. 0-8.

Values for F may be obtained from Ref. 48 or other suitable sources.

In addition, use the short-time elevated-temperature values for E and v .
e

On the other hand, the tangent and scant moduli (E t and Es, respectively) _re

those associated with the curves illustrated in Figure 5.0-10. Therefore,
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(=

""
TANT

Figure 5.0-10. Curves derived from Figure 5.0-9.

working with this figure, proceed from left to right along the _. line cor-z

responding to the applied load and use a trial-and-error procedure to determine

the strain intensity c i at which

Eh

appliedcri= _ F R_3(1- V2e) (7)

FoUowing this, return to Figure 5.0-8 and establish the time t as-

sociated with this combination of _i and c i. This is the predicted time to the

onset of creep buckling and can be denoted as tcr.

Although the preceding presentation has dealt with the specific case of

an axially compressed circular cylinder, it should be obvious that this method

constitutes a general approach which can be used for the analysis of creep

buckling in various types of plates and shells subjected to an assortment of

loading conditions. It should be noted, however, that F = 1.0 for fiat plates

(and columns).
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6.0 TIIERMAI, SII(}{:K.

6.0.1 General.

Thermal shock rclers to the phenomenon whereby a body undergoes

sudden changes in temperature, usually caused by a rapid change in the ex-

ternal environment. It is the presence of severe transients that distinguishes

thermal shock from the more common conditions of steady-state and slowly

varying temperatures. Severe transients are experienced by reentry aero-

space structures, such as those of the space-shuttle variety. The selection

and comparison of candidate materials for structures of this type shouhl

be accomplished by means of a screening process that considers thermal-

shock resistance, which may be ewduatcd by both analytical and experimental

methods. The analytical method may include comparisons of thermal-shock

indices, as well as the theoretical analysis of simple models such as a flat slab

which is suddenly immersed in a hot medium. The experimental investigation

may be of similar scope. In the theoretical treatment of such models as well

as the actual complex configurations, it is usually unnecessary to perform a

true shock-type analysis which involves mass inertia effects. Generally, it

is sufficiently accurate to compute the pertinent thermal stresses by the same

methods as are used for steady-state problems, except that one must de-

termine the temperature and stress distributions at a number of time incre-

ments during the transient behavior. As a rule, however, it will be necessary

to consider the material strain-rate-sensitivity when allowable stresses are

established.
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6.0o 2 Stresses and Deformations.

Configuration.

The equations and tables provided here cover each of the following,

as illustrated in Figure 6.0-1:

1. Flat slabs, of infinite extent, which are of uniform thickness and

are free of holes

2. Solid cylinders of infinite length

3. Solid spheres.

In all cases, it is assumed that Hooke' s law applies.

Boundary Conditions.

All bodies are free of any external constraint.

Temperature Distribution.

The supposition is made that the subject bodies experience a sudden

change in surface temperature. The upper and lower surfaces of the fiat slab

are always subjected to identical temperatures.

Equations and Tables.

This section is based on the assumption that Young' s modulus,

Poisson t s ratio, the thermal diffusivity, and the coefficient of thermal ex-

pansion are unaffected by temperature changes. Hence, the user must select

single effective values for each of these properties by employing some type

of averaging technique.
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The method presented here was published by Adams and Waxler in ReL

49. Itcan be used to determine the temperature and stress distributions dur-

ing the subject transient phenomena. To accomplish this, several simple

formulas must be used in conjunction with appropriate tabulated values. All

of these are given in the summary which follows. In applying this method,

care should be taken to ensure that the units specified under NOTATION are

used.

The method makes use of a temperature function, _j, which may be

called the fractional temperature excess and is defined as follows:

T- Tf =
I

j- T i- Wf j 1, 2, 3 • (1)

The subscripts 1, 2, and 3 denote that the _ value is for an infinite solid slab,

an infinite-length solid cylindcr, or a solid sphere, rcspectively. The tabu-

lations of _bj published by Adams and Waxier and appearing in the summary

of this section werc developed from a study of the heat transfer phenomena

associated with the subject configurations. The tables also include values for

the temperature parameters _I,_, _I,_, and ,I_ _, which are defined as follows:

Infinite Solid Slab.

' (a)@] = f _1 d
0

Infinite-Length Solid Cylinder.
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a. Segment of infinite solid slab.

b. _egment o! infinite-length

solid cylinder.

d. Solid sphere.

Figure 6.0-1. Configurations. ..J
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Summary of Equations and Tables.

The parameters q and fl, which appear in the tables, are defined as

follows:

and

t
q : _ (:3)

where

k t

K- Cpp * (4)

Infinite Solid Slab,

T = _I (Ti - Tf) + Tf (5)

and

E(_ (T i -Tf)
:_ = (*I-_) (_;)

x y (I - v) J "

The values for _ i and ,I, [ are obtained from Table 6.0-1.

Infinite-Length Solid Cylinder.

T = q_2 (T i - Tf) + Tf , (7)

Err (T i - Tf)

(rr= (1 - v) (q_v2 - @2) , (8)

and

Err (T i - Tf)
t

crt : (1 - v) (_I'2 ÷ _2 - _2) (9)
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where _ is the value of_ z at r/R = 1.

from Tables 6.0-2 and 6. o-3, respectively.

Solid Sphe re.

and

T= _b:j (T i- Tf) +Tf ,

2E_ (Ti-Tf)

_r = C1- v)

The values for #z andS2 are obtained

(lO)

(,;-,_) , (11)

E_(T i - Tf)

_t- (1 - _) (2_ +_:,- _3) (1_)

where _I,_ is the value of4_ 3 at r/R = 1. The values for ¢3 and _s are obtained

from Tables 6.0-4 and 6.0-5, respectively.
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TABLE 6.0-1. SLAB-PARAMETERS _bl AND _t'

f

0.3000 0.3200 0,3400 0.3600 0.3_0o 0,400o o. 4200 0.4400 0.4800 0.4800

0. 0. 0013 0. 0031 0. 0061 q. 0109 0. 017't 0. 0270 0. 0386 0. 0526 0. 0690 0. 0875

0.10 0. 0013 o. 0030 0. 0061 0. ol08 o. o176 (). 0266 o. 0381 0. 0520 o. o682 0. 0665
O. 20 O. 0013 O. 0029 0. 0058 0. 0104 O. 0 t_;9 (). o256 O. 0367 O. 0500 0 0656 O. 0932

O. 30 O. 0012 O. 0027 o, 0n55 O. 0097 O. ()158 O. 024 q (}. o344 O. 0469 O. 0615 O. 0780

O. 40 O. 0011 0. 0025 O, 0050 O. 0o88 O. 0144 O. 0218 0.03 12 O. 0428 O. 0558 O. 0708

0.50 O. 0010 O, 0022 0.0043 O. 0r,77 0.0126 O. 0191 O. 0273 O. 0372 O. O488 O. 0619

0, 60 o. 0008 0. 0018 0. 0036 o. 0o64 o. ol o.t 0. 0158 o, 0227 0. 0309 o. 0406 0.0515

O. 70 O. 0006 O. 0014 O. 0028 _. 0050 o. oo_1 o. o122 o. o175 O. 0239 O. 0313 O. 0397

0.80 0. 0004 O. 0010 0. 0019 0. 0034 0. 005:, o. q)08:1 0. (H19 0. 0163 0. 0213 0. 0270
0, 90 0. 0002 (). 0005 0. 0010 0. o017 o. (Io28 i) t1012 0. oo60 (i. 0082 0. 0106 0. 0137

1.00 0. 0000 0, 00(10 0.0oo0 0. olin0 i). (l[)oo i). (if}0() 0, 0000 (). 0()0o 0. 0000 0. 0000

O,

0.10

0.20

O. 30

0.4O

0.50

O. flO

0.70

0.80

O. 90

1. O0

%,

0.

0.10

0.1t9

0.30

0.40
0.50

0.80
0,70

0.90

O. 90

1. O0

O.

0.10

0.20

0.30

0.40

0.50

0.80

O, 70

O, 80

O. 90

1. O0

)_,

0. o009

O. 5000

o. lO_0

o. 1066

O. lO27

o. 0962

o. 0674

O. 0764

o. O635

O. 0490

0. 0334

0. 0169

O. 0000

O, 0687

O. 7000

O. 3616
0.3571

0. 3439

0. 3222

O. 2925
O. 2557

0.2125

0. 1642

0. 1117

O. 0566

O. 000o

O, 2302

O. 9o0o

0.5941

0.5868

o. 5652

O. 5297

0.4911

0.4207

O. 3499

O. 2704

O. 1841

O. 0932

O. 00o0

O. 3786

0.0(120

O, 5200

o. 13Ol

o. 1285

O. 1237

O. 1159
O. 1052

O. 0920

O. 0765

0. o591

o. n4()2

O. 0203

O, I)0(IO

o, 0828

o. 7200

O. 3H74

O. 11084

O. 3452

0.31:H

0. 2739

0. 2277

0. 1759

0. 1197

0. o6(16

O. 0000

O. 2466

O. 9200

O, 8137

O. 8062

O, 5_39

O. 5473

O. 4972

0.4346

O. 3617

O. 2795

O. 190',1

O. 0964

O. 0000

O. 3912

o. 0039

O,54o0

O. 1525

0. 1516

o. 1,160

o. 13_16

O. 1242

0. 10_6

0. 0902

o. f}GH7

o. o47,1

o. 0240

O. {)(ffl0

O. o977

O. 7400

0.4127

O. 4077

O. 3925

o. 3678

0. 3339

0.2919

O. 2426

0. 1H74

0. 1276

O. 0646

o. ()0rl(I

0. 2628

o. 9400

O, 6327
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O. 5643
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o. 0000

O. 4 034

0. o009 (}. (_113 0. Ol72 _). 0246 (). 0335 O. 0,439 0. 0557

O. 5(iq)() O, %qO(l (I. ,,Llr)(I H. G21)0

') l'/'_l O. 2(1:(5

l). 1759 v. :Ui)O

O. I(_9.1 q). 19:15

t,. 15_7 _). I_( _
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O. ()'_73 O. 0955 O. 1036
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O. 0000 0. 0000 O. 0000
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O. 3541 o. :17:I7
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O. 1:!27
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O. 2081 0. 2137 0.2 t!)l O. 2245 O. 2297 O. 2348

0,1054 0.1082 o. 111o 0.1137 O, 1164 .0.1190

[). 0000 O,DO0() 0. 000(I O. ((01)0 0. 0000 0. 0000

0.4267 0.4378 0.4485 0.4588 0,4688 0.4784

I,. _21)0 l). _400 O. 8600 O. 8800
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1. 1000 1. 1200 1. 1400 1. 1600 1. 1800 1. 2000 1. 2200 1. 2400 1. 2600 1. 2800

0. 0. 7804 0. 7736 0. 7662 0, 7982 0. 8097 0. 8206 O. 8311 0.8410 0. 8505 0. 8595

0. 10 0.7518 O. 7645 0. 7771 0. 7890 0. 8005 0.8114 0.8218 0.8318 0.8412 0. 8603

0.90 0.7248 0.7376 0.7498 0.7616 0.7729 0.7837 0.7941 0.8040 0.8135 0.8228

0.30 O. 680_ 0.6930 0.7048 0.7162 0.7272 0.7378 0.7480 0.7578 0.7672 0.7783

0.40 0.8200 0.6315 0.6426 0.6534 O. 6638 0,6739 0.6837 0.6932 0.7024 0.7113

0.60 0.5438 0.5542 0.5843 0.6741 0.5837 0.5930 0.6020 0.6109 0.6195 0.8280

0.60 0.4536 0.4625 0.4712 0.4797 0.4880 0.4962 O, 5042 0,5120 0.5197 0.5272
0.70 0.3814 0.3585 0.3655 0.372:] 0.3789 0.3855 0. :_920 0, 3984 0.4046 0.4109

0.80 O, 2398 0,2447 0.2496 0.2543 0.2590 0.2836 0.2682 0,2727 0.2772 0.2816

0. _) 0. 1218 0. 1241 0. 1266 0. 1291 0. 1315 0. 1339 0. 1362 0. 1386 0. 1408 0. 1432

1. O0 O. 0000 O. 0000 O. 0000 O. 0000 O. O00O O. 0000 O. OOO0 O. OOOO O. 0000 O. O00O

_t 0.4878 0.4968 0.5055 0,5140 0.5221 0.5301 0.5377 0.5451 0.5523 0,5593

1.3000 1.3200 1.3400 1.3600 1.3800 1.4000 1.4200 1.4400 1.4600 1.4800

0. _. _gSO O. 8761 O. 8838 O. 8911 O. 898o o. 9046 9.91o_ O. 9166 O, 9221 O. 9273

0. _.0 0:9689 0. 8670 0.8748 0. 8822 0. 8892 O. 8958 0. 9021 O. 9081 0, 9137 0. 9191
0.|0 0.8313 0,8396 0.8475 0.8551 0.8624 (,. 8693 (I.8759 0,8822 0.8882 0.8939

0.$0 0.7880 0.7935 0.8016 0.8094 0.8189 0.8242 0.8:]12 0.8379 0.8444 0, 8506

0. 40 O. 7200 O. 7283 O. 7365 O. 7444 O, 7521 O. 759(; 0.7668 O. 7739 0. 7808 O. 7874
0.60 0.6362 0.6443 0.6522 9.6599 9.6C74 0.6748 0.682! 0.6892 0.5962 0.7030

0. 60 O. 5846 O. 5419 O. 5491 O, 5562 O. 5632 O. 5701 0.57fi9 O. 5836 O. 5902 O. 5967

0.70 0,4170 0.4231 0.4291 0.4350 0.4409 0.4487 O. 452F, 0.4582 0.4839 O. 4696

0.80 0.2860 0.2904 0.2947 0.2990 0.303:! 0.3075 11.311_ 0.3160 0.3202 0.3243

O. gO 0. 1455 O. 1478 O. 1501 O. 1523 O. 1546 O. 1588 0, 1590 O. 1613 o. 1635 O. 1657

1.00 O. 0000 O. 0000 O. OOOO O. O00O O. 0000 O. 0000 O, 0000 O. 0000 O. 0000 O. O000

91t 0.8681 0.5726 0.5790 0.5852 0.5912 0.5970 0.8027 0.8082 0.6136 0.8188

1, 5000 1.5200 1.5400 1.5600 1.5800 1.6000 1.6200 1.6400 1.6600 116800

O. O. g322 O. 9368 O. 9412 O. 9453 O. 9491 O, 9527 0.9581 O. 9592 0. 9622 O. 9650

O. 10 O. 9241 O. 9289 O. 9334 O. 9377 O. 9417 O. 9485 0.9491 O. 9524 o. 9556 O. 9685

O. 20 O. 8994 O. 9046 O. 9096 O. 9143 O. 9188 0.9231 O. 9272 O. 9311 O. 9348 O. 9383

0.30 0.8566 0.8624 9.8680 0.8734 0.8785 0. 8835 0.8883 0.8930 0.8974 0.9017

O. 40 O. 7939 O, 8002 O. 8064 O. 8124 O. 8182 0.8239 0, 8294 O. 8:_48 O, 8400 O. 8451

O. 80 O. 7097 O. 7163 O. 7227 O. 7291 o. 7353 O. 7414 o. 7474 o. 7533 O. 7591 O. 7648

O. $0 O. 6032 O. 6095 O. 6158 O. 6221 O, 6282 O. 6343 O. 8403 O, 6462 O. 8521 O. 6579

0.70 0.4752 0.4807 0.4863 0,4918 0.4972 0.5026 o. 5n80 0.5123 0.5187 0.5240

O. 80 O. 3288 O. 3326 O. 3368 O. 3409 O. 3450 O. 3491 O. 3532 O. 3572 O. 3613 O. 3853

0. 90 0. 1679 0, 1702 O. 1724 0. 1746 O. 1768 0, 1790 0. 1812 0.1834 0. 1856 O. 1878

1. O0 O. O00O O. 0000 o. OOO0 O. O0OO O. 0o00 O. 0000 O. 0000 O. oo00 O. O00O O. 0000

Q'l_ 0.6239 0.6288 0.6336 0.8383 0.8429 0.6474 0.6517 0.8560 0.6601 0.6642

_a_ 1.7000 1.7200 1.74 O0 1, 7600 1. 7800 1.8000 1. 8200 1.84 oo 1.8600 1.8800

O. 0. 9676 O. 9700 O. 8"/23 O. 9744 O. 9763 O. 9782 0. 9799 O. 9815 O, 9829 O, 9843

O. 10 O. 9613 O, 9640 O. 9664 O. 9687 O. 9709 O. 9729 O. 9748 O. 9766 0.9783 O. 9798

O. 30 O. 9416 O. 9448 O. M,79 O. 9507 O. 9535 O. 9560 O. 9585 O. 9608 O. 9631 O. 9652

O. 30 O. 9068 O. 9098 O. 9136 O. 9173 O. 9209 O. 9243 O. 9276 O. 9308 O. 9336 O, 9367

0.40 O. 8601 O. 8849 O. 8696 O. 8642 O. 8686 O. 8730 O. 8772 O. 8813 O. 8853 O, 8891

0.50 0.7704 0.7758 0.7812 0.7865 0.7917 0.7968 0.8018 0.8067 0.8115 0,8162

O. 80 O. 0837 O. 8693 O. 6749 O. 6808 O. 6860 O. 6914 O. 6967 O. 7020 O. 7073 O, 7124

0.70 0. 8292 O. 5344 O. 5396 O. 5447 O. 5498 O. 5549 O. 5600 O. 5650 O. 5700 O. 5749

0.80 0.3693 0.3734 0.3774 0,3814 0.3854 0.3893 0.3933 0,3972 0.4912 0.4061

O. I)0 0. 1BOO O. 1922 O. 1944 O. 1966 O. 1987 O. 2009 O, 2031 O. 2053 O. 2075 O. 209_

1. O0 O. 0000 O. OOOO O. O00O O. O00O O. 0000 O. O000 O. 0000 O. OOOO O. 0000 O. 0000

tlt O. 6881 O. 6720 O. 6758 0.6794 O. 8830 O. 6868 0.6900 O. 6934 O. 6967 O. 6999

v _
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1. 9000 1. 9200" 1. 9400 1. 9600 1. 9800 2. O000 2. 0200 2. 0400 2. 0600 2. 0800

@_ 0.7031 0.7062 0.7092 0.7121 0.7151 0. 7179 0. 7207 0.7234 0.7261 0.7288

x/a_ 2.1000 2.1200 2.1400 2.1600 2.1900 2.2000 2.2200 2.2400 2.2600 2.2900

O. O. 9940 O. 9946 O. 9951 O. 9955 O, 9959 O. 9963 O. 9966 O. 9969 O. 9972 O. 9975

0.10 0.9914 0.9921 0.9927 0.9932 0.9938 0.9943 0.9947 0.9951 0.9955 0.9059

0.20 0. 9821 O. 9832 O. 9842 O. 9852 O. 9861 O. 9870 O. 9878 O. 9686 O. 9893 O. 9900

0.30 0.9623 0.9641 0.9658 0.9674 0.9690 0.9705 0.9720 0.9734 0.9747 0.9760

O. 40 O. 9252 O. 9279 O. 9306 O. 9332 0.9356 O. 9381 0.9404 0.9426 0.9448 0.9470

0.50 0.8624 0.8661 0.8698 0.9733 0.8768 0.8802 0.8835 0.8866 0.6900 0.6931

0.60 O. 7851 0.7696 0.7739 0.7782 O. 7825 0.7867 0.7908 0.7949 0.7989 0.8028

0.70 0.6270 0.6316 0.6361 0.6405 0.6450 0.6494 0.6537 0.6581 0.6624 0.6666

0.80 0.4475 0.4512 0.4550 0.4588 0.4625 0,4662 0.4899 0.4736 0.4773 0.4810

0,90 0.2335 0.2357 0.2378 0.2400 0.2421 0.2443 0.2464 0.2496 0.2507 0.2529

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

• _ 0,7313 0.7339 0.7364 0.7388 0.7412 0.7436 0.7459 0.7491 0.7504 0.7525

_a_ 2.3000 2.3200 2.3500 2.3600 2.3800 2.400O 2.42O0 2.4400 2.4600 2.4800

O. 0.9977 0.9979 0.9981 0.9983 0.9985 0.9986 0.9988 0.9989 0.9990 0.9991

O. 10 O. 9962 O. 9965 O. 9968 O. 9971 O. 9973 O. 9976 O. 9978 O. 9980 O. 9981 O. 9083

0.20 0.9906 0.9912 0.9918 0.9924 0.9929 0.9933 0.9938 0.9942 0.9946 0.9950

0.30 0.9772 0.9783 O. 9795 O. 9805 O. 9815 O. 9825 O. 9834 O. 9843 O. 9851 O. 9859

0.40 0.9490 0.9510 0.9529 0.954_ 0.9566 0.9583 0.9600 0.9616 0.9631 0.9647

O. 50 O. 8961 O. 6991 O. 9020 O. 9048 O. 9076 O. 9103 O. 9130 O. 9155 O, 9180 O. 9205

0.60 0.8060 0.8106 0.8144 0.8181 0.8218 0.8254 0.8290 0.8326 0.8360 0.9394

O. 70 O. 6708 O. 6750 O. 6792 O. 6833 O. 6874 O. 6914 O. 6954 O. 6994 O. 7034 O. 7073

0.80 0.4847 0.4883 0.4919 0.4956 0.4992 0.5027 0.5063 0,5099 0.5134 0.5170

0.90 0.2550 0.2572 0.2593 0.2614 0.2636 0.2657 0.2678 0,2700 0.2721 0.2742

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

• _ 0.7547 0.7568 0.75H9 0.7609 0.7629 0.7649 0.7669 0.7688 0.7707 0.7725

2.5000 2.5200 2.5400 2.5600 2.5800 2,6000 2.6200 2.6400 2.6600 2.6800

O. 9992 O. 9993 O. 9993 O. 9994 O. 9995 O. 9995 O. 9996 O. 9996 O. 9997 O. 9997

O. 9964 O. 9986 O. 99_7 O. 9988 O. 9989 0. 9990 O. 9991 O. 9992 0. 9993 O. 9993

O. 9953 O. 9956 O. 9959 O. 9962 O. 9965 O. 9967 O. 9970 O. 9972 0. 9974 O. 9976

O. 9867 0.9874 O. 9881 0.9887 O. 9894 O. 9899 O. 9905 O. 9910 O. 9915 O. 9920

0,9661 0.9675 0.9689 0.9702 0.9714 O. 9726 O. 9738 O. 9749 O. 9760 O. 9770

0.9229 0.9252 0.9275 0.9297 0.9319 0.9340 0.9361 0.9381 0.9400 0.9419

0.8427 0.8460 0.8492 0.9524 0,8556 0.8566 0.8617 0.8647 0.8676 0.8705

0.7112 0.7150 0.7188 0.7226 0.7263 0.7300 0.7337 0,7373 0.7409 0.7445

0.5205 0.5240 0,5275 0.5310 0.5344 0.5379 0.5413 0.5446 0.5482 0.5516

O. 2763 0.2784 0.2806 O. 2827 0.2848 O. 2869 O. 2890 0.2911 O. 2932 O. 2953

O. OOOO 0.0000 0.0000 O. O00O 0.0000 O. O00O 0.0000 0.0000 0.0000 0.0000

O. 7743 O. 7761 O. 7779 O. 7796 O. 7813 0. 7830 0. 7847 O. 7863 O. 7879 O. 7895

O.

O. 10

0.24)

0.30

0.40

0.50

O. 60

0.70

0.80

0.90

I., O0

O. 0.9856 0.9868 0.9678 0.9889 0.9898 0.9906 0.9914 0.9922 0.9928 0.9935

0.10 0.9613 0.9826 0.9639 0.9851 0.9862 9.9872 0.9882 0.9891 0.9999 0.9907

0.20 0.9672 0.9690 O. 9706 O. 9725 0.9741 6.9757 0.9771 O. 9785 0.9798 O. 9810

0.30 O. 9395 0.9422 0.9448 0.9473 0.9497 O. 9520 O. 9543 O. 9564 O. 9584 0.9604

O. 40 0. 8929 O. 8966 O. 9001 O. 9036 0. 9070 0. 9102 0. 9134 O. 9165 0. 9195 0. 9224

0.50 0.8208 0.8254 0.8298 0.8342 0.8385 0.8427 0.8468 0.850_ 0.8548 0.8586

0.60 0,7175 0.7226 0.7275 0.7324 0.7373 0.7421 0.7468 0.7515 0.7561 0.7607

0.70 0.5798 0.5847 0.5895 0.5943 0.5991 0.6039 0.6086 0.6132 0.6179 0.6225

0.80 0.4090 0.4129 0.4168 0,4207 0.4245 0.4284 0.4322 0.4361 0.4399 0.4437

0.90 O. 2118 O. 2140 O. 2162 O, 2184 O. 2205 0.2227 O. 2249 O. 2270 O. 2292 O. 2_I14

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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TABLE 6,,.0-1. (CONTINUED)

, _ q"

_a_ I. 7000

O. O. Mr97

O. 10 o. 2M14

0.|0 0,9_7

0.90 0.11125

O. 40 o. lffso

0.00 O. NM

0.10 0.8"5'33

O. 70 O. 7480

O.S@ 0.9841

O. I0 O. 91fl'4
1.00 O. 0000

t 0' o. 7010

2.0000 2.9800

O. O. _ O. 9899

O. 10 O. _ O. 9898

0.|0 O. IIHIO O. 9890

0.30 0.9810 0.9M2

0.40 O. 8_11 0.9880
0.10 0.982'? O. MII

O. @0 O. 8991 O, 9014
0.70 0.7814 0.7840

O. M@ O. 5870 O. 5911

O. 00 O. 3183 O. 3204

1. O0 O. 0000 O. 0000

t_ O. 0065 O. 8068 O. 8081

_a_ 3. 1900 3. 2000 3. 3000

O. 1. 0000 I. 0000 I. 0000

O. I0 O. 9999 1. 0000 1. 0000

O. 80 O. Mi,98 O. 9897 O, 9898

0.3@ O. MY/9 O. 9985 O. 9989

O. 40 O. 9815 O. 9934 O. 9949

0.00 O. V/10 O. ff/63 0.9804

O. lO 0. U98 0.9297 0.9381

O. 70 O. 8116 O. 8254 O. 8385

O. 80 O. 8194 O. 634a O. 8494

0.20 0.3388 0.3491 0.34599

1.98 O. 0000 O. 0000 O. 0000

q'/' O. 0180 O. 8237 O. 8290

_a_ 4. I000 4. 2000 4. 3000

9.7100 2.7400 2.7800 2.7800 2.8000 2.8200 2.8400

O. 9988 O. MHI@ O. M_,8 O. IHH)8 O. 9898 O. 9999 O. 9999

O. 08'94 O. _ O. _ O. _ O. 9996 O. 9997 O. 9997

O. 99'79 O. 9981 O. MM2 O. 9983 O. 9985 O. 9988 O. 9987
O. m9 O. 9933 O. 9937 O. 9941 O. 9944 O. 9948 O. 9951

O. V/90 O. 9799 0. 9806 0.9817 O. 9825 0.9833 0.9840

O. 9454 O. 9473 O. 9410 O. 9507 O. 9923 O. 9539 O. 9654
O. 8781 O. 8789 O. 8816 O. 8842 O. 8888 O. 8823 O. 8918

O. 751.15 O. 7650 O. 7584 O. 7818 O. 7651 O. 7685 O. 7718

O. 544583 O. 5417 O. 6060 O. 5403 O. 5716 O. 5749 O. 5782

O. 2998 O. 3010 O. 3037 O. 3068 O. 30'/9 O. 3100 O. 3120

O. G_O0 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000

2.8600 2. 8800

O. 9999 O. 9999

O. 9997 O. 9997

O. 9988 O. 9989

0. 9954 O. 9958

O. 9848 O. 9855

O. 9589 O. 9683

O. 8943 O. 8987

O. 7750 O. 7782

0.5814 0.5847
0.3141 0.3162

O. 0000 O, 0000

O. 7986 O. 7941 O. 7958 O. 7971 O. 7985 O. 7999 O. 8013 O. 8027 O. 8041

8.9400 2.9900 2.9800 3.0000 3.0200 3.0400 3.0800 3,0800

0.9999 0._9 0.9909 1.0000 I. 0000 1. 0000 1.0000 1.0000

0.9998 0,_ 0.9998 0.9999 0.9999 0.9999 0.9999 O. 9999

0.9991 O.M_2 0.9_3 0.9999 0.9994 0.9994 0.9995 0.9995

0.9964 0.9066 0.2988 0.9970 0.9972 0.9974 0.9975 0.9977
0.9874 0.9880 0.9805 0.9891 0.9896 O. 9901 O. 9906 O. 9910

0. M24 0.9837 0.9849 0.9661 0. M73 0.9884 0.9895 0.9706

0.9037 0.9080 O. 8082 O. 9103 O. 9124 O. 9145 O. 9185 O. 9185

0.7877 0.7908 0.7939 0.7989 0.7998 O. 8029 O. 8058 O. 8087

0.5943 0.5075 0.6007 0.6038 O. 6070 O. 6101 0.6132 0.6163

O. 3224 O. 3945 O. 3286 O. 3280 O. 3307 O. 3327 O. 3348 O. 3369

0.0000 0.0000 0.0000 0.0000 0.0000 O. 0000 O. 0000 O. 0000

O. 8094 0.8107 0.8119 0.8132 0. 8144 0.8150 0.8168

3,4000 3.5000 3.8000 3.7000 3.8000 3. 9000 4.0000

1,0000 1,0000 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000

1.0000 1.0000 1.0000 1. 0000 1. 0000 1. 0000 1.0000
0.9990 0.9989 1.0000 1.0000 1.0000 1.0000 1.0000

O. 92tMI 0.9898 O. 99_ O. 9998 O. 9998 0.9999 O. 9999

O. 9991 O. 99'/0 O, 9977 O. 9983 O. 9987 O. 9991 O. 9993
O. 9838 O. 9867 O. 9891 O, 9911 O. 9928 O. 9942 O. 9953

O, 9466 O. 9923 O. 9883 O. 9837 O. 9684 O. 9'728 O, 9';'63

O. 8508 O. 8624 O. 8733 O. 8835 O. 8931 O. 9020 O. 9103

0. M38 O. 8778 0,6914 0.7047 0.7175 0.7300 O. 7421

0.3094 O. 3794 O. 3893 0.3992 0.4090 0.4187 0.4284
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.8341 0.8388 0.8433 0.8475 0.8515 0.8553 0.8590

4.4000

O. 1.0000 1. 0000 1.0000 1.0000

O. 10 1. 0000 1. 0000 1. 0000 1.0000

O. 20 1.0000 1. O00O 1.0000 1.0000

O. S@ 1.0000 1. O00O 1. O00O 1.0000

0.40 O. 9M16 O.l_M 0,999'7 0._9

O. IHI 0._3 0.99'70 0.99"/0 0.9981

O. 80 O. 1_98 O. M20 O. 9880 O. 987|

0.70 0.0181 " O. 925| 0.9312 0.9981

O. 80 O. 75M O. 7661 O. 7701 O. 7845'/

O. tO O. 4.t80 O. 4478 O. 45011 O. 48S2

1.00 O. 0000 O. 0000 O. 0000 O. 0000

tiV 0. 8614 O. M67 O. 8@80 O. 8710

4. 5000 4. 9000 4. 7000

1. 0000 1. 0000 1. 0000

I. 0000 I. 0000 I. 0000

1.0000 1. 0000 1. 0000

I. 0000 I. 0000 I. 0000

O. 9999 O. 9902 O. 9999

O. I)985 O. MMI2 O. 9991

O. 9891 O. _ O. 9922

O. N38 O. 9490 O. 9639

O. 7M9 O. 8068 O. 8163

O. 4750 O. 4847 O. 4997

O. 0000 O. 0000 O. 0000

O. 8748 O. 8774 O. 8800

4.8000 4.9000 5.0000

1.0000 1.0000 1.0000

1.0000 1.0000 1. 0000
I. 0000 1.0000 1.0000

1.0000 1.0000 1,0000
1.0000 1. 0000 1,0000

0.9993 0.9996 O. 9998

0.9934 O. 9944 O, 9953

0.9583 0.9824 0.9861

0.8254 0,8342 0.8427

0.5028 0.5117 0.5205

0,0000 0.0000 O. 0000

0.8825 0.8849 O. 8872



O_U_.?,5"i' ,-r .....

POOR QUALI Ey

TABLE 6.0-1. (CONTINUED)

Section D

July 1, 1972

Page 273

x/a_ 5.1000 5. 2000 5. 3000 5. 4000 5. 5000

O. 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000

O. 10 1.0000 1. oooo 1. O000 1. 0000 1. 0000

O. 20 1. 0000 1, 0000 1. 0000 1. 0000 1. 0000

O. 30 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000

O. 40 1. 0000 l. 0000 1. 0000 1. OOO0 1. 0000

O. 50 O. 9997 O. 9998 O. 9998 O. 9999 0. 9999

O. 00 O. 9961 O. 9967 O. 9973 O. 9977 O. 9981

O. 70 O. 9695 O. 9726 O. 9755 O. 9780 O. 9804

O. 80 O. 8508 0. 8587 O. 8661 O. 8733 O. 8802

O. 90 O. 5292 o. 5379 O. 5465 O. 5549 O. 5633

1. O0 O. 0000 O. 0000 O. O00O O, 01)00 O. 0000

'i'tt O. 8894 O. 8915 11. 8935 O. _955 0. 8974

_a_ 6. 1000 6. 2000

5. 6000 5. 7000 5. HO00 5. 9000 6. 0000

I. 0000 I. 0o00 I. 0000 1. 0000 I. 0o00

I. 0000 I. 0000 I. [)000 I. 0000 I- 00o0

1. 0000 1. 0000 1. 000o 1. 0000 1. 0000

1. 0000 1. 0000 1, 0000 1. 0000 1. ooo0

1. O00O I. 0000 1. 0000 1. 0000 1. 0000

O. 9999 O. 9999 I, (101}(I I. 01109 l. 0000

O. 9985 O. 9987 O. 9990 o, 9992 o. 9993

O. 9825 0. 9844 O. 9861 O. 9877 O. 9891

0. 8868 O. 8931 O. 8991 (}. 9048 O. 9103

O. 5716 O. 5978 9. 5879 0. 5959 I1. 6039

O. 0000 O- 0000 O. O000 [). 0000 O. 0000

O. 8993 O. 9010 O. 9027 o. 9044 o. 9060

6. :10o0 6. 4000 6. 5000 6. 6000 6. 7000

0. 1. 0000 1. 0000 1. 0000

O. 10 1. 0000 1. 0000 1. 9000

O. 20 I. 0000 I. 0000 I. 0000

O. 30 I. 0000 1. 0000 1. o000

O. 40 I. 0000 I. 0000 I. 0090

O. 50 1. 0000 1. 0000 1. 0000

O. 80 O. 9994 O. 9995 O. 9996

O. 70 O. 9903 O. 9915 O. 9925

O. 80 O. 9155 O. 9205 O. 9252

0.90 0.6117 0.6194 0.6270

1. O0 O. 0000 O. 0000 O. 0000

1. 0000 I. 0000 1. 0000 1. 0000

1. 0000 1. 0000 1. 0000 1. 001;.0

1. 0000 1. 0000 1. 0000 1. 0000

I. 0000 1. o000 1. 0000 I. 0000

1. 0000 1. 0000 1. 0000 1. 0000

I. 0000 I. I)000 i. 0000 1.0o00

O. 9997 O. 9998 O. 9998 o. 9998

0. 9934 O. 9942 O. 9949 I). 9955

0.9297 0.9340 0.9381 0.9419

0.6346 O. B420 0.6494 0.6566

O. 0000 0. 0000 O. 0000 O. 0090

$'1' 0.90'15 0.9090 0.9104 0.9118

7.3000 7.4000

6.8(}(1() 6.9000 7.0000

1. 0090 1. 0000 1. 0000

1. 0000 1. OOOO 1. 0000

1. 0000 1 . 0000 1. OOOO

1. 0000 I . 0000 I. 0000

1 •000(; 1 . OOO(} 1 . 0000

1.0000 I. 0000 I. 0000

O. 9999 O. 9999 ¢1. 9999

O. 9961 I}. 9966 (I. 9970

(}. 9450 O. 9490 O. 9523

O. 66218 O. 6708 9. 6778

O. 001)0 O. 0o00 {}. 0000

8.6000

1. 0000 1.0000 1.0000

1.0000 1.0000 1. 0000

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

1. 0000 1. 0000 1.0000 1-0000 1. OOOO

1. 0000 1. 0000 1.0000 1. 0000 1. OOOO

1.0000 1.0000 1.0000 1.0000 1.0000

0.9997 0,9998 0.9998 0.9998 0.9999

0. 9850 0.9861 0.9872 0.9882 0. 9891

0.7781 0.7814 0.7867 0.7916 0.7969

0.0000 0.0000 0.0000 0.0000 0.0000

0.9344 0.9351 0.9359 0. 9386 0. 9373

8.7000 8.8000 8.9000 9.0000

1.0000 1.0000

1.0000 1. OOO0

1.0000 1.0000

1.0000 1.0000

_ 0.9205 0.9216 0.9227 0.9238

8.1000 8.2000 8.3000 8.4000 8.5000

O. 1. OOOO 1.0000 1.0000 1.0000 1.0000

0.10 1.0000 1,0000 1.0000 1.0000 1. 0000

0.20 1.0000 1. 0000 1.0000 1.0000 1. 0000

0.30 1.0000 1.0000 1.0000 1.0000 1.0000

0.40 1. 0000 1. 0000 1.0000 1. 0000 1.0000

0.50 1.0000 1. 0000 1. 0000 1. 0000 1. 0000

0,60 1.0000 1.0000 1.0000 1.0000 1.0000

0.70 0.9994 O. 9995 0. 9996 0. 9996 0. 9997

0.80 0.9"/80 0.9796 0. 9811 0. 9825 0.9836

0._ 0. 7480 0. 7538 0. 7595 0. 7651 0. 7707

1.00 0.0000 0,0000 0.000O 0.0000 0.0000

_ 0.9303 0. 9312 0.9320 0.9328 0.9336

O. I. 0000 I. 0000 I. 0o00 I. 0000

O. I0 I. 0000 i, 0000 I. oo00 1. 0000

O. 20 I. 0000 i. 0000 I. o0o0 I. 0000

O. 30 1. 0000 1. 0000 1. I)11(10 1. I)1100

O. 40 1. 0000 1. 0000 1. 0000 1. 0000

0.50 1. 0000 1. O00O i. 0000 I. 0060

O. 60 0. 9999 I. 0000 1. 0000 1. 0000

0.70 0. 9974 0. 9977 0. 9980 O. 9983

O. 80 O. 9554 0. 9583 O. 9611 O. 9037

O. 90 O. 6847 O. 6914 O. 6981 O. 7047

1. O0 O. 0000 O. 0000 O. 0000 0. 0000

7.1000 7.2000 7. 5000 7. 6000 7. 7000 7. 800O 7, 9O00 8. I)000

1. [)000 1. D000 1,0000 I. 0(}00 1. 01100 1.01)00

I. 0900 I. 0000 I. 0000 1.00(io 1. 0000 I. 0o00

I. 0000 I. 0000 I. 0000 I. 0000 I. 0000 I. 0000

1. 0000 1. 00110 1. 0000 1.0o00 I. 0000 1. 00110

1.0o1}0 1. 0000 1. 0000 1. OOOO 1. O000 1. 0000

I. (10o0 i. 0000 I. 0000 1. 9000 I. 0000 I. 01)00

1. 0000 1. 0000 1. 0000 I. 0(Io0 I. 001}0 I. 0000

O. ,(1985 O. 9987 O. 9989 O. 9991 O. 9992 0. 9993

O. 9661 O. 9684 O. 9706 0. 9726 O. 9745 O. 976,'1

0.7112 0.7175 0.7238 0.7300 0.7361 0.7421

O. 0000 O. 0000 O. 0000 O. 000(I O. 0000 0. 0000

O. 9248 O. 9258 O. 9267 O. 9277 O. 9286 O. 9295

0. 9132 O. 9145 O. 9158 O. 917o O. 9182 O. 9194
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TABLE 6.0-1. (CONCLUDED)

9. I000 9. 2000 9. 3000 9. 4000 9. 5000

O. i. O000 1.0000 1.0000 1.0000 i. OOOO

0. I0 I. O000 1.0000 1.0000 1.0000 i. O000

0_20 I. 0000 i. 0000 I. 0000 I. 0000 I. 0000

0.30 i. 0000 i. 0000 1.0000 i. 0000 I. 0000

0.40 I. 0000 i. 0000 i. 0000 1. 0000 i. 0000

0.50 i. O000 1.0000 1.0000 l. O000 i. O000

O. 60 1. 0000 I. 0000 1. 0000 i. O000 1. 0000

0.70 0.9999 0.9999 0.9999 0.9999 0.9999

0.80 0.9899 0.9907 0.9915 0,9922 0.0928

0.90 0.9019 0.8068 0.81t6 0.8163 0.8209

1. O0 O. OOO0 O. 0000 O. 0000 O. OOO0 O. OOO0

0,9380 0.9387 0. 9393 0.9400 0.9406

9. 6000 9.7000 9. 8000 9. §000 10. 0000

i. O000 1.0000 l. O000 1.0000 1.0000

1.0000 1.0000 |.0000 1.0000 1.0000

I. OOOO I. 0000 i. 0000 I. OOO0 I. 0000

i. O000 1.0000 1.0000 1.0000 1.0000

I. 0000 I. 0000 I. 0000 I. 0000 i. 0000

I. 0000 I. 0000 I. OOO0 I. 0000 I. 0000

1.0000 I. 0000 1. O00O i. O000 I. 0000

1.0000 1.0000 1.0000 1.0000 1.0000

O. 9934 O. 9939 O. 9944 O. 9949 O. 9953

0. 8254 0. 8299 0. 8342 0. 8385 0. 8427

0.0000 0.0000 0.0000 0.0000 0.0000

0.9412 0.94i8 0.9424 0.9430 0.9436

I0, _000 10. 2000 |0. 3000 i0. 4000 I0. 5000 10. 6000 I0. 7000 iO. 8000 I0. 9000 1 i_ 0000

O. I. 0000 I. 0000 I. OOOO i. 0000 I. 0000 I. 0000 I. O000 I. 0000 I. O000 i. 0000

O. I0 I. 0000 I. 0000 I. O00O i. 0000 I. 0000 I. 0000 i. 0000 I. 0000 i. O00O i. 0000

O. 20 I. 0000 I. OOO0 I. OOOO I. O00O i. 0009 I. 0000 I. 0000 I. 0000 J. 0000 I. 0000

O. 30 i. 0000 I. 0000 I. 0000 I. 0000 i. 0000 I. 0000 I. oo00 I. 0000 I. 0000 i. 0000

O. 40 1. 0000 1. 0000 I. 0000 i. 0000 1. 0000 1. 0000 1. 0000 I. 0000 1. 0000 1. 0000

O. 50 I. 0000 I. O000 I. 0000 I. 0000 I. 0000 I. 0000 I. 0000 I. OOO0 I. 0000 I. O00O

O. 60 t. 0000 t. 0000 1. 0000 1. 0000 1. OOOO i. 0000 1. 0000 i. 0000 1. 0000 1. 0000

O. 70 1. 0000 1. 0000 1. 0000 1. OOOO 1. 0000 1. 0000 i. 00o0 1. 0000 1. 0000 1. 0000

O. 80 O. 9957 O. 996 i O. 9964 O. 9967 O. 9970 O. 9973 O. 9975 O. 9977 O. 9979 O. 9981

O. 90 O. 8468 O. 8508 O. 8548 O. 8586 O. 8624 O. 8661 O. _698 O. 8733 0. 6768 O. 8802

1. O0 O. OOOO O. 0000 O. 0000 O. 0000 O. 0000 9. I)000 O. 0000 O. 0000 O. 0000 _1. 0000

_1,t 0. 9441 0. 9447 0.9452 0. 9457 0.94_3 0. 946 _ o. 9473 0. 9478 0. !)482 0.9487
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0.4000 0.4200 0.4400 0.4500

0. 0.0'002 0. 0004 0. 0009 0. 0017

0. I0 0.0002 0.0004 0.0009 0.0017

0.20 0.0002 0.0004 0.0009 0.0016

0.30 0.0002 0.0004 0.0008 0.0015

0.40 0.0001 0.0003 0.0007 0,0013

0.50 O. 0001 0.0003 0.0000 0.0012

0. 60 0. 0001 0. 0002 0. 0005 0. 0009

O. 70 O. O00i O. 0002 O. 0004 O. 0007

O. 80 O. 0001 O. O00i O. 0002 O, 0005

0.90 0.0000 0.0001 0.0001 0.0002

1.00 0.0000 0.0000 0.0000 0.0000

0.4800 0.5000 0.5200 0.5400

0.0030 0.0049 0.0076 0.0113

0.0030 0.0049 0.0075 0.0111

0.0028 0.0047 0.0072 0.0100

0.0026 0.0043 0.0067 0.0098

0.0024 0;0039 0.0000 0.0088

0.0020 _ 0033 0. 0051 0.0O75

0.0016 0.0027 0.0041 0,0061

0.0012 0.0020 0.0031 O. O0_i

0.0008 0.0013 0.0020 0.0030

0.0004 0.0006 0.0010 0.0o15

0.0000 0.0000 0.0000 0.0000

0.6600 0.7000 0.7200 0.7400

0.0838 0.09_5 0.1143

0.0826 0.0971 0.1126

0.0790 0.0929 0,1078

0.0732 0.0861 0.0999

0.0655 0.0770 0.0893

0.0561 0.0660 0.0766

0.0455 0.0535 o. 0621

0.0342 0.0401 0.0466

0.0225 0.0264 0.0306

0. o109 0.0128 0.0149

0.0000 0.0000 0.0000

0.6000 0.6200 0.6400 0.6800

0. 0.0289 0.0373 0.0470 0.058(I 0.0703

0. i0 0.0285 0.0367 0.0463 0.0571 0.0693

0. 20 0.0272 0. 0351 0. 0443 0. 0547 0. 0653

0.30 0.0252 0.0326 0.0410 0.0507 0.0614

0. 40 0.0226 0. 0291 0. 0367 0. 0453 0. 0549

0.50 0.0193 0. O250 0.0315 0.0388 0.0471

0.60 0.0157 0.0202 0.0255 0.0315 0.0382

0.70 0.0|18 0.0132 0.0191 0.0236 0.0286

O. 80 O. 0077 0,0100 O. 0126 O, 0155 0.0188

0.90 0.0038 0.0049 0.0061 0.0076 0.0092

1.00 0.0000 0.0000 0.0000 0.0000 0.0000

0.5600 0.5800

0.0159 0.0218

0.0157 0.0215

0.0150 0.0205

0.0139 0.0190

0.0125 0.0170

0. 0107 0. 0146

0.0087 0. 011_

0. 0065 0. 0089

0.0043 0.0r)58

0.0021 0.0028

0. 0000 t}.0000

O. 7600 O. 7800

O. 1311 O. 14_8

O. 1292 O. 14(;7

O. 1236 O. 1403

O. 1146 0. 1301

0. 1025 0. 1163

0. 0878 0. 0997

0.0712 0.0_09

0.0534 0. 0606

0. (1351 0. 0399

0.0171 0.0194

O. 0000 0. 0o00

0.8000 0.8200 0.8400 0.8600 0.8800

0. 0.1673 0.1866 0. 2064 0. 2268 0.2476

0. 10 0. 1649 0. 1839 0. 2304 0. 2235 0. 2440

0.20 0.1578 0.1759 0.1947 0.2139 0. 2335

0.30 0.1463 0.|631 0.1804 0.1983 0.21(;4

0.40 0.1308 0.1458 0.1614 0.1773 0. In_c

0.50 0.1t21 0.1250 0.1383 0.1520 0.1630

0, 60 0.0909 0. i014 0. 1122 0. 1233 0. 1346

0.70 0.0682 0.0760 0.0841 0,0924 0.1010

0.80 0.0448 0.0500 0.0553 0.0608 0.0664

0.90 0.0218 0.0243 0.0269 0.0295 0.0323

1.00 0.0000 0.0000 0.0000 0,0000 0.0000

1.0000

O. 0.3768

0.|0 0.3714

0.20 0.3555

0.30 0.3296

0.40 0.2949

0.50 0.2529

0.60 0.2053

0.70 0.1540

0.80 0,10t3

0.9O 0.0493

1.00 0.0000

O. 9000 O. 9200 O. 9400 O. 9600 O. 9800

0. 2687 0. 2901 0.3117 o. 3334 0. 3551

0. 2649 0. 2860 0. 3072 0. 3286 0. 3500

0. 2534 0. 2736 0, 2940 0. :1145 0. 3350

O. 2349 O. 2537 O. 2725 O, 2915 0. 3106

O. 2'_01 O. 2269 0, 2431_ O. 200_ O. 2779

0. 1801 0. 1945 0. 2090 0. 2236 0.23_2

0.1401 0. 1578 t). 1696 0. 1_14 0. 1933

0. 1096 0. 1184 O. 1272 O. 1361 +}. 1451

0. 0721 0. (1778 0. 0836 0. O895 0. I}!)54

O. 0350 0. 0378 0. 0407 0. 0435 0. 041;4

O. 0000 O. 0000 O. 0000 O. 000o 0. (I0o0

1.0200 1.0400 1.0600 1.0800 1.1000

0.3984 0.4199 0,4412 0.4(;22 0.4830

0.3927 0.4139 0.4349 0.4557 0.4762

0.3759 0.3962 0,4163 0.4362 0.4559

0.3486 0.3674 0,3862 0.4047 0.4231

0.3119 0.3289 0.3457 0.3624 0.3789

0.2675 0.2821 0.2966 0.3110 (I. 3252

0.2172 0.2290 0.2408 0.2526 0.2642

0.1630 0.1719 0.1808 0.1897 0.1905

0.1072 0.1t31 0.1190 0.1248 0.1306

0.0521 0.0550 0.0579 0.0607 0.0636

0.0000 0.0000 0,0000 0.0000 0.0000

1. 1200 1.14o0 1.16o0 I. ISO0

0.5035 0.5236 I).5433 0.5627

0.4964 0.5162 0.5357 0.5548

0.4753 0. 4944 0. 5132 (}. 5316

0.4412 0.4590 0.4766 0.4038

0.3952 0.4114 0.4272 0.4429

0.3394 0.3533 0.3671 0.3807

0.2758 0.2872 0.2986 0.3098

0. 2072 0.2159 0,2245 0.2330

0.1364 0.1421 0.1478 0.1535

0. 0654 0. 0(;92 0. 0720 0. 0747
I

O. 0000 O. OOOO i O. 0000 O. 0000

I
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TABLE 6.0-2. (CONTINUED)

t. 2000 1. 2200 1. 2400 1. 2600 1. 2800 1. 300 1. 3300 1. 3400 1. 3600 t. 3800

O. O. 5816 O. 6001 O. 6181 O. 6356 O. 6527 O. 6692 O. 6853 O. 7008 O. 7158 O. 7303

O. 10 O. 6735 O. 5918 O. 6096 O. 6270 O. 6439 O. 6603 O. 6762 O. 69t6 O. 7066 O. 7210

O. lO 0.5497 0.5673 0.5845 0.6014 0.6178 0.6337 0.6492 0,6643 0.6789 0.6931

O. 30 O. 5108 O. 5274 O. 5436 O. 5595 O. 5751 O. 5902 O. 6050 O. 6194 O. 6335 O. 6471
O. 40 0. 4583 0. 4734 0. 4882 0. 5028 0. 5171 0. 531 ! 0. 5448 0. 5582 0. 5713 0. 5841

O. 50 O. 3941 O. 4073 O. 4204 O. 4332 O. 4458 O. 4582 O. 4703 O. 4823 O. 4941 O. 5056

O. 00 O. 3208 O. 3318 O. 3428 O. 3532 O. 3638 O. 3741 O. 3844 O. 3945 O. 4044 O. 4142

0. 70 O. 2414 0. 2497 0. 2580 0. 2662 0. 2743 0. 2823 0. 2902 0. 2980 0. 3058 0. 3 t35

O. 80 O. 1591 O. 1647 O. 1702 Oo 1756 O. 1811 O. 1864 O. 1915 O. 1971 O. 2023 O. 2075

0.90 0.0775 0.0802 0.0829 0.0856 0.0883 0.0909 0.0935 0.0962 0.0988 0. 1013

i. O0 0.0000 0. 0000 0. 0000 O. 0000 0.00OO 0. 0000 0.0000 0.0000 0.0000 0.0000

1.4000 I. 4200 i. 4400 1. 4600 I. 4800 I. 500 i.5200 I. 5400 i. 5600 I. 5800

0. 0. 7443 0. 7578 0. 7708 0. 7833 0. 7952 0. 8067 0. 8177 0. 8282 0. 8382 0. 84700
0. t0 0. 7349 0. 7484 0.76t3 0. 7738 0. 7857 0. 7972 0. 8082 0. 8188 0. 8289 0. 83868

0. 20 0. 7068 0. 7201 0. 7329 0, 7453 0. 7572 0. 7687 0. 7798 0. 7905 0. 8007 0. 8106

O. 30 0. 6604 0. 6733 0. 6858 0. 6980 0. 7097 0. 7212 0. 7322 0. 7429 0. 7533 0. 7633

0. 40 0. 5966 0. 6088 0. 6207 0. 6323 0. 6437 0. 6547 0. 6655 0. 6760 0. 6863 0. 6962

0, 50 0.5169 0. 5280 0. 5389 0. 5496 0. 560 t 0. 5704 0. 5805 0. 5905 0. 6002 0. 6097

0. 60 0. 4239 0. 4335 0. 4429 0. 4522 0. 46 i 3 0. 4704 0. 4793 0. 4881 0. 4967 0. 5053

0. 70 O. 3210 0. 3286 0. 3360 0. 3434 0. 3507 0. 3579 0. 3651 0. 3722 0. 3793 0. 3862

0.80 0. 2127 0. 2178 C. 2229 0. 2280 0. 2330 0. 2380 0. 2430 0. 2480 0. 2529 0. 2578

0.90 0.1039 0.1065 0.1090 0,1116 0.1141 0.1166 0.1191 0.12/6 0.1240 0.1265

I. O0 O. 0000 O. O00O O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000

1.6000 1.6200 t. 6400 1,6600 1.6800 1.700 1.7200 1.7400 1.7600 1.7600

0, 0. 8570 0. 8657 0. 8740 0. 8818 0. 8893 0. 8964 0. 9031 0. 9095 0. 9155 0, 9212

0.10 0. 8478 0. 5566 0. 8650 0. 8730 0. 8806 0. 8879 0. 8947 0. 9013 0. 9075 0. 9133

0. 20 0. 8200 0. 829! 0. 8378 0. 8461 0. 8541 0. 86|7 0. 8690 0. 8760 0. 8827 0. 8890

0. 30 0. 7730 0. 7823 0. 7914 0. 8001 0. 8085 0. 8166 0. 8244 0. 8320 0. 8393 0. 8463
0. 40 0. 7060 0. 7154 0. 7248 O. 7336 0. 7423 0. 7508 0. 7590 0. 7670 0. 7748 .0. 7824

0.50 0.6191 0.6282 0.6372 0.6460 0.6547 0.6631 0.6714 0.6796 0.6876 0.6954

0.60 0. 5137 0. 5220 0. 5302 0. 5383 O. 5463 0. 5542 0. 5620 0. 5697 0. 5772 0. 5847

0. 70 0. 593t O. 4000 O. 4068 0. 4135 0. 4202 0. 4268 0. 4334 0. 4399 0. 4464 0. 4528

0.80 0. 2626 0. 2674 0. 2723 0. 2770 0. 2818 0. 2865 0. 2913 0. 2960 0. 3006 0. 3053

0o 90 0. 1290 O. 1314 0. 1339 0. 1363 0. 1387 0. 1412 0. 1436 0. 1460 0. 1484 0. 1506

1. O0 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000

1. 8000 1. 8200 1. 8400 t. 8600 1. 8800 1. 9000 1. 9200 1. 9400 1. 9600 t. 9800

0. 0. 9265 0. 9316 0. 9363 0. 9408 0. 9450 0. 9489 0. 9527 0. 9561 0. 9594 0. 9624

O. 10 O. 9t89 O. 9241 O. 9291 O. 9337 O. 9361 O. 9423 O. 9462 O. 9499 O. 9534 O. 9566

O. 20 0, 6951 0. 9006 O. 9063 0.9116 O. 916_ 0. 9213 0, 9258 O. 9301 0. 9341 0. 9380

0.50 0. 8530 0. 8595 0. 8657 0. 8717 0. 8775 0. 8830 O. 8884 0. 8935 0. 8984 0. 9031

0.40 0,7696 0,7969 0.8039 0.8106 0.8t72 0,8236 0,8297 0,8357 0.6416 0.8472

0.50 0.7030 0.7105 0.7179 0.7251 0.7322 0. 739| 0.7458 0.7525 0.7690 0.7653
0.60 0.6921 0.5994 0.6066 0.6t36 0.6206 0.6275 0.6343 0.64t0 0.6476 0.6542

0.70 0.4592 0.4655 0.4717 O. 4779 0.484t 0.4903 0.4963 0.5023 0.5082 0.5141

O. 80 O. 3099 O. 3145 O. 3191 O. 3237 O. 3282 O. 3328 O. 3373 O. 34t8 O. 3463 O, 3507

0. 90 0.1532 0. /556 0. 1580 0. 1604 0. 1628 0. 1651 0. 1675 0. 1699 0.1722 0. t746

i. O0 O. 0000 O. 0000 O. 0000 O. 0000 O. OOOO O. 0000 O. 0000 O. 0000 O. 0000 O. 0000
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2. 0000 2. 0200 2. 0400 _0600 2. 0800 2, 1000 2. 1200 2. 1400 2. 1600 2. 1800

0. 0.9653 0.9679 0.9704 0.9727 0,9748 0.9766 0,9787 '0,9604 0.9820 0,9835

0.10 0.9597 0.9625 0.9652 0.9677 O, 970J O. 9723 0.9743 0,9762 O. 9780 0.9797

O. 20 0.9416 0,9451 O. 9484 0.9515 0.9544 O. 9572 O. 9598 O. 9623 O. 9646 0.9669

0.30 0,9077 0,9120 0.0t62 0°9202 0°9240 0.9276 0.9311 0.9345 0.9377 0.9408

0.40 0,8527 0.8580 0.8632 0.8682 0.8730 0.8777 0.8822 0.6866 0.8909 0.8950

0.50 0.7716 0.7776 0.7836 0.7894 0,7951 0.8007 0.6062 0.81t5 0.6i67 0.82t8

0.80 0,6606 0.6669 0.6732 0.6794 0.6654 0.6914 0.6973 0.7032 0.7089 0.7146

0.70 0.5200 0.5258 0.5316 0.5373 0.5430 0.5486 0,5542 0.5597 0.5652 0.5707

O. 80 O. 3552 O. 3596 O, 3640 O, 3684 O. 3728 O. 3771 O. 3815 O. 3858 O. 3901 O, 3944

0.90 0. t769 0.1793 0.1616 0.1840 0,1663 0.1987 O. 19tO 0.1933 0.1956 0.1980

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0000 0.0000 0.0000

2.2000 2.2200 2.2400 2.2600 2, 2800 2.3000 2.3200 2.3400 2.3600 2.3800

O. O. 9649 O. 966i 0. 9873 _'9884 O. 9894 O. 9903 O, 9912 O. 9920 O. 9927 O. 9933

O. t0 - O. 98i2 O. 9827 O. 9840 O. 9853 O, 9864 O, 9875 O. 9885 O. 9894 O. 9903 O. 9911

0.20 0.9690 0.9709 0.9728 0.9745 0.9762 0.9777 0,9792 0.9805 0.9816 0.9830

O. 30 0.9437 0.9466 O. 9492 0.95t8 O. 9543 O, 9566 O. 9588 0.9610 0.9630 O. 9650

O. 40 0.6990 0,9029 0.9066 0,9102 0,9137 O. 9171 0.9204 0,9235 0.9266 0.9295

0.50 0.8268 O, 8317 0.8365 O. 84tl O. 8457 O. 8501 O. 8544 O. 6587 0,6628 O. 8669

0.60 0.7202 0,7256 0.7311 0.7364 0,7416 0.7468 0.7519 0.7569 0.7619 0.7667

O. 70 O. 5760 O. 5814 O. 5867 O. 5920 O. 5972 O. 6023 O. 6075 O. 6125 O. 6176 O. 6226

0.80 0.3986 0.4029 0.407t 0.4113 0.4t55 0.4t97 0.4239 0.4260 0.4321 0.4362

0.90 0.2003 0.2026 0.2049 0.2072 0.2095 0.2118 0.2141 0.2164 0.2187 0.2210

1.00 0.0000 0.0000 0.0000 0.0000 0,0000 0.0000 0.0000 0.0000 0.0000 0.0000

2.4000 2.4200 2.4400 2.4600 2.4600 2.5000 2.5200 2.5400 2.5600 2.5800

0. 9939 O. 9945 0. 9950 O, 9955 0, 9959 _), 9963 O. 9966 O. 9970 O. 9972 O. 9975

0.10 0.9918 0.9925 0.9931 0,9937 0,9942 0,9947 0,9952 0.9956 0.9960 0.9963

O. 20 0.9842 0,9653 0.9863 0.9672 0.9681 0.9889 0.9897 0.9904 0.9911 0.9917

0.30 0.9668 0.9686 0.9703 0,9718 0,9734 0.9748 0.9762 0.9775 0.9787 0.9799

0.40 0.9324 0.9351 0.9377 0.9403 0°9428 0.9451 0.9474 0.9496 0.9517 0.9538

0.50 0,8709 0.8746 0.8784 0.8820 0,8856 0.8891 0.8925 0.8958 0.9990 0.9021

0.60 0.7715 0.7762 0,7809 0.7854 O. 7899 0.7943 0.7987 0. 8029 0.8072 0.8113

0,70 0,6275 0,6324 0.6373 O. 6421 0°6468 0.6515 0.6562 0.6608 0.6654 O. 6700

0. 80 0. 4403 0. 4444 0. 4485 0. 4525 0. 4565 0. 4605 0, 4645 0. 4685 0. 4724 0. 4764

0,90 0. 2233 O. 2256 O, 2279 O. 2301 O. 2324 0. 2347 O. 2370 O. 2392 0. 2415 0. 2437

i, O0 0.0000 0.0000 0,0000 0.0000 0.0000 0,0000 0.0000 0.0000 0.0000 0.0000

2. 6000 2. 6200 _ 6400 2. 6600 2. 6800 2.7000 2, 7200 _ 7400 _7600 2, 7800

O. 0.9978 0.9980 0.9982 0.9984 0.9985 0.9967 0.9986 0.9989 0.999t 0.9992

0. t0 0.9967 0,9970 0.9972 0.9975 0.9977 0.9979 0.9981 0.9983 0.9984 0.9986

0.20 0.9923 0.9928 0.9934 0.9938 0.9943 0°9947 0.9951 0.9955 0,9958 0.9961

0.30 0.9810 0.9621 0.9831 0.9841 0.9850 0.9859 0.9867 0.9875 0.9882 0.9689

O, 40 O. 9558 O. 9577 O. 9595 O. 9613 O. 9629 O. 9646 O. 9661 O. 9676 O. 9691 O. 9705

O, 50 O. 9052 O. 9082 O. 9111 O. 9139 O. 9166 O, 9193 O, 9219 O, 9244 O. 9269 O, 9293

0.60 O. 9|54 0.8193 0.6233 0.8271 0.8309 0.8346 O. 8383 O. 8419 0.8454 O. 8489

0. 70 O, 6745 O, 6789 0.6633 O, 6677 O. 6920 O. 6963 O. 7006 0.7048 O, 7089 O. 7131

0.80 0.4803 0.4842 0,468t 0.4919 0.4956 0.4996 0.5034 0.5072 0.5t10 0.5148

O. 90 O. 2460 O. 2483 O. 2505 O. 2528 O. 2550 O. 2572 O. 2595 O. 2617 0.2639 O. 2662

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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TABLE 6.0-2. (CONTINUED)

2. 8600 2. 8800 2. 9000 2. 9200 2. 9400 2. 9600 2. 9800
2. 80O0 2. 8200 2. 640O

0. 0. 9993 0. 9993 0. 9994 0. 9995 0. 9995 0. 9996 0. 9996 9. 9997 0. 9997 0. 9997

0. 10 0. 9987 0. 9988 0. 9990 0. 9991 0. 9991 0. 9992 0. 9993 0. 9994 0. 9994 0. 9995

0. 20 0. 9964 0. 9967 0. 9969 0. 9972 0. 9974 0. 9976 0. 9978 0. 9979 0. 998t 0. 9983

0. 30 0. 9895 0. 9902 0. 994)8 0. 9913 0. 9918 0. 9923 0. 9928 0. 9932 0. 9937 0. 9941

0. 40 0. 9718 0. 9731 0. 9743 0. 9755 0. 9766 0. 9777 0. 9787 0. 9797 0. 9807 0. 9816

0. 50 0. 93t0 0. 9336 0. 9360 0. 9382 0. 9402 0. 9423 0. 9442 0. 946 J 0. 9480 0. 9497

0. 60 0. 8523 0. 8557 0. 8589 0. 8622 0. 8653 0. 8684 0. 8715 0. 8745 0. 8774 0. 8803

0.70 0.7171 0.7212 0.7251 0.7291 0.7330 0.7369 0.7407 0.7445 0.7482 0.7519
0. 80 0. 5t85 O. 5223 0. 5260 0. 5297 0. 5333 0. 5370 0. 5406 0. 5442 0. 5478 0. 5514

0. 90 0. 2684 0. 2706 0. 2728 0. 2751 0. 2773 0. 2795 0. 2817 0. 2839 0. 2861 0. 2883

I.O0 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O.0000 O. 0000 O. 0000 O.0000 O,0000

3. 5000 3.6000 3. 7000 3.8000 3. 9000
3. 0000 3.1000 3. 2000 3. 3000 3. 4000

O. 0.9998 0.9999 0.9999 0.9999 1.0000 1. ooo0 1.0000 i. O000 1.0000 1.0000

0. t0 0.9998 0.9997 0.9998 0.9999 0.9999 1.0000 1.0000 l. OOOO |.0000 1.0000
O. 20 O. 9984 O. 9990 O. 9993 O. 9996 O. 9997 O. 9998 O. 9999 O. 9999 1. 0000 1. 0000

0. 30 0. 9944 0.9960 0. 9971 0. 9980 0. 9986 0. 9990 0. 9993 0. 9995 0. 9997 0. 9998

0.40 0.9825 0.9863 0.9894 0.9918 0.9937 0.9952 0.9964 0.9973 0.9980 0.9985

0. 50 0. 9515 0. 9594 0. 9662 0. 9720 0. 9769 0. 9810 0. 9844 0. 9873 0. 9897 0. 9917

0.60 0.8831 0.8965 0.9086 0.9194 0.9292 0.9380 0.9458 0.9528 0.9590 0. 9645

0.70 0.7556 0.7733 0.790t 0.8058 0.8207 0. 8347 0.8478 0.8001 0.8716 0.8823

0. 60 0.5550 0. 5726 0. 5897 0.6064 0.6228 0.6384 0.6538 0.0687 0.6832 0.8972

0.90 0. 2905 0. 30t5 0. 3123 0. 323t 0. 3338 0. 3445 0. 3550 0. 3655 0. 3759 0. 3862

1.00 0.0000 0.0000 0.0000 0.0000 0.000O 0.0000 0.0000 0.0000 0.0000 0.0000

4.0000 4.1000 4. 2000 4.3000 4.4000 4.5000 4.6000 4.7000 4.8000 4.9000

O. 1.0000 1.0000 1.0000 l. OOOO 1.0o00 1.0000 1.0000 1.0000 1.o000 1.0000

0,10 t. 0000 1.0000 1.0000 i. O000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000o
0.20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00o0 1.0000

0.30 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0oo0 1.0ooo

0.40 0.9989 0.9992 0.9994 0.9996 0.9997 0.9998 0.9999 0.9999 0.9999 i.0000

0.50 0.9933 0.9947 0.9958 0.9967 0.9973 0.9979 0.9984 0.9987 0.9990 0.9992

0.60 0.9693 0.9736 0.9773 0.9806 0.9834 0.9859 0. 9880 0.9899 0.9914 0.9928

0.70 0.8923 0.9016 0.9t03 0.9t83 0.9257 0.9325 0.9388 0.9446 0.9500 0.9549

0. 60 0. 7108 0. 7240 0. 7367 0. 7490 0. 7609 0. 7724 0. 7834 0. 7941 0. 8044 0. 8143
0.90 O. 3964 0.4066 O. 4166 O. 4266 O. 4366 O. 4463 O. 4560 0.4656 O. 4751 O. 4846

1. O0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5.0000 5.1000 5.2000 5.3000 5.4000 5.5000 5.6000 5.7000 5.8000 5.9000

O. t, 0000 t. 0000 t. 0000 t. 0000 J. 0000 i. 0000 |. 0000 1. 0000 t.0000 1. 0000

0.10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

O. 30 I. 0000 I. 0000 I.0000 I.0000 I. 0000 I. 0000 I.0000 I.0000 I. 0000 i.0000

0.40 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 i.O000

O. 50 O. 9994 O. 9996 O. 9997 0,9997 O, 9998 O. 9998 O. 9999 O. 9999 1, 0000 1. 0000

0.60 0. 9939 0.9949 0. 9958 0.9965 0,9971 0. 9976 0.9980 0. 9984 0. 9986 0. 9989

0,70 0. 9594 0.9635 0.9672 0.9706 0.9737 0. 9765 0.9790 0. 9813 0.9834 0. 9853
0.80 0.8238 0.8329 0.8416 0.8501 0.858i 0.8658 0.8732 0.8803 0.8870 0.8934

0,90 0.4939 0.5032 0.5t23 0.52t4 0.5303 0.5392 0.5480 0.5566 0.5662 0.5737

1.00 0.0000 _ 0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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TABLE 6.0-2. (CONTINUED)

F

o.
o. 1o
o.lo
o.lo
o.41o
o.6o
0.so
o.lo
O.90
O.0O
L99

5,0000 S. I000

i, OOO0 1. O00O
|. 0000 1.0000 t. OOOO 1. OOOO
1.0000 |. 0000 1. O00O 1.000o
1.0099 1.0000 1.0000 1. OOC)O
1.0_@ t. 0000 1. 00040 1. O000
i. 00@0 i. 0000 I. 0000 I. 0000
O. 11901 O. 9993 0, t994 0, 9996
O. 98?0 O. 9864 O. 9998 O. 9910
0. 8994 0. 9054 0. 9t l0 0, 9183
O.11010 O.5_103 O.6986 O.41065
0,O12O0 o. oooo O. OO9O O. 0000

4. 3000 It,.3000 9. 4000 6. 5000 4. 0000

.....
t. 0000 1. 0900 i. 00._., 1.0_00 1. 0000

1. oooo

G. 7000

t. 0000
1. O00O |. 0000 _. 0000
t. O000 I. 0000 L O00O i. 0900
1. 0000 |. 0000 1. 0000 1. O00O
1. O000 |. 0000 1. 0000 1. O000
L0000 i. 0000 I. 0000 i0000
0, 091M 0. 9997 O, 9998 0. 9998
O.9921 O.9930 O.9939 O. 9946
O.9213 O.9_Jl O.9:107 O.9350
0.01M 0. 0224 O. I_301 0.4378
0. O000 @.0000 O.0000 O.0000

8. 800¢ c+.9000

1. uOOO t. oot_u

1. _-ooo i. oooo
1. _,000 1. 0009
1. oooo i. o_oo
I. 0000 1. 0000
I. oooo i. oooo
0. 9999 O. 9999

O. 9953 O. 995_
O. 0390 O.942_
O.9453 O.662_
O. O000 O. 0000

0.
0.io
0.m
0.N
o.4o
0.99
0.99
0. ?o
0.11
41.1o
s, ol

7.0000 7. iO00 7.JOOG 7.3000 7.4000

I. 0000
i. 0000
1. 0000
I. 0000
t. 0000
1.0400
0, M199
0.1144
0.1411
0. IMl01
0.OOOO

1.00o0 i. 0000 i. 0000 i. O0_
LO000 i. 0000 I. 0000 1.0000
LO000 1. OOQO LO000 LOO00

1.0000 i. 0000 1. OeO0 I.O00e
I. 0000 i. 0000 I. 0000 i. 00@@
1.0000 i. 0000 i. 0000 i. 0000
O. 19111 1. oooo 1. oooo 1. oooo
O. 9999 9. MY/$ 0. 91177 O.MN;O
0.9600 9. 993;I 9.8664 0.9_
0. 44174 O. _M O.0,,10 O.SSM
0.OOOO 0.oooo 0.oooo o. ooo0

7. 6000 7. 8000 7. 7000 7. 8000 7. 9000

t. 0000 1. 0000 i. O000 1.0000 i. 0000

I. 0000 i. 0<300 i. 0000 J. 0000 f, 0000
1. 0000 LO000 LEO00 I. 0000 1. 0000
1._00 1.0000 I. 0000 i. 0000 1.0000
|. 0000 I.000_9 I. 0000 I.0000 1.0000

1.0400 1.0000 1.0000 i. 0000 1.0000
1.9940 J, 0000 1.0000 1. 0000 i. 0000
0.14M10 O.9966 O.99_/ 0. 9989 O,9990
0.141/ 0. MM 0. MTi 0. M93 O.W/IS
0.lllJ 0.7021 0.7087 0. 718_ 0.7017
0.0010 0. 0000 0.0000 0. 000_ O.0000

I.
0. lO
0.1e
0.10
O.4O
0.80
0.1@
0.?0
O, 99
O.99

1.00

,.oou _.i_o ,.,o_ ,.,990',.,me+
L,

i.omo /.moo i. 990b /.moo i omo
1.0400 l.O_O l.O_O 1.0000 1.0000

i, 0000 i.0000 1.0099 t. 0000 I._
1.99ee t. 0000 L0000 t. 0000 1. M99
1,0000 I.0000 t.O_O t, 0000 i. 0010

i, 0000 I. 0000 1. 0000 LO000 i. 0000
i.0000 i. 004_ 1.0004) I. 0000 i.0_

O. Mill O. II_ O. 90MI O. 9996 O. _ 0.
0,,,lffM, 0.9764 0.9771 0. IrTSg O.IN4 0.M|9
0. _990 0.7_ 0,7404 0,7464 0,7_ O.7"dlli
0.OOOO 0.OOOO 0. OeO0 0.OOOO

LIMe S.U0_ 8.'/000 S.8000 S.99_0

L@_O I.@@_ i. 00_0 t.M00 1.0000

l.eme i. ooeo _. ooee i+ ,o%_ "_.oooo
i._ i._o@ I.ooo_,_ t. 9_O 1. oooo
LMM 1.0@04 1. _o00@ i. 0099 LO000

LOM0 I, 0000 i. 0000 1.00_ 1. O000
1.9990 i. 0000 1. 0000 1.0000 1. 0000
1.0440 t. _'..,000 L0000 1. 0000 LOO00

O.999"/ 0. 9997 0. 9998 0. 9998

O. 9832 O. 9846 O.9897 O. 9868
O.7430 O.7008 0. 'rT_o O. 7806

0.11040 0.0000 O. 0000 O. 0000 0. 0000 0. 0000

0.ooo¢ 0.t_oo

0. I._ i.0_#0 i,0@0_

0.i0 i.9900 I.00_¢ J.9900

8,99 i._ 1.9900 1.0400

0.4_ /.ram l.eOm /.oom
I,M. l.m L_99 Loo_
@,_ Lifo 1,1441o I, OoM

t, t4
_,N
LN

s. SOO0 0. sooo 11.4OO0

i. 0000 i._
i. 0000 /.le00
1.0040 1.9910
1.0_@ 1.99_
1.0044 1.1404
Le000 LMM
I. 0000 /,MOO

LN_ 0._ 0. 990t 0.1m_ 0.1_e
0.1_I _I,99M 0. I_IM 0.12_ 0.1111
9. T_M 0. 79/1 6. ?Ml 0. oolo 0. IoN
0.MM 0._99 _._M 0. oooe O.MM

_._ 9.(1000 9.7000 9. 8000 0.9000

l.oem i. 0000 Loooo /.moo i oooo
i. 0099 i. ooeo i oooo i. 0000 i. oooo
1.0990 i. 0000 i. 0000 t. 9900 t, 0000
I._ 1. oooe L0099 i, oeoo t. oooo
l.mm I. oooe Loom 1,99_ i. oooo
LION LOOm _, oooo I. oooo /.moo
L_ _._ I. oeoo i, oooe 1.oo<)o
S.99N l.m_ t. oooo I.0099 i.0000
I,,_ 0.NN 0.90,1|1 0._ 0.99_
41.IIII 0. 9/19 O. 9J99 o. IIMI o. lJl_
0. 0990 o.oo99 o.oo43o o. 0000 o.oo_
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TABLE 6.0-2. (CONCLUDED)

0.

0. t0

O. 20
0.30

O. 40

O. 50

0.00

O. 70

o. 80

O. 90

1. O0

10. 0000

1.0000

1.0000

1.0000

1.0000
1.0000

1.0000
1.0000

1.00oo

0.9948

0.8341

0.0000

I0. I000 10.2000 10.3000 10.4000 10.5000 I0.8000 10.7000 I I0.8000 [ 10.90o0

I
i. 0000 i.0000 I.0000 i. 0000 I. 0000 1.0000 1. 0000 1.0000 I.0000

I. 0000 i. 0000 I.0000 I. 0000 I. 0000 I. 0000 I. 0000 I.0060 I.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 l. O000 1.0000 1.0000

1.0000 1.0000 1.0000 t.0000 1.0000 1.0000 1.0000 1. o000 1. o0_0

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000o

I. 0000 1.0000 I.0000 1.0000 1.0000 1.0000 1.0000 I.0000 i.0000

i. 0000 I. 0000 1.0000 I. 0000 I. 0000 I. 0oo0 I.O00e I.0000 1.0000

1.00o0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. o00o 1. i_000

o. 9952 o.9956 0. 9960 o. 9964 0. 9967 o. 9970 0. 9972 o. 9975 o. 9977

0. 8385 0.8427 0.8469 0.8510 o, 8549 O. 8588 O. 8627 O. 8664 o. 87oj

0.0000 0.0000 0.0000 0.000_ 0.0000 0.0000 0.0000 0.0000 _ U. O000

I
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0.4000 0.4200 0.4400 0.4800 0.4800 0.5000 0.5200 0.5400 0.5600 O. 5800

O. 0.0001 0.0002 0.0005 0.0009 0.0015 0.0025 0.0038 0.0056 0.0080 0.0109

0.10 0.0001 0.0002 0.0005 0.0009 0.0015 0.0024 0.0038 0.0056 0.0079 0.0108

0.20 0.0001 0.0002 0.0004 0.0009 0.0015 0.0024 0.0037 0.0055 0.0077 0.0106

0.30 0.0001 0.0002 0.0004 0.0008 0,0014 0.0023 0,0036 0.0053 0.0075 0.0102

0.40 0.0001 0.0002 0.0004 0.0008 0.0013 0.0022 0.0034 0.0050 0.0071 0.0097

0.50 0.0001 0.0002 0.0004 0.0007 0.0013 0.0020 0.0032 0.0047 0.0066 0.0090

0.60 0.0001 0.0002 0.0003 0.0007 0.0011 0.0019 0.0029 0.0043 0.0061 0.0063

0.70 0.0001 0.0002 0.0003 0.0000 0.0010 0.0017 0.0026 0.0039 0.0055 0.0075

0.60 0.0001 0.0001 0.0003 0.0005 0.0009 0.0015 0.0023 0.0034 0.0048 0.0066

0.90 0.0000 0.0001 0.0002 0.0004 0.0008 0.0013 0.0020 0.0029 0.0041 0.0056

1.00 0.0000 0.0001 0.0002 0.0004 0.0007 0.0011 0.0016 0.0024 0.0034 0.0047

O. 6000 0.6200 O. 6400 O. 6600 O. 6800 O. 7000 O. 7200 O. 7400 O. 7600 0.7800

0, 0.0144 0.0186 0.0235 0.0200 0.0351 0.0419 0.0492 0.0571 0.0655 0.0744

0. t0 0.0143 0.0185 0.0233 0,0288 0.0349 0.0416 0.0489 0.0567 0.0651 O, 0739

0.20 0.0140 0.0181 0.0228 0.0282 0.0341 0.0407 0.0478 0.0555 0.0637 0.0723

0.30 0.0135 0.0174 0.0220 0.¢)271 0.0329 0.0392 0.0461 0,0535 0.0814 0.0997

0.40 0.0128 0.0166 0.0209 0.0258 0.0312 0.0372 0.0438 0.0508 0.0582 0.0661

O. 50 O. 0120 O. 0J55 0.1)195 O. 0211 0. 0292 0.0348 O. 0409 O. 0474 O. 0544 O. 0617

0.60 0.0110 0.0142 0.0179 0.0221 0.0267 0.0319 0.0375 0.0435 0.0499 0.0566

O. 70 O. 0099 O. 0128 Oo 0181 O. 0199 O. 0241 O. 0287 O. 0337 O, 0392 Oo 0449 O. 0510

0. 80 0. 0087 0. 0112 0. 0142 O. 0175 0. 0212 0. 0253 0. 0297 0. 0345 0.0396 0.0449

O. 90 O. 0075 O, 0097 0.0122 0.0150 Oo 0182 O. 0217 0.0255 O, 0296 O. 0340 O. 0386

t.00 0.0062 0.0080 0.0101 0.0125 0.0152 O. O1RI 0.0213 0,0247 0.0289 0.0321

0.8000 0.8200 0.8400 0.8600 0,8800 0.9000 0.9200 0,9400 0.9600 0.9800

0. 0.0837 0.0933 0.1032 0.1134 0.1238 0.1344 0.1451 0.1559 0.1667 0.1776

0. I0 0.0831 0.0926 0.1025 0.1126 0.1229 0.1334 0.]440 0.1547 0.1655 0.1763

0, 20 0.0813 0.0906 0.1002 0.1101 0.1203 (1.1305 0.1409 0,1514 0.1619 0.1725

0.30 0°0783 0.0873 0.0966 0.1062 0.1159 0.1258 0,1359 0,1460 0,1561 0.1663

0,40 0.0749 0.0829 0.0917 0.1008 0.1100 0.1194 0.1290 0.1386 0.1482 0,1579

0.50 0.0694 0.0774 0._56 0.0941 O. 1027 0.1115 0.1204 0,1294 0.1384 O. 1475

0.60 0.0637 0.0710 0.0786 0.0863 0.0943 0.1023 0.1105 0.1187 0.1270 0.1353

0.70 0.0573 0.0639 0.0707 0.0777 0.0848 0.0921 0.0995 0.1069 0.1t43 0.1218

0.80 0.0505 0.0563 0.0623 0.0684 0.0747 0.0811 0.0876 _ 0941 0.1007 0.1073

0.90 0.0434 0.0483 0.0535 0.0588 0.0642 0.0697 0.0752 0,0908 0.0865 0.0921

1. O0 O. 0301 O. 0403 O. 0446 O. 0490 O. 0535 O. 0580 0.0627 O. 0673 0.0721 O. 0768

1. 0000 1. 0200 1. 0400 1. 0600 1. 0900 1. 1000 1. 1200 1. 1400 1. JOOO 1. 1900

O, 0.1884 0.1992 O. 2100 O. 2206 O. 2311 O. 2415 O. 2517 O, 2618 O. 2717 O. 20t3

0°10 0.1871 0.1978 0.2085 9.2190 0.2295 0.2398 0.2500 0,2600 O. 2698 0.2794

0.20 O, 1831 O. 1936 O. 2040 O. 2144 O. 2246 O. 2347 O. 2447 0.2545 0.2641 0.2735

0.30 0.1765 0. i866 0. i967 0.2067 0.2166 O. 2264 0.2360 0.2455 0.2549 0.2640

O. 40 0.1675 0.1772 0.1868 0.1963 O. 2057 O. 2150 O. 2242 O. 2332 0.2422 O. 2509

O. 50 O. 150 O. 1655 O. 1745 O. 1834 O. 1922 O, 2009 O. 2095 O° 2180 O. 2204 O. 2346

O. 6C 0.143, O. t519 0,1602 0.1683 0.1765 0.1845 0.1924 O, 2003 0.2080 O. 2155

O. 70 O,_?)J O. 1368 O. 1442 O, 1516 0.1589 O. t662 O. 1733 O. t804 O. t874 O. 1943

O. flO 0.2139 O. 1205 O. 1270 O. 1335 O. 1400 O. 1464 0. 1528 O. 1590 0.1652 O. 1713

0.90 O. 0978 0.1035 0,1091 0.1147 0.1203 0.1258 O. 1313 O. 1367 O. 1420 0.1472

1. O0 O. 0815 O. 0862 O. 0909 O. 0956 O. 1002 O. t048 O. 1094 O, 1139 O. tt83 O. 1277
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TABLE 6.0-3. (CONTINUED)

I. 2000 i. 2200 I. 2400 I. 2600 I. 2800 I.3000 i. 3200 i. 3400 1.3600 i.3800

O. 0.2905 0.3009 0.3090 0.3179 0.3263 0.3346 0.3426 0.3504 0.3579 0.3652

0.10 O. 2888 0.2980 0.3069 0.3157 0.3241 0.3324 0.3404 0.3481 0.3556 0.3628

0.20 O. 2828 O. 29i8 0.3006 0.3092 0.3176 0.3257 0.3336 0.3412 0.3487 0.3558

0. 30 0.2729 0. 2817 0. 2903 0. 2986 0. 3068 0. 3147 0, 3224 0. 3299 0. 3372 0. 3443

0.40 0. 2595 0. 2679 0.2761 0. 2841 0. 2920 0. 2996 0. 3071 0. 3144 0. 32t4 0. 3283

0.50 0° 2427 0. 2507 0. 2584 O, 2660 O. 2735 0.2807 0. 2878 O. 2948 0. 30t5 0. 3081

0.60 0.223t 0.2305 0.2377 0.3447 0.25t7 0.2585 0. 2651 0.2716 0.2760 0. 2842
0°70 0.201t 0.2078 0.2144 0,2208 0.2271 0.2333 0.2394 0.2454 0.2512 0.2570

0. 80 0. t774 0. 1833 0. 189t 0. 1948 O. 2005 0. 2060 0.2i14 0. 2168 0. 2220 0. 277t

0. 90 0. 1524 0.1576 0.1626 0,1675 0.1724 0.1772 0. 18t9 0. 1865 0.1911 0.1955

1.00 0,1270 0.13|8 0.1355 0.1397 0,1437 0.1477 0. t517 0.1555 0.1593 0.1631

t. 4000 1. 4200 1. 4400 1. 4600 1. 4800 1. 5000 1. 5200 1. 5400 1. 5600 1. 5800

0. 0.3722 0.5789 0,3854 0.3916 0.3976 0.4033 0. 4088 0.4141 0.4191 0.4239

0.10 0.3698 0.3765 0.3530 0.3993 0.3952 0.40t0 0.4065 0.4117 0.4168 0.4216

0.20 0, 3628 0.3695 0. 3759 0. 3821 O. 3881 0. 3939 0. 3994 0. 4047 0. 4098 0. 4146

0.30 0.5611 0.3577 0.3641 0.3703 0.3762 0.3820 0.3875 0.3928 0.3980 0.4029

0,40 0. 3349 0. 3414 0. 3477 0. 3538 0. 3596 0. 3653 0. 3708 0. 3762 0. 3813 0. 3863

0.50 0.3145 0.3208 0.3268 9.3328 0.3385 0.3441 0.3495 0.3547 0.3598 0.3648

0. 60 0. 2902 0. 2961 0.3019 0. 3076 0. 3130 0. 3184 0. 3236 0. 3287 0. 3336 0. 3384

0.70 0.2626 0. 2680 0,2734 0. 2786 0. 2838 0. 2888 0. 2937 0. 2985 0. 3032 0.3077
0. 80 0. 2322 0. 2371 0. 2420 0, 2467 0. 2513 0. 2559 0. 2604 0. 2647 0. 2690 0. 2732

0.90 O. 1999 0. 2042 0. 2085 0. 2126 O. 2167 0. 2207 0. 2246 0. 2284 0. 2322 0. 2359
t. 00 0.1667 0.1703 0.1739 0.1773 0. t808 0.1841 0. t874 0.1906 0.1938 0.1969

t. 6000 1. 6200 |. 6400 1. 6600 t. 6800 1. 7000 t. 7200 1. 7400 1. 7600 1.7800

O. O. 4285 O° 4328 O. 4370 O. 4409 O. 4446 O. 4482 O. 4516 O. 4547 O. 4577 O. 4606

0. 10 0. 4262 0.4306 0, 4347 o. 4387 0. 4425 0. 4461 0.4495 0. 4527 o. 4557 0. 4586

O. 20 O. 4193 O. 4237 O. 4280 O. 4320 O. 4359 O. 4396 0.4431 o. 4464 o. 4496 O. 4526

0.30 0.4076 0.4122 0.4165 0.4207 0.4247 0.4285 0.4322 0.4357 0.439o 0.4422

O. 40 O. 39tt O. 3957 0.4d)Ol o. 4044 O. 4085 O. 4125 o. 4164 O. 4200 o. 4236 o. 4270

0.50 0.3695 0.3742 0.3787 0.3830 0.3872 0.3913 0.3953 0.3991 0.4028 0.4063

0. 60 0. 343t 0.3477 0.352t 0. 3564 O. 3606 0. 3647 0. 3687 0. 3726 o. 3763 o. 3800

0.70 0.3122 0.3165 0.3208 0.3250 0.3290 0.3330 0.3369 0.3407 0.3444 0.3480

0.80 0.2773 0.28t4 0.2853 0.2892 0. 2930 o. 2967 0.3003 0.3039 0.3074 o. 3108

0. 90 0, 2395 0.243t 0. 2466 0. 2500 0. 2534 0. 2567 0. 2599 0. 263i 0. 2663 0. 2693

1.00 0. 2000 O. 2030 0. 2059 0. 2088 0. 2117 o. 2144 0. 2172 0. 2199 o. 2225 o. 2251

1.8000 |.8200 1.8400 1.8600 1.8800 1.9000 1.9200 1.9400 1.9600 1.9800

0. 0.4633 0. 4658 0. 4682 0. 4704 0. 4725 0. 4745 0. 4763 0. 4781 0. 4797 0. 4812

0. l0 0.4613 0,4639 0,4663 0°4686 0. 4708 0. 4728 0. 4747 0. 4765 0. 4782 0. 4798

0. 20 0.4555 0. 4582 0.4608 0.4632 0. 4655 0. 4677 0.4697 0.4717 0. 4735 0. 4752

0. 30 0.4453 0. 4482 0. 4510 0. 4536 0. 456t 0. 4585 0. 4608 0. 4630 0. 4651 0.4670

0.40 0.4302 0.4334 0.4364 0.4393 0.4421 0.4447 0.4473 0.4497 0.4520 0.4543

0.50 0.4098 0.4131 0.4t93 0.4195 0.4225 0.4254 0.4282 0.4309 0.4335 0.4360
0.60 0. 3835 0. 3870 O. 3904 0. 3936 0. 3968 0. 3999 0.4029 0. 4058 0. 4086 0. 4113

0.70 0.3515 0.3550 0.3583 0.3616 0,3649 0. 3679 0.3710 0.3740 0.3769 0.3798

0.80 0.3141 0.3174 0.2206 0.3238 0.3269 0.3299 0.3328 0.3359 0.3386 0.3414

0.90 0. 2723 _2753 0. 2782 0. 2811 0. 2839 0. 2866 0. 2893 0. 2920 0. 2946 0. 2972

1.00 0. 2277 0. 2302 0. 2327 0. 2351 0. 2375 0. 2396 0. 2421 0. 2444 0. 2466 0. 2488
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2.0000 2.0200 2.04{)(} 2.0600 2.0800 2.1000 2.1200 2.1400 2.1600 2.1800

O. 0.4826 0.4840 0.4852 0.4864 0.4874 0.4884 0.4894 0.4902 0.4910 0.4918

0.10 0.4812 0. 4826 0.4839 0. 4851 0. 4862 0.4873 0. 4883 0.4892 0. 4900 0. 4908

0. 20 0.4769 0.4784 0.47!}8 0.4812 0.4825 0.4837 0.4848 0.4858 0.4868 0.4877

0.30 0.4689 0.4707 0.4723 0.4739 0.4754 0.4769 0.4782 0.4795 0.4807 0.4819

O. 40 O. 4564 0. 45_5 O. 4_o5 O. 4623 0. 4641 O. 4659 0. 4675 O. 4691 O. 4706 O. 4720

O. 50 O. 4385 O. 44(}8 0. 4431 O. 4453 0. 4474 0. 4494 O. 4514 O. 4533 O. 4551 O. 4568

0.60 0,414o 0,416(; 0.4101 0. 42111 0.4239 0.4263 0.4285 0.4307 0.4328 0.4348

O. 70 O. 3825 O. 3853 O. 3879 0. 3905 O. 3931 O. 3955 O. 3979 O. 4003 O. 4026 O. 4049

0.80 0.3441 0.3468 0.3495 0.3521 0.3546 0.3571 0.3595 0.3619 0,3643 0.3666

O. 90 O. 2997 0.3022 0.3046 0.3070 0.3094 0.3117 0.3140 0.3162 0.3|84 0.3206

1.00 0.2510 0.2531 0.2552 0.2572 0.2592 0.2612 0.2632 0.2651 O. 2670 O. 2689

2.2000 2. 2200 2.2400 2.2600 2.2_00 2.30o0 2.3200 2.3400 2.3600 2.3800

O. 0.4924 0.4931 (L4937 0.4942 0.4947 0.4952 0.4956 0.4960 0,4963 0.4967

0. I0 0. 4!)15 0,4922 0,4928 0,4934 0,4940 0.4945 O. 4949 0,4954 0,4957 0.4961

0.20 0.4886 0.4894 0.4902 0.4909 0.4915 0.4922 0.4927 0.4933 0.4938 0.4942

0.30 0.4829 0.4840 0,4849 [).4859 0,4867 0.4875 0.4883 0.4890 0.4897 0.4904

0.40 0.4734 0.4747 0.4760 0,4772 0.47H3 0.4794 0,4804 0.4814 0.4824 0.4833

0.50 0.4585 0.4602 0.4617 0.4633 0.4647 0.4661 0.4875 0.4688 0.4700 0.4712

0.60 0.4368 0.4388 0.4406 O. 4425 0.4442 0.4459 0.4476 0.4492 0.4508 0.4523

0.70 0.4071 0.4092 0.4113 0.4134 0.4154 o. 4173 0.4192 0.4211 0,4229 0.4247

0.80 O. 3688 O. 3710 O. 3732 0.3753 O, 3774 0. 3795 0.3815 0.3_35 O. 3854 0.3873

0.90 0.3227 0.3248 0.321;9 0.3289 0.3309 0.3329 0.3348 0.3368 0.3386 0.3405

1.00 O. 27[)7 0.2725 0.2743 0.27¢;0 O. 2778 0.2795 0.2812 0.2828 0.2844 0.2860

2.4000 2.4200 2.4400 2.460o _ 4800 2.5000 2.5200 2.5400 2.5600 _ 5800

O. 0.4970 0.4972 0.4075 0.4977 0.4979 0.49_I 0.4983 0.4985 0.4986 0.4988

0. I0 0.4964 0.4967 0.4970 0.4973 0.4975 0.4978 0.4980 0.4081 0.4983 0.4985

O. 20 0.4947 0.4951 0.4954 0.4958 0.4961 0.4964 0. 4967 0.4970 0.4972 0.4974

0.30 0.4!)10 0.4915 0.4921 0.492(; 0.4931 0.4935 0.4939 0.4043 0.4947 0.4950

0.40 0.4841 0.4849 0.4857 0.4864 0.4871 0.4878 0.4884 0.4891 0.4896 0.4902

0.50 0.4724 0.4735 0.4746 0.4756 0.4766 0.4776 0.4785 0.4794 0.4802 0.4811

0.60 0.4538 0.4553 0.45(;6 0.4580 0.4593 0.4(;0(; 0.4618 0.4630 O. 4642 0.4653

0.70 0.4265 0.4282 0.4298 0.4315 0.4331 0.4346 0.4361 0.4376 0.4391 0.4405

O. 80 O. 3892 O. 3911 O. 3029 O. 3946 O. 3964 0. 3981 0. 3998 O. 4014 O. 4030 O. 4046

O. 90 O. 3423 O. 3441 O. 3459 O. 3476 O. 3493 0. 3510 O. 3527 O. 3543 O. 3559 O. 3575

1.00 0.2876 0.2892 0.2907 O. 2922 O. 2937 O. 2952 O. 2987 0.2981 O. 2995 0.3009

I

2. 6000 2. 6200 2. 6400 2. 6600 2. 6800 2. 7000 2. 7200 _ 7400 _ 7600 _ 7800

O. O. 4989 0, 499(} 0. 4991 O. 4992 0.4!)93 O. 4993 O. 4994 O. 4995 O. 4995 O. 4996

0. t0 0,4986 0.4987 0.4989 0.4990 0.499{ 0.4992 0.4992 0.4993 0.4994 0.4994

O. 20 0.4976 0.4978 0.4980 0.4982 0.4983 0.4984 0.4986 0.4987 0.4988 0.4989

0.30 0.4954 0.4957 0.4960 0.4062 0.4965 0.4967 0,4970 0.4972 0.4973 0.4975

0. 40 0,4907 0.49i2 0.4917 0.4921 0.4925 0.4930 0.4933 0,4037 0.4940 0.4944

0.50 0.4818 0.4826 0.4833 0.4840 0.4847 0.4H53 0.4860 0.4866 0.4871 0.4877

0,60 0.4664 0.4675 0.4685 0.4695 0.4705 0.4714 0.4723 0.4732 0.4741 0.4749

0.70 0.4419 0.4432 0.4445 0.4458 0.4471 0.4483 0.4495 0.4507 0.4519 0.4530

0.00 0.40(;2 0.4077 0.4092 0.4107 0.4122 0.4i36 0.4150 0.4|64 0.4178 0.4191

0.90 0.3591 0,3606 0.3621 0.3636 0.3651 0.36(;6 0.3680 0.3694 0.3708 0.3722

1. O0 O. 3023 O. 3036 O. 3050 O. 3063 O. 3076 O. 3089 O. 3iOi O. 3114 O. 3126 O. 3138
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TABLE 6. 0-3. (CONTINUED)

3.9000 2.8100 3.9400 3.0600 2.9800 2.9000 3.9200 2,0400 2.9600 2.9000

O. 0. 4964 0. 4097 0. 4997 O. 4M_ O. 4000 O. 4009 O. 4909 O. 4009 O. 4998 O. 4M_

0. i0 0.4969 0.4998 0.4996 0.4994 0.499? 0. 4N't 0,4997 O. 4968 0.4996 0.4_8

0, 00 9. 4M0 0. 499| 0. 4992 0. 4992 O. 4993 0. 4964 0. 4M)4 0. 4965 0. 4M_ 0. 4996

0. 30 0. 4977 0. 40?9 0. 4260 0. 4081 O. 4983 0. 4264 0. 4985 O. _ 0. 4987 0. 4988

0.40 0. 494/ 0. 4960 0. 4962 0. 4966 0. 4960 O. 4940 9. 4982 0. 4964 0. 4986 o. 4968

0. 50 0. 4882 5. 4887 0. 4803 0. 4897 o. 4801 0. 4999 0. 4909 o. 4913 0. 49/7 o. 4921

0. 60 O. 4757 0. 4765 O. 4775 0. 4780 O. 479? O. 4794 O. 4a01 0. 480? O. 4614 O. 4830

0o70 0.4641 0.4582 0.4562 0.4572 0.4582 0.4592 0.4803 O. 4_1/ O. 4699 O. 4_20

0. 80 0. 4204 0. 4217 O. 4260 0. 4240 0. 4264 0.4266 0. 4278 O. 4399 0. 4601 0. 4312
0. 90 0. 9795 0. 3749 0. 376 '_ 0. 3770 O. 3788 0. 3800 0. 3813 0. 3026 0. 5837 O. 3849

I. 00 0. 0151 0. 5109 0. 3174 0. 3189 0. 319'7 0. 3208 0. 5230 0. $23! 0. 3242 0. 3252

3. 0000 3. 1000 6. Z000 3. 3000 3. 4000 3. 0000 6. 6000 3. 7000 3. 0000 3. 9000

0. 0. 499| 0. 401HI 0. 6000 0. §000 0. 5000 0. 6000 0. 500Q 0. 5000 0. 5000 0. 5000
0. 10 0.4969 0. 4990 0. 4990 O. 9000 0. 6000 0. 5000 0. 5000 0, 0000 O. S000 0. 6000

0. I0 O. 4998 0. _ 0. 496@ 0. 4969 O. 4099 0. 9000 0. 6000 O. 0000 O. 5000 0. 0000

O. 90 O. 4080 O. 41)93 O. 4996 O. 4997 0. 4998 O. 4998 O. 41199 0. 4999 O. 5000 O. 6000

O. 40 O. 411/0 O. 49?9 0. 4994 O. 4998 O. 4991 0. 4994 O. 4996 0. 499? O. 4908 O. 4999

O. 60 0, 41HI4 O. 41140 0. 49611 0.4982 O. 49?0 O. 4977 0. 4962 0. 4084 0. 4909 O. 4991

O. 00 O, 4826 O. 4853 O. 49T8 O. 482 II O. 491 | O. 4028 O. 4981 O. 4948 O. 4967 O. 4964

0.70 O, 4400 0, 44'/9 0. 47/6 0. 4747 0. 4778 0. 4fi02 0. 4091 O. 4046 0. 4863 0, 4979
0.80 0.489 6.44'/9 0.4434 0.4449 9,46/0 0.4847 0.4292 5.4614 0.4444 0.4471

0.00 6.1194| 0.110|11 0.09?/ 0.4090 0.4000 6,4113 0.4164 0.4/94 0.426/ 0.4N4

I. O0 O. 1110I O. 91119 O. I9111 O. 1140I O. 8400 5. 84t9 O. 09119 0. 0009 0. 9104 O. M110

6,

O. iO
O. 90

O. $0

0.40

0,00

0.90

O. _0

O. 00

9.80

1.00

4.0000 4.1000 4.1000 4.8000 4.4000 4.11000 4.9000 4.7000 4.0000 4.9900

0.6000

0. 8000

0. 6000

0. 5000

0.4099

0. 4R11
0. 49?0

0. 4894

0. 4494

0. 4009

0. NT0

0, Ii000

0. S000

0.0000

0. 9000
0. 4990

O. ¢_ml
0. 4971

O, 41NM

O. 4730

O. 48111

0. 9700

0. 5000

0.6000

0. 8OOO

0. S000
0, 4009

0. MIN

0o 4U0

O. 4917

0, 4741

0. U�i

O. 11799

O. 9000 0. BOO0 O. 9000 O. 9000 O. |000 O. 6000 0. 0000
0.6000 0.9000 0.8000 5.6000 0.5000 0.8000 0.0000

0,9000 0.0000 0.6000 0.0000 0.6000 0.6000 0. SO00

O. 6000 O. lSO00 0. 6000 0. 0000 O. 6000 O. 9990 O. 9000

0. 0000 O. 5000 O. 0000 O. 6000 0. 6000 0, 6000 O, 0000

0. 40117 O. 4960 ,. O. 44911 O. 44111 O. 41_1 O. _ O. 4996

0. 4009 9. 4964 "_t. 0, 9601 O, 4002 0. 4964 0. 4091

O. 4097 O. 4926 O, 4944 O. 491| O. 409? O. 4NJ 0. 4267

0. 478/ 0. 4700 0. 4?07 0. 481J 0, 44:ff 0. 4440 0. 4098

0. 4389 0. 4418 5. 4441 0. 444# 0. 4489 0. 41)10 0. 4091

O. 0767 O. 1704 O. 9000 O. 5914 O. 0897 O. 0910 O. 900|

6. 0000 6.1000 6. I000 LJ000 L4000 &8990 L9000 0, 7000 6. I000 6._00

O, O. 6000 0,10g0 0. _ O. 6000 0. _ 0. 8000 0. S000 0, S000 0. I_00 O. 9900

0. J9 0. S000 0. 0000 0. 8000 0. 9000 0.1000 (). 0000 0. 9000 0.11000 5. 6000 9. J000

O. 110 O, 6000 O. 9000 O. 8000 O, 9000 O, 6000 O. 0000 O. 0000 O. 6000 O. 6000 O. 0000

0.90 0.9000 O. I000 0. S000 0.0000 0.6000 0.1_00 0.1000 0. _000 0,1000 0. S000

0.40 O. 9000 0.9000 0.9000 0.6000 5.6000 0.9000 0.0000 0,11000 0,6000 0,6000

0. I_ 0. 0000 0. 9000 0. _000 0. 0000 5. 8000 0. _000 0. 6000 0. _00 0. _000 0. 9000
5. _0 0. _ 9. 409? 0, 4_ 0. 4969 0. 4968 0. 4196 0. 49_ 0. 49_ 0. 49_ 0. 4009

0, T0 0. 4_'_I 0. 49?0 O. 49?9 0. iNS 0. 4964 0. 41HM 0. 4N0 0. 4910 0. 4961 0.

O, IO O, 4_4 O, 4670 O. 4_il O. 4964 O, 4990 O. 4915 O. 4917 O. 44_4 O, 40110 O. 4_91

0.90 0, M00 0.4_10 0.449? 0.4409 0.440t 0.4417 0,41011 0.44414 0.44110 0,4091

1.000 0.91111 0.9141 9.111419 O, 9961 0.8960 0.4019 9, 41011 0.4040 0.410411 0.4010

+
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6.0000 6.1000 6. 2000 6.3000 6.4000 6.5000 6.6000 6.7000 6.8000 6.9000

O. 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0. t0 0.5000 0.5000 0.5000 0.5000 0.5000 O. 5000 0.5000 0.5000 0.5000 0.5000

O. 20 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0,30 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

O. 40 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0,5000 0.5000

0.50 0,5000 0.5000 0.5000 0.5000 0.5000 0.5000 0,5000 0.5000 0.5000 0,5000

0,60 0.4999 0.5000 0.5000 0,5000 0,5000 0.5000 0.5000 0,5000 0.5000 0,5000

0.70 0.4993 0.4994 0.4995 0.4996 0.4997 0,4997 0.4997 0.4998 0.4998 0.4998

O. 80 O, 4941 O. 4946 O. 4950 O. 4954 O, 4958 O. 4962 O, 4965 O, 4968 O, 4970 O. 4973

O. 90 0.4705 0.4717 O. 4728 O. 4739 0.4750 O. 4760 O. 4769 O. 4779 O. 4788 O. 4796

1.00 0.4095 O. 4109 0.4123 O. 4136 0.4_49 0o4162 O. 4174 0,4196 0.4199 0.4209

7.0000 7.1000 7.2000 7.3000 7.4000 7.5000 7.6000 7.7000 7.8000 7.9000

O. 0.5000 0.5000 0.5000 0.5000 0.5000 O. 5000 0.5000 0.5000 0.5000 0.5000

0. I0 0.5000 0.5000 0.5000 0,5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.20 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 9.5000

0.30 0.5000 0.5000 0.5000 0.5000 0,5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.40 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.50 0.501)0 0.5001) 0.50O0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.60 0.5000 0.501)0 0.5000 0.50O0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.70 0.4999 0.4999 0.4909 0.4999 0.4999 0.4999 0.5000 0,5000 0.5000 0.5000

0.80 0.4975 0.4977 0.4979 0.4981 0.4983 0.4984 0.4985 0.4987 0.4988 0.4989

0.90 0.4804 0,4812 0.4819 0.4827 0.4834 0.4840 0.4847 0.4853 0.4859 0.4864

1.00 0.4220 0,4230 0.4241 0.4251 0.4261 0.4270 0.4279 0.4298 0.4297 0,4306

8,0000 8.1000 8.2000 8.3000 8.4000 8.5000 8.6000 8.7000 8.8000 8.9000

O. 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 - 0.5000

0. i0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.20 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.30 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0,5000 O. 5000 0.5000 0.5000

0.40 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0,5000

0.50 0.5000 0,5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.60 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.70 0.5000 0.5000 0.5000 0.5000 0.5000 0.5001) 0.5000 0.5000 0.5000 O. 5000

0.80 0.4990 0.4991 0.4992 0.4993 0.4993 0.4994 0.4994 0.4995 0.4995 0.4996

0.90 0.4869 0. 4875 0.4880 O, 4884 O. 4999 O. 4893 O. 4898 O. 4902 0.4906 O. 4909

t.00 0.4315 0.4323 0.4331 0.4339 0.4346 0.4354 0.4361 O. 4368 O. 4375 0.4352

9.0000 9.1000 9.2000 9.3000 9.4000 9.5000 9.6000 9.7000 9.8000 9.9000

O. 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.10 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

O. 20 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 O. 5000

0.30 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

O, 40 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O, 5000 O. 5000 O. 5000 O. 5000 O. 5000

O. 50 O, 5000 0.5000 0.5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 0.5000 O. 5000

0.60 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

O. 70 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O, 5000 O. 5000 O. 5000 O. 5000 O. 5000

0.80 0.4996 0.4997 0.4997 0.4997 0.4998 0°4998 0.4998 0.4998 0.4999 0.4999

O. 90 O. 4913 O. 4916 O. 4920 O. 4923 O. 4926 O. 4929 O. 4932 O. 4935 O. 4937 O. 4940

1. O0 O. 4389 O. 4395 O. 4401 O. 4408 O. 4414 O. 4420 O. 4426 O. 4431 0.4437 O, 4443
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TABLE 6.0-3. (CONCLUDED)

10.0000 10.1000 10, 3000 t0.3000 10.4000 10, 5000 I0. 5000 iO. 7000 J.O.5000 _0. 9000

O.

0,10

0.20

0, 50

0. 40
0, 50

0. 60

0, 70

0. 80

0. 90

1o 00

O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000

O. 5000 0. 5000 O. 5000 O. 5000 O. 8000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000

0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000

0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 5000 0. 8000 0. 5000 0. 5000

O. 5000 O, 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000

O, 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000

O. 5000 O. 5000 O. 5000 O, 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000

O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000

O. 4999 O. 4999 O. 4999 O. 4999 O. 4999 O. 5000 O. 5000 O. 5000 O. 5000 O. 5000
O. 4942 O. 4945 O. 4947 O. 4949 O. 4951 O. 4953 O. 4955 O. 4957 O. 4958 O. 4960

O, 4448 O. 44_4 O. 4459 O, 4464 O, 4469 O. 4474 O. 4479 O. 4484 O. 4455 O. 4493
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TABLE 6.0-4. SPHERE-PARAMETER 03

O. 5000 O. 5200 O. 5400 O. 5600 O. 5800 O. 6000 O. 6200 O. 6400 O. 6600 O. 6800

0. 0.0001 0.0002 0.0004 0.0008 0.0013 0.002t 0.0033 0.0048 0.0069 0.0096

0.10 0,0001 0.0002 0.0004 0.0008 0,0013 0.0021 0.0032 0.0048 0.0088 0,0095

0.20 0.0001 0.0002 0.0004 0.0007 0.0012 0.0020 0,0031 0.0045 0.0065 0.0090

0,30 0.0001 0.0002 0.0004 0.0007 0.0011 0.0018 0.0028 0.0042 0.0060 0.0083

O. 40 0,0001 0.0002 0.0003 0.0006 0.0010 0.0016 0.0025 0.0037 O. 0052 O. 0073

0. 50 0.0001 0.0001 0.0003 0. 0005 0.0008 0.00t3 0. 0021 0, 0031 0, 0044 0. 0061

0.60 0.0001 0.0001 0.0002 0,0004 0.0007 0.00t1 0.0018 0.0024 0.0035 0. 0049

0.70 0.0000 0.0001 0.0002 0.0003 0.0005 0.0008 0.0012 0.0018 0.0026 0.0035

0.80 O. 0000 O. 0001 O. 0061 0.0002 0.0003 O. 0005 O. 0008 O. 0011 O. 0018 O. 0023

0.90 0.0000 0.0000 0.00o0 0.0001 0.0001 0.0002 0.0004 0.0005 0.0008 0.0011

1.00 0.0000 0.0000 0,0000 0.0000 O. O00O 0.0000 0.0000 0.0000 0.0000 0.0000

0.7000 0.7200 0.7400 0.7600 0.7800 0.8000 0.8200 0.8400 0.8600 0.8800

O. 0.0130 0.0171 0.0221 0.0279 0.0347 0.0423 0.0510 0.0606 0.0711 0.0827

0. t0 0.0128 0.0169 0.0217 0.0275 0.0341 0.0416 0.0501 0.0596 0.0700 0.0813

0.20 0.0122 0.0160 0.0207 0.0261 0.0324 0.0396 0,0477 0.0567 0.0666 0.0773

0.30 0.0112 0,0147 0.0190 0.0240 0.0297 0.0363 0.0438 0.0520 0.06tl 0.0709

0.40 0.0098 0.0130 0.0167 0.0211 0.0262 0,0320 0.0386 0.0459 0.0536 0.0626

O. 50 O. 0083 O. 0103 O. 0141 O. 0178 O, 0221 O, 0270 O. 0325 O. 0386 0.0453 O. 0526

0.60 0.0066 0.0086 0.0111 0.0141 0.0175 0.0214 0.0257 0.0306 0.0359 0.0417

0. 70 0. 0048 0. 0063 0. 0081 0. 0103 0. 0127 0. 0156 0. 0188 0. 0223 0, 0262 0. 0304

0.80 0.0030 0.0040 0.0052 0.0065 0.0061 0.0009 0.0119 0.0t42 0,0166 0.0193

0.90 0.0014 0.0019 0.0024 0.0031 0.0038 0.0046 0.0056 0.0066 0.0078 0.0990

1.00 0.0000 0.0000 O. OOO0 0.0000 0.0000 0,0000 0,0000 0.0000 0.0000 0.0000

0.9000 0.9200 0.9400 0.9600 0.9800 1.0000 1.0200 1.0400 1.0600 1.0800

O. 0.0951 0.1084 0.1225 0.1375 0.1531 0.1695 0.1865 0.2041 0,2222 0.2407

0.10 0.0935 0.1066 0.1205 0.1352 0.1506 0.1667 0,1835 0.21)08 0.2186 0.2368

0.29 0.0899 0.1014 0.1146 0.1286 0.1433 0.1586 0.1745 0.1910 0.2079 O. 2253

0.30 0.0816 0.0930 0.1052 0.11_0 0. t315 0.1455 0.1602 0.1753 0.1908 0.2068

0.40 0. 0720 0. 0820 0. 0927 0. 1041 0. t159 0.1283 0. 1412 0. 1546 0. 1683 0. 1824

0,50 0.0605 0.0690 0.0790 0.0875 0.0975 0.1080 0.1188 0.130t 0.1416 0.1535

0.60 0.0480 0.0547 0.0619 0.0694 0.0773 0.0856 0.0942 0.1031 0. t123 0,|217

0.70 0.0350 0.0309 0.0451 0.0506 0.0564 0.0624 0.0687 0.0752 0.0818 0.0888

0.80 0.0222 0.0254 0.0287 0.0322 0.0358 0.0397 0.0437 0.0478 0.0521 0.0565

0. 90 0. 0104 0. 0118 0. 0134 0. 0150 0, 0168 0. 0185 0. 0204 0. 0224 0, 0243 0, 0264

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

i. 1000 I. 1200 I. 1400 I. 1600 I. 1800 I. 2000 I. 2200 i. 2400 I. 2600 I. 2800

O. O. 2597 0.2790 O. 2986 0.3183 O. 3383 O. 3584 O. 3785 0.3986 0,4187 O. 4388

0.10 0.2555 0.2745 0.2937 0.3132 0.3328 0.3526 0.3724 0.3923 0.4121 0.4318

O. 20 O. 2430 O. 2611 O. 2795 O. 2980 O. 3168 O. 3356 O. 3545 O. 3735 O. 3924 O. 4113

0.30 0.2231 0.2398 O. 2566 O. 2737 O. 2910 0.3084 0.3218 0.3433 0.3809 0.3783

O. 40 O. 1968 O. 2115 O. 2265 O. 2416 O. 2569 O, 2723 O. 2875 O. 3034 O. 3t90 O. 3346

O. 50 O. 1657 O. 1781 O. 1907 O. 2035 O. 2164 O. 2295 O. 2426 O. 2559 O. 2691 O. 2624

O. 60 O. 1314 O. 1413 O. 1513 O. 1615 O. 1718 O. t822 O. 1927 O. 2032 0. 2139 O. 224_

0.70 0.0!J59 O. t031 0. t104 0. t179 0. t254 0. t331 0.1408 O. i496 0,1564 0. t642

O. 80 0.0610 0.0656 0.0702 0.0750 0.0798 O. 0847 0.0896 0.0946 O. 0998 O. 1047

O. 90 O. 0285 O. 0307 O. 0328 O. 0351 O. 0373 O. 0396 O. 0419 O. 0443 O. 0466 O. 0490

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0000 0.0000 0.0000
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TABLE 6.0-4. (CONTINUED)

t. 3000 1. 3200 1. 3400

O. _ O. 4587 O. 4784 O. 4979
O. I0 O. 4514 O. 4709 O. 4902

O. 20 O. 4301 O. 4488 O. 4673

O. 30 O. 3958 O. 4131 O. 4303

0.40 0.3502 0.3657 0.3811

O. 30 O. 2957 O, 3090 O. 3222

O. 60 O. 2353 O. 2460 O. 2566

O. 70 O. 1721 O. 1800 O. 1880

0. 80 O. 1097 O. 1148 O. 1199

O. 90 O. 0614 O. 0538 O. 0563

I.O0 O. O000 O. 0000 O. OOO0

I. 3500 I. 3800 I. 4000 I. 4200 I. 4400 I. 4600 i. 4800

O. 5172 O. 5362 O. 5850 O. 5734 O. 89t4 O. 6091 O. 6260
O. 5099 O. 8280 O. 5465 O. 5647 O. 5825 O. 6000 0. 8171

O. 4856 O. 5036 O. 5215 O. 6390 O. 5563 O. 5732 O. 6899

O. 4474 O. 4648 O. 4810 O. 4974 O. 5137 O. 5297 O. 5454

0.3965 0.4117 0.4268 0.4417 0.4566 0.4711 0.4855

O. 3354 O. 3485 O. 3616 O. 8748 O. 3874 O. 4001 O. 4128

O. 2673 O. 2780 O. 2886 O. 2992 O. 3097 O. 3202 O. 3306

O. t959 O. 3038 O. 2117 O. 2197 O. 2776 O. 2354 O. 2433

O. 1250 O. 1302 O. i353 O. 1404 O. 1486 O. 1507 O. 1568

O, 0586 O, 0610 O. 0634 O. 0659 O. 0688 O. 0707 O. 0732

O. OOO0 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000

1. 8000 t. 6200 t. 5400 t. 8500 t. 5800 1. 5000 1. 6200 1. 5400
t. 6600 1. 6800

'0. 0,5432 0.6595 0.6756 0.69t2 O. 7083 0.7209 0.7350 0,7487 0.7618 O. 7746

0. t0 0.6339 0.8502 0.6661 0.6815 0.8965 0.7111 O. 7259 0.7388 0.7620 0.7647
O. 20 O. 6061 O. 6220 O. 6375 O. 6627 O. 5674 O. 6818 O. 6957 O. 7093 O. 7224 O. 7381

O. 90 O. 5608 O. 5760 O. 8908 O. 8054 O. 6196 O. 6335 O. 6471 O. 6603 O. 6732 O. 6857

0.40 0.4997 0.5137 0.5275 0.54t0 0.5543 0.5674 0.6802 0.5928 0.6051 O. 6i72

0.50 0.4252 0.4376 0.4498 0.4619 0.4738 0.4856 0.4973 0.5086 0.5199 0.5310

O. 60 O. 3409 O. 3512 O. 3614 O. 37t5 O. 88t6 O. 3915 O. 40t3 O. 41tt O. 4208 O. 4304

O. 70 0. 2511 O. 2889 O. 2667 O. 2744 O. 2821 O. 2898 O. 2974 O. 3050 O. 3126 O. 3201

O. 80 O. 1609 O. 1661 O. 1712 O. 1753 O. 1814 O. 1868 O. 1915 O. 1966 O. 2017 O. 2057

O. gO O. 0756 O. 0780 O. 0508 O. 0829 O. 0854 O. 0878 O. 0902 O. 0927 O. 0951 O. 0976
I. O0 e. 0000 O. 0000 O. OOO0 O. OOO0 O. OOO0 O. 0009 O. OOOO O. OOO0 O. OOO0 O. 0000

t. 7000 1. 7200 1. 7400 t. 7600 t. 7800 1. 8000 1. 8200 i. 8400 1. 8600 1. 8800

O. O. 7868 O. 7985 O. 8098 O. 8206 O. 8310 O. 8409 O. 8504 O. 8fi94 O. 8680 O. 8782

O. 10 O. 7770 O. 7888 O. 8001 O. 81t0 O. 8214 O. 5315 O. 8410 O. 8602 O. 8590 O. 8673

O. 20 O. 7474 O. 7593 O. 7707 O. 7818 O. 7928 O. 802"/ O. 8t26 O. 8221 O. 8312 O. 8400

O. 50 O. 6979 O. 7098 O. 7213 O. 732.5 O. 7434 O. 7539 O. 7641 O. 7740 O. 7835 O. 7927

O. 40 O. 6290 O. 6406 O. 6519 O. 6629 O. 6737 O. 6842 O. 6945 O. 7045 O. 7143 O. 7238

O. 50 O. 5420 O. 5527 O. 5633 O. 5738 O. 5840 O. 5941 O. 6040 O. 6137 O. 8233 O. 6327

O. 60 O. 4398 O. 4492 O. 4585 O, 46"/7 O. 4768 O. 4868 O. 4947 O. 5035 O. 5122 O. 5208

O. 70 O. 32'76 O. 3350 O. 3424 O. 3497 O. 3570 O. 3642 O. 3714 O. 3786 O. 3857 O. 3927

O. 80 O. 2117 O. 2167 O. 2317 O. 2267 O. 2317 O. 2367 O. 2416 O. 2465 O. 2515 O. 2564

0.90 O. lOOO 0.1024 0.1049 0.1073 0,1097 0.1122 0.1146 0.1170 O. i194 0.1218
i. O0 O. 0000 O. O00O O. 0000 O. 0000 O. OOOO O. O000 O. 0000 O. 0000 O. 0000 O. 0000

1. 9000 1. 9200 1. 9400 t. 9600 t. 9800 2. O000 2. 0200 2. 0400 2. 0600 2. 0800

O, O. 8840 O. 89t4 O. 8984 O. 9051 O. 9114 O. 9173 O. 9230 O. 9283 O. 9333 O. 9380

O. 10 O. 8783 O. 8828 O. 8900 O. 8969 O. 9034 O. 9095 O. 9154 O. 9209 O. 9261 O. 9310

O. 20 O. 8484 O. 8564 O. 8641 O. 8715 O. 8786 O. 8852 O. 8916 O. 89/7 O, 9035 O. 9090
O. 30 O. 8016 O. 8102 O. 8186 O. 8266 O. 8343 O. 8417 O. 8489 O. 8558 O. 862,4 O. 8688

O. 40 O. 7331 O. 7422 O. 7510 O. 7696 O. 7679 O, 7760 O. 7838 O. 7915 O. 7989 O. 8062

O. 50 O. 6419 O. 6509 O. 6598 O. 6686 O. 6771 O. 6854 O. 8937 O. 7017 O. 7096 O. 7173

O. 60 O. fi293 O. 5376 O. 5459 O. 5541 O. 5623 O. 5702 O. 6781 O. 5858 O. 8935 O. 6011

O. 70 O. 3997 O. 4067 O. 4136 O. 4205 O. 4273 O. 4341 O. 4408 O. 4475 O. 4541 O. 4607

O. 80 O. 2613 O. 2661 O. 2'710 O. 2/88 O. 2807 O. 2855 O. 2903 O. 2951 O. 2998 O. 3046

O. 90 O. 1243 O. 1267 O. 1291 O. 1315 O. 1339 O. t368 O. t387 O. 1412 O. 1436 O. 1460

I. O0 O. 0000 O. O00O O. O00O O. 0000 O. O000 O. O000 O. 0000 O. 0000 O. 0000 O. 0000
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TABLE 6.0-4. (CONTINUED)

2. 1000

0. 0.9424

9.10 0.9357
0. 20 0.9143

0.30 0.8750

0.40 0.8132

0.50 0.7249

O. 60 O. 6086

O.70

O. 80

O. 90

I. O0

2.1200 2.1400 2. 1600 2.1800 2. 2000

0. 9466 0. 9505 0. 9541 0. 9575 0. 9607

0. 9400 0.9442 0.948i 0.9517 0.9551

0. 9193 0. 9240 0. 9286 0. 9328 0. 9369

0. 8808 0. 8865 0. 8919 0. 8971 0. 9021

0.8200 0.6266 0,8330 0.8392 0.8452

0.7323 0.7396 0.7467 0.7536 0.7604

0.6160 0.6232 0.6304 0.6375 0.6445

0.4672 0.4737 0.4801 0.4865 0.4928 0.4991

0.3093 0.3141 0.3186 0.3235 0.3281 0.3328

0.1484 0.1508 0.1532 0.1555 0.1579 0.1603

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2. 2200 2. 2400 2.2600 2. 2800

0.9637 0.9665 0.9691 0.9716

0.9583 0.9613 0.9642 0.9668

0.9407 0.9444 0.9476 O. 9511

0.9069 0.9115 0.9159 0.9201

O. 8510 0.8567 O. 8621 O. 8674

0.7671 0.7736 -0.7799 O. 7862

0.6514 0.6582 0.6648 0.6714

0.5053 0.5115 0.5177 0.5237

O. 3374 O. 3420 O. 3467 O. 3512

0. 1627 O. 1651 0. 1675 0. 1699

0.0000 0.0000 0.0000 0.0000

fl_ _ 3000 2.320o

O. 0.9738 0.9759

0.10 0.9693 o. 9716

0.20 0.9542 O. 9571

0.30 0.9241 0.9279

0.40 0.8726 0.8775

0.50 0.7922 0.7982

0.60 0.6779 0.6844

0.70 0.5298 0.5358

0.80 0.3558 0.3604

90 0.1722 0.1746

1.00 0.0000 0.0000

2.3400 2.3600

0.9779 0.9797

0.9737 0.9757

0.9598 0.9624

0.8316 0.935i

0.8823 0.8869

0 8040 0.8097

0.6907 0.6969

0.5417 0.5476

0.3649 0.3694

0.1770 0.1794

0.0000 0.0000

2. 3800 2. 4000 2. 4200 2. 4400 2.4600 2, 4800

0.98i4 0.9829 0.9844 0.9857

O. 9776 0,9794 0.9810 0.9825

0.9648 0.9671 0.9693 0.9713

0.9385 0.9417 0.9447 0.9477

0.8914 0.8957 0.8999 0.9040
O. 8152 O. 8206 O. 8259 O. 8311

0.7030 0.7090 0,7150 0.7208

0.5534 0.5592 0.5649 0.5706

0.3739 0.3784 0.3829 0.3874

0. t817 0.1841 0.1865 0.1888

0.0000 0.0000 0.0000 0.0000

0.9869 0.9881

0.9839 0.9852

0.9732 0.9750

0.9504 0.9531

0.9079 0.9116
0.8361 0.8410

0.7266 0.7323

0.5763 0.5818

0.3916 0.3962

0.1912 0.1936

0.0000 0.0000

2. 5000 _ 5200

O. 0.9891 0.9901

0.10 0.9864 0.9875

0,20 0.9767 0.9783

0.30 0.9556 0.9580

0.40 0.9153 0.9t88

_50 0.8458 0.8505

0.00 0.7376 0.7433

0.70 0.5874 0.5929

O, 80 O. 4006 0.4050

0.90 0.1959 0. t983

1. O0 O. 0000 0. 0000

2.5400 _5600 2. 5800 2.6000 2. 6200

0.9910 0.9918 0.9925 0.9932 0.9938

0.9885 0.9895 0.9904 0.9912 0.9919

0.9798 O. 98J2 0.9825 0.9837 0.9849

O. 9603 0.9624 O. 9645 0.9665 O. 9684
0.922i 0.9254 0.9285 O. 9316 O. 9345

0.8550 0.8595 0.8638 0.8680 0.872t

O. 7487 O. 7540 O. 7593 O. 7644 O. 7695

0.5983 0.6037 0.6090 0.6143 0.6t95

O. 4094 O. 4137 O. 418t O. 4224 O. 4267

O. 2006 O. 2030 O. 2053 O. 2077 O. 2100

0.0000 0.0000 O. O000 0.0000 0.0000

2.6400 2.6600 2.6800

0.9944 0.9949 0.9954

0.9926 0.9932 0.9938
0.9859 0.9869 0.9679

0.9701 0.9718 0.9734

0.9373 0.9400 0.9426
0.8761 0.8800 0.8638

O. 7744 O. 7793 O. 7841

0.6247 0.6299 0.6350

0.4309 0.4352 0.4395

O. 2t23 O. 2147 O. 2170

O. O00O O. 0000 O. 0000

2. 7000 2. 7200 2. 7400

2. 7600 2.7800 2. 9000

O. O. 9958 O. 9962 O. 9966 O. 9969 O. 9972

O. 10 O. 9944 O. 9949 O. 9953 O. 9957 O. 9961

O. 20 O. 9888 O. 9896 O. 9903 O. 9910 O. 9917
O. 50 O. 9749 O. 9764 O. 9777 O. 9790 O. 9803

O. 40 O. 9451 O. 9475 O. 9498 O. 9520 O. 9542

O. 50 O. 8875 O. 89t I O. 8946 O. 8980 O. 9013

O. 60 O. 7889 O. 7935 O.7991 O. 802_ O. 8070

O. 70 O. 5400 O. 6460 O. 5499 O. 6548 O. 6591

O. 90 O. 4437 O. 4479 O. 452t O. 4562 O. 4604

O. 90 O. 2194 O. 23t7 O. 2240 O. 2263 O. 2287

2.8200 2. 8400 _8600 2.9800

0.9975 0.99/8 0.9980 0.9982 0.9984

0.9965 O. 9968 0.9971 0.9974 0.9976

O. 9923 O. 9929 O. 9934 O. 9939 O. 9944

O. 9814 _9825 O. 9836 O. 984,5 O. 9855

O. 9562 O. 9582 0.9601 0.9619 0.9637

0.9046 0.9077 0.9t08 0.9t37 0.9166

0.8113 0.8t_ 0.8197 0.8218 0.82'/9

O. 6645 0.6692 O. 6739 0.6786 O. 6852
0.4645 0.4686 _ 4727 0.4768 0.4809

0.3310 O. 2333 0.2386 0.3379 0.24[03
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TABLE 6.0-4. (CONTINUED)

2. 9000 2. 0100 2. 9400 3. 9600 3. 9800 3. 0000 3. 0200 3. 0400 3. 04100 3. 0800

O. O, 9966 0. 998/ O. 9988 O. 9990 O. 9991 O. 9993 O. 9993 O. 9993 O. 1_94 O. 9995

O. t0 O. 9978 O. 9980 0. 9982 O. 9984 O. 9985 O. 8987 O. 9988 O. 9989 O. 8990 O. 999|

0. BO O. 9948 O. 9952 O. 9956 O. 9959 9. 9919 9.1966 O. 9968 8, 997| 0. 99'/5 O. 9975

O, 30 O. 1964 O. 9872 O. 9880 O. 9987 O. 9894 O. 9901 O. 990"/ O. 9913 O. 9918 O. 9923

0,40 0.N53 0.9609 0.9609 0.9700 0.9714 0,9727 0.9'740 0.9753 0.9"/95 0.9770
O. 50 O. 9|94 O. 922! O. 9247 O. 9273 O. 9298 O. 9325 O. 9346 O. 9388 O. 9390 O. 9412:

O, 90 O. 8318 0. 8357 O. 8396 O. 9432 0. 8469 O. 8505 O. 8540 0. 8575 O. 8609 O. 8642

0,70 0.6878 0.692,3 O, 6968 0.7012 0.7055 0.7099 0.7141 0.7184 0.7226 0.7267

0. 80 O. 4849 O. 4889 O. 4929 O. 4969 O. 5009 O. 5048 O. 0088 O. 512/ O. 5155 O. 5204
O. 90 O. 2425 O. _t48 O. 2471 O. 2494 O. 3917 O. 2840 O. 31919 O. 3988 O. _09 O. 2632

1. O0 O. OOO0 O. 0000 O. 0000 O. 0000 O. O00O O. O000 O. 0000 O. O000 O. 0000 O. 0009

3. 0000 3. iO00 3. 2000 3.3000 3. 4000 3, 5000 9. 41000 5. 7000 3. 8000 3. 9000

O. O. 9992 O. 9996 O. 999'/ O. 9999 O. 9998 L 0000 f. 00_ 11.0000 |. 0000 |. 0000
O. I0 O. 998"/ O. 9992 O. I;992 O. 9997 O. 9991) O. 9999 i. 0000 i. 0000 #. 0000 I. 0000

0. IO O, 9995 O. 9977 O. 9986 O. 999t O. 9994 O. 99941 O. 9900 O. 91H5tl O. 9999 O. 99118

O. 30 O. 9901 O. 9939 O. 9949 O. 9964 O. 99"/5 O. 9982 O. 9988 O. 9992 O. 9994 O. 90_

O. 40 O. 9"/2'7 O. 9'787 O. 8834 O. 9872 O. 9903 O. 9925 O. 91)44 O. 91)6"/ O. 91)69 O. 9977

O. 50 O. 9321 0. 9432 O. 9527 O. 191608 O. 94'/6 O. 9734 0. 9752 O. 11825 0. 911511 O. 99114

O. 90 O. 8500 O. 84175 O. 0819 O. 8968 O. 90t53 O. 9205 O. 9806 O. 1994 O. 9474 O. 9544

O. 70 O. 7099 O. 7308 O. 7508 O. 7893 O. 78419 O. 80315 O. 8190 O. 838 O. 6472 0. 84500

O. 00 O. 5048 O. 53,43 O. 6432 O. 6617 0. 57V/ O. 5975 O. 5/43 O. 5309 0. 5469 0. 9628

0. 90 O. 2540 O. 24_58 O, 2768 O. 2981 O. 2999 O. 3|04 O. 53|5 O. 3324 O. 3433 O. 31543

1.00 0.0000 0.0000 0.0000 O. 0000 O. O000 0.0000 0, 0000 0. 0000 0. 0000 0. 0000

4.0000 4.1000 4.2000 4.3000 4.4000 4.5000 4.8000 4.1'000 4.8000 4.1)000

O. i. 0000 1. 0000 1. O000 1. O000 LO000 1.0000 LO000 I. 0000 LO000 i. 0000

O. 10 I. 0000 1.0000 1.0000 I. O00O 1. O000 I. 0000 $. 0000 I. 0000 i. 0000 1. 0000

0.10 1. 0000 i. 0000 I. 0000 1. 0000 1. 0000 t. 0000 1. 0000 1. 0000 1. 0000 1. 0000
0. 30 O. 999"1 O° 9998 0. 9999 O. 9999 O. 9999 1. OOOO 1. 0000 1. 0000 1. 0000 1, 0000

O. 40 O. 9983 O. 9987 O. 9991 0. 9993 O. 9995 O. 9997 O. 9919 O. 9999 O. 9199 O. 99911

0.60 0.9906 0.9925 0.9940 0.9953 0.9963 0.997| 0.99'/'/ 0.9192 0.9906 0.89511

0. 80 O. 9_,06 O. 9'660 O. 9708 O. 9'750 O. 9787 O. 9818 O. 9846 O. 9849 O. 9890 O. 8907

0.70 0.8719 0.8839 0.5932 O. 9Q27 0.9t15 0.9197 0.92'/2 0.9341 0.9404 O. 94d2

O. 80 0, 8776 O. 5923 O. 7064 O. 7201 O. 7334 O. 74181 O. 7586 O. 7703 O. 7816 O. 7928

O. 90 O. 3849 O. 3755 O. 3861 O. 385 O. 4088 O. 4173 O. 4P14 0. 4375 O. 4475 O. 4674

i. O0 O. O000 O. 0000 O. 0000 O, 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000

5. O00O 5. iO00 6. 5000 5. 3000 S. 4000 5. 6000 5. 4000 6. 7000 6. 8000 5. 9000

O. i. 0000 1. 0000 i. 0000 1. O000 1. 0000 1. 0000 1. CO00 1. 0000 i. 0000 1. 0000

0.|0 t. 0000 1.0000 i. 0000 i. 0000 1. 0000 1. 0000 J.. 0000 1. 0000 LO000 LO000

0.19 1. 0000 1. 0000 t. 0000 I. 0000 1. 0000 I. 0000 1. 0000 I. 0000 t. 0000 1. 0000

0. $0 i. O00O t. 0000 1. 0000 1. 0000 1. 0000 I. 0000 1. 0000 !. 0000 L 0000 1. O000

0.40 0.91911 t. O000 1, 0000 J, 0000 I. 0000 1, 0000 1.0000 I. 0000 |. 0000 1. O00Q

O. 60 O. 9992 O. 9994 O. 9996 O. 9996 O. 9997 O. 9998 O. _ 9. 9999 O. 0999 O. 9999
0. 60 O. 9n2 O. 9935 O. 5944 O. 1955 O. 11115 9. 9189 O. 99'74 O. 90'/5 O. 9983 O. 9MM

0. 70 O. 9616 0. 1555 O. 19011 0. 9649 O. 1986 O. 9"/39 O. 9760 O. 87Y7 O. 96011 O. 9824
O. 50 O. 9034 O. 8t28 O. 8233 O. 531r'/ O. 8417 O. 9603 O. 96111[, O. 8603 O. 0'/39 9. 8810

0.19 0.4471 0.4759 0.486 0.4N! 0.5055 0.5148 O. SNO O. 6_11 0.6431 O. 56i0

LO0 0. 0000 O. 0000 O. 0000 0.0000 O. 0000 0.0000 0.0000 0.1900 0. 0000 O. 0000



ORIGINAL P2:.%}:-'._3
OE POOR QUALITY

TABLE 6. 0-4, (CONTINUED)

Section D

July 1, 1972

Page 291

6.0000 6.1000 6.2000 6.3000 6.4000 6.5000 6.6000 6.7000 6. 8000 6.9000

O. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1,0000

0.10 1.0000 1.0000 1.0000 1.0000 1.0000 t.0000 1.0000 1.0000 t. 0000 1,0000

0.20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 t.0000 1.0000

0.30 1.000o 1.0000 1.0000 1.000o 1.0000 1.0000 1.0000 1.0000 1.0000 i. O000

0.40 1.0000 1.0000 1.0000 1.0000 l. O000 1.0000 1.0000 l. O000 1.0000 1.0000

0.50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

O. 60 O. 9989 O. 9991 O. 9992 O. 9994 O. 9995 O. 9996 O. 9997 O. 9998 O. 9998 O. 9999

0. 70 0. 9844 0. 9862 0. 0878 0. 9893 0. 9905 0. 9917 0. 9927 0. 9936 0. 9944 0. 9951

0.80 0.8879 0.8944 0.9006 0.9065 0.9122 0.9175 O. 9226 0.9274 0.9319 0.9363

0.90 0.5598 0.5685 0.5771 0.5866 0.5940 0.6023 0.6104 0.6185 0.6264 0.6343

i. O0 0.0000 0.0000 0.0000 0.0000 O. O00O 0.0000 0.0000 0.0000 0,0000 0.0000

7.0000 7.1000 7.2000 7.3000 7.4000 7.5000 7.6000 7.7000 7.8000 7.9000

O. i. O000 1.0000 1.0000 t. 0000 t.0000 1.0000 J. O0OO 1.0000 1.0000 1.0000

O. t0 1. 0000 1.00o0 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000 1. 0000 1. O000

O. 20 I. 0000 i. 0000 I. 000n I. 0000 I. 0000 i. 0000 I. O000 I. 0000 I. 0000 I. 0000

O. 30 1. 0000 1. 0000 1, 9000 1. 0000 1.0o00 J. 0000 1. 0000 1. 0000 t. O00O J. 0000

O. 40 1. 0000 1. 0000 I. 0000 1. 0000 1. OOO0 I. 0000 1. OOO0 1. 0000 1. 0000 1. 0000

50 1.0000 1.0000 1.0000 J. 0000 1. 0000 1.0000 1.0000 1. 0000 1,0000 1,0000

0.60 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.70 0.9957 0.9963 0.9968 0.9972 0.9976 0.9979 0.9982 0.9984 0.9987 0.9988

0.80 0.9403 0.9442 0.9478 0.9513 0.9546 O. 9576 0.9605 0.9632 0.9658 0.9682

0.90 0.6420 0.6496 0.6572 0.6646 0.6719 0.6791 0.6862 0.6931 0.7000 0.7068

1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8.0000 8.1000 8.2000 8.3000 8.4000 8.5000 8.6000 8.7000 8.8000 8.9000

O. |.0000 1.0000 1.0000 1.0000 1.0000 1.0000 i. O000 1.0000 1.0000 1.0000

0. I0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 t.0000 1.0000 t. O00O 1.0000

O. 30 1. 0000 1. 0000 1. 0000 t. 0000 1. 0000 1. 0000 1. 0000 t. 0000 1. 0000 t. 0000

0.40 1.0000 1.0000 t.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.50 1.0000 1.0000 1.0000 1.0000 1.0000 l. O000 1.0000 1.0000 1.0000 1.0000

0.80 t. 0000 1.0000 1.0000 1.0000 1.0000 1.0000 t.0000 i. O000 t.0000 1.0000

0.70 0.9990 0.9991 0.9993 0.9994 0.9995 O. 9996 0.9996 0.9997 0.9997 0.9998

_80 O. 9704 O. 9726 O. 9745 O. 9764 O. 9781 O. 9797 O. 9813 O. 9827 O. 9840 O. 0852

0.90 O. 7135 O. 7200 0.7265 O. 7328 0.7391 O. 7452 O. 7512 O. 7572 O. 7630 O. 7687

i. O0 _ 0000 _ 0600 0.0000 0.0000 0.0000 _ 0000 _ 0000 _ 000_ _0000 0.0000

9.0000 9.1000 9.2000 9.3000 9.4000 9.5000 9.6000 9.7000 9.8000 9. 9000

O. |.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |.0000 i. O000 i. O000 1.0000

0.10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.20 t.0000 1.0000 t.0000 1.0000 1.0000 1.0000 t.0000 1.0000 1.0000 t.0000

0.30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

_40 1. 0000 1. 0000 1, 0000 1, 0000 1, 0000 1. 0000 1, 0000 t, 0000 1. 0000 1. 0000

0.50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Io0000 1.0000 1.0000 1.0000

0.60 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.70 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000

0.80 0.9864 0.9875 0.9885 0.9894 0.9902 0.9910 0.9918 0.9924 0.9930 0.9936

O. 90 O. 7743 O. 7799 O. 7853 O. 7906 O. 7959 O. 80t0 O. 8060 O. 8tt0 O. 6t58 O. 8206

I. O0 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000
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TABLE 6,. 0-4. (CONCLUDED)

' q!

O.

O. 10

0.20

0. 30
0.40

O. 50

0.6O

O. 70

O, 80

0.90

1. O0

iO. O00O 10.1000

1. 0000 I. 0000

t. OOO0 t. OOOO

1.00O0 1. O000

1. O000 1.0000
1.0000 1. OOOO

1. OOO0 1. 0000

I. O000 I. O00O

I. 0000 I. OOO0

O. 9942 O. 9947

O. 8252 O. 8299

0. 0000 0. 0000

10. _000 10. 3000 10. 4000 10. SO00 10. 6000 10. '7000 t0. BOO0

1. 0000 I. 0000 1. 0000

t. 0000 1. OOOO 1. OOOO

1. OOO0 1.0000 1. O000

1. O000 I. 0000 1. 0000
1. O00O 1. 0000 1. 0000

1. O000 1. O000 1. O00O

1. OOO0 I. O00O 1. 0000

1.0000 I. 0000 I. 0000

O. 995t O. 9955 O. 9959

O. 8343 0. 9387 O. 8429

0. 0(300 O. 0009 0. 0000

1. O00O 1. O00O 1. O000 1. 0000

1. O00O t. O000 1. O00O t. OOOO

I. OOOO I. OOOO 1. O00O I. O00O

1. O000 I. O000 1. 0000 1. OOO0

1.0000 t. 0000 1, OOO0 1. 0000

1. 0000 1. 0000 1. 0000 1. 0000

t. 0000 1. O00O 1. OOO0 1. 0000

1. 0000 1. O000 1. 0000 1. O00O

O. 9963 O. 9966 0. 9969 O. 9972
O. 9472 O. 8513 O. 8553 O. 8593

0. 0000 0. 0000 0, 0000 0. 0000

10.9000

1.0000

1.0000

1, 0000

1.0000

1.0000

1.0000

1. 0000

1.0000

0.9974
o. 863t

0.0000
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TABLE 6.0-5. SPHERE-PARAMETER _b3

O. 5000 O. 5200 O. 5400 O. 5600 O. 5800 O. 6000 O. 6200 O. 6400 O, 0600 O, 6800

O, 0.0000 0_0001 0.0001 0,0003 0.0004 0.0007 O. OOit 0,0016 0,0023 0.0032

0.10 0.0000 0.0001 0.000t 0.0003 0.0004 0.0007 0,0011 0,0016 0,0023 0.0032

0.20 0.0000 0.0001 0.0001 0.0002 0.0004 0.0007 O. OOtO 0.0016 0.0022 0,0031

0.30 0,0000 O. O00t 0,0001 0.0002 0.0004 0.0006 0.0010 0.0015 0.0021 0.0029

0.40 0.0000 0.0001 O. O00i 0,0002 0.0004 0.0006 0.0009 0.0014 0.0020 0.0027

0.50 0,0000 0.0001 O. O00i 0,0002 0.0003 0,0005 0.0008 0.0012 0.0018 0,0025

0,60 0.0000 0.0000 0.0001 O. 0002 0.0003 O. 0005 0.0007 0.0011 0.0016 O, 0022

0.70 0.0000 0.0000 0.0001 0.0002 0.0003 0.0004 0.0006 0.0010 0.0014 0,0019

0.80 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0005 0.0008 0.0011 0.0016

0.90 0.0o00 0.0000 0.0001 0.0001 0.0002 0.0003 0.0004 0.0006 0.0009 0.0013

1,00 0,0000 0,0000 0.0000 0,0001 0,0001 0.0002 0.0003 0.0005 0.0007 0.0010

0.7000 0.7200 0.7400 0.7600 0.7800 0.8000 0.8200 0.8400 0.8600 0,8800

O. O. 0043 O. 0557 O. 0074 O. 0093 O. 0116 O. 0t41 O. 0170 O. 0202 O. 0237 O, 0276

O. 10 O. 0043 O, 0057 O, 0073 O. 0092 O. 0114 O. 0140 O. 0168 O, 0200 O, 0235 O. 0273

0.20 0.0042 0,0055 0.0071 0.0089 0.0111 0,0136 0o0163 0.0194 0.0228 0.0265

0.30 0,01_40 0.0092 0.0067 0.0085 0.0106 0.0129 0.0155 0.0185 0.0217 0.0252

0.40 0.0(137 0.0049 0.0063 0.0079 0.0098 0,0120 0.0145 0.0172 0.0202 0.0234

O. 50 0,0(134 0.0044 0. 0057 O. 0072 0.0089 O, 0109 O. 0132 0.0i56 0.0184 O. 0213

0,60 0.0030 0,0039 0,0051 0.0064 0,0079 0,0097 0.0117 0.0130 0.0163 0.0189

0.70 0,0o26 0.0034 0.0044 0.0055 0.0068 0.0084 0.0101 0.0120 0.014t 0.0163

O, 80 O. 0021 O. 0028 O. 0036 0.0046 O. 0057 O. 0070 O. 0084 O. 0100 O. 0117 O. 0136

O, 90 O, 0017 O. 0023 O. 0029 0.0037 O. 0046 O. 0056 O. 0068 O. 0080 O. 0094 O. 0110

1.00 0.0013 0.00t7 0.0022 0.0028 0.0035 0.0043 0,0052 0.0061 0.0072 0,0084

0.9000 0.0200 0.9400 0.9600 0.9800 1,0000 1,0200 1,0400 1.0600 1.0800

O. 0.0317 0.0361 0.0408 0.0458 0,0510 0.0565 0.0622 0.0680 0.074t 0.0802

0. i0 0.0314 0.0358 0.0404 0.0454 0.0505 0.0559 0.0616 0.0674 0.0733 0,0795

O. 20 0.0305 0.0347 0.0392 0,0440 0.0491 0.0543 0.0598 0.0654 0.0712 0.0771

0.30 0.0290 0.0330 0.0373 0.0419 0.0467 0.0516 0,0568 0.0622 0.0677 0.0734

0.40 0.0270 0.0307 0.0347 0.0390 0,0434 0.0481 0.0529 0.0579 0.0630 0.0683

O. 50 O, 0246 O. 0280 O. 0316 O, 0355 _0395 _0438 O. 0481 O. 0527 O. 0574 O, 0622

0.60 0.0218 0,0240 0.0281 0.0315 0.0351 0.0388 0.0427 0.0468 0.0509 0.0552

0,70 0.018_ 0.0214 0.0242 0.0272 0.0303 0.0335 0.0369 0.0404 0.0440 O. 0477

O, 80 O. 0157 O. 0179 O, 0202 O. 0227 O. 0253 O, 0280 O, 0308 O. 0337 O. 0367 O, 0398

0.90 0,0126 0.0t44 0.0163 0.0i82 0.0203 0.0225 0.0248 0.027t 0.0295 0.0320

1.00 0,0096 0.0110 0.0124 0.0139 0.0155 0.0172 0.0189 0.0207 0.0226 0.0244

1. 1900 i, 1200 1. 1400 1. 1600 t. 1800 1. 2000 t. 2200 1. 2400 1,2600 1. 2800

O. O. 0866 O. 0930 O, 0995 0.1061 0,1128 0.1195 O. 1262 O. 1329 0.1_96 O, 1463

0.10 0.0857 0.0921 0.0985 0.1051 0.1117 0.1183 0.1249 0.1316 0.1382 0. t449

O. 20 O. 0832 O, 0894 O. 0967 O, 1020 O. 1084 O, 1149 O. 1214 O. 1278 O. 1343 O. 1407

0.30 0.0792 0.0851 0.0910 0.097t 0.1032 0,1093 0.1155 0.1217 0.1279 0,1340

O. 40 O, 0737 O, 0792 O. 0848 O. 0904 O, 0961 O, 1019 O. 1076 O. 1134 O, 1192 O, 1250

0.50 0.0671 0.0721 0.0772 0.0823 0.0875 0.0928 0.0981 0.1034 O. 1087 0.1140

0.60 0.0596 0.0640 0.0685 0.0731 0.0778 0.0824 0.0871 0.0919 0.0966 0.10t4

0.70 0.0514 0,0553 0.0592 0,0632 0.06?2 0,0712 0.0753 0.0794 0.0835 0,0876

0.80 0. 0430 0. 0462 0. 0495 0, 0528 0. 0562 0. 0596 0. 0630 0. 0664 0. 0699 O, 0733

0.90 0.0345 0.0371 0,0398 0.0424 _ 0451 0.0479 0.0506 0.0534 0.0562 0,0590

1. O0 O. 0264 O. 0284 O. 0304 O. 0324 O. 0345 O. 0366 O. 0387 O. 0408 O. 0429 0.0451
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TABLE 6.0-5. (CONTINUED)

1. 3000 1. 3200 1. 3400 1. 3600 1. 3800 1. 4000 t. 4200 1. 4400 1. 4800 t. 4800

O. O. 1529 O. t595 O. t680 O. 1724 O, 1787 O. 1850 O. 1911 O. 1971 O. 2030 O. 2088

0. 10 0. 1514 0. 1580 0. t644 0. 1708 0. t771 0. 1833 0. t894 0. 1953 0. 2012 0. 2069

0. 20 0. 147t 0. 1535 0. t598 0. 1660 0. 1722 0. 1783 0. t842 0. 190t 0. t958 0. 20t4

O, 30 0. 1402 0. 1463 0. t523 0. 1583 0. 1642 0. 1700 0. 1788 0. 1815 0. 1870 0. 1925

O. 40 O. t308 O. 1365 O. t422 O. t478 O. 1534 O. 1589 O. 1644 O. 1897 O. 1750 O. t802

O. 80 O. 1193 O. 1245 O. 1298 O. t350 O. 1401 O. t452 O. 1503 O. 1553 O. 1602 0. 1650

O• 80 O. 1061 O• 1108 O. 1155 O. t202 O. 1248 O. 1294 O. 1340 O. 1385 O. 1430 O. 1474
O. 70 O. 0918 O, 0959 O. 1000 O. 1041 O. 1081 O. 1122 O. 1162 O. 1202 O. 1241 O. 1280

0. 80 0. 0768 0. 0803 0. 0837 0• 0872 0• 0906 0. 0940 0. 0974 0. 1008 0. t042 0. 1075

0. 90 0. 0618 0. 0646 0. 0674 0. 0702 0. 0729 0. 0757 0. 0785 0. 08t2 0. 0839 0. 0866

I.O0 O. 0472 O. 0492 O. 0515 O. 0536 O. 0558 O.0579 O. 0600 O. 0621 O. 0642 O. 0663

1. 5000 1. 5200 1. 5400 1.5600 1.5800 1, 6000 1. 6200 1. 8400 1. 6800 t. 6800
• 0.2144 0.2199 0. 2252 0.2304 0.2354 0.2403 0.2450 0.2496 0.2539 0.2582

0. 10 0.2t25 0. 2180 0. 2233 0. 2285 0. 2335 0.2383 0.2430 0.2476 0. 2520 0. 2562

0.20 0. 2070 0. 2123 0. 2176 0. 2227 0. 2276 0. 2325 0.2371 0.2417 0.2461 0. 2503

0. 30 0. 1978 0. 2030 0.2082 0. 2132 0. 2180 0.2228 0. 2274 0. 23t8 0. 2362 0.2404

_40 0. 1853 0. 1903 0.1952 0,2000 0. 2047 0. 2093 O. 2138 0, 2182 0. 2225 0. 2266

0. 50 0. 1698 0. 1745 0. 1792 0. 1837 0. 1882 0. 1925 0. 1968 0. 2010 0. 2051 0.2091

0.80 0. t518 0. t561 0.1604 0.1646 0.1687 0.1727 0. J767 O. 1806 0.1845 O. t882

0. 70 0. 1319 0.1357 0. 1395 0. 1432 0. 1489 0. 1505 0. 1541 0. t577 0. 1612 0. 1646

0.80 O. t108 0. 1t40 0. tt73 O. 1205 O. 1237 0. 1268 0. 1299 0. 132_ 0. 1380 0. 1390

0.90 0. 0893 0. 0920 0. 0946 0. 0972 0. 0998 0, 1024 0, 1049 0, 1074 0. 1099 0. 1124

1.00 0. 0683 0. 0704 0. 0724 0. 0744 0. 0764 0. 0784 0. 0803 0. 0823 0. 0842 0. 0861

1. 7000 I. 7200 t. 7400 t. 7600 1. 7800 1. 8000 1. 8200 1. 8400 1. 8600 1. 8800

0. 0. 2623 0.2662 0. 2699 0.2735 0. 2770 0. 2803 0. 2835 0. 2865 0. 2893 0. 2921

0. 10 0. 2603 0. 2642 0. 2680 0.2716 0. 275t 0.2784 0. 2816 0. 2846 0. 2875 0. 2903

0.20 0.2544 0. 2583 0. 2621 0. 2658 0.2693 0.2727 0.2759 0.2790 0. 2820 0. 2849

0. 30 0.2445 0. 2485 0. 2523 0. 2560 0. 2596 0.2630 0.2663 0.2695 0. 2726 0.2756

0.40 0.2307 0,2346 0.2384 0.2421 0.2457 0.2492 0.2526 0.2559 O. 2591 0.262t
0. 50 0. 2131 0. 2J69 0. 2206 0. 2243 0. 2279 0. 2313 0. 2347 0. 2380 0.2412 0. 2443

O. 60 O. 1920 0. t956 O. t99t 0.2026 O. 2061 O. 2094 O. 2127 O. 2t59 O. 2190 O. 2221

O. 70 O. 1680 O. 1713 O. 1746 O. 1778 O. 1809 O. 1840 O. 1871 O. 1901 O. 1931 O. 1960

O. 80 O. 1419 O. 1448 O. 1477 O. 1505 O. 1533 O. 1561 O. 1588 O. 1615 O. 1641 O. 1667

0.90 O. 1148 O. 1172 O. 1196 O. 1220 O. 1243 O. 1266 O. 1289 O. 1311 O. 1333 O. 1355

1.00 0.0880 0.0898 0.0916 0.0935 0.0953 0.0971 0.0988 0.1006 0.1023 0. i040

1.9000 I. 9200 1.9400 1.9600 1. 9800 _000 _0200 _0400 2.0600 2. 0800

0. 0. 2947 0. 2971 0.2995 0. 3017 0. 3038 0. 3058 0. 3077 0. 3094 0. 3t11 0.3t27

0.10 0.2929 0.2954 0.2978 0.3001 0.3022 0.3042 0.3061 0.3079 0.3097 0.3113
0.20 0.2876 0.2902 0.2927 0. 2950 0. 2973 0. 2994 0.3015 0.3034 0.3052 0.3070

0,30 0.2784 0. 2811 0. 2838 0. 2863 0. 2887 0. 2910 0.2932 0.2953 0. 2973 0. 2992

0.40 0. 2651 0.2679 0. 2707 0.2734 0,2759 0.2784 0. 2808 0. 283t 0. 2853 0. 2875
0.50 0,2473 0.2503 0. 2531 0. 2559 0. 2586 0.2812 0.2638 0.2662 0. 2686 0.2709

0. 80 0. 2251 0. 2280 0. 2309 0. 2337 0. 2364 0. 2391 0. 24t7 0.2443 0.2468 0. 2492

0. 70 0. 1988 0.2016 0.2044 O. 207t 0. 2097 0. 2123 0. 2149 O. 2t74 0. 2198 0. 2222

O. 80 O. t693 0. t7t8 O. 1743 O. 1767 O. 1791 O. 18t5 O. 1839 O. 1862 O. 1884 O. 1907

O. 90 O. 1377 O. 1398 O. 1419 O. 1440 O. 1460 O. 1481 O. 1501 O. 1520 O. 1540 O. 1559

t.00 O. 1056 0. t073 0.1089 O. 1t06 O. 1122 O. 1137 O. 1153 O. i168 0.1184 O. t199
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TABLE 6.0-5. (CONTINUED}

2.1000 2.1200 2.1400 2,1600 2.1800 2.,2000 2.2200 2.2400 2. 2600 2. 2800

O. 0.3141 0.3t55 0.3168 0.3180 0.3t92 0.3202 0.3212 0.3222 0.3230 0.3239

0.10 0.3128 0.3142 0.3156 0.3168 0.3180 0.3191 0.3202 0.3211 0.3221 0.3229

0.20 0.3086 0.3102 0.3116 0.3130 0.3143 0.3156 0.3168 0.3179 0.3189 0.3199

0.30 0.3011 9.3028 0.3045 0.3061 0.3076 O. 3090 0.3104 0.3117 0.3129 0.3141

0.40 O. 2895 0.2915 0.2934 O. 2952 0.2969 O. 2986 0.3002 0.3018 0.3033 0.3047

O. 50 O. 2732 O. 2753 O. 2775 O. 2795 O. 2815 O. 2834 O. 2852 O. 2870 O. 2888 O. 2904

O. 60 O. 2515 O. 2539 O. 2561 O. 2583 O. 2604 O. 2625 O. 2645 O. 2665 O. 2685 0.2703

0.70 0, 2246 0. 2269 0, 2292 0, 2314 O. 2335 0.2357 O. 2378 0.2399 0. 2419 O. 2438

0.80 0.1929 0.1950 0.1972 0. 1993 0. 2014 0. 2034 0. 2054 0.2074 0.2093 0.2112

O. 90 O. 1578 O. 1597 O. 1615 6. 1634 O. 1652 O. 1670 O. 1687 O. 1704 O. 1722 O. 1738

1.00 0.1214 6,1228 0,1243 0.1257 0.1271 0,1285 0.1299 0.1313 0.1326 0.1340

2. 3000 2. 3200 2. 3400 2. 3600 2. 3800 _ 4000 2. 4200 2. 4400 2. 4600 2. 4800

O. O. 3246 O. 3253 O. 3260 O. 3266 O. 327t O. 3276 O. 3281 O. 3286 O. 3290 O. 3294

0.10 0.3237 0.3244 0.3251 0.3258 0.3264 0.3269 0.3274 0.3279 0.3284 0.3288

0.20 0,3208 0.3216 0.3225 0.3232 0.3239 0.3246 0.3252 0.3258 0.3263 0.3269

0.30 O. 3152 0.3163 0,3173 0.3162 0.3191 0.320o 0.3208 O. 3215 0.3223 0.3229

0.40 0.3060 o. 3073 0.3086 0.3098 0.3109 0.3120 0.3131 0.3141 0.3150 0.3159

0.50 0.2920 0. 2936 O. 2951 O. 2966 0. 2980 O. 2994 0.3007 0.30t9 0.3032 0.3043

0.60 O. 2722 O. 2739 0.2757 0. 2774 0.2790 O. 2806 O. 2822 O. 2837 O. 2852 O. 2866

0.70 O. 2458 O. 2477 O. 2495 O. 2514 O. 2531 O. 2549 O. 2566 O. 2583 O. 2599 0.2615

0.80 O. 2131 O, 2150 O. 2168 O. 2186 0.2204 0.2221 O. 2238 0.2255 O. 2272 0.2288

0.90 0.1755 0.1772 0.1788 0.1804 0.1820 0.1835 0.1851 0.1866 0.1881 0.1896

1.00 0.1353 0.1366 I).1379 0.1392 0.1404 0.1417 0,1429 0.1441 0.1453 0.1465

2. 5000 2.5200 2.5400 2.5600 2.5800 2.6000 2.6200 2.6400 2.6600 2.6800

O. 0.3297 0.3300 0.3303 0.3306 0.3309 0.3311 0.3313 0.3315 0.3316 0.3318

0. I0 0.3292 0.3295 0.3298 0.3301 0.3304 O. 3307 0.3309 0.3311 0.3313 0.3315

O. 20 O. 3273 O. 3279 O. 3282 O. 3286 O. 3289 O. 3293 O. 3296 O. 3299 O. 3301 O. 3304

0,30 0.3236 0.3242 0.3248 0.3253 0.3258 0.3263 0.3267 0.3272 0.3276 0.3279

0.40 O. 3168 0.3176 0.3184 0.3192 0.3199 0.3206 0.3212 0,3219 0.3225 0.3230

0.50 0.3055 0.3066 0.3076 0.3087 0.3(}96 0.3106 0,3115 O. 3124 0.3132 0.3141

0,60 O. 2880 0,2894 O. 2907 0,2920 0.2932 0.2944 _ 2956 O. 2968 O. 2979 O, 2990

0.70 O. 2631 O. 2646 O. 2662 O. 2676 O. 2691 O. 2705 O. 2719 0. 2733 0.2746 0.2759

O. 80 O. 2304 O. 2320 O. 2336 0.2351 0.2366 0. 2381 O. 2396 O. 2410 0. 2424 O. 2438

O. 90 0.1911 0.1925 0.1940 0.1954 0.1908 0.1981 0.1995 O. 2008 O. 2022 O. 2035

1.00 0.1477 0.1488 0. t500 0.1511 0.1522 0.1533 0.1544 0.1555 0.1566 O. 1576

2.7000 2.7200 2.7400 2.7600 2.7800 2.8000 2.8200 2.9400 2. 8600 2. 8800

O. O. 3319 O. 3321 O, 3322 O. 3323 O. 3324 O. 3325 O. 3326 O. 3327 O. 3327 O. 3328

0.10 O. 3317 0.3318 0.3320 0.3321 0.3322 0.3323 0.3324 0.3325 O. 3326 0.3326

0.20 0.3306 0.3308 0.3310 0.3312 0.3314 0.3315 0.3317 0.3318 0.3320 0.3321

O. 30 O. 3283 0.3286 O. 3289 O. 3292 0.3295 O. 3398 O. 3300 O. 3302 O. 3304 0.3306

0.40 O. 3236 O. 3241 O. 3246 O. 3250 O. 3255 O. 3259 O. 3263 O. 3267 O. 3270 O. 3274

O. 50 O. 3148 O. 3156 O. 3163 O. 3170 O. 3177 O. 3184 O. 3190 O. 3196 O. 3202 O. 3207

0.60 0.3000 0.3011 0o302! 0.3030 0.3040 0.3049 0,3058 0.3066 0.3075 0.3083

0.70 0.2772 O. 2784 O. 2797 O. 2809 O. 2820 O. 2832 O. 2843 O. 2854 O. 2805 O. 2876

O. 80 O. 2452 O. 2466 O. 2479 O. 2492 O. 2505 O. 2518 0.2530 0.2543 O. 2555 O. 2567

O. 90 O. 2048 O. 2061 O. 2073 O. 2086 O. 2098 O. 2110 O. 2122 O. 2134 O. 2146 O. 2157

1. O0 D. 1587 0. 1597 O. 1507 O. t617 0. 1627 O. 1637 O. 1647 O. 1657 O. 1666 O. 1676
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2.9000 2.9200 2.9400 _9600 _ 9800 3.0000 3.0200 3.0400 3.0800 3.0800

O. O. 3328 O. 332_ O. 3329 O. 3330 O. 3330 O. 3331 O. 3331 O. 3331 O. 3331 O. 3332

0.10 0.3327 0.3328 0.3328 0. 3329 O. 3329 0.3330 O. 3330 O. 3330 O. 3331 O. 3331

0.20 O. 3322 O. 3323 O, 3324 O. 3324 O. 3325 O. 3326 O. 3327 O. 3327 O. 3328 O. 3328
0.30 0.3308 0.3310 0.3312 0.3313 0.3315 0.3316 0.3317 0.3318 0.3319 0.3320

0.40 0.3277 0.3280 0.3283 O. 3286 0.3259 0.3291 0.3293 0.329_ 0.3298 0.3300

0. 50 O. 32t2 0. 3218 0. 3223 0. 3227 0. 3232 0. 3238 0. 3240 0. 3244 0. 3248 0. 3252

O. 60 O. 3091 O. 3098 O. 3106 0.3113 O. 3120 O. 3127 O. 3t34 O. 3140 O. 3t46 O. 3152

O. 70 O. 2886 O. 2896 0.2906 O. 2916 O. 2925 O. 2934 O. 2944 O. 2952 O. 296i O. 2970

O. 80 O. 2578 O. 2590 0.2602 0.2613 0.2624 0.2635 0.2645 0.2656 0.2666 0.2677

0.90 O. 2169 0.2180 O. 219t O. 2203 O. 22t3 O. 2224 0.2235 O. 2245 0.2256 O. 2268
1.00 0.1685 0.1694 0.1703 0.17t3 0.1722 0.1730 0.1739 0.1745 0.1756 0.1765

3.0000 3. 1000 3. 2000 3. 3000 3.4000 3. 5000 3. 6000 3. 7000 3. 8000 3. 9000

O. 0.3331 0.3332 0,3332 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

O. 10 O. 3330 O. 3331 O. 3332 O. 3333 O. 3333 O. 3333 O. 3333 O. 3333 O. 3333 O. 3333

0._0 O. 3326 O. 3329 0.3330 0. 3332 O. 3332 O. 3333 O. 3333 O. 3333 O. 3333 O. 3333

0.30 0.3316 0.3321 0.3325 0.3328 0.3330 0.3331 0.3332 0.3332 0.3333 0.3333

0.40 O. 3291 O. 3302 O. 3310 O. 33t6 O. 3321 O. 3324 O. 3327 O. 3328 0. 3330 O. 3331

O. 50 O. 3236 O. 3256 O. 3271 O. 3284 O. 3294 O. 3303 O. 3309 O. 3314 O. 3319 O. 3322

O. 80 O. 3127 O. 3t58 O. 3185 O. 3208 O. 3228 O. 3244 O. 3259 O. 3271 O. 3281 O. 3290

O. 70 O. 2934 O. 2978 O. 30t7 O. 3052 O. 3083 O. 31t2 O. 3137 O. 3159 O. 3179 O. 3197
O. 80 0.2635 O. 2687 0.2735 0.2779 O. 2820 O. 2859 O. 2894 0.2927 0.2957 O. 2935

0.90 O. 2224 O. 2276 0.2326 O. 2372 O. 2416 O. 2457 0.2497 0.2634 O. 2569 0.2603

1.00 0. t730 0.1773 0.18t4 0.1853 0.1890 0.1925 0.1959 0.1991 O. 2022 O. 2051

4. 0000 4. 1000 4.2000 _3000 4.4000 4. 5000 4. 6000 4. 7000 4. 8000 _9000

O. 0.3333 0.3333 0.3333 O. 3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.10 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.20 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.30 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.40 O. 3331 0. 3332 0.3 332 O. 3333 O. 3333 O. 3333 O. 3333 O. 3333 O. 3333 0. 3333

O. 50 O. 3325 O. 3327 O. 3328 O. 3329 O. 3330 O. 3331 O. 3332 O. 3332 O. 3332 O. 3333
O. 60 O. 3297 O. 3303 O. 3308 O. 3313 O. 3316 O. 3319 O. 3332 O. 3324 O. 3326 O. 3327

O. 70 O. 3213 O. 3227 O. 3239 O. 3251 O. 3261 O. 3270 O. 3277 O. 3284 O. 3290 O. 3296

O. 80 0.301t 0.3036 0.3058 O. 3079 O. 3098 0.31t6 O. 3t33 O. 3148 0.3162 O. 3175

0.90 0.2634 0.2665 0.2693 0.272t 0.2747 0.2771 0.2795 0.2818 0. 2839 0. 2859

1. O0 O. 2079 O. 2106 O. 2132 O. 2156 O. 2180 O. 2203 O. 2225 O. 2246 O. 2266 O. 2286

5.0000 5. 1000 5. 2000 5. 3000 _4000 5. 5000 5.6000 5.7000 5. 8000 5. 9000

O. O. 3333 O. 3333 O. 3333 0.3333 O. 3333 O. 3333 _3333 O. 3333 O. 3333 O. 3333

0.10 0.3333 0.3333 0.3333 0.3333 0.3333 O. 3333 0.3333 0.3333 0.3333 0.3333

0.20 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.30 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

O. 40 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0,3333 0.3333
0.50 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

O. 60 O. 3328 O. 3329 0. 3330 O. 3331 O. 3331 O. 3332 O. 3332 O. 3332 O. 3332 O. 3333

0.70 0.3300 0.3305 0.3303 0.3312 0.33t4 0.33t7 0.3319 0.3321 0.3323 0,3324
0.80 0.3183 0.3199 0.3209 0.3219 0.3228 0.3236 0.3244 0.3251 0.3257 0.3263

0.90 O. 2879 O. 2897 0.2915 O. 2932 O, 2949 O. 2964 O. 2979 O. 2993 O. 3007 O. 3020

1.00 0.2303 O. 2323 O. 2341 0.2368 O. 2374 O. 2390 0.2406 O. 2420 0.2435 0.2449
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6.0000 6.1000 6. 2000 6.3000 6.4000 6.5000 6.6000 6.7000 6.8000 6. 9000

O. 0.3333 0.3333 0,3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.10 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0. 3333 0.3333

0.20 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.30 0.3333 0,3333 0.3333 0.3333 0.3333 0,3333 0.3333 0.3333 0.3333 0.3333

0.40 0.3333 0.3333 0,3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.50 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.60 0.3333 0.3333 0.3333 0.3333 0.3333 0. 3333 0. 3333 0.3333 0.3333 0.3333

0. 70 0. 3326 0. 3327 0. 3328 0. 3329 0. 3329 0.3330 0. 3330 0. 333i 0. 3331 0. 3331

0.80 0,3269 0.3274 0.3279 0.3283 0.3288 0.3291 0.3295 0.3298 0,3301 0.3304

0.90 0.3033 0.3045 0.3056 0.3067 0.3077 0.3088 0.3097 0.3107 0.31t6 0.3124

1.00 0, 2462 0.2475 0.2488 0. 2501 0. 2513 0. 2525 0.2536 0. 2547 0. 2558 0. 2568

7. 0000 7. iO00 7.2000 7. 3000 7. 4000 7. 5000 7. 6000 7. 7000 7. 8000 7. 9000

O. 0.3333 0.3333 0.3333 0,3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.10 0.3333 0.3333 O. 3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.20 0.3333 0.3333 0,3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.30 0.3 333 0.3333 0.3333 0.3333 0.3333 0.3333 0,3333 0.3333 0.3333 0.3333

0.40 O. 3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0,3333

0.50 0.3333 0.3333 O. 3333 0.3333 0.3333 0.3333 0.3333 0.3333 O. 3333 0.3333

0.60 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 O. 3333 0.3333

0.70 0.3332 0.3332 0.3332 0.3332 0.3333 0.3333 0,3333 0.3333 0.3333 0,3333

0.80 O. 3306 0.3309 0.3311 0.3313 0.3314 0.3316 0.3317 0.3319 0.3320 0.332t

O. 90 0.3i32 0,3140 0.3148 0.3155 0.3162 O. 3169 0.3175 0.3182 0,3188 0,3193

l. O0 O. 2578 O. 2588 O. 2598 O. 2607 O. 2616 O, 2625 O. 2634 O. 2643 0.2651 0.2659

8.0000 8. i000 8. 2000 8.3000 8.4000 8.5000 8.6000 8.7000 8.8000 8. 9000

O. 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.10 0.3333 0.3333 O. 3333 0.3333 0.3333 0.3333 0,3333 0.3333 0.3333 0.3333

0.20 0.3333 0,3333 0,3333 0,3333 0,3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.30 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.40 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.50 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 O. 3333 O. 3333 9.3333 O. 3333

0.60 0.3333 0.3333 O. 3333 O. 3333 0.33:13 0.3333 0.3333 0.3333 0.3333 0.3333

0.70 0.3333 0.3333 0.3333 0.3333 0.3333 0,3333 0.3333 0.3333 0.3333 0.3333

O. 80 O. 3322 O. 3323 O. 3324 O. 3325 O. 3326 O. 3327 O. 3327 O. 3328 O. 3328 O. 3329

O. 90 0.3199 0.3204 0.3209 0.3214 0.3219 0.3223 O. 3227 0.3232 O. 3236 0.3240

1.00 O. 2667 0.2675 0.2682 0.2690 0.2697 0.2704 O. 2711 O. 2718 0.2724 0.2731

9. 0000 9.1000 9. 2000 9. 3000 9.4000 9. 5000 9.6000 9.7000 9. 8000 9. 9000

O. 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

O. iO 0.3333 0.3333 0.3333 0.3333 0,3333 O. 3333 0.3333 0.3333 0.3333 O. 3333

0.20 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

0.30 0.3333 0.3333 0.3333 0.3333 O. 3333 0.3333 0.3333 0,3333 0.3333 0.3333

0.40 0.3333 0.3333 0.3333 0.3333 0,3333 0.3333 0.3333 0.3333 0.3333 0.3333

O. 60 O. 3333 O. 3333 O. 3333 O. 3333 O. 3333 O. 3333 O. 3333 O. 3333 O. 3333 O. 3333

0.60 0.3333 0.3333 0.3333 0.3333 0.3333 O. 3333 0,3333 0.3333 O. 3333 0.3333

0.70 0.3333 0.3333 0.3333 0.3333 0.3333 O. 3333 0.3333 0.3333 O. 3333 0.3333

0.80 0.3329 0.3330 0.3330 0.3330 0.333i 0.3331 0.3331 0,3331 0,3332 0,3332

0.90 O. 3243 O. 3247 O. 3250 O. 3254 O. 3257 O. 3260 O. 3263 O. 3266 O. 3268 O. 327|

t.00 0.2737 0.2743 0.2749 0.2755 0.276t 0.2767 0.2773 0.2778 0,2783 0.2789
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TABLE 6.0-5. (C_)NCLUDED)

0°

O, t0
0.10
O.N
O.4O
O.SO
0.60
o.70
o._)
O, lO
i.oO

10, 00o0

O. 1833
O. 3835
O. 38M
o. 1,181
0.8383
O. 3838
0.8,188
o, mill
O. U$|
O. 33'P3
O. I"/N

10. lOOO to. moo

o. uu o. 33u
o. uu o. 3333
o. 3333 o. 3333
o. 3333 o. 11,538
o. 3831 o. 3838
O, 8,538 O. 3_38
O. 3338 O.81138
O. 3305 O. 8881
o. 3331 o, _l|
o. 815'11 o. 335'8
o. 2781 o. 3804

to, 3oo0 to. 4oo0 to. sooo 10.eooo ' 10. 7000 10, 80oo 10ogooo '

O. 3333 O. 3533 O. 2838 O. 0533 !+ O. 3338 O. 3333 O, a38$"
O. 9338 O. 3333 O. 3838 O. 3333 O. 3383 O. 3333 O. 3338
O. 3333 O. 3333 O. 3833 O. 33138 O, 3333 O. 3333 O. 3303
O. 3038 O. 3338 O. 3333 O. 3333 O. 3333 O. 3333 O. 3333
O. M338 O. 3833 O. 3338 O. 31333 O. 3333 O. 3333 0. 3383
O. 3838 O, 3383 O.JI3AB O.3833 O. 3338 0,, 3+533 O. ,5,533

O.1338 O.3238 O, 3838 O.3838 O.Sa_ O.3333 O.3333
O.3333 O,1238 0. _ O.33:12 O.3333 O,3333 o. 3333

O,2323 O.1338 O.32_12 O.3833 O.3333 0_.3333 O.3333
O. 38110 O. 3338 O. 3384 O. 3388 O. 3288 O. 3290 O. 3893

o. Moll O.1614 o. 3811 o, 1818 o. 118211 o. 11832 op2837
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E1 FATIGUE.

1.1 IN TRODUC TION.

1.1.1 General Considerations for a Fatigue Analysis.

Before detailing the many factors involved in a fatigue analysis and.

design, it is desirable to give an overview of the general considerations that

comprise a fatigue analysis. Often when a new vehicle, structure, etc., is

being considered, there are many concepts, designs, and configurations to be

cvaluatect, and the engineer must provide ready assistance in the selection of

materials, writing of preliminary test requirements and the life evaluation.

Figure El-1 shows a general flow diagram of information for'a fatigue

analysis. As can be seen from this figure, there are two primary groups of

information that are necessary as input to a fatigue analysis and/or determina-

tion of preliminary test requirements for a given structural component.

One group of information is the necessary data on the given material.

These data include curvcs, graphs, etc., of laboratory tests to determine

stress versus cycles to failure (S-N) diagrams, Modified Goodman diagrams

and other factors which would affect the life of the component in question. The

other information, which is usually the first information that is required, is

the life cycle or service history of the structural component. This is usually

presented in terms of stress-environment versus time curves which show

pressures, temperatures, and other environmental considerations. In general,

with these two groups of information a fatigue analysis and/or the preliminary

test requirements can be determined for the component. Actually, the pre-

liminary test requirements can usually be determined from the life cycle

information alone.

1.1.1.1 Life Cycle Determination.

The important elements in the formation of life cycle data are the design

life, mission profile (or condition lists), and significant fatigue loadings (see

Fig. El-l). The design or anticipated operational life and service loading

spectra are primary considerations in evaluating effects of fatigue on the struc-

tural component of a flight vehicle.

l)csi_n life is generally specified by contractual or managerial agree-

ments, or VAA and Military _;pecifieations, usually in terms of number of

[lights, landings, pressurizations, flight hours, etc.
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FIGURE E]-I. PROCEDURE FOR TYPICAL FATIGUE ANALYSIS
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Mission profiles, or condition lists, are generally used to provide a

basis for the selection of design stress levels, the choice of structural com-

ponents to be tested, the definition of the fatigue test spectra, and evaluation

of the service life. Figure E1-2 contains a typical mission profile for an air-

craft. These mission profile and/or condition lists must contain a detailed

description of the activity versus time (or distance) applicable to each portion

of the flight. Also, the flight configurations and anticipated changes in weight

due to fuel usage, altitudes, speeds, and any other parameters that could affect

the fatigue loading spectra are required. The spectra used for analytical and

experimental evaluation of fatigue should realistically represent the total opera-

tional loading history deseribed by the mission profile and/or condition lists.

For preliminary considerations, all of the detailed data on mission pro-

filesmay not be available. It is then necessary to consider what are the most

significantconsiderations for the component in question. For example, in

TAXI ]
AT _.,TAKE-

| OFF
-- WEIGHT

CLIMB

TIME

CRUISE

FIGURE E1-2. TYPICAL MISSION OR FLIGHT PROFILE FOR AIRCRAFT
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tankage, the most important factors may be pressure and temperature; for

wings, the most important factor may be only temperature.

Now, given all the information above, it is required to evaluate the

stress versus time curves for a given component. Ordinarily, the aerodynamic

data and dylmmie loads must be considered as input to aid in the evaluation of

load and stress levels. In conceptual designs, however, these may be "best-

guess" data. The stress-versus-time curves must, of course, reflect tem-

perature versus time, and other environmental factors present over part of a

mission profile. An example of a life cycle for a component is given in Fig.
El-3.

A • C D

I p_._F TEST - . I - - I -

TIME

75 HOURS Ir '

• •320 ° F

FIGURE El-3. LIFI':-IIISTORY CURVE

Of c,)ur_e, the actual lift, cycle history for a given compom'nt may con-

tain many random type loads which must be condensed into a form which can

be used in fatigue life evaluation. Many techniques are available to accomplish

this, and thcywillbc discussed ina later section. For example, the spectrum

shown in Fig. 1:1-4 for an aircraft flight is simplified to a more. usable, form.

l. 1.1.'2 Material Fatigue Data.

The fatigue strength of a material may be defined as the maximum stress

that can be applit'd repeatedly to the matcrial without eausin_ failure in less
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STORM

TAKE-OFF LANDING

a. Actual Aircraft Spectrum

IIS

2
t_ I

2o0,0o0 2ooo i oo }- - I

l_l 1 1 ,

o

b. Simplified Spectrum

FIGURE E1-4. SIMPLIFICATION OF A FLIGHT SPECTRUM

than a certain definite number of cycles. The endurance strength is that max-

imum stress which can be applied repeatedly to a material for an indefinite

number of cycles without causing failure, The relationship of the magnitude of

repeatedly applied stress to the number of cycles to failure is conventionally

presented in the graphical form known as the S-N curve. The S-N curves are

discussed indc'tail in Paragraph 1.2.3. The shape of theS-N curve, which is

a re'presentation of the fatigue life, will vary according to the conditions rep-

resented. Some factors influencing the shape of the S-N curve are as follows:



1. Type of load

a. Tension

b. Compression

c. Torsion

d. Combined Loads

2. Relationship of maximum to minimum loads

3. Manner of load application

a. Axial

b. Flexural

c. Torsional

4. Rate of load application

5. Frequeney of repetition of loads

6. Temperature of the material under load

7. Environment

a. Corrosive

b. Abrasive

c. Inert

Material condition

a. Prior heat treatment

b. Prior cold work

Design of part or structure

Fabrication techniques

Q
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Thus, it canbe seen that the mission profile or load spectra can dictate
what type of S-N data are required for a fatigue analysis.

Other material information which may be necessary for input into a
fatigue analysis are low-cycle fatigue data, fracture toughness, crack propaga-
tion rates, biaxial stress field data, welding, flaw size effects, and creep
rupture data.

1.1.1.3 Fatigue Analysis.

Referring again to Fig. El-l, with the input as discussed above, a
fatigue analysis can be performed on the structural component or element in

question. Other information which may be required includes limitations on

inspection techniques, determination of a design (fail-safe or safe-life), and

reliability and safety.

Fatigue analysis is usually performed in two phases. The first is the

design phase, which is the structural sizing, material determination, and

factor-of-safety study phase. Usually, in this phase only preliminary data are

available concerning the life cycle and material properties; thus, best estimates

must be made. From this design phase, design stress levels and requirements

for developmental fatigue tests are determined.

The second phase of the fatigue analysis is the interpretation, in terms

of actual flight-measured data, of the results obtained from fatigue tests con-

ducted on structural elements. Also, the vehicle is assessed for damage and

qualified for reuse on subsequent missions.

The details of the fatigue analysis will be discussed in the following

paragraphs;but, _cncrally, the fatigue analysis will determine the safe life for

a structural compon¢'nt, will evaluate accumulated damage during service life,

will specify inspection requirements, and will determine allowable stresses

and/or test requirements.

Therefore, the analysis of fatigue life is a continuing process of study

and reevaluation in light of newly acquired data. Thc acquisition of new loading

and other cnvironm('ntal data can provide additional insight into the levels of

assurance that exist in the evaluation of the service life of structural components

on flight vehicles. Any significant variation between service-recorded loading

histories (and related environmental conditions) and the spectra used to deter-

mine fatigue life would require a reevaluation of anticipated structural life.
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1.1.2 General Background on Fatigue.

A rapid growth of metallurgy, with it'on and steel coming into wide-

spread use in many types of machines and structures occurred during the mid-

dle of the ]9thcentury. During this time, engineers were confronted with

failures that occurred at calculated nominal stresses considerably below the

tt'nsile strength of the materials involved, and, although the materials were

considered ductile, the failures generally exhibited little or no ductility. It

was soon discovered that most of the brittle fractures developed only after the

structures had been subjected to many cycles of loading. Therefore, it came

to bc supposed that the metal degenerated and became fatigued under the action

of cyclical stresses and that its ductile behavior turned brittle, tlowt'ver, later

experiments showed that no degeneration or fatigue of the metal o(:currt,d as a

result of cyclical stressing and, therefore, the idea of metal fatigue is false.

H¢'nee the t(wm "fatigue" is still widely used although it has quite a different

nleatlJllg.

Generally speaking, fatigue can be defined as a progressive failure of

a part under repeated, cyclic, or fluctuating loads.

Fati;_uc failures may be simple or compound. Simple failures result

when a fatigue failure starts from a single crack and propagates until ultimate

failure occurs. A compound fatigue failure results when the origin of the

fatigue crack originates from two or more locations and propagates; the joint

effects cause total failure. The sequence in which failure occurs consists of

three parts: The initial damage occurs in a submicroscopic scale, the crack

initiates and propagates, and the final rupture takes place. The rate at which

the crack propagates varies considerably, depending upon the intensityof stress

and other related factors. Nevertheless, the rate is always much lower than

that observed for low-tcmpcrature brittlefractures in steel.

It has proved difficult, however, to detect progressive failures in the

part during its life; hence, fatigt, e _.ailure8 can occur with little warning and

can cause catastrophic failures. Also, periods of rest (the fatigue stress

removed) do not lead to a recovery from the effects of stress; in other words,

the fatigue damage is cumulative.

The criterion for fatigue failure is the simultaneous action of cyclic

stress, tensile stress, and plastic strain. If any one of these is eliminated,

fatigue is also eliminated.
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Rarely is a mechanical component or structural elt'ment sub ieeted to

constant loads throughout its entire service history. Cyclic loading can result

from vibration, variations in atmospheric b,:ust pattern, variable wind loadings,

repeated temperature changes, and repetition of design load, to mention only
a few.

Many fatigue failures that occur in service are only minor, but others,

such as those which result in the loss of a wing, propeller, or wheel, constitute

a serious threat to life or property. Such failures have become more prevalent

in recent years because of the following factors:

1. The continuing trend toward higher strength/weight ratios.

2. More refined static design techniques and the use of higher working
stress.

3. The use of materials of ultra-high static strength.

Good static design does not necessarily result in satisfactory perform-

ance under repeated loading, and the choice of a design stress close to, or

even higher than, the yield point of the material would almost inevitably result

in failure after a relatively short period of service. There is every possibility

that the fatigue problem will become more acute and that, consequently, the

limitin;_ strength criterion in many future designs will be adequate fatigue

resistance. Thcr(-fore, the likelihood of a fatigue failure should be an early

des ign consideration.

A major problem in designing to prevent fatigue failure lies in the

identification of all the factors that affect the life of a part. Even with the

knowledge of which problems to consider, one is still short of the goal: the

exact determination of fatigue life. Techniques are furnished in the following

sections to enable the engineer to develop fatigue data for a particular part.

All the basic definitions used in fatigue testing and failure are discussed

in Paragraph 1.2. The many types of effects which influence fatigue strength

are prt'sented in Paragraph 1.3. A separate section (Paragraph 1.4) is

de_oted to low-cycle fatigue because of its unique application and terminology.

Vari()us cumulative fatigue damage theories are discussed in Paragraph 1.5.

Paragraph 1.6 is a special section which will be uscful in selecting certain

mat(:rials to resist fatigue failures. Design guides are given in Paragraph 1.7.
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1.2 BASIC DEFINITIONS.

This paragraph describes the basic mechanism of a fatigue failure and

the general methods used in fatigue testing and documenting of the results.

The following definitions are some of the terms frequently used in this

discussion of fatigue analysis:

Stress Cycle Tiw smallest division of the stress-time func-

tion that is repeated. (See Fig. E1-5.)

Nominal Stress Obtained from the simple theory in tension,

bending, and torsion, neglecting geometric

discontinuities.

Maximum Stress

Minimum Stress

Mean Stress

Stress Range

Stress Amplitude

Stress Ratio

The largest or highest algebraic value of a

stress ill a stress cycle. Positive for tension.

S
max

The smallest or lowcst algebraic value of a

stress in a stress cycle. Positive for tension.

S
rain

The algebraic mean of the maximum and mini-

mum stress in one cycle. S
m

The algebraic difference between the maximum

and minimum stresses in one cycle. S
r

Half the value of the algebraic difference

between the maximum and minimum stresses

in one cycle, or half the valuc of the stress

range. S
a

The ratio of minimum stress to maximum

stress.

Fatigue Life The number of stress cycles which can be sus-

tained for a given test condition.

Fatigue Strength The greatest number of stress cycles which

can be sustained by a member for a given

number of stress cycles without fracture.
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"l'h(' highest stress level that a inember can

withstan(I for an infinite number of load cycles
without failure.

The fatigue life for which I) pt'rccnt of the

sample has a longer life; lot example, Ng0 is

the fatigue life for which 90 percent will be

expected to survive and 10 percent to fail.

I_tt

l
TIME :

1.2.1

FIGURE El-5. STRESS VERSUS TIME ('UI_VI'}

Mechanism of Failur('.

In investigating a fracture surface which resulted from fatigur, two

zones are evident, namely, a fatigue zone and a rul)turc zone,. The fatigue

zone is the area of the (,rack propagation; the area of final failure is called the

rupture, or instantaneous, zonr. The instantaneous zone provides the following

information for investigating a failed specimen: (hlctility of the material, type

of loading, and direction of loading. The distortion and damage pattern will be

sufficiently apparent to designate the type and direction of loading. In addition,

the relatiw; sizes of the instantaneous zorn. and the fatigue zone relate the

degree ofoverstrcss applied to the structure. The degree of overstress can

bc categorized an follows: Highly overstresscd if the, area of the fatigue zone

is very small compar(M with the area of the rul)ture zol,e, medium overstress

if the size or area of both zon(>._ are nearly equal, and low ovt'rstress if the

area of the instantam.'ous zone is very small.

The following f('atures arc characteristic of the t:ltigue zone: a smooth,

rubbed, velvrty al)pcarance; a presence of waw.s known as clam shells or

oyster shells, .stop marks, and beach marks; an(I a herringbone pattern or

granular trace which shows the oriuiin of the crack. Most clam shell marks are

concave with respect to the origin of the crack but can also bc convex, depending
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on the brittleness of the material, degree of overstressing, and the influence

of stress concentrations. In general, the stop marks indicate the variations

in the rate of crack propagation due to variations in stress amplitude in a cyclic

application varying with time. There arc some aluminum alloys that may not

exhibit these waves but instead have a smooth appearance. (See Fig. El-6.)

__RUPTURE ZONE

FATIGUE_ORIGI_4 OF _.

FATIGUE CRACK--_ 7_ / ./._k_ V if: |/_....._._CONC:AVEMARKSKNOWNAS

CLAM SHELLS OR STOP MARKS

HERRINGBONE PATTERN

OR GRANULAR TRACE

/

FIGURE El-6. A TYPICAL FATIGUE FAILURE SECTION SHOWING

IDENTIFYING MARKS

A fatigue fracture, whether the material is ductile or brittle, follows

that of a brittle fracture. Not all brittle failures are fatigue failures, however.

The most recognizable features of a fatigue failure are lack of deformation

pattern and the existence of a singular plane of fracture, usually a 90-degree

cross section.

Most of the fatigue cracks discussed above were caused by tension

loads, tension strains, and tension stress. Typical fracture appearances of

fatigue failures in bending and torsion are shown in Fig. El-7. Bending

fatigue failure can be divided into three classifications according to the type of

bending load, namely, one-way, two-way, and rotary. The fatigue crack for-

mations associated with the type of bending load are shown in Fig. El-6.

Torsional fatigue failures occur in two modes: (1) Longitudinal or transverse

along planes of maximum shear and (2) helical at 45 degrees to the axis of the

shaft and along planes of maximum tension. Transverse fractures are com-

monly associated with a smooth surface because of the rubbing of both sides, a

characteristic that can be used to identify this type of fracture.
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However, a statement of the signs and features of fatigue fractures does

not explain the true nature of the physical changes which take place inside

metals under cyclical stress to cause their breakdown.

To understand these changes, it is necessary to study the internal

mechanism of fatigue behavior in the whole volume of the metal; but this sub-

ject has yet to be thoroughly investigated. A considerable amount of theory

has been written about fatigue fracture, and there are many interpretations as

to the process of metal fatigue. (See Rcf. 1.)

Fatigue is basically a property of crystalline solids, and the initiation

of fatigue cracking is a problem in dislocation physics. It is the result of the

motion and interaction of dislocations activated by cyclic stress. A simple

description of the mechanism of fatigue cracking is given in three stages:

Stage 1. During the early cycles of stressing, the dislocations orig-

inally present in the crystal grains multiply and their density increases sharply.

An irregular and disoriented cell wall, or subgrain boundary, starts to form.

The fine slip lines that appear at first in some favorably oriented grains are

thin and faint, according to the maximum resolved shear stress law. As the

number of stress cycles increases, slip lines become more numerous. Some

are localized, some continuously broaden, and the very pronounced ones

become the so-called persistent slip bands. Meanwhile, the crystals are dis-

torted and strain-hardened to saturation. Then, dislocation motion in one

direction may be fully reversed with the stress. New dislocations and their

movements are generated only in some local slip zones in which microstruc-
tural features are not the same in both directions of motion. Sometimes

annihilation of dislocations, or other dislocation mechanisms, may lead to

relief of lattice strains or strain softening. Strain softening, local recrystalli-

zation, overaging, clustering of point defects, and other thermal activation

processes are considered to be secondary, or side effects.

Stage 2. After the persistent slip bands are fully matured, thin ribbon-

like protrusions, called extrusions, of metal are emitted from the free sur-

face, and fissures, called intrusions, appear. Both develop along the per-

sistcnt slip planes. Several dislocation models or mechanisms have been

proposed to explain how the extrusions and intrusions are formed. (See Ref.

1.) In some of the proposed models, dislocation cross slip is considered to

be a critical process.

Because the intrusion is the embryo of a crack, the crack initiates

along slip planes according to the maximum resolved shear. Sometimes cracks
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may initiate at cell walls or grain boundaries, although the majority start at

the surface of a member.

Stage 3. The crack propagates in a zigzag4 transgranular path along

slip planes andeleava_e planes, from grain to grain, and maintains a general

direction perpendicular tothc maximum tensile stress. As much as 99 per-

cent of the fatigue lift; of a member is spent in the development of fissures into

microscopic cracks, and finally complete fracture ensues. Many factors

affcetin,_ fatigue properties arc those that mainly influence the rate of crack

propagation.

1. '2.2 I,'ati_ue Testing Techniques.

The only way to obtain a quantitative m|:asure of fati_4ue strength is to

carry out fatigue tests under controlled conditions. Thert, ar(, many different

methods of carrying out such tests, and numerous types of testing equipment

have b,,en developed.

Probably the most widely used method is the rotating bending test, in

which small cylindrical specimens, with or without notche,_;, are loaded either

as ('antilevt'rs or as beams under four-point loading. As the specimen is

rotated, the strc'ss at any point in it varies between upper and lower limits

which arc equal in magnitude, but opposite in siKn, the plane and direction of

the loads remaining constant throughout. A possible arranKement of such a test

is shown diagran_matieally in Fig. El-8. This type o[ test is simple to carry

out, generates results comparatively rapidly and mak[,s use of equipment and

sl)e('inlt_rls that are reasonably int;xpensive. It is particularly suitable for use

in detc'rmining what might be called the inherent fati_/ue strength of materials,

CYCLE
COUNT E R

MOTOR
FLEXIBLE -,,,-7 MAIN

k., L

1

3

FIGURI': I.:! --8. GI,:NEtLAL ARRANGEMENT OF ROTATING I_ENDING

(CANTILEVEII TYPE) FATIGUE-TESTING MACIIINE
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since in such work one is interested in the material itself,i.e., itscomposi-

tion, microstructure, etc., rather than its form in the engineering sense.

However, to provide data for design purposes, such tcsts are not of

great value since designs can rarely, if ever, be reduced to such a degree of

simplicity that it is necessary to know only the basic fatigue strength of the

material. To provide specific information for the designer, tests must be

carried out on the actual joint forms. This is true of structures fabricated by

any means, but is particularly relevant in the case of welding. The welding

process cannot satisfactorily be scaled down without simultaneously altering
some of its effects.

Therefore, fatigue testing of welded components normally involves the

use of equipment of much larger capacity than that used for fundamental inves-

tigation. The method of loading is also different, the objective being at all

times to reproduce as faithfully as possible the type of loading that is likely to

occur in service. With this end in view, the loading conditions used in the

fatigue testing of welded joints and structures can be reduced essentially to

three types:

1. Axial load testing

2. Tests in bending, mainly on specimens in the form of beams

3. Pulsating pressure testing of pressure vessels and pipework.

All the numerous testing machines that are available and suitable for

carrying out such tests will not be described here in detail, but itmay be useful

to describe some of the essential features since, to some extent, the charac-

teristics of fatigue-testing machines have influenced the research work that
has been carried out.

Axial load fatigue-testing machines may be divided essentially into

three types according to the method by which they are driven, i.e., hydraul-

ically, mechanically, or electromagnetically. Hydraulic machines which give

higher loads than those operated either mechanically or electromagnetically

are available, but testing speeds are limited.

A mechanically opcrated machine which has been used extcnsively in

fatigue testing of welded components is the walking beam machine, first devel-

oped in the United States at the University of Illinois. The arrangement of this

machine is shown diagrammatically in Fig. El-9. It consists of a simple lever
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FIGURE El-9. GENERAL ARRANGEMENT OF WALKING BEAM MACtlINE

with the upper beam actuated by a driven eccentric which is continuously vari-

able uptoa maximum throw of 4 inches. The load is transmitted to the beam

through a dynamom(_ter, which can 1)o us('d for load n_('asurcment, but since

the dynan)onleter also measures any frictional loads in the bearings, it is more

satisfactory to adjust the load by using strain gages attached to the specimen.

The beam may be used either as a first-order lever, with the specimen mounte(l

in the end grips, or as a second-order lever, which is particularly satisfactory

for testing flexible specimens (such as beams in bending) that require a fairly

large strain amplitude at lower loads. Figure !.:1-8 shows the arrangement

for the latter case. It should be noted that it is a constant strain amplitude

machine, in contrast to the hydrauli(, machines referred t() above which supply

constant loads.

Fatigue is a problem ()f such magnitude in the aircraft industry that

often full-scale components, or even entire aircraft, are tested. In one method,

the load is appli('d to the sp(_'cimen by means of hydrauli(, jacks in specially

constructe(I t(_st rigs. Anoth(,r method is to excite, a structuraleomponcnt near

its resonant frequency by attaching it to a mechanical oscillator and supporting

the: compon('nt at its node points. B('cause each fatigue text of a large-scale

aircraft costs several million dollars, usually only on(' aircraft is tested.

Special techniques relating to thermal stress testing and low cycle

fatigue testing will l)e discussed in the following sections.
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1.2. ? P resentation of Test Results.

1.2.5.1 S-N Diagrams.

Since the beginning of fatigue testing, S-N curves have been the back-

bone of fatigue data. S denotes stress amplitude or the maximum cyclic stress,

and N denotes the number of stress cycles to complete fracture. The linear S

versus log N scale is the most common and is used almost exclusively in engi-

neering. (See Fig. El-10.)

I
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NUMBER OF STRESS CYCLES TO FAILURE (LOG SCALE)

FIGURE El-10. GENERAL FORM OF S-N CURVE

Several attempts have been made to find general mathematical laws for

the relation between load and life, and several equations have been proposed to

express the S-N relations more or less empirically. Use of these equations

will embody the data in a mathematical form for data reduction, analysis, and

standardization of curve-fitting methods. It may also provide some under-

standing of the S-N relations.

For certain metals and alloys, including the ferrous group, the S-N

curve becomes asymptotic to a horizontal line. The stress value corresponding
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to this asymptote, or the stress corresponding to failure at an infinite number

of cycles, is called the fatigue (or endurance) limit.

The fatigue limit of a material teste, l in axial loading is usually lower

than that of the same material tested in reverse (rotating) bending. In axial

loading the stress is uniform throughout the cross sectmn; whereas, a large

stress gradient exists whena bending load is applied. Thus, in axial loading,

it is probable that the maximum stress will occur at a discontinuity in the

material. Fatigue tests in torsion or shear loading indicate that the torsional

fatigue limit of polished steel specimens is approximately 58 percent of the

flt,xural or tensile fatigue limit. This figure is consistent with the distortion-

energy theory which predicts that the shear properties of steels are 57.7 per-

cent of tensile properties.

1.2.3.2 Goodman Diagrams.

The prct'eding discussion on S-N curves and fatigue limits has dealt

with stress cycles that alternated about a zero mean stress. But the str('ss

cycle usually varies about a mean static value that may be positive, zero, or

negative. Whena cyclic stress varies about a nonzero:etatie value, prediction

of failure must consider the combination of static and varying stresses.

Several types of failure diagrams relate the range of operating stress

to the material properties ina general manner. All the diagrams indicate that

the allowable stress range decreases as the mean stress approaches some

maximum value.

The Goodman diagram was the first type proposed, and the modified

Goodman diagram is the [orm most commonly used. Because it consists of

straight lines, it is easy to construct. The Goodman equation is

a e (y

where S is the fatigue strength in terms of the stress amplitude, S is
a m

the superimposed mcanstress, S is the endurance limit when S = 0, and
e m

T is the ultimate tensile strength. This equation is plotted in Fig. EI-ll.
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FIGURE El-If. GOODMAN DIAGRAM

In the modified Goodman failure diagrams (Fig. El-12), the range of

operating stresses is described by three values: mean stress, maximum

stress, and minimum stress.

I \..-,.o \ .,o_ ...___I
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FIGURE El-12. MODIFIED GOODMAN DIAGRAM
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In the maximum-minimum form of motlified Goodman diagram, a stress

cycle is plotted as a point on the diagram instead of as a lint;. This form of

diagram is advantageous for it requires only the determination of the maximum

values of a half cycle; finding the mean cycle is not required.

In the maximum-minimum form of diagram, a stress cycle in which

stress is zero is plotted as a point on the line of zero mean stress. Similarly,

a stress cycle from zero stress to a tensile value is plotted as a point on the

maximum stress axis. Although these points have different mean stress values,

they represent equivalent reversed stress cycles. In this form of diagram, the

fatigue limit for reversed stress is plotted as a line of constant equivalent

reversed stress instead of being a point as in the other forms of failure

diagrams.
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1.3 FACTORS INFLUENCING FATIGUE STRENGTH.

Fatigue properties obtained from a carefully polished specimen in the

ideal environment of the test laboratory are rarely achieved in practice. A

wide variety of factors affect the behavior of a member or assembly under

conditions of fatigue loading. The most obvious parameters are those that deal

with the sign, magnitude, and frequency of loading; the geometry and material

strength level of the structure, and the ambient service temperature. Those

processing and metallurgical factors that determine the cleanness and homo-

geneity of materials, the sign and distribution of residual stresses, and the

surface finish often are not considered. These processing and metallurgical

factors, however, may have an overriding influence on the fatigue performance

of the structure, to its benefit or detriment. The factors which influence

fatigue strength will be classified into four main groups for discussion in this
section:

1. Metallurgical Factors

2. Processing Factors

3. Environmental Factors

4. Design Factors

1.3.1 Metallurgical Factors.

The distinction between processing factors and metallurgical factors

is not always clear. In fact, it is rather arbitrary in some areas. In this

section, however, the focus is on regions within the material, either at the

surface or core, which adversely affect fatigue properties. These regions may

arise from melting practices or primary or secondary working of the material,

or may be characteristic of a particular alloy system. In nearly every instance

the detriment to fatigue properties results from a local stress-raising effect.

1.3.1.1 Surface Defects.

Primary and secondary working are often responsible for a variety of

surface defects that occur during the hot plasticworking of material when lap-

ping, folding, or turbulent flow is experienced. The resultant surface defects

bear such names as laps, seams, cold shuts, or metal flow through. Similar

defects are also noted in cold working, such as filletand thread rolling, in

which the terms lap and crest cracks apply. Other surface defects develop
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from the (,mbe(Iding o1 foreign luaterial under high pr('ssures during the

working process. Oxides, slivers, or chips ofthebase matt, rialare occa-

sionally roiled or forged into the surface. The surface defects in castings

might include entrapped die material, porosity, or shrinkage; in the extrusion

or drawing processes such surface defects as tears and seams are not

uncommon.

A 11 of the aforementioned surface defects produce a notch of varying

intensity which acts as a §tress-raiser under load to the detriment of fatigue

properties. Because most of these defects are present prior to final processing

and arc open to the surface, standard nondestructive testing procedures such

as penetrant and magnetic particle inspection will readily reveal thcir pres-

ence. If they are not detected, however, the defects may serve as a site for

corrosion or crack initiations during processing (in heat treating, cleaning,

etc. ), further compounding the deleterious effect on fatigue strength.

1.3.1.2 Subsurface and Core Defects, Inhomogeneity, and Anisotropy.

Subsurface and core defects considered here are those which originate

in the as-cast ingot. Voids resulting from gas entrapment (porosity) and

improper metal fill (shrinkage) arc not uncommon in cast materials. In

castings (ingots)that are to be subsequently hot and cold reduced, the portion

of the ingot containing the preponderance of voids is often removed and dis-

carded. The remaining internal defects normally weld shut under the combi-

nation of temperature and pressure involved in the reduction of the ingot,

resulting in a continuous, homogeneous product. Occasionally, when the sur-

faces of the defects are oxidized or otherwise contaminated, healing (welding)

of the opposite surfaces is precluded and the defective area is retained in the

wrought product. Terms such as unhealed porosity and laminations arc applied

to this condition. Since these defects existed before working, in the final

wrought product the major diameter of the oblate or rod-shaped flaw is parallel

with the direction of plastic deformation.

I.'atigue testing of high-strength ah, minum alloy specimens containing

defects of the type discussed in this section revealed the following trends:

I . Stressing parallel to the defect plane has a small effe('t on the

fatigue strength, provided the defect does not intersect a free
surface.

2. The effect of defect size on the fatigue strength in the short trans-

verse direction of testing (that is, _ith the plane of the grain flow

normaltothe direction of loading) is shown in Fig. E1-13.
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An internal defect adversely affects fatigue by introducing a stress

concentrator into the material and reducing the load resisting

cross-sectional area.

With respect to fatigue properties, when the edge of one defect is

within approximately two diameters of the center of another defect,

these should be considered as one large defect having a diameter

equal to the extreme distance which will include both defects.

Inasmuch as most stLbsurface d('t'ccts do not int('rsect a surface of a

part, inspection is somewhat morc difficult. For wrought pro(Ita-ts, ultrasonic

or eddy-current testing might be used, whereas, for castings, fluoroscopic or

radiographic inspection is preferred.
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There are two types of inclusions in metals, nonmetallic and inter-

metallic. The amount and distribution of these inclusions is determined by

the chemical composition of the alloy, the melting and working practice and

the final heat treatment of the material. Nonmetallic inclusions are usually

complex compounds of the metallic alloying elements with oxygen, nitrogen,
carbon, phosphorus, sulphur, and silicon. The size of the inclusion is an

important parameter in assessing its effect on fatigue properties, as shown in

Figure E1-14 for 4340 steel heat treated to the 260 to 310 ksi tensile range.

Although this relation does not apply to all inclusion types, it has been sug-

gested that a separate curve exists for each predominant type of nonmetallic
inclusion.
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FIGURE E1-14. CORRELATION BETWEEN ENDURANCE LIMIT AS

PERCENT UTS AND AVERAGE LARGE INCLUSION ARITHMETIC

MEAN DIAMETER

Intermetallic inclusions may be either complex metallic compounds or

second phases with variable compositions. The type of intermetallic constit-

uent is believed to be an important consideration in determining the effect on

fatigue life, although the mechanism is not clearly understood. The site of

such an inclusion, however, is a discontinuous region with physical and mechan-

ical properties different from those of the matrix phase. Under load these
areas would serve as stress-raisers.
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Some alloy._ ar(: subject to miero._tructural banding which often has

an adverse effect on [atiguc properties. The banding is usually prc_luced by

local chemical segregration which stabilizes a phase not normally present in

the alloy at room temperature. The severity of the loss in fatigue properties

is dependent on the direction of the banding relative to the maximum stress

direction (the banding is always in the direction of prior working) and on the

degree of compatibility between the banded and matrix phases. Banded

retained austenite and delta ferrite are occasionally seen in a large number of

low-alloy and stainless steels. The presence of ferrite in these is intentional;

in others it is not. The loss in fatigue properties produced by ferrite stringers

in 431 stainless steel is shown in Fig. E1-15.
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Finally, the grain and subgrain structure may also reflect a preferen-

tial alignment. As previoiasly indicated, aniqotropy is most pronounced in the

short transverse grain direction. It has been shown in tests on 7075-T6 alumi-

num alloy forgings that the endurance limit is reduced by approximately 20

percent when testing in the short transverse direction as opposed to the longi-

tudinal direction.

For many material forms such as sheet, light plate, and extrusion, the

loading normal to the short transverse direction is low such that fatigue pro-

perties in this direction are not critical. For heavy plate, bar, and forgings,

however, directionality or anisotropy can be a crucial design consideration.

1.3.1.3 Heat Treatment.

The heat-treatment processes are potentially a source of hazard to a

i material because at the elevated temperatures encountered many diffusion con-

_trolled mechanisms arc operative that could harm the integrity of the alloy if

not properly controlled. If the furnace atmosphere is not controlled, the

chemical composition of the surface layer might be altered and, thus, produce

a low strength or brittle surface skin. The diffusion of hydrogen into alloys

during heat treatment has long been recognized as a serious problem. Hydro-
gen embrittlement of low-alloy steels and titanium alloys can produce disas-

trous results in subsequent processing or in service. Hydrogen is also sus-

pect in the blistering mechanism in aluminum alloys. With respect specifi-

cally to fatigue properties, a brittle case will render an alloy susceptible to

surface cracking. The introduction of a shallow crack produces a notch effect,

so that the detriment to fatigue (life) is essentially one of a high surface

stress raiser in a layer of material with low fracture toughness.

If the heat-treating temperature is not properly controlled, grain

coarsening may occur which lowers fatigue properties of some alloys. Over-

heating of high-strength aluminum alloys is particularly disastrous, since

most of these alloys are subject to eutectic melting at temperatures only

marginally higher than the solution heat treatment temperature. Eutectic

molting results in a gross embrittlement of the alloy coupled with reduction in

_trength. The difficulties with austcnitizing or solution heat treating at too low

a temperature are associated with a lack of hardening potential for the sub-

sequent quench and age or temper treatments.

In order to develop full strength, most martensitic and age hardening

alloys must be rapidly cooled from high temperatures by quenching into a

liquid medium. There are at least two considerations in the quenching process
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that could affect fatigue prol)erties, lligh residual quenchstresses are built
up in most materials and, if the geometry of the part bt_ing quenched is highly

irregular, the tensile strength of the material may be exceeded at points of

high stresses resulting in the not too uncommon quench cracks. On'the other

hand, if the quenching rate is for some reason retarded, preferential precipita-

tion may occur which adversely affects fatigue properties.

1.3.1.4 Localized Overheating.

There are some processes that are capable of developing high, localized

surface temperatures, the consequences of which are often difficult to detect and

occasionally are responsible for a failure in service. Grinding is one of these

processes.

The effect of severe grinding on the fatigue properties of high-strength

steel is shown in Fig. El-16. The rapid quenching of the material immediately

below the grinding wheel by the large mass of cold metal can produce cracks.

If actual cracking does not result, brittle, crack-prone, untempered martensite

might result or, with lower temperatures, softened, overtempered martensite.

High-strength steels (for which grinding is most often used) are particularly

sensitive to grinding techniques.

In the electroplating processes a plating burn sometimes is observed

as the result of arcing between the anode and the work piece. Such a burn

generally produces a larger heat-affected zone than improper grinding and is

often characterized by evidence of surface melting. The potential damage to

the substrate is similar to that discussed relative to grinding.

Electrical discharge machining (EDM) is a process of metal removal

that employs a spark-erosion principle. The intermittent spark produces

highly localized melting on the surface of the workpiecc and metal fragments

which are swept away by the dielectric coolant. Although the heat-affected

zone is shallow, surface cracking and untempered martensite are sometimes

observed on martensitic alloys along with eutcctie melting and other evidences

of overheating in aluminum alloys if the process is not properly controlled.

1.3.1.5 Corrosion Fatigue.

Corrosion fatigue is that peculiar interaction of a corrosive environ-

ment with an alternating stress field which causes accelerated crack initiation

and propagation, possibly where neither the environment nor the stress acting

alone would be sufficient to produce a crack. In the practical application of the

term, the corrosive environment usually serves to introduce stress raisers



i

t

Section E 1

1 November 1972

Page 30

1 I I I

It 8 II Ii

!81"Nlltii ImNnil_

©

e,D

.<,

e/3

Z

-...._eo m
-I " _ >

-1 _ zm _

5

• ©

_ m

:5

I

I

M



_,.-.-r._,,,;_. PAGE ],_

OF POOR QLIAUTY
Section E 1

1 November 1972

Page 31

in the surface in the form of corrosive attack. The irregular surface, in turn,

is detrimental to the fatigue properties of the part in a mechanical or geometric

sense. For materials susceptible to embrittlement by hydrogen or for parts

which are exposed to a fairly continuous corrosive environment with intermit-

tent applications of loading, the cicacking mechanism may be somewhat more

complex. An example of corrosion fatigue testing is presented in Fig. E1-17,

which illustrates the effect of a corrosive test environment on the fatigue pro-
pcrties of precipitation-hardened stainless steels.
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1.3.1.6 Fretting Corrosion.

The fretting corrosion phenomem,n has been defined as that form of

damage that arises when two surfaces in contact and normally at rest undergo

relative periodic motion. In vacuum or inert atmospheres the process is

eomplett'ly mechanical, but in ordinary atmospheres oxidation is also involved.

Fretting is potentially dangerous because it can result from extremely small

surface monuments that often cannot be anticipated or even prevented. Motions
with amplitudes as low as 5 × 10-9 inch are sufficient for this mechanism to be

operatiw'.

Soft metals exhibit a higher susceptibility to fretting fatigue than hard

metals. Fretting corrosion increases with load-amplitude, number of load

cycles, contact pressure, and an increase of oxygen in the environment. The

oxidized particles that accumulate between the fretting surfaces lead to both

chemical and mechanical surface disintegrations which generate nuclei for

fatigue crack initiation. The presence of fretting may reduce fatigue strength

by 25 to 30 percent, (tependin._ on loading conditions. When a part or assembly

is known to be critical in fretting, one or a combination of the following factors

will be b('neficial in reducing or eliminating fretting corrosion:

1. l':lectroplating critical surfaces.

2. Case-hardening w(,aring surfaces.

3. Lubricating.

4. l.:liminating or dampening vibration.

5. Increasing fastener load or closeness of fit.

_;. Bonding elastic material to surface.

7. l':xcluding atmosphere.

I .3.1.7 Reworkin_.

'l'h,. success of any repair or rework procedure ix necessarily closely

(l¢'pend_'nt cm the analysis of the degrading mechanism. Only with a proper

_mderstanding of the cause of failure can a satisfactory permanent r_'work be

_l_'COmldishe, I. In the area of service damage caused b3 fatigue, in-service

failure, ,,rengineering test failure of a part usually provides tht: impetus to

-N
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rework procedures. In general, these procedures can be separated into two

categories: those parts that contain actual cracks and those that are believed

to have undergone fatigue damage.

Usually, cracked structural parts are scrapped and replaced with a new

part. Occasionally, however, because of the location of the crack or other

circumstances, such a part is repaired. Repair would consist of removing the

crack or blunting its root and supporting or strengthening the damaged area

by means of doublers, straps, etc. Care must be taken in doubler design so

that new sites of fatigue cracking are avoided. Factors such as fretting cor-

rosion, dissimilar metal corrosion, detrimental stress redistribution, access,

and practicality are prime considerations in establishing such a rework method.

Procedures frequently used to remove minor stress concentrators are

those such as increasing a sharp edge, corner, or fillet radius, and grinding

or buffing out coarse tool marks, nicks, and scratches. If assembly stresses
are high, a joint having mismatched surfaces might be planed or mechanically

realigned, or improved clearance could be provided. When fretting is contrib-

uting to fatigue cracking, a wear strip or lubricant may be inserted between the

working surfaces, or the fasteners may be tightened to reduce or eliminate

motion. Residual compressive stresses are often introduced into the critical

areas of fatigue by shot peening or coining operations.

Estimating the depth of fatigue damage on a surface or below the tip of

a fatigue crack is difficult and should be experimentally determined for all

alloy-forming-heat,treating conditions and the load spectrum. Preliminary

data indicate that the dcpth of fatigue damage beneath cracks for 7()75-T6

aluminum alloy is approximately 0. 003 inch. However, for high strength steel

it may be many times greater than 0.003 inch.

1.3.2 Processing Factors.

Fatigue usually initiates at a surface because stresses are normally

higher there, particularly since most parts undergo ben[ling loads resulting in

substantially higher stresses in the outermost fibers. The detrimental (or

beneficial) effect of processing on fatigue properties is usually manifest in its

effect on the strength level or resi, lual stress condition, or both, of the surface

ma te r ia 1.

1. "3.2.1 tlardness.

Str_'ngth of metals commonly us,.'d for enlzincering purposes is generally

high_,r with increased hardness, up to a point. In steel, for example, inereas(xl
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hardness does not necessarily indicate a higher fatigue limit because the

fatigue limit is also affected by the surface finish. Curves of average fatigue

limit values for a range of surface finishes are shown in Fig. El-18. Because

these curves represent average values, allowance should be made for size

effect (larger size generally means lower fatigue limit).

HAMONEll

ROCKWELL C 0 10 30 26 30 36 4O 4S 150

IIMIIMELL 100 100 240 280 3,?0 310 400 440 4410

100 1

POLl HED /"

•J .,, _LLED:--I

26  .  -,OROEO SOR,ACE,.U,ERL,,,T
•"FORGED SURFACES, LOWER LIM, T

o J I i

M tN 126 1_ 1_ 1N 200 2_ 34O

TENSILE STRENGTH (1031hi|

FIGURE E1-18. EFFECT OF HARDNESS AND SURFACE FINISH ON

FATIGUE LIMIT OF STEEL IN REVERSED BENDING

( 0.3-INCH-DIAM ETER SPECIMEN)

1.3.2.2 Forming.

By definition, the forming process produces plastic deformation (and

residual stresses) ina part to achieve a permanent change in configuration.

Occasionally these residual stresses may prove beneficial; howew'r, usually

there is some loss in fatigue life. Consequently, the residual stresses pro-

duced in forming (and their effect on fatigue) often dictate the forming limits
for materia Is.
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Residual forming stresses in th(_' ('ompl('tcd part at'(' (l(,i)endent on at

least three additional factors: The hcat-treatm('nt-forming sequence in proc-

essing, the temper of the material, and tile forming teml)eraturc. Parts formed

and subsequently completely heat treated arc free of prior forming stresses.

Parts formed and stress relieved contain reduced forming stresses, depending

upon the stress relieving temperature. The forming temperature and the mate-

rial temper, e.g., AQ, T-4, or T-6 for aluminum alloys, also influence the

magnitude of forming stresses to the extent that they affect the yield strength

of the material at the forming temperature. In general, the lower the yield

strength when forming occurs, the weaker the residual stress field generated.

1.3.2.3 Heat Treatment.

/

Residual stresses are both produced and relieved in many of the common

heat treat cycles for both ferrous and nonferrous alloys. The principal source

of residual stress occurs in quenching from high temperature solutioning or
austcnitizing treatments. Residual stresses are built up by nonuniform cool-

ing rates between surface and core. For aluminum alloys, differential cooling
produces residual surface compression and core tensile stresses. These sur-

face compressive stresses are of sufficient magnitude to produce slightly
higher fatigue strengths.

Aging temperatures for aluminum alloys are too low to produce any

appreciable stress-relieving; however, most steels are tempered at tempera-

tures sufficiently high to affect residual quench stresses. Consequently, for

steels after tempering, quenching stresses are not recognized as a detrimental

factor. Quenching stresses in aluminum alloys, however, persist after com-

pletion of heat treatment, as indicated by distortion in machining, increased

susceptibility to stress corrosion and possible detrimental effects on fatigue

life. To minimize these effects in aluminum alloys, special processing

techniques have been developed, such as reducing section sizes by rough

machining before heat treatment, use of less severe quenches where possible,

and stress relief/equalization by cold working of quenched materials (for

example, stretch-stress relief tempers).

1.3.2.4 Surface Finish.

A given surface-finishing process influences the fatigue properties of a

part by affecting at least one of the following surface characteristics: smooth-

ness, residual stress level, and metallurgical structure. The effects of

surface finish on fatigue life for 7075-T6 extrusions are shown in Fig. El-19.

litre it can bc seen that, in general, fatigue life increases as the magnitude
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of surface roughness decreases. Decreasing surface roughness is seen as a

method of minimizing local stress raisers.

Aside from effect on surface roughness, the final surface finishing

process will be beneficial to fatigue life when it increases the depth and inten-

sity of the compressively stressed layer and detrimental when it decreases or

removes this desirable layer. Thus, sandblasting, glass-bead peening, and

other similar operations generally improve fatigue life properties. Conversely,

processes, such as electropolishing, chem-milling, and electrical-chemical

machining ( ECM), which rcmove metal without plastic deformation at the tool

point may reduce fatigue life properties.

Many local surface defects and irregularities occur in fabrication and

service that are difficult to anticipate, inspect for, or control. Stress con-

centrations resulting from small indentations on an otherwise smooth surface

in the form of accidental tool marks, grinding scratches, corrosion pits, or

service-related minor damage are occasionally as effective in reducing the

fatigue life of structural parts as large scale stress concentrations resulting

from design deficiencies, depending on the material, heat-treat range, design

margins, etc. Such unintentional stress-raiscrs are damaging in a structure

only if thcir notch effect is more severe than the most severe stress con-

centration arising from design, unless they are located so as to intensify the

stress-raising effect of the critical design feature. Usually the effect of

design stress concentrations far outweigh the effect produced by surface finish.

1.3.2.5 Cladding, Plating, Chemical Conversion Coatings, and Anodizing.

Clad sheets become progressively weaker than the bare sheets as the

lifetime increases, tlowever, the reduction in fatigue life for plain fatigue

specimens is not present to the same degree in built-up assemblies, where the

fabrication stress raisers overshadow the effect of claddding on fatigue strength.

Aluminum metal spraying is sometimes applied to extrusions and

forgings for added corrosion protection. The effect on fatigue properties is

quite similar to that observed for cladding. However, it has been found that

sprayed zinc finishes on aluminum alloys do not produce any measurable

reduction in fatigue life. Also, it is generally agreed that neither zinc nor

cadmium plating has any appreciable effect on fatigue properties.

Chemical conversion and anodic coatings which are applied to alumi-

num alloys for corrosion protection or wear resistance usually produce a

reduction in fatigue life ranging from a negligible amount up to 10 or 15 percent
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of the enduranc(_ limit. The methcxl of producing the coating further al[ects

fatigue properties. As an example, fatigue tests run on chromic acid anodized

7075-Tfi indicated that anodizing with a 5-percent dichromate seal offered a

slight but definite lowering in fatigue life as compared to that of unanc_lized

metal, whereas, a sulfuric type anodizing treatment resulted in a substantial

reduction in fatigue life as shown in Fig. E1-20.

E

Ie -

I. UNANOOI2ED
2. SULFURIC ACID ANODIZED - BARE |DQEJI
|. EULIFURIC ACID ANODIZED - ALL EURFACEII

I 1

FIGURE 1_:1-20. EFFECT OF SULFURIC ACID ANODIZE ON FATIGUE

PROPERTIES: 7075-T6 ALCLADSHEET 0.090IN. THICKNESS,
R= +0.2

Fatigue tests of 7075-T6 bare sheet with an A lodine #1200 coating

show_.'d no loss in fatigue properties compared to untreated material.
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1.3.2.6 C old Working.

Cold working of parts to induce residual surface compressive stresses

has been found to be an effective tool for improving the fatigue life of both

simple and complicated shapes. Methods of imparting cold work include

coining of holes, thread rolling, fillet rolling, peening, hole expansion, pre-

stressing, tumbling, and grit blasting.

It should be realized that residual surface compressive stresses are

most beneficial under loading conditions which produce high surface tensile

stresses, as in bending. Residual compressive stresses, however, are also

beneficial to the fatigue life of axially loaded specimens.

For the desirable effect of surface cold working to be maintained, the

cold-working process must be accomplished in the final heat-treated condition;

subsequent thermal treatment must be eliminated when feasible, but closely
controlled when it i8 essential.

Perhaps the most widely used process for inducing residual compressive

stresses in surface material is shot peening. Its use is widespread because

of its low cost and relatively easy application to a wide variety of materials and

parts of varied size or configuration. As an example, peening might be used

before chrome plating or hard anodizing, or in special situations, after a heat

treatment which produced decarburization of a steel part.

When a part undergoes loads that are much higher in one direction than

in the opposite direction, prestresssing the part by applying an excessive load

in the direction of major service loading will often produce beneficial residual

surface compressive stresses and work hardening that will significantly improve

fatigue life properties. In reverse loading this effect is lost and a detriment

to fatigue life may result. In the aircraft industry, prestressing is often used

for torsion bars and bomb hooks, to name two examples. It has been shown

in some specimens that tensile prestressing to 90 percent of the tensile strength

increased the endurance limit about 100 percent.

Techniques involving other types of cold working can be found in Ref. 2.

1.3.3 Environment Effects.

The fatigue properties of a metal can be greatly influenced by the nature

of the environment, especially in long-time tests at low stresses and at low

frequencies. Even normal air has a deleterious effect on fatigue life properties,
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and recent indications show that moisture and oxygen are the two print'ipal

adverse components. Moisture decreases the fatigue strength of copper,

aluminum, magnesium, and iron by 5 to 15 ;)erct'nt. An ('xample of the

influence of environmental air moisture on the fatigue properties of an

aluminum alloy is given in Fig. El-21.
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FIGURE E1-21. S-N CURVES FOR CLEAN SPECIMENS OF ALUMINUM

ALLOY 6060-T6 IN HIGH- AND LOW-HUMIDITY ENVIRONMENTS

It is generally agreed that the main effect of a normal atmosphere with

respect to fatigue life is on the propagation of cracks rather than in their
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initiation. The principal effect of the environment will be in its reaction to the

clean metal exposed at the tip of a fatigue crack. Cracks that would be of a

nonpropagativ.g vari,::tj in vacuum propagate in the presence of oxygen or mois-

ture; thereby, they lessen the fatigue resistance.

In environments that are more corrosive than air and that substantially
reduce the resistance of the surface layers to fatigue crack initiation, both

initiation as vJc!l as propagation may be affected. Environments that lead to

stress-corrosion cracking may also adversely affect fatigue properties.

(Refer to Paragraph i. 3.1.5.)

1.3.3.1 irradiation.

Some investigations have been made with respect to the effect of nuclear

irradiation on mechanicaI fatigue properties of metals. Radiation-induced

changes are usually referred to as radiation damage since in many cases the

effects have been detrimental in one way or another. Damaging effects such as

loss in ductility have been noted for many metals. On the other hand, beneficial

effects evidenced increased yield and ultimate strengths, fatigue strength, and

surface hardening also have been noted. Rotating beam fatigue tests on 7075-
T6 aluminum alloy (Ref. 3) indicate an improvement in life due to the effects

Gf a total integrated flux of 2 x 1018 fast neutrons per cm 2. Although the

amount of irradmtion received by the specimens in these tests is believed suf-

ficient to alter mechanical properties, it is not known if the results are signif-

icant for the characteristics of metals during the conjoint action of fatigue

straining and irradiation. Additional studies need to be undertaken for the

simultaneous action of irradiation and mechanical straining at low temperatures.

1.3.3.2 Vacuum.

It has been demonstrated experimentally that fatigue cracking under

uniaxial direct stressing of an aluminum alloy occurs in hard vacuum almost as

readily as within atmospheric pressure. This is contrary to general belief.

Experiments have disclosed trends toward increased crack growth rates in

vacuum which may eventually result in characteristics more critical than

growth rates obtained from in-air tests. Results on aluminum continuously

held in vacuum for periods greater than a week yielded drastic reductions in

fatigue properties. This strongly indicates the time dependency of the phenom-

enon. Results from short-time test exposures in vacuum have shown improved

properties. This is the usually accepted belief. However, for many cases an

extension of the vacuum outgassing time provides a more realistic environment

than do the short-time test exposures previously investigated. Because of this
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anomaly, prolonging the vacuum exposure is suggested as the only reliable

procedure at present for evaluating metals for service in space environment.

1.3.3,3 bleteoroid Damage.

In the environment of space, tiny meteoroids and micrometeoroids may

strike the surfaces of a space vehicle. At present, no information is available

as to this effect on fatigue properties. However, it can be reasoned that

indentations caused by these meteoroids provide ideal sites for the initiation of

fatigue cracks by reason of the increased stress concentration.

1.3.3.4 Solar Irradiation.

Solar irradiation will cause differential heating on orbiting spacecraft.

Over long periods of time, the thermal cycling and the resulting fatigue could
become a serious problem.

1.3.3.5 Temperature.

Elevated temperatures may cause metals to lose strength; low tem-

peratures may cause some metals to become notch sensitive and fail by brit-

tle fracture under load conditions that would be common at normal (standard)

temperature.

In general, the fatigue life of most metals will decrease with an

increase intempcrature (Fig. I':1-22). Studies have indicated that as the

temperature decreases, the crack nucleation period (or time to produce an

observable crack} increases. Moreover, as tt'mperaturedecreases, the'

I)eriod of observable fatigue crack growth decreases.

The rate of fatigue-crack propagation as affected by rate of cyclic

loading, and test-load frequency is an additional parameter to be considered.

In elevated-temperature fatigue testing, it is known that the number of cycles

to fracture decreases and the crack-growth rate increases as the speed or

frequency of cyclic loads is decreased. The damaging, thermally activated

mechanism of creep or creep cracking, acting conjointly with fatigue, is

responsible for this behavior. In general, this is true because, in the accu-

mulation of stress cycles, slower rates of load cycling result in exposure of

the metal to temperature for longer periods of time than do fast rates of load

cycling, tIowever, from cryogenic temperatures to room temperature, no

damaging, thermally activated mechanisms arc active. It is believed that

fatigue lives and crack-growth rates at cryogenic temperatures will be inde-

pendent of load frequency for most metals.
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N, CYCI.EI TO FRACTURE

FIGURE E1-22. FATIGUE LIFE AS A FUNCTION OF TEST

TEMPERATURE (TkPICAL FOR MOST METALS)

Additional informatio_._ on thermal and creep effects will be given in
Paragraph 1.4.3.

1.3.4 Design Effects.

Manufactured parts often include abrupt changes in cross scction such

as grooves, fillcts, holes, and keyways; these cause a nonuniform distribution

of elastic strains and stresses. The maximum elastic stress at an abrupt

change in cross section is greater than the nominal stress obtained by calcula-

tion with either the direct stress, flexural, or torsional formulas.

Th,} geometric stress-concentration factor, K, is defined as the ratio

of the maximum stress in the section to the nominal, or average, stress.

Nominal stress is usually based on the net remaining section. Because of

exceptions, it is necessary to ascertain the basis upon which the nominal stress

is established before applying a stress concentration factor.

2'he full geometric stress-concentration factor is not always applicable

in fatigue loading. The actual fatigue limit of a notched member is frequently
higher than would be expected from the geometric stress-concentration factor.

This phenomenon is called notch sensitivity. Use of the notch-sensitivity
factor results in a fatigue stress-concentration factor that is determined from:
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.K 1" q (K t-t)+l •
. '); . .

where Kf is the fatigue stress-concentratioa factor for direct tension or

bending; K t is the geometric stress concentration factor for direct tension, or

modified geometric stress-concentration factor for bending (Ref. 4) ; and q

is the notch sensitivity. Typical values of q versus notch radius for steels

of various strengths are shown in Fig. E1-23.
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FIGURE E1-23. NOTCH-SENSITIVITY CURVES FOR POLISHED STEEL

SPECIMENS OF VARIOUS STRENGTHS

The fatigue-stress concentration factor, Kf, represents the extent

to which a notch can be expected actually to reduce the fatigue limit of a part.

It is the ratio of the fatigue limit of the specimen without the notch to its

fatigue limit with the notch. Specimens must have the same effective section

when Kf is evaluated experimentally so that only the effect of the notch is

determined without including an effect which is due to reduction in the section.
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When one notch is located in the region of maximum influence of another

notch, the resulting stress-concentration factor is determined by multiplying

the two individual stress-concentration factors. Whether the maximum influ-

ence of one notch encounters the maximum influence of the other depends on

the stress patterns developed by the two notches and the extent of overlap.

When stress concentrations are adjacent to each other, but are not superim-

posed to the extent that one is placed in the region of maximum influence of the

other, the resulting stress concentration factor lies between the value of the

larger factor and the product of the two stress-concentration factors. In steel

members with numerous notches and discontinuities, a value of Kf= 3 is

applicable in most cases, and a value of Kf = 4 is the maximum likely to be

encountered.

1.3.5 Welding I.:ffects.

There exists a considerable amount of information on the fatigue pro-

perties of various welding effects in steel (Ref. 5). tIowevcr, the amount of

information on welding effects in nonferrous materials is relatively scarce,

primarily because of the late development of welding of aluminum alloys. As

a cons(_uence, the use of welded aluminum in fatigue-loaded structures has

been limited; however, it is becoming more extensive, particularly for applica-

tions where weight ,_avings is of importance. This frequently implies that

fatigue strength is the design criterion.

It has been found that by far the most important factor in the fatigue

behavior of welded joints in aluminum an(I steel is the geometrical shape, both

of the joint as a whole and of the weld bead. Parent material seems to be a

relatively unimportant variable.

The fatigue limit of welded high-strength steels is only slightly higher

than for low-strength steels if the weld bead is left in place, ttowever, if the

weld bead is removed, the fatigue limit is increased; the amount of increase

depends upon the smoothness of the finished surface. Even partial removal of

the weld reinforcement increases the fatigue limit considerably. For welded

steel with the weld undisturbed, fatigue limits of approximately 12 000 psi in

reversed bending and 23 000 psi in zero to maximum tension arc common.

These arc average values, and an allowance for a lower failure rate should be

made. Removal of weld beads also improves fatigue characteristics of
aluminum.
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1.3.6 Size and Shape Effects.

Usual specimens for fatigue tests arc in the range of 0.2- to 0.5-inch

diameter. Some reduction in fatigue limit with increasing size of specimen

has been observed. This reduction is generally attributed to the fact that larger

sizes stressed in bending or torsion have a larger volume of material in the

region of high stress. This increases the probability that a defect will occur in

the high stress region, leading, in turn, to a higher probability of failure in

larger sizes.

Fatigue tests in axial loading show relatively little size effect, prob-

ably because of the uniform stress across a section under an axial load.

Size has little effect upon the failure stress at 1000 cycles. Thus, a

size correction is neglected at the 1000 cycle point of the S-N curve and

applied only to the fatigue limit.

Shape of cross section has some effect on the flexural fatigue limit of

some materials. Steel beams of circular cross section have fatigue limits of

8 to 10 percent higher than square beams. Square beams loaded so that the

maximum stress occurred at the corners of the square exhibited fatigue limits

from 4 to 8 percent less than round beams.

1.3.7 Speed of Testing.

The effect of the speed of testing has been studied by a number of

investigators. In the range of from 200 to 7000 cycles per minute there

appeared to be little effect on the fatigue properties, except when temperature

increases in the specimens were encountered. At very low speeds a slight

decrease in fatigue strength was noted, while for very high speeds some

increase in strength was found.

Of course, the speed of testing is of great importance at the low-cycle

side of the stress-versus-life curve and also when thermal cycling or creep is

involved. These effects arc covered in Paragraphs 1.4.2 and 1.4.3.
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1.4 LOW-CYC LE FA TIGUE.

A complete S-N curve may be divided into two portions: the low-cycle

range and the high-cycle range. There is no sharp dividing line between the

two. Wc might arbitrarily say that from 0 to about 103 or 104 cycles is low

cycle and from about 103 or 104 cycles to 107 or higher is high cycle.

Until World War II little attention was paid to the low-cycle range, and

m_u, o.e t'_ c .... _l,lg results were for high cycles only. Then it was realized

ti_.at ;or some pressure vessels, missiles, spaceship launching equipment,

etc., only a short fatigue life was required. Consequently, the low-cycle

fatigue phenomenon began to gain attention.

T, ,i_c low-cycle range of fatigue life below approximately 10 000 cycles,

the primary parameter governing fatigue life appears to be plastic strain per

cycle as measured on a gross scale. For higher (cyclic) lives, elastic strain

also assumes importance; perhaps the governing variable is still plastic strain

per cycle, but the plastic strain is highly localized at imperfections in the

structure and is difficult to measure or compute. Beginning at approximately

10 000 cycles and continuing upward, it becomes more appropriate to regard

total strain (elastic plus plastic) as the primary variable. Alternatively, the

fatigue life can be regarded as being governed by stress range, and the ensuing

simple relationship between fatigue life and stress range appears to be valid

for most of the materials that have been tested to date, over a very large range

of life on both sides of 10 000 cycles. However, for most thermal-stress prob-

lems the stress range is less likely to be known than is the strain range; hence,

for practical purposes it is desirable to express life in terms of total strain

range. The relationships as applied to problems of both thermal and

mechanical loading are discussed below.

The failure mechanism in the low-cycle range is close to that in static

tension, but the failure mechanism in the high-cycle range is different and may

be termed "true fatigue." A comparison of the failure mechanisms in the two

ranges is made in Table El-1.
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Comparison of Low Cycle and High Cycle Fatigue

Internal stresses and

stra in hardening

Net sum of plastic flow

Gross sum of plastic flow

X-ray disorientation

Slip

Slip plane distortion

Crack origin

Crack path

Fracture

Low Cycle

tIigh

Micro size

Small

Large

o

Coarse (103-10'IA)

N orma 1

Interior

Along maximum shear

Delayed static

liigh Cycle

Low

Micro size

Large

Small

F inc (1 0A )

Persistent

Surface

Cross

maximum

tensile stress

Structural

deterioration

The terms used in this section are defined below and are shown in

Figure E1-24.

E = modulus of elasticity

N = cycles to failure

t
total strain range

e
elastic portion of strain range

E
P

C

plastic portion of strain range

a material constant

true strain at fracture, commonly known as fracture ductilityf
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1.4.1

S = _ E E t STRESS ///'AS stress amplitude

Se endurance limit

S u ultimate tensile
strength in ordinary
tensile test

Sy yield strength /

Sut true stress at frac- L_ ..,
! j

ture in tensile test L 'P "
W"

Below Creep Range. "

In recent years, low-cycle

fatigue has been studied extensively

FIGURE E1-24. STRESS-STRAIN

C Y C LE

under conditions where little attention has been paid to temperature and tem-

perature effects. There now exists a fairly large body of information on the

subject obtained from laboratory experiments under room temperature con-

ditions (Ref. 6). The general procedure in such investigations is to control

the strain between fixed limits and, if desired, to measure the stress, while

cycling the specimen until failure is determined. Such tests may be under

conditions of controlled diametral strain, longitudinal strain, bending strain,

or torsional strain. The results can be represented in terms of total strain

range versus cycles to failure, or, if desired, of plastic strain range versus

cycles to failure. The former is most often used for direct design procedures,

while the latter is applied when one is primarily interested in real material

behavior. One of the more fascinating features of representing the results in

the form of plastic-strain range versus cycles to failure is the observation

that the curve (on logarithmic scales for both A_ and is of constant
P Nf)

slope of value 0.5 to 0.65 (depending on the experimenter) and that the

vertical position of the curve relates to the tensile ductilityof the material.

A plotof this curve is shown in Fig. EI-25. The line in this figure can be

expressed by the equation

Ae q-_ = C
P



Section E I

1 November 1972

Page 50

1.0

E

• 0.1

i 0.01

m

1 ! I I i , ..

! 10 10 2 10 3 10 4

CYCLES TO FAILURE

FIGURE E1-25. PLASTIC STRAIN RANGE VERSUS CYCLES

TO FAILURE

where the, constant C may be rclated to the reduction of area RA in static

tension test.

I I00
C = - In

2 100-RA

A fair degree of information and understanding now exists for the low-

temperature (below the creep range), low-cycle fatigue problem, although

ther(' are a number of unresolved questions yet to be answered.

1.4.1.1 Practical Problem Solutions.

The fatigue curve or equation needed by the engineer or designer is

one which shows stress versus cycles and one that contains sufficient safety

factors to givc safe allowable design stresses for a given number of operating

cycles; or, conversely, allowable operating cycles for a given value of cal-

culat(.(lstress. The stress values on the fatigue curves or in the equations

shoul(l be directly comparable to the stress values which the designer cal-

culates using his usual methods of analysis for pressure stress, thermal

stress, stress concentration, etc.
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For fatigue below the creep rang(', Langer (Ref. 7) has proposed an

equation for plotting the fatigue curve for any material:

E 100
S = -- In + S ,

100-RA e

(refer to Fig. E1-24 for definitions of terms).

For a design stress to represent a lower bound on the data, it is

recommended that the equation above be used with a safety factor of either 2

on stress or 10 on cycles, whichever is more conservative at each point. It

is believed that these safety factors arc sufficient to cover the effects of size,

environment, surface finish, and scatter of data.

It also has been shown that in the low cycle range (below 10 000 cycles),

mean stress has little or no effect on fatigue life; thus, this effect can be

ignored.

Some typical values of E and RA for various materials are given in

Table El-2. If information on the endurance limit (Se) is not available one-

half the value of the ultimate strength is often used.

If a more detailed fatigue analysis is required the techniques proposed
in References 6 and 8 should be used.

1.4.2 In Creep Range.

The high-temperature, low-cycle fatigue problem is in quite a different

state. The material behavior becomes very much more complicated at ele-

vated temperatures because of the occurrence of creep and other diffusion proc-

esses. At temperatures in the creep range of a material, the test results will

be very strongly frequency dependent. Citing the fact that frequency is impor-

tant in high-temperature, low-cycle fatigue is the same thing as saying that

the strain rate of the test is important. A somewhat related situation occurs

if one introduces a hold time into the cycle, say, at the point where the tensile

stress is a maximum. While the strain is held constant, the peak stress

relaxes for some period of time. Results of prolonged hold times during strain

cycling show that the fatigue life decreases with increasing hold times, other

conditions beingthe same. A common observation is that, as the temperature

is raised and the rate decreased (or hold time increased), the character of
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the fracture changes from one which is tr_,nsgranular in nature to one which

is largely intergranular. This suggests vc,cy strongly that the problem is, to

a largcclegree, metallurgical innatur(,. A close resemblance can be seen

bctween these observations and those found in creep and stress rupture.

A second important, and certainly related, effect which must be appre-

ciated when dealing with high-temperature fatigue is the change in metallurgi-

cal structure which occurs with time at temperature and stress.

Plastic strain an(l, in the present instance, cyclic plastic strain can

have an important bearing on the precipitation and strengthening effects which

taM' place in the metal structure. The term "strain-ag(, hardening" describes

the eflcct that plastic strainhas on devc_loping additional strength. It is well

known, for example, that the level of strength reached by applying a fixed

amount of strain to a metal which strain ages is greatcr if the strain is applied

at th(, aging temperature. In designing an alloy for creep, advantage can be

taken of strain-age hardening provided the strain involved is the creep strain

sclectcd for the design.

l. 4.2.1 Ductility \.'crsus Crcep Strength.

As mentioned above, creep strengthening van I)e aecomplishe¢l for

,_l)_'ei[ic alloys at various rcgions of tcmperaturc's. Ilowcvc'r, it should be

notc(i that, simultaneously with strengthening, tlwse sam_' regions show

rc(tu(,e(I fraetur(' ductility.

This well-known behavior of metals, the invc_rse relationship between

slrenlzth and ductility, introduces a dilemma into the scl_'ction of materials for

hi_h-temt)erature service. It is necessary, to optimize the strength, to

_,mploy alloy additions and heat treatments so as to develop the precipitate

._tructtlre in the metal, but this will lower the ductility, l)uctility is of prime

c.onsidcration in low-cycle fatigue and, to optimize fatigue resistance, it is

desirable to have the material in as ductile a condition as possible (a condition

which results in low creep strength). Itowever, one' wants both creep strength

anal fatigue resistane(', and it is apparent that the best that can be achieved is

some' compromise condition.

1.4.2.2 Procedure for Estimating Iligh-Tcmperature, I,ow-Cycle Fatigue.

The proct_dure given h('re is taken from Rcfe.renees 9 and 10. It is a

i)roc('(lure for estimating the high-temperature, reversed-strain-cycling

fatigue characteristics of laboratory specimens. It shoul(I bt' emphasized that
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the method is intended to give only first-approximation estimates as a guide to

material selection. Final design of important equipment should be based on

actual fatigue data generated under conditior, s which simulate as closely as

possible those to be encountered in service.

I. Basis.

Figure E1-26 illustrates the method of universal slopes. The total

strain range is divided into its elastic and plastic components, and each com-

poncnt is plotted against cyclic life on log-log coordinates. Straight lines

usually result for each of these components. The method of universal slopes

prescribes that the slopes of these lines arc assumed to be the same for all

materials. The plastic components-are taken to have an average slope value of

-0.6, and the elastic components an average slope value of -0.12. Again, it

should be emphasized that these values arc not always -0.6 and -0.12 for all

materials; values betwecn -0.4 and -0.8 have been obtained for various mate-

rials for the plastic component, and values between -0.08 and -0.16 have

been found for the elastic components. When average values of -0.6 and -0.12

arc chosen for the plastic and elastic components, reasonable results are

obtained.

r 00"I

! 1 1

CYCLES TO FAILURE. Nf (LOG SCALE)

' ,(,)I ](l': 1':1--26. M E THOD OF UNW ERSA L S I.OPES FOR FSTIMA TING

AXIAL FATIGUE LIFE
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Having decided on the slopes, it is necessary to determine the inter-

cepts of the two straight lines. In general, it has been found that the property

which most significantly governs the intercept of the plastic line is the ductility
100

D, where D= in IO0-RA

For the elastic line, the governing property for the intercept is a /E,
u

where a is the ultimate tensile strength and E the elastic modulus. Theu

total strain range, given as the sum of the elastic and plastic components, thus
becomes

3.5(7

_ u -o. 12 DO.6 )-0.6
Act E (Nf) + (Nf

as shown in Fig. E1-26.

Good agreement has been obtained with this formula for many materials

(Ref. 9). However, the question arises: Can one use this procedure at high

temperatures within the creep range of the material? In general, it has been

found that the procedure almost always yields fatigue life predictions higher

than those actually obtained by testing. The explanation for the unconservative

results is, of course, very complex. The relationship between high-

temperature, low-cycle fatigue and intercrystalline cracking is very important.

It has been shown that intercrystalline cracking due to a creep effect

occurs early in the fatigue life, and thereby bypasses the transcrystalline

crack-initiation period; thus, the total fatigue life is approximately equal to
only the crack-propagation period.

This concept has yielded the 10-percent rule. In this method, crack

initiation and propagation are not regarded as functions of fatigue life; rather

it is assumed that, on the average, only 10 percent of the fatigue life com-

puted by the method of universal slopes will actually be realized at tempera-

tures within the creep range.

Generally, it has been found that such a computation yields conserva-

tive results; that is, in most cases, it leads to a lower bound on fatigue life.

ttowevcr, there are cases in which even the 10-percent rule predicts lives that

are higher than those actually achieved in test. This observation (together

with the fact that the 10-percent rule approach inherently excludes the pos-

sibility of taking into account frequency effects, hold-time effects, mean load,
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etc. ) causes one to seek further for simple methods of estimation that art,
not as limited.

The simplified analysis that has been adopted can be explained by the

following. The creep damage effect is taken as the ratio of tile time actually

spent at stress to the time required to cause rupture at that stress value.

Since the stress and temperature are presumably known, this rupture time can

be obtained directly from the creep-rupture curve of the material. The fatigue

damage effect is taken as the ratio of the number of cycles actually applied to

the number that would be sustained in the absence of creep effect according to

the method of universal slopes. Since the test frequency yields a definite rela-

tion between the time of the test and number of cycles sustained, a closed-form

analytical expression for the number of cycles to failure can be obtained. This

description is shown in the following derivation:

where

(C reep-Rupture Damage) + (Fatigue Damage) = I

k
t'= --f Nf'

1/m

tr : A = A(Nf)..
-0.12/m

hence,

AF(Nf)-0"12/'n + \Nf/

= 1

OF

N
f

N' ,
1 _ k/AF(Nf)__ (m + .12)/m
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Here

Nf' = number of cycles to failure under combined fatigue and creep

Nf number of cycles to failure in fatigue, based on method of

universal slopes, using ductility, ultimate tensile strength and

elastic modulus from uniaxial tests at strain rates comparable

to that undergone by the metal in the fatigue test. Where appro-
priate data are not available, use may be made of data from
conventional tensile tests.

k empirical constant, assumed to be 0.3, but adjustable as more
information becomes available.

slope of straight line-creep-rupture curve on log-log coordi-

nates, that is, representing curve by ar = 1.75 au (tr/A)m

as shown in the insert in Fig. E1-27.

A = coefficient in creep-rupture relation

F = frequency of cycling, cycles per unit time.

Table El-3 contains some of the information above, obtained from various test

conditions (Ref. 9).

_" o.x _- l._,,u / .

>o.3o L°ae' *''A _ /

LOG t r

SCHEMATIC ITRES4i I_ /-

0.24
IqUPTUR! CUR'VI _ _ USE 10_ N FOR: -- LowER,o'u,,o

:o,. :,:....:::
o.,, , . _. J,t,J.I J . I._,z.I i , I,l,_.l I , ,,l,l,i

10"2 10 "1 10 0 101 10 2 113

PRODUCT OF CREEP.RUP'rURE COEFFICIENT AND FREQUENCY. AF

FIGURE EI-27. CRITERION TO ESTABLISH NEED FOR

CRE EP-RUPTURE CORREC TION



Table E 1-3.

ORIG|NAL ' ......

O(: POOR QUALHY

Section E 1

1 November 1972

Page 58

Alloys, Test Conditions, and Pertinent Properties

Test Test

'l't,mperatu rt_ Frequency
h Ih,v

I)t'nignat ion (F) ( _:pm )

A-2_(i - C11 114f_) 1000 5 to 50

1200 5 to 50
a

A-2_6 -- AgL_I 1200 5 to 50

1400 20

,, ,

A -2_(1

lrl¢'o 901 1400 20

I)-:179 1260 5 to 5¢)

Cr-Mo-V Stc¢,] 1050 I, IO

I-6¢15 1000 5, 50

1200 5, 50

304 Sta inie_n { 000 10

Sh,e| 12041 3 to IH

1500 ;1 to 27

:',47 SLalnh*_n 1110

N i niilnle 7fl { 200 { [}

1:18ll Ill

I f{ 00 1 ¢i

I;400 10

Nimtmle 00 1200 I0

1:180 0.1, 10

1000 0.1, 10

I_0(1 0. I, 1o

N im.nic 105 1200 10

[; j;,,,((| lO

1()00 l 0

1H00 |fl

U¢llm,'t 700 1400 1 to 2

A _t roloy 1400 20

lm'c, nel 1500 0.017, rl. 1

In 10o

(I'll 47 C¢lill)

MAlt M 2011

(I)WA 17 (,c_,t)

I% 19(}fl

( I'WA .17 Co.t)

1000

1700

2¢)00

1300

1700

1300

1700

2000

C rcep-Ruptu re
'l't.nsile E la ,tic

,tA Strength Modulus S hipt' Intercept, A

(<_) (1_i) (10 "_ k_i) (-m} (mini (sl.,(.) '

31. 1_12. 26.R <0. 12

.28. 167. 211. 1 " 0. 1'2

18. 115. 23.0 0.12

57.6 75. 19.0 O. 20 I.;I 7_.

16.I 104. 20.8 ¢). 135 0,028 n. 17

42.0 179. 22.0 <0. 12

70.[) 69.5 24.0 <0.12

4H.2 106.0 27.0 -0,12

47.1 95.4 25.0 ,0.12

67.3 55.5 2;I.0 .0.12

58.0 41.0 22.0 (]. IR 15.0 9oo.

42.0 20.0 19.0 0. I H li/I 1'4. t)

67.7 55.0 22.0 ¢1.12

29.5 _ I. 5 20. ;1

42.0 53.1 15.4

62.5 28.0 12.2

66.0 16.2 1.7

24.5 144.¢) 26.5 < O. 12

12.0 119.0 25.0 ¢i. 135 0,16 9.fi

14.0 76.0 23.0 l).24 2.5 150.

94.0 1¢i.0 21.0 0.25 4.0 240.

13.7 142.0 25.0 <0.12

lR.0 151.0 23.5 -0.12

32.5 99.5 22.0 o. 16 0.0S 4.

Ii_4.0 39.2 19.0 0.2a 3.7 222.

31.0 155.0 23.0 _0.12

l

29.6 141.0 23.0 -0.12

63.3 25.0 18.0 O. 15 1.0 60.

l.:t 121.0 27.1 "0.12

11.0 ._.0 22.7 0.17 0. II 6.6

10.3 26._1 10.3 0.22 !.3 _/q.

5. 120.0 26.5 <0.12

4. 77.0 23,7 _0.12

5. 145.0 25.50. 12

:t. 95.0 23.0 0.17 o.75 45.

II. 35.0 20.5 O. 26 7. :i t40.
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II. Method.

In summary, two procedures for computing the lower bound on fatigue
life have been outlined. Proceed:

1. By the 10-percent rule. The universal slopes equation is first us_,l

to determine cyclic life, and this life is divided by a factor of 10.

2. By the combined creep and fatigue effect.

The problem of determining which of the equations to use, and how to

interpret the results has been given considerable study and the following con-
clusions can be drawn:

a. Determine life by both methods, and use the lower of the two

calculated values. Figure E1-27 is an auxiliary plot that

minimizes the computations needed to determine which value

to use. It is merely necessary to determine the product, AF,

and the slope, m, of the creep-rupture curve at the test

temperature. If the point representing the coordinates lies

above the curve, use the equation for Nf'. If it lies below

the curve, use the 10-percent rule.

b. The lower of the two values determined in a. serves as a lower

bound on estimated life.

c. As an estimate of average or most probable life, use twice the
lower bound determined in b.

d. As an estimate of the upper bound on life, use 10 times the
lower bound determined in b.

It has been found that, in most cases encountered in the laboratory, the

10-percent rule is the applicable one.

As tempting as it is to conclude that the method gives results good

enough for many engineering uses, it is perhaps of greater importance to

emphasize some of the cautions involved in its use. It must first be emphasized

that the data analyzed relate to constant amplitude-strain cycling under constant

temperature. The method appears to place the high-temperature, low-cycle

fatigue behavior in the proper range. Thus, it would seem that while the
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method may be regarded as very goo(I for ,_;creening materials, important

material ehoict's shouhl be made on the baqis o[ actual tests from amon_ the

more promisint_ materials. And, wheneve:'possible, the complexiti_'s of

stress and temperature history expected in service should be included in the

test evaluation.

1.4.2. "] Method of Strain-Partitioning.

In their continuing examination of high-temperatur(,, low-cycle fatigue,

Manson and co-workers (the 10-percent rule) have deveb_pcd a method which

attempts to analyze directly the effects of creep and plastic flow on cyclic

life (Ref. 11). This method was developed because of the highly time-

dependent nature of the creep effect and because the life-reducing effects of

creep depend, to a large extent, upon where within a cycle the creep is intro-

duced and whether it is reversed by plastic flow or by creep.

In this method, the completely reversed cyc!ir inelastic strain is

divided into four parts. These are (1) A¢ -- t,'_ile plastic flow revers,',!
PP

by compressive plastic flow, (2) Ae -- tensile creep reversed by compr,'_-
cp

sire plastic flow, (3) AE -- tensile plastic flow reversed by compressive
pc

creep, and (4) A¢ -- tensile creep rcversud by compressive creep.
CC

In any arbitrary hysteresis loop, such an .qhown in Fig. E1-28, the

tensile inelastic strain (AD) can bc separated into plastic (AC) and ('reM_

iCl)) components. Likewise, theeempr,'ssive inel,_¢tic strain (DA) can

also b,_ separated into its plastic (]_i_) and ert'cp (t_--A) components. In

zeneral, neither the two plastic compon('nts (AC and DB) nor the two creup

components (C-D and B-A) will be equal. It is nt_cessary only that the entir¢_

tensile inelastic strain (A-'D) be equal to the entire compressive inelastic
I

_train (DA) since we are dealing witha closed hysteresis loop. The parti-

tiont_d strain ranges are obtained in the following manner. The completely

reversed plastic strain range, Ae , is the smaller of the two plastic com-
PP

_:_mt_ts and in this _,xample is equal to DB. The complet¢qy reversed cr,'ep

._'rain range, AE , is equal to the smaller of the two creep component._
cc

and becomes CD. As can be seen graphically, the difference between the two

plastic components must be equal to the difference between the two creep

components, or AC - DB = BA - CD. This difference is then equal to Ae
pc

or A( in accordance with the notation just stated. For this example, it i,_
cp
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equal to Aepc since the tensile plastic strain is greater than the compressiw_

plastic strain. It follows from the preceding procedure that the sum of the

partitioned strain ranges will necessarily be equal to the total inelastic strain

range or the width of the hysteresis loop.

STRESS

CREEP

CREEP PLASTIC FLOW

FIGURE E1-28. HYSTERESIS LOOP

The effect of each of these strain ranges on cyclic life is noted in

Ref. 11, and the total cyclic life is determined using a linear cumulative

damage relationship,

N N N

N N or N N
pp cp pc cc

where N is the cyclic life associated with the strain range of Ac ,
PP PP

N or N is the cyclic life associated with A_ or AE , and N
cp pc cp pc cc

is the cyclic life associated with AE .
cc
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This method differs from the' 10-perc('nt rule in that it attempts to

deal directly with the phenomena occurring at high-temperature, low-cycle

fatigue rather than u,_ing an estimate base.1 on low-temperature, low-cycle

fatigue findings. It differs from other metno(Is which partition damage effects

at high temperatures in that all relations use(I are strain range versus cyclic

life rather than a combination of that and stress versus time life. The gener-

ation of strain range versus cyclic life data is required in this method where

the 10-percent rule requires only static tensile properties. This mt'thod

agrees well with the 10-percent rule for the materials tested and may prove

abasis for that rule. This method is also useful in explaining frequency

effects and hohl-time, effects. Finally, to quote the authors of this method,

"The method is in an early stage of development, and many questions must

be answered before its merits canbe evaluated" (i(cl. 11).

1.4.2.4 Two-Slope Fatigue Law.

Coffin and Manson have' proposed the follc)win_* fatigu,' law for plastic

strain:

NfI_' A,- = c , ( 1)
P

wh('r_' N[ in the cycles, to failure, A¢11 is thc, i)lastic strain range, and fl ,

C arc the constants. This has been modified to inclu(h_ the effect of frequency

in hi<h-temp(Tature, low-cycle fatigue,

k- 1)I_N[ v A< P : C 2 , (2)

k-I
wh('re v is th(' frequency, I< , C_ are the eonstants, anti Nfv is defined

as the fr(_qucney-modifit_d fatigue life. The frequency cffectwas ext('nde(t

further to include lhe stress range,

A(7 ::: A (_()'_v Iq (a)
P
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Aa = stress range

where A, rl, and k arc constants. Combining equations (2) and (3) and

generalizing for the total strain range

AE = (AC27?/E)Nf -flrlkl+ (1-k)fl_ + C2Nf-flv (1-k)fl , (4)

where E is the elastic modulus.

Coffin reports in Rcf. 12 that with increasing tcmpcraturc the exponent

/3 increases approaching one and the constant C correlates less well with the

tensile ductility. Because of the high exponent for 13 in equation (1) reported

for many materials at elevated temperature, extrapolation to low lives could

lead to plastic strain ranges exceeding the tensile ductility. Because this

situation is highly unlikely, there must be a break in the curve of the Ac
P

versus Nf relationship so that it will pass through the tcnsile ductility value

at Nf = 1/4 (Fig. E1-29). This change in slope is due to a change in the

mode of crack propagation. In less ductile materials this change in slope is

due to a change in the fracture mode resulting from environmental interaction.

In ductile materials this change in slope at high temperatures results from a

change from intergranular to transgranular fracture and as can be seen in

Fig. E1-30, as temperature increases the change in slope is more drastic.

The main Benefit of the two-slope fatigue law is that it gives a more

accurate description of the occurrences in plastic strain and leads to a clearer

recognition of the operative physical process. A recognition of the causes of

the two-slope phenomenon emphasizes the importance of the environment and

of time in the environment (frequency and hold time), tIowever, the constants

of the equations are highly material dependent and temperature dependent and

if experimental data are not available, these constants cannot be determined.

1.4.3 Thermal Cycling.

The prcvious sections have considered mechanical strain or stress

cycling at a constant temperature; this section will consider mechanical
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600°C
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strains induced bycyclic thermal stresses. Failure under repetitive appli-

cation of thermal stress has been termed thermal stress fatigue.

The principal activity in which analysts have, until recently, engaged

whenever thermal-stress problems were encountered has been the computation

of elastic stresses. The treatment of this subject may be found in Section D,

Thermal Stresses. While such computations constitute a necessary and desir-

able first step in any practical analysis, they unfortunately do not provide

s_ffficient information for a final evaluation when dealing with ductile materials.

Thus, it is important not only to take into account plastic-flow effects that

occur when the yield point is exceeded but to consider how such plastic flow

might change during progressive thermal and load cycling of the material.

Recent contributions have made a valuable start toward an understanding of

this problem. Not only have new computational techniques been developed

for taking into account inelastic, effects such as creep and plastic flow, but a

start has been made toward inc'ludim_ cyclic effects both in computational

procedure and in the interpretation in terms of material behavior. The fail-

ure criterion for brittle materials is, of course, different from the criterion

for ductile materials. From an engineering point of view, the problem is to

detcrmine suitable working st res ses.

1.4.3.1 hlealizcd Thermal-Cyc le Model.

A model will bc chosen [n which all the thermal strain is converted to

mc'chanieal strqin. The case is shown in Fig. I::1-31 in which a bar is fixed

at its ends between two immovable plates so that the length of the bar must

remain constant. To approach the problem realistically, the model should

show strain hardening, and the effects of stress relaxation that occurs during

any hold period that may be imposed at high temperature.

R(efcrring to Fig. E1-31, the bar is assumed clamped when hot, so

that tensile stress is developed along OAF during the first cooling. Plastic

flow is initiated at A, but the stress continues to increase to F because of

strain hardening. At F the specimen is held for a dwell period, but no stress

change occurs (relaxation), since the temperg_turc is i)resumed to be low

enough to make creep and anclasticity negligibh,. Upon reheating of the speci-

men, the stress-strain relation proceeds alton I'GE, yielding atG, at which

time there is a much lower stress than there is at A because of the Bauschingcr

effect. (The Bauschinger cflect states that plastic flow in one direction

rcduccs the stress at which yielding will occur in the opposite direction.)
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HEATING
I

I

F

TOTAL

MECHANICAL

STRAIN

FIGURF 1':1-31. SCHEMATIC STRESS-

STRAIN RELATIONSItIP FOR FIRST

FEW CYCLES OF TIIERMAL

CYCLING OF CONSTRAINED BAR

When the initial high temperature is

restored, the state of the material is

at p(_int E, where a compressive elastic

strain is necessary to offset the tensile

plastic flow that occurred during AF

and, thereby, return the specimen to

a net strain of zero. This elastic

strain introduces the stress OE. Any

hold period at the high temperature and

stress may convert this elastic strain

to inelastic strain-creep and anelas-

ticity, thereby reducing the stress.

Thus, point E moves to point E' by

the time the specimen starts to cool

again. The cooling causes the path

E' F' to be traversed. Reheating

results in the path F' E". The hold

period at the high temperature converts

e"toE''', etc. After a fcwcycles,

the stress-strain path may settle down

to an essentially unchanging loop. For

illustrative purposes this loop may be
taken as E' ' ' F' l':"I,:' ' '. This corre-

sponds to an asymptotic hysteresis

loop and takes into account not only all

the hardening or softening character-

istics but also creep and anelasticity

effects as well as effects due to changing

temperature and metallurgy.

1.4.:3.2 Effect of Creep.

In the experiments that have been performed to date, analysis of the

thermal-stress fatigue behavior has been made largely by relating the plastic

strain per cycle to the number of cycles to failure. Normally, the plastic

strain is determined by subtracting the elastic-strain range l rom the total-

strain range, which in turn is computed by divi(ling the stress range by the

rlastic modulus. When creep occurs during the high temperature portion of

the cycle, this procedure produces inaccuracies. Not only is the plastic flow

improperly computed if creep is neglected, but the omission of the creep can

s_,riously affect the computation of cyclic life because the effect of creep strain

on life differs appreciably from the effect of slip-type plastic flow.
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Consider Fig. E1-32, which shows the stress-strain rclationshil)s lor

two idealized cases. In Fig. 1,',1-32 (a) no creel) is assumed to take place.

Then,

A_

e P = ff T O -

where Aa is the stress range and E is the elastic modulus. (The elastic

modulus is assumed to be constant over the entire temperature range;

(a) (b)

FIGURE E1-32. PLASTIC-STRAIN AND STRESS-RANGE

RE LA TIONSHIP FOR (a) NO CREEP RE LA.KATION

DURING HOLD PERIOD AND (b) CREEP

RELAXATION DURING HOLD PERIOD
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assumption of a temperature-dependent elastic modulus complicates the

problem even further. )

tlowever, when cree l) occurs during a hold period I Fig. l:1-32(b) ], the

plastic strain per cycle is not directly related to the total stress range. For

the tensile portion of the cycle, the plastic strain ¢ ' is
P

T

£ P = O_ T O _IE

where A(_l is the stress range developed during the cooling portion of the

cycle only. In the heating portion of the cycle, the stress rang(, is larger,

thus reducing the direct compressive plastic strain _ '" ttowever, the total
P

plastic strain ¢ " also includes the creep E '" during the hoht period. This
P P

creep strain replaces the elastic strain relaxed during the creep and is, there-

fore, equal to (Aa 2 - A%)/E. Thus,

£ vt = £ q'vl + E vvvl' __ _ TO -
P P P E F E p

Therefore, the plastic strain in compression is equal to that in tension, but

these strains are not dirc'ctly related to the total stress range.

1.4.3.3 Comparison of Thermal-Stress Fatigue with Mechanical Fatigue

at Constant Temperature.

Several experiments in which mechanical fatigue at various temper-

atures was compared with thermal-stress fatigue have been conducted (Refs.

13 and 14). Fatigue tests were conducted at several constant hight('mpera-

tures by loading mechanically, and the results of the tests were compared

with thermal-stress fatigue tests in which the temperature naturally varied

over an appreciable range. The results era test are shown in Fig. E1-33 and

are analyzed in terms of cyclic life at a given measured plastic strain. The

mechanical-fatigue tests are shown at 350 °, 500 °, and 600 °C, whereas in

the thermal-stress tests the specimen was completely constrained and cycled

between 200 ° and 500 °C, so that the mean temperature was 350 °C, As can

be seen from the figure, at equal values of cyclic plastic strain the number of

cycles to failure was much less for the thermally cycled specimen than for one

mechanically cycled at :;50 ° C and even for one' mechanically cycled at 000 ° C,

even though no part of the specimen in the 200" to 500 °C th['rmal-strcss
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0.1

----,-- CONSTANT TEMPERATURE FATIGUE

-,, -- CYCLIC TEMPERATURE THERMAL-STRESS FATIGUE

%

0.001021 103 104 108 10 li

CYCLES TO FAILURE Nf

FIGURE E1-33. CYCLES TO FAILURE IN TIIERMAL-STRESS FATIGUE

COMPARED WITH CYCLES AT CONSTANT TEMPERATURE IN

SIMILAR PLASTIC STRAIN RANGE

fatigue test ever reached 600 ° C. Reasons for this discrepancy have been

generally attributed to nonuniformities of temperature along the specimen

and the sensitivity of the properties of the materials to temperature in the

range traversed by the thermal-cycling tests.

For this reason it would appear that, until further tests clarify the

problem, the temperature for the mechanical-fatigue tests should be taken

as the highest temperature of the thermal-stress test. In this way, metal-

lurgical phenomena will not be overlooked and pessimistically low values of

life will be indicated; this appears to be necessary on the basis of most tests
conducted to date.

Spera (Ref. 15) has presented a method for calculation of thermal-

fatigue life based on accumulated creep damage. He proposes that thermal-

fatigue life can be determined from the basic mechanical properties of a

material by calculating lines for each of two distinct and independent failure

modes: (1) cyclic creep-rupture, using a modification of the well-known life-

fraction role proposed by Robinson and Taira, and (2) conventional low-cycle

fatigue, using the empirical equations of the Method of Universal Slopes

developed by Manson (Refs. 9 and 10). Equations are presented in sufficient

detail to define completely the analytical procedure.
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1.4.:¢.4 Summary.

Whenplastic strains are introduced by constraint of thermal expansion,
l atigue ultimately results. The number of cycles that can be withstood depends

on the plastic strain and the temperatures at which these strains are induced.

Whether tension or compression occurs at the high temperature seems to have

little effect on fatigue life. Probably the most important single variable is the

maximum temperature of the cycle, particularly if it is higil enough to cause

metallurgical effects to take place. Increasing the maximum temperature for

a given temperature range will generally cause a much greater reduction in

cycles to failure than increasing the temperature range by the same amount

and maintaining the same maximum temperature. The time at which the max-

imum temperature is maintained can also have an effect on fatigue life, but of

smaller magnitude. The effect can be beneficial or detrimental to fatigue life,

depemling on the material, temperature, and life rang(-'.

Limited data indicate that fatigue life in a thermal-stress fatigu¢' test

is sometimes considerably less than the fatigue life of a mechanically strain-

cycled specimen having the same total strain as the thermally fatigued speci-

men and tested at a constant temperature equal to the average temperature of

the thermal-stress fatigue test.

The effect of prior thermal cycling on specimens subsequently evaluated

for stress rupture depends greatly on the material and the number of prior

cycles. In general, the effect can be expected to be detrim('ntal; howevcr, in

some cases it may actually be beneficial.

Fach of the materials that has been studied to date -- type :_47 stainless

steel, the cobalt-base alloyS-816, andthe nickel-base alloys Inconcland

Inconel 550 -- displays characteristics considerably different from the others

in thermal-stress fatigue, and prediction of distinctions in the behavior of one

l rom that of another is difficult. Hence, more classes of materials must be

investigated before a reasonably complete: i)icture of the thcrmal-fatilgue

hehavi()r of materials, in general, canbe understood. For specific irfforma-

tion on behavior of the various types of materials, investigate Refs. 13, 14,

l(;, 17, 18, 19, and 20.
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1.5 CUMULATIVE FATIGUE DAMAGE.

1.5.1 Theory.

One important problem in fatigue analysis is how to calculate fatigue

life. From the S-N diagram, we know that the higher the alternating stress,

the lower the number of cycles a part will endure before failure. Also, at

stresses belbw the fatigue limit an infinite number of cycles can be sustained.

In most cases the weight penalty imposed by using the fatigue limit as

an allowable stress cannot be tolerated. If stress cycling is at a known level,

an S-N curve can be used to determine the number of cycles to failure and thus

the life of the part can be predicted. Most structural components or parts are

subjected to irregular fluctuating stresses in which the maximum and minimum

stresses are constantly changing. Thus, it is necessary to use a fatigue theory

which will account for the damage caused by different magnitudes of stress

cycles.

Of the several cumulative damage fatigue theories known, the one most

widely used and best known is the one suggested by Palmgren and later, inde-

pendently, by Miner. The Palmgren-Miner hypothesis is that the fatigue

damage incurred at a given stress level is proportional to the number of cycles

applied at that stress level divided by the total number of cycles required to

cause failure at the same level. This damage is usually referred to as the

cycle ratio or cumulative damage ratio. If the repeated loads are continued

at the same level until failure occurs, the cycle ratio will be equal to one.

When fatigue loading involves many levels of stress amplitude, the total

damage is a sum of the different cycle ratios and failure should still occur

when the cycle ratio sum equals one.

n.

, = Lt. + n,2+2. Ni N,
1 1

+ .... = 1.0

This equation has been used by designers for many years, but at the

same time it is under criticism by researchers. It is found that:

1. In many test results the summation of n/N is far from one.

2. The fatigue damage is not linearly proportional to the number of

cycles or the cycle ratio nl/N 1.
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:3. Thcru is interaction in the fatigue (lamages l)etwecn various stress

levels which Miner neglected. In the interaction there is alsoa

sequence effect which means tha; the fatigue damage resulting from

the high load first, with the low load next, will be different from

the damage resulting from the low load first, with the high load
next.

Aware of its limitations, designers still use Miner's (,quation as a

preliminary guide because of its simplicity, versatility, and sufficient accu-

racy, commensurate with the data currently available for this type of analysis.

What are the consequences when Miner's equation is used for random-

loading conditions ? Random-load fatigue testing is time-consuming and costly,

and the scant data- available do not permit a general clear-cut answer to this

question. According to Freudenthal (Ref. 21), the sum g n/N is always less

than one. In some cases the sum is as low as 0.13 but it is mostly between

0.20 and 0.60. The primary reason for this discrepancy, according to

Freudenthal, is the interaction of fatigue damages between various load

a mplitudes.

On the other hand, it has been found that notched parts generally give

a summation value greater than one. Since practically all of the structural

fatigue failures originate in some form of notch, the question of what value to

use in place of 1.0 has been asked.

The National Aeronautics and Spac 9 Administration conducted full-scale

fatigue tests on C-46 transport airplane win_s and their summation of cycle

ratios was 1.4 (Ref. 22).

ttowever, until more information becomes available, Miner's equation

is recommended for preliminary analysis.

1.5.2 Analysis of I)ata.

Numerical simplifying assumptions are often needed to speed up the

analyzing of data. Mainly, these assumptions have to do with primary and

secondary cycles. The following four conventions serve to establish and define

primary and secondary cycles:

lo A mean value of stress, S for the entire record is approxi-
mean

mat(.d. Although a time average and a peak point average generally

yield different average values, the two may be assumed to be equal.
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. The maximum stress occurrinl_ between a positiw' S _'rossing
mean

{positive in slope} and a negative (negative slope) S crossing
mean

is called S . All other maximum stress values are designatedmax

as S
ma

e The minimum stress occurring between a negative S crossing
mean

and a corresponding positive crossing is designated as Smi n. All

other minimum stress values are Smi points. See Fig. E1-34.

1 The combination of an Smin and the next S form a primarymax

cycle. The combination of an S and the next S form a
mi ma

secondary cycle.

I __ $mu

t

Y TI MI Snt_n

FIGURE E1-34. A PARTOF A

STRESS RECORD

Accurate eva luation of fatigue

damage usually requires that all pri-

mary cycles within a given period be

considered, but it rarely requires that

all secondary cycles be considered.

The effect of neglecting secondary
stresses in random data will be inves-

tigated in terms of the following

propositions:

Proposition I -- If peaks (maxi-

mums) and troughs (minimums) are

normally distributed about a mean

stress, the damage per cycle caused

by all cycles which do not cross the

mean stress line can be neglected.

Proposition II -- If peaks and troughs are normally distributed about

a positive mean stress, the damage per cycle caused by all cycles which

neither cross nor exceed the mean stress line can be neglected.

Proposition III -- If peaks and troughs are normally distributed about

a positive mean stress, the only time a secondary cycle needs to be considered

is when it lies above the mean stress, when it occurs just after S has
max

been established, and when it reaches the lowest S established since the
min

last mean stress crossing.
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Usually for random data, on(; of these propositions can be considered

valid. Fig. E1-35 illustrates several more or less useful approximations,

some of which are generally valid, and all ,ff which are usually more valid

than the half-cycle rearrangement described above. In each case, a heavy
base line is used to indicate a mean stress line.

1.5.2.1 Peak Counting Techniques.

Figure E1-36 shows the three most commonly used cycle counting

methods among a considerably greater number which have been proposed and

used. Some of the others arc modifications of the ones shown. For example,

the first one is frequently modified so that positive and negative half cycles

are counted and tabulated separately. The second method pairs off succec(ling

positive and negative amplitudes so that each cycle mean can be calculated.

The third method, without refinement, is not very accurate unless only

one frequency is present. If a low and a high frequency appear with equal

amplitudes, the high-frequency, low-range (amplitude) activity will mask the

low-frequency, high-range component; the result will be in(listinguishablc from

a high-frequency, high-amplitude loading which is very damaging. See Case 3

of Fig. E1-36.

Ilowever, an important refinement to th(, third m(.thod of Fig. E1-36

is the use of zones and the counting of passages from one, zone to another,

i)articularly to a nonadjacent zone. This method, which is listed as method

,_a in the figure, is equivalent to metho(1 2 if a large numb¢'r of zones and zone

sel)arations are used and prop('rly r('cor(led.

1.5.2.2 Statistical M(,thods of Random Load Analysis.

Most of the fundamental concepts of fatigue indicate that some typ(_ of

cycle-counti|N technique is nee(led to evaluate the fatigue damage caused by

random loading. Direct techniques of this type, such as peak counts and range

('ounts art, simple and accurate but often quite cumbersome to apply. Other,

less direct methods are sometimes sought to estimate the same information

less laboriously. Two such indirect methods are presented in Rcfs. 2 and 3,

in which sampling or alternative measurements are ust,d andconverted into a

useful form by statistical means. In general, these methods have not been as

accurate in evaluating cumulative fatigue damage as the more direct methods.

Ilowever, their use with large quantities of data makes the loss of accuracy
acceptable.
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H

i K L

-a_@@

TIME

COUNTING QUANTITIES MEASURED EQUIVALENT

METHOD OR COUNTED WAVEFORM

1. MEAN ClIO&SING

PEAK COUNT

2. PAIRED RANGE

COUNT

3. LEVEL CROImlINO

COUNT

3L ]'ONE PASEING

COUNT

n,

IMIIH AND FH

IMj L AND JL

n4000 - 1

nZO00 " 3

n0 " Z

MG.

D

H

S M

-y
o, / /

SAME AS METHO0:3 EXCEPT EACH CROSSING IS A COUNT ONLY

WHEN PRECEDED BY A CI_O_ING AT EACH OF SEVERAL

VARIOUSLY SEPARATED LEVELS AND I£ CATEGORIZED ACCORDING
TO SEPARATION

NOTE: nlEANt.RAIIER OF POSITIVE SLOPE DESIGNATED LEVEL

CROSSINGS (IF WITHOUT StJ6SCRIIrlr THE DESIGNATED LEVEL JS Sme4m)

FIGURE El-36. APPLICATION OF SOME CYCLE COUNTING METItODS

TO A TYPICAL STRESS RECORD (Lower Table Illustrates Each Method

in Terms of an Equivalent Record)
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1.5.3 Example Problem (Paired Range Count M(,tho(l).

To evaluate the damage caused by complex stress-time cycles, it is

necessary to correct for the difference in mean stress, S , for the various
m

stress alternaticns, S • Four c c:astantamplitudeS-N curves for different
a

mean stresses are shown in Fig. E i-37. A complex stress-time hisotry for

an identical specimen is shown in Fig. 17:1-38.

The first step is to determine the damage caused by the smaller varia-

tions which are crosshatched in Fig. E1-38(a). The largest mean stress is

approximately 20ksiand, as shown in Fig E1-37, for this mean stress an

alternating stress of 4ksior less causes no damage. At an) mean stress less

than 20 ksi, the alternating stress which causes no damage increases so that

any alternating stress of 4 ksi or le._s can be omitted. Thus, variations BC,

DE, GIt, JK, NO, PQ, and _T cau_,;e he fatigue damage. The stress-time

hi_tory is repl¢),_ted in Fig. E1-38(b), with the previously evaluated variations
removed.

The second 3tep is to evaluate the smallest remaining stress variations

IL _nd RU _or iL, the alternating stress is 5 ksi and the mean stress is 10

ksi. Referring to Fig. F1-37, under these conditions failure would result in
l() 7 cycles. !tence the damage is n/N = 1/107 = 10 -7. Calculating the damage

caused by RU inthe same mannqr n/N= 1/2.2 x 104= 4.55x 10 -5 The

'_trcss-time hiutory is again reptotted in Fig. El-aS(e), with the evaluated

variationJ removed.

The third step is to evaluate the remaining cycle, FM, with S = 20 ksi
a

and S = 5 ksi. Interpolating between S = (t and S = 10, failure would
113 rn m

r('sult in 3.5x 10a cycles, tlence, the damage caused is 1/3.5x 103= 2.86 x

10 -4 The last step is to sum the damage caused by all the variations. In

this ease,

10 .7 + 4.5 x 10 -5 4 2.86 x 10 -4 = 3.316 x 10 -4

Using the cumulative damage theory with E n/N = 1.0, the stress-time history

con be repeated 3000 times (1.0/3.316 x 10-4= 3000).
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1 .(; MATERIAL SELECTION TO I{I:SIST I'ATIGUI:.

1.6.1 High Cycle.

The first step to be considered in fatigue design is selection of the

structural material. The four most commonly used materials are steel, tita-

nium, aluminum, and magnesium. Unnotched rotating-beam fatigue data are

presented in Fig. E1-39 and notched data are shown in Fig. El-40. Each alloy

was selected because it has the highest fatigue strength in its class, based on

available data, i.e., 4340 heat-treated 260-280 ksi has the greatest fatigue

strength of all the steels. For the unnotched specimen, Ti-155A, titanium

is, by far, the best material. The three other materials, 7075-T6 aluminum,

AZS0A-F magnesium, and 4340 steel heat-treated 260-280 ksi are approxi-

mately equal. It should be noted that titanium and steel have well-defined

fatigue limits.

For the notched specimen also, Ti-155A, titanium is the best material,

as shown in Fig. El-40. The three other materials, 2024-T4 aluminum,

AZSOA-F magnesium, anal 4340 steel heat-treated 260-280 ksi, are approxi-

mately equal. For the notched specimen, all four have well-defined fatigue

limits. Only one class of structural material, aluminum, changed alloys as

a result of selecting the best fatigue strength in unnotched and notched speci-

mens. The notch used had a stress concentration factor of approximately 2.8.

Rotating-bending specimens usually give different results than axial

load specimens due to the large stress gradients produced in the bending tests

and which arc not present in axial tests. Different forms (e.g., sheet, bar,

rod, etc.) sometimes cause different fatigue strengths. Therefore, an

accurate selection of alloy for fatigue strength should be based on fatigue data

with similar loading, form, and stress concentration factor as the particular

structure in question.

1.6.2 Low Cycle.

Different materials may show substantially different abilities to resist

repeated straining and repeated stressing; also, they have various abilities to

retain their properties when subjected to large cyclic plastic strains. Because

of these differences, the relative low-cycle fatigue resistance of several can-

didate materials should be rated, preferably without going through the arduous

task of extensive fatigue testing (Ref. 23).
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A distinguishing differ(race' between high-cycle an(I low-cycle fatigue

is that in the latter the plastic strain component is consi(lerably larger. These

large plastic strains can induce significant ( _mngcs in the stress-strain

response of most mate, rials. The, most suita_Jle test for _tu(lying these changes

in deformation resistance is one in which the specimen is cycled between

fixed limits of strain, rather than stress. During cyclic straining, a mechan-

ical hysteresis loop develops (Fig. E1-41). The controlled parameter is

/
I _ "%p .

i - 6at "

Z# b

ITRAIN

FIGURE E1-41. SCtlI;:MATIC OF

*IE('HANICAL IIYSTERESIS LOOP

total strain range Al,;t, which is com-

posed of an elastic and plastic com-

ponent. Plastic component AE is
P

the width of the hysteresis loop;

whereas, the height of the hysteresis

loop is 2(Ya, wh¢'re a is the stressa

amplitude.

During cyclic straining, mate-

rials either harden or soften, depend-

ing upon t h(_'ir previous history. For

example, annealed materials will

generally undergo a cyclic hardening

process;, which is indicated by an

increase in th,'_ stress required to

enforce the strain limit on successive

cycles. On the other hand, cold-

worked materia l_; gent rally soften.

Changes in the stress response occur

rapidly in lhe early portion of the life

but reach a reasonably stable level or

stt,ady-:-:tate condition after about 10

to 20 p('rcent of the life.

After this transient sta:,_', a steady-state or saturation condition is

attaine,l during which the hy,_;lercsis loops maintain an essentially constant

shape until prior to c,_mplo_- fract_lrc. The Curve drawn through the tips of

the,:e st:abiliz."d hV:_tcr,'qis lo%r-' (,_btained fr_m _p,'cin_t,ns tested at different

aml)litudcs ) is c:_lled the cyclic utre:;_-sirain ,:urve, Fig. E1-42(a). It pro-

vidos a conv('ni_'nt description of the st',*ady-:;tat_ cyclic stress-strain response

of a-material. Thus, monotonic (static) and cyclic _trcss.strain curves may

be displayed on the same diagram, Fig. E1-42(1)), so that the effect of dif-

ferent variables can be represented in a concise way.
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FIGtTI{I,: E1-42. CYCLIC S'I'RESS-STIUkIN CURVE, AS I)I:TERMINEI)

FROM SEVI.;RAL IIYSTI.:RESIS LOOPS, (a). COMPARISON WITIt

MONOTONIC CURVE, (b)

Although metals may un(lergo cyclic har(lening or softening, the prob-

h'm oi softening is more important, :_incc the strength properties of the mate-

rial (lurin_ low-eych' fatigue may b(' appreciably less than one would expect

from the static stress-strain curve. Two questions, therefore, seem tobe

important: Will the material cyclically soften? If so, how much will it soften?

A component, or a critical location in a structure, may undergo either

repeated straining or repcatcc[ stressing, depending upon the geometry and

load environment. Some materials show good strain resistance, whereas

others show gnod stress resistance. It is, therefore, necessary to decide

whether a design requires a strain-resistant or stress-resistant material.

The relation between the total strain amplitude, Act/2, and the cycles

to failur(', Nf, is given by

A, Ac

t ^, P -- _- ' (2N[)C'2 2 [

where c is the fatigu(' ductility exponent.
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Thus, the short-life strain resistance of materials depends m:Jinly

v and c. Using typical experimentalupon the fatigue ductility coefficient, ef ,

values for the constants, it is apparent thai. ,_ material with a large value of

Ef t` and a small value of c has the best resistance to repeated straining.

The fact that a material shows good strain resistance does not neces-

sarily imply that it has a good cyclic stress resistance. To point out the

importance of deciding whether the material to be selected must resist repeated

strains or repeated stresses, seven materials were tested for both stress and

strain resistance in Ref. 23. The material with the highest stress resistance

was fourth in ability to resist cyclic strain. Likewise, the mat( rial third

best in cyclic strain resistance dropped to sixth in stress resistance.
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At the ))resent level or' knowlvdge, it is impractical to establish quanti-

tatively the limiting fatigue design rules for specific structural configurations.

The diversity in missions, loads, stresses, materials, and environments

certainly suggests this to be an impracticable, if not impossible, task. Quali-

tatively, however, the practices to be followed in the design of fatigue resist-

ant strueturc'can be defined, and if strict adherence to these established

practices is maintained, potential fatigue problems can be reduced in the initial

stage of structural design.

In general, the basic rules used in the airframe industry will apply in

thcdt, sign o[ space vehicle systems. Past experience and learnin_ from the

one field can be carried over to the other, although some precautions should

be taken. Old designs may be unsuited to a new environment.

When procedures are proposed, they o[ten become general rules which

regulate structural design, even though they may be inappropriate. Recom-

mendations used in the sense of "design rules" are far more appropriate.

With this interpretation, a few of the more pertinent guides for the design of

space vehicle systems may be listed:

1. Keep the design simple.

2. Provide for multiple load paths when feasible.

3. Give extra consideration to tension-loaded fittings anti components.

4. Apply fitting factors of safety to net stresses around holes and

cutouts.

5. Laboratory test all newly designed joints and compare with "time-

tried" structures.

6. Utilize longitudinal grain direction of materials whenever possible

(particularly for aluminum and steel alloys).

7. Provide generous fillets and radii.

8. Break all sharp cdl_es; polish critical regions if it is considered

necessary.

t Reduce bearing stresses in riveted and bolted members to design

minimums.
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10. Take precautions to protect parts from corrosion.

11. Whenever possible, reduce e(eentricity of joints and fittings.

12. Ensure that doublers and structural reinforcements result in

gradual, rather than abrupt, changes in cross section.

13. Provide easy access for service inspection of structure.

14. Provide inspection procedures during fabrication and assembly of
structure.

15. When oractical, produce parts and fittings from forged material

rather than from extrusions or machined plate stock.

16. Design parts for minimum mismatch or installation; this results

in lower residual and preload tensile strains.

17. Avoid superposition of "notches" in design.

18. Make a proper selection of materials with cost, strength allow-

ables, fabricability, and environmental effects in mind.

19. Pay close attention to fabrication techniques for optimum forming
of components.

20. Establish reliable welding techniques for reproducibility of joints
strengths.

21. Construct rigid and precision tooling for the manufacturer of pro-
duction parts.

Undoubtedly, there are additional useful fatigue guides which could be

added to the list above. Many such guides are unwritten and only intuitively

known by the most experienced design specialists. Excellence in design, how-

ever, is not accomplished by the designer alone. It requires the close cooper-

ation of specialists able to perform complex dynamic stress analyses: acous-

ticians, vibration engineers, metallurgists, specialists in structural testing

and reliability analysis, as well as those experienced in tooling and
manufacturing.

i'hese guides and recommended practices for designers are suggested

for the sole purpose of reducing the overall development time from preliminary
desig_ l:lv_JL_t to assembly in production.



REFERENCES

Section E1

1 November 1972

Page 89

.

1

.

4,

.

o

o

.

Q

10.

11.

12.

Kennedy, A. J.: Processes of Creep and Fatigue in Metals. John Wiley

and Sons, Inc., New York, 1963.

Madayag, A. F. : Metal Fatigue: Theory and Design. John Wiley and

Sons, Inc., New York, 1969.

Fatigue Design Criteria for Launch and Spacecraft Structures. Douglas

Missile and Space Systems Division, Paper No. 3290, January 1965.

Peterson, R. E. : Stress Concentration Design Factors. John Wiley

and Sons, Inc., New York, 1953.

Gurney, M. A.:

Press, 1968.

Fatigue of Welded Structures. Cambridge University

Manson, S. S. : Thermal Stress and Low-Cycle Fatigue. McGraw-Hill

Book Company, 1966.

Langer, B. F. : Design of Pressure Vessels for Low-Cycle Fatigue.

J. of Basic Engr., Transactions of ASME, September 1962.

Smith R. W., Hirschberg, M. H., and Manson, S. S. : Fatigue

Behavior of Materials under Strain Cycling in Low and Intermediate

Life Range. NASA TN D-1574, April 1963.

Manson, S. S., and tialford, G. : h Method of Estimating High

Temperature Low-Cycle Fatigue Behavior of Metals. NASA

TM X-52270, June 1967.

Manson, S. S. : A Simple Procedure for Estimating High-Temperature,

Low-Cycle Fatigue. Experimental Mechanics, August 1968.

Manson, S. S., Halford, G. F., and Hirschberg, M. H. : Creep-

Fatigue Analysis by Strain-Range Partitioning. NASA TM X-67838,

May 1971.

Coffin, L. F., Jr. : A Note on Low Cycle Fatigue Laws. Journal of

Materials, JMLSA, Vol. 6, No. 2, June 1971, pp. 388-402.



REFERENCES (Concluded)

Section E 1

1 November 1972

Page 90

13.

14.

15.

16.

17.

18.

19.

20.

2].

22.

23.

Baldwin, E. E., Sokol, G. J., and (:offin, L. F. Jr. : Cyclic Strain

Fatigue Studies on AISI Type 347 Stainless Steel. Trans. ASTM, Vol.

57, 1957, pp. 567-586.

Clauss, Francis J., and Freeman, James W. : Thermal Fatigue of

Ductile Materials, I and II. NASA Tech. Notes 4160 and 4165, 1958.

Spera, D. A. : Calculation of Thermal-Fatigue Life Based on Accumu-

lated Creep Damage. NASA TN D-5489, October 1969.

Majors, Itarry, Jr. : Thermal and Mechanical Fatigue of Nickel and

Titanium. Trans. Am. Soc. Metals, Vol. 51, 1959, pp. 421-437.

Clauss, F. J. : Thermal Fatigue of Ductile Materials, III. NASA

Tech. Note D-69, October 1969.

Coffin, L. F., Jr,: The Problem of Thermal-Stress Fatigue in

Austenitic Steels at Elevated Temperatures; ASTM Spec. Tech. Publ.

165, 1954, pp. 31-49.

Liu, S. I., Lynch, J. T., Ripling, E. J., and Sachs, G.: Low Cycle

Fatigue of Aluminum AHoy 24ST in Direct Stress. Trans. AIME,

Vol. 175, 1958, p. 469.

Avery, It. S.: Discussion of Cyclic TemperaturcAccelerationof

Strain in Heat-Resisting Alloys. Trans. Am. Soc. Metals, Vet. 30,

1942, pp. 1130-1133.

Freudenthal, A. M.: Some R('marks on Cumulative Damage in Fatigue

Testing and Fatigue Design. Welding in the World, Vol. 6, No. 4,

1968.

Bruhn, E. H. : Analysis and Design of Flight Vehicle Structures.

Tri-State Offset Company, Cincinnati, Ohio, 1965.

Feltner, C. E. and Landgraf, R. W. : Selecting Materials to Resist

Low Cycle Fatigue. ASME Paper No. 69-DE-59.

_" U. II. GOVERNMF.NT PRINTING OFFICIrl 1973--746_Z7/4779 "_"_



SECTION E2

FRACTURE MECHANICS





_'_ TABLE OF CONTENTS

,f-
E2 FRACTURE _ EC HANICS ..........................

2.1 GENERAL .................................

2.1.1 Comparison of Fatigue and Fracture Mechanics . . .

2.2 STRESS-INTENSITY FACTORS ...................

2.2.1 Plane Strain . . . ........................

2.2.1.1 Correction for Deep Surface Flaws ......

2.2.2 Plane Stress ...........................

2.2.2.1 Through-the-Thickness C racks ........

2.2.3 Experimental Determination ................

2.3 FLAW GROWTtI .............................

2.3.1 Sustained Load Flaw Growth ................

2.3.1.1 Environmental Effects ..............

2.3.2 Cyclic Load FlawGrowth ..................

2.3.2.1 Theories .......................

I. Paris ......................

II. Foreman ....................

III. Tiffany .....................

2.3.2.2 Crack Growth Retardation ............

I. Wheeler's Retardation Parameter ....

II. The Signi[icancc of Fatigue Crack

Closure .....................

2,3.2.3 Transition from Partial-Thickness Cracks

to Through-Thickness Cracks .........

2.3.3 Combined Cyclic and Sustained Flaw Growth ......

2.4 APPLICATION OF FRACTURE MECIIANICS

TECHNOLOGY ..............................

2.4.1 Selection of Materials ....................

2.4.1.1 Static Loading ....................

I. Example Problem A .............

2.4.1.2 Cyclic orSustaine(I Loading ..........

1. Example l)roblem A .............

II. Example Problem B .............

Page

5

6

10

16

2O

21

23

23

24

25

25

27

29

32

32

32

35

39,/40

39/40

41

41

44

45

49

49

57

E2-iii

,$ _', 2

PRECEDING PAGE _,.,_k_,_('_.O'f FtcJ_r..l.)



TABLE OF CONTENTS (Concluded) _J

Page

2.4.2

2.4.3

Predicting Critical Flaw Sizes ............... 59
2.4.2.1 Surface Cracks ................... 60

I. Example Problem A ............. 61

II. Example Problem B ............. 62

2.4.2.2 Embedded Flaws .................. 64

2.4.2.3 Through-the-Thickness C racks ........ 66

I. Example Problem A ............. 66

Structure Design ........................ 69

2.4.3.1 Service Life Requirements and

Predictions ..................... 69

I. Example Problem A (Thick-Walled

Vessel) ..................... 76

II. Example Problem B (Thin-Walled

Vessel) ..................... 80

2.4.3.2 Allowable Initial Flaw Size ........... 87

I. Example Problem A .............. 88

2.4.3.3 Nondestructive Inspection Acceptance

Limits ........................ 89

2.4.3.4 Proof-Test Factor Selection .......... 94

I. Example Problem A ............. 97

REFERENCES .................................... 100

E2-iv



E2

2.1

Section E2

1 November 1972

FRACTURE MECHANICS.

GENERAL.

Structures subjected to constant loads at moderate temperatures have

been designed primarily on the basis of the yield strength and/or ultimate

strength of the material. Many of these structures have failed prematurely at

stresses below the yield strength, with disastrous consequences. These

brittle failures have occurred in such diverse structures as storage tanks,

suspension bridges, aircraft landing gears, and rocket motor cases. An

examination of such failures indicated one predominant fcature: A small

defect or flaw was usually found at the failure origin.

Therefore, the key to brittle fracture control lies in understanding both

the weakening effects of flaws and cracks in metals and those factors that

influence this effect. To be useful in an engineering sense, this understanding

must be translated into the types of tests and structural mechanics familiar

to the metal producer and designer. The body of knowledge concerning this

type of failure has become known as fracture mechanics.

Basic to fracture mechanics is the understanding of the state of stress

near the tip of a sharp crack and the relationship between gross stress and

flaw geometry. These concepts are discussed in subsection 2.2, Stress-

Intensity Factors.

Flaw growth or crack propagation under cyclic loads is a basic problem

which is handled best by fracture mechanics concepts. A thorough discussion

of flaw growth is given in subsection 2.3.

Finally, subsection 2.4, Application of Fracture Mechanics Technology,

relates stress-intensity factors and flaw growth to the engineering design and

analysis of structures. Particular attention is given to pressure-vessel design

because of its importance in the acrospace industry.
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2.1.1 Comparison of Fatigue and Fracture Mechanics.

Similarities and dissimilarities between fatigue and fracture mechanics

are summarized in Table E2-1. Both fatigue and fracture mechanics depend

primarily on results of laboratory tests; however, the fracture mechanics

concept makes it possible to handle fracture considerations in a quantitative

manner and has shown greater applicability to fatigue crack propagation.
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2.2 STRE SS-INTENSITY FAC TORS.

To understand how fracture mechanics is used in design, it is helpful

first to learn some of the theory on which it is based.

The precise goal of fracture mechanics can be stated concisely: It

attempts to provide a quantitative measure of resistance to unstable crack

propagation. This measure must be independent of the size and shape of the

crack, the geometry of the part containing the crack, and the manner in which

external loads are applied to the part.

The search for a quantitative value focuses on the conditions in the

vicinity of the crack tip where fracture takes place.

The stress fields near crack

tips can be divided into three basic . __.,_/

types, each associated with a local

mode of deformation, as shown in

Fig. E2-1. The opening mode, I, is

associated with a local displacement

in which the crack surfaces move a. Mode I. b. Mode II.

directly apart. The edge-sliding

mode, II, is characterized by dis-

placements in which the crack sur-

faces slide over one another. In

mode III, tearing, the crack sur-

faces slide with respect to one

another parallel to the leading edge.

Mode I is the most critical mode and

is the only one to be discussed in this

section.

J

c. Mode III.

FIGURE E2-1. THREE DISPLACE-

MENT MODES FOR CRACK

SURFACES

For information on modes II and III, see Ref. 1.
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The stress conditions, or plane-strain elastic stress field, at the crack

tip for mode I are defined by the expressions shown in Fig. E2-2 (Ref. 2).

These equations give the components of stress (a = normal stress, r = shear

stress) in terms of the polar coordinates r and _ for opening-mode (per-

pendicular) crack surface displacements. Only the first term of each equation

y

m
w
ee
I-

I Ox _-_---_ Ox

CRACK r O!

HORIZONTAL DISTANCE FROM CRACK FRONT

Oy - (2 lr r)1/2 2 2 /

Ox" (21rr)1/2 (_

",,v" costs' cosT "'"

FIGURE E2-2. RELATIONSHIP BETWEEN STRESS-INTENSITY FACTOR,

KI, AND STRESS COMPONENTS IN THE XrICINITY OF A CRACK
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is shown. The complete equations are power series in r/a (crack tip radius/

crack half-length). For practical purposes, all terms beyond the first are

negligible.

All the three stress components are proportional to a scalar quantity

that has been designated the stress-intensity factor, K I. This factor is

independent of r and _ and therefore gives a single description of the stress

intensity at any point near the crack tip. It is a purely numerical quantity

which, if known, provides complete knowledge of the stress field at the crack

tip.

The basic assumption in fracture mechanics is that an unstable frac-

ture occurs when KI reaches a critical value designated Kic, commonly

called fracture toughness. It is important to appreciate the difference

between K I and Kic. The stress-intensity factor K is simply a coefficient

in an equation describing the elastic stresses in the vicinity of a crack tip.

Fracture toughness Kic is a particular value of K I corresponding to

unstable propagation of the crack. This value is a material property and

reflects a material's ability to withstand a given stress at a crack tip. The

difference between K I and Kic is analogous to the difference between stress

and strength for a body free of discontinuities.

Irwin (Ref. 3) used the expressions shown in Fig. E2-2 with the Green

and Sneddon analysis (Ref. 4) to show that the expression for the stress

intensity around the crack periphery for the embedded elliptical flaw (Fig.

E2-3) is

KI = T a_a [a 2 cos 2 _b + c2 sin 2 9]
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where _ is the uniform stress perpendicular to the crack. The parametric

equations of the flaw periphery are g - c cos _ and y = a cos _ , where c

is the semimajor axis of the ellipse, a is the semtminor axis of the ellipse,

and • is the complete elliptical integral of the second kind corresponding to

the modulus k= [(c 2 -a2)/c_]t/2; i.e.,

\

= _2 1 - " sln2 q d@

0 c2

or • = 1 + 4.593(a/2c) t"_s. Values of 4)

of a/2c from the graph shown in Fig. E2-4.

In seeking an expression for the stress intensity for a semielliptical

surface flaw in a finite-thickness plate, Irwin assumed that

i

can be obtained for various values

K I = a T cr_ [a2 cos_ _b +

i/4

where a is a correction factor to account for the effecton stress intensityof

the stress-free surface from which the flaw emanates, and _ is a correction

factor to account for the effecton stress intensityof the plasticyielding around

the flaw periphery.

Values of a and _/ were estimated by Irwin and considered valid for

surface flaws with a/c ratios less than one and flaw depths not exceeding 50

percent of the plate thickness. The resulting expression for the stress inten-

sitywas

I 1 It/4K I = 1.1 _ cr(a/Q)I/2 _- [a2 cos2 @ + c2 sin 2 _1

v
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FIGURE E2-3. EMBEDDI':D ELLII)TICAL-SIIAPI':D CRACK UNDER
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where Q = _2 _ 0.212 (a/a YS)2, and a ys is the uniaxial yield strength

of the material. Figure E2-5 shows the relationship between Q and the flaw

depth-to-width ratio.

The maximum value of K I occurs at the end of the semiminor axis

of the ellipse and has a value of

K I = 1.1 _ a (a/Q) 1/2

At some value of a the flaw size becomes unstable and propagates

rapidly. The value of K I computed at the inception of this instability is

called the critical value of K I and is designated KIc. Thus, Kic is the

stress intensity necessary to cause fracture under plane-strain conditions

and is commonly called the plane-strain fracture toughness. Thus,

Kic = 1.1 _a (a/Qcr) l/2 .

Figure E2-6 is a graphical representation of this equation. Some typical

values of Kic for space shuttle materials are shown in Table E2-2.

Stress-intensity factors for other shapes of cracks, different loading

conditions, and crack location are given in Table E2-3.

2.2.1.1 Correction for Deep Surface Flaws.

For surface flaws that are deep with respect to plate thickness, that

is, when the crack approaches the opposite surface, Irwin's equation has been

modified by Kobayashi (Ref. 5) as follows:

where

KI = 1.1 Mk _-a (a/Q)1/2

M k is the magnification factor for deep flaw effects.
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_j

FLAW SIZE RATIO (a/Q)

FIGURE E2-6. APPLIED STRESS VERSUS CRITICAL FLAW SIZE RATIO

Experimental data obtained on several materials with varying flaw sizes

and shapes appear to provide a fair degree of substantiation of the Kobayashi

magnification factor; however, more experimental investigations are being

performed. Typical curves for M k for two different materials are shown in

Figs. E2-7 and E2-8.

2.2.2 Plane Stress.

An important consideration in fracture mechanics is the "state of

stress," or simply the directions and magnitudes of the applied stresses and

strains. In general, the state of stress in a body is three-dimensional, that

is, stresses and strains exist in all three principal directions.

For thin sheet specimens subjected to in-plane external loads which

do not vary through the thickness, a condition of plane stress is thought to

prevail. As such, strain in the thickness direction is virtually unsuppressed

and considerable plastic flow attends the cracking process.
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Properties of Typical Materials Considered

for Use on Space Shuttle

Alloy

4340 (High Strength)

4340 (Low Strength)

D6AC (High Strength)

D6AC (Low Strength)

18 Ni (250)

18 Ni (200)

12 Ni

9Ni-4 Cr

HY - 150

T-1

2014-T6

2024-T4

2219-T87

6061-T6

7075-T6

6AI-4V (STA)

5A1-2.5 Sn

Ftu

(ksi)

260

180

275

218

263

206

190

190

150

115

66

62

63

42

76

169

125

F
ty

(ksi)

217

158

231

203

253

198

180

180

140

100

60

47

51

36

69

158

118

52

100

61

112

76

100

226

160

250

180

23

28

27

71

26

51

120
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Infinite cracked
Iheet with uniform

normal stress at

infinity

__.if, xI = o.,/;T
KII = Kll I = f)

r

r

" o <> _ -.:

"---"--- L
C_ 4

Periodic array of cracks along a line in
a sheet, uniform stress at infinity

K I o _ 2h na= tan

KII = Kil I = 0

Cam 2
Infinite cracked
sheet with uniform

1 _:_ " IT in'plane shear at
T infinity

• _ KII

• K I = Kll I = 0

r

r

Case 5

Periodic array _ff cracks along a line in

a sheet, uniform in-plaue shear stress at
infinity

% = ,,,_7 _ ,an:_/

K I = Ktl I = 0

i

_'.] (.9 (9 _ r

CIII3

Infinite sheet with

tunnel crack =u_ect

to out.of.plane ahem

at infinity

K I ffi KII = 0

. --dzo_-- _eo_ .-teor-,_

cl_e

Periodic array of cracks along a line in
a sheet, unitorm trot-of-plane shear

at infinity

/2h _¢ra ) _AKll I = ¢ _Vr_'l 7r--_- tan

K I = KII = 0

Case 7

Concentrated force on the

slirlace of a crack in an

infinite sheet

KI = P (a+ h )½2v_- \a - b

' (:/KII = 2 nx/_' + II

K = 3.4 v (for plane strain)

Y

r p f

.
2,/;7 \, , ,/

2,/E\. - _/

I

I

i

Case 8

Curved crack m equal hi-
axial stress licld

a

t_

(,,oo(,•

i

¢



Table E2-3. (Continued)

Section E2

1 November 1972

Page 15

CaN g

Inclined crack in uniform

tension in infinite sheet

K I = o sin 2 _

Kll = o sin_cosCv"_a

CaN 10

Crack in infinite sheet

subject to arbitrary torce

and couple at a remote

point

:%-"
_L

L--2o:..t
At right end

I [I (P + iO) a
K= 2x/;_ (t +,O _-a 2

(a + zo) "1
(_02 _a2), A I + J
a(P-iQ)(ro-Zo) + ai(I +_)M

,I

(_o- a)(_2 _ a' )'_

tt = (3-v)/(l+v)forplanesereas x = 3.4vforplanestrain

zn = go + iYo _ = Xo- iyo

-- One Crack -- --Two Crack - Case 11

L/r EL/r) f(L/r) Cracks from hole in

Uniaxial Biaxial Uniaxial Biaxial infinite sheet

Stress Stress Stress Stress KI = ov,_- _- f(+)
0 3.39 2.26 3.39 2.26

0.1 2.73 1.98 2.73 I.()8 = 0
0,2 2.30 1.82 2,4l 1.83 KII

0.3 2.04 1.67 2.15 1.70

0.4 1.86 1.58 I.q6 1.61 w_-'_"_e e

0.5 1.73 1.49 1.83 1.57 l'__ _

0.6 1.64 1.42 1.71 1£2

0.8 1.47 1.32 1,58 1.43

I.O 1.37 1.22 1.45 1.38

1.5 1.1_ 1.06 1.20 1.26

2.0 1.06 1.01 1.21 1.20

3.0 0.94 0.93 I. 14 I. 13

5.0 0.81 0.81 1.07 1.06

10.0 0.75 0.75 1.03 1.03

** 0.707 0.707 IO0 1.00

Ca,,e 12

Edge crack m a semi-in-

finite body subjecte(t h>
shear

K I = KII = 0

Kll | = r x/_'_"

•--------- b

Case 13

Central crack in strip snbiecl

to tension (finite widlhl

K I = o _X/'_flX)

X = a/b

7, fO,)

0074 I (10
0.207 I 0_

0.275 1.05

0.337 I Oq

0.410 1.13

0.466 I. I
0.535 1.25

0.592 1.31

Case 14

Notched beam in bending

6M

KI = (h a)*/2 g(a/h)

KII = Kll I = [)

a/h g(a/h

().05 0.3t_

0.1 0.49

0.2 060

0.3 0 t,6

0.4 ()6q
(}.5 0.72

0.6 073

> 0.6 073
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f(alb) f(alh) flalb)
a/h L/b = I L/h = 3 L/h -o,,

Cose 15

I)_,.hle-edge nolch

OI 1.13 1.12 l 12

02 1.13 I.II 1.12 _"

(14 l 16 I +Of+ I 14

0.5 1.14 1.02 115

06 I I0 1.01 1.22

07 IO2 1.00 134

O.K l.Ol I00 I.<;7 --2b---

()') I .IX) I .O0 2 0')

f,

2h na ) '/-'K I = u _ _ tan _-_ I(:J/h)

kll = gll I = O

l.r L _ _ LISt:

= um _ + O lsin --

C4.. 16

_+'lll+¢lllpllCal Still'ace crack i11 plate SLII')+_CI |o gC|leral exlensH)rl

,+[,.0.,+,I,-+>]

KII = ()

r n_/_a (21 +r;,) 'kKill = d)'_ _kn-'-_- tan

where 'b, isglVell by

'_,, = ./" I-_ h_ ]_i,_=++ do
0

Caa 17

lwl) Cqtlal t'l_line;ir cracks in an in_inill2 _heel _uhlec{ h+ llnll(+llM IL'n_IIHI

At lhe heal <'l}d_

-_ r

'T.

K I = +I_

KII = +

i h 2 _ ;,2 )'_

h 2 _ _ a J

KIp)

(h _ -a2l .

A! the lar ends

KI = ov/_-£(._ E(p)pKIp) )

gll = rvr_ #Kip)

1
E anti K are Ihe Ctilllplclc elllplic inlegrals F4#) and

K(_) of Ihe firs! and _cond kinds fespedwely

Corn 10 K I = " V_ f(a/b)

Stogie-edge notch

KII = Kll I = O

a/h f(a/b) Ra/h)

OI 115 114

O+2 I?O I.Iq

0.3 1.2') 1,29

0.4 I.t7 1.37

0.5 1,51 1.50

0.6 1 6M I_+

07 I,_lg I;'17

_,r 08 2.14 2.12

{) q 246 2 44

I O 2K6 •_.X.

C=w 19 K I = One I V_ fid/DI

r(mnd hal m lenslt)n

wilh c'lrC'lllnlerenlial = 0
c,ack KII = KIll

_ diD Rd/D) d/D lid/D)

o o (I 7o (; 24_l

OI OJII 0.75 O2"_7

l)2 0.I s.i o.80 ( 2
(); ()IX'; 0 x5 0 225
il4 O21_) (]ql) 0 2()5

It 5, 0227 (),15 0 1(+2

ILl+ ()2IX 0')7 (1 IR)

lib (; 0-_40 I IK) (I

Case20

('Irclll;tr crauk Ill +Ill t o
inrinllc b(,tly _ublecl / \--_.,

Ill Illlll_/lll I('n_lon /" / "_"

..---. /2S

KII : Kill : ') ,.... _*_"_" //,'/'/

5/"

l'11iph_;d _ra_k ID lhhnHC +" "

body Mlhlecl I,+ tllI+10llll _-++ / \ " "'"" --

I E'll%il III

I'o1 ilqllrll _)TI klilt_ k III!C

dL'ft'l Illlllt'dby /lll_e

K = -- I%1II (3 t" LOS 2
I '1). \

kll - Kll I = ()

<I,,, - \.__._.. /
_6

de
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2.2

2.0

1.8 m •

_lr 1.8 •

"1:i _*-o=,_ ,,_

1.2 •

al2c_ 0.06

o/2c 0.10

I f I
IBASED ON TILTS OF O.I_.in.-THICK BASE METAL
(TRANSVERSE GRAIN) AND WELD METAL AAT -_°F AND -42301:]

alZc = 0.20

ad2c = 0.30

o/2c = 0.40

1.0

0 0.10 0.20 0.310 0.40 0.50 0.60 0.70 0.80 0.90

a/t

FIGURE E2-7. M k CURVES FOR 5A1-2.5Sn (ELI) TITANIUM ALLOY

Jr

2.0

1.4

I
•,/2c - 0.o6

- 0.40

1.0

0 0.1 0.2 0.3 0.4 0.6 0.| 0.7 0.| O.O

a/t

FIGURE E2-8. M k CURVES FOR 2219-T87 ALUMINUM ALLOY



Section E2

1 November 1972

Page 18

For thick specimens, strain in the thickness direction is suppressed

considerably by the very thickness of the material and noticeably less plastic

flow is associated with the cracking process.

A laboratory plate specimen is seldom completely in either plane stress

or plane strain but rather in some proportion of both. At the free surfaces of

the plate there are no transverse stresses to restrain plastic flow (a condition

of plane stress). In contrast, at mid-thickness, plane-strain conditions prevail

and much less plastic flow occurs. A schematic representation of the crack-

tip plastic zone in a plate specimen is shown in Fig. E2-9.

SHADED AREA = CRACK SURFACE
The size of the plane stress HEAVY SOLID LINE = CRACK FRONT//'_

plastic zone is thought to be related to 7-----_A/", .J_-fZ

the amount of shear tip left at the THICKNESS __/ //_//_

fracture surface. Thus, the appear- OF SPEC_/MEN /J//

ance of the fracture will vary accord- / /f_'_

/

and plane strain conditions through the

thickness of the plate.

FIGURE E2-9. REPRESENTATION
The influence of stress state

OF PLASTICALLY DEFORMED

(and associated plasticity) on the frac- REGION AT A CRACK FRONT

ture toughness is illustrated in Fig.

E2-10, which shows the effect of plate thickness on the toughness and fracture

appearance. This figure shows that the larger thicknesses are characterized

by low values of toughness. This corresponds to a completely square (brittle-

appearing) fracture appearance.
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I

Kic

! l
0.2 0.4

APPEARANCE OF
FRACTURE SURFACE

I
! 1 I

0.6 0.8 1.0

THICKNESS (in.)

FIGURE E2-10. EFFECT OF PLATE TIIICKNESS ON FRACTURE

TOUGHNESS AND PHYSICAL APPEARANCE OF THE FRACTURE

A reduction in plate thickness decreases the degree of plastic constr',int

at the advancing crack tip. This enlarges the local plastic zone and conse-

quently raises the fracture toughness. The development of a larger plastic

zone, in turn, relaxes the stress in the thickness direction, which further

decreases constraint. The process is self-accelerating and the fracture

toughness increases rapidly in a narrow range of thickness variation, as

shown in Fig. E2-10.

In the aerospace industry thicknesses of structures are usually thin

enough to fall in the region of plane stress behavior and as a result more

testing in this area is being done. However, a determination of plane stress
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intensity factors is far more complicated than was first supposed and consider-

able research is needed. It is very hard to determine when unstable crack

propagation occurs because the unstable condition is approached very gradually

as crack length increases.

At present there is no direct method for translating laboratory data for

the mixed mode fracture condition to useful numbers for designing practical

hardware.

2.2.2.1 Through-the-Thickness C racks.

In thin-walled structures, cracks may grow through the thickness

before catastrophic failure occurs or a through-the-thickness crack may

exist before any load is applied. The basic plane stress equation for through-

thickness cracks corrected for plastic zone in an infinitely wide plate is

_ 1 Kc2
K 2 =if2 lr c +

c T

where _ is the length of the through-thickness crack at failure (in.) a ise t

the stress normal to the plane of the crack at failure (ksi), a is the yield
Y

strength (ksi), and K is the critical plane-stress stress intensity (ksi 4-_.)
e

The critical plane stress intensity for a finite-width panel containing

a through-thickness crack is

{ [(K = a wtan _r
c _ n + II

c nff y2

where w is the width of the panel (in.).
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2.2.3 Experimental Determination.

Among the most important recent progress in fracture mechanics is

the improved understanding of how the behavior of test specimens relates to

the design of structural components. Numerous tests have been performed on

a variety of specimen types, some of which are shown in Table E2-4. The

tests were designed to determine the specimen types, procedures, and data

analysis which result in Kic determinations that are independent of crack

and specimen geometry and manner of external loading.

At present no fracture mechanics test is universally used to determine

KIc values because no one test gives valid data for all materials; each of the

tests has its limitations. For instance, ASTM committee No. E-24 has been

working for several years to bring out a standard (E399-70T is proposed),

but this test may not be valid for low-strength, high-toughness materials.

Table E2-4 describes some types of fracture specimens, the data

obtained, and their uses and limitations. For detailed information on these and

other specimens, how to set up and conduct the tests, what data to obtain, and

how to analyze data, see Refs. 1, {I, and 7.
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Seven Common Types of Fracture Specimens

Specimen Loading Data Obtained Uses/Limitations

_to w

Single-Edge Crack

Double- Edge C rack

I
o ,J

Central Through-Crack

Round Bar Notched

C racldine-Loaded Wedge

Opening, or Compact
Tension

oL_

Partial-Thickness Crack

ASTM Cracked Slow Bend

Uniaxial tension,

induced bending

Uniaxial tension

Uniaxial tension

(statie or eyclie)

Uniaxial tension

(cyclic or static)

or rotating

flexure fatigue

Tension with

induced bending

Uniaxial tension

(static or cyclic)

Breaking stresses,

Kic

Breaking stresses,

K
Ic

Breaking stresses, K ,
c

flaw growth rates,

Kie,_ ,10 e

Breaking stresses,

Kic

KIc, Kii

C racks must be equal

in size

Simulates penetration
flaw in har(h_art,.

K Is width (lept'ndt,nt.
C

Simulates bolts and

shafts. Difficult to

form concentric

prccraek.

Compact

Breaking stresses,

flaw sizes, apparent

Kic

Simulates natural

flaws in hardware.

Difficult to analyze.

May not provide

valid KIc values.

Three-point
loading

Kic Only standardized

test for Kic. Not

applicable to most

thin and tough

materials.
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2.3 FLAW GROWTH.

2.3.1 Sustained Load F law Growth.

One of the most serious structural problems that can arise in the aero-

space industry is the delayed time failure of pressure vessels caused by

sustained pressurization. In some cases, through-the-thickness cracks have

formed and the vessels leaked under sustained loading. In other cases, small

surfaces cracks or embedded flaws grew to critical sizes before growing through

the thickness of the shell. When this happens, complete catastrophic fracture

ensues. To predict such failures one must know the conditions under which

subcritical flaw growth can occur, as well as either the actual initial flaw size

or the maximum possible initial flaw size in the vessel when it is placed into

service.

When the sustained stress flaw growth is environmentally induced, it

is often termed stress corrosion.

The surface-flawed or "part-through" type of cracked specimen has

probably found the widest use in evaluating sustained stress flaw growth in

both "thick- and thin-walled" aerospace pressure vessels. With this specim .,

the initial flaw closely simulates the type of flaws often encountered in service

and it can be oriented to suit the flaw growth characteristics desired.

A procedure for laboratory evaluation of sustained stress flaw growth

using surface flawed specimens is schematically illustrated in Fig. E2-11.

The Kic for the material is first established from static (pull) tests. Then,

using a batch of flawed specimens, each flawed specimen is loaded with differ-

ent initial loads (various fractions of Kic ) and the time required for failure

observed, e.g., specimens 1 and 2, illustrated in Fig. E2-11. If failure does

not occur in a reasonable time (e.g., specimens 3 and 4), it is still possible

to obtain crack growth information by "marking" the crack front (applying

some low-stress fatigue cycles) and pulling the specimen apart.
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5

6

• FAILED

GROWTH. NO FAILURE

NO GROWTH, NO FAILURE

LOG TIME

r

FIGURE E2-11. SCHEMATIC ILLUSTRATION OF A PROCEDURE

FOR LABORATORY EVALUATION OF SUSTAINED-STRESS FLAW

GROWTH USING SURFACE FLAWED SPECIMENS

A point is finally reached at which neither failure nor flaw growth

occurs. The highest level of K for which this condition occurs is called the

threshold stress intensity, KTH; or Kiscc ifdue to stress corrosion

cracking.

2.3.1.1 Environmental Effects.

The discovery of a unique KTH can be 80 percent of Kic or higher

in relatively inert environments; hostile media can reduce the value to less

than half of Kic.

Considerable evidcnce indicates that sustained load flaw growth is

most severe under conditions of plane strain with KTH values determined

from through-the-thickness cracked specimen tests increasing with a decrease

in specimen thickness.



Section E2

1 November 1972

Page 25

Studies of flaw growth and stress intensity in aggressive environments

indicate a monotonic relation between increasing stress intensity and growth

rate and design correlations have been determined for the critically important

materials, titanium, and high-strength steels. In these tests for KTH , a

wide scatter, abnormally short times to failure, and very marked dependence

on environmental characteristics (media and temperature) are encountered.

During the past few years a considerable amount of sustained load

flaw growth data has been obtained on a number of different material-

environment combinations. A summary of some KTH information is given

in Table E2-5.

2.3.2 Cyclic Load Flaw Growth.

Understanding crack propagation under cyclic loads is a basic require-

ment for the application of fracture mechanics to the design of structures for

service life. Subcritical flaw-growth characteristics for various materials

are generally determined through the laboratory testing of flawed specimens.

These empirical data are then correlated to various crack-propagation theories

which have been proposed. The following is a discussion of some of the mor(,

prominent theories.

2.3.2.1 Theories.

A number of studies dealing with fatigue crack propagation have shown

that the stress intensity factor K is the most important variable affecting

fatigue crack growth rates. The availability of a master curve for a partic-

ular material relating fatigue crack-growth rate and range of stress-intensity

factor would enable a designer to predict growth rates for any cracked body

configuration.

Numerous "laws" of fatigue crack growth have been published during

the last 10 years. Basically, all the various equations that have been obtained

are simply the attempt of an individual investigator to obtain a curve that will
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Typical Threshold Stress-Intensity Data for Various
Material-Environment Combinations

Material

6A I-4V Titanium

Forging - STA

Temp. a ys Typ. KIe

(" 1") (ksi) (ksi _'i'_. )

R.T. ! 6O 44

it.. T. 16o 44

R.T. 16o 44

R.T. 16o 44

It. T. 160 44

R.T. ! 60 44

It. T. 16o 44

It. T. 16O ,14

It. T. 16o 44

9O 16O 44

90 160 .t-i

105 i 6O .14

11 (I 16(I 44

6A I-4V Titanium R.T. 126

Weldments (llcat- It. T. 126

Affected Zones ) R.T. 126

II. T. 126

5A1-2.5 Sn (ELI) -32o 1 St}

Titanium Plate -:12o 1 I_o

-423 210

2219-TI47 Aluminum It. T. 5t4

Plate -320 66

-423 72

4:;:10 Steel R.T. 205

4340 Steel R.T. -20o

39

39

39

39

Fluid Environment

Methanol

Freon M. F.

N204 (o. 30f_o NO)

N:O 4 (o. 6o% NO)

[[_o (distilled) + Na2CrO 4

lt,O (distilled)

lh.lium, Air, or GOX

Aerozine 50

Fre,m T. l".

N:O I (ii.:lli',rO NO)

N:()_ (ll.i;ll<o NO)

Monomcthylhydrazinc

Ai,rozine 50

Mt_ttlanoi

I,'l'con M. I,'.

II,(J (liistilled)

II,O (l)istilled) _ Na,2CrO I

KTII/KIc

0.24

O. 58

0.74

O. 8:1

O. _2

O. _6

ft. 9o

II, H2

O. B0

0.7t

ti. 75

o. 75

0.75

0.28

I). 4 II

O. I'16

0. _2

64 LN: (¢r ," I'vol). lAir, it) _0.90

64 LN, ((r ". Prop. Limit) o. l_2

52 Lll, -0.90

36 Air ii. fill

41 I,N;! II. 1,2 a

44 LII, -0. _,_:[

90 Water O. 24

"--60 Salt W:itCI' <0. 20

GTA Welds

1i'1 Ni (200) Steel II.T. 200 1:|0

18 Ni (250) Steel It.T. 235 75

12 Ni-5 CR-3 Mo Steel R.T. 170 1 55

9 Ni-4 Co-2.5C Steel R.T. 17(] 120

5 NI-Cr-Mo Steel R.T. 140 "_2011

Salt-water Slira _'

S;lit-v, ate r Spray

Salt-water Spray

Salt-ware r Slirav

Stilt- wattH" Spray

lneonel 71 8 R.T. 165

2219-T851 Alumimlm R.T. 50

Plate

2021-T851 Aluminum II. T. 65

?late

-0.70

">l). 7h

-(I. 70

_0.70

",l:lli Gaseous tlydroileo at 5o00 psig o. 25

N '(it O. 70

30. 5 N.O_ 0.35

a. No failure KTI l ; some growth observed at lower values.
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best fit his data. Some have used curve-fitting techniques to obtain a high-

order polynominal to fit the data, others have used a statistics approach, and

still others have divided the data into regions and constructed straight lines

with different slopes in each region.

The choice between equations may be that of simplicity of equation

versus accuracy of flaw-growth prediction given from the equation over the

range of interest. For example, an equation may be very simple and give good

results over a limited range of data, but out of this range the equation may be

quite inaccurate.

I. Paris.

Paris and Erdogan (Ref. 8), for examph', argued that the growth rate

should be a function of the stress-intensity factor K on the grounds that this

factor defines the elastic stress field around the crack tip. They found that a

large body of data could be fitted by an expression of the form

da

- c (AK) n
(IN

where c is a material constant, AK is the range of strcss-intensity factor,

and n is an exponent having a typical value of four for steel.

An example of Paris's equation for a typical steel is shown in Fig.

E2-12. On a log-log plot, the equation becomes a straight line. The slope of

the line is four, which is the value of n. The constant e- 5.(; x 10 .24 is

obtained by substitution of data into the Paris equation and solving for c.

Separate values of the coefficients c and n must be computed for each value

of R (load ratio) because Paris's equation does not have R as a function.
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W -- AIS! 1048 STEEL __

oys - 37 _ lid
_*F AIR ENVIRONMENT

10 Wdes/_

2

10 20 40 80 80 100
STRESS-INTENSITY FACTOR RANGE, AK (ksi_'n.)

FIGURE E2-12. FATIGUE CRACK GROWTH RATE VERSUS STRESS-

INTENSITY FACTOR RANGE FOR AISI 1045 STEEL

P

+
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II. Foreman.

The Paris fourth-power crack growth rate equation was modified by

Foreman et al. (Ref. 9) to account for the observed behavior that crack growth

rates tend to increase rapidly toward an apparent instability as thc maximum

applied stress intensity approaches the fracture toughness of the material.

Foreman also modified the Paris law to account for the observed behavior and

to explicitly express the effect of load ratio, R = K . /K . The Foreman
mm max

expression for plane-stress conditions is

da c (AK) n

dN (1 - R)K _ AK
C

where c and n are constants dependent on material and test conditions.

AK = (Kmax - Kmin) during a load cycle.

K = plane stress fracture toughness of the material.
C

A comparison of Paris_s and Foreman's equations was made by Hudson

in Ref. 10 for 2024-T3 and 7075-T6 aluminum. It was found that the 7075-T6

data fell into an S shape or reflex type of curvature. A reflex curvature is

also obtained from Foreman's equation; it is induced by AK approaching

(1 - R) K in the denominator. This intrinsic shape is the primary reason
c

for the excellent fit of the data by using Foremants equation. Paris's equation

does not provide for this reflex curvature; consequently, the equation cannot

fit the data at high or low growth rates as well as ForemanVs equations.

The constant n in Foreman's equation is the slope of the curve in the

straight-line midrange and c is determined from the substitution of data
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value into the equation. It should be noted that n and c will change, depend-

ing on the type of plot used. Generally, a log-log plot of AK in psi _/-_m.

and da/dN in microinches/inch is used.

Foreman's equation for 2219-T87 is shown in Fig. E2-13 and some

typical values of c and n for other common materials are given in Table

E2-6.

Table E2-6. Crack Propagation Coefficients for Foreman's Equation

da c (AK) n

d"_" : (1 - R) K _ AN
c

da/dN in./cycle

AK and K psi x/_n.
C

Material

2219-T87 R°T.

:_00

-320

1.4 x 10 -il

1.5 × 10 -li

9.0X 10 -13

2.5

2.47

2.7

KIc

psi

33,000

31, 600

36, 200

TI-6A1-4V R.T. 7.8 x 10 -t4 3.0 81,000

2024-T3 R.T. 3.22 x 10-i4 3.38

7075-T6 R.T. 2.13 x i0- 13 3.21

517A(TI)

The solution of the Foreman equation can be formulated as an initial-

value problem and can bc solved by direct numerical integration using the

Runge-Kutta method. For most practical problems, an initial crack size is
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known at an initial value of N, such as N = 0. The problem is to determine

the crack length (or additionally the stress-intensity factor) after a given

number of cycles.

III. Tiffany.

An alternate approach to plane-strain flaw-growth rates has been

presented by Tiffany (Ref. 11). Tiffany noted that the cyclic lives of speci-

mens were primarily a function of the ratio of maximum initial stress intensity

applied to the flaw during the first loading cycle (KIi) to the plane-strain

fracture toughness of the material (Kic) . Accordingly, cyclic life data were

plotted on Kii/Kic versus cycles-to-failure graphs, where it was observed

that data for particular test conditions and material-cnvironment combinations

could be reasonably represented by a unique curve. Flaw-growth rates were

computed using the slopes of the cyclic life curves. Because the analysis

required knowledge of only the initial and final conditions for each test, the

Tiffany method was called an end-point analysis. The use of Kii/Kic versus

cycles-to-failure curves for practical design problems is common in the

aerospace industry (Ref. 12). Figure E2-14 shows a Kii/Kic versus cycles-

to-failure curve for 2219-T87 at room temperature.

2.3.2.2 Crack Growth Retardation.

• I. Wheeler's Retardation Parameter.

The retardation of crack growth is a phenomenon which occurs because

of varying load levels. Retardation has been shown to occur particularly after

a high level of load followed by a lower level of load.

Many papers have discussed crack growth retardation to some extent

but a computational technique has not been presented which is sufficiently

simple and accurate to gain widespread use (Ref. 13).
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Wheeler (Ref. 13) suggests that more accurate crack growth predictions

can be made by introducing a retardation parameter in the crack growth

equation, which serves to delay the crack growth after a high load application.

His equation for crack length is

r

r o pi
i=1

where a is the crack length after r load applications, a is the initial
r o

crack length, Cpi is the retardation parameter at ith load, and AK is
1

the change in the stress-intensity factor at ith load. The retardation param-

eter is taken in the following form:

Ra')mC = Y
_ , a + R <a

P p Y P

C = 1 , and a + R >- a
P Y P

where R is the extent of the current yield zone, a - a is the distance
Y P

from crack tip to elastic-plastic interface (Fig. E2-15), and m is the shaping

exponent dependent upon material and test data.

This parameter has been used successfully to predict the growth of

cracks in specimens subjected to six different spectra, having three different

physical configurations, and made of two materials (Ref. 13). It is believed

that this approach represents a useful improvement on the idea of linear

cumulative crack growth, which can be used with confidence in design and

ana lysis.
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FIGURE E2-15. CRACK TIP YIELD ZONES

The computational scheme for incorporating this retardation parameter

in crack growth predictions requires that the crack be grown one load applica-

tion at a time. This amounts to a piecewise linearization of a highly nonlinear

process. The use of a high-speed digital computer is obviously required to

perform any realistic analysis. This technique has been incorporated into

the computer program CRACKS (see the Computer Utilization Manual).

II. The Significance of Fatigue Crack Closure.

Recent work by Elber (Refs. 14 and 15) has shown that fatigue cracks

in sheets of aluminum alloy close before all tensile load is removed. Significant

compressive stresses are transmitted across the crack at zero load. In pre-

vious work, usually the assumption has been made implicitly that a crack is

closed under compressive loads and open under tensile loads. The deter-

mination of the crack closure stress must, therefore, be a necessary step in

the stress analysis of a cracked structure.
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EIber (Ref. 15) obtains an empirical relation for the crack opening

stress level and uses it as a basis for a crack propagation equation. The

analysis of qualitative experiments on variable amplitude loading shows that

the crack closure phenomenon could account for acceleration and retardation

effects in crack propagation.

Crack closure stress can be explained by the existence of a zone of

material behind the crack tip having residual tensile strains. In Fig. E2-16

a fatigue crack produced under constant amplitude loading is shown at three

crack lengths. Figure E2-16a shows

the crack tip surrounded by a plastic

zone as it is represented normally.

Figure E2-16b shows the crack at a

greater crack length surrounded by a

larger plastic zone because the stress

intensity is higher. The plastic zone

of Figure E2-16a has been retained

to show that the material had been

subjected previously to plastic defor-

mations. Figure E2-16c represents

the crack surrounded by the envelope

of all zones which during crack growth

had been subjected to plastic defor-

mations. During a single cycle of

crack growth, residual tensile defor-

mations are left in the material

CRACK

|YMBOLIC FLAITIC ZONE

ENVELOPE OF ALL
PLASTIC ZONIEI

FIGURE E2-16. DEVELOPMENT OF

A PLASTIC ZONE AROUND A

FATIGUE CRACK

behind the moving crack front, as only elastic recovery occurs after separation

of the surfaces.
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Crack propagation can occur only during that portion of the loading

cycle in which the crack is fully open at the crack tip; therefore, in attempting

to analytically predict crack propagation rates, it seems reasonable that the

crack opening stress level should be used as a reference stress level from

which an effective stress range could be obtained. The effective stress range

is defined there as

ASef f = S - Smax op

where S is the crack opening stress.
op

An effective stress range ratio is then dcfined as

C _.

(Sma x - Sop) ASef f

(S ASmax - Smin)

Constant amplitude loading tests were conducted to establish the

relationship between U and three variables which were anticipated to have

a significant effect on U , namely, stress-intensity range, crack length, and

stress ratio.

For the given range of testing conditions, only the stress ratio R is a

significant variable. The relation between U and R is linear and can be

expressed as

U = 0.5 + 0.4R where -0.1 < R< 0.7

for 2024-T3 aluminum alloy.
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One of the most important problems in aircraft structures is the inability

to predict accurately the rate of fatigue crack propagation under variable ampli-

tude loading. In attempts to calculate these crack rates on the basis of constant

amplitude data, interaction effects are usually ignored, leading to errors of

significant magnitude.

Crack closure may be a significant factor in causing these interaction

effects. This can be shown by the following example. Assume that a crack

in 2024-T3 aluminum is propagating under the conditions R = 0 and K --
max

20 MN/m 3/2. Under these conditions the crack opening level is at Kop =

10 MN/m3P. If the stress-intensity range suddenly is halved, the new con-

ditions are K = 10 MN/m3/2 and R = 0. The crack opening level, how-max

ever, is still at Kop 10 MN/m3/2 , equal to the new peak stress intensity,

so the crack does not open. Therefore, the crack does not propagate until

the crack opening level changes. The behavior of the crack opening stress

level under variable amplitude loading must therefore be investigated.

It has been observed that a crack will continue to grow for some time

after a high load application followed by loads of smaller magnitude. This has

been termed delayed retardation. Such retardation of crack growth after a

single high load can be explained by examining the behavior of the large plastic

zone left by the high-load cycle ahead of the crack tip. The elastic material

surrounding this plastic zone acts like a clamp on this zone, causing the

compressive residual stresses. As long as this plastic zone is ahead of the

crack tip, this clamping action does not influence the crack opening. As the

crack propagates into the plastic zone, the clamping action will act on the

new fracture surfaces. This clamping action, which builds up as the crack

propagates into the plastic zone, requires a larger, externally applied stress

to open the crack; hence, the crack will propagate at a decreasing rate into

this zone and may come to a standstill.
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2.3.2.3 Transition from Partial-Thickness C racks to Through-Thickness
Cracks.

It was shown in Section 2.2 that the stress intensity was different for

partial-thickness cracks and for through-the-thickness cracks. Also, for

through-the-thickness cracks, corrections must be made for a finite plate

within the stress intensity equation (Table E2-2, Case 13).

Often in crack propagation problems a crack will initially be a partial-

thickness crack and will grow until it extends through the thickness. When

this occurs, corrections in the stress-intensity expression must be made.

The transition from a surface flaw to a through crack is chosen to

be the point when the plastic zone reaches the back face of the material. The

value of a (crack length) for which this occurs is _iven as

1at= t - _-
\ ys /

2.3.3 Combined Cyclic and Sustained Flaw Growth.

Tiffany and Masters (Ref l) hypothesized that below the sustained stress

threshold stress-intensity value (KTH), cyclic speed (or hold time at maximum

load) probably would not affect the cyclic flaw growth rate, but above KTH

it could have a large effect. In other words, the minimum cyclic lifc was

limited to the number of cycles required to increase the initial stress intensity

Kii to the KTH value, and above the KTH level, failure could occur in

one additional cycle if the hold time were sufficiently long.

To date there is only a limited amount of experimental data to sub-

stantiate this prediction. However, the data do tend to support the original

Tiffany-Masters hypothesis of no significant effect of cyclic speed on flaw

growth rates below the sustained stress threshold stress intensity.
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APPLICATION OF FRACTURE MECHANICS TECHNOLOGY.

Selection of Materials.

In the material selection and design of a tension-loaded structure, such

as a pressure vessel, the following questions must be considered:

1. What are the criticalflawsizes (sizes which cause failure) in the

different parts of the structure at expected operational stress levels ?

2. What are the maximum initial flaw sizes likely to exist in the

structure before service ?

3. Will these initial flaws grow to critical size and cause failure

during the expected service life of the structure ?

The answers to these questions depend heavily upon the inherent

fracture toughness and subcritical flaw-growth characteristics of the structural

material. Fracture toughness data derived from test specimens are used in

fracture mechanics analysis to predict critical flaw sizes, evaluate subcritical

flaw growth, and estimate structural life. They can also be used to determine

the maximum possible initial flaw size in a structure after a [)roof load.

As previously mentioned (Section 2.2), the types of flaws encountered

in fabricated structures can be categorized as surface flaws, embedded flaws,

and through-the-thickness cracks. For surface and embedded flaws, the

degree of constraint at the crack leading edge is high, and plane-strain con-

ditions generally prevail. The initial flaws may or may not reach critical

size before growing through the thickness, depending upon the plane-strain

fracture toughness (KIe) value, the applied stress levels, and the material
p

thickness. If the calculated critical flaw size is small with respect to the

wall thickness, the formation of a through-the-thickness crack before frae-

ture is not likely.
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For through-the-thickness cracks, the mode of fracture for a given

material, stress level, and test temperature depends upon the material thick-

ness. If the material is relatively thin, plane-stress conditions generally

predominate. With increasing thickness, the fracture appearance changes

from that of full shear to an essentially flat or plane-strain fracture. Thus,

for thin sections containing through-the-thickness cracks, the plane-stress

fracture thoughness (Kc) values are important, and as the thickness is

increased the plane-strain (Kic) values should be used. The theory of this

has been discussed in detail (Section 2.2.2).

The common types of fracture specimens and their requirements have

also been discussed (Section 2.2.3). It is appropriate to point out the signifi-

cance of end-hardware application and material anisotropy on specimen selec-

tion and to show fracture-toughness correlations among several of the more

common specimens.

Just as conventional mechanical properties generally vary to some

degree among various forms and grain directions in a given basic alloy, it

has been found from fracture tests performed thus far on various materials

that fracture toughness values also vary. In a rolled plate or forging, six

directions of flaw propagation are possible, and plane-strain toughness (Kic)

values may differ in each of these directions (Fig. E2-17). The need to

determine the Kic values in each of these directions depends on the direction

of the applied stresses in the hardware.

Considering the banding and delamination problems in some thick

plates, it appears that the Kic values can be different between the A and

B directions and, likewise, the C and D directions. This has actually

been found to be the case from investigation (Ref. 16) and tends to explain

the differences in KIc values obtained using surface-flawed and round-notched-

bar or single-edge-notched fracture specimens. The surface-flawed specimen
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POSSIBLE DIRECTIONS OF FLAW PROPAGATION

is normally used to measure toughness in either the A or C directions, and

the single-edge-notched or center-cracked (pop-in) specimens measure

toughness in the B or D directions. The round notched bar (removed so

that its longitudinal axis is parallel to the plate surface) measures the lower

of either the A or B directions or the lower of either the C or D direc-

tions. For material where there are no pronounced directional effects, the

same toughness should be obtained regardless of which specimen is used.

In the short transverse direction of materials, there appears to be no reason

for a significant difference in Kic values between the E and F directions,

although there is no apparent experimental substantiation of this.
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For weldments, it is known that there can be differences in fracture

toughness between the weld centerline and the heat-affected zone. In addition,

it is considered probable that fracture toughness as well as subcritical flaw

growth characteristics vary within the heat-affected zone so that for the

establishment of realistic allowable flaw sizes, the minimum Kic values must

be determined.

The foregoing discussion makes clear the necessity for insuring the

use of comparable valid fracture toughness and subcritical flaw growth data

when they are available, or the selection of proper specimen types to obtain

the desired directional data, in comparing materials for selection. While

round-notched-bar specimens might be considered desirable because they

automatically obtain the lower toughness values in either the A or B direc-

tions or the lower in either the C or D directions, it may not always be

possible to use the specimen type because of material thickness limitations

(i. e., the required specimen diameter for valid Kic exceeds the hardware

wall thickness). In such a case, the single-edge-notched specimen might

be used for toughness in the B and D directions and the surface-flawed

specimen in the A and C directions.

In summary, it presently appears that there is no single "best fracture

specimen" to use in all situations where toughness data are needed for material

comparisons and selection, nor is such required. Of primary importance

is that the selected specimen toughness data for different materials provide

a valid comparison for selection and be representative of toughness and flaw

growth characteristics of the material as used in the hardware application.

2.4.1.1 Static Loading.

An evaluation of the resistance of materials to catastrophic brittle

fracture requires the following basic material properties:
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1. Plane-strain fracture toughness, Kic.

2. Conventional tensile yield strength, (r
ys

An evaluation of materials based on the data accumulated from test

specimens can be illustrated best by using a hypothetical example.

I. Example Problem A.

Three materials -- a steel, a titanium, and an aluminum alloy -- are

initially selected as potential candidate materials for minimum weight design.

The yield strength of each is chosen to attain nearly equivalent strength/weight

ratios. The yield strengths and Kic values obtained from the tested specimens

and design requirement are shown in the following table.

Alloy

Steel

Alum inure

Titanium

Density

( [b/in. 3)

ys

(ksi)

a /Density
ys

× 1000

(in.)

0. 284 250 880

0. 098 85 870

0. 163 140 860

Kic,

(ksi 4 in.)

1oo

30

80

Applied Stress

1/2
ys

(ksi)

125

42.5

7O

Assume that

1. The defect is a semielliptical surface flaw with a/2c = 0.2.

2. The defect is located in a thick plate loaded in tension.

To decide which material provides the most fracture resistance is to

establish which material requires the largest critical flaw size for catastrophic

fracture.

For "thick walled" structures criticalflaw sizes can be determined

from the following equation:
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or

cr 1.217r

where the shape factor parameter can be obtained from Fig. E2-5.

comparison, Q = 1.26.

The results are shown in the following table.

For this

Alloy

Steel

A luminum

Titanium

Depth, a
cr

(in.)

0.212

O. 165

0.432

Length, 2c

(in.)

1.06

0.83

2.16

Conclusion.

The titanium alloy is most fracture resistant in terms of requiring

the largest critical flaw size defect, a for catastrophic fracture.
er'

This conclusion could have been reached by considering the Kic/Cr
ys

ratios for the various materials shown in the following table.

Alloy Kic/O'y s (_m.)

Steel

Aluminum

Titanium

0.400

0. 353

0. 572
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The titanium, having the highest Kic/ay s

be the toughest material for the given application.
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ratio, could be expected to

Tiffany and Masters (Ref. 17) showed that for screening several

materials, Kic data are often plotted as shown in Fig. E2-18a. Recognizing

that the operating stress levels are generally controlled to a fixed percentage

of the unflawed tensile strength by the design safety factor, the data shown in

Fig. E2-18a might be more appropriately plotted as shown in Fig. E2-18b.

The ordinate is directly proportional to the critical flaw size, thus placing

the influence of varying materials strength in better perspective. From

Fig. E2-18b the three materials can be compared upon the basis of equal

critical flaw size. For example, structures desi,_ned from a 200-ksi steel,

a 135-ksi titanium, and a 70-ksi aluminum would all have approximately the

same critical flaw size. Considering the effect of weight, one might wish to

make the comparison shown in Fig. E2-18c. This shows that titanium pro-

vides a somewhat lighter tank on the basis of equal flaw size.

Based on considerations of the practical capability of available

nondestructive inspection (NDI) techniques, the resistance to catastrophic

fracture could also be evaluated by calculating the maximum allowable applJ_d

stress for equivalent defects in each material.

Reevaluate the preceding example, assuming that the minimum

detectable flaw is 0.15 in. deep by 0.75 in. long.

Rearranging the basic equation results in

Kic 2 (Q)
0-2 =

1.21 (a)

The resulting critical fracture stresses and other pertinent information are

summarized in the following table.
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Alloy

Steel

Aluminum

Titanium

ys

(ksi)

250

85

140

Section E2

1 November 1972

Page 49

Design Stress

0.5_
ys

(ksi)

125

42.5

70

Fracture Stress

(7

(ksi)

Safety Factor

_/0.5
ys

144

43

112

1.15

1.01

1.60

From the above data it is apparent that the titanium provided the

greatest safety factor and resistance to fracture.

2.4.1.2 Cyclic or Sustained Loading.

An evaluation of the resistance of materials to fracture requires the

consideration of the crack growth rate characteristics in addition to other

material propertics.

Some examples of data obtained from tests are shown in Figs. E2-19

and E2-20 (Rcf. 18). The realistic and practical approach for comparing

materials is to evaluate their crack growth characteristics under a given

application condition. Let us consider the following hypothetical example.

I. Example Problem A.

1. Materials to be considered are the steel and aluminum alloys for

which the data are given in Figs. E2-19 and E2-20.

2. The component of interest is a thick plate cyclic loaded in tension

under stresses that vary from zero to maximum tension during each cycle.

3. The design fixes a as one-half thc yield strength for each
max

material: 88 ksi for steel and 32 ksi for aluminum.

4. The worst possible type of flaw that is envisioned is a semi-

elliptical surface flaw with a/2c = 0.20.
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5. The minimum size flaw that could be detected by the NDI technique

is 0.15 in. deep by 0.72 in. long. Therefore, each material is assumed to

contain this flaw.

Under these circumstances, which material has the longest life ?

Solution.

Step 1.

intensity, KIi,

and stress. The appropriate expression for

component geometry is

The first step is to compute the value of the initial stress

for each material for the prevailing conditions of defect size

Kii for the stipulated defect and

1.21 _a a 2

KIi 2 - Q

where

a = crack = 0.15 in. -- specified,

= applied stress (maximum during cycle) = 1/2
ys

steel = 88 ksi, aluminum = 32 ksi,

{Y

each materia",

= yield strength, steel = 175 ksi, aluminum = 65 ksi,
ys

and

Q = 1.26 for specified flaw geometry.

The calculations reveal the following:

1.21r (0.15) (88 000) 2
KIi = 1.26
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Kii = 59 000 psi

for steel, and

1.217r (0.15) (32 000) 2
KIi 2 = 1.26

and

Kii = 21 500 psi

for aluminum.

The crack growth rates for the two materials at the beginning of life

can now be determined from Figs. E2-19 and E2-20 using their respective

K I values for the imposed conditions. The results are shown in the following

table.

Alloy

Steel

Aluminum

59 000

21 500

C rack Growth Rates

(mils/cycle)

0.035

0.030

However, a knowledge of the crack growth rates at the beginning of

life is not sufficient to determine the respective life expectancy of each

material. One must consider the change in K I and the associated change in

crack growth rates for each material as the crack grows during service as

well as the threshold stress intensity, KTH.
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Step 2. The growth rate data illustrated in the form shown in Figs.

E2-21 and E2-22 (Ref. 18) provide a convenient method for c'valuating the life

expectancy without becoming intimately involved with changes in K and
I

growth rates. Figures E2-21 and E2-22 are constructed from the same basic

test data as were used to construct Figs. E2-19 and E2-20. To utilize Figs.

E2-21 and E2-22 it is necessary to know the ratio of Kii to Kic. The previous

calculations in Step 1 showed that K I is 59 ksi i_'_'_'_'_'_'_'_'mT,for steel and 21.5 ksi

for aluminum. Since the KIe values for each material were known

from static toughness tests, the Kii/Kic ratios are readily determined:

KIi 59 000

Kic 144 000
- 0.41

for steel, and

KIi 21 500

KIc 34 000
- 0.63

for aluminum.

The cyclic life corresponding to these KIi/KIe values may be deter-

mined directly from Figs. E2-21 and E2-22 -- steel, 1800 cycles, and

aluminum, 4000 cycles, if the time at maximum stress is short (luring each

cycle.

Thus, for this specific example where both materials contained the

same given size and type of defect and both were stressed to one-half their

yield strengths, the aluminum has the greatest life expectancy.

It should bc emphasized that the result of this example cannot be used

to generalize the relative behavior of the two materials. For other conditions

of initial defect sizes and/or applied stresses, it is possible that the steel
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could have the greater life expectancy. This is demonstrated in the following

table, which shows the life expectancy of the two materials for a wide range

of initial defect sizes and for a constant applied stress of a /2.
ys

Initial

Defect

Depth

a
i

(in.)

0.05

0.07

0.10

0.15

0.20

0.25

Initial Stress-

Intensity Factor

Kii

(ksi i_'_n. )

Steel Aluminum

19.6 7.2

27.5 10.1

39.4 14.3

59.0 21.5

78.8 28.7

98.4 35.9

Kii

KIc

Steel

0. 136 0. 210

0. 191 0. 297

0.274 0. 420

0.410 0.632

O. 540 O. 845

O. 683 > 1.0

Cycles to Failure

N

( Life Expectancy)

Aluminum Steel Aluminum

>>300 × 103

>100 × 10 '_

30 × 10 :_

1.8 × 103

0.37 × 10 a

0.25 x 10 a

300 x 103

100 x 10 a

21 x 103

4x 103

1.SX 10 a

From the table it is seen that when the initial defect depth is 0.15 in.

or larger, the aluminum will have the longer life N. IIowever, when the

initial defect depth is 0.10 in. or smaller, the steel will have the greater lift _

expectancy. Although the steel has the larger absolute value of fracture

toughness, Kic , and therefore has the largest critical crack size for

catastrophic failure, it also has a greater crack growth rate for a given

change in K as seen from the differences in slope of the growth rate curves

shown in Figs. E2-23 and E2-24 (Ref. 18). Therefore, it is possible to have

a "crossover" situation between the life expectancies of steel and aluminum,

as noted in the table.

Again, the life expectancies in preceding table reflect short time at

maximum cyclic stress. If the time at maximum stress is long, the portion

of time that the stress-intensity level is above the threshold stress intensities
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CRACK GROWTH RATE _N (in./cycie)

FIGURE E2-23. CRACK GROWTH RATE AS A FUNCTION OF STRESS

INTENSITY FOR HP-9-4-25 STEEL

M. '_-

i

1
104 10.1 10-4 104

A_

CRACK GROWTH RATE _ (in./cyde)
ZIN

FIGURE E2-24. CRACK GROWTH RATE AS A FUNCTION OF STRESS

INTENSITY FOR 7079-T6 ALUMINUM
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for the steel and aluminum would cause reductions in the cyclic lives for the

different initial defect sizes.

The materials could also be compared in another manner by using the

data provided in Figs. E2-21 and E2-22 to answer the question of which

material could tolerate the largest initial defect (of a given type) that would

not grow to a critical size during some given minimum lifetime for the

component.

II. Example Problem B.

Known Information:

Plate cyclic loaded (sinusoidal) in tension.

Required life -- 50 000 cycles.

Applied stress (maximum stress during cycle) one-half yield

strength:

steel = 88 000 psi.

aluminum = 32 000 psi.

Type of defect -- semiclliptical surface flaw with a/c -- 0.4.

Fracture toughness, Kic:

steel = 144 000 psi

aluminum = 34 000 psi

Unknown Information: Which material can tolerate the largest initial

defect ?

Solution.

Step 1. From Figs. E2-21 and E2-22, find the Kii/Kic ratio

corresponding to the desired life of 50 000 cycles:

Kli
at 50 000 cycles = 0.25



for steel, and

Kii
at 50 000 cycles = 0.34
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for aluminum.

Step 2. Knowing the

cycles, solve for Kii:

Kic and Kii/Kic ratio corresponding to 50 000

KIi = 0.25 Kic = 0.25 (144 000psi_m.) = 36 000psi

for steel, and

Kii = 0.34 KIc = 0.34 (34 000psi_/'_n.m.) = 11 500psi i_n.

for aluminum.

Step 3. Since Kii depends upon stress and defect size, it is now

possible to solve for defect size knowing stress. For semielliptical surface

defects with a/c = 0.4, the following expression is appropriate:

(Q)
a. =
i 1.21 _ ¢2

for steel,

(36000)2(1.26)
a._= i.2i. (SS000)'2



and
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a. = O. 056 in.
1

when the defect is 0. 056 in. deep by 0.28 in. long; for aluminum,

(11 500) 2 (1.26)
a -

i 1.21 7r(32 000)2

and

a = 0.043 in.
i

when the defect is 0. 043 in. deep by 0. 215 in. long.

Thus, it is apparent that for the condition imposed, the steel could

tolerate a slightly larger initial defect than could the aluminum. Since the

difference in the maximum allowable initial defect size is not great, the

ultimate choice of a material for this situation may depend more heavily on

other comparative factors, i.e., the applicability and capability of NDI

techniques, the type and size of insidious defects as related to the maximum

allowable initial defect size, availability, ease of fabrication, costs, etc.

2.4.2 Predicting Critical Flaw Sizes.

As mentioned in Section 2.2.3, plane-strain stress intensity (Kic)

values can be obtained from several types of specimens. With valid data for a

given material form, heat treatment, test temperature, and environment,

critical flaw sizes can be calculated for given hardware operating stresses.

The engineering usefulness of the basic stress-intensity concept in the pre-

diction of critical flaw sizes and the use of a/Q to describe flaw size has
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beensupportedby a number of hardware correlations, some of which are

shownin Refs. 17and 19. Comparisons betweenmeasuredcritical flaw

sizes on test hardware and predicted critical flaw sizes basedon test speci-

men plane-strain toughnessdata have showngoodcorrelation.

From the equationshownin Fig. E2-6, it is apparent that critical flaw

size is equally as dependentonapplied stress as on the material fracture

toughness. The following sections showapproachesfor calculating critical

flaw sizes for the three basic types of initial flaws (surface, embedded,or

through-the-thickness) basedon the appropriate fracture toughnessvalues

measured from valid specimen tests.

2.4.2.1 Surface Cracks.

Calculations for surface flaws canbe carried out by rearranging the

stress-intensity equationdevelopedby Irwin (Section 2.2.1),

(a/Q)cr 1.21rr

for a "thick-walled" structure ( i. e., flaw depth less than half of the material

thickness) where KIc is the plane-strain fracture toughness obtained from

fracture toughness specimen tests, a is the applied stress in structure

normal to the plane of flaw, a is the critical flaw depth, Q is the flaw
cr

shape parameter (obtained from Fig. E2-5), and (a/Q)c r is critical flaw

size.

Since the flaw size is an unknown quantity, it is necessary to assume

a flaw aspect ratio, a/2c, to determine Q. Using the preceding equation,

the critical flaw depth, a can be determined for a specific value of a
cr'

and Kic.
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I. Example Problem A.

Aluminum alloy 2219-T87 is selected as the material for use in a

20-in.-diam spherical gas bottle. The bottle is to operate at 4000 psig and

be stored in a liquid-nitrogen propellant tank.

What is the critical flaw size ?

A. Assumptions.

1. The defect is a semielliptical surface flaw with a/2c = 0.2.

2. The operating stress is a = 80 percent (yield strength of the

material).

B. Solution.

The yield strength and Iic

mens are as follows:

values obtained from the tested speci-

a = 60 ksi
ys

and

Kic = 37 ksi

The operating stress is

a = 0.80 (ays) = 0.80 (60)

The wall thickness required is

= 48 ksi

vR (4000) (lO)
treq 2a (2) (48 000)

= 0.417 in.



For thick-walled structures,
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a 0cr 1.21

where the shape parameter Q can be found from Fig. E2-5. For this problem

Q = 1.18; then

1.18 /37_ 2a = = O. 184 in.
cr 1.21

and

2c = a/0.20 = 0.184/0.2 = 0.92 in. .

For surface flaws that are deep with respect to material thickness,

the flaw magnification factor, Mk, can be applied to give a more accurate

critical flaw size,

(a/Q) --- 1 (KIc _ 2

for thin-walled structures.

II. Example Problem B.

Use the same design that was shown in Example Problem A except that

the spherical diameter of the bottle is 15 in. The wall thickness required is

t _ Pa _ 4000 (7.5) = 0.313 in.
req 2a 2 (48 000)
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f

cr 1.21, t,Mk<,/

Flaw magnification factors, Mk, for the 2219-T87 aluminum are available

from Fig. E2-8. Since the critical flaw depth, a is unknown a "trial-and-
cr'

error" iterative solution is necessary to determine the magnification factor

corresponding to the critical flaw depth.

Without a magnification factor,

For a/t = 0. 184/0.313 = 0.59,

a = 0. 184 in.
cr

M k = 1.21,

(Example Problem A).

2

[ 1cr 1.21 n 1.21 (48)
0.126 in. < 0.184 in.

0.184 + 0.126
Take an average a = = 0.155 in.

2

For a/t = 0. 155/0. 313 -- 0.50, M k = 1.15,

a - 1"18137] 2. . --cr 1.217r 1.15 t48)
O. 139 in. < O. 155 in.

0.155 + 0.139
Take an average a = = 0.147 in.

2

For a/t = 0.147/0.313 = 0.47, M k = 1.13,

a -1"18[ 37 ] 2cr 1.21 7r 1.13 (48)
= 0.144 _ 0.147 in.

Further reiteration will provide more accuracy if desired.
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If adequate flaw magnification values are not available for a particular

material, a reasonable estimate for M k is the approximate Kobayashi solu-

tion shown in Fig. E2-25. However, it should be understood that its use can

result in somewhat conservative answers for more ductile materials and

perhaps unconservative answers for more brittle materials.

2.4.2.2 Embedded Flaws.

The calculations for embedded flaws in thick-walled structures will

be the same as for surface flaws except that a is the one-haft critical
cr

flaw depth of the embedded flaw, and the correction factor of 1.21 for the

effect on stress intensity of the stress-free surface (Section 2.2.1) is elimi-

nated. Thus the equation for one-half critical internal flaw size is

'a'O'er
Although flaw magnification effects have been studied for deep surface

flaws, apparently no similar research has been done for internal flaws with

large flaw-depth-to-material-thickness ratios. The fact that internal flaws

are hidden, making their size difficult if not impossible to accurately deter-

mine, presents a problem in the study of internal flaw magnification effects.

The assumption might be made that the same flaw magnification factors,

M k, used for deep surface flaws might be applied to the equation for critical

embedded flaw sizes. However, there is no evidence of how conservative or

unconservative this assumption is.

On the other hand, to account for the lack of knowledge about flaw

geometry and orientation, it can be conservatively assumed that flaws are

surface (or barely subsurface) flaws and that they are long in relation to

depth (Q _ 1.0).
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2.4.2.3 Through-the-Thickness Cracks.

To calculate through-the-thickness critical crack length, the basic

plane stress equation for through-the-thickness cracks in an infinitely wide

plate (Section 2.2.2.1) can be rearranged to give

/2=1_ 1

cr , _" \ ys /

where K is the plane stress fracture toughness obtained from an edge-c

notched or center-cracked specimen, a is the applied stress in the structure

normal to the plane of the crack, a is the tensile yield strength of the
ys

material, and ! is the critical crack length.cr

I. Example Problem A.

Aluminum alloy 2219-T87 is selected as the material for use in a 15-

in. diameter compressed air cyclinder. The cylinder is to operate at 1000

psig in ambient room atmosphere.

What is the critical flaw size ?

A. Assumptions.

1. The defect is a semielliptical surface flaw with a/2c =

0.2.

yield strength.

2. The operating stress is a = 80 percent of material

B. Solution.

The yield strength and __KIc

mens are as follows:

a = 50 ksi
ys

values obtained from test speci-
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. Kic = 32 ksi

An estimate of K versus material thickness based on
C

2219-T87 test specimens is shown in Fig. E2-26 (Refs. 20 and 21).

The operating stress is

= o.so (o ) : o.8o (so) = 40 ksi
ys

The wall thickness required is

PR 10oo(7.5)
t -- --

req _ 40 000
- O.188 in.

For thick-wa llcd structures,

cr 1.21 7r

From Fig. E2-5, Q= 1.18; then

1.18 _¢32/2

acr - 1.21 _ \4-01
= 0.199 > 0.188 in.

Therefore, the critical flaw is apparently a through-the-thickness crack and

the tank will leak before failure. The critical crack length of failure is pre-

dicted to be
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IRWIN'S APPROXIMATION OF TRANSITION MODE

Kc'Kic 1+1.4 K 2 " 1/3

DATA POINT FROM REF. 21, P. 112

TA POINT FROM REF. 20_TABLE V

K]c " 32.0 ksi_'n,

FIGURE E2-26.

1.0 2.0

t (in.)

ESTIMATE OF K VERSUS t FOR 2219-T87 ALUMINUM
C

(W= 70'F, KIe= 32.0ksi_)
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is 84 ksi

= 2_
cr 7r

\ ys/

The plane-stress fracture toughness value, K ,
C
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from Fig. E2-26,

.... 2.81
cr _

- 0.91 = 1.90 in.

2.4.3 Structure Design.

2.4.3.1 Service Life Requirements and Predictions.

With pressure cycles and time at stress, an initial flaw or defect in a

structure will grow in size until it attains the critical size at the applied oper-

ating stress level, and failure will result. The flaw-growth potential (in

inches) is equal to the critical size minus the initial size. The life of the

structure directly depends upon this flaw-growth potential and the subcritical

flaw-growth characteristics of the material.

The determination of the initial flaw sizes generally relies upon the

use of NDI procedures; however, the conventional proof test can be considered

to be one of the most positive inspection procedures available. A successful

proof test actually defines the maximum possible initial flaw size that exists

in the vessel. This results from the functional relationship between stress

level and flaw size as defined by the critical stress intensity (Kic) and illus-

trated in Fig. E2-6.

Probably the most predominant types of subcritical flaw growth are

fatigue growth resulting from cyclic stress and environmentally induced

sustained stress growth. Also, growth may occur even in the absence of

severe environmental effects if the initial flaw size approaches the critical

flaw size.
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The technique used for predicting the subcritical cyclic or sustained

stress flaw growth makes use of fracture specimen testing and the stress-

intensity concept.

It has been shown (Refs. 6 and 17) that the time or cycles to failure at

a given maximum applied gross stress level depends on the magnitude of the

initial stress intensity at the flaw tip, Kii, compared with the critical stress

intensity, Kic [that is, cycles or time to failure = f (Kii/Kic) ]. Also, it is

seen that the ratio of initial flaw size to critical flaw size is related to the

stress-intensity ratio as folIows:

a.

l

Qcr

Thus, if cyclic or sustained stress fracture specimens are used to

obtain experimentally the KIi/KIc versus cycles or time curves for a material,

the cycles or time required for any given initial flaw to grow to critical size

can be predicted. Conversely, if the required life of the structure is known

in terms of stress cycles or time at stress, the maximum allowable initial

flaw size can be determined.

The cyclic flaw-growth data are plotted in terms of stress-intensity

ratio, KIi/Kic , versus log of cycles, as shown schematically in Fig. E2-27a.

By squaring the ordinate value, the plot of the ratio of initial flaw size to

critical flaw size versus the log of cycles (Fig. E2-27b) can be obtained. It

should also be recognized that flaw size can be determined after any incre-

mental number of cycles. For example, if the initial flaw-size ratio was

0.40, the flaw would have grown in A cycles, increasing the ratio to 0.6;

in B cycles, it would have grown to 0.8, etc.
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10 100 1000 10
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a. b.

IO0 tOO0

FIGURE E2-27. SCHEMATIC REPRESENTATION OF CYCLIC

F LAW GROWTH

Cyclic flaw-growth data have been obtaincd on a number of materials

used in the aerospace industry. Some such data are shown in Figs. E2-28

and E2-29.

The application of fracture-specimen testing to define the effects of

sustained load on flaw growth is essentially the same as used in defining cyclic

flaw growth. A constant load is applied to a flawed specimen such that the

initial stress intensity is less than the critical value and the time to [ailure

is recorded. The Kii/Kic values are computed and the Kii/Kic ratio is

plotted versus log of time to failure.

Kii/ versus log of time for most materials indicate thePlots of Kic

existence of a threshold stress-intensity level below which sustained stress

growth does not occur. Figure E2-30 shows data for 17-7 Ptt steel tested in

both dry and wet environments, and Fig. E2-31 shows surface-flawed speci-

men data for 2219-T87 aluminum tested in liquid nitrogen. In neither case

does it seem that the environment played an important role in the sustained

stress growth. In both cases the apparent threshold stress-intensity levels

are quite high.
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1! k• BASE METAL: 1.0-in. THICK 2219-TB7 PLATENOTES:

2. FRACTURE SPECIMEN: SURFACE FLAWED

LOAD SPECTRUM

Omex I"" l(minF-_4.

10 100

NUMBER OF CYCLES TO FAILURE

1000

FIGURE E2-28. BASE METAL CYCLIC FLAW-GROWTH DATA

( -320 °F, LONGITUDINAL GRAIN)
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CYCLIC LO,

_-1 (min)._

Fl__/--l_

-- SCATTE R BAND

OF DATA

10 100

NUMBER OF CYCLES TO FAILURE
1000

FIGURE E2-29. CYCLIC FLAW-GROWTH DATA OF 6A1-4V

TITANIUM PLATE TESTED AT -320°F
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0.4

DATA BAND

•.-- ._.

NOTCHED BAR SPECIMENS

PLATE ANO FORGING

0.1 1.0 10

TIME AT LOAD (hr.)

100 1000

FIGURE E2-30. SUSTAINED STRESS FLAW-GROWTtt DATA FOR

ROOM-TEMPERATURE TESTS OF 17-7 Ptt STEEL

Let us now consider the significance of sustained stress flaw growth

and specifically the threshold stress-intensity concept on the cstimated total

cyclic life of a tension-loaded structure containing an initial crack or crack-

like flaw. To illustrate this, the schematic representation of the K-N curve

is reconstructed in Fig. E2-32, but superimposed on this curve is a horizontal

like at Kii/Kic -- 0.80. This is assumed to be the threshold stress intensity.

Now consider the situation where the initial flaw size and applied cyclic stress

result in an initial strcss intensity equal to 50 percent of the critical value.

From the curve, it is seen that it would take a total of A cycles to grow this

initial flaw to critical size and cause failure. However in B cycles, the

initial flaw would have increased in size enough to cuase the stress intensity

to rcach the threshold value of KIi/KIc = 0.80. With additional cycles the
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DATA BAND _m

NOTE: BASE METAL: 2219-T67 1.0-in.-THICK PLATE

0.01 0.1 1.0 10 100

TIME TO FAILURE (hr)

FIGURE E2-31. SUSTAINED STRESS FLAW-GROWTH DATA FOR

2219-T87 ALUMINUM AT -320 °F

1.0____,__ COMBINED TIME I

I -_ AND I
I _ CYCLEGROWTHI

A CYCLES LI
r I

TOTAL CYCLIC LIFE

FIGURE E2-32. COMBINED CYCLIC AND SUSTAINED STRESS FLAW

GROWTH SCHEMATIC INTERPRETATION
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stress intensity would further increase and, if the stress were sustained

sufficiently long, it appears possible that failure could occur on the (B + 1)

cycle.

If, on the other hand, the cycles were applied with little time at

maximum cyclic stress, it appears that the total of A cycles couht be

realized. It is hypothesized that below the threshold K-value, the time at

sustained stress has little or no effect on cyclic life. Above the threshold

value there will be an interaction such that failure could occur anywhere

within the range of (B ÷ 1) to A cycles, depending on the time the maximum

stress is held (luring each cycle. The development of the exact time-cycle

interaction curvcs above the threshold value wouhl be a complex and expensive

task and, as applied to most tankage structure, may not be of grcat importance.

It appears more rational to determine the basic cyclic data and the threshold-

intensityvalues and then verify (through prolonge(l-time specimen cyclic

tests) that time at load is not of major significance below the threshold value.

In the application of the data to fatigue-lifeestimation, thc maximum allowable

stress intensitywould be limited to the threshold value as determincd for the

material in question and for the applicable service environment. Ifthe

threshold is very low, steps should be taken to protect the material from the

environment.

The operational cyclic lifeof pressure vessels can be determined if

the following data are available:

1. Proof-test factor a .

2. Maximum design operating stress a

3.

4.

op"

Fracture toughness Kic.

Experimental cyclic and sustained stress flaw growth for the

vessel material.
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If the cycles to be applied to the vessel have short hold time at the maximum

stress aop , the stress intensity at aop can be allowed to reach the critical

¢alue Kic and therefore the allowable flaw growth potential is a - a.. For
er 1

long hold times at the maximum stress, the stress intensity could not be

allowed to exceed the sustained stress threshold value KTH and the allowable

flaw growth potential is ath _ a.., Typical threshold stress-intensity data

can be obtained from Refs. 12 and 22.

I. Example Problem A (Thick-Walled Vessel).

Cyclic life prediction can be made by utilizing the proof-test factor and

the relationships between Kii/Kic and cycles to failure for various values of

R (ratio of minimum to maximum stress during a cycle) for the material-

environment combination.

The procedure for assessing the structural integrity of the thick-

walled vessels follows. In the first analysis for the assessment of the struc-

tural integrity of the thick-walled vessel, it is always assumed that all the

pressure cycles are applied at R = 0. Since the analysis based on R = 0

will always show the remaining cyclic life less than that based on the analysis

of R ¢ 0 (actual R ratios), the prediction of cyclic life based on the analysis

of R = 0 is invariably conservative. If the pressure vessel is shown unsatis-

factory for the flight based on R = 0, then the prediction analysis for the

remaining cyclic life is conducted based on the actual R values at which the

cycles are applied. An excellent illustrative example abstracted from Ref. 12

is given as follows.

Suppose that a thick-waUed 6A1-4V (STA) titanium helium tank is

successfully proof tested at a proof-test factor of 1.50 times the maximum

design operating stress. Suppose that the proof-tested tank is subjected to the

following pressure cycles before the flight, as shown in Fig. E2-33:
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CYCLE

ANTICIPATED PREFLIGHT SERVICE LIFE

200 CYCLES 40 CYCLES

I,_-@0.90 Oop @ Oop
D

4300 CYCLES 260 CYCLES

@ Oop @0.95 0oi)

R . =0.,

=o D
B

CYCLES

FIGURE E2-33. CYCLIC IHSTORY OF A THICK-WAI,I, ED VESSEL

( I,:XAMPLI.: PROBLI<M A)

1. 200 loading cycles with the maximum stress as 90 percent of

and R= 0.1.

O"

()1)

0.7.

2. 4300 loading cycles with the maximum stress as _ and
op

1l=

3. 260 loading cycles with the maximum stress as 95 percent of _r

and R= 0.4.
op

4. 40 loading cycles with the maximum stress as (r and It= 0.1.
op

The cyclic life curves for 6Al-4V (STA) titanium for the environment

of room-temperature air are reproduced for R = 0.0, R = 0.1, R = 0.4, and

R = 0.7 in Fig. E2-34. The dif[erence between the plots of cyclic life against

iK'i/KIe for R= 0 and R-0.1 is negligible for this material-c'nvironment



_OE

_ ]_

O

8.
Cp

'1

m

m

Section E2

1 November 1972

Page 78

oq _ o
0 0 0 0

:JI)i/xmu (r[)i)

,," ©

..J _

0 @

y)Lu _
•.J _
).

o_
v

o

!



Section E2

1 November 1972

Page 79

combination, and hence both are shown by the same plot in Fig. E2-34. The

threshold stress-intensity level for the material in the environment of room-

temperature air is 90 percent of Kic.

The maximum possible KIi/KIc ratio that could exist in the vessel

after the proof test at a is 1/or = 0.667. It can be seen from the R = 0
op

plot in Fig. E2-34 that the maximum cycles to failure are about 600 at
op

if the hold times at maximum stress are small. If the analysis is based on

R = 0 instead of actual R, the pressure-cycle history shows that the vessel

is critical. In the following, the assessment of the vessel is marie based on

the appropriate values of R.

At the beginning of 200 loading cycles with the maximum stress as

0.90 a the maximum KIi/KIc is given by 0.90 x 0.667= 0.60. Thisop'

point is indicated by E on R = 0.1 curve. The 200 loading cycles of 0.90

Crop and R = 0.1 change the KIi/KIe ratio from Point E to Point D on the

Kii/ ratio at the end of 200 loading cycles ofplot of R= 0.1. The KIe

R= 0.1 is 0.63.

The stress is increased by 10 percent at the end of 201} cycles, ttence,

the Kii/Kic ratio at the beginning of 4300 cycles at Sop and R = 0.7 is

(1.0/0.9) × 0.63= 0.70. This is shown by Point D on the plot of R= 0.7.

The 4300 loading cycles at Sop and R = 0.7 change the KIi/KIe ratio from

Point DtoPointC on the plot of R= 0.7, where its value is 0.78.

The stress is decreased by 5 percent at the end of 4300 cycles. Hence

the Kii/Kic ratio at the beginning of 260 cycles at 0.95 (top is (0.95/1.0) ×

0.78= 0.74, which is shown by PointC on the R= 0.4 plot. The 260 cycles

at 0.95 Sop and R = 0.4 change the Kii/Kic ratio from Point C to Point B

on the R= 0.4 plot, where its value is 0.80.
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The stress is increased by 5 percent at the end of 260 cycles. Hence,

the Kii/Kic__ ratio at the beginning of 40 cycles at aop is (1.0/0.95) x 0.80 =

0.84, which is illustrated by Point B on the R = 0.1 plot. The 40 cycles at

aop and R = 0.1 increase the liK'i/K'c ratio from 0.84 to 0.875, which is

shown by Point A in Fig. E2-34.

Since the stress intensity at the end of 40 cycles at or is less than
op

the threshold stress intensity, the vessel is considered to be safe for the

flight. It will take 20 loading cycles at or and R = 0.1 to increase
op

Kii/Kic from 0.875 to 0.90 Thus, the estimated minimum cyclic life

remaining for the vessel is 20 cycles.

II. Example Problem B (Thin-Walled Vessel).

In thin-waUed vessels the flaw depth becomes deep with respect to the

wall thickness prior to reaching the critical size. Therefore, Kobayashits

magnification factor for deep surface flaws M k must be considered. In

thin-walled vessels it is assumed that the flaws are long with respect to their

depth and, consequently, Q is assumed to be equal to unity in the Kobayashi

equation.

To determine the cyclic life of a thin-walled vessel, the following

relations are required (Ref. 22).

1. Proof-test factor, orop' Kic, and KTH.

2. The or versus a curve, similar to Fig. E2-35, to determine the

flaw size, ai, acr, and aTh. The curve is obtained from the following

equation:

Or
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3. The Kii/Kic versus flaw growth rate da/dN to determine the

flaw growth rate at any stress level. The flaw growth rates can be obtained

by differentiating the KIi/Kic versus cycles to failure curve, similar to that

of Fig. E2-36 (Ref. 22). This curve is obtained from the specimens where

a /t is less than half. For an assumed maximum cyclic stress level, say
cr

al, the given Kii/Kic versus N curve can be converted to an a/Q versus

N curve by the equation

a/Q - 1.21 _ \ _'1/



1.0

0.1

0.7

CYCLIC LIFE CURVE (1 qlm) FOR

Section E2

1 November 1972

Page 82

, _1) TITANIUM

"--'" J----'-- -- "1 .... _ .....

LESTIMATED THRESHOLD LEVEL

I
LOAD PROFILE

O.I--

Omx+

T,ME----- J
0 I I I , I I II I I J I l I I11 i I I I I111

1 10 100 1000

CYCLE$ TO FAILURE

FIGURE E2-36. COMBINED SUSTAINED AND CYCLIC STRESS

LIFE DATA [5 A1 -- 2 1/2 Sn (ELI) TITANIUM

AT -320 °F]

The slope of the a/Q versus N curve gives the plot for the flaw growth rate

d/dN (a/Q) versus Kii/Kic for the stress level a 1. From the preceding

equation for a given Kii , a/Q at the stress level a 2 is related with a/Q

at al as

From this equation it can be concluded that the flaw growth rate at any stress

level cr2 is related to the growth rate at a I as follows:

[d/dN (a/Q)] a 2 = (al/a2)2 [d/dN (a/Q)] a 1 .
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The prediction of the remaining cycle life and the structural integrity

of the thin-walled vessel is demonstrated by an illustrative example abstracted

from Ref. 22 and is given as follows.

Suppose that a thin-walled 6AI-4V titanium (STA) propellant tank

containing N204 at room temperature is successfully proof tested with water

at room temperature to a proof-test factor of 1.41 times the maximum design

operating stress, Sop. Suppose that the proof-tested tank is subjected to the

following pressure cycles before the flight:

1. Twenty loading cycles with the maximum stress as 90 percent of

op

(1 o

op

2. Twelve loading cycles with the maximum stress as 95 percent of

3. Five loading cycles with the maximum stress as
op

It is desired to assess the structural integrity of the prcssure vessel

from the fracture mechanics standpoint and estimate the minimum cyclic life

remaining for the vessel at Sop" This example is treated with specific

numbers since the stress-intensity factor has to be corrected for the a/t

ratio according to Fig. E2-25. The thickness of the tank is 0.022 in. The

maximum design operating stress, (7op, is 87.5 ksi. The material of this

gage under the above-mentioned environmental conditions has the minimum

fracture toughness of 37 ksi _ and the threshold stress intensity of 80

percent of Kic.

The _ versus a plots are given for Kic and KTH = 0.80 KIc in

Fig. E2-35. Since the proof stress is 1.41 × cr = 123.6 ksi, it is clear
op

from Fig. E2-35 that the maximum possible a that could exist is 0.0143
1

in. Here it is assumed that the depressurization from the proof pressure is
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rapid enough so that no significant flaw growth occurs during the depressur-

ization. Also, as shown in Fig. E2-35, for the stress level of a a
op' cr

is 0.0196 in. and aTH is 0.0160 in.

The plot of the Kii/Kic versus flaw growth rate for 6A L-4V titanium

at room temperature is reproduced in Fig. E2-37 for a = 100 ksi. The 99-

percent confidence level flaw growth rate curve is obtained from the cyclic

data of R = 0.0; it is assumed in this example that all the cycles are applied

at R= 0.0.

Taking into account the effect of stress level on the flaw growth rates,

the rates are arithmetically integrated from a. = 0. 0143 in. to a = 0. 0196
1 er

in. according to Fig. E2-38 to calculate the cycles to failure for the stress

level of aop. The plot of flaw depth against cycles to failure for the stress

level of a is shown in Fig. E2-39.
op

When the maximum cyclic stress is 0.95 a a is still 0 0143 in.
op' i

but acr is 0.0208 in. and aTH = 0.0167 in. from Fig. E2-35. Based on

the stress level of 0.95 a the flaw growth rates are integrated from
op'

a. = 0. 0143 in. to a = 0.208 in. to calculate the cycles to failure. A
1 cr

similar procedure is followed to obtain the relation of flaw depth against

cycles to failure for the stress level of 0.90 aop. These plots are shown in

Fig. E2-39.

At the end of the proof cycle and the beginning of the first cycle at the

maximum cyclic stress of 0.90 a the maximum possible flaw depth is
op'

0. 0143 in. This is shown by Point D in Fig. E2-39. The 20 loading cycles

with the maximum stress as 0.90 a
op

on the plot of 0.90 a (Fig. E2-39).
op

change a from Point D to Point C
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The tank-wall stress is increased by 5 percent at the end of 20 loading

cycles with the maximum stress as 0.90 a The flaw size remains the
op"

same during the stress increase. This is shown by Point C on the plot of

0.95 a in Fig. E2-39.
op

The 12 loading cycles with the maximum stress as 0.95 a change
op

a from Point C to Point B on the plot of 0.95 a in Fig. E2-39.
op

At the end of 12 loading cycles with the maximum strc_ss as 0.95 cr
op'

the stress is increased by5 percent. This is shown by I)oint B on the plot

of _ in Fig. E2-'19.
op

The live loading cycles with the maximum stress as _ change a
op

from Point B to Point A on the plot of tr in Fig. I':2-39. The flaw del)th
op

at A is 0.01534 in. This is smaller than aTli, which is 0.0160 in. IIence

the vessel is considered to be safe for the flight. Also from Fig. E2-39, it

will take seven cycles at a to increase tire flaw depth from 0. 01534 in.
op

to 0.0160 in. Hence, the minimum estimated cyclic life remaining for the

vessel is seven cycles.

2.4.3.2 Allowable Initial Flaw Size.

Allowable initial flaw sizes in a designed structure depend on the

service life requirements for the structure and fracture toughness properties

of the material selected. The prevention of failure requires that either the

actual initial flaw sizes or the maximum possible initial flaw size be known.

Nondestructive inspection provides the only means of determining actual

initial flaw sizes. A successful proof test specifies the maximum possible

initial flaw size which can exist after the proof test and, in turn, provides the

maximum possible initial to critical stress-intensity ratio, Kii/Kic. To

determine the maximum allowable initial flaw size, the initial to critical

stress-intensity ratio, based on the service life requirements, must be

determined.
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The calculation of allowable initial flaw size is demonstrated by the

following example.

I. Example Problem A.

A cyclic loaded pressure vessel of aluminum alloy must meet the

following design conditions:

1. Required minimum life, 40 000 cycles.

2. Maximum stress in a cycle 1/2 o = 35 000 psi.
ys

3. Kic of weld metal= 15 000 psi

4. Semielliptical surface defect (length 4 x depth).

What is the allowable initial flaw size which will grow to a critical

size in 40 000 cycles ?

Solution.

From Fig. E2-40 (Ref. 18), the KIi/Kic ratio corresponding to

40 000 cycles of life is 0.36. The initial stress intensity can now be

determined:

Kii

KIi/KIc : 0.36 : 15 000

and

Kii = 0.36 (15 000) = 5400psi _ .

Knowing the design stress of 35 000 and the expression of the type of

defect, it is now possible to find the defect size corresponding to a Kii of

5400 psi _ :
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FIGURE E2-40. CYCLIC FIAW-GROWTtI DATA FOR

A LUMINUM A LLOY

KIi 2 Q (5400) _ (1 4)
a. - - " - 0.0088 in.

I 1.21 _2 1.21 _ (:15 000) _

The value of Q -- 1.4

and a /a = 1/2= 0.50.
ys

is taken from Fig. 1':2-5 for a/2e = 1/4 = 0.25

2e. = 4a. = 4 (0.0088) = 0.0352 in.
1 1

Therefore, the size of an initial flaw which will just grow to a critical

size in 40 000 cycles is 0. 0088 in. deep by 0.0352 in. long.

2.4.3.3 Nondestructive Inspection Acceptance Limits.

The NDI requirements for any I_ivcn structure are a function of the

allowable flaw sizes. They are limited by any economic or schedule impli-

cations associated with a proof-test failure and by the reliability of the
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inspection techniques for detecting initial flaws. Allowances should be made

for any lack of specific knowledge of flaw geometry and orientation. When

there is a lack of flaw definition, the worst possible flaw geometry and

orientation might be assumed.

Also, in arriving at acceptance limits, the allowable spacing for

internal or surface flaws (that is, aligned flaws in weldments) must be con-

sidered. An approximate analytical solution for the interaction of elliptically

shaped coplanar flaws has been obtained by Kobayashi and Hall (Ref. 23). The

results are shown in Fig. E2-41 along with experimental results on several

Ladish D6AC steel specimens containing two coplanar semielliptical surface

flaws. The curves are plotted in terms of stress-intensity magnification

ratio (Kt/K_) versus flaw spacing ratio (d/a). Probably the most significant

point is that there is very little interaction between coplanar flaws unless they

are surprisingly close together.

DATA POINTS - Kic

Klc FROM COPLANAR FLAW SPEC.
USING SINGLE FLAW EQUATION

,/2¢ - 0.32
1o0

[ PLANE STRAIN STREI|S INTENSITIEI

! COPLANAR FLAWS _ _1 j
OAO 0.6 1.0

FOR LADISH '
D@ACSTEELS

SEPARATION (d/a)

FIGURE E2-41. STRESS-INTENSITY MAGNIFICATION FOR TWO

COP LANAR E LLIPTICA L F LAWS
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The establishment of NDI acceptance limits when service life require_

ments are known might best be shown by an illustrative example involving a

hypothetical pressure vessel that is expected to encounter a rather complex

loading history.

Figure E2-42a shows the assumed service life requirement con-

sisting of one proof-test cycle (at a stress level of _ times the operating

stress) followed by 1000 cycles and then 100 hr, both at a constant operating

stress level of (a = 1.0). To define the minimum inspection standards

required prior to service, it is necessary to determine the critical flaw size,

(a/Q) , at the end of service (Section 2.4 2) and work backwards evaluatingcr " ,

all portions of the loading profile that can cause flaw growth.

Figure E2-42b represents a dimensionless relationship of stress-to-

flaw size as shown previously (Fig. E2-6). The ordinate now is plotted in

terms of percentage of critical flaw size at operating stress. Figures E2-42e

and d are schematic representations of the cyclic load flaw growth and sus-

rained load flaw growth, respectively.

The approach is as follows:

1. The critical flaw size at operating stress is represented as 10O

percent of critical and is the maximum allowed at time T D (at the end of the

service life).

2. Maximum allowed flaw size at time T C is shown by Point C and

represents the maximum allowable flaw size at the start of the 100-hr sus-

tained stress period.

3. The effect of cyclic loading is shown in Fig. E2-42c by moving

1000 cycles from T C to T B. Point B then represents the maximum allowable

size at time T B or at the start of the 1000-cycle period. This size is the

maximum allowable size before the vessel is placed in service.
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4. It can be shown that the previous one-cycle proof test generally

has a negligible effect on flaw growth compared with the chosen service life.

Note in this schematic illustration that the maximum allowable flaw

size is less than that which could have been present during a successful proof

test, and thus the proof test could not guarantee successful fulfillment of the

service life requirement. As a result, NDI must be capable of detecting flaws

as small as (ai/Qi)max.

If it is determined that inspection technique limitations preclude the

assurance of service life reliability, then either the proof-test factor must

be increased to assure that (ai/Qi) max is the largest possible existing flaw

size at the beginning of service life, or conservative assumptions might be

made about flaw geometry and orientation to account [or the inability to detect

small flaw depths. For example, the length (L) of an in(lication seen in X-ray

inspection could be assumed to bc the minor axis of an elliptical flaw where tho

major axis is large with respect to the minor axis (i.e., I,- 2a, Q _ 1.0).

Consequently, the critical flaw size must be larger (and the operating stress

lower) in order to meet the service life requirements. In other words, both

and (a/Q) move higher upthe ordinate of Fig. E2-42b.(ai/Qi) max cr

It should be noted that in terms of "percentage of critical," flaw siz¢"

is independent of actual stress and toughness values. Obviously, the deter-

mination of finite maximum allowable flaw sizes (or smallest flaw size for

NDI detection) requires a detailed knowledge of applied stresses in the various

tank locations and of the fracture toughness of the materials used. This has

been illustrated by the Example Problem A in Section 2.4.3.2 in which the

allowable initial flaw size in an aluminum alloy pressure vessel is calculated

based on a required service life. In the case where NDI acceptance limits

are being considered, the calculated initial flaw depth and length are the

minimum demensions which NDI must be capable of detecting.
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2.4.3.4 Proof-Test Factor Selection.

It has been previously noted that a successful proof test determines

the maximum possible flaw size which can exist after the proof test and prior

to the beginning of service. The proof test is the most powerful inspection test

presently available and offers the most reliable method for guaranteed service

life.

Figure E2-43 shows a schematic theoretical relationship between the

critical flaw size, (a/Q)cr'. and the corresponding fracture stress, as pre-

viously illustrated in Fig. E2-6, along with a similar relationship between

initial flaw size (a/Q). and stress level. The relationships hold true for

applied stresses below the yield strength of the material. For stresses above

]

w
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°ult
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the yield value the relationships follow some experimentally determined curve

up to the ultimate strength, aul t. If proof pressure is a times the operating

pressure, the critical flaw size is

(a/Q) = max(a/Q) _ 1 /K \i. _ .) 2

Crproo f iopcr 1.21 _ \c_ oper/

and

( ic)_ 1 a

(a/Q)croper 1.21----7 \ oper/

Thus the proof-test factor, a , is a function of the maximum initial flaw size

and critical flaw size for the operating pressure level

(a/Q).
1
oper

cr
oper

1

_2

Since subcritical flaw growth is a function of the initial stress intensity as

compared with the critical value, the proof-test factor can be related as

1.1 _n" a (a/Q)!/2

max Kii _ oper 'oper

KIc 1.1 _'a a (a/Q)! _
oper 1

oper

1

where Kii is the initial stress intensity at the operating stress level and

temperature, and K is the fracture toughness value at proof test
Ie
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temperature. It should be noted that lower proof test factors (and therefore

lower proof stresses) can be employed if the proof test is performed at a

temperature where the material has a lower Kic than at operating temperature

and, consequently, greater susceptibility to flaws. In this way the risk of

proof-test failure is minimized insofar as practical.

The maximum Kic at proof temperature should be employed in the

equation rather than the minimum or average Kic because it results in the

selection of a higher proof factor, a conservative event. Figure E2-44 illus-

trates the difference between the use of maximum and minimum Kic at proof

temperature. For a given maximum initial flaw size, (a/Q). (ma), the
l

proof stress required by Kic (min.) is less than that required by Kic (max.).

In fact, if Kic (rain.) were used and a component fabricated from material

characteristic of Kic (max.) and containing a flaw slightly longer than

(a/Q) i (ma) were proof tested at the lower level, the component would pass

b

i
|

\ I \

Z""°°N""'-

:/la/Olilmmz ALLOW)

I mr-

F LAWQSI ZE. alO

FIGURE E2-44. DETERMINATION OF PROOF STRESS BY MAXIMUM

AND MINIMUM VALUES OF IK-c
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the proof test successfully but probably would fail in service. The use of

Kic (max) in the proof-factor equation precludes this.P

It has been shown by analysis that regardless of the structural wall

thickness, the required minimum proof-test factor _ is always 1 --

allowable Kii/Kic. However, the value of the proof test in providing assur-

ance against service failure changes with decreasing wall thickness and/or

increasing fracture toughness, Kic, the same as occurs with the predicted

pressure vessel failure mode. This is discussed in more detail inRef. 22

and illustrated in Fig. E2-45.

ttaving experimentally obtained the cyclic and sustained flaw growth

for a material under consideration, the necessary proof-test factor can be

determined to assure that the structure will meet the service life requirements.

Proof-factor determination can be applied to at least two general problem areas

in the design of structural components:

1. Evaluation and modification of proof-test conditions for current

components for which operating stress and mission are already fixed.

2. Preliminary design of components intended for known missions,

including selection of material, maximum operating stress, minimum proof

stress, and proof temperature.

The following sample problem illustrates the proper selection of a proof-test

factor for a hypothetical pressure vessel design.

I. Example Problem A.

Suppose that a thick-walled liquid nitrogen 5A1-2.5Sn (ELI) titanium

pressure vessel must meet a service life requirement of 600 pressure cycles

where the pressure is sustained for a prolonged period during each cycle. The

vessel has already been successfully proof tested with LN 2 to a proof factor
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= 1.25. Will this proof factor assure that no failure occurs during the

service life and if not, what proof factor is required ?

The cyclic life curve for 5A1-2.5Sn (ELI) titanium is reproduced in

Fig. E2-36. The estimated threshold stress-intensity value for sustained-

stress flaw growth (KTH/KIc) is approximately 0.92.

For long hold time, max. Kii/Kic = 1/_ = 1/1.25 = 0.80. From

Fig. E2-36 for Kii/Kic = 0.80, N= 300 cycles. For KTH/KIc = 0.92,

N = 100 cycles.

In 300 cycles minus 100 cycles, or 200 cycles, the stress intensity

would have reached the estimated threshold value for sustained-stress flaw

growth. Thus the predicted minimum life would be only 200 cycles and the

proof factor of 1.25 will not assure a service life of 600 cycles.

For 100 cycles plus 600 cycles, or 700 cycles,

KI /K I = 0.70 = 1i c (_

and

1
- = 1.43

0.70

Thus, the 600-cycle service life requires a proof-test factor of 1.43

times the operating pressure.
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Symbol

[Al

[a]

[A*]

[B]

[Cl

[c*]

tc* ]

[C']

[c'l

C°,

11

m

oil

[D]

E

Eij

Definition

extensional rigidity matrix of laminate - equation (F 1. 2-18)

average laminate extensional rigidity matrix - equation

(F1. 2-28)

laminate compliance matrix - equation (F1. 2-30)

coupling matrix - equations (F1. 2- i 8) and ( F 1. 2-19j

lamina stiffness matrix - equation (F1. 1-6)

column form of the stiffness matrix -equation (F 1. 1-27)

column form of the transformed stiffness matrix -

equation (Ft. 1-28)

transformed stiffness matrix of [C] - equation (F1.2-15)

modified form of lamina stiffness matrix - equation

(Ft. 2-I)

transformed matrix of the modified stiffness matrix -

equation (Ft. 2-10)

components of the stiffness matrix [C], [C r]

components of the transformed stiffness matrix [C],

[c'l, [c'l

laminate flexural rigidity matrix - equation (F1.2-19)

YoungVs modulus of elasticity

Young's modulus of laminae in lamina principal direction

- equation (F 1. 1-15)
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shear moduli in the i-j plane - equation (F 1. 1-15)

invariants of stiffness matrix transformations - equation

(Ft. 2-12)

lamina index indicating position in laminate

laminate bending and twisting moments - equation (F1.2-17)

laminate forces - equation (Ft. 2-16)

lamina compliance matrix - equation (F1. 1-7)

components of the lamina compliance matrix

stress and strain transformation matrix - equation

(F1. 1-3)

differential area - equation (F1.1-1)

distance from reference surface to plane separating

laminae K and K+I - Fig. F1.2-3

laminate total thickness - Fig. F1.2-3

principal longitudinal laminate axis (Fig. F1.0-1)

principal transverse laminate axis (Fig. F1.0-1)

principal normal laminate axis (Fig. F 1.0-1)

principal longitudinallamina axis (Fig. FI. 0-2)

principal transverse lamina axis (Fig. FI. 0-2)

shear strain
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shear strain of laminate middle surface - equation
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strain
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shear coupling ratios - equation (FI. 1-15)

angular orientationof a lamina in a laminate, i.e., the

angle between the x and a axis - positive is
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Poisson's ratio
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stress column matrix - equation (F1. 1-9)

shear stress

curvature of laminate middle surface - equation (F1. 2-13)

arbitrary local coordinate system

lamina principal axes
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F1.0 COMPOSITES - BASIC CONCEPTS AND NOTATIONS.

The purpose of this section is to present state-of-the-art techniques

utilized in the design and stress analysis of advanced composite structures.

An attempt was made to keep the analytical developments and material as

elementary as possible. However, the stress analysis of composite materials

is more complex than that of conventional materials, and, as a result, the

analysis techniques and concepts may seem rather involved.

In order to understand the mechanics of laminated composites, one

must have a knowledge of certain basic definitions. These definitions, obtained

primarily from References 1, 2, and 3, are intended to serve not only as a

reference for this section but also as a guide to general literature on composite

materials.

AEOLOTROPY See anisotropic.

ANGLEPLY Any filamentary laminate constructed with

equal numbers of pairs of laminae with

symmetry about the coordinate (x, y) axis.

An alternate definition used frequently in

current literature, but not in this section,

is a laminate consisting of an even number

of layers having the same thickness, and



i,
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the orthotropic axes of symmetry in each

ply are alternately oriented at angles of

+ e and - 0 to the laminate axes.

ANISOTROPIC Not isotropic; having mechanical and/or

physical properties which vary with

direction relative to natural reference

axes inherent in the material.

BALANCED COMI_SITE A composite laminate whose layup is

symmetrical with relation to the midplane

of the laminate (Fig. F1.0-1).

hK

_3_

z: _.3.

_ hK

FIGURE F1.0-1. BALANCED OR SYMMETRIC COMPOSITE
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Buckling is a mode of failure characterized

generally by an unstable lateral deflection

caused by compressive action on the

structural element involved. In advanced

composites, buckling may take the form not

only of conventional general instability and

local instability but also of a microinstability

of individual fibers.

The compliance matrix is defined by the

equation e. = S..a., where S.. are the
1 D J U

components of the compliance matrix; may

be obtained by inverting the stiffness matrix.

Composites are considered to be

combinations of materials differing in

composition or form on a macroscale. The

constituents retain their identities in the

composite; that is, they do not dissolve or

otherwise merge completely into each other

although they act in concert. Normally,

the components can be physically identified
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and lead to an interface between components

(Fig. FI. 0-2).

Z

FIGURE F1.0-2.

CONSTITUENT

CONSTITUTIVE

CROSSPLY

MATRIX
(1

FIBER

PRINCIPAL CONSTITUENTS OF COMPOSITE

LAMINA AND PRINCIPAL AXES

In general, an element of a larger grouping;

in advanced composites, the principal

constituents are the fibers and the matrix

(refer to Fig. F1.0-2).

Refers to the stress-strain (Hooke's Law)

relationships for a material because the

stress-strain relations actually describe

the mechanical constitution of the material.

Any filamentary laminate constructed with

equal numbers of pairs of laminae at angles

of 0 deg and 90 deg to the laminate axes.
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An alternate definition used frequently in

current literature, but not in this section,

is a laminate consisting of an even number

of layers all of the same thickness with the

orthotropic axes of symmetry in each ply

alternately oriented at angles of 0 deg and

90 deg to the laminate axes.

The separation of the layers of material in

a laminate.

A single homogeneous strand of material,

essentially one-dimensional in the

macrobehavior sense, used as a principal

constituent in advanced composites because

of its high axial strength and modulus

{refer to Fig. F1.0-2).

The amount of fiber present as

reinforcement in a composite. This is

usually expressed as a percentage volume

fraction or weight fraction of the composite.
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The orientation or alignment of the

longitudinal axis of the fiber with respect

to a stated reference axis (Fig. F1.0-3).

a

X

FIGURE FI. 0-3. LAMINA AXIS ORIENTATION

FILAMENT A variety of fibers characterized by

extreme length, such that there are

normally no filament ends within a part

except at geometric discontinuities.

Filaments are used in filamentary
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composites and are also used in filament

winding processes, which require long,

continuousstrands.

FILAMENTARY COMPOSITES Composite materials of laminae in which

the continuousfilaments are in nonwovcn,

parallel, uniaxial arrays. Individual

uniaxial laminae are combined into

specifically oriented multia×ial laminates

for application to specific envelopesof

stren_,_thand stiffness requirements

(Fig. F1.0-4).

Z

o o o o _ C'-,,'"."-_(
I oo ooooooo o__

FIGURE F1.0-4. FILAMENTARY COMPOSITE

GENERALLY ORTHOTROPIC Descriptive term for a lamina for which

the constitutive equation, when transformed
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to an arbitrary set of axes, is fully

populated. That is, for

u

-0.x 1 K F_ll -E12 _16

' L0.y ' = C12 _22 _26

• ] °xy 16 _26 _66

1
E x

Ey
I

YxyJ ,

C16 _ O, C26 _e O,

HENCKY-VON MISES

DISTORTIONAL ENERGY

THEORY

Yield criterion using distortional energy

for isotropic materials:

(al_ o.2)2+ (a 2- o.3)2+ (0.3- °"1)2+ 6(0" 122+0.232+0.sl 2)= 2o"02 .

HETEROGENEOUS Descriptive term for a material consisting

of dissimilar contituents separately

identifiable; a medium consisting of regions

of unlike properties separated by internal

boundaries; not homogeneous.

HILL Generalized yon Mtses yield criterion to

account for anisotropy:



/

where
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A! ((72 - 0"3) 2 +A 2 ((73 - o"1) 2 + A 3 ((71 - o-2) 2 + 2A4o'232

+ 2A5CT312 + 2A6cT122 = 1 ,

2f(oij ) = the plastic potential,

2A 1 = (F2)-2 + (F3)-2 _ (F1)-2

2A 2 = (F3)-2+ (F1) -2_ (F2) -2

2A 3 = (F1) -2+ (F2) -2_ (F3) -2

2A 4 = (F23) -2 ,

2A 5 = (F31) -2 ,

2A6 = (F12) -2 ,

and F1, F 2, and F 3 are determined from unia×ial tension or compression tests,

and FI2, F23, and F31 are determined from pure shear tests.

HOMOGENEOUS Descriptive term for a material of uniform

composition throughout; a medium which has

no internal physical boundaries; a material

whose properties are constant and isotropic

at every point.

HOMOGENEOUS ANISOTROPIC Descriptive term for a material which has

no plane of material symmetry such as the

orthotropic material.



HOMOGENEOUSGENERALLY
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HOMOGENEOUSISOTROPIC

HORIZONTAL SHEAR

INTERFACE

INTERLAMINAR SHEAR

ISOTROPIC

LAMINA
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Descriptive term for a lamina which behaves

in a manner similar to the anisotropic

lamina.

Descriptive term for a lamina which has

a constant modulus of elasticity and the

C16 = C26 = 0 in its constitutive equation.

See interlaminar shear.

The boundary between the individual,

physically distinguishable constituents of

a composite.

Shear force which tends to produce a

relative displacement between two laminae

in a laminate along the plane of their

interface.

Descriptive term for a material which has

uniform material properties in all

directions.

A single ply or layer in a laminate made of

a series of layers (Fig. F1.0-5}.
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LAMINAE

LAMINATE

LAMINATE ORIE NTATION

LAYUP

MACRO
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Plural of lamina (refer to Fig. FI. 0-5).

A product made by bonding together two or

more layers of laminae of material or

materials (refer to Fig. F1.0-5).

The configuration of crossplied composite

laminate with regard to the angles of

crossplying, the number of laminate at each

angle, and the exact sequence of the

individual laminae.

A process of fabrication involving the

placement of successive layers of materials.

In relation to composites, denotes the gross

properties of a composite as a structural

element but does not consider the individual

properties or identity of the constituents.

The essentially homogeneous material in

which the fibers or filaments of a composite

are imbedded {refer to Fig. F1.0-2).

\
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In relation to composites, denotes the

properties of the constituents and their

effect on the composite properties.

Descriptive term for a material which has

three mutually perpendicular planes of

elastic symmetry.

The set of axes in a lamina which is

parallel and perpendicular to the filament

direction is called the lamina principal

axes (refer to Fig. F1.0-2).

Descriptive term for a laminate which has

essentially isotropic stiffnesses and

perhaps st rengeth.

Descriptive term for lamina for which

the Cl6 : C26 0 in its constitutive

equation.

A tensor is a physical entity in nature

which obeys certain transformation

relations. There are different orders of



TRANSVERSELY ISOTROPIC

VON-MISES DISTORTIONA L
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tensors, and each order has its own

transformation relations.

Descriptive term for a material exhibiting

a special case of orthotropy in which

properties are identical in two orthotropic

dimensions, but not in the third; having

identical properties in both transverse

directions but not the longitudinal

direction.

See Hencky-von Mises Distortional Energy

Theory.

An axis in the plane of the laminate which

is used as the 0 deg reference for

designating the angle of lamina (refer to

Fig. F1.0-5).

The axis in the plane of the laminate which

is perpendicular to the x-axis (refer to

Fig. FI.0-5).
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The reference axis normal to the plane of

the laminate (refer to Fig. F1.0-5).

f
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1. 1 BASIC CONCEPTS.

Some of the basic concepts applicable to all continuums, in particular

composites, are presented in this subsection. These include the concepts of

stress and strain at a point and their transformation relations.

i. I. 1 STRESS AND STRAIN.

Following the guide of Ilefcrence i, stress and strain relations at a

point will be reviewed to form a firm base for the analytical development for

composites.

A tensor, as defined previously, is some physical entity in nature

which obeys certain transformation relations. A scalar, for example, is a

tensor of zero-th order, and a vector is a tensor of first order. Itis well

known that the components of a vector change when the coordinate system is

altered or rotated. This change in the components of the vector is governed

by certain mathematical relations or transformations. Each order of tensors

has its own transformation relations; therefore, it is necessary only to

establish that a physical entity is a tensor and determine its order, and the

transformation relations are defined.

Stress and strain are both second-order tensors and their transformation

relations are well known (the graphical form of the transformation is the Mohr's

circle). These transformation relations may be derived from the equilibrium

relations of a small element. Consider a two-dimensional problem as shown



in Fig. FI. 1-1.

equation results:
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By summing forces in the "1" direction, the following

_ldA-_ (cosSdA) (cos e) - _ (sinedA) (sine)
x y

-_ (sin0dA) (cos 8) - T (cos 0dA) (sin0) = 0 ,
xy xy

or

_I = _ cos29 + o sin 28+ r (2 sin#cos 8) (FI.I-I)
x y xy

2

o2 /'

Y

m X

J
o¥

FIGURE FI. I-i.

2

_r12/,_°1 o2 T12A

"rxylJ A _dA

"T-
Oy ov

STRESS COORDINATE ROTATION

O x

In a similar manner, the other transformed stresses, cr2 and rt2 , may be

determined. These equations may be written in a form convenient for later

developments, a matrix form. Thus,



[ lj_2

Tt

cos 2 0

sin 2 0

-sin 0 cos 0)

sin 2 0 (2 sin 0 cos 0) 1

cos 2 0 (-2 sin 0 cos 0)

(sin 0 cos 0) (cos20 - sin 20)
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_y . (F1. 1-2)

7

Using a more compact notation, we may write equation (F1.1-2) as

¢r2 I = [TI (FI. 1-3)

T12 J L xy

where [T] is the symbol for the transformation matrix. Equation (F1. 1-3) is the

transformation relation for the stress tensor when reduced to a two-dimensional

space. Equation (F1. 1-3) is the necessary relationship required to transform

any two-dimensional stress state from one set of coordinates to another set.

With a slight modification, the two-dimensional strain may be

transformed by the same transformation:

1
¢2 ! = LT] _y ]

½":,2J J
_ 2 xy

(F1. 1-4)
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1.1.2 GENERALIZED HOOKE'SLAW.

In this paragraph the constantsof proportionality betweenstress and

strain {Hooke's law constants} are shownto be componentsof a fourth-order

tensor andtherefore have a set of transformation relations different from those

for stress and strain. Several forms of the Hooke's law relationships andthe

elastic constantswill be shownfor the various material conditions.

1.1.2. 1 Homogeneous Isotropic Material.

For the familiar homogeneous isotropic material in a one-dimensional

stress state [1], the Hooke's law relationship is

= EE . (FI. i-5)

The proportionality constant (E) is Young's modulus, or the modulus

of elasticity, and is a scalar value.

1.1.2. 2 Elastic Linear Anisotropic Material.

Consider the most general material, but require elasticity and

linearity, which is the anisotropic material. This material has 21 elastic

constants. The constitutive equation (Hooke's law) is [2]

m

C11 C12 C13 C14 C15 C16

C22 Cn C24 C2s C2_

C33 C34 C3s C36

C44 C45 C46

Symmetric
Css Cs6

C66
-- a

[a] = [_] . (F1.1-6)
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The components C.. are called components of the "stiffness" matrix. The
11

equation may be written as

'where

m

Sit S12 St3 $14 $15 $16

822 S23 824 S25 $26

$33 $34 $35 $36

Symmetric $44 $45 $46

Sss Ss6

S66

[(_1 (F1. 1-7)

[C] = IS] -1 . (F1. 1-8)

The components S.. are called components of the "compliance" matrix.
1]

[ _] conventionally symbolizes [ 3]

The

- _rl

I

[or] = °3 I (F1. 1-9)

Similarly,

[E] =

T23I
?13 I

I_ T12J

;--El "7

e2 I
I

_3

I

_/23

_13

__/12J

(FI. i-I0)
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1.1. 2. 3 Monoclinic Material.

If a material possesses one plane of symmetry, it is termed a

monoclinic material and has 13 independent elastic constants. If the plane of

symmetry is assumed to be the x-y plane, the constitutive equations are [ 2]

and

[a]

CtICz2Ct3 0 0 Ct6"

C22 C23 0 0 C26

C3s 0 0 C38

C44 C4$ 0

Symmetric
C55 0

C66

[c] (rl. i-li)

[c] =

Sit St2 St3 0 0 S16

$22S23 0 0 $26

833 0 0 836

$44 S4s 0

Symmetric
Sss 0

866
m

[a]. (FI. 1-12)

m

1.1.2. 4 OrthotroDic Material.

If the anisotropic material possesses two orthogonal planes of symmetry,

assuming x = 0 and z = 0, the material is termed orthotropic. In this

condition, there are only nine independent elastic constants. Note that ff a

material has two orthogonal planes of symmetry, three orthogonal planes of

symmetry exist. The constitutive equations of the orthotropic material are



and

[=J

-C11 C12 C13 0 0 0-

C22 C23 0 0 0

C33 0 0 0

C44 0 0

Symmetric Css 0

C66
m
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[(1 (F1.1-13)

[_]

Sll S12 S13 0 0 0

$22 $23 0 0 0

$33 0 0 0

$44 0 0

Symmetric Sss 0

S66
B u

[el • (F1. 1-14)

Since most composite structures will be constructed of orthotropic

laminates, this material is of particular interest. The engineering constants,

values which are establishable from uniaxial and pure shear tests, may easily

be equated to the components of the compliance matrix. The compliance

components are then

1 l 1

$11 = 1El-- ' $22- E22 ' $33- E33

= =-vaX_S_3 :L22_ S31
S12 = El I E22 E33

_-v_l__ , :Lv__ , =:._V_I__ (FI. 1-15)
E22 E33 Ell "

1 1 1

S6_ = 2GI--' $55 = 3Gl_ $44- G23

= :
Sl 6 _ S26 7726 836 =

El I ' E22 ' E33



where
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Eft, E22, E33 = Young's moduli in the I, 2, and 3 (x, y, and z)

directions, respectively,

v.. = Poisson's ration
lj

strain in the j direction
strain in the i direction

caused by a stress in the i direction,

Gij = shear moduli in the i-j plane,

_ij = shear coupling ratios.

Note that the SI6, S26, and S36 terms are used for a "monoclinic"

material. From equation (F1. 1-8), the components of the stiffness matrix may

be determined as

and

Cll = (I - v23 _32) VEIl ,

C22-= (I - v31 v13) VE22 ,

C33= (I - vi2 v21) VE33 ,

C12 = (v21 + v23v31) VEIl ,

= (VlZ + vI3 v32) VE_2 ,

C13 = (v31 + v21v32) VEil ,

= (vla + v23 v12) VE33 ,

C23 = (v32 + v12 v31) VE22 ,

= (v23 + vZl v13) VE33 ,

C44 = G23 ,

C55 = G31 ,

C66 = G12 ,

(FI. 1-16)



(

where

Section F1.0

1 October 1971

Page 25

V-- (1 - 1_12 t_21 - /"23 P32 - 1)31 /_13 - 2te12P23t_'31) -1

For an orthotropic material in a state of plane stress, the constitutive

equation is [ 1]

_r 1

(_2

712

icllc10111= C12 C22 0 (2

0 0 C66 3/12

(F1. 1-17)

where

Ell
Cll =

(1- _12v21)

E22 -- (El. 1-18)
C22 = (1 - _12_21) '

21E11 l' 12E22

C12 = (i- 71_,21) = (i - .12.21) '

and

C66 = G12

1. 1.2.5 Isotropic Material.

For an isotropic material, there are only two independent elastic

constants. The constitutive rel:_tions are [3]



and

[_] =

Ctl C12 Ct3 0

Ctt Ct2 0

Ctt 0

½ (ctl- ct2)

m

0 0

0 0

0 0

0 0

0

½ (c. - ci_)

Symmetric ½ (Ctt - Ct2)

[c]
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(F1.1-19)

[_]

i

SIt S12 S12 0 O 0

Sll $12 0 0 0

Symmetric Sit 0 0 0

2 (Slt- St2) 0 0

2 (Sll- S12 ) 0

2 (Stl - St2)

[_] (FI. 1-20)

The constitutiveconstants may be defined in terms of the engineering

constants as

(l-u) E

Cit =C22 =Csa = (1+ v) (I- 2v)

rE

Ct2 =CI3 =C2s = (1 + v) (1 - 2v) ' (Ft. 1-21)

C44=C55 =C66=G =
E

2(1+v) '

1

Stt=S22=S3a=_ ,

St2 ---Sis = $23 = E



and

1 2(1 + v)
$44 = $55 = $66 ---G_- E
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If the isotropic material is assumed to be in a two-dimensional stress state

(plane stress), equation (F1. 1-19) may be written as [ 1]

(Y2

T12

Cll C12 0

C 12 C 22 0

0 0 C66

1E1

£2

I

. "F12

(F1. 1-22)

where

E

C11=C22- (1-,2)

E

(1 - v 2'J '

(F1. 1-23)

and

- G

1.1.2.6 Transformation of Stiffness Matrix.

In Reference 1, the elastic constants (stiffness) for a material are

stated to be components of a fourth-order tensor and consequently, must obey

certain transformation relations. The transformation of a general anistropic

material, in three dimensions and rotated an angle 0 about the z-axis, is

given in Reference 2 as
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-_iN

where

[_*1 = [TRI [C*l (F1.1-24)

I tara! m*+a4 rant.man rata t man-ma t

I
I-_an 2man-_tm! m*.$manz 2ma) 3mtaZ-n*
I n4 2m_

J._n ! 2mat. 2rata

{
I
I

ITR]= 1

I
[
I

tl_n 2 "-I" .......

-m'n' I
m_n-mn$ I

-2rant m_ -2man m_ t ]

3manl.n 4 2mtn ma-3m_ t rand-man J

ennt-_'nan 4m _nz _ a-_rana (m_-n:l) 1 I

.................. -T_T--_ ma,--..-r-_
}mln m ! n j mn 2 mn t

J,_, _._ m' -_ -_'n
Jn I roll I man m ] -ran !

l-2m_ 2ran 2 2m_n -2ran t mr-ran _ nt-m ta

I-2ran 2 -2man 2ran t 2rain mtn-n t mr-ran lj
-_'mt

; r
I r
I
t-- ........... -_

1

I

F
!

l.__

_ran l

_nta

roll I

.mZn

[
_J,

T .... "_

I

I
{
i
[

[

I
J
]
J

n ! mn I

r _ _t -ran;
-_, zma m2-o'I I

I Ima m'._' -m_t I [
i I., zma n' I ] I

I t° ml__j

(F1. 1-25)

The m and n terms represent

m= cos 0

and

n = sin 0

(Fl. 1-26)

The [C*] and [C':'I are column matrix forms of equation (F1.1-6) and

the transformed equation. The [C*] is defined as



[C*] =

m

Cll

C12

2C16

C22

2C26

4C66

C14

C15

C24

C25

2C46

2C56

C13

C23

2C36

C44

C45

C55

C34

C35

C33
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(FI. i"-27)
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and the [_'*] is defined as

m m -.-,,i

rl !

_. ;
12 I

2C16 I

C2_ I

2C2s I

4C66 I

_24 I

_25 I

2C_ 1

2Cs6 I
-- ,,
"-_13 I

'_23 I

2Cae

1244

C45

C65

C34

C35

C33

(FI. 1-28)

The transformation of the stiffness matrix for an orthotropic material

in a plane stress state is of particular interest since this will be of direct

applicability to fibrous composites. As shown in Reference 1, when the

elastic constants are needed with respect to some axis other than the material

axis, the transformed elastic constants are

J_



f-
and

Cli =

C22 =

C12 =

C66 =

C16 =

m

C26 =
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Cll cos 4 0 + 2 [C12 + 2C66 ] sin 2 0 cos 2 0 + C2 2 sin 4 0 ,

Cll sin 4 6 + 2 [C12 + 2C66 ] sin 2 0 cos 2 0 + C22 COS 4 0
' (F1. 1-29)

[Cll+C22- 4C66 ] sin 2 0 cos 2 0 + C12 [sin 40 + cos 4 0] ,

[Cll ÷ C22 - 2C12 - 2C66 ] sin 2 0 cos 2 0 + C66 [sin 4 0 + cos 4 O] ,

[CII- C12- 2C66] sin 0 cos 3 0 + [C12- C22 + 2C66 ] sin 3 0 cos _)

[Cli - C12 - 2C66] sin 3 0 cos 0 + [C12 - C22 + 2C66 ] sin 0 cos 3 0 .

The angle of rotation (0) is about the z-axis and assumed positive in

the counterclockwise direction.
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i. 2 MECHANICS OF LAMINATED COMPOSITES.

Two types of mathematical models [ 1] are normally utilized to predict

the stress-strain response of a constituent lamina of a laminated composite

m mieromodels and macromodeis. The mieromechanics approach to the

problem models the individual lamina as a periodic, or possibly a random,

array of filaments in a matrix. The average stress-strain response of the

lamina is a function of the elastic constants of the fiber and the matrix and

their respective geometries. The macromechanics approach ignores the

fiber-matrix behavior and models the individual lamina as a thin homogeneous

orthotropic medium (sheet) under a state of plane stress.

1.2. 1 MICROMECttANICS.

The strength and structural behavior of fibrous composites are

directly related to the elastic properties of the fiber and matrix, as well as

the micro-geometry of the laminate [ 1]. The field of micromechanics

encompasses the study of the internal stress distribution in the fiber and matrix

as a result of external loading. The objective of any mieromechanies effort is

to predict the intrinsic macroscopic (average) material properties of a

laminate from the material and geometric properties of the constituents and

perhaps provide the basis for understanding failure modes and establishing

failure criteria from the predicted stress states.

With the present state-of-the-art, a mieromeehanies approach to

composites for aerospace application does not give the designer a design tool

whieh can be utilized to design aerospace structures. It is feasible that at
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some time in the future, the aerospace designer will begin his creation at the

fiber and matrix level and will use the analytical tools of micromechanics to

determine his design parameters. However, at present the advanced

composites come to the fabrication stage in a preimpregnated tape form with

the filament spacing and other parameters established. Of course, some of

the predictions resulting from micromechanic analyses were utilized in

establishing a good filament spacing to insure good transverse and shear

properties in the final laminate; however, this represents a limited

application of micromechanics to designs.

I.2. 2 MACROMECHANICS.

With the present state-of-the-art, the macromechanic approach [1] to

the mechanics of filamentary composites is the most usable technique for the

aerospace designer or stress analyst. The elastic constants and stress-strain

response of an individual lamina may be determined experimentally, and these

data may subsequently be used to determine the stress-strain response of a

laminate composed of any orientation of the characterized laminae.

\
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I.2.2.i Lamina Constitutive Relationship.

For a filamentary composite (Fig. FI. 2-I), the constituent laminae

have three mutually perpendicular planes

of elastic symmetry [1]. As discussed

previously, a material with three

mutually perpendicular planes of

symmetry was termed orthotropic;

FIGURE F1.2-1. FILAMENTARY

COMPOSITE WITH THREE

MUTUALLY PERPENDICULAR

PLANES OF SYMMETRY

therefore, the possibility exists to

model the lamina as a homogeneous

orthotropic medium. Since the

thickness of an individuallamina is small relative to its other dimensions, it

may be considered to be in a state of plane stress. The constitutive equation

for the K-th lamina is then given by equation (FI. 1-17) or

(7
t_

(Tp

T

L

K K K
Ctt C12 0

C 12 C22 0

0 0 2C66

£
o{

(F1.2-1)

The lamina stiffness matrix terms were defined in equation (F1. 1-18) and are

rewritten here as

ElL ...
C,, - (i - v,2v_1)

E 2?.

C22- (1 - "12"2,)
(F1. 2-2)



and

P21E11 = v1_E_
c12= (i- v,2v21) (1 - v,2v2,)

C66 = Gi2
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As shown in equation (F1.1-8), the compliance matrix may be determined

by inverting the stiffness matrix. This would result in

E] K

½_ ]

Sll S12 0

= S12

0

$22 0

½S66

K -K
Or

(FI. 2-3)

where

and

1
m

$11 = El I ,

I
$22 --

E22 ,

_v_la = v__
$12 = El I - E22

1

s_e = b-" "

(F1.2-4)

Since the lamina principal axes (c_,_ ) generally do not coincide with

the laminate reference axes (x, y) (Fig. i.2-2), the stresses and strains for

each lamina must be transformed as discussed previously. When this occurs,

the constitutiverelations for each lamina must also be transformed to the

laminate reference axis system. The transformations, as discussed in

paragraph FI. 1.1, are
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a

1¢

\ \
\

FIGURE F1.2-2. GENEllAL LAMINAE ORIENTATION

WITH LAMINATE REFERENCE AXIS
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= [T] (7
Y

T

• xy.
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(F1.2-5)

and

,K
E

Ot

cfi : [T]

-,K
E °

X

Y

.½"Y_

(FI.2-6)

where [T] is defined in equation (FI. i-3) and K denotes the K-th lamina.

Then

. .K . ,K
O" (7

x (_

a = IT] -t
Y aft . (F1.2-7)

T
. xy Ta,a

The transformation matrix, T, may be written in a shortened form as

where

and

IT]

"m 2 n2 2ran

n2 m 2 -2mn

-mn mn m 2 - n 2

m = C08 0

(F1.2-S)

n = sin 0 . _
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Note that the inverse of the T matrix, [T] -1, may be obtained by

substituting for the positive angle 0 a negative angle 0 (refer to Fig. 1.2-2).

Using equations (F1.2-1), (F1.2-6), and (F1.2-7), the lamina

constitutive equation, when transformed to the laminate reference axes, is

%

"rx:

- K

: [T]-' [C'I K tTI i e l

!Yl

The transformed lamina stiffness matrix [C'] is defined as

(FI. 2-9)

[_,]K = IT]- 1 [c,]K [T] =

16

C12 C22 2C26

el6 C26 2C66

(FI. 2-10)

where the terms _.. are given by equation (F1. 1-29). The-C' matrix,
E

which is now fully populated (C16 ¢ C26 ¢ 0), appears to have six elastic

constants which govern the lamina behavior; however, C16 and C26 are not

independent as they are linear combinations of the four basic elastic constants.

In the transformed coordinate system, the C ' matrix is similar in appearance

to the C matrix for a fully anisotropic lamina (C16 ¢ 0 and C26 ¢ 0), and the

lamina is said to be "generally" orthotropic. Therefore, equation (F1.2-9)

is said to be the constitutive equation for a "generally" orthotropic lamina.
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Equation (Ft. 2-I) is referred to as the constitutive equation for a "specially"

orthotropic lamina (CIe = C2s = 0).

For convenience, equation (FI. 1-29) may be written as

and

Clt = (3J1 + J2) + J! cos 2 8 + J4 cos 4 0,

m

C22 = (3J1 +J2) - Jscos 20 +J4cos 40,

C12 = (Jl - J2) - J4 cos 4 0,

m

C66 = (J1 + J2) - J4 cos 4 8,

C16 = _ J3 sin 2 0 + J4 sin 4 0,

m

C26=½Jssin2 e- J4sin4 0

(Fi.2-ii)

where

and

Jl=Jf [Cll + C22 + 2C12] ,

J2 = [c.- clzl ,

J3 =_ [Cl1-C22] ,

(F1.2-12)

J4=_ [C11+C22- 2C_-4Css] .

Note that CII, C_0 CIZ° and Css are composed of a term independent

of the angle of rotation (0) and a term dependent on the angle of rotation.

Therefore, it is evident that there are certain inherent lamina properties

which are only dependent on the material being used.
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1.2. 2.2 Laminate Constitutive Relationship.

From Reference 1, for the formulation of a mathematical model of a

laminate composed of orthotropic laminae, certain assumptions regarding the

interaction between adjacent laminae must be made. Since practical uses of

a laminate will normally dictate that it be thin relative to its other dimensions,

the Kirchhoff-Love hypothesis (stresses perpendicular to the middle surface may

be neglected, and the line seg_ments originally normal to the middle surface

remain straight and normal to the deformed surface and suffer neither extensions

nor contractions) used in thin-plate and shell theory appear reasonable.

Essentially, these assumptions reduce to

E

X

E

Y

Txy

K

Xl X

= _ - Z X

V- Y j
21o i

, 2Xxy

(F1. 2-13)

I
0 0 0

where • , e , and
x y Txy

are the strains at the geometric middle surface

of the laminate, and the X's are the middle surface curvature. The

transformed lamina constitutive equation, similar to equation (F1. 2-9), is

then

] ocy £
x x

[_1K ocr = (

Y I Y

1 orxy Tx

×
x

_z[Cl K × (FI. 2-14)
Y

2×
xy
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C1e C2s CseJ

(Fi. 2-15)

This equation then relates the stress in the K-th lamina, oriented to the

laminate reference axis,to the laminate middle surface strains and curvatures.

On an element of the laminate, the stress resultants and stress couples

are defined as

-A

t/2

N = f o dz
X J X

-t/2

t/2
N = I o dz

Y -t/2J Y

(FI. 2-16)

and

and

t/2

N = [ _ dz

xy -t/J2 xy

t/2
M = _ zo dz

P
X _' X

-t/2

t/2

M = f zodz
Y -t/2 Y

(F1.2-17)

\
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and

t/2

M = ] zT dz

xy -t/2J xy

,f-

These integrals may be evaluated by integrating ov,:r each lamina and summing

the results of each integration. By substituting equation (F1. 2-14) into

equations (F1.2-16) and (F1.2-17),

where

and

N
X

N
Y

N
xy

LAijl =

[Bij ] =

All A12 A1G

A12 A22 A26

Ale) A2_ Ac)6

Bll B12 I31_

B12 B22 B26

Big B26 B6g

" O "
E

X

O

Y

0

7xy

!" 0 °
£

X

O

£

Y

O

Txy

n ]K
[C (hK 1)K=I ij - hK-

n K )
' E [C..] (h2K h2K_ I-2

K = 1 lj

n -- ]K )= -_- E [C.. (hBK- h3K_l
° K=I U

"_Bll

- B12

B16

B12 B16

]322 B26

B26 B66

r

DI_ DI2 DI6

])12 D22 D26

DI_ D26 DG_

X
X

X
Y

2×xy

X
X

Xy

(F1.2-18)

( F1. 2-19)

(F1.2-20)

(F1. 2-21)

(Ft. 2-22)

Refer to Figure F1. 2-3.
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.¥

t

kit
.._J_

FIGURE F1.2-3. LAMINATE ELEMENT

Equations (F1.2-18) and (FI. 2-19) are the constitutive equations for a

laminated composite. They may be written as

I:l I::1I:°J (F1.2-23)

This is the general constitutiveequation for laminated composites and

is mathematically equivalent to the constitutiveequation for a heterogeneous

anisotropic medium. In this general form, the significantpoint is that there

is coupling between extensional (membrane) deformation and bending
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deformation caused by the existence of the B matrix (Fig. F1-2. 4). In other

words, even _.ithin the limits of small deflection theory, forced curvatures

within the laminate induce in-plane loads through

FIGURE F1. 2-4.

COUPLING OF

DEFORI\LATION DUE TO

B MA TtlLX

this type of coupling. This coupling is caused by the

neutral axis and the midplane of the laminate not

being coincident.

With various combinations of laminae,

varying degrees of coupling may be caused. If the

laminate is fabricated symmetric about the midl)lane (balanced), the B matrix

will be identically zero, and the constitutive equation reduces to

and

[N] = [a] [e°] (I.'1 2-24)

[hi] : -[DI [xl (F1.2-25)

These equations are mathematically equivalent to the constitutive equations

of a homogeneous anisotropic material, llcnee, this type of laminate is

referred to as homogeneous anisotropic (Fig. F1.2-5). At this stage the A

and D matrices are fully populated and anisotropie in nature, and a second

type of coupling still exists. For the A matrix the A1G and A26 terms couple

the normal strains and shear stress, or the shear strains and normal stress.
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FIGURE FI. 2-5.

COUPLING EFFECTS IN

A HOMOGENEOUS

ANISOTROPIC LAMINATE

For the D matrix the Dis and D_s terms couple the

normal bending moments and twisting curvatures,

and vice versa. If the laminate is symmetric about

the x-y (laminate) axis (Fig. Fi. 2-6)', this coupling

may be reduced.

When the laminate has equal numbers

of pairs of laminae symmetric about the x-y axis (termed angleply laminate),

\ \ \_\\\
\

\\\
\\\\\

\\\

\\\\
\\\\

8

FIGUR E F 1.2-6.

"4
+8

LAMINATE SYMMETRIC ABOUT THE x-y AXIS

the A matrix is orthotropic in nature (Ale= A26 = 0) (Fig. FI. 2-7). The

D matrix is stillfullypopulated and anisotropic in nature. When the laminate

has equal numbers of pairs of laminae at angles of 0 deg and 90 deg to the
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x-y axis (termed erossply laminate), the D matrix

and the A matrix are orthotropic in nature.
!

,_[_Y_ ._)z' Because of the warpage which will occur

__;_;_ during the fab,ication process when symmetry does
,:r,_"

not exist, the. laminates should be designed

FIGURE F1.2-7.

LAMINATE EXtIIBITING symmetric about the midplane, or nearly so.
ORTHOTI{OPIC

CHARACTERISTICS Since most laminates are symmetric

about the midplane, and because the majority of applications of advanced

composites experience relatively low transverse shear strength, a

reexamination of equation (F1.2-24) is warranted. Equation (F1. 2-24) may

be written as

N1X

N : [A]
y i

_ xyj

when no bending occurs.

yields

i-£

X

E

Y

T
xy

(F1. 2-26)

Dividing both sides by the total laminate thickness

O"

X

(7

Y

i 1
[A]

t li11¢-

3xy

(Ft. 2-27)
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1

t

"All A12 2A16"

!

A 12 A22 2A26

A16 A26 2A66

"E "1

E I

m

= [A]

E X

Cy
(Ft. 2-28)

m

The ¢Ws ore the average laminate stresses, and the A matrix may be defined

as the laminate stiffness matrix. Thus,

i

x

Y
= [A*]

o"
x

(F1.2-29)
Y

T
. xy

where the laminate compliance matrix is

Atl At= ½At_

[A*] = [A] -1 A* * *= 12 A22 ½A26

Ai6 A_ ½A6_

(Ft. 2-30)
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f-

The gross or average(, laminnte elastic moduli may be obtained trom the

laminate compliance matrix. For a balanced angleply laminate,

[A] A12 A22 0 [._] 1__ AI2 A22 0
' t

0 0 A66 0 0 2A66

and

[ A ::-_] =

ai a_i 0

L° ,) ½,\

(F1.2-31)

Then, comparing equation (F1. 2-29) with equation (F1.2-3), the gross

laminate elastic constants are

1
I'; = --

XX :":

1

YY A 22

1
G

xy A _:r.

= _ !xaz

xy A n

'_}x
yx A2 2

(F1.2-32)
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i. 2. 3 EXAMPLE CALCULATIONS.

The example problems which follow demonstrate some of the

computations involved when working with composite materials.

i. 2. 3. I Example Problem I.

Calculate the A, B, and D matrices of the laminate constitutive equation

for a three-ply laminate with the laminae oriented at - 45 deg, 0 deg, and

+45 deg with the laminate axis (see the following sketch). The lamina material

obeys

O" "30. i. 0."

i. 3. 0.

0. 0. l.

E
OL

I

-45 ° ] 0. I in.

0 ° ] 0.21n.

+45°I 0.1 in.

I. Example Problem 1 Laminate.

The [ C] for the - 45-deg lamina and the + 45-deg lamina must be

transformed to the laminate axes. Since the lamina material is homogeneous

orthotropic, the values of the transformed stiffness matrix may be calculated

using equation (FI. 1-29) or equation (FI. 2-11).
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Using equation (F1. 1-29), the C..
1j

for the 45-deg lamina are

terms of equation (F1. 2-157

C-11= 106 [30. cos 4 (-45) + 2(1. + 2.) sin 2 (-45) cos 2 (-457 + 3. sin 4 (-45)]

= 9. 75 x 106

C26= 106 [ (30.-i.-2.7 sin 3 (-45) cos (-45) + (I.-3.+2.7 sin (-457 cos 3 (-45) ]

= -G. 75 × 106

Then,

1106[975777][C] = 7.75 9.75 -6.75

-6.75 -6.75 7.75

Similarly, for the +45-deg lamina

L_](37 = 106
9.75 7.75 6.751

J7.75 9.75 6.75

6.75 6.75 7.75

For the O-deg lamina

[_I(2): [cl= i,)6
30. i. 0. ]

1. 3. 0.0. 0. 1.

From equation (FI. 2-20),

n

A = Z (C..7 (K)
44

l]"J K = i
(hK - hK_i7

0.1 [c..]
D

(1)
+ 0.2 [C..J(2)-- "

1J
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Thus p

All = 10e [9.75x0. I+ 30. x0.2+9.75×0. I] = 7.95×106

A6e = I0617.75x 0. I+I. x0.2+7.75×0. I] = 1.75×106 .

[A] = I0s

7.95 I.75 0. 1

I.75 2.55 0.

0. 0. i.75

From equation (FI. 2-21)

x

n

Bij = _ 2; (_ij)(K) (h2K_h2K_I)
K=I

= 0.015 [(Cij)(3), (_ij) (1) 1

Thus t

Bil = 106×0.015 [9.75- 9.75] = 0

and

B66 = 0.

[B] = I0e

0. O.

O. O.

O. 2025 O. 2025

0. 2025"

0. 2025

0.
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n

Dij = _ Z (_..) (K) (h3K i)
K=I I] - h3K-

O. 00233 [C-..] (1) ](2)+ 0. 00066 [C..
1J 1J

+ 0. 00233 [_..](3)
IJ

Thus,

Dll

D86

: 106 [9.75 × 0. 00233 + 30. × 0.00066 + 9. 75× 0.00233]

O. 06522 × 106

tO _ [7.75× 0.00233 + i. × 0. 000(;6 + 7.75× 0.00233]

0. 03676 × 10 6

[ D] tO _

0. 06522 O. 03675 O.

0. 03676 0.0474 0.

O. 0. O. 03(;76

Combining the results above, the constitutive equation may be written as

xy|

M[M x

MY I

_ xy]

= 106

7. 95 1.75 O.

i. 75 2. 55 0.

O. O.

O. 0.

O. O. O. 2025

1.75 O. 2025 O. 2025

0. 2025' 0.06522 0.03676
I

I

0.2025, 0.03676 0.0474

I

I

O. , O. 0.

0. O.

O. O°

O. 2025 0. 2025

m

0
O. 2025

X

0
E

Y

0

O. Yxy

O. ×
X

0. Xy

0. 03676 2×
_2 xy
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1.2. 3. 2 Example Problem 2.

Calculate the constitutive matrix for a four-ply laminate with laminae

at + 45 deg, - 45 deg, - 45 deg, and + 45 deg and with a total laminate

thickness of 0. 4 in, {see the following sketch). Use, the same lamina material

as in paragraph 1.2. 3. 1.

+ 45" 0. 1 in.

- 45" 0. 1 in.

- 45" 0. 1 in.

+ 45" 0.1 in.

II. Example Problem 2 Laminate.

Since the laminate is symmetric about the midplane and symmetric

about the x-y axis, the constitutiveequation will be in the form of

where

[A]
All A12 0. ]

= Ai2 A22 0.

0. 0. A6s
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and

[D] Dil DI2 Di6= DI2 D22 D26

L DI6 D26 D66

Similar to paragraph 1.2. 3. 1,

[_l (I) [_l (4) 1o6

9.75

7.75

6.75

7.75

9.75

6.75

6.75

6.75

7.75

and

[_] (2) = [_] (3) = 106

_9.75

7.75

6.75

7.75

9.75

-6.75

-6.75

-6:75

7.75

Using equations (F1.2-20) and (F1.2-22)

and

!1.9 3.1 0.

[A] = 1() _; 3.1 3.9 0.

). 0. 3.

[D] = 106

(). 05187

0. 04123

0. 027

0. O4123

0. _51S7

0. 027

0. 027

0. 027

0. 04123

Therefore,



n

N
X

N
Y

N
xy

M
X

M
Y

M
xy

m

= I0e

-3.9

3.1

Oo

3.1 O.

3.9 O.

I 0.05187

e 0.04123

0. 027
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0.04123 0.027

0.05187 O.027
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m

0.027 0.04123

i

O m

E
X

O
E

Y

O

Yxy

X X

Xy

2Xxy

y-,

-,.._j
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1.3 LAMINATE CODING.

In Reference 2 a laminate orientation code was devised for filamentary

composites which provided both a concise reference and a positive identification

of any laminate. As expressed in that reference, the following type of coding

is intended to provide a means of achieving conciseness in engineering

presentations and communications; however, it is neither recommended nor

discouraged that this code be employed on shop drawings since that policy is an

internal one which must be decided by each using organization.

1.3. 1 STANDARD CODE FLEMENTS.

The formulation of the code must be adequate to specify as concisely

as possible (1) the angles of laminae relative to a reference axis (the x-axis),

(2} the number of laminae at each angle, and (3) the exact geometric sequence

of laminae.

The basic laminate code will adhere to the following gaaidelines [2]:

1. Each lamina is denoted by a number representing its orientation

in degrees between its filament direction (refer to Fig. FI. 0-3) and the

x-axis.

2. Individual adjacent laminae are separated by a slash if their

angles are different.

3. The laminae are listed in sequence from one laminate face to the

other, with brackets indicating the beginning and end of the code. The first

lamina should be the most positive lamina in the z direction (refer to Fig.

F1.2-3).



Section FI. 0

1 October 1971

Page 58

4. /Adjacent laminae of the same angle are deonoted by a numerical

subscript.

5. A subscript T to the bracket indicates that the total laminate is

shown.

When adjacent laminae are of the same angle but opposite in sign, the

appropriate use of + or - signs may be employed. Each + or - sign

represents one lamina and supersedes the use of the numerical subscript,

which is used only when the directions are identical. Note that positive angles

are assumed to be counterclockwise.

Several examples are shown demonstrating the basic coding.

! 45
r-----
i 0
m

-60
u

-60
N

3O

+45

-45

-30

+30

0

+45

+45

-45

-45

Code

[ 45/0/-602/30] T

[,45/_30/0/+(452) ] T

_r
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I. 3.2 CODES FOR VARIOUS TYPES OF LAMINATES.

As discussed in previous sections, laminates may be formed of

arbitrarily arranged laminae, but more often the laminae assume standard

arrangements. The more common standard arrangements arc symmetric

(balanced) laminates and sets of laminae.

Similar to the total laminate as shown in paragraph I.3. l, the

symmetric (balanced) code has an S as a subscript, and the coding sequence

starts at the most positive z lamina and stops at the plane of symmetry.

The S indicates that only one-half of the laminate is shown:

Laminate Code

90 190/0_/45] S

0

0

45

45

0

o

i 90

If the symmetric laminate has an odd number of laminae, the code denoting

the center lamina is overlined, indicating that half of the laminate lies on

either side of that lamina:
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Laminate

0
m

45
n

90

45

0
m

Code

10/45/90] S

A repeating sequence of laminae is termed a set. A set is coded in

accordance with the same rules which apply to a single lamina:

Laminate

m

45
u

0

9O

45
u

0

9O

45

0

9O

45

0
m

9O

m

Set

Set

Set

Set

[ (45/0/90)4]T or [45/0/9014T

=

01

901

01

901

Set

Set

Set

Set

[ (45/0/90) 2] S or [45/0/90]
2S
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1.4 COMPUTER PROGRAMS IN COMPOSITE ANALYSIS.

Several computer programs have been made available to MSFC and

support personnel to assist in analyzing composite material elements. These

programs have been I or are currently being) documented in Ileferences 4 and

5. The program names and a brief comment on each are sho_vn in Table

F1.4-1.



TABLE F1.4-1.
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Computer Programs in Composite Analysis

Program Name Comment

CDLAMA

GDLAMT

GREPPA

INTACT

LAMCHK

LAP

LAPI

MMBCK

PANBUCKII

STAB

Yield analysis of composite plates composed of

orthotropic lamina with in-plane loading. -

Yield analysis of composite plates composed of

orthotropic lamina with in-plane loading.

Design composite skin/stringer/frame compre.ssion
panel.

Locates optimum strength envelopes for laminates

under the action of combined loading.

Laminate check - computes margins of safety for

specified 0-deg, 90-deg, + 45-deg boron epoxy

laminates under combined loading.

Analysis of single overlap bonded joints with Metlbond
329 adhesive mechanical behavior.

Analyzes single overlap bonded joints and accepts

arbitrary applied loads and incorporates the B
basis correction factor.

Calculates the buckling loads of radially

inhomogeneous anisotropic, cylindrical shells

wherein the effects of boundary conditions are not
considered.

Panel buckling -- calculates critical buckling loads

and mode for orthotropically layered, rectangular,

anisotropic plates and honeycomb sandwich panels.

Also computes local instability modes of failure for

composite panels.

Stability analysis -- local instability analysis of

orthotropic honeycomb panels, columns, and beams

-- failure-mode analysis for filament rupture,

intercell dimpling, and layer instability.
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F2. 0 STRENGTH OF LAMINATED COMPOSITES.

The strength of laztiaa_ed con_,posites must be related to the individual

lamina [i]. This is because it is easier to determine _here nonlinearity and

degradation begin to occur on a unidirectional test specimen than on some

general laminate test. For this reason the trend in determining the strength

of advanced composites is to establish strength allowables for the orthotropic

lamina and then to utilize analytical methods to predict the yield or the

ultimate strength of the laminate.
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2.i YIELD STRENGTH.

The available yield strength theories for laminated composites are at

best tentativeat this time [2]. Only a minimal amount of test data is

available to substantiate any of the yield theories for advanced composites.

Ifthe yield point is defined as the onset of inelasticaction, itis

apparent that the prediction ofthe yield strength of an orthotropic lamina is a

linear problem. Several yield theories of failure have been hypothesized for

anisotropic materials, of which two will be discussed (the distortionalenergy

theory and the maximum strain theory).

Before the discussion of yield theories, the basic difference between

the yield surfaces for an isotropic and for an orthotropic or anisotropic

material must be explained. For an isotropic material, any biaxial stress

state, crx, Cry, TXy , may be resolved into two principal stresses, _1 and
P

and some angle, 0; therefore, a plot of the principal stresses that cause{Y
2 '
P

yield will give the required yield surface. The result is a two-dimensional

figure with al and a2 as axes. When considering the yield surface for an
P P

orthotropic lamina, the stresses must be referred to the lamina principal axes;

therefore, for biaxial stress states three stress components may appear in the

yield criteria. The resulting yield surface will appear as a three-dimension_

figure with the directions of

(Fig. F2.1-1).

_rl, or2, and T12 as reference coordinates

_REcED|NG PAGE [;LANi( NOT F_ lip
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1"12

FIGURE F2. 1-1. THREE-

DIMENSIONAL YIELD SURFACE FOR

AN ORTHOTROPIC LAMINA
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2. 1.1 DISTORTIONAL ENERGY

THEORY.

Cira, Norris, and Hill

independently developed their

generalizations of the yon Mises

lsotropic distortional energy yield

criterion,

(_1 - _z)2+ (_ _ (_ 2 + (_3 - o'1)_

+ 6 (_121 + rl31 + Tsi 2) : 2or I (F2. 1-1)
0 *

to account for the anisotropy of their

respective problems [3]. Hill was

concerned with the tendency of isotropic

metals to exhibit certain anlsotropic properties when undergoing meted working

involving severe strains. Hill claimed he had a physical interpretation of yon

Mises t "plastic potential," which allowed him to generalize yon Mises' yield

criterion for application to anisotropic metals. The plastic potential or yield

criterion has the form

2f (_iJ) = AI (cT2 - o3) = + A2 (_s - (_I) 2 + A3 (_I - o2) 2 + p..A4T2S=

+ 2._5"/'312 + 2AsT121 = I

(F2. 1-2)



where

Section F2.0

1 October 1971

Page 5

and

2f (a..) = the plastic potential,
1j

2A 1 = (F2)-2 + (F3)-2 _ (FI)-2

2A 2 : (F3)-2+ (F1)-2_ (F2j-2

2A 3 : (F1)-2+ (F2)-2_ (F3)-2

2A 4 = (F23) -2 ,

2A s = (F31)-2 ,

2A 6 = (F12) -2

F 1, F2, and F 3 are determined from either uniaxial tension or compression

tests, and F12 , F23 , and F31 are determined from pure shear tests.

Tsai [2] adapted this criterion as a yield and failure criterion for

laminated composites. The failure criterion for a laminated composite is

based on the strengths of the individual orthotropie lamina referred to the

lamina principal axes since the yield strengths are established experimentally

with reference to these axes. The Hill criterion reduces to

2 2_ -- + T12y%y r %yCrly Cr2y

for an orthotropic material in plane stress. Note that

1 (F2. 1-3)

r
(F2. 1-4)
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Also, and are the tensile or compressive yield strengths in the
aly a2y

and 2 directions for the orthotropic lamina, and TI2 is the shear yield
Y

stress. The yield surface is either an ellipsoid or sphere, depending on r,

when plotted in a three-dimensional space (Fig. F2. 1-2).

2. 1.2 MAXIMUM STRAIN CRITERIA.

The maximum strain yield criteria presented here should not be

confused with the maximum principal strain yield criteria for isotropic

materials [2]. The strain components in the orthotropic lamina must be

referred to the lamina principal axes; therefore, it is possible for three

strain components to appear in the yield criteria.

The maximum strain yield criteria may be developed from equation

(F1.2-3) with the strains equal to the yield strains:

E1
Y

C2y

Y12y

S11 $12 0

S12 $22 0

0 0 S6e

0"1

o-2 . ( F2. 1-5)

T12

Thus, equation (F2.1-5) gives the envelope of stresses which produce the

yield strains in the lamina.

made if r12 = 0 is assumed.

A two-dimensional plot of the equation may be

Then,

and

ely Sll°rl + 8|2(_ 2

(F2. 1-6)

C2y = S|2o-I + $22o'2 ,
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o_/_J2 y

1.0

10
o july

FIGURE F2.1-2. ItlLLYIELD SURFACE
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Si2 Si2
cri

and (F2. 1-7)

$22 $22
_2 •

Equations (F2. 1-7) are the equations of two lines in the _1 - _2 coordinate

system which define yield of an orthotropic lamina. After defining the yield

strengths as

Ely E11
Crly = $II = CZy

and (F2. I-8)

_2y $2 2 _2y E22

equations (F2.1-7) may be put in a form similar to the Hillequation:

and

E1

c2 $12 $12
Cr2y y C2y O'ly

C2y St1 _ly_2y C2y

(F2. 1-9)
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Equations (F2. 1-7) may be plotted on a _1 - _2 set of coordinates since it was

assumed that the shear stress component, T12, was zero. Such a plot might

appear as shown in Fig. F2. 1-3.

(J,

u = (}

i. Ol

FIGURE F2. 1-3. LAMINA YIELD SURFACE
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2. 2 ULTIMATE STRENGTH.

Until recently, attempts to predict the ultimate or rupture load for a

laminate were based on linear theory; that is, the laminate ultimate load was

based upon the assumption that the laminate stress-strain response is linear

to failure or that upon yield of a constituent lamina, some (or all) of the

lamina moduli are reduced to some arbitrarily small value or set equal to

zero. Recently, some computer programs have been written with relatively

simple techniques, and new methods that determine the ultimate stren_,_h of

laminates have been developed. These programs and methods are usually for

specialized laminates, and sufficient test data are not available at this time to

verify their accuracy for general use.
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DEFINITIONOFSYMBOLS

Symbol

b

g

h (r)

r

P

r

%

Rim radius

Gravity constant

Disk thickness at location r

Distance from axis of revolution

PoissonTs ratio

Disk material density

Stress in radial direction;

positive denotes tension

Stress in tangential (hoop)

direction; positive denotes tension

Constant angular velocity, rad/sec

I

Gl. 2-iv "-_
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G1.2 SOLID DISKS.

In this section some of the methods of analyzing rotating circular disks

are presented. The disks rotate about an axis which is perpendicular to the

disk. Because the methods for a final analysis of turbomachinery-type

hardware are quite involved, only methods for preliminary analysis which

assume constant stress across the disk thickness are considered. Since the

methods are preliminary, no modes of failure will be discussed at this time.

The geometry, coordinates, and stresses for a rotating circular disk

are shown in Figure G1.2-1.

FIGURE Gi.2-i. CONFIGURATION OF SOLID CIRCULAR DISK
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i.2.i CONSTANT (UNIFORM) THICKNESS.

For solid circular disks rotating at a constant angular velocity with

uniform thicknesses and temperature fields, the radial and tangential

stresses (Ref. i) are

= _pv=) 13+_) (i-x _)
r 8g

(1)

-\

and

(Dv2) (3+/_)It (l+3#a) x21a0 = 8g - 3+/a (2)

where

r
x = - (3)

b

and

v =be0 . (4)

The maximum stress occurs at the center of the disk (r = 0) and is given by

(ao) max = ( at)max =
IP v2)_3 ÷/a)

• (5)
8g

H the disk is centrally clamped (Fig. Gi.2.i-i), the in-plane stresses

(Ref. 2) become
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f--

/
/

and

where

and

(i -_,) pW2a 2b 2
_l= 8

(3 +,)pJ
h= S

7

r2_ ..._t._ _i,*3p_ r4|
_2 3+/_ J

[((_+.)b_- (1+.) a_]1 + p) b2 + (1 p) a 2

(7)

(8)

(9)

for values of r greater than a.

f

FIGURE G1.2. I-I.

[
CONFIGURATION OF DISK WITH FULLY CLAMPED HUB
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For a solid disk with a uniform thickness and a varying temperature

field, the radial and tangential stresses are calculated using the procedure

given in Paragraph i .3.2 (Disks with a Hole at the Center -- Variable Thickness)

with the modifications described in Paragraph i .2.2.

i.2.2 VARIABLE THICKNESS.

For a solid circular disk rotating at a constant angular velocity with a

varying thickness or a varying temperature field, the radial and tangential

stresses (Ref. 3) are calculated using the procedure given in Paragraph i.3.2

(Disks with a Hole at the Center -- Variable Thickness) with the following

modifications:

i, Station point i should be chosen at 5 percent of the rim radius (b).

2. The initial value in column 33 should be i .0.

3. The stresses at the center of the disk (r = 0) are assumed equal

to the stresses at station point i.

i.2.3. EXAMPLE PROBLEMS FOR ROTATING SOLID CIRCULAR DISKS.

I. Example Problem i.

Find the radial and tangential stresses for the solid circular disk

shown in the following sketch.

I
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16 000 rpm

Q_)
MATERIAL 6AI-4V TITANIUM

ROOM TEMPERATURE

Solution:

E = i6.0 x 106 Ib/in. 2

p = 0. i6 Ib/in.3.

/_= 0.3i3

g = 32.2 ft/sec 2= 386.4 in./sec 2 .

u)= 16 000 rpm = 266.7 r/sec = i675.52/sec .
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From equation (4)

v = bw = t5 × t675.52 = 25 132.8 ln./sec

and

v 2 = 6.3166 × 108 in./sec 2.

Equation (1) becomes

0. t6 x 6.3i66 × 10 s
e = • x 3.3t3 x

r 8x3.864 × 102 ( _552) lb in'2 sec2t - -In. s sec 2 in.

/h- lb/in.'
= t08 3t0 k 225/

The following sketch depicts cr .
r

1(_.31

v

6.0 I0.0 16.0

RADIUt r fin.)

Equation (2) becomes

108 r2
_0 = 310 (1 - 3-_)lb/ln.

The following sketch depicts e 0.
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F"

100.31

64.16e

o I t 0=
5.0 10.0 15.0

RACHUS r (in.)

II. Example Problem 2.

Find the radial and tangential stresses for the solid circular disk shown

in the following sketch.

MATERIAL 6AI-4V TITANIUM

ROOM TEMPERATURE

el------ 16 in.

/
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J

Solution:

E = i6.0xl0 elb/in.2 .

p = 0.i61b/ln. $ .

= 0.3i3 .

g = 386.4 in./sec 2 .

o_ = 16 000 rpm

= t.675.52/sec.

The idealizationfor the finite-dlfference-typeanalysis is given in

the following sketch.

1076.62/m

1 2 _; 4 s

1_ 0.76

6.376---.-D

10.0

12.6

• 16.0 7-

NOTE: DIMENSIONS ARE IN INCHEE.

The computations for the finite-difference-typeanalysis are given in

Table Gi .2.3-i.
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Symbol

a

b

E

g

h (r)

n

r

T

C_

P

ff
r

DEFINITIONOFSYMBOLS

Definition

Inner surface radius

Rim radius

Modulus of elasticity

Gravity constant

Disk thickness at location r.

Node (station) index

Distance from axis of revolution

Temperature (° F)

Coefficient of thermal expansion

Poisson's ratio

Disk material density

Stress in radial direction;

positive denotes tension

Stress in tangential (hoop) direction;

positive denotes tension

Constant angular velocity (rad/sec)

Gi. 3-iv
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Gi.3 DISKS WITH A HOLE AT THE CENTER.

In this section some of the methods of analyzing rotating circular disks

with circular cutouts at the center are presented. The disks rotate about an

axis which is perpendicular to the disk. Because the methods for a final

analysis of turbomarchinery-type hardware are quite involved, only methods

for preliminary analysis which assume constant stress, or linearly varying

stress, across the disk thickness are considered. Since the methods are

preliminary, no modes of failure will be discussed at this time.

The geometry, coordinates, and stresses for a rotating circular disk

are shown in Figure GI.3-i.

i.3.i CONSTANT (UNIFORM) THICKNESS.

For circular disks with a center hole that rotate at a constant

angular velocity with uniform thickness and temperature fields, the radial and

tangential stresses (Ref. 1) are

r 8g (1)

and

whe re

= (P_V2)(3 +_)(1 +y2- (t +3u)x2 + x_- ) (2)_0 8g 3 + ]a

a (3)
2/ b '
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and

FIGURE GI. 3-I.

r

b '

CONFIGURATION OF A CIRCULAR DISK

WITH A CENTER HOLE

(4)

v= boo .

The maximum stresses occur at r = _aab

(or 2) (3+/z) (I-7} 2
(_) =

r 8g
max

and

and are

(_e) = (ov_ (3+/_) Ii+(f-u)'v21
max 4g 3 +/_ "

(5)

(6)

(7)
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The stresses may be determined by the computer pr(_gram documented in

a NASA technical note. 1

For a disk with a uniform thickness and a varying temperature field,

the radial and tangential stresses are calculated using the procedure given in

Paragraph 1.3.2.

1.3.2 VARIABLE THICKNESS.

The stresses in a circular disk with a center hole and a variable

thickness or a variable temperature fieldmay be determined using a finite-

difference method (Ref. 2) . This method considers the point-to-point

variation in thickness, temperature, and material properties. The

computations are easily executed in a tabular format.

An idealizationof the disk is made (Fig. GI.3.2-I) by selecting

stations along the radius. Station i lies on the inner surface, and stationN

lies on the outer (rim) surface.

Intermediate stations should be located at distances of 1, 2, 3, and 5

percent of the rim diameter from the inside boundary and at locations of

thickness, temperature, or material property variations. The radius at each

Byron Foster and Jerrell Thomas: Automated Shell Theory for Rotating

Structures (ASTROS). NASA TN-D-, Marshall Space Flight Center, to be

published.
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1 2 3 ..- N

FIGURE Gi.3.2-i. IDEALIZATION OF DISK FOR

FINITE-DIFFERENCE ANALYSIS

station is entered in column i (Table Gi.3.2-i). In column 2 the idealized

thickness is entered. Ifa sharp discontinuity in thickness occurs, such as an

abrupt flange, the thickness should be faired in the disk contour, and the

faired disk used in determining the thickness. The mass density (corrected

ifin a faired section) multiplied by the square of the rotational speed is entered

in column 3. 1_oisson's ratio and the modulus of elasticityare entered in

columns 4 and 5, respectively. The coefficientof thermal expansion, which

must be an average value applicable to the range between the temperature

actually existing and the temperatures at which there is no thermal stress, is

entered in column 6. The difference between the actual temperature and the

temperature at which there is no thermal stress is entered in column 7.

The manipulations required in columns 8 through 34 are shown in the
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respective columns. Columns 33 and 34 are calculated simultaneously, with

column 33 having an initial value of 0.000 and column 34 having an initial value

of 1.000. Columns 35 and 36 are also calculated simultaneously, but each has

an initial-value of 0.000.

In column 37, the term _ denotes the blade loading at the rim and
r,b

is obtained by dividing the total centrifugal force at the roots of the blades by

the total rim peripheral area.

The radial stress, _r' at each station is calculated in column 38. The

tangential stress, cre, at each station is calculated in column 39.

In using the finite-difference method, the accuracy of the results

increases as the number of station points increases. The stresses may also

be determined by the computer program already cited. _

i.3.3 EXAMPLE PROBLEMS FOR ROTATING CIRCULAR DISKS

WITH CENTER HOLES

I. Example Problem i.

Find the radial and tangential stresses for the following circular disk:

2. Ibid.
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Solution:

MATERIAL 6AI-4V TITANIUM

ROOM TEMPERATURE

0.26 in.

E = i6.0× 106 psi,

p = 0.i6 Ib/in. 3,

= 0.313,

g = 386.4 in./sec 2,

w = 16 000 rpm = 1675.52/sec,

2
T - 15 - 0.t333,

and

v = 15 × i675.52 in./sec = 25 132.8 in./see.

v2= 6.3167 × 108 in2/sec2 .
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Equation (I) becomes

( 0.16x 6.3167x 10s)(3.0 + 0.313) (I

_y =

r 2 4. 005
+ O. 1333 z - 225 - r-T--/

r 3091.2

= 1.0832x 10 s (1.0178-0,00444r2-_ "Q_)

The following sketch depicts a .
r

psi.

psi

2.6 5.0 7.5 10.0 12.5 15.0

RADIUS r (in.)

Equation (2) becomes

a 0= t.0832 x 105. /l +0.13332-
I + 0.939_

(3 + 0.313) 225
psi.

/

= 1.0832 x 105 _1.0t78-0.00444 r2
I

The following sketch depicts a0 .

4. 005
psi.
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216.64

162.48

108.32

54.16

2.5 5.0 7.5 10.0 12.5 15.0

RADIUS r (in.)

The maximum stress occurs at

r = 5.4772 in.

The stresses at that position are

= 1.0832× 0.7511 × l0 s
r

= 0.8136x 105 psi

and

= 1.0832x 1.0733 × 105

= i.1626xi05 psi.

psi

psi
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If. Example Problem 2.

Find the radial and tangentialstresses for the following circular disk.

Solution:

E=

la_w

0.25 in.

i6.0 x i06 psi.

p = O.i61b/in.S

/_= 0.313.

g = 386.4 in./secz.

co= 16 000 rprn = 1675.52/sec.
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The idealization for the finite-difference-type analysis is given in the

following sketch.

123 6 8 9 b

[' ..... ' I

lip
_--2.3--_ ii
•-- 2.45_ I
el.---.- 2.75

" 5.0
: 5.5

10.0
i-" 12.5
_-" 15.0

NOTE: DiMENSiONS ARE iN iNCHES

The computations for the finite-difference-type analysis are given in

Table G1,3.3-i.
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.Symbol

c (x)

C.D.F.

Coy

n
C

r

D.F.

df

Exp X

. _fF I!

f

k

kp

LIBT OF SYMBOLS COMMONLY USED IN STATISTICS

Definition

Coefficient of variation =
M(x)

Cumulative distribution function

Covariance

(n - r) _. r:

Degrees of freedom

Distribution function/degrees of freedom

K
e

F r_Uo or variance ratio

(N-l) Degrees of freedom; fraction of parts

sampled; frequency

A standardized variable expressing the dispersion

about the mean In terms of o

A constant for a specified probability level which

correlates population density with standard deviation;

sometimes called a standardized variable, applies

to normal distributions

Composite probability factor; a standardized

variable relating P, 7, and n to some limiting

value of the variable, applied to normal distributions

ill

[2l

[2]

[21

[2J

[21

[21

[2]

[3]

[3]

[3]

Hi -vt



f

M.G,F.

Me

m

N

N
@

N 1

Npy

lq
g

I

N
U

N 4

_4

LIST OF SYMBOLS COMMONLY USED IN STATISTICS (Continued)

Defin[ lion

The mean of a stochastic variable x

Moment generating function

Mode

Population mean

Sample size [ 2] ; number of loading cycles to

failure [ 3]

An arbitrary lifetime to which fatigue test data

are to be extrapolated

Same relationship to N as x l has to x

Lower limiting life above which any test value

can be expected to fall with a probability of P

and a confidence of ,/

Arithmetic mean of test sample lives

Arithmetic mean lifo that could be expected if

, an infinite number of samples could be tested

Number of loading cycles at which weakest of

four specimens fails

Arithmetic mean of least-of-four test sample

lives

[ll

[2]

[21

[ 4]

[3]

L3]

[31

[31

[3]

[3l

[3l

Hi -vii



LIST OF SYMBOLSCOMMONLYUSEDIN STATISTICS (Cofitinued)

Symbol

n

n t.

n 4

(;)
P

P (x)

P4

R. M.S.,

r

S

S
a

SD

S
e

Definition

Number of independent single test specimens

Factorial n = i x 2 × ... x (n-I)xn

Number of least-of-four test points

(:) n'.C = (n-r) 1.r'.

Probability; the percent of a group of specimens

expected to fallwithin a certain range

Probability of an event x occurring

Probability of four consecutive testvalues

exceeding some specified limiting value

Root mean square

Correlation coefficient

Loading stress level at which failure occurs at

some number of cycles (N) in fatiguework

A value of stress on the estimated average

S-N curve corresponding to some arbitrary test

point life,N.
l

Standard deviation of a sample

A value of stress on the estimated average

S-N curve ccrresponding to the lifetime (Ne) to

which fatiguedata are to be extrapolated

[3]

[21

[3]

[2]

[3]

[2]

[3]

[2]

[2]

[3]

[3l

[2]

[31

Hi-viii



I,[S'I'()F SYMB()[,S COMMONLY USEI) IN STATISTICS {Continued)

S3:ml)ol 1)c/'i n t tl on

S.

1
An at'l)itral'y value of stt'ess occul'J'ing in a

l)a.t'tictflat • pt'oblen_ at lifetime N.
l

S.

112

A derived stress value at lifetime (N)
(2

COl't'esl)oll([ing to an ol)sct'vcd stress va.luo

S. at lifetime N.
1 1

S
S

8 2

U

Stan(lavd (2vvov of the stan(lat'd deviation

Va_'iance ()f :t samp[(2

Stu(lent's "t" statistic

Stanclar(li ze(I v:u'iable
x -

o

V

W

X

£

X°

1

x
P

Xpy

Coeftici(2nt of variation

Often used for l"ange

A random statistical variable

Arithmetic mean of x-values vcgav(lless of the

numl)er of values involved

Any arbitrary value o[ x oc,curl'ing in a sl)ecifi(2d

17roble m

A variable expressed as a function of P and o-

A limiting value of x dependent on p, Y , n, and _:

[:;1

[:_]

[2]

tel

[2]

[1]

[2]

[2]

[a]

[n]

[.-,]

[ ._,1

Hl-ix



LIST OF SYMBOLS COMMONLY USED IN STA TIS'FlCS (Continued)

Symbol

X

S

U

Y

,f

Ot

ot
Pi

ot
1,

1,

¢y

Defini tion

Arithmetic mean of values from a limited sample size

Arithmetic mean that could be expected from an

infinite number of specimens

Frequency of occurrence of test points in given

intervals of the variable _Ax!

Percentage frequency; percentage of total

number of test points in a given variable increment

t_ risk, Type I error

Limiting value of standardized variable for a

given probability and an unknown distribution

Limiting value of standardized variation of the

mean for a given confidence and an unknown

distribution

B risk, Type II error; also equals I1 - a)

Confidence; the percentage of sample mean

values falling within a given range of the universe mean

[3]; associated with the tolerance limit tables [2]

Population mean

Mean of a stochastic variable x = M{x}

Standard deviation of variable x about ,_

13]

[31

131

131

tin1

131

13l

12]

[21

[11

[31

Hi-x



LIST OF SYMBOLS COMMONLY USED IN STATISTICS (Concluded)

Symbol

o
c

_4

u
S

Lr
U

O
U 4

(3_

X

(5 4

o2

)(2

Defini tion

Standard deviation of a limited number of

derived stress points about S
e

Standard error of least-of-four mean (N4)

Standard error of the standard deviation [2] ;

standard deviation computed from a limited

sample size [3]

Unbiased standard deviation of the universe;

corresponds to an infinite sample size

Standard deviation of universe of least-of-

four points

Standard deviation of x , about x ; sometimes
S U

called the standard errol of the mean

Standard deviation of least-of-four test

failure points

Variance of a population

Chi-square

[31

[3]

[31

tel

[2J

Hi-xi



Alternative IIypothcsis

AOQL (Average Outgoing

Quality Limit)

A Posteriori Probability

A Priori Probability

LIST OF DEFINITIONS COMMON IN t'SI':I) IN: STATISTI('S

I)cfinition

Possible true alternate answer to the hyl)othe-

sis I×,ing statistically tested. The larger the

sample size, the greater the I)ossibility of

rejecting a hypothesis when an alternate answe_

is true [2J.

UPl)er limit on outgoing quality th:tt may bc

CXl)ect(:d in the long run, when all rejected

lots are subjected to 100 percent insl)ection,

with all defective articles removed and

replaced by good articles [ 2].

If in a number of trials an event has occurred

N times and failed M times, the probability

N
of its occurring in the next trial is

M + N

[2].

Let N bc the number of exhaustive, mutually

exclusive, and equally likely cases of an event

under a given set of conditions. If M of these

cases are known as the event A, then the

mathematical, or a priori probability of event

Hi -xii
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LIST OF DEFINITIONS COMMONLY USED IN STATISTICS (Continued)

AQL (Acceptable Quality

Level

Biased Sample

Class Interval

Confidence Intervals

Definitions

A occurring under the given set of conditions

is M/N [2].

Percentage of defective items in an inspection

lot that a sampling plan will accept with (in

the usual case) an associated _ Risk of 0.05

[2].

If some individuals in the Universe are more

likelyto be chosen than others, the sample

is said to be biased.

When the number of observations is large,

the range of the data can be broken into a

limited number of segments of equal length.

The segments are lmown as class intervals or

cells [ 2] .

This provides a method of stating how close an

estimate is to the true value [ 2]. It is the

interval associated with a prescribed confi-

dence coefficient. The confidence coefficient

is the proportion of samples of size n for

Hl-xiii



LIST OF DEFINITIONS COMMONLY USED IN STATISTICS (Co_Unued)

Continuous Distribution

Cumulative Distribution

Curve Fitting

Degree of Freedom

Discrete Distribution

Definition

which intervals computed by the prescribed

metht)ds may be expected to bracket a value [ 4].

One in whtch tim only limit to si_._ tatervsls

measured is the oensltivity of the measuring

apparatus [ 2].

Indicates by its magnitude the proportion of

the Univeroe (or sample) to the Left of that.

point [Zl.

Method utilizing computed statistics as spprox*

imate parameters for theoretical distributions

[21.

Number of free variables (unrestricted and

independent in the sense of random sampling)

entering into a statistic. In the case of a

sample of size N, from a UniverN, there

are N°! degrees of freedom [ 2].

If a random variable has only a finite amber

of possible values, then it will form a discretB

distribution [ 2].

H i-xiv
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LIST OF DEFINITIONS COMMONLY USED IN STATISTICS (Continued)

Definition

Double Sampling Involves the possibility of putting off the

disposition of an inspection lot until a second

test sample is taken. A lot will be accepted

on the basis of the first sample if the results

are very good or will be rejected if the results

are very poor. If the results from the first

sample are of a borderline nature (between

,: good and poor}, a second sample must be

taken.

On the basis of the results of the combined

first and second samples, the lot is either

accepted or rejected [2].

Error In statistics there are two types of error. If

we reject the null hypothesis when it is true,

then we make an Error of the First Kind. If

we fail to reject a null hypothesis when it is

false, then we make an Error of the Second

Kind [ 4].

"F" Distribution Sampling distribution of the variance [ 2].

H l -xv



LIST OF DEFINITIDNB COMMONLY USED IN STATISTICS (Continued)

Definition

Frequency Table _ Tabulation of the number of observations that

Histogram

Hypothesis '

Inference

Latin Square

Least Squares

occur in each class interval of a histogram [ 2].

Block representation of data arranged to show the

dispersion of the data [ 2].

Statement formulated in such a way that it may be

refuted through statistics.

Based on the theory of probability, statistical

inference is that mathematical framework which

supplies a technique for description, prediction,

and rational design decisions despite the compli-

cations which arise because of variation [ 2].

"Analysis of Variance" ordering technique of

observed values in an experiment, allowing control

of several sources of variability [ 2].

Method based upon the principle that the best value

of a quantity that can be deduced from a set of

measurements or observations is that for which

the sum of the squares of the deviations of the

observations (from it) is a minimum [ 2].

\

Ht-xvi



r

Lot

LTPD (Lot Tolerance

Percent Defective)

Mean

Mean Deviation

Median

Midrange

Mode

LIST OF I)EFINITIONS COMMONLY USED IN STATISTICS (Continued)

Definition

Group of manufactured articles which are essentially

alike, such as 1 day's production [2].

Usually refers to the incoming quality, above which

there is a small chance that a lot will be accepted.

It is usually taken with a consumer's l"isk of

= 0.1012].

The arithmetic average of a gl'ouv of observations

[2]. It is the location parameter o[ ,tnormal

distributionlocating the "centel"of _1'avity"of the

distribution[4].

Arithmetic mean of the absolute distance of each

observation from tilemean [2].

Middle value of a group of obscl'vations. In the case

of an even numbered set of obsel'vations, itis tile

aver_tge of the middle pair [2].

Arithmetic average of the extreme values of a set

of observations [2].

Most frequent value of a set of obserwltions [2].
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LIST OF DFFINITIONS COMMONIN USI,:D IN STATISTICS (Continued)

Definition

Moments In statistics, moments arc analogous to moments

' in mechanics in several ways. Just as some

Nonparametrte Statistics

Normal (GaussianJ

Curve

ix_dies are completely characterized by their

moments, some probability distributions are

completely characterized by their moments. The

first moment about the origin is equivalent to the

expected value (the mean) of the random variable.

The first moment is also the center of gravity

of the probability mass. The second moment

above the mean is also known as the moment of

inertia and variance [2].

Statistical techniques developed to test hypotheses

without the assumption of normality, or any other

assumption, other than that of continuity of a

distribution [ 2].

Bell-shaped curve from the Gaussian probability

distribution. It is a two parameter distribution

requiring the mean and the variance for its

description [ 2].
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OC Curves (Operating

Characteristics Cmwes)

Population

LIST OF DEFINITIONS COMMONLY USED IN STATISTICS (Continued)

Definition

Normal Probability Paper Special graph paper which reduces the

cumtflativenormal curve to a straight line.

The log-normal probability paper does the

same with log values as the normal paper

does with linear values [2].

Give the chance of accepting a hypothesis [2].

Proof

Random Digits

Randomization

Any set of individuals (or objects) having

some common observable characteristic. It

is synonymous with Universe [2].

Differs from mathematical proof as itdoes

not fallwithin the framework mathematics,

but results from experimentation, with an

accompanying probability statement [2].

Digits picked in such a way that each digithas

an equal chance of occurring at any time [2].

Assignment of a sequence of operations to a

test program by the use of some technique,

such as random tables, to avoid bias in the

test results [2].

Hi -xix



LIST OF DEFINITIONS COMMONLY USEI) IN STATISTICS (Continued)

Random Sample

Range

Root Mean Square

Sample

Sampling Distribution

Sequential Samplings

Significance Level

Definition

Picked in such a way that all members of

the population have an equal chance of

sclcctioa [ 2].

Absolut_ difference Ix_tween the extreme

values of a set of observations [2].

Square root of the average of the sum of the

squares of a set of observations [ 2].

X.
• l

R MS :

Set of observations chosen from a population

[2].

Distribution of a statistic in the set of all

samples of a specific size from a given

Universe [2].

Acceptance plans permitting from three, up

to an unlimited number of samples [ 2].

This expresses our reluctance to give up

or "reject" the null hypothesis and is given

by the magnitude of the _ Risk. The

Hi-xx
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LIST OF DEFINITIONS COMMONLY USED IN STATISTICS (Continued)

Single Samphng

Standard Deviation

Statistic

Stochastic Variable

"t"Distribution

Tolerance Limits

Unbiased Estimate

Definition

smaller the magnitude of significance the less

we are willing to reject the null hypothesis [ 4].

When the decision as to the disposition of an

inspection lot is always made on the evidence

of only one sample, the acceptance plan is

described as a single sampling plan [ 2].

Positive square root of the variance [ 2].

Estimation of a population parameter, computed

entirely from a sample [ 2].

In general, any variable which may have a

probability function is a chance or stochastic

variable, even though the frequency function

is not knmvn [2].

Sampling distribution of the mean [ 2].

Limits such that a certain portion of the

population shall lie within or above them with

a specified probability [ 2].

Estimate o[ a parameter which has been

corrected l or sample size effects and is

equivalent to the total population parameter [ 3].

H i-xxi



lIST OF DEFINITIONS COMMONLY USED IN STATISTICS (Concluded)

Universe

Variables Sampling

Variance

a Error

/_ Error

Definition

Comprised of any set of individualshaving

some common observable characteristic [2].

When a record is made of an actual measured

quality characteristic, such as a dimension

expressed in thousandths of an inch, itis

known as variables sampling [2].

Sum of the squares of the deviations from the

mean divided by the number of observations

less than one [2].

Risk of rejecting a true hypothesis. This is

also known as an a Risk, Consumer's Risk,

or Type I [2].

Risk of accepting a false hypothesis. This

is also known as #3 risk, Prodttcerts

Risk, or Type IIError [2]. Equals

(1 -a) .

HI -xxii



f Section II1

I May J 972

Ill STA TIST] CA L ME TItODS

f-
1.1 1NTI/OI)UC TION

"One of the main objectives of statistics is to give a mathematical

description of observed data in such a maturer that the observed phenomena

and the method of observation are characterized by a few numbers" [ 1].

\Vhile a single observation cannot be reproduced, experience has shown that

a set of obscrwltions, resulting from the repetition of some process, produces

certain characteristic features which can be reproduced; and it is these

characteristic fetttures that statistics attempt to describe.

Various methods of describing characteristic features h_tve been

developed, and one method includes the use of a histogram. Consider a

hypothetical set of recorded test values as being laid off in ascending order

of magnitude along a horizontal axis to form the abscissa of a graph. Now

let the range of values be divided into equal intervals and a count m_tde of the

number of test points in each interval. The number of points per interval is

known as the frequency. If the various frequencies are now laid eli on a

o
vertical scale, a histogTam is produced (Fig. ltl-1). From the histogram

a h'equency distribution curve may be obtained by fairing a smooth line

through the shape of the histogram (Fig. tI1-2). Several frequency distribution

curves (Normal, ling-Normal, )¢_, "t", Weibuli) have been est:dflished,

but only two (Normal and Log-Normal) will be discussed here.
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The statistical melhod_ discussed will be limited to those methods

necessary for evaluating material, fatigue, and fracture mechanics data. It

has been found that material data obey normal dJ:_tribution and that fatigue [ 31

and fracture [ 5] data obey log-normal distributions.
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1.2 ,_II':TII()I)S FOIl _II.:A,S['I_IN(; t_I.:III.'()IIMANCI.; ()I," ,k _IA'I'I,]IIL\I,

1.2.1 Normal I>rol)ability Curve

1.2.1.1 Prol)ovties

The nornutl, or (;aussi:m, curve is a t\vo-lmr:tmctcv curve (l,'i_,. I11-32.

It is (IoI'incd by tho mean \\hich h)czttcs the curxc anti the <lcxi:ttion \vhich

defines the sln'cad of the curve.

one. The relation of the mean

significance level (o:)

The at'ca under the cttJ'vc is :t[\v:tyb equal to

(p) , the stan(t',tL'd <lcviation (tr) , ;in(I the

is shown in Fig. 111-4.

VARIATION OF

o o I I
-3o -2o -o o 20 30

FIGURE lIl-:l. NOIIMAI_ (GAUSSIAN) I)ISTI{II'I;TI()N CUIIVI.].

It

VARIATION OF _ I_ STANDARD ERROR OF THE MEAN

POPU LAT ION _ _<k-%-x_--,_ _

._"_'_._'x._._"_'__'_'_. / V ARIATION OF THE

EVIATION

I t I I I I I 4

-3o -20 -o o 20 7
2.5 PERCENT OF AREA FOR a = 0.05

2.5 PERCENT OF AREA FOR o_,, 0.05

LEVEL OF SIGNIFICANCE a- 0.05

FIGURE Itl-4. PAIC\3[ETI.:I{S AND t)I.:III.'C)IIMANCI.: GUII)I.:%

FOIl NOII_L\ l. I)ISTI'dI'UTION.
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1.2.1.2 Estimate of Average Performance

The most common and ordinarily the Imst single estimate of the 1)o;,:- -

lation mean, m , is simply tile arithmetic mean of the measurements.

n

nl i=_l xi "
m _ x = -

1.2.1.3 E_mmple Problem 1

Determine the mean value of the ultimate streng'th of product "A"

havhlg the test results in Table H 1-1 [ 3].

1

n

Table HI-1. Ultimate Strength of Product "A"

Test Specimen

1

2

3

4

5

6

7

8

9

10

Ultimate Strength

x. (lb)
t

578

572

570

568

572

570

570

572

596

584

n = 10 _ x i = 5752
2

n

V
X° _"

l

1
.---: (5752) = 575.2 lb = t'tlean value
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level. Confidence levels y commonly used are 99 percent and 95 percent

which correspond to a = 0.01 and c_ = 0.05.

1.2.1.6 Example Problem 2

Using the data in Table Hi-i, what is the two-sided 100 (1 - c_)

percent confidence interval for the true mean m of the total population [ 4] ?

1.2.1.4 Estimate of Standard Deviation

The estimate of the standard deviation is usually taken as the square

root of the best unbiased estimate of variance [ 4].

x. - x i
i l

a _ s = (2)
n(n - 1)

1.2.1.5 Confidence Interval Estimate

When we take a sample from a lot or a population, the sample average

will seldom be exactly the same as the lot or population average. We do hope

that it is fairly close, and we would like to state an interval which we are

confident will bracket the lot mean. If our intervals included the true average

95 percent of the time, we would be operating at a 95 percent confidence

level, and our intervals would be called 95 percent confidence intervals. In

general, if in the long run we expect 100 (1 - a) percent of our intervals to

contain the true value, we are operating at the 100 (1 - a) percent confidence



Choose desired confidence level,

Compute X

Compute s from Eq. (2)

Look up t = t forn- 1
ot

2

degrees of freedom in Table HI-2

S

Compute Xu = X + t

S

Compute x L = X - t _nn

Conclude: The interval x L to x u

Let i 0.95

Section H i

i May 1972

Page 6

= 0.05

X = 575.2 lb

S

t =

8.24

t for 9 deg of freedom
O. 975

= 2.262

x = 575.2 +
u JT6

= 581.1 Ib

x L -- 575.2 -

= 569.3 Ib

isa i00 (I - a)

2.262 (8.24)

2.262 (8.24)

percent confidence

interval for the population mean; i.e., we may assert with 95 percent confi-

dence that the population mean is between 569.3 lb and 581.1 lb.

t. 2. t. 7 Example Problem 3

Using the data in Table Hi-t, what is a one-sided 100 (1 - _)

percent confidence interval for the true population mean [ 4] ?

Choose desired confidence level,

Compute X

S

Let 1 - _ = 0.99

= 0.0t

= 575.7 lb

s = 8.24



r

df

6

7

9

10

11

6O 1

oo

O. 325

0.289

0.277

0.271

0.267

0.265

0.263

0.262

0.261

0.260

O. 260

0.259

0.259

0.258

0.258

0.258

0.257

0.257

0.257

0.257

0.257

0.256

0.256

O. 256

0.256

0.256

0. 256

0.256

0.256

0. 256

0.255

0.254

0.254

0.253

OF POOR QUi,LiCV

Table II1-2.

to.7o

[).727

0.617

0.584

0. 569

0.559

0. 553

0.549

0.546

0.5,1:3

0.542

0.5t0

0.539

0.538

0,537

0. 536

0. 535

0.534

0.5:34

O. 53:3

O. 5:33

0.532

0.532

0.532

0.531

0.5:31

0.531

0.5:31

0. 530

0.530

0.530

0.529

0.527

0.526

0.524

Percentiles of tile "t" Distributiol_

to. 80

1. 376

1.061

0.978

0.941

0.920

.906

.8!)6

• a89

._3

.s79

. S76

.873

.8 70

.868

.866

0.865

0. 863

0.862

0.861

0. 860

0.

O.

O.

O.

O.

859

858

858

857

856

0.856

0.855

0.855

0.854

O.854

0.851

0.848

0.845

0.842

tO. 90

3. 078

1.88(;

1.638

l. 533

1.476

1. 440

1.415

1.397

l .:;_3

l. ;372

1.363

1.356

1. 350

1. 345

1.3t l

1. 337

1. 333

1. 330

1.328

1.325

1. 323

i .321

1.319

1. 318

1. 316

1.315

1.314

1.313

1.311

1.310

1.303

1.296

1.289

1.282

to. 95

6.314

2.920

2. 353

2. 132

2.015

l .943

1. 895

1. ,q60

1 .,_3:1

1.812

1.79(;

1. 782

1.771

1.761

1. 753

1. 746

1. 740

1.734

1. 729

1. 725

1.721

1.717

1.714

1.711

1. 708

1. 706

1. 703

i .701

1.699

1.697

1.6_4

1.671

1.658

1.645

:'.

975

12.706

4 .303

3.182

2. 776

2.571

2.447

2. 365

2. 306

2. 262

2.228

2.201

2. 179

2. 160

2.145

2. 131

2. 120

2. 110

2.101

2. 093

2.0 $6

2 .O80

2.0 7,t

2. O69

2.064

2. O60

2.056

2.052

2.048

2.045

2.042

2.021

2.000

1.980

1.690

to.99

31.821

6.965

4.541

3.747

3. 365

3.t43

2.998

2. 896

2._21

2. 764

2.718

2.681

2.650

2.624

2.602

2. 583

2. 567

2.552

2. 539

2.528

2.518

2. 508

2.50O

2.492

2.485

2.479

2.473

2.467

2.462

2.457

2.423

2. 390

2.358

2. 326
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tO.99.5

63.657

9.925

5.841

4.604

4.032

3. 707

3.499

3. :355

3.250

3. 169

3. 106

3.055

3.012

2. 977

2.947

2.921

2. 898

2 .S78

2. U61

2.845

2.831

2.819

2.807

2.797

2.787

2. 779

2.771

2. 763

2. 756

2.750

2.704

2.660 }

2.617 1



Look up t = t I . a for n - I

deg of freedom in Table Hi-2

Compute x L = 2 - t 4n
._ 'i_ "

rcompute u = x + t

_.99

Section Hi
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Page 8

for 9 deg of freedom

= 2.82!

!

x L = 575.7 -

= 568.4 lb

Conclude: We are i00 (! - a) percent confident that the population mean

!

is greater than x L ; i.e., we may assert with 99 percent confidence that the

population mean is greater than 568.4 lb.

i. 2. I. 8 Estimating Variability Example Problem

We have estimated the standard deviation; and, in a manner similar

to determining the confidence interval for the mean, we may determine a

confidence interval for the deviation which is termed the variability. Using

the data in Table Hi-l, determine an interval which brackets the true value

of the standard deviation [ 4].

Choose the desired confidence level,

I - at

Compute s

_Lookup B u and B L for n - 1

deg of freedom in Table HI-3

Let 1 - eL =

s = 8.24

0.95

0.05
I

for 9 deg of freedom

B L = 0.6657

B = t.746
U

k

\
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Factors for Computing Two-sided Confidence Limits for

Degrees a- 0.05 _ 0.0t _- 0.00i

of

Freedom

df BU BL BU BL BU BL

0.3576 86.31 0. 29691

2

3

4

5

6

7

8

9

io

tl

12

13

14

15

10

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

17.79

4. H59

3. i83

2.567

2.248

2,052

1.91S

I.X20

I. 746

I, 686

1.638

1,598

1.5!; 4

I •534

t. 5([9

t. 486

1.466

_.448

1 • 432

1.4t7

I. 404

1,391

I. 3 _0

1,370

1. 360

t.351

1.343

1. 335

1.327

1.321

1.314

t. 308

1.302

1 • 296

t,29t

I • 286

1.281

i•277

I•272

i•268

1.2[;4

I • 260

1.257

1,253

1.249

I. 246

l. 243

1 • 240

I. 237

1.234

0.45_1

0.5178

0 •5590

0,5899

0.6143

0.6344

0.6513

0.6657

0.6784

0.6896

0.6995

0.7084

0.7166

0.7240

0.7308

0.7372

0.7430

0.74A4

0.7535

0.7582

0.7627

0.7660

0.7709

0.7747

0.7703

0.7817

0.7849

0,7880

0.7909

0.7937

0.79_4

0.7990

0.8015

0.8039

0.8P_62

0.8085

0.8106

0.q126

0.8146

0.8166

0.8{84

0.8202

0.8220

0.8237

0.8253

0.8269

0.82_5

0._300

0.8314

10.70

5.449

3. X!}2

3. 175

2.764

2.49H

2.311

2.173

2.0_5

1.98O

I, 9O0

1.851

1.8[11

1• 77, 8

1.721

1.6X8

1.115½

I .li32

I • 609

1. 587

I. 56fl

l. 550

I. 533

1.518

!. 504

1.491

1.479

1.467

1.457

1.447

1.437

1,428

1,420

1.412

1. 404

1. 397

1 • 300

1 • 383

|..177

1,371

|.3C;3

1.360

1. 355

1.349

1.345

I • 340

1. 335

1.331

1. 327

0.3879

0.4453

0.48_5

0.51X2

i).5437

0.5650

0.5830

0.5987

0.6125

0.6248

0.6358

0.6458

0.6540

0.6632

0.6710

0.6781

0.6848

0,6909

6.(1968

0.7022

0.7674

0.7122

0.7169

0.7212

O.7253

0.7293

0.7331

0.7_17

0.7401

0.7434

0.7467

0.7497

0.7526

0.7554

0.7582

0.760X

0.7633

0.7658

0.7681

0.7705

0.7727

0.774_

0.7769

0.7789

0.7809

0.7_28

0.7X47

O. 7064

0.7882

844.4

33.29

11.65

6.938

5.085

4.128

3.551

3.167

2.804

2.680

2.530

2.402

2,298

2.2|0

2.136

2.073

2,017

1.968

1.925

1.8_6

t.851

1.820

1.791

1.765

1.741

1.719

1.89_

1,670

1.861

1.645

1.629

1.615

1.601

1.5X8

1.576

1.564

1.553

1.543

1.533

1.523

1.515

1.506

1.498

1.490

1.482

1.475

1.468

1.462

1.455

1.449

II. 2481_

0.3291

0.3_24

0.4218

11.4fi29

0.47_4

o. 50O[)

6.51_

6.5:14_

6.5492

6.562|

0.5738

0.5845

O. 5042

0.6032

0.6116

0.6266

0,6333

_1.6307

0.6437

0.6514

0.8566

0.6619

1'.8668

0.6713

(1.675_

0. 6800

0.6841

0.8917

0.6953

0.69_7

o. 7020

0.7652

o. 7083

0 •7113

0.7141

O. 7169

0.7107

0.7223

O. 7248

0.7273

0.7207

O. 7320

0.7342

0 • "_364

0.7386

O. 7407

0.7427
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DII_ a = 0.05 • - 0.01 a - 0.911

of

Freedom

_d BU II L B U B L B U BL

51

53

53

54

50

M

37

M

50

00

01

0|

113

114

85

64

01'

08

80

I0

71

79

73

74

79

?6

17

78

79

8O

81

82

83

84

05

38

57

91

N

O0

111

N

03

N

M

07

91

M

i00

i.532

i.228

i.2N

i.224

i.221

i.219

1.2i7

1.2i4

i.Zi5

iotiO

1.208

i.JOe

1.204

1.202

1.500

i.191

1.i57

I.i00

1.194

I • i02

1.191

I.tm

1.i87

i.i88

i,184

i.i88

1.183

1.iOi

1.179

1. i 78

i,i78

i.179

i.i74

I.i74

L.i73

i.1?i

1.170

1,108

I.i07

I. i00

1.105

1.154

|,100

1.152

1,101

1.180

1.159

i.150

I,i85

1.i57

0 • 8320

0.8342

0.838

0.2370

0.0383

0.8308

0,8400

O. 8420

0.0431

0.8442

0.8454

0.8445

0.84?5

0.0486

0.8438

0.0506

0.8518

0.8525

0,0535

0.8544

0.85U

0.882

0.8571

0.0880

0 • 8588

0.0588

0.8804

0.8812

0 • 8620

0.3827

0 • 0838

0 • 8842

0.9150

0.8857

0.6664

0.6471

0.86?8

0 • 8884

O.MS!

0 • 6697

0.8704

0.87i0

0.8710

q.8_2
0.8721

0.8734

0.0741

0.8744

0.8762

0,8757

1.323

1.319

1.315

1.31i

1. 308

1.304

i,30i

1. 290

1 • 295

1 • 292

t.289

i,388

1.282

i.238

i.2?7

i.279

i.272

i.270

i,918

1. 208

1.242

i.20i

t.250

i.257

i.258

1.253

1.25i

1.242

1.247

i.245

i .|40

i.241

i .239

1.238

1.28

1.235

1.232

1.221

1.230

1.228

1.227

1.228

1.224

1.222

1.221

1.210

1,210

1.217

1.210

1.214

0 • 70041

0.7910

O. 7922

0 • 7940

0 • 7984

0 • 7279

0 • 7914

0 • 8000

0 • 8022

0. |091

O. 8060

0.I_82

0 • 8076

O. 80N

0.810i

0.8112

0.8120

0.8137

0.0148

0.8159

0.21_0

O.SiOi

0.819i

0.8202

0.0212

0,8222

0.2222

0.8242

0.0252

O.Sml

0 • 0270

0.2279

0.8288

0.8297

0.8388

0.8314

0.8212

0.0301

0.5338

0.0:144

0.0354

0.8382

0.0370

0.2377

0.8385

0.8392

0.$391

0.8406

0.8413

0.8420

1.443

i.437

1.482

1,4Zg

1,421

1.410

1.41i

i.491

i.402

1.307

1.388

1,088

i.206

1.311

1.377

1.374

1.370

1.344

1.363

1.910

i.291

! .3U

1.280

1.347

1.244

1,341

1.330

1.338

1.330

1.230

1.320

!.326

1.220

1.320

1.318

1.318

1.2i$

1.211

1,291

1.307

1.305

I. 302

1.301

i.291

t .207

1.215

i.293

1.201

1.289

1.288

0.7441

O. 7491

0.74 03

0.7503

0.7621

O. 7991

0.75M

0.7579

O. 7591

0 • 7008

0.7821

0.768

0.7081

O. _91

O. 79e0

0.7694

0 • 7708

O. 7722

O. 7738

0 • 7740

0.7711

O. 7774

O. 7717

0.77110

0.7911

0. 791"_

O. 7114

O. 7840

0.798

0 • 738|

O. 7171

0.7138

o. 7991

0.7109

0.7938

0.7930

0.7991

0.7940

0.7169

0,7942

0.79?7

0.7917

0.71111

0.11004

0.8813

0.8822

0.8021

0.0029

0.8847

0.3850



Compute s L = BLS

s = Bs
U U

s L = (8.24) (0.6657)

= 5.48

s = (8.24) (1.746)
U

= 14.38
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the mean [4].

Choose d,

error, and

estimate of

more

Look up t =

the allowable margin of

c_ , the risk that our

m will be off by d or

t for df deg of
(X

2

freedom in Table tti-2

Let d = 0.2

c_ = 0.05

t : t0.975 for 9 deg of freedom

= 2. 262

Conclude: The interval from s L to Su is a two-sided 100 (1 - a) percent

confidence interval estimate for (r ; i.e., we may assert with 95 percent

confidence that (r is between 5.48 and 14.38.

1.2. i. 9 Nmnber of Measurements Required

In planning experiments, we may need to lmow how many measurements

to take in order to determine a parameter of some distribution with pre-

scribed accuracy. If an estimate s or cr is available or if we are willing to

assume a (y ; we may ascertain the required sample size n for determining



t2 s 2

Compute n - d2

(2.262):'(s.24J_

((1.2) 2

s7()[)

Conciu(le: We may conclude that if we now ('Omlmtc the mean

Sc_'tion II 1

1 .May 1972

Page 12

._ O[" ;I l'tllldolli

sample of size n = 8700 , we may ha\e 95 l)el'c'ent confidence that the

interval ._ - 0.2 to _ + 0.2 will include the lot mean.

A similar procedure may be used when computing the st:mdard (levia-

tion. As an e,'m_ple, how large a sample would be required to estimate the

standard deviation within 20 percent of its tt'ue value, with confidence coeffi-

cient equal to 0.95 [ 4] ?

Specify P , the allowable percentage

deviation of the estimated standard

deviation from its true value

Choose y, the confidence coefficient

in Figure Hi-5, find P on the

horizontal scale, and use the curve

for the appropriate _/ . Read on

the vertical scale the required degree

of freedom

n=df + i

Let P = 20 percent

Let -y = 0.95

For y : I).95,

df = 46

P = 20 percent

n : 46 + 1 = 47

-x
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5 8 8 10 20 30 40 50
P PERCENT

NUMI_I_It ()1" I)EGI_I,_I,_S ()l" I'I{I,',I"_D()M lll"QUII_.I,'D TO

ESTIMa\TE Till'] S'I'ANi)Alll) I)I.]VtATI()N \\'ITIIIN I ) PEIICI.:NT OF ITS

TI/UE VAI,UL" \V1TI! ('ONI"IDI"NCI', COF. I,'FICII.:NT 3/ .

1.2.1.10 Tolerance Limits

Sometimes \\'e al'e II_()l'C inh, reste(I in the approximate range of values

in a lot or population than \re :tro i1._ :/vc,.v:t;,;e. v,llue. Statistical tolerance

limits furnish limits l)(,(\_eon, :,l>)ve. ())'l)('l<,\v which wo c,.)nfident!v cxpocL

to find a prescribedl)J'opovtion o[ in(lixi(l_utl items of a population. Thus, we

might be able to give :l v:lluc ,\ :/I)o\e which :It I(,:t,_t a proportion P of the

population will lie (one-side(I limit). In this case, x L ,_ _ - Ks will be

the one-sided lower limit. The al)l)VOl),iatc values l'or N. are given in Table

H1-4 [4]. As anexa.ml)le, consi(lei the (Iztt:t in example lwoblem 1 and find a



Table Hi-4. Factors for One-sided Tolerance

Limits for Normal Distributions
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Factors K such that the probability Is T that at least a proportion P of

the distribution will be less than _ + Ks (or greater than _ - Ks), where

i_ and s are estimates of the mean and the standard

deviation computed from a sample size of n .

- 0.75 _ = 0.90

0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

9 1.464 2.501 3.152 4.356 5.805 2.002 4.258 5.310 7.340 9.051

4 1.250 2.134 2.600 3.726 4.910 i.972 3.i07 3,957 5.437 7.128

5 1.152 1.961 2.463 3.421 4.507 1.698 2.742 3.400 4.666 0.112

0 1.087 1.000 2.336 3.243 4.273 1.540 2.494 3.091 4.242 6.556

7 1.043 1.791 2.250 3.126 4.1i8 1,435 2.333 2.894 3.972 5.201

S 1.010 1.740 2.190 3.042 4.008 1.360 2.219 2.755 3.783 4.955

9 0.984 t.702 2. 141 2.977 3.924 i.302 2.133 2.649 3.64i 4.772

|0 0.964 1.67/ 2.|03 2.92? 3.858 1.257 2.065 2.508 3.582 4.629

I| 0.947 1.846 2.073 2.885 3.804 i.219 2.012 2.503 3.444 4.515

13 0.033 /.624 2.048 2.851 3.700 1.188 1.960 2.448 3.371 4.420

13 0.919 |.006 2.020 2.822 3.722 1.162 /.928 2.403 3.310 4.341

14 0.909 t.891 2.007 2.796 3.690 /.139 t.895 2.363 3.257 4.274

15 0.899 1.577 1.991 2.776 3.661 i.il9 1.866 2.329 3.2i2 4.215

t0 0.891 |.566 i.977 2.756 3.637 l.iOl 1.842 2.299 3.172 4.164

17 0.883 1.554 1.964 2.739 3.615 1.085 1.820 2.272 3.136 4.118

i8 0.876 1.644 t.051 2.723 3.596 i.07t t.800 2.249 3.t06 4.078

19 0.870 1.536 i.942 2.7/0 3.577 1.058 1.78| 2.228 3.078 4.04t

20 0.865 /.528 1.933 2.697 3.56t 1.046 i.765 2.208 3.052 4.009

21 0.859 1.520 1.923 2.686 3.545 1.035 t.750 2,190 3.028 3.979

22 0.854 1.514 1.916 2.075 3.532 1.025 1.736 2./74 3.007 3.952

23 0.849 t.508 1.907 2.665 3.520 t.016 1.724 2.t59 2.987 3.927

24 0.848 1.502 1.901 2.656 3.509 1.007 1.712 2.145 2.969 3.904

25 0.842 1.496 1.895 2.647 3.497 0.999 1.702 2.132 2.952 3.882

30 0.825 1.475 1.869 2.613 3.454 0.966 i.657 2,080 2.884 3.794

35 0.812 1.458 1.849 2.588 3.42/ 0.942 1.023 2,041 2.833 3.730

40 0.803 t.445 t.834 2.568 3.395 0.923 1.598 2.0i0 2.793 3.079

45 0.795 1.435 1.82/ 2.552 3.375 0.908 i.577 i.956 2.762 3.638

50 0.788 1.426 1.8ii 2.538 3.358 0.894 1.560 1.965 2.735 3.604
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7 = 0.95 7 = 0.99

0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

3 3.804 6.158 7.655 t0.552 13.857 .....

4 2.619 4.163 5.145 7.042 9.215 .....

5 2.149 3.407 4.202 5.741 7.501 .....

6 1.895 3.006 3.707 5.062 6.612 2.849 4.408 5.409 7.334 9.540

7 1.732 2.755 3.399 4.64t 6.061 2.490 3.856 4.730 6.411 8.348

8 1.617 2.582 3. t88 4.353 5.686 2.252 3.496 4.287 5.8tt 7.566

9 t.532 2.454 3.031 4.t43 5.4t4 2.085 3.242 3.97t 5.389 7.014

10 1.465 2.355 2.911 3.981 5.203 1.954 3.048 3.739 5.075 6.603

II i.411 2,275 2.815 3.852 5.036 1.854 2.897 3.557 4.828 6.284

t2 1.366 2.2i0 2.736 3.747 4.900 t.77t 2.773 3.410 4.633 6.032

t3 1.329 2.155 2.670 3.659 4.787 1.702 2.677 3.290 4.472 5.826

t4 1.296 2.108 2,6t4 3.585 4.690 i.645 2.592 3.189 4.336 5.651

15 1.268 2.068 2.566 3.520 4.607 1.596 2.521 3.102 4.224 5.507

16 i.242 2.032 2.523 3.483 4.534 1.553 2.458 3.028 4.124 5.374

17 1.220 2.00i 2.486 3.415 4.471 1.514 2.405 2.962 4.038 5.268

18 1.200 1.974 2.453 3.370 4.4i5 t.48i 2.357 2.906 3.961 5.167

19 1.183 1.949 2.423 3.33i 4.364 1.450 2.315 2.855 3.893 5.078

20 1.167 1.926 2.396 3.295 4.319 1.424 2.275 2.807 3.832 5.003

21 1.152 t.905 2.371 3.262 4.276 1.397 2.241 2.768 3.776 4.932

22 1.t38 t.887 2.350 3.233 4.238 1.376 2.208 2.729 3.727 4.866

23 1.126 1.869 2.329 3.206 4.204 1.355 2.179 2.693 3.680 4.806

24 1.114 1.853 2.309 3.181 4.171 1.336 2.154 2.663 3.638 4.755

25 1.103 1.838 2.292 3.158 4.143 1.319 2.129 2.632 3.601 4.705

30 t.059 t.778 2.220 3.064 4.022 t.249 2.029 2.516 3.446 4.508

35 1.025 1.732 2.166 2.994 3.934 1.195 1.957 2.431 3.334 4.364

40 0.999 1.697 2.126 2.941 3.866 i.154 1.902 2.365 3.250 4.255

45 0.978 1.669 2.092 2.897 3.811 1.122 1.857 2.313 3.181 4.168

50 0.961 1.646 2.065 2.863 3.766 1.096 1.821 2.296 3.124 4.096
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single value above which we may predict with 90 percent confidence that 99

percent of the population will lie.

Choose P the proportion, and _/

the confidence coefficient

Compute

s

Look up K in Table H1-4 for

appropriate n, -f, and P

Compute x L = £ - Ks

Let P = 0.99

T = 0.90

= 575.7 lb

s = 8.24

n= i0,P =

K = 3. 532

x L = 546.6 lb

0.99 ,'y : 0.90

Thus we are 90 percent confident

that 99 percent of the material

ultimate strengths for product

"A" will be above 546.6 lb.

This same procedure is used in Ref. [ 6] to determine the "A" and "B" values

for the primary strength properties

Fbry) •

1.2.2

1.2.2.1 Properties

(Ftu, Fty, Fcy, Fsu, Fbr u, and

LoG-Normal Probability Curve

A log-normal distribution is the frequency distribution curve resulting

from the use of the logarithm of a variable rather than the variable itself.

The log-normal distribution curve is bell shaped like the normal probability

curve and has the properties of a normal distribution.

J
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1.2.2.2 Estimate of Average Performance

Similar to the normally distributed variables, the best single estimate

of the population mean, m , is simply the arithmetic mean of the measure-

ments [ 3].

n
1

Iogm _IogR = -- _ Iogx. (3)
n

i=l

1.2.2.3 Example Problem 4

Using the fatigue lives for a constant stress level (50 ksi) given in

Table H1-5, estimate the mean of the parent universe [ 3].

Table HI-5. Fatigue Life of Product '_B"

Test Specimen N. (Cycles) Log N.
1 1

1

2

3

4

5

13000

13100

24000

28000

40000

4.1139

4.1173

4.3802

4.4472

4.6021

n = 5 _logN. = 21. 66071

log N

N =

1.2.2.4

1 1
: :  ,log Ni : : (21.6607;

antilog 4. 3321 = 21485cycles

Estimate of Standard Deviation

= 4.3321 = Mean log value

Again, similar to normally distributed variables, the best unbiased

estimate of the standard deviation is thc square root of the estimate of

variance [3l •
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logx i 2 _ _ logx i

a_ S_ = i=l
n (n - 1) (4)

1.2.2.5 Interval Estimates

Confidence intervals may be determined for log-normal distributions.

The range of a percentage of data points may be computed for the sample

mean coinciding with the population mean, which occurs with a confidence

of 50 percent. The range is computed as

m

logx = logx + kps , (5)

where kp is defined in Fig. H1-6. A lower limit (one-sided confidence

interval) may be computed as

log x L = o_ - kpTs , (6)

where kpT is defined in Figs. Hi-7 through HI-9 as a function of the sample

size, the percentage of data points occurring above the lower limit, and the

confidence value.
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FIGURE H 1-6.
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1.2.2.6 Example Problem 5

Using the data in Table H1-5, determine the range within which 68

percent of all points fall [ 3].

logN = 4. 3321

s = 0. 213

From Figure H1-6, kp = 1.0

logN = 4.3321 * 0.213 = ,;.545 N = 35100cycles
max lnax

log Nmi n = 4. 3321 - 0.21;I = ,:. 11.9 Nmi n = 13700 cycles

Conclude: The interval x L to Xu is :l 100 (1 - a)percent confidence

interval for P percent of the pol)u]:',ti,)n; i.e., we may assert with 50 percent

confidence the 68 percent of the i)opulation will fall within 13700 < N < 35100

cycles.

1.2.2.7 Example Problem 6

Using the data in Table II1-5, determine the life above which 90 percent

of all points in the total population will lie with a confidence of 95 percent.

Choose desired confidence level

Choose P percent of data points

which should exceed the lower limit.

Compute log x

I__t 1 - o_ = 0.95

c_ = 0.05

Let P = 90 percent

logN = 4.3321



Compute s

Find rk_y in Figure HI-7

Compute logN L = LogN - kpys

Conclude: We are 100 (1 - a)

?

data points are greater than x L
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s = 0.213

for P = 90 percent, y = 95 percent,

n = 5 kpy = 3.35

logN L = 3.61855

N L = 4155 cycles

percent confident that P percent of the

; i. e., we may assert with 95 percent confi-

dence that 90 percent of the lives are greater than 4155 cycles.
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