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Abstract

This report documents the theory and experimental work which demonstrated
the feasibility of conical-scan tracking with the NASA /Jet Propulsion Laboratory
64-m-diameter paraboloid antenna at Goldstone, California. The purpose of this
scheme is to actively track spacecraft and radio sources continuously with an
accuracy superior to that obtained by manual correction of the computer-driven
pointing. The conical-scan implementation gives increased tracking accuracy with
X-band spacecraft signals, as demonstrated in the Mariner Venus/Mercury 1973
mission. Also, the high accuracy and ease of measurement with conical-scan
tracking allow evaluation of systematic and random antenna tracking errors.
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Conical-Scan Tracking With the 64-m-diameter
Antenna at Goldstone

I. Introduction

The 64-m-diameter NASA /JPL paraboloid antenna at
Goldstone, California, is used for communication with
many spacecraft. 1t 15 also used for research in such
supporting areas as planetary radar, interferometry, and
radiometry. For conventional pointing. the antenna
employs a “master equatorial” mechanical reference
which is located at the intersection of the azimuth and
elevation axes. The master equatorial is driven by a com-
puter, and the antenna is slaved to the master equatonal
by a large servo system which constitutes the azzmuth and
elevation drive mechanisms. Although high off the
ground, the master equatorial is atop its own separate
structural tower and foundation and 1s protected from the
wind and sun by appropriate shielding.

For S-band frequencies in the range of 2100 to 2400
MHz, the antenna has excellent pointing performance.
The absolute pointing error 1s a small fraction of the
antenna beamwidth at S-band. and for use there the
antenna “tracks™ a spacecraft or radio source by si~ply
pointing in a computer-calculated direction. Active track-
ing schemes using monopulse or conventional conical-
scan tracking were not installed on the antenna due to its
excellent absolute pointing ability.
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The Mariner Venus/Mercury 1973 mission, the first
mission on which conical-scan tracking was used to track
a spacecraft, had an X-band downlink as well as the usual
uplink and downlink at S-band. With approximately a
factor of 4 increase in frequency over S-band, the antenna
beamwidth was reduced by the same factor. In mission
planning, concern arose over the ability to keep the X-
band antenna beam (approximately 0.038 deg wide at the
half-power points) properly pointed so a gain loss would
not occur. Implementation of a monopulse or conven-
tional conical-scan tracking feed would somewhat degrade
the system operating temperature and would entail sub-
stantial hardware modifications. Implementation of a con-
ical-scan tracking scheme for radio sources by rotating an
entire 26-m-chameter paraboloid antenna about tracking
boresight had been done previously (Ref. 1). The idea was
felt to be sound for spacecraft as well, and it was decided
to implement it on the 64-m-dizmeter antenna. Also, a full
analysis of the scheme was to be carried out. This report
documents the resu'ts of this effort.

We will treat angi~ tracking of a roncoherent radio
source first in Section 11l and then, n Section 1V, con-
sider tracking of a coherent source (spacecraft). The
approach here assumes a basic knowledge of conical-scan
tracking such as presented by Skolnik (Ref. 2). In Sections
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III and 1V, system gain fluctuations are ignored. This
effect can dominate the system performance if the con-
ical-scan rate is slower than the gain fluctuations. The
reader should be aware that this will probably be the case
for lobing done by moving the entire antenna. Then the
results in Sections 111 and IV are optimistic and do not
give the complete picture. If a faster scanning technique is
employed in the future (e.g., feed or subreflector nutation)
we might be able to ignore the gain fluctuations, and then
Sections III and IV will give the complete syr tem perfor-
mance. In Section V, the effects of gain fluctuations will
be considered in detail and the performance for arbitrary
scan rates will be obtained. To summarize:

(1) Sections IIl and IV give tracking performance
under the assumption that the scan rate is much
faster than gain fluctuations.

(2) When lobing the entire antenna, this assumption is
probably unjustified, but it might be justified if the
scan rate were significantly increased in the future.

(3) Gain fluctuation effects are considered in Section
V.

The remainder of this report covers the mechanics of
implementation on the 64-m-diameter antenna (DSS-14)
and the experimental results obtained thereby.

Il. Preliminaries

The conical-scan scheme we shall employ here is essen-
tially that which was proposed by G. Levy (Ref. 3) and
successfully demonstrated with radio sources by R. Gos-
line on the NASA /JPL 26-m-diameter paraboloid DSS-13
at Goldstone, California (Ref. 1). This method had not
been used with spacecraft until the present investigation.

Angle tracking is accomplished by lobing the antenna
around boresight in a circular pattern with constant
angular offset, called the scan radius or “squint” angle
(see Fig. 1). “Boresight™ refers to the entire system and
not to the peak of the antenna gain pattern. Pointing
“predicts” are sed to direct boresight very close to the
target and then the comcal-scan lobing around boresight
generates “offsets” to correct boresight for pointing errors.
Generation of these offsets will be discussed shortly.

We henceforth assume the antenna beam to be circu-
larly symmetric because asymmetry of the beam causes
only second-order effects. If a spacecraft or radio source
is on boresight, the received signal power in the antenna is
constant with ime. However, if the source is off boresight,
a small sinusoidal variztion in received power occurs. The
frequency of the sinusoid 1s ssmply the conical-scan rate,

BORESIGH1

ROTATION
SCAN RADIUS
(SQUINT ANGLE)

Z ANTENNA

Fig. 1. Antenna geometry

the sinusoid amplitude is proportional to angular devia-
tion of boresight from the source, and the phase of the
sinusoid with respect to the conical-scan rotation gives the
direction of the error.

Conical-scan schemes for radar tracking use sinusoid
and cosinusoid signals referenced to the antenna lobing to
do a correlation on the received signal strength to derive
error signals for two orthogonal coordinates of the an-
tenna, say elevation and cross-elevation (i.e., azimuth with
secant correction). Radar tracking conventionally uses a
relatively high scan rate of many cycles per second, so
analog correlation suffices. However, for scan periods of
10-100 seconds the double-frequency terms arising in
analog correlation would cause unwanted oscillation in
the tracking system. Therefore, a scheme using integration
over exactly one scan period and subsequent offset
generation was chosen. This scheme is also compatible
with current pointing offset procedures in the NASA /JPL
Deep Space Network (DSN). The system block diagram is
given in Fig. 2. The signal strength in Fig. 2 is taken as the
output of a suitable radiometer when tracking a radio
source. Careful attention must be paid to the time con-
stant of the radiometer as we shall see later. The signal
strength will be the receiver automatic gain control (AGC)
voltage when tracking a spacecraft with coherent down-
link carrier.

Initially, we shall proceed under the implicit assumption
that all digital sampling and anthmetic operations are
perfect; i.e., we ignore the effects of sampling rate and
quantization noise. We defer consideration of these very
important problems to a later time.

We have assumed the antenna beam to be circularly
symmetric. We define () to be the antenna power gain
at angle f3 off peak gain. We do not yet specify the form
of G(f). In Fig. 3 is depicted the conical-scan geometry.
We initially assume that the antenna boresight 1s 8 radians

JPL TECHNICAL REPORT 32-1605
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Fig. 2. System block diagram
away from the source in the cross-elevation axis and ¢ ¢’ =¢+ Rsinw,,t! 2)

radians away from the source in the elevation axis. The
conical-scan pattern is also shown in Fig. 3 as a circle of
radius R, henceforth called the scan radius.

We will now calculate the error signal which the angu-
lar error (8,¢) generaies. The instantaneous antenna
(peak gain) pointing position (#',¢’) is given by

& =8+ Rcosw,,t @)

¢' ELEVATION
AXIS

CONICAL SCAN
PATTERN

BORESIGHT
AXIS

¢.__._._

6
CROSS-
ELEVATION
AXIS

I
I
|
I
8

/4

SIGNAL SOURCE
AT ORIGIN

Fig. 3. Conical-scan geometry
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where w,, is the conical-scan rate in radians/second. This
scanning is generated by the computer.

We assume the source to be, at the origin, # =0=¢".
Therefore, the instantaneous angle by which the antenna’s

peak gain is away from the source is, by the Pythagorean
theorem, for small 8’ and ¢,

B=Y(8) +(¢) &)

and, by Egs. (1) “nd (2),

B=\/R2+02+¢2+2R(0coswml+¢sinwm1) (4)

We assume that # and ¢ (the errors) are much smaller
than R since this will be the case in practice and we can
drop the # and ¢ terms.

We thus obtain

B=\R? +2R8c0s w1 + 2Rsin (5)

Now again since 8 and ¢ are <R, we have RI<R? and
Re«R, and since |cosw,t| and [sinw,!| are <1, we can
use

,/l—:czl'r%

-~



and have
B=R+0cosw,!+¢sinw,t (6)

Now the instantaneous gain in the direction of the target
as a function of time G(r) is G| 8(?)} so by expanding
G(pB) in a Taylor's Series around 8= R we have

G(t)=G(R)+ G'(R)fcosw,t

G'(R)¢sinw,t O
where
dG(B)
G(R)y= — — 8
®=—35 ®)

For simplicity we take G'(R) as a positive number when
R>0 even though it is actually aegative. We have thus
obtained an expression for the system gain in the target
direction as a furction of time in terms of the angular
errors # and ¢ in orthogonal coordinates. Note that when
#=0=¢ that G(r) is constant as one expects when lobing
around the target at constant offset.

iil. Radio Source Tracking

We now wish to consider the performance of the con-
ical-scan tracker on a point radio source. We assume a
conventional total-power radiometer following the an-
tenna as in Fig. 4. We take the system operating tempera-
ture to be T,, and take T to be the radio source
temperature when seen with the beam peak gain (i.e.,
conventional radiometry without conical-scanning). The
radio source temperature seen when the source is on the
conical-scan boresight is clearly

T ﬂT 9
= G(O) A ()

where G(0) is the peak gain of the beam. In Fig. 4 we
lump all RF and IF filtering into the voltage transfer
function H(f). We follow ihis by the conventional
square-law detector and a fast lowpass resistor-capacitor
(RC) filter. At this point we take the signal strength to the
conical-scan circuitry (actually the computer). After the
fast RC filter we also allow a conventional smoothing
filter for radiometer smoothing. The fuast RC filter is
chosen to have a ime constant no more than 1/20 of the

ANTENNA
H(f)
SQUARE- FAST RADIOMETER | 2apioN
DETECTOR FILTER Iv LPF :

SIGNAL STRENGTK

Fig. 4. Radiometer configuration

conical-scan period so that little amplitude and phase
degradation of the error signal sinusoid results. If the
radiometer smoothing lowpass filter (LPF) has a time
constant satisfying this requirement, then the signal
strength can be taken at the normal radiometer output.
However, if the radiometer smoothing time approaches
the conical-scan period, a fast RC filter must be used or
severe performance degradation will result because the
sinusoidal error signal will be smoothed out. In Chapter
1V, the filtering caused by AGC is examined in detail. The
results there are applicable here as well if the fast RC is
not fast enough.

From Eqgs. (9) and (7) the system total (inrtantaneous)
temperature input is

G(1)
T:"Tor"'Ts@ (10a)

=Top+ Tsg(R)
+Tsg'(R)[Bcosw, 1+ 65 w,1] (10b)

where we have now introduced the normalized gain
g(B)=G(B)/G(0)
and 1ts derivative
g(B)=G'(B)/G(0)
The output of the square-law detector 1s
x(y=CTB+n(1) (1)

where B is the effective bandwidth given by
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REPRODUCIBILITY Oi i:°
CANGINAL PAGE IS PuxH

B T U SV T S S )



" (12)
LG

where |H( f)|2 is power gain and C is just a constant
representing the receiver gain (Ref. 4). The random pro-
cess n(t) has effectively a (two-sided) white power
spectrum in watts/Hz given by

S(f)=CTB=CTop+ Tz(R)]’B (13

where 8 and ¢ are assumed zero in Eq. (10b) to get this
last result since they are very small and C is the same as
in Eq. (11). We may assume n(7) to be a Gaussian random
proces:.

Using Eqgs. (10b) and (11) we have

x(1)=CB[Tpp+ Teg(R)]
+CBTgg' (R)[Ocosw,, +dsinw, ] +n(r)  (14)
To develop the elevation axis offset for each scan we form
F
A@x_p f x(1)sines, ¢ dt (15)
0

where A is a selectable gain, the e superscript on A denotes
elevation axis, and the subscript k denctes the offset that
is generated by the k™ scan. We have also defined the
conical-scan period

P=2n/w,

We similarly develop the cross-clevation offset as
I
AR = —hf x(1)cosw, ¢ dt (16)
o !

We choose the same gain 4 for both axes, as there seems
to be no advantage 1n having different gains. Because we
are integrating over exactly one period of periodic func-
tions it is easy to see that

A = —h[ A¢ + N (7)
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and
A= —h[46,+ N (18)

where we have subscripted 4 and ¢ to indicate their values
during the k' scan. Also,

A=CBTg (R)P/2 (19)
and
N = f Tn(rysine, ¢ dr (20)
(¢}
N = [n(t)cosw,t di Q1)
0

The parameter A is readily measured by observing the
result of the integrals in Egs. (15) and (16) when the
system (in open-loop operation) has deliberate errors 4
and ¢.

In the Appendix it is shown that M and N are
zero-mean random variables with common variance

o} =Var[ N{?] = Var[ N{O] = C*[ T,, + Teg(R))'BP /2
(22)

A. Dynamics of the Tracker

We now cousider the dynamic performance of the con-
ical-scan tracker. The boresight position of the tracker has
been denoted by 8, and ¢,. where the index k indicates
their values during the k"™ scan. We have assumed the
target to be at the origin. The dynamical equatio~s then
take the difference equation form

Gra =0, +A  (elevation) 23

sy =0+ (cross-elevation) (24)

where A{ and A{” are the offsets calculated above, which
are generated by the k™ scan. We now will consider the
elevation dynamics only and will later apply the results to
the cross-elevation case as well. From Egs. (17 and (22)
we see that the mean and variance uf A{” are



E[A{] = ~hAo,

Var[A{?] =h%0},

(25)

(26)

From Eq. (23) and Using Egs. (25) and (26) we can
write

bpyy=rdy, +ni? (7

where we define the decay factor r as

r=1-hA (28)

and
E[n]=0 (29)
Var[ nf?] = Var[ A{? ] =h0} (30)

The equation 1n (27) is a first-order linear difference
equation with constant coefficients. As such, we could
obtain a complete solution but only two characteristics
are needed here: (1) response time of the tracker (note
that it will usually be much longer than the scan period),
and (2) steady state tracking error.

Ignoring A{?, the solution of Eq. (23) for an initial off~at
o) is

b=, (31)

The decay factor r deterinines the speed and nature of the
response of the closed-loop tracker. In Table | is
summanzed the behavior of the comical-scan tracker for
various values of . We have assumed that the noise term
in Eq. (23), A{", is zero, but when the system signal-to-
noise ratio (SNR) is high the actual system behavior will
be very similar to this noiseless case here. In Figs. 5(a) to
5(g) are depicted typical responses for each case in Table
1, where we assume an error of one unit to exist during
the first scan. From the figures it is clear that cases a. b, f.
and g are of no value since the error does not diminish.
Although cases ¢ and e both can converg: absolutely at
the same rate if the absolute values of r are equal, we will
see later that case ¢ will have smaller error due to noise
than will case e. Therefore. case e 15 of no value and we
are left only with cases ¢ and 4 as being of use. Case d

can be used only when the system SNR is high enough so
that the error can be accurately corrected in one scan.

We shall hencefc th assume that 0 <r< 1 unless speci-
fied otherwise. When r is near unity (say 0.7-0.9) the

(@)r=1.2 4
i ¢ L
¢ 3
# 2
1
0 | i ] 1 1
0 4 Yid k.4 4P Lid
TIME +
®yr=1
2r
1
0 ! 1 | 1 1
0 P 2P K| 4P 5p
TIME ¢

e |
o
I}
o
& 0 | 1 1 L
g 0 [4 2 p 4P 5p
r4 TIME t
«
(e)r - =0.7
)
i et
0 ——1
0 P 2¢| 3P 4P 5P
-l TIME 1
M -
1 |
o L
0 P 2 K13 4P sp
-th —_— e

(@r=~1.2
2" ]
i !
0
0 P 3 * a® 5p
-1 TN (N
2L

Fig. 5. Tracking responses
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Table 1. Tracking response characteristics

Case Value of r Noiseless response Example
a r>+1 Monotonic divergence kig. Sa
b rm 41 Constant value Fig. Sb
¢ O<r< +1 Monotonic convergence Fig. 5¢

(usefvl case)
d r=0 Converges in one scan Fig. 5d
{sometimes useful)
e —1<r<0  Oscillatory convergence Fig. 5S¢
f r=—1 Constant amphtude oscillation Fig. 5f
g r<—1 Oscillatory divergence Fig. 5g

response in Eq. (31), while discontinuous, is reasonably
well approximated by an exponential decay. It is then
converient to describe the system’s response characteristic
in termns of a time constant of an equivalent RC circuit. A
value of r near unity corresponds to having the system
time constant larger than the conical-scan period P. When
r is much smaller than unity, the response in Eq. (31) is
very discontinuous but a proper interpretation still allows
a time constant to be defined. To determine the time
constant, we shall first define k, as the number of scans
necessary to reduce ¢, in Eq. (31) by 1/e. Thus. noting
that £ — 1 in Eq. (31) is the number of scans to obtain ¢,,
we have from Eq. (31) the equation to solve for &

&, /e=r", (32)
Thus
~1=kglog,r (33)
and
ko= —1/log,r 34)

Note that k, only fortuitously will be an integer. We now
define the system time constant 7 as the amount of time
corresponding to k, conical-scan periods

Tik0P=—P/loger (35)
For future reference we solve Eq. (35) for r
r=exp(—P/7) (36)

In Fig. 5(c) we show how the discrete steps match up
with the exponential shape to define 7 for the case r=0.7.
We plot the exponential decay starting at (0, I) and follow-
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ing the low edges of the “staircase.” For small values of »
the staircase steps are large, and what could be considered
the average decay is ~P/2 to the right. When r is smali
the steps are small, and the actual decay is very close to
the exponential decay.

B. Performance in Noise

In Eq. (27), ¢, and n{? are independent random
variables since ¢, depends only upon {n{?,m <k}, which

are independent of n{? because n(¢) is white. Thus from
Eq. (27),

Var[¢,,,]= r2Var[¢,] + Var[n{?] 37

We wish to find the steady state variance of ¢,. We do
this by assuming that

lim Var[¢,]=1u] (38)

k—ac

By taking k—oc in Eq. (38) and using Eq. (30),

oi=r20§+hza,f, {39)
By solving for o we have
02 =Hio}/(1-r?) (40)

Solving for h from Eq. (28) and substituting in Eq. (40)
gives

, (1=}

%—(T_—r’;)—A; (41)

but since 1 —r2=(1+r)(1—r), we have

. (1-r)o}

O (14r)A4? (42)

In Subsection A, we commented that cases ¢ and d of
Table 1 converge absolutely at the same rate if the abso-
lute values of r are equal. We now see there is a distinct
disadvantage to having —1<r<0. From Eq. (42), since
ay and 4 do not depend on r, we see that (1 —r)/(1 +7) is
monotone decreasing over — 1 <r< +1. Therefore,
although case ¢ with r=|r;| and case ¢ with r= — r,| will
converge absolutely at the same rate, the variance of the
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error in Eq. (42) is much larger for case e when rg is not
near zero.

Using Egs. (19) and (22) in Eq. (42) gives
1—r\Y21 2 /2
(i7) (5) @

We thus have the expression for the mean-square tracking
error in the elevation axis. In Eq. (43) the first factor is a
function of the source and operating temperatures and the
antenna gain pattcrn. The second factor is a function only
of r and thus, from Eq. (36), depends upon the ratio of the
time constant and scan period. The last term shows that
radior. >ter bandwidth and scan period decrease o,. We
could use Eq. (43) in this form but we choose to express
the second factor of Eq. (43) in terms of r by using Eq.
(36) and have

Tor+ Tg(R)
| 5th

TOI’

- +&(R)
o= Ts _ (l—e—P/r)l/z(—z- 1/2 (44)
=l ® ~ Niverr) (5P

The second factor in Eq. (44) is well approximated by
(P/21)'/? for large 7/ P. Define the rate factor F equal to
the ratio of the second factor in Eq. (44) to its approxima-
tion as

Faflzer)” 1 45
-(H-e—”') (P/?.‘r)'/2 43)

Substitution of F (P/27)"/? for the second factor in Eq.
(44) gives

Ty

= +g(K)
op=| — £ (46)
¢ ZR | VB

A plot of Fis given in Fig. 6 and it is seen that, except for
very small 7/ P, F is a second-order correction to account
for the lobing rate vs time constant.

It is anticipated that 7 will be equal to at least a few
times P. Thus we may take F=1 for 7/P »2 and have
the useful result

Ve

RATE FACTOR F

0.2

Y] 1 2 3 4 5
TIME CONSTANT/PERIOD T /P

Fig. 6. Rate factor

Zor 1 g(R)
6. = TS 1 (47)
¢ g(R)  yBr

If /P is not »2, Eq. (46) should be used with F taken
from Fig. 6.

We now have a,, which is the standard deviation (rms)
value of the elevation angle error of the conical-scan
tracker. The dimersion of ¢, is the same unit used in
calculating g'(R). i.e., normalized power gain per degree or
per radian.

The results in Egs. (46) and (47) are very general and
apply for any value of R. We may now optimize the
tracker by finding the value of R which minimizes o
(holding everything else fixed). Since R enters Eq. (46)
only in the first factor, we need only to minimize this
factor. A special case of very great interest occurs when
T3« T,p. We may then ignore g(R) in Eq. (46) since it is
< 1. Thus, o, is minimized when R is chosen where g'(R)
is maximized, i.e., where the beam pattern has the greatest
slope. Remember, of course, this must be calculated from
a plot of g(R) with power gain presented linearly and nor
in dB.

In general, we may find R to minimize the first factor in
Eq. (46) by differentiating it with respect to R and setting
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the result equal to zero. The result is the following equa-
tion which must be solved for R

2 TO?
[5(”)) =["T: +g(R)}g"(R) (48)

A graphical argument can show that if g(R) is monotonic
decreasing for R >0, the solution of Eq. (48) gives an R
greater than or equal to the value which maximizes g'(R).
When optimization of pointing accuracy is paramount
one would choose R as above. However, there are other
considerations, prime among them, the crossover loss
g(R). When the system is operating primarily for
radiometric purposes the system AT,,, will be increased
by 1/g(R). We shall shortly cousider this tradeoff in detail
for a Gaussian beam pattern.

A second point is the conical-scan rate. When R is
increased, the scan rate must be reduced so that mechani-
cal stresses remain acceptable. Accordirg to Eq. (46), an
increase in P has no first-order effect on o, However, one
effect we have not yet considered is system gain fluctua-
tion. The slower we lobe the beam the more we are
susceptible to gain fluctuation errors. The analog to a
Dicke radiometer is clear, whereby we wish to “switch”
(rotate) faster than the gain fluctuations.

C. Performance Tradeoft

Solution of Eq. {48) is probably only of academic
interest since, in practice, a tradeoff of performance vs
£(R) will have to be made. Probably the most useful thing
we can do here is to calculate o, as a function of R, Ty,
T, B and 7 and give the tradeoff vs g(R). When this is
done, the solution of Eq. (48) can be taken directly from a
graph, if desired. Use of an exact g(R) for the antenna in
question would be ideal. However, the main lobe of most
antennas is approximated quite well by a Gaussian gain
pattern. We shall thus assume the normalized beam power
gain pattern to be

g(B)=exp[ —u( B/ W)*] (49)

where W is the antenna beamwidth between half-power
points (with the same unit as R) and

p=4log,2=2.773 (50)

We now assume that 7/P >2, so we may use Eq. (47).
Thus, keeping only the magnitude of g'(R).
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0,=

T, 2 2
1+_ﬂeu(R/W)}_}!_: (51)
s 2uRYBr

Normalization of ¢, and use of Eq. (50) allow us to plot
this relationship as

TOP 2
1+ eZ TI(R/ WY

o VBt
w

=(0.180)

SR T (52)

This is the major result for the standard deviation of the
elevation error of the conical-scan tracker. The units of
o, R and W must be the same. By symmetry, this result
must also apply for the cross-elevation axis. In Fig. 7 we
portray the rms angular error of Eq. (52) 1n terms of R/ W
and T,,/Ts. Note carefully that 2/W=0.5 corresponds

T



to the half-power point of the antenna beam. The system
crossover lcss is the system gain on boresight vs the
antenna beam peak gain. From Egs. (49) and (50) it is
easy to show that the crossover loss in dB for a Gaussian
beam is

2(R)in dB=12.04(R/ W)} (53)

We show this degradation in Fig. 8 so that the tradeoff of
tracking error in Fig. 7 and crossover loss can be seen.

In Fig. 7 it is easy to see the vaiues of R/W which
minimize o,VBr /W for fixed values of T,,/Ts. When
Top/ Ts> 1, simple calculus shows that g’(R) is maximized
and hence o, is minimized for

R/W=1/y2u =0425 (54)

From Fig. 7 this approximation for the minimum point is
seen to hold very well down to at least T,,/T.=10.

0 TN
~

2

4 N
-]
°
€ ¢
(%3
w
9]
)
[- 4
b3
g 8
0
o
[}

10

12

14

0 0.2 0.4 0.6 0.8 1.0

NORMALIZED SCAN RADIUS RAW
Fig. 8. Crossover loss

10

S | 1

The derivation above of o, has not included system
gain fluctuations. Just as in Dicke-type radiometers, if the
switching rate (here we have rotation rate) is not faster
than the gain fluctuations, the per.ormance will be limited
by gain fluctuations. 1t is anticipated that scan periods of
10-100 seconds are too slow to overcome the gain fluctua-
tions. Thus, the result of Eq. (52) is optimistic, especially
for large values of the scan pericd P. In Section V of this
analysis we shall treat gein fluctuations in the systems of
interest.

It should be noted ttat ¢, as we have derived it applies
to each antenna angle axis. The errors in these axes can be
assumed to be indepeindent so the total instantaneous
angle tracking error (radially) 1s

e=\F+¢? (55)

Because n(r) is a Gaussian process. § and ¢ are Gaussicn
since the system is lirear. Thus the radial tracking error ¢
is a Rayleigh random variable with probability density
function

—iexp < €>0
Pley=+ g2 P\ " 302 | (56)
lo e<0

The average radial error between boresight and target
thus is

e=E[e]= [“op(e)de=(7/2)/0,= 1250, (57)
0

D. Operational Consliderations

To operate the system considered here. various choices
of 7 (or equivalently r) must be selectable. From Egs. (35)
and (28) we have

1=~ P/log(1 —hA4) (58)
We also have 4 in Eq. (19),
A=CBTg (R)P/2 (59)

Therefore, we see that 7 is determined by P, h, C, B, T
and R (via g'(R)). Even if P, h, C, B and R were held
fixed, we see that the system time constant is a strong
function of T;. In order to maintain constant 7 for
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different radio sources, the gain parameter A must vary
inversely with T In addition, if the scan period P, the
radiometer gain C or bandwidth B, or the scan radius R
change, then # must vary so that = will stay fixed. In most
tracking systems there exists an AGC loop to maintain
constant tracl. ng bandwidth over a wide range of signal
levels. ‘. va¢ .ent, there is no AGC loop for tadiometric
work, -0 h v.1ll have to be set according to a calibration
schem: wh.h takes each of the above parameters into
acconnt. Suiving Eqs. (58) and (59) to give h for fixed 7
we have

k=2(1 — e */")/CB Ty g(R)P (60)

Within the ¢ mputer program, calculation of 4 is readily
mezde when %, 1, C, B, Tg and R (assuming the program
has \he g'(R; function) are fed in. The value of C can be
measiired (or adjusted to a prescribed value) by observing
the radiometer cutput when observing the system ambient
load or cold :ky. The value of B is usually close 10 some
nominal value for a particular radiometer. The value of P
may be set up as an adjustable parameter or it may be
fixed in the program. Thus, » and T are left as variable
parame’ :rs for system operation. A direct calibration to
measure A of Eq. (19) for a particular source may be a
convenient !echnique and has the advantage of checking
all syste 1 parameters it one measurement. This could be
done by observing the integrator outputs, Egs. (15) and
(16), whe 1 the system pointing is running on predicts plus
lobing alone, with the oifs~" foop open and deliberate
known errors in 8 and ¢ __..sting. One problem with this
method, however, is in knowing # and ¢ exactly if the
exact source position is not well known.

IV. Spacerraft Tracking

In this section we will derive the performance of the
conical-scan tracher when i* is used on spacecraft. We
shall ignore gain fluctuation “.fects and defer their con-
sideration to Section V. When the antenna’s peak gain is
pointed at the spacec .it, we receive a carrier power of P,
watts in the antenna. This occurs as 1 signal voltage

s()y=V2Z,P, cos (wt +¥) (61)

on an impedance of Z, ohws, at some reference point.
The quantity ¢ is the nhase of the received signal. The
lobing procedur< in Section Il produces the instantaneous
angle 8 in Eq 1) by which the antenna’s peak gain is
away fromn he spacecraft. We assume the antenna gain
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pattern to be well approximated by a Gaussian shape as
in Eq. (49). The normalized antenna voltage gain is thus,
by square-rooting (Eq. 49),

vo(B)y=exp —w(B/W)'] (62)
where
w=pn/2=1.387

The normalized voltage gain vs time is, from Eqs. (4) and
(62),

o(ty=v B(1)]

=exp{ - —:72- [R+F+¢
+2R(fcosw,t + ¢sin w,,,t)] } (63)

We then see that the signal voltage received when the
antenna is conically scanned is

r(1)=v(1)s() (64)

At the point where we define signal power we also
define the system operating temperature T,, which gives

No=kT,p watts /Hz (65)

on Z, ohms, where k is Boltzmann’s constant.

Without loss of generality we may take Z;=1 ohm and
then the received signal plus noise is

r(£)=o(t2P, cos(wyt +) +n(1) (66)
where n(t) has the two-sided power spectral density

S.(f)=No/2 (67)

A. Manual Galn Contro!

We shall first consider conical-scan tracking when the
receiver AGC is not used and the receiver gain is fixed.
We treat this case for two reasons: (1) it can be solved
exactly and provides a jumping-off point for the
approximate analysis of the AGC case and (2) when the

"
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AGC is faster than the scan rate the manual gain control
(MGC) result will apply.

We must detect the amplitude of the signal in Eq. (66)
50 that we may correlate with sinw,? and cosw, ! to give
pointing information. Coherent detection is accomplished
in a phase detector used for AGC detection by means of a
reference signal generat.d by the phase-locked loop
(PLL). The PLL tracks the phase ¢ of the sgnal and
ge.ierates a reference signal

vref( f) = \/5 Cos(w(,t + J/ ) (68)

where \p is the PLL’s estimate of . We ignore he erodyn-
ing and equivalently assume the PLL to be generating its
reference in the RF range. The phase detector forms

}'(’) == vref(t)r(’) (69)

Ignoring double-frequency terms we have

Y1) =o()P, cos(y—i ) +n'(1) (10)

where n'(¢) is again a white process with power spectral
density (Ref. 5)

S.(f)=No/2 (7

If the PLL loop SNR is_above about 6 dB. \p is close
enough to y that cos(y —-y¢)=1. We assume this to be the
case here. If the PLL is operating nearer than 6 dB to
threshold this approximation will be optimistic. We thus
have

W O)mo(tWP, +n'(1) (72)

Because of receiver gains the actual signal presented at
the signal strength point 1in Fig. 2 will be different by
some gain K over Eq. (72). Including this in Eq. (72) we
have the signal strength x (1)

x(1)=K[ o(n)VP, +n'(:)] (13)

We now use Eqs. (15) and (16) to develop the offsets for
the elevation aad cross-elevation arnes. We start with ele-
vation and have

8=l KyP, 4+ N (] (74)

12

where

F
dy= f o(1)sin wp df (75)
0

P
NO=K fo n (nsinw, t dt (76}

For simplicity, these integrations are tacitly assuming a
time scale starting at +=0 at the beginning of each scan.
From Egs. (63) and (75),

W
dk=exp[ - —”7(R2+0i +¢7)

P f
X -/o sin w,,t cxp]L - —Wpf;—(llk COS W, ! + ¢, sin -0, 1) |dt

()

The exponential under the integral can be rewritten as

exp| -~ §ccos(wat —Ay)] (78)
where
& =uRVE +o] /W (19)
and
can-t[
A, =tan ( g ) (80)

The Jacobi-Anger formula is (Ref. 6)
exp(écos B)=Io(§)+2 3 I,(§)cosnB  (81)
nw |

where 1,(§) is the modified Bessel function of the first
kind. We may expand Eq. (78) using Eq. (81) and obtain

exp[ = £,c08 (Wt = Ay) ]

=l(-§)+2 i 1,(—§&)cos ["(wm’_Ak)] (82)
nel
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Use of this in Eq. (77) gives on'y the following te' 1. since,
for n# 1, the sinusoids in F.q. (82) are orthogonai to
sinw,t:

dk-e‘;p[ - L (B4 R+ed) -5
. W |
P
X f $inw,,f cos(w,,t - A )dt (83)
0

dym PL( ~£)sinhexp| - ;,”—,(F’+0l+¢i) (84)
L

From Eq. (80) we sce

Sinh, =y /A oF (85)
Also
Li(—x)=-1,(x) (86)
Thus
I'(fw—l:‘/;i_;;‘;) [ W
o= =P | = (R4 4]

Vi + ot

(87)

The: 1esult in Eq. (87) is exact. but is more precise than
needzsd.! We may simplify this result with essentially no
loss in accuracy. Note that

V&+¢f

is the radial error. This error will generally be much
smaller than W. Also, R will be less than or comparable

' In Section II1, linearization was assumed first and then a Gaussian
beam. Here a Gaussian beam was assumed first and now linearization
is to be done. Either sequence could be used in either place—the result
is the same.
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to W. Therefor¢ the argument of I, in Eq. (87) will be
much smaller than unity and we may use the first term of
the power series expansion of I,(x),

IL(x)=x/2 (88)
Using this, Eq. (87) becomes

PiR
2W?

"Ll
d=—q, exp| — TVE(R2+3i+¢z) (89)

Further, we assume |8,| and | ¢, | to be < R. We then may
neglect 8, and ¢, in the exponential and we have

PuR
de=—ssexp[ ~W(R/WF]  (90)

This last approximation will be valid unless R is chosen
very small and g, and o, are comparable to R.

From Egs. (74) and (90) we have

AP =—h[A¢, +N{I] 1)
where
KPuRYP, , :
A=—Tvz——cxp[-u(R/W)‘] (92)

We dropped the minus sign in Eq. (90), so the correction
is in the right direction. In Eq. (91) we have the same
equation as Eq. (17). We need only find the variance of
N and we shall be able to directly use Subseciions A and
B of Section IIl to find performance.

We know M? has zero mean because n'(f) is white.
Also in the Appendix we substitute Kn'(r) for n(r) and
obtain

P ,P
o,f,=K2'f; fo R, (1,—1y)sinw, t,sinw,t,dr,dt, (93)

Since n'(¢) has the power spectral density in Eq. (71) we
know

No
Ry(1,—1y)= _2‘8(11"’2) (%94)

19
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Use of Eq. (94) in Eq. (973) gives

ol =PK’N,/4 (95)

We now can use Subsection A of Section III in its
entirety for the spacecraft case. We may also use Subsec-
tion B through Eq. (42) and the paragraph immediately
following it. Upon substitution of Eqgs. (92) and (95) in
Eq. (42) we have

02( 1_r)% Wz\/;\’_oexp[ W(R/ W)

(%)
I+r \/Fy.R\/F:

Expressing r as in Eq. (36) and defining the rate factor F

as in Eq. (45) we have

FW\N, exp| w(R/W)]
g,= 97

? uRVP, V2r
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Fig. 8. Angular tracking error for spacecraft, gain fluctustions
ignored
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As in Section III we argue that F~1 for practical applica-
tions. Also by use of Eq. (65) we obtain

WKT,, exp| K(R/W)?]
uRVP, V21

0, (98)

Normalization and putting in the values of u and p’ give

Pr \!/2 exp[l.387(R/'VWaz]
( ! ) =(0.255) (99)

kT,, RIW

By symmetry this result also applies to tae cross-elevation
axis as well. This result is presented in Fig. 9. Boltzmann’s
constant k has been included in the normalization be-
cause it is felt that YP,/kT,, is most easily computed
using dB, whereby & is —198.6 dBmW - K - Hz. Note
that P;r/kT,, is dimensionless beciuse 1/r has the di-
mension of hertz.

The crossover loss, which is the loss of gain on bore-
sight vs the antenna beam peak gain, is the same as shown

3.0 T ]
o~ HR/W - 0.
= 2.5
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o
a™ (o]
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N
b'o"; 2. 01—
o
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o
%
9 s 1
X 0.2
=
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02‘ 1.0 0.3- 0‘9//41
2 0.4
“g \\OLO,(S O-Z/EQ\EL/
:
S o5
0
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CROSSOVER LOSS g(R), dB

Fig. 10. Tracking error vs crossover !oss, galn fluctuations
ignored
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in Fig, 8. For ease in comparing o, vs g(R) we show their
tradeoff in Fig. 10, which is a cross-plot of Figs. 8 and 9.

If all parameters are held constant except R, simple
calculus shows that the minimum o, in Eq. (83) and Fig. 9
occurs when R=(0.601)W. If pointing accuracy were
paramount then this choice of R would be optimum
unless the crossover loss of 4.3 dB given by Fig. & causes
the phase-locked loop to approach threshold. From Fig.
10, it can be seen that permitting o, to be only twice its
minimum attainable value allows g(R) to be reduced from
4.3 dB to 0.45 dB, a sizabi¢ reduction.

The reader must be cautioned that gain fluctuation
effects have not been included in this calculation but will
be considered in Section V. The present result is sufficient
to characterize performance as long as the conical-scan
rate is faster than the gain fluctuations.

B. Automatic Gain Control

To maintain signal levels in the PLL receiver near
nominal values over a wide range of input signal levels,
AGC is used. A secondary benefit is that of maintaining
approximately constant closed loop bandwidth when per-
forming a tracking function such as monopulse pointing
or linear polarization tracking. This advantage also occurs
in the conical-scan tracker. However, it is a mixed bless-
ing since the choice of AGC speed will often not be made
to optimize pointing but to optimize PLL locking per-
formance. If the AGC is very slow the error signal we
develop by conical-scan tracking will be attenuated and
phase-shifted by the AGC circuitry. Let us begin by
corsidering the AGC characteristic with respect to the
steady component of signal level (ignoring temporarily the
small sinusoidal error signal). It is known that the
dynamic AGC voltage of the PLL receivers used is very
close to — 1.0 V over a signal range of better than 60 dB.
Thus it is clear that the receiver gain must vary inversely
as the signal voltage. Thus, when using AGC the X in Eq.
(73) will actually be

K=K/{VP, exo[-w(R/WY]}  (100)

where K is a fixed quantity and \/I_’J is, of course,
proportional to signal voltage. If the AGC response is
much faster than the conical-scan rate w,, so that the
AGC gain at frequency w,, is the same as for the DC
steady state signal component, we argue that K=K'/VP,
also for the error signal and Eq. (92) becomes
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K'PuR

A
2W2

(101)

Also, from Egs. (86) and (93), we now see that the system
closed loop time constant theoretically does not depend
upon the signal level P,. This represents a distinct advan-
tage over the conical-scan tracking of radio sources in
Section 111, where r does depead upon the source tem-
perature T,.

The performance of the conical-scan tracker under the
assumption that the AGC is much faster than w,, is just
that given in Eq. (99), since using Eq. (100) in Eq. (95)
and by use of Eqgs. (101) and (42) again gives Eq. (96), and
everything down to Eq. (99) follows.

In practice, however, the AGC may not satisfy the
criterion of being much faster than w,. We now consider
this case. For small signal an.plitude vanations (appli-
cable to the error signal) the AGC circuit acts as a single
pole filter with transfer function (Ref. 7):

b
H(w)= T+jw'rA

(102)

where b is dc gain and 7, is the filter response time. Note
that 7, is not the so-called “AGC filter time constant”
which is =~380, =34, or ~4s in DSN Block 111 receivers.
These numbers represent the time constant of an RC
operational amplifier circuit approximating an integrator
in the AGC loop. Since these time constants are in the
feedback loop, the overall response time 7, is determined
by the open loop gain, which is a slowly varying function
of signal level. To find 7,, it is a simple matter to put a
small step change in a test transmitter signal level and
observe the AGC response time to 1/e. For example, a
filter time constant of 380 s generally gives a value for 7,
which is on the order of 5 s.

If 7,«1/w,, the effect of the AGC is nil since the error
signal is affected the same as the steady signal component.
This is the case we treated above. However, if 7, increases
toward 1/w,, the AGC causes attenuation and phase shift
of the error signal. The apparent error signal amplitude
will be diminished and the tracking response will thus be
slower. This arises due directly to the AGC attenuation
and indirectly to the AGC phase shift because the error
signal will be out of phase with the reference signals in the
correlation procedure. One way to resolve the matter s to
apply analog compensation to the AGC voltage before
performing the correlations. A suitable filter would be the
following:
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H opp(@) 2 1 +joor, (103)

which cancels the pole in Eq. (102). Practical implementa.
tion dictates that Eq. (103) has, in addition, a second-
order high-frequency roll-off determined by the analog-to-
digital sampling rate. With the compensation of Eq. (103),
performance of the conical-scan tracker would be identi-
cal to that of the fast AGC case above, i.z., the MGC
result in Eq. (99). The compensation in Eq. (103) can also
be accomplished digitally in the computer after sampling.

A second way to remove the smoothing effect of the
AGC is to apply a gain 10 the error signal equal to that
loss caused by the AGC and apply a phase shift to the
correlating reference signals equal to that caused by the
AGC. If 7 is several times P s¢ the error signal changes
slowly (thus looking approximately like a sine wave) the
system response will be equivalent to that obtained by
using the analog or digital compensation discussed above.
The reason is that if the error signal looks like a sine wave
with slowly varying envelope the system will be [ooking at
the noise spectrum only for a small bandwidth =~1/7
around w,,. Over this small bandwidth the AGC transfer
function is approximately constant. Hence, the error
signal looks like a narrowband signal plus white noise,
and the effect of the AGC is equivalently a pain and
phase shift at w=w,. When 7 and P are of comparable
magnitude this argument does not hold because the error
signal no longer is narrowband, and the analysis is very
difficult and will not be carried out. Logic indicates,
however, that the system will still work and it is felt that
system performance wiil not significantly change from the
T&P case even up to 7=P. Since it is anticipated that
T&P, it is felt that an exact analysis for arbitrary 7 and P
is not really needed.
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Fig. 11. AGC gain magnitude
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For euse of -alculation, the attenuation and phase shift
of the errur signal due to the AGC are presented in Figs.
11 and 12. Gain magnitude is

| H (w,,)}
H(0)

=1/\1+(2n1,/P)} (104)

and phase shift is
Angle[ H(w,)]= ~tan"'(2mr,/P) (105)

From Figs. 11 and 12 it is seen that 7,/ P=0.05 reduces
the gain by only 0.95 and gives only — 18 deg of phase
shift. Remembering that phase error causes the output
amplitude of the correlation procedure to drop as the
cosine of the .. ror, the total drop in loop gain (vs the fast
AGC case) is 0.95 cos(— 18 deg)=0.90, a small change.
Thus, as long as 7, /P <0.05 we probably do not need to
worry about compensation. Note that Figs. 11 and 12 and
the argument above apply equally well to the specification
of the “fast” RC filter when tracking radio sources (see
Section I1I) and was the argument used there to require
that 7,./P<0.05. It should be observed that a phase
error of 30 deg or more gives substantial “cross-talk”
between elevation and cross-elevation axes, which results
in a deterioration of performance and can produce an
unstable system as the phasing error approaches 90 deg.

In conclusion, we find that the performance under
AGC is the same as for MGC, namely Ey. (99), as long as
we compensate for the AGC filtering action when nec-
essary.
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V. Gain Fluctuation Effects

In Sections III and IV, the analyses of tracking per-
formance were made under the assumption that fluctua-
tion of the system gain was of no consequence. In a
practical case, this would be justified only if the scan rate
were much faster than any significant spectral component
of the gain fluctuation. In this section we shall consider
the gain fluctuation problem in detail.

The gain of all receiving systems varies with time.
Mechanical flexure due to vibration, varying stresses, etc.,
and thermal variations are the well-known primary causes.
Good receiver design usually can reduce the problem to
an insignificant level everywhere except in active devices
at RF frequencies. For DSN receiving systems, the masers
are thought to be the principal contributors to gain (and
also phase) instabilies. The gain stability is excellent by
most standards and is satisfactory for virtually all com-
mumication purposes. However, for radiometry and the
present tracking applications, the gain fluctuation of the
system will be seen to give the fundamental limit for the
tracking accuracy available.

We now define the veceiver gain as the gain from the

feed horn down to the point where we convert to digital
format as

(N =Q,[ 1+ 5(1)] (106)

where F(¢) is the gain fluctuation. We really do not need
to specify Q, very carefully, as it will drop out of the
analysis. All we need is to realize that the system gain
varies as 1+ F(1). For good receivers, we have

|F(n) <« (107)

Thus the voltage gain clearly varies as
F(r)
Vi+F() zI+T (108)

We shall model F(¢) as a stationary random process and
we assume that we have knowledge of the statistics (i.e.,
spectrum) of F(1).

A. Tracking of Radlo Sources

We start with Eq. (14) and muitiply it by our time-
varying gain [l + F(1)] to give x'(1):
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x'()=[1+F1) ]x(1) (109)
=CB[1+F(1)][ Top+ Ts8(R)]
+CB( 1+ F(1)]Tsg' (R)[ 0 cosw,t + ¢sinw,t ]
+[1+F(1)]a(e) (110)

Since |F(f)]« 1, we may neglect F(¢) with respect to unity
in the second and third terms of Eq. (110). We may do
this because in the second term F{i) causes a very small
random variation in closed loop bandwidth and in the
third term F(r) causes a very small random variation in
the input noise level. Neither of these are first-order
effects. In the first term of Eq. (110), #(r) does cause a
first-order effect, as we shall see. Upon neglecting F(7) as
above we find from Eq. (110) that

x'(t)=A F(1)+x(1) (11
where
A=CB[T,p+Tsg(R)] (112)

We now form A{? and A{? as in Egs. (15) and (16) by
substituting x'(¢) for x(¢) therein

kP

Af7=—h (k—I)Px’(t)Sin“’m’ dt (113)
AO= (¥ x'(1)cusw, ! dt (114)
k (k- 1)P "

We carefully specified the integration limits in Egs. (113)
and (114) instead of starting ¢ =0 at the beginning of each
scan as in Section III because we will need to consider
correlation between the values of F(r) in different scans.
We now will consider just the elevation axis and appeal to
symmetry later. By putting Eq. (111) in Eq. (113) and
integrating as in Section III, we get Eq. (17) plus an extra
term which is due to the first term in Eq. (111)

A = ~h[Ag+ N |+ m? (115)
where

AP
e = _;,Af F(t)sinw, ¢ dt (116)
k- Dp
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A is as in Eq. (19) and M7 is as in Eq. (20). Starting with
Eq. (17), we follow down to Eq. (30), keeping the extra
term m!{? in Eq. (115) added on. We then have in analog
t0 Eq. (27)

Oy =rd, + 0 +m® (117

where r and n{? are specified in Eqgs. (28-30).

Because m{? and m]‘" are not independent when j % k,
we shall have to consider the actual solutior of Eq. (117)
rather than just evaluate variances as independence al-
lowed us in Section 111. The exact solution of Eq. (117),
assuming we start at =0 with ¢=¢,, is

k=1
Se=or'+ Elr"””"[n;')ﬁ-m,(,")] (118)
F-

Note that the summation term is random while the {irst
term is just Eq. (31). Thus we see the response ume
characteristic is the same as in Subsection A of Section
I1I. We are primarily concerned with the steady state
variance of ¢,, so we take k very large. Since |r|<1 the
first term of Eq. (118) drops out. We make the substi‘u-
tion i=k-p—1 in Eq. (118) and have

k-2
o= 2 r‘["ile—l.’-msle—ll
1=0

(119)

Since n{” and m{? are stationary, we may drop k- 1 from
the two subscripts in Eq. (119) and reverse the sign of i
without any change in the statistics of ¢,. We then have

k-2
o= 2 r'[nf')+mf')]
1=0

(120)

We desire the variance of ¢, as k-+o0 so if we take ko0
in Eq. (120) we have

o, = i r' a9+ mi?] {(121)
-{)

The steady state variance of ¢, 1s then

4

o'=Var[é, |= E[cpi ]
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20 k -}
=E> 3 r'*P[nf')*-mf"][n,(,')-fm;')]
p=0 im0

(122)
a0 L
- 20 20 r E[ WO +nOm + mOnl) + m{ Ol |
p=0i=
(123)

Now from Eqgs. (28-30) and the first sentence of Subsec-
tion B of Section 111,

hi6l im
E[nnl? -{ N P 124
(o] 0 i%p (124)
and
E[n{"m]=0 (125)
Thus

o0 g o0
olmhlol 20r2‘+ 20 Eor"”E[mf”m;")] (126)
L] 1m0 p=

The first summation is 1/(1-r2) so the first term of Eq.
(126) is k%2 /(1—r?), which is just o} in Eq. (40). Thus
the first term of Eq. (126) is just the steady state variance
of ¢, when F(1)=0. We then write

2 A2 a2
o=o¢+og

(127)

where ol is the second term of Eq (126) and is the

variance due to gain fluctuations, and o: 1s as calculated
in Section 11l (or Section 1V when discussing spacecraft

tracking later in this section).

We now need to find a:. From Egs. (126) and (116),

* e T4
ol=hATY X T

pP
f E[ F(t)F(1,) Jsinw,t,
1m0 pm0 (p-1Np

(t - 1P

The expectation in Eq. (128) 1s the autocorrelation of
K1)

E[ Fi)F(1)) = Ry (1, 1) (129)
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which may be expressed in terms of its power spectral
density S,.(f) as

Re(ty=t)= [~ Sp(fler1owaf  (130)
where
j=v-1 (131)

Substitution of Egs. (129) and (130) in Eq. (128) and
interchanging integrals gives

02 = h2A? % éor”””' (132)
where
= [ eI (133)

where * denotes complex conjugation, and
P
YN= [T sinw,re ot (134)
(p-1p

Evaluation of A f) via much algebra gives

~j2nfoPy , janfP _
w,e " e 1)

= 135
W= (135)
Substitution of Eq. (135) into Eq. (133) gives

* Sp(f)sin? afPe 2Pl -P)yg,
IP'-4wi,f r(f)sin ) = y (136)
- [w»zn_(- 7)) ]

Substitution of this into Eq. (132) and rearrangement
gives

ehiria fm S, (f)sin? nﬂ;
- w [Wh = (27f)]

" ' *x©
x S (rey S (re PPYdf (137)
-0 p=0
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The first summation is

i (reﬁ"f’)ii-(l—reﬁ"f"')_l (138)
=0

and the second one is

§0(rc ~pfP )” =(1—re/")" : (139)
pm

The product of the summations can be manim-lated to
give (1+r?=2r cos 2nfP)"'. We can thus rew1te Eq.
(137) as

* Sg(f)sin®c ¢
2 h2A24,42 F
o =h*A 4w,,,f - v .
—w (WA= Qa1+ 1

- df
.« 32afP)

(140)

Upon substituting h=(1 - ) /A4 from Eq. (28), A from Eq.
(112) and A from Eq. (19) and using

Sm=wp/2n=1/P (141)
where f, is the conical-scan rate in Hz, we have

Top ?
—TS"**S(R)]

0:3' Wj r (142)
where
r=[" scmnd (143)

and the weighting function W(/[) is

4(1 —r)’*sin?
. U= si'taf 1o (e

"zl | _(_L)z [l +I‘z“2rC05(277f/fm)]

I

By use of Eqgs. (127) and (47) we obtain

19

1M v
e i it v bbb oo Y



T,
TR,
o= —?(—Rr -B_T +l) (|45)

This is the principal general result for tracking of radio
sources.

It must be realized that I" from Eq. (143) depends on r
via W(f) in Eq. (144) and hence upon r, since from Eq.
(39)

reme P/7

(146)

We now wish to examine in detail how I' depends upon
(via r), f,, and S:(f). In Fig. 13 we plot W(f) from Eq.
(144) as a function of f for v--ious values of r. It can be
shown that the W(f) for any r=|ry is smaller than that
for r= —ir!. Thus, we are further justified in taking
r€(0,1) as we argued 1nitially in Section 1i1-B. In general,
we must calzulate I from Eq. (143). However, in the next
section we shall show that in most cases of interest. we
can approximate I quite well by a simple expression.

8. Narrowband Approximation

We see in Fig. 13 that for values of r near unity that the
area of W'(f) becomes concentrated near f=f, . We know
that in almost all cases of interest we will have P/r«1 so
that 7 is near unity. We thus realize that in these cases we
can approximate W(f) with delta functions at f=f, and
f= —fm if Sg(f) is reasonably smooth near f=f, . This
smoothness has been observed, so we are justified in
taking W(f) as a pair of delta functions. We now need to
find the area near f=f_ in W(f) so we can approximate
W(f) as

W)= Wob(f+ )+ Wob( S - f) (147)

J

o
w

WEIGHTING FUNCTION wif)
o
»{

L\

0 Q.5 t.0 VS 2.0 2.5 3.0
NORMALIZED FREQUENCY Mm

Fig. 13. Weighting function

We note for r near unity that the cosine function in the
denominator of Eq. (141 is the principal factor determin-
ing the area of W(f). We thus expand the numerator of

Eq. {144) around f={,

R A AN TEA)

(148)

Also, the first term in the denominator of Eq. (144) can he
similarly expanded around f=f, as

RRIRSS]

Using Eqs. (148) and (147, in Eq. (144) we ‘ind W(f) near
fm 10 be given approximately b,

(149)

(1-ry’
Y+ri=2rcos(2nf/")

W(f)= (150)

Now since W, is to be the area of W(f) near f=f  we
can find W, by integrating over one period of Eq. (150) as

Wo= [/ w(rydf (151)
Im/2

This integration can be carried out and after much manip
ulation gives

l—r
Wo l+rf"‘

(152)

From Section I1I-B, we know (I-r)'/(l+r) 1s well
approximated by P/2r. Using this and the obvious rela-
tion P=1/f_ . we have

Wom1/21 (153)

Thus, from Eq. {147)

W) =3 [8U+f)+80-f]  (154)

and using this in Eq. (143) w have
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r'E;[SF(-fm)+SF(+fM)] (155)

Sg(f) is an even function, however, so Sg(—f,)=S,
(+f,) and we obtain the simple result

T=Sp(fu)/7 (156)

We refer to the approximations made in this section as a
narrowband approximation since by restricting t to be
large the system is responding only to the gain fluctuation
noise in a narrow band around f,,. Substitution of Eq.
(155) in Eq. (145) gives

Tor 1/2
—[ —TOS—+3(R) {%+s,(fm)]
o—]. g'(R) 11/2

(i:7)

We now take g( ) to be Gaussian as in Eq. (49)

g(B)=exp| —u( B/ WY (158)
Substitution in Eq. (157) gives
T ot
1+ _%é;(x/») {ij‘*sp(fm)]l/z
o= (159)

2uR/W? /2

Use of Eq. (50) for p and writing this in normal:zed
fashion gives

1+ Tor e(zjn)(k/w)2
or!/? s

7 =(0.180)

R/W

(160)

This normalized function is the same as that in Eq. (52)
except for the presence of Sg(J,). so Fig. 7 can be used
for evaluation. We present this result in Fig. 14. We thus
have the rms error in the elevation axis as 6. By symmetry
the error in the cross-elevation axis 1s the same. The
simplicity of this result is impressive. We see that when
P and S.(f) 1s smooth, only S.(f,) is needed in order
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to evaluate o. [t is interesting to note that o varies
inversely with 7, for arbitrarily large values of r. In
addition, we see that gain fluctuations prevent one from
achieving arbitrarily small ¢ by making B very large. We
see, in fact, that if 1/B is comparable to S.(f,) we can

decrease o only by an additional factor of 2 even if
B—oo. Since Sp(f) is almost always monotonically de-
creasing, we can also see mathematically the decrease in o
which can be obtained by increasng f,,. It is necessary, of
course, to know S(f) before ¢ can be calculated.

We have modeled the beam shape as Gaussian so the
crossover loss was found in Eq. (53) to be

g(R) in dB=12.04( R/ W)’ (161)

and was plotted in Fig. 8. In Fig. 15 we present o in Eq.
(160) cross-plotted against the crossover loss g{R). In this
plot it is easy tc see the tradeoff of o vs g(R).
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C. Tracking of Spacecraft

We assume as in Section IV that the receiver is either in
MGC or compensation has been made for the effects of
AGC upon the error signal. We saw in Eq. (108) that the
system voltage gain varies as [1+ F(i)/2] so we take the
signal strength x(f) in Eq. (73) and multiply by this factor
to obtain

x'(=[V1+F1)/2]x(r) (162)
= K[ 1+ F(1)/2]VPs v(1)
+[1+F(1)/2] Kn'(1) (163)

We can ignore F(¢) in the second term of Eq. (163) since it
gives only a very small variation to the effect of n'(s). In
the first term of Eq. (163) we can determine an average
value of uo(f) as far as F(¢) is concerned. Looking at Eq.
(63) and realizing that usually 8,¢ <R, then

average[u(l)]zexp[ —-w(R/ W)z] (164)
(If 8 and ¢. are not <R, we will usually be able to assume

22
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the average is ~1.) Using the above approximations, we
have

X()y=AF(1)+x(1) (165)
where
KVP
A= ‘/2_ exp[ —w(R/W)’] (166)

We now form A{? and A{? as in Eqs. (113) and (114),
using the argument after those equations to write the
integral limits as [(k—1)P.kP]. We obtain for the eleva-
tion case

MO = — W[ KVPs d, + NP | +m? (167)
where
kP
d = f e(r)sinw,,t dr (168)
k-1)P
P -
N@O=K n'(Nsinw, ! dt (169)
(h—1)P

kP
mff)= —hA
k-1)P

F()sinw,t dt (170)

In Section IV, using Egs. (77)«90). d, i> evaluated so we
can rewrite Eq. (167) as

A= —h[Ag, + NP ]+ m{? 71
where, as in Eq. (92),

KPuRYP, ,
A=—-—ZTZS—LAp[—p.(R/W)2] (172)

The N{? are independent random variables with variance
o} given 1n Eq. (95). Equation (171) is now in exactly the
same form as Eq. (115). with m{? in Eq. (170) identical to
Eq. (116). The only difference is that 4 is given by Eq.
(172) rather than Eq. (19) aad ol is given by Eq. (95)
rather than Eq. (22). We may thus follow our previous
work from Eq. (115) on down to Eq. (140).
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We now substitute h=(1-r)/4 from Eq. (28), A from
Eq. (166). and A4 from Eq. (172) and using Eq. (141) we
have

o’= W
£ 4H2 RZ

r (173)

where I' is as in Eq. (143). From Eq. (127). where o, is
taken from Eq. (98). we have the rms tracking error given
by

7 w2
% TopetR/#Y

1/2
w2
P g } (174)

O=ﬁ

As in the radio source case, the general case involves the
cvaluation of Eq. (143) for I'. However, since r will be
near 1, we can invoke the narrowband approximation of
Section V-B and have, from Eq. (156).

F=Se(fn)/7 (175)

[ \ 1
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N

/
[
\
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Fig. 16. Spacecraft angular tracking error
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Use of this in Eq. (174) gives

wZ
uR\/f;

g=

KTope®/ %7 S (£)17°
oP + F(Zf)} (176)

Py

We now put ¢ in normalized form and use Eq. (50) for p
to obtain

/2
_ﬁr_‘”‘ ezvvs(k/u')"
P T 1/2_ 0.180 PsSe(f)
w5t - RJW
am

This result is presented in Fig. 16. We also present this
result in Fig. 17 cross-plotted against the crossover loss
g(R) in Eq. (161).

It is of interest to compare the rms angle tracking errors
for the radio source and spacecraft cases when the system
signal-to-noise ratio becomes very laige and only the gain
fluctuations limit performance. In Eq. (160), if we take B
and T to be infinite. we get the same resu’ as when we
take Pg—oc in Eq. (177). This is not a coincidence since
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Fig. 17. Spacecratft tracking error vs crossover loss
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we should get the same result when the only limitation is
the system gain fluctuation.

Vi. Experimental 'mplementation at the
Goldstone 64-m-diameter Antenna

In the period 1972-1974, an experimental implementa-
tion of .nhe conical-scan scheme was made on the
NASA /JPL 64-m-diameter antenna Mars Station (DSS-
14). The system worked well for tracking of both
spacecraft and radio sources. The system has been used
extensively in an operational quasi-manual mode for
tracking since the initial installation. A fully automatic
operational conical-scan program is now being developed
for regular use in the Deep Space Network.

A. Conical-Scan Hardware

The conical-scan system is easily broken down into
hardware and software blocks. The hardware diagram is
shown in Fig. 18. The system permits any of five signals to
be used as conical-scan “signal strengi:” data. The
broadband square law detector (Ref. 8) can be used with
any of the RF front-ends on the antenna. The four
receivers at DSS-14 each have their AGC voltage brought
to the Multi-Channel-Analog-Signal-Conditioner
(MCASC). The MCASC consists of a separate DC ampli-
fier, lowpass filtering and level shifting for each channel.
The purpose is to bring each of the input lines into a
range compatible with the analog-to-digital converter
(ADC). The ADC has 12 conversion bits inciuding sign,
and it samples 10 times per second. So that there is less
than 4% decrease in SNR due to the finite sampling rate
of the ADC, the time constant of the MCASC must then
be 0.1 s and it is set accordingly (Ref. 9). It is aiso
desirable that quantization noise not be a limiting factor.

BROADBAND
SQUARE LAW
DETECTOR

Thus there must be enough gain prior to the ADC, and
the ADC must have enough levels s that the voltage into
the ADC randomly crosses several levels due to noise
alone. A 12-bit ADC was found to be adequate for a wide
range of signal types.

8. Conlical-Scan Software

The computer used for the Anter.na Pointing System
(APS) at DSS-14 is a Scientific Data Systems SDS 910.
The conical-scan program was packed into approximately
2000 24-bit locations which were available after the
primary APS program was placed into core. The conical-
scan program is an option which is selectable by an
operator by using a breakpoint switch.

A block diagram of the computer calculation is shown
in Fig. 19. The program was configured so it could do a
conical scan in either hour angle/declination (HA /DEC)
or azimuth/elevation (AZ/EL) coordinates. The
appropriate secant correction is required in either case so
as to get a circular scan as seen as a projection on the
celestial sphere. The operation is easy to follow. Consider
an AZ/EL scan. The scan frequency 1n radians/second is
w,,=2n/P. The AZ scan Rsinw, is corrected by the
secant of EL and is fed to the antenna pointing function
along with the EL scan Rcosw,t and the computer pre-
dicts for boresight. This then results in a conical scan. The
square-law detector or an AGC voltage feeds the ADC
which is then multiplied by in- and out-of-phase scan
sinusoids and is integrated (summed) for one scan. A gain
h is applied and a teletype printout uccurs. If the loop is
closed, an angular position correction to boresight is made
and tracking commences. When the system is in closed
loop operation, the teletype prints the accumulated total
of corrections. The phase shift # 1s necessary due to phase

—
STR'T
CHART
RECORDER !

RCVR T AGC =1 LT -CHANNEL SIGNAL
RCVR 2 AGC =4 ANALOG SIGNAL ™1 SELECTOR

RCVR 3 AGC ~——t] CONDITIONER o] (5P5T)
RCVR 4 AGC =

CONICAL-SCAN

r J

ANALOG-
—w| TO-DIGITAL }j—a= 1O SD5 910

CONVERTER COMPUTER

!

—

DIGITAL
VOLTMETER

Fig. 18. Conical-scan hardware
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Fig. 19. Conical-scan software

lag in the physical antenna and the AGC loop or detector
filter. The value of @ is determined experimentally so that
the two channels decouple and work independently.

It was found that the primary source of phase lag is
actually the antenna itself. A circular scan requires
sinusoidal acceleration in each axis, and the antenna servo
cannot achieve zero steady state position error. For a 28-s
scan, 8 needs to be about — 30 deg and for a 58-s scan has
to be about —15 deg ir order to decouple the two axes.
The value of the scan radius R is chosen so that the

Table 2. Primary classes of use

P Scan Crossover R
urpose radius loss, dB esponse
Maximize gain Small <0.1 Slow
Look at dynamics Large 2-3 Fast

(c.g., repeatable
errors and wind
effects)

JPL TECHNICAL REPORT 32-1805

crossover loss is acceptable for the task at hand. For the
experimental program, each scan had a 2-s halt to allow
all calculations to be completed. It was not convenient to
remove this halt, but little error was so introduced because
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Fig. 20. Crossover loss vs scan radius
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Table 3. Tracking error tests

Test Source  Frequency Scan radius, deg Crossover loss, dB  Scau period, s No. of scans rms spread, deg Comments

A 3C123 S-band 0.010 0.06 28 8 0.00015 Limited data

B 3C123 S-band 0.010 0.06 28 30 0.00035

C 3Ci123 S-band 0.020 0.25 18 10 0.00015 Antenna jerky, probably
too short a scan period.
Limited data.

D 3C123 X-band 0.002 0.033 28 5 0.0002 Little data; however,
manual hunting could
only pick up 0.02 dB.

E  Pioneer 9 S-band 0.040 1.0 28 6 0.00032 Limited data.

F  Pioneer?y S-band 0.040 1.0 28 8 0.00035 Limited data.

G  Pioneer 9 S-tand 0.013 0.1 28 18 0.0004

H Pioneer 9 S-band 0.013 0.1 28 17 0.00035

the antenna tended to coast through the halt. The value of
G is “large” for fast response and “small” for long averag-
ing times. Two primary classes of use exist as shown in
Table 2. For ease of relating scan radius to crossover loss,
Fig. 20 is convenient for S-band (=2300 MHz) and X-
band (/8400 MHz) frequencies.

C. Experimental Results

Two types of data will now be shown—pull-in
transients and rms error statistics. In Fig. 21 is shown the
pull-in transient on the radio source 3C123 with the
S-band beam when the initial error is approximately
—0.020 deg in declination. This source gives about 22
kelvins on the 64-m-diameter antenna at S-band. In Fig.
22 is shown a pull-in transient on the Pioneer 9 spacecraft
when initial errors were sizable in both coordinates and
the initial condition represented a gain loss of 4 dB.

In Table 3 are shown the results of a series of tests
performed on October 25, 1973, using HA /DEC scan-
ning. The crossover loss is taken from Fig. 20. The
number of scans shown is the number which was observed
after any initial transient tmbsided. The rms spread is

30
DECLINATION
20
TEST B %
3C123 AT 5-BAND ¥
10 OCT. 25, 1973

SCAN RADIUS = 0.010 deg
CROSSOVER LOSS = 0.06 dB

CORRECTION, 107 deg

HOUR ANGLE

-10

TIME

Fig. 21. Conical-scan puli-in on radio source 3C123 at 8-band

taken as one-sixth of the peak-to-peak variation observed.
In most cases HA and DEC spreads were comparable. If
they were not, they were averaged. These data are quite
crude and obviously are not compensated for any system-
atic errors. However, the rms spreads are remarkably
consistent and may indicate a lower limit to the attainable
accuracy. In Table 3, only tests B, G and H have a large
enough number of scans so the rms spread is of value. To
get more information on the validity of this rms spread,
refer to Table 4. Tests A, B and C in Table 3 are all on
3CI123. For all times during A, B and C when the system
was tracking in steady state operation, the overall peak-to-
peak variation of absolute tracking error vs predicts was
tabulated. One-sixth of this range is estimated as the rms
error. The same procedure was applied to the block of
tests E, F, G and H. Considering that the peak-to-peak
range observed certainly includes systematic errors of the
antenna due to the long duration, the rms variation in
Table 4 probably is a very conservative upper bound on
the random component of tracking error. It is of interest
to note that the resolution of the encoders on the master
equatorial is about 0.0003 deg and their accuracy is on the
order of 0.001 to 0.002 deg. These data indicate a prob-
able rms tracking accuracy for moderate strength signals
like 3C123 and Pioneer 9 of better than a thousandth of a
degree. This will be discussed further in Section VI-E.

Table 4. Overall rms variation

Observed rms Variation, deg
Hour angle Dechnation

0.00096 0.00052

Tests Time span

Comments

A,B,C 1 b, 13 min Begun 1 h after
meridian
transit,
Straddled
meridian

transit,

E.F,G,H 1Ih 59 mn 0.00073 0.00056
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Fig. 22. Conical-scan pull-in on Pioneer 9 spacecrafl

D. Operational Manual Mode

As the Mariner Venus/Mercury 1973 (Mariner 10) en-
counters approached, it was decided to make operational
for X-band tracking a portion of the experimental conical-
scan system. The antenna was put into a 58-s scan with a
radius of 0.004 deg having a crossover loss =z0.14 dB. The
operator could then average the open loop printouts to
decide when a correction should be manually entered.
Alternatively, he could watch the strip chart recorder
shown in Fig. 18. As boresight would drift off the
spacecraft, a sinusoidal pattern would appear on the strip
chart and the operator could search with HA and DEC
corrections to null it out. This mode of operation has
continued through to 1976.

E. Tracking Data From Mariner Venus/Mercury
1973

During the spring 1974 tracking period of Mariner 10
considerable tracking time was accumulated in the opera-
tional manual mode of conical-scan tracking. as described
above. Each time the operator zeroed the errors, an entry
was made in a log. In order to get an idea of the potential
of conical scan (when eventually made fully automatic)
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Fig. 23. Mariner 10 offsets, February 11-13, 1974

these log sheets have been reduced to give corrections in
AZ/EL as well as HA/DEC coordinates and various
plots were made to try to uncover correlations.

First, considering repeatability, in Fig. 23 is shown the
set of raw manual corrections vs time (GMT) for 3 con-
secutive days. The agreement is within about 0.003 deg for
the worst case. In Figs. 24 and 25 are shown further 3-day
plots. Consecutive-day data would be expected to show
repeatable daily variations, as they do. The worst case
discrepancy is 0.005 deg for a 1 sigma statistic of less than
0.001 deg. This is impressive. The consistency indicates
that a fully automatic conical-scan system will almost
certainly achieve the rms error of less than 0.001 seen in
Section VI-C.

In Fig. 26, elevation offsets vs azimuth are shown for
March 23-25, 1974. Consistency is again shown, as well as
a distinct hint that the ionospheric refraction correction is
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Fig. 24. Mariner 10 hour angle oftsets, March 23-25, 1974
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Fig. 25. Mariner 10 declination oftsets, March 23-25, 1974

in error for low elevation angles, i.e., when AZ is less than
140 deg and greater than 240 deg. (A new refraction
correction program is being prepared at this time.)

Many plots were made of AAZ vs AZ, AAZ vs EL, AEL
vs AZ and AEL vs AZ. The curves obtained were rea-
sonably consistent for consecutive days and/or weeks.
However, over the roughly four months’ period for which
much data was taken, only the AAZ vs EL plots gave a
consistent pattern over the whole time. There are 24 days
in this period for which a “complete™ track was made—
e.g., low elevation to high elevation to low elevation.
Every plot of AAZ vs EL showed a character: ,tic sideways
“U”. Figs. 27-31 are typical of this group. The arrow
indicates time through the track. No reasonable explana-
tion is offered for this characteristic shape; it may be a
twisting hysteresis arising in the rising/falling antenna
structure, but the continuous conical scanning would
seem to break up such a hysteresis effect. The sides of the
U became farther apart as summer approached. This is
probably related to the secant correction for higher eleva-
tion angles. The U shape may be refraction-connected. In
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Fig. 26. Mariner 10 elevation offsets vs azimuth, March 23—25,

1974
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Fig. 27. Mariner 10 azimuth oftsets vs elevation, February 4, 1974

any event it shows the extent to which conical scanning
can correct for ano.nalies, whatever their source.

The data from the logs were subjected to a statistical
correlation procedure to see if wind effects could correlate
with any observed offsets. The results were generally
inconclusive, although on windy days the data seemed to
scatter more. With a fully automatic conical-scan system,
the response time can be faster so wind effects can be
more reliably observed. The problem of correlating sys-
tematic errors with this antenna is made difficult by the
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fact that the antenna itself is an AZ/EL mount, while the
Master Equatorial is of HA/DEC type.

F. Comparison of Experimental and Theoretical
Accuracy

We are able to make comparisons of the experimental
and theoretical accuracies for Tests B, G and H of Table
3 and for the Mariner 10 data. The parameters of these
tests are given in Table 5. The value of = for B, G and H
was taken from observation during pull-in, while for
Mariner 10 it represents a reasonable guess as to the

JPL TECHNICAL REPORT 32-1805

Table 5. Test parameters
Parameter TestB Test G, H Manner 10
R 0.010 deg 0.013 deg 0.004 deg
w 0.140 deg 0.140 deg 0.038 deg
T 75s 200s 300s
Tor 20K 20K 20K
T, 2K — —
B 10 MHz — —
P, — ~ 159 dBmW ~ 144 dBmW
Table 6. Experiment vs theory
Test Theoretical rms, Observed rms, Overall rms,
e 1073 deg 1073 deg 10~ deg
B 78x10°% 035 0.74
G, H 1.3 035,04 0.65
Mariner 10 0.045 <1 <1

operator’s visual averaging time. In Table 6 the theoretical
and experimental rms errors are compared. The theoreti-
cal values ignore gain variations by letting S¢(f,,) be zero
in Egs. (160) and (176). The rms error for Mariner 10 is
deduced in Section VI-E. The overall rms column is an
average of the HA and DEC values in Table 4.

Some interesting conclusions may be drawn from these
data. First, the observed rms errors are all about the same
for three vastly differing conditions with greatly different
theoretical accuracies. This indicates that encoder errors
and/or gain fluctuations are the primary limitations on
tracking accuracy. Second, some of the error observed
might be systematic in nature and the rms error observed
may not be entirely random. Third, the theoretical value
of rms error for radio source tracking will be very small
due primarily to the 1/B term in Eq. (160). This small
value will not be achieved with the present system.

VIl. Conclusions

A thorough analysis of a conical-scan system suitable
for large antennas has been made. Details of an experi-
mental implementation were given and tracking data were
presented. Tracking accuracies of 0.001 deg rms seem to
be readily obtainabie.
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Appendix
Calculation of the Statistics of N© and N{’

The means of N and N{? must be zero because n(s) was assumed to be white.
From Eq. (20),

P pP
oﬁ-Var[Ny)]-E[j(; fo n(t)n(ty) sinw, 1, sinw,t, dt, dt,

P P
- f f R,(t,— 1) sinw, 1, sinw,t, dt, dt, (A-1)
0o Y0

where E[-] denotes expectation and R,(7) is the autocorrelation function of n(r).
From Eq. (13),

R (1~ 1) =C[ Top+ Tsg(R) ]’ BS(1, 1) (A-2)

since a Fourier transform relation exists between S,(f) and R (7). Putung Eq. (A-2)
in Ea. (A-1) and integrating, we have

o} =C*[ Top+ Tyg(R))’BP/2 (A3)

Similar manipulation shows that Var{N{] is also o3.
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