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PREFACE 

The technical program of the 13th Annual Meeting of the Society of Engi- 
neering Science, Inc., consisted of 159 invited and contributed papers covering 
a wide variety of research topics, a plenary session, and the Annual Society of 
Engineering Science Lecture. 
invited and/or contributed papers while two of the sessions were conducted as 
panel discussions with audience participation. 

Thirty-three of the technical sessions contained 

These Proceedings, which contain the technical program of the meeting, are 
presented in four volumes arranged by subject material. 
science are contained in Volume I. Volume I1 contains the structures, dynamics, 
applied mathematics, and computer science papers, Volume If1 contains papers 
in the areas of acoustics, environmental modeling, and energy, Papers in the 
area of flight sciences are contained in Volume IV, 
and an Author Index are included in each volume. 

Papers in materials 

A complete Table of Contents 

We would like to express particular appreciation to the members of the 

Our thanks are given to all faculty and staff 
Steering Committee and the Technical Organizing Committee for arranging an 
excellent technical program. 
of the Joint Institute for Advancement of Flight Sciences (both NASA Langley 
Research Center and The George Washington University) who contributed to the 
organization of the Meeting. 
and this document of Sandra Jones, Virginia Lazenby, and Mary Torian is 
gratefully acknowledged. Our gratitude to the Scientific and Technical 
Information Prgrams Division of the NASA Langley Research Center for pub- 
lishing these Proceedings is sincerely extended. 

The assistance in preparation for the meeting 

Hampton, Virginia 1976 J. E. Duberg 
J. L, Whitesides 
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SOCIETY OF ENGINEERING SCIENCE, INC. 

The purpose of the Society, as stated in its incorporation document, is 
to foster and promote the interchange of ideas and information among the vari- 
ous fields of engineering science and between engineering science and the fields 
of  theoretical and applied physics, chemistry, and mathematics, and, to that end, 
to provide forums and meetings for the presentation and dissemination of such 
ideas and information, and to publish such information and ideas among its mem- 
bers and other interested persons by way of periodicals and otherwise." 
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CONTINUUM MECHANICS AT THE ATOMIC SCALE* 

A. C e m a l  Eringen 
Princeton University 

ABSTRACT 

Class ica l  continuum mechanics has been successful  i n  pred ic t ing  a l a rge  
class of physical  phenomena f o r  which the  ex terna l  c h a r a c t e r i s t i c  length,  A ,  
(e.g., wavelength, thickness,  curvature) is  much g rea t e r  than the i n t e r n a l  
cha rac t e r i s t i c  length,  R ,  (e.g., average atomic o r  granular dis tance,  ce l l  
s i z e ) .  However, t he re  e x i s t  large classes of physical  phenomena t h a t  defy 
l o c a l  descr ip t ion  based on c l a s s i c a l  continuum theor ies .  
the state of stress a t  a crack t i p ,  d i s loca t ions ,  fa t igue ,  turbulence, surface 
physics, dispers ion of high frequency waves, etc. To explain these c r i t i ca l  
phenomena, one i s  of ten  forced t o  r eve r t  t o  the  atomic and molecular theor ies  
o r  approximate and h e u r i s t i c  models. By means of atomic theory of lat t ices,  
one can only dea l  with i d e a l  c r y s t a l  s t ruc tu res  whose atoms are located i n  a 
pe r fec t ly  per iodic  manner o r  deviate  from it only s l i g h t l y .  
and engineering s t ruc tu res  are, however, imperfect and cannot be represented 
by such pe r fec t  models. 

Among many we cite: 

A l l  materials 

Recently constructed nonlocal continuum mechanics, Eringen [1972a,b,c], 
[1973], [1974], [1976a], appear t o  have grea t  po ten t i a l  i n  dealing with 
s i t ua t ions  i n  which X i s  of order of 1, i .e.,  the  long range interatomic 
a t t r a c t i o n s  are important. Nonlocal e l a s t i c i t y ,  f o r  example, can be employed 
t o  determine the  s ta te  of stress near a sharp crack and p red ic t  the  cohesive 
stress t o  break the  atomic bonds. Thus w e  have been ab le  t o  produce a 
f r ac tu re  c r i t e r i o n  based on the  maximum stress a t  the  t i p  of a sharp crack 
and determine the  shear stress t h a t  causes a d i s loca t ion  of s ing le  atomic 
dis tance.  
atomic theory,  c f . ,  Eringen e t  a1 [1976], Eringen \[1976b,c]. 

These r e s u l t s  are i n  exce l len t  agreement with experiments and the  

Similar ly ,  the  development of the secondary flow i n  a rectangular pipe 
can be predicted by means of the  theory of nonlocal f l u i d  dynamics. 

In  t h i s  l ec tu re ,  I present  a b r i e f  discussion of t he  physical and 
mathematical ideas  underlying the nonlocal continuum mechanics. Afterwards, 
I s h a l l  present  so lu t ions  of some problems i n  f r ac tu re  mechanics, edge and 
s c r e w  d is loca t ions ,  and secondary flow i n  a pipe. 
compared with experiments and atomic theor ies  avai lable .  

The r e s u l t s  w i l l  be 

The research presented i n  t h i s  l ec tu re  w a s  supported by the  Army * 
Research Office (Durham, North Carolina) and t h e  Off ice  of Naval Research 
(Washington, D. C. ) . 
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MICROSCOPIC ASPECTS OF INTERFACIAL REACTIONS IN DIFFUSION BONDING PROCESSES* 

Michael P. Shearer and Charles L. Bauer 

Carnegie-Mellon University 
Center for the Joining of Materials 

SUMMARY 

This paper is concerned with microscopic aspects of interfacial reactions 
(occurring over distances less than one micrometer), such as interdiffusion, 
formation of intermetallic phases, generation and annihilation of lattice de- 
fects, effect of temperature, grain size, etc., which normally occur in dif- 
fusion bonding processes. Specifically, relationships between properties and 
microstructure in thin-film couples are examined utilizing a unique combination 
of contact resistance measurements and characterization by transmission elec- 
tron microscopy. A thorough knowledge of these relationships is essential in 
order to .control and improve all diffusion bonding processes. 

INTRODUCTION 

Diffusion bonding is a solid-state joining process wherein two materials 
are brought into intimate contact under the influence of elevated temperature 
and pressure in order to establish a bond across the resultant interface. This 
process may be characterized by four distinct steps: (1) preparation of sur- 
faces to be joined, (2) development of intimate physical contact, (3) inter- 
diffusion and (4) evolution of microstructure (recrystallization and grain 
growth) near the original interface. 
bonding, therefore, involves an intricate combination of surface and inter- 
facial reactions which optimize continuity of macroscopic properties; e.g., 
electrical, mechanical, thermal, etc. Specific diffusion bonding processes, 
however, may promote contamination at the original interface, formation of 
intermetallic phases, generation of voids, etc., which degrade desirable en- 
gineering properties of the resultant bond. It is eppecially important to 
understand microscopic aspects of these,reactions, since development of proper- 
ties and establishment of long-term reliability are generally predictable from 
early stages of bond formation. 
lationships between properties and microstructure in thin-film couples utili- 
zing a unique combination of contact resistance measurements and characteriza- 
tion by transmission electron microscopy. 

The joining of two metals by diffusion 

The purpose of this paper is to examine re- 

*Financial support from the National Science Foundation is gratefully 
acknowledged. 
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BACKGROUND 

Many techniques have been developed such as small-angle x-ray sca t t e r ing  
(ref .  l), ion  backscat ter ing ( re f .  2 ) ,  Auger spectroscopy ( re f .  3) ,  and opt i -  
c a l  r e f l e c t i v i t y  ( r e f .  4 ) ,  t o  study ea r ly  s tages  of bond formation u t i l i z i n g  
b imeta l l ic  thin-fi lm (<lo  pm) couples. These techniques provide usefu l  infor- 
mation concerning in t e rd i f fus ion  of various chemical species  ( re f .  5 ) ,  but 
cannot provide complimentary information concerning evolution of microstruc- 
ture.  Effect  of microstructure  on i n t e r f a c i a l  reac t ions  i n  b imeta l l ic  t h i n  
f i lms i s  demonstrated i n  s tud ies  of t h e  copper-gold system ( re fs .  1,6,7), 
wherein r e s u l t s  vary as t o  which in t e rme ta l l i c  phases form as w e l l  as s p e c i f i c  
growth k i n e t i c s  of each phase. 
l a rge  va r i a t ion  i n  microstructures of t h i n  f i lms.  

These d i f fe rences  may be a t t r i b u t e d  t o  the  

Thin f i lms of ten  are character ized bv d i s loca t ion  d e n s i t i e s  grea te r  than 
10l1 cm-2, twin d e n s i t i e s  grea te r  than 1017 cm-3 and grain s i z e s  less than 
10 nm ( re f s .  8,9). These defec ts  of ten  provide shor t -c i rcu i t  d i f fus ion  paths 
which f a c i l i t a t e  i n t e r f a c i a l  react ions.  
therefore ,  t he  ex ten t  of shor t -c i rcu i t  d i f fus ion  i s  demonstrated i n  f igu re  1, 
wherein the  gra in  s i z e  of copper t h i n  fi lms has  been increased from 50 t o  
250 nm by increasing the  subs t r a t e  (sodium chlor ide)  temperature from 25 t o  
20OoC. Thus coe f f i c i en t s  f o r  bulk and shor t -c i rcu i t  d i f fus ion  may be obtained 
as a funct ion of gra in  s i z e  and other  microstructural  fea tures .  Grain s i z e  
may a l s o  a f f e c t  t h e  number of nucleat ion si tes ava i lab le  f o r  i n t e rme ta l l i c  
phase formation. Tisone and Lau ( r e f .  11) have shown t h a t  t he  r e su l t an t  gra in  
s i z e  of a TaAu in t e rme ta l l i c  phase is  dependent on the  gra in  s i z e  of t he  
tantalum and gold fi lms. Orientat ion of grains  can be control led by e p i t a x i a l  
growth on s u i t a b l e  subs t ra tes  ( r e f .  l o ) ,  thereby permitt ing preparation and 
subsequent examination of s p e c i f i c  gra in  boundaries with known atomic s t ruc-  
ture .  
metallic couples can a l s o  be examined by t h i s  method. Detailed information 
concerning defec ts  generated o r  annihi la ted t o  accommodate nucleat ion and 
growth of a phase ( r e f .  12) can be obtained by high-resolution transmission 
e lec t ron  microscopy. 

The a b i l i t y  t o  cont ro l  gra in  s i z e  and, 

Nucleation and growth of a spec i f i c  phase among competing phases i n  bi-  

The aforementioned discussion ind ica tes  t h e  importance of continuously 
monitoring a property t h a t  r e f l e c t s  reac t ions  occurring a t  o r  near t he  in t e r -  
face during d i f fus ion  bonding processess - and co r re l a t ion  of these reac t ions  
with evolution of microstructure a t  t h e  highest  reso lu t ion  possible.  The 
remainder of t h i s  paper is  devoted t o  a technique developed a t  Carnegie-Mellon 
University i n  which contact r e s i s t ance  is  measured continuously i n  b imeta l l ic  
t h i n  fi lms. I n  addi t ion t o  t h e  app l i cab i l i t y  of t h i s  techniqu? t o  normal dif-  
fusion bonding processes, i t  is a l s o  relevant  t o  degradation of contacts  pro- 
duced by mult i layer  meta l l iza t ion  i n  semiconductor devices. 

CONTACT RESISTANCE TECHNIQUE 

Measurement of contact r e s i s t ance  can provide valuable  information con- 
cerning i n t e r f a c i a l  reac t ions  i n  b imeta l l ic  couples. For example, consider an 
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AB diffusion couple schematically represented by the binary AB phase diagram in 
figure 2. 
hibits a single discontinuity at the original interface as well as a correspon- 
ding discontinuity in a given property (electrical resistivity). During inter- 
diffusion, however, an intermetallic phase (y) may form at the interface, 
separated from the original phases by discontinuous composition and resistivity 
profiles. 
by the hatched area and is termed contact resistance. 
tion may arise due to chemical diffusion into the (originally) pure A and B 
phases. 

Initially,the composition vs. distance profile of this couple ex- 

The additional resistance associated with this reaction is denoted 
An additional contribu- 

Contact resistance Rc(t) may be expressed by the sum of two terms: 

where Rc (0) denotes an initial (temperature-dependent but time-independent) 
contact resistance and ARc(t) denotes a time-dependent contribution. 
general, time dependence of the contact resistance is given by the expression 

In 

ARc(t) = K(T)tn (2) 

where t denotes time, K(T) denotes a temperature-dependent rate constant,and n 
denotes a characteristic time exponent. 

Contact resistance is measured from a matrix of thin-film contacts consis- 
ting of AA, AB, BA,and BB couples, as illustrated in figure 3.  A constant cur- 
rent I is then imposed across two adjacent legs of each couple and the poten- 
tial drop AV across the other two legs is measured. The contact resistance 
then is obtained from the expression 

Rc(t) = AV/I (3 )  

By continuously recording AV for each of four couples, evolution of contact re- 
sistance can be followed with great precision. In fact, since AV can be mea- 
sured to 10-8V, intermetallic layers as thin as l nm can be detected. Magnitude 
of Rc(0) provides a measure of initial contact perfection, explicit values of 
n allow determination of rate-controlling mechanisms associated with interf a- 
cia1 reactions, temperature dependence of K(T) yields a measure of concomitant 
activation energies,and current dependence of K(T) permits resolution of ef- 
fects due to Joule heating and electromigration. Artifacts can be separated 
easily by comparing results obtained from like and unlike.meta1 couples. 

TYPICAL RESULTS 

A composite measure of current distortions in the region of each contact 
and an interfacial contribution associated with lattice defects is provided by 
the dependence of Rc(0) on dc current density, temperature, film thickness,and 
fabrication conditions. 
about 50% greater than values for bulk materials, indicating presence of large 

Typical leg resistivities for thin films are 
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defect densities in the deposited films. 
ing and electromigration effects occur at current densities in 
excess of lo6 A/cm2 due to a sharp, unstable,and irreversible increase in 
Q(0) and subsequent failure of some couples as a result of characteristic 
current-induced voids at or near the contact. 
(copperlnickel and aluminum/copper) , Joule heating and electromigration effects 
are also observed, but relationships between contact resistance and current 
density become more complex as a consequence of interfacial reactions in the 
solid state. 

For like-metal couples, Joule heat- 

- 
For unlike metal couples 

For relatively simple systems, such as copper-nickel, values of the para- 
meter n are about 0.5 indicating that evolution of contact resistance is 
characterized by a parabolic time law associated with interdiffusion of copper 
and nickel. 
a nickel/copper couple at 500 C. 
function of temperature, an effective preexponential diffusion coefficient Do 
of 4 x cm2/sec and an activation energy Q of 33 kcal/mol have been ob- 
tained. 
of values expected for bulk diffusion. Combined with complimentary results 
from Auger electron spectroscopy, optical microscopy and transmission electron 
microscopy, data indicate that interdiffusion is facilitated by grain boun- 
daries and other lattice defects. Further support of this conclusion is ob- 
tained through time-dependent contact resistance measurements on unlike 
couples with varying defect densities. 
sizes of the constituent copper and nickel films are increased from 20 and 
120 to 65 and 250 nm,respectively, the effective interdiffusion coefficient 
is reduced by a factor of about 5. 
cates that a characteristic diffusion distance has exceeded the film thickness. 

An example of thAs time dependence is presented in figure 4 for 
By conducting similar experiments as a 

In general, Do is orders of magnitude small and Q is about one-half 

In particular, when approximate grain 

Deviation from linearity in figure 4 indi- 

For more complex systems, such as aluminum-copper, evolution of contact 
resistance is more complex than that presented in figure 4 ,  although results 
still indicate that diffusion-controlled processes obtain. Namely, n assumes 
a value closer to 0.4 and the deviation from linearity is not nearly so evi- 
dent. 
film thickness, a measure of the diffusion coefficient D can be estimated from 
the expression 

Nevertheless, by noting the time required for this deviation and the 

D f x2/t ( 4 )  . 

At 2OO0C, for exam le, the value of D obtained for aluminum-co per couples is 
about 3 x 
copper-nickel couples. 
microscopy indicates that aluminum is more mobile in aluminum-copper couples 
whereas copper is more mobile in copper-nickel couples. 

cm 3 /sec, compared to a value of about 3 x cm2/sec for 
Subsequent examination of the surfaces by optical 

The principal contribution to the contact resistance in copper-nickel 
couples is expected to be due to chemical interdiffusion, whereas the princi- 
pal contribution in aluminum-copper couples is expected to be due to for- 
mation of intermetallic phases. Indeed, five intermetallic phases of aluminum 
and copper are thermodynamically stable in the temperature range under investi- 
gation (ref. 13) ,  each characterized by a unique value of electrical 
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resistivity. These phases and corresponding values of Knoop hardness and 
(relative) electrical resistivity are identified in figure 5. Since each in- 
termetallic phase is characterized by a significantly smaller electrical con- 
ductivity (larger electrical resistivity) than either pure aluminum or copper 
it is expected that contact resistance will increase correspondingly. 

Transmission electron micrographs and corresponding electron diffraction 
patterns confirm formation and growth of the intermetallic compound CuA12 at 
the interface of aluminum-copper thin-film couples during annealing at about 
20OoC. An example is presented in figure 6, wherein transmission electron 
micrographs and corresponding diffraction patterns are presented for unan- 
nealed and annealed couples. 
evident prior to annealing but small particles of CuA12 are easily discernible 
following annealing. 
By depositing films of copper and aluminum of the appropriate thickness to pro- 
duce CuA12 by extended annealing, values of Rc(t) over 5 times larger than 
initial values have been measured. Similar changes in mechanical properties 
also occur. Therefore, it is evident that degradation of electrical and 
mechanical properties due to interfacial reactions represents an important 
limitation in diffusion bonding processes. 

No indication of intermetallic phase formation is 

Further annealing produces a continuous layer of CuA12. 

CONCLUDING REMARKS 

Microscopic aspects of interfacial reactions in diffusion bonding pro- 
cesses have been investigated by combination of a sensitive contact resis- 
tance technique and microstructural characterization by transmission electron 
microscopy. Specifically, important interfacial reactions have been identified 
in the copper-nickel and aluminum-copper systems and specific information has 
been obtained concerning the nature of these reactions. Namely, degradation of 
engineering properties occurs predominantly by grain boundary diffusion between 
300' and 500°C in the copper-nickel system whereas degradation occurs predomi- 
nantly by formation of the intermetallic phase CuA12 at 200 C in the 
aluminum-copper system. A thorough knowledge of these reactions is essential 
in order to control and improve diffusion bonding processes. 
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Figure 1.- Transmission e l ec t ron  micrographs and 
accompanying se l ec t ed  area d i f f r a c t i o n  pa t t e rns  
of copper thin-fi lms deposited a t  (a) 25% and 
(b) 200OC. 
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Figure 2.-  Schematic i l lustration of a binary 
AB phase diagram along with composition and 
electrical  re s i s t iv i ty  profiles.  The hatched 
area represents contact resistance. 

Figure 3.- Example of a typical AB thin-film 
(f our-element) matrix, Contact resistance 
is measured at the point of crossover of 
each couple. 
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Figure 4.- Variation of the time-dependent component of specif ic  contact 
resistance AARc(t) as a function of time t ,  where A denotes the 
apparent (geometric) contact area, for a co per-nickel thin-film 
couple at  503OC and a current density of 10 g A/cm2. 
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Figure 5.-  Values of typical engineering properties (Knoop 
hardness and e lectr ica l  conductivity) for thermo- 
dynamically stable phases i n  the copper-aluminum system. 
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(a) 

Figure 6.- Transmission e lec t ron  micrographs and 
accompanying se lec ted  area d i f f r a c t i o n  pa t t e rns  
of aluminum-copper thin-fi lm couples (a) unannealed 
and (b) annealed f o r  1 h r  a t  410%. Extra r ings  
i n  t h e  d i f f r a c t i o n  pa t t e rn  of (b) ind ica t e  formation 
of t h e  in t e rme ta l l i c  compound A12Cu. 
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MACROSCOPIC ASPECTS OF INTERFACIAL REACTIONS 

I N  DIFFUSION BONDING PROCESSES* 

R. W. Heckel 
Department of Metal lurgical  Engineering 

Michigan Technological Universi ty  

ABSTRACT 

The bonding of d i s s imi l a r  metals and a l l o y s  f requent ly  results i n  consid- 
e rab le  in t e rd i f fus ion  i n  t h e  v i c i n i t y  of t h e  bond zone. I n  addi t ion,  new 
phases not found i n  t h e  metals being bonded can be formed. The extent of in- 
t e r d i f f u s i o n  and formation of new phases i s  determined by t h e  cons t i t u t ion  di- 
agram of t h e  a l l o y  system, t h e  in t e rd i f fus ion  c o e f f i c i e n t s  of t h e  phases pres- 
e n t ,  and t h e  thermal conditions (temperature and time) assoc ia ted  with t h e  
bonding'process and/or subsequent use of t h e  bonded s t ruc ture .  In  many in- 
s tances  t h e  k i n e t i c s  of i n t e rd i f fus ion  and phase formation can be predicted 
from known parameters using numerical methods and computer techniques. This 
presentat ion w i l l  focus upon comparisons of such predic t ions  with experimen- 
t a l l y  determined parameters f o r  a v a r i e t y  of meta l lurg ica l  a l l o y  systems. 

INTRODUCTION 

The process of d i f fus ion  bonding i s  becoming more important with t h e  in- 
c reas ing  sophis t ica t ion  i n  materials technology. 
and a l loys  i s  o f t e n  used t o  w e l d  s t r u c t u r a l  components i n  instances where con- 
vent ional  fus ion  welding would r e s u l t  i n  poor proper t ies  due t o  t h e  s o l i d i f i -  
ca t ion  process. I n  addi t ion ,  d i f fus ion  bonding i s  of importance i n  t h e  forma- 
t i o n  of adherent coat ings,  t h e  f ab r i ca t ion  of laminar and f ib rous  composites, 
and t h e  consol idat ion of powders i n t o  s t r u c t u r a l  components. It i s  c l e a r  t h a t  
d i f fus ion  bonding o f f e r s  a unique means of f ab r i ca t ing  metals and a l l o y s  and 
should continue t o  grow i n  importance as more emphasis i s  placed on e f f e c t i v e  
materials u t i l i z a t i o n .  

Sol id  state jo in ing  of metals 

Diffusion bonding i s  o f t e n  ca r r i ed  out  at  temperatures approaching t h e  
melting point  of  t h e  cons t i tuent  p a r t s ,  r e s u l t i n g  i n  s ign i f i can t  d i f fus iona l  
in te rac t ion .  A s m a l l  mount  of i n t e rd i f fus ion  is  o f t en  necessary t o  achieve 
t h e  proper t ies  desired i n  t h e  bond; excessive in t e rd i f fus ion  can lead t o  t o o  
w i d e  a bond zone and, f o r  some a l l o y  systems, t h e  growth of intermediate phase 
layers which degrade t h e  proper t ies  of t h e  bond. Furthermore, t h e  r e s u l t i n g  

*Financial support from t h e  National Science Foundation i s  g r a t e f u l l y  acknowl- 
edged. 

15 



material i s  o f t en  subjected t o  use temperatures which promote add i t iona l  d i f -  
fusion. Typically,  it i s  found that  volume (or l a t t i c e )  d i f fus ion  i s  t h e  dom- 
inant  t ranspor t  process at  these  high temperatures and t h a t  t h e  metal lurgical  
phases present correspond t o  those present on t h e  equilibrium phase diagram 
fo r  t h e  a l l o y  system of  i n t e r e s t .  

The general  nature  of binary a l l o y  system behavior during d i f fus ion  bond- 
ing can be defined i n  terms of t h e  equilibrium phase diagram. 
types of behavior occur when t h e  compositions of both components t o  be joined 
l i e  i n  t h e  same f i e l d  a t  t h e  d i f fus ion  bonding temperature. If t h e  f i e l d  has 
two phases (e .g .  , (a+@) ) , no long range in t e rd i f fus ion  w i l l  t ake  place and 
t h e  compositional d i scont inui ty  at t h e  in t e r f ace  w i l l  remain. 
has only one phase (e.g., a ) ,  i n t e rd i f fus ion  w i l l  occur, a smooth t r a n s i t i o n  
i n  cpmposition w i l l  develop and t h e  width of t h e  zone of i n t e rd i f fus ion  w i l l  
widen parabol ica l ly  with t i m e .  

The simplest  

If t h e  f i e l d  

More complex s i tua t ions  develop when t h e  components t o  be joined do not 
Lie i n  t h e  same f i e l d  of  t h e  phase diagram. Components i n  adjacent one-phase 
f i e l d s  (e .g . ,  a and 6) w i l l  g ive  r ise  t o  in t e rd i f fus ion ,  with a d iscont inui ty  
i n  t h e  concentration-distance p r o f i l e  of t h e  magnitude of t h e  compositional 
width of t h e  (a+@) f i e l d .  Components i n  one-phase f i e l d s  which are not adja- 
cent (e.g., a and y) w i l l  r e s u l t  i n  t h e  formation and growth of a layer  o f  
t h e  intermediate phase 6 at t h e  j o i n t  i n t e r f ace ;  t h e  concentration-distance 
p r o f i l e  w i l l ,  i n  t h i s  instance,  contain two cornpositional d i scon t inu i t i e s  
representing t h e  (a+@) and (@+y) two-phase f ie lds .  Components i n  adjacent 
two-phase f i e l d s  (e .g . ,  (a+@) and (@+y)) w i l l  r e s u l t  i n  t h e  formation and 
growth of a l aye r  of @ phase a t  t h e  j o i n t  i n t e r f ace .  Thus, it is  genera l ly  
found during high-temperature d i f fus ion  bonding of  binary systems t h a t  t h e  
concentration-distance p r o f i l e s  exhib i t  a l l  of t h e  one-phase f i e l d s  between 
t h e  compositions of t h e  two components being joined; t h e  two-phase f i e l d s  a r e  
not observed and give r ise  t o  compositional d i scon t inu i t i e s  a t  t h e  in t e r f aces  
between phases, 

Ternary and higher order a l loy  systems can give r i s e  t o  much more com- 
plex phenomena. Both one- and two-phase f i e l d s  can occur i n  t e rna ry  d i f fus ion  
systems; one-, two-, and three-phase f i e l d s  i n  quaternary systems, e t c .  Un- 
for tuna te ly ,  t h e  d i f fus ion  paths  cannot be predicted a p r i o r i  from such phase 
diagrams, as i n  t h e  case of binary systems, because of t h e  add i t iona l  de- 
g r e e ( s )  of freedom. 

The k i n e t i c s  of i n t e rd i f fus ion  and possible  intermediate phase growth as- 
sociated with d i f fus ion  bonding i s  j u s t  as important as t h e  understanding of 
which phases w i l l  form. Proper s e l ec t ion  of t h e  d i f fus ion  bonding temperature 
and t i m e  can o f t e n  result i n  t h e  necessary cont ro l  of de le te r ious  e f f e c t s  of 
i n t e rd i f fus ion .  Furthermore, it i s  now poss ib le  t o  formulate pred ic t ive  
models f o r  estimating t h e  extent of i n t e rd i f fus ion  and intermediate phase 
growth i n  binary systems s ince  phase diagrams ( s o l u b i l i t i e s )  and in te rd i f fu-  
s ion c o e f f i c i e n t s  are ava i lab le  f o r  many systems. The formulation of pre- 
d i c t i v e  models f o r  t e rna ry  and higher order systems i s  much more d i f f i c u l t  
due t o  t h e  general  l a c k  of such da ta  as w e l l  as t h e  previously mentioned d i f -  
f i c u l t i e s  assoc ia ted  with t h e  a p r i o r i  d e f i n i t i o n  of d i f fus ion  paths.  How- 
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ever, i n  some instances b inary  k ine t i c  models can provide s ign i f i can t  approx- 
imations t o  more complex s i tua t ions .  

Predic t ive  d i f fus ion  models requi re  considerat ion of geometric f a c t o r s  
as w e l l  as a l l o y  system parameters ( in t e rd i f fus ion  c o e f f i c i e n t s  and phase 
s o l u b i l i t i e s )  and process parameters (composition of components t o  be joined,  
temperature, and t i m e ) .  A planar j o i n t  i n t e r f ace  between two l a r g e  blocks of 
material (p lanar ,  i n f i n i t e  model) i s  t h e  simplest  s i t u a t i o n .  Solutions t o  
t h i s  type o f  problem f o r  both concentration-independent and concentration- 
dependent i n t e rd i f fus ion  c o e f f i c i e n t s  f o r  one-phase systems are found i n  stan- 
dard t e x t s  (ref. 1,2). 
with concentration-independent i n t e rd i f fus ion  coe f f i c i en t s  have been put f o r t h  
as w e l l  (ref.  3) .  
and numerous comparisons between predict ions and experimental data appear i n  
t h e  l i terature.  

Solut ions f o r  multiphase, planar ,  i n f i n i t e  problems 

The use o f  t hese  planar ,  i n f i n i t e  models i s  qu i t e  common 

On t h e  o the r  hand, t h e  development of p red ic t ive  models which consider 
f i n i t e ,  non-planar ( e. g . , c y l i n d r i c a l  and sphe r i ca l )  , and mult iphase situa- 
t i o n s  has proceeded more slowly due t o  t h e  complexi%ies involved. These com- 
p l e x i t i e s ,  however , are o f t en  important i n  dealing with d i f fus ion  bonding 
problems. F i n i t e  s i t u a t i o n s  a r i s e  when i n t e r l a y e r s  are used between t h e  two 
components t o  be joined or when laminar composites are t o  be fabricated by 
d i f fus ion  bonding of many l aye r s  of m e t a l  f o i l s ;  t h e  cy l ind r i ca l ,  f i n i t e  ge- 
ometry i s  important i n  t h e  f3br ica t ion  of continuous fi lament composites by 
d i f fus ion  bonding of a l t e r n a t e  l a y e r s  of m e t a l  f o i l s  and w i r e s ;  t h e  spherical  
f i n i t e  geometry i s  important i n  t h e  f ab r i ca t ion  of components by t h e  pressing 
and s in t e r ing  of  blends of powders. 

F i n i t e ,  non-planar geometry d i f fus ion  problems can be modeled using nu- 
merical  methods and computer techniques.  Solutions f o r  problems where t h e  
components t o  be joined l i e  i n  adjacent one-phase f i e lds  (two-phase model) 
and i n  one-phase f i e l d s  separated by an intermediate phase (three-phase model) 
have been developed f o r  concentration-independent i n t e rd i f fus ion  coef f ic ien ts .  
The geometric elements of t hese  models are given i n  f igu re  1. Thus, predic- 
t i v e  models are now ava i l ab le  t o  def ine  t h e  e f f e c t s  of a l l o y  system and pro- 
cess  parameters on t h e  k i n e t i c s  of i n t e rd i f fus ion  and intermediate phase 
growth i n  a wide v a r i e t y  of d i f fus ion  bonding problems. 
of t h i s  presenta t ion  t o  compare t h e  results of such predic t ions  with experi- 
mental data obtained from d i f fus ion  bonding s tudies  on f i n i t e ,  planar ,  m u l t i -  
phase systems. 

It i s  t h e  purpose 

DIFFUSION ANALYSIS 

I n  general ,  t h e  development of mathematical models f o r  t h e  descr ip t ion  
of binary in t e rd i f fus ion  phenomena i n  a s i t u a t i o n  of i n t e r e s t  requi res '  t h e  
simultaneous so lu t ion  of F ick ' s  Law (one equation f o r  each phase) and t h e  
f l u x  balance equation (one equation f o r  each in t e r f ace  between phases) fo r  
t h e  appropriate  i n i t i a l  and boundary conditions and geometry. F ick ' s  Law de- 
f i n e s  t h e  change i n  so lu t e  concentration at any point  with time: 
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where C i s  t h e  concentration of so lu te ,  t i s  t h e ,  5 i s  t h e  in t e rd i f fus ion  co- 
e f f i c i e n t  (concentration-independent) , and x i s  dis tance.  The f l u x  balance 
equation def ines  t h e  ve loc i ty  of an  in t e r f ace  between two phases (e.g. ,  be- 
tween a and @) i n  terms of t h e  fluxes toward and away from t h e  in te r face :  

where C B ~  i s  t h e  concentration of so lu t e  (B)  a t  t h e  a-@ i n t e r f ace  i n  t h e  8 
phase, Ca@ i s  t h e  concentration of so lu te  ( B )  a t  t h e  a-@ i n t e r f ace  i n  t h e  a 
phase, d</dt i s  t h e  i n t e r f a c e  ve loc i ty ,  J, i s  t h e  in t e rd i f fus ion  f l u x  i n  t h e  
a phase a t  t h e  i n t e r f a c e  and JB i s  t h e  f l u x  i n  t h e  @ phase a t  t h e  in te r face .  
It i s  t y p i c a l l y  found during high temperature d i f fus ion  bonding that t h e  in- 
t e r f a c e  compositions ( C  
r i u m  phase solubilitiesBa(Cga-Ca@) (concentration d iscont inui ty  at t h e  in t e r -  
f ace )  can the re fo re  be evaluated t o  be t h e  width of t h e  (a+@) f i e l d  of t h e  
phase diagram. A f t e r  subs t i t u t ion  f o r  t h e  f lux terms i n  equation (21, it be- 
comes : 

and C a @ )  can be c lose ly  approximated by t h e  equi l ib-  

For an example of a t y p i c a l  d i f fus iona l  ana lys i s ,  consider t h e  problem 
of jo in ing  two components having compositions i n  one-phase f ie lds  ( a  and y)  
separated on t h e  equilibrium phase diagram by t h e  intermediate phase 8. 
c ros t ruc tu ra l ly ,  t h e r e  w i l l  be t h r e e  phases present  (a t h i n  layer  of @ be- 
tween t h e  a and y components); t h e  phases w i l l  be separated by t h e  a-@ and 
(3-y i n t e r f aces ,  
simultaneous so lu t ion  of three equations of t h e  form of equation (1) and two 
equations of  t h e  form of equation ( 3 ) .  A complete treatment of t h e  so lu t ion  
t o  multiphase in t e rd i f fus ion  problems has been presented ( r e f .  4 )  f o r  those  
persons in t e re s t ed  i n  more detail  on t h i s  top ic .  

M i -  

Solut ion of t h e  in t e rd i f fus ion  problem w i l l  therefore  e n t a i l  

The simultaneous so lu t ion  of F ick ' s  Law and f l u x  balance equations can 
be ca r r i ed  out  a n a l y t i c a l l y  or numerically. The numerical approach i s  usual- 
l y  necessary f o r  more complex problems r e s u l t i n g  from nonuniform i n i t i a l  con- 
d i t i o n s  ( ref .  5) and f i n i t e  and non-planar geometries (ref. 6-8). Numerical 
methods could a l s o  be used t o  treat  nonisothermal problems and have been used 
r ecen t ly  t o  treat  problems assoc ia ted  with concentration-dependent i n t e r d i f -  
fusion c o e f f i c i e n t s  (ref. 9 )  
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DATA/ANALYSIS COMPARISONS 

Two-phase, Planar,  F i n i t  e Couples 

Diffusion bonded laminar composites fabr ica ted  from mul t ip le  a l t e r n a t e  
l aye r s  of  t h i n  metal  f o i l s  c o n s t i t u t e  an example o f  t h e  planar ,  f i n i t e  d i f fu-  
s ion  geometry shown i n  f i g u r e  1. If t h e  f o i l s  have compositions i n  adjacent  
one-phase f i e l d s  of a binary phase diagram (e.g., a and f3 phases),  t h e  i n t e r -  
d i f fus ion  phenomena c h a r a c t e r i s t i c  of a two-phase s i t u a t i o n  should result 
during high-temperature bonding. The i n i t i a l  movement of t h e  a-f3 i n t e r f a c e  
i s  cont ro l led  by f luxes  at t h e  in t e r f ace  according t o  equation ( 2 )  as shown 
i n  f igu re  2 f o r  t h e  L/2 symmetry element defined i n  f i g u r e  1. (Cao and CBO 
i n  f igu re  2 a r e  t h e  so lu t e  compositions of t h e  f o i l s  being d i f fus ion  bonded.) 
If, however, t h e  mean composition, c', of t h e  e n t i r e  composite (and, therefore ,  
t h e  symmetry element ) : 

c' = RIL 

l i e s  i n  t h e  a phase f i e l d ,  t h e  f3 phase must u l t imate ly  d isso lve  by movement 
of t he  a-8 i n t e r f a c e  t o  t h e  l e f t .  This intermediate  s tage  occurs i n  s p i t e  of 
t h e  i n i t i a l  d i r e c t i o n  of  t h e  i n t e r f a c e  motion. Ultimately,  t h e  f3 phase dis-  
solves completely with t h e  f i n a l  s tage  of t h e  process ,  as shown i n  f i g u r e  2, 
being the  l eve l ing  of concentration gradien ts  i n  t h e  a phase by one-phase, 
f i n i t e ,  planar d i f fus ion .  

The ex i s t ing  mathematical model f o r  t h i s  two-phase problem ( r e f .  6,") 
was t e s t e d  by experimental d i f fus ion  bonding s tud ie s  of a l t e r n a t e  l a y e r s  of 
N i  and W f o i l s  a t  temperatures i n  t h e  v i c i n i t y  of 120OOC ( r e f ,  10 ) .  
temperatures, t h i s  a l l o y  system exh ib i t s  only t h e  Ni-rich, face-centered cu- 
b ic  a phase and t h e  W-rich, body-centered cubic phase ( r e f .  ll). The W f o i l  
thickness (R value i n  f i g u r e  1) w a s  2.46 x 10-5, and N i  f o i l  thicknesses  (L-R 
values i n  f i g u r e  1) were chosen t o  g ive  mean compositions ( e )  of 0.121 and 
0.152 atomic f r a c t i o n  ( a / f )  W. Both of t hese  values  of G' a r e  i n  t h e  Ni-rich 
a phase f i e l d  of t h e  Ni-W phase diagram, necess i ta t ing  t h e  u l t imate  complete 
d i s so lu t ion  of t h e  W-rich, f3 phase l a y e r ,  

A t  these  

A t y p i c a l  example of  , the  progressive d i s so lu t ion  of t h e  f3 phase i s  shown 
i n  t h e  s e r i e s  of micrographs i n  f i g u r e  3. This system behaves according t o  
case  3 described i n  f i g u r e  2 s ince  t h e  f3 phase continuously d isso lves  during 
t h e  bonding process.  (An example o f  i n i t i a l  f3 phase growth due t o  l a r g e  f3 
phase f luxes  is  given i n  r e f .  1 2 . )  Electron microprobe ana lys i s  of t h e  N i  
and W concentrat ions across  t h e  four  specimens shown i n  f i g u r e  3 are shown i n  
f igu re  4. The correspondence between t h e  W concentrat ion t r a c e  across the  
symmetry element from x = 0 t o  x = L/2 i n  f igu re  4 and t h e  schematic concen- 
t ra t ion-d is tance  p r o f i l e s  ( i n i t i a l  and intermediate  s t ages )  i n  f i g u r e  2 i s  
not ewor t hy . 

Mathematical d i f fus ion  model ca l cu la t ions  using in t e rd i f fus ion  coe f f i -  
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c i e n t  da ta  (5 and 66) and s o l u b i l i t y  data  (Cu 
(plus  f o i l  thickness  (R), mean compositions ( C  , and temperatures from t h e  ex- 
periments) were compared t o  experimental data. 
terms of t h e  decrease i n  thickness  of t h e  W-rich f3 phase as measured on photo- 
micrographs such as f i g u r e  3. The model pred ic t ions  and experimental da t a  are 
presentsd together  i n  f i g u r e  5, where t h e  temperature dependence is  accounted 
f o r  i n  Da i n  t h e  absc issa .  The second comparison was  f o r  t h e  so lu t e  ( W )  con- 
cent ra t ion  a t  t h e  pos i t i on  x = L / 2  ( t he  midpoint of  t h e  N i  layers), as deter- 
mined by e lec t ron  microprobe ana lys i s  (see figure 4) .  
experimental da ta  are shown together  i n  f i g u r e  6. 

and Cfia) from t h e  l i t e r a t u r e  

The first comparison was  i n  
k a 

Model pred ic t ions  and 

The c lose  agreement between model pred ic t ions  and experimental da ta  shown 
i n  f igu res  5 and 6 i l l u s t r a t e s  t h e  p o t e n t i a l  of d i f fus ion  modeling i n  accur- 
a t e l y  descr ibing t h e  e f f e c t s  of  process var iab les .  Furthermore, it should be 
noted t h a t  t h e  agreement extends t o  (C/c') 
are appl icable  t o  processing f o r  times long enough t o  y i e ld  e s s e n t i a l l y  homo- 
geneous mater ia l s  -- t h e  end o f  any long-range in t e rd i f fus ion  phenomena. 

1 .0  i n  f igu re  6. Thus, t h e  models 

Three-phase, Planar ,  F i n i t e  Couples 

A companion study t o  t h a t  described above for N i  and W f o i l s  w a s  ca r r i ed  
out f o r  composites fabr ica ted  from N i  and Mo f o i l s  i n  t h e  v i c i n i t y  of 1200°C 
( r e f .  13 ) .  This a l l o y  system contains  t h e  intermediate phase MoNi i n  t h i s  
temperature range and i s  an example of a three-phase d i f fus ion  problem in- 
corporating t h e  formation and growth of an intermediate phase l aye r  a t  t h e  
loca t ion  of t h e  o r i g i n a l  i n t e r f ace  between t h e  N i  and Mo. Thus, concentration- 
d is tance  p r o f i l e s  f o r  t h i s  system have two compositional d i scon t inu i t i e s  , one 
a t  t h e  a-8 i n t e r f ace  and t h e  o ther  a t  t h e  8-y i n t e r f ace ,  where f3 i s  t h e  MoNi 
phase. 
phase, r e s u l t i n g  i n  t h e  Pollowing sequence of events during t h e  in t e rd i f fus ion  
process : 

The mean composition i n  these  couples w a s  located i n  t h e  Ni-rich a 

a.  formation of B (MoNi) a t  t h e  o r i g i n a l  Ni-Mo in t e r f aces  

b. 

c .  complete d i s so lu t ion  of t h e  y phase, r e su l t i ng  i n  t h e  

growth of t h e  f3 phase a t  t h e  expense of  both the  a and y 

conversion t o  a two-phase s i t ua t ion .  

d. d i s so lu t ion  of t h e  f3 phase r e s u l t i n g  i n  t h e  conversion 
t o  a one-phase homogenization problem. 

A 

The previously formulated mathematical model ( ref .  8 ) ,  employing avai l -  
ab l e  literature da ta  and experimental parameters, w a s  used t o  pred ic t  quanti- 
t a t i v e l y  t h e  sequence of i n t e rd i f fus ion  events indicated above. Predict ions 
of t he  pos i t ions  of both in t e r f aces  and the  s o l u t e  (Mo) concentration a t  t h e  
center  of t h e  N i  f o i l s  were i n  c lose  agreement with experimental data, as w a s  
t h e  case f o r  t h e  Ni-W bonding s tudies .  
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CONCLUDING REMARKS 

Accurate pred ic t ions  of high-temperature in t e rd i f fus ion  k i n e t i c s  associ-  
a t ed  with complex multiphase problems are poss ib le  f o r  systems where in t e r -  
d i f fus ion  coe f f i c i en t s  and phase s o l u b i l i t i e s  are known. The v e r i f i c a t i o n s  
of t h i s  f o r  t h e  d i f fus ion  bonding of Ni-W and Ni-No l a m i n a r  composites de- 
scribed i n  t h i s  paper are supported by s i m i l a r  comparisons i n  o ther  types  of 
r e l a t e d  problems (ref. 5,12). 

The a v a i l a b i l i t y  of t hese  pred ic t ive  models i s  of benef i t  t o  workers i n  
t h e  a rea  of d i f fus ion  bonding i n  severa l  ways: 

a. c lose  c o r r e l a t i o n  between models and da ta  s t rongly implies a 
basic under standing of t h e  phenomena involved , 

b. t h e  e f f e c t s  of va r i a t ions  i n  process and/or material parameters 
can be understood without t h e  necess i ty  f o r  extensive experimental s tud ie s ,  

and c .  t h e  design of experiments, i f  i n  f a c t  they  are necessary t o  
provide addi t iona l  process information, is  g r e a t l y  s impl i f ied  s ince  in t e r r e -  
l a t ionsh ips  among- var ious parameters are usua l ly  defined. 
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Figure 1.- Def in i t ion  of planar,  c y l i n d r i c a l  and spher ica l  geometries f o r  
f i n i t e  d i f fus ion  problems. Symmetry elements f o r  t h e  d i f fus ion  models 
are .a lso defined. 
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Figure 2.- Schematic s o l u t e  concentration-distance p r o f i l e s  f o r  t h e  
two-phase, f i n i t e ,  planar d i f fus ion  problem where t h e  mean com- 
pos i t i on  of t h e  symmetry element lies i n  t h e  a phase. 
s tages  of t h e  process are shown along wi th  th ree  separate  types 
of i n t e r f a c e  movement phenomena f o r  t h e  i n i t i a l  stage.  

Three 
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Ni-W Planar Couples I 2070 c 

-r- --_-- -- - - 
4 t = 7.4 x 10 s t = Q  Ni 

5 5 t = 3.4 x 10 s t = 2.7 x 10 s 

Figure 3.-  Photomicrographs of laminar composites fabricated from 
alternate layers of N i  and W f o i l s  by diffusion bonding at  
1207OC for the various times indicated. The i n i t i a l  W f o i l  
thickness (R) was 2.46 x 
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N i -  W Planar Couplea ~ .p07-c  

o.pnare (Ni-rich) B-phase(W-flch) 1- -- I -1 p-phase(W-rtch) - - -- I 

t = 7.4 x 10 s 

Figure 4 . -  Electron microprobe scans f o r  both N i  (NiK,) and W (ma). 
concentrat ions across  t h e  specimens whose microstructures  are 
shown i n  f i g u r e  3.  
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1.0 - - 
N i - W ~ c o u c L L c  

Figure 5.- Comparison of pred ic t ive  model ca l cu la t ions  and experimental 
da ta  on t h e  decrease of t h e  thickness of t h e  6 phase (5) with time ( t ) .  

r I I I I I I I I  I 1 I I I I l l  I I I I 1 1 1 1  

Figure 6 . -  Comparison of pred ic t ive  model ca lcu la t ions  and experimental 
d a t a  on t h e  increase i n  so lu t e  (W) concentration a t  t h e  center  of t h e  
N i  f o i l s  (C a t  pos i t ion  x = L/2) as a funct ion of time ( t ) .  
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INTRODUCTION 

It is ant ic ipa ted  t h a t  t h e  next decade w i l l  see g rea t ly  increased usage 
of polymers as s t r u c t u r a l  loadcarrying members i n  engineering design. 
increased usage w i l l  l i k e l y  be  st imulated by such f a c t o r s  as: (1) 
emphasis on weight savings ,I 2) concern with corrosion,( 3) decreasing suppl ies  
and/or increasing c o s t s  of mineral resources and( 4 )  increased emphasis on 
cos t  and ease of production. As polymer usage increases ,  it becomes more 
important t h a t  t h e  engineers understand t h e i r  mechanical behavior and,in 
particular,how t o  p red ic t  and optimize s t r u c t u r a l  s t rength.  Many designers 
have adapted (with some noteworthy success) t h e  design cri teria t h a t  are 
commonly used f o r  designing with m e t a l s .  The fundamental mechanisms responsi- 
b l e  fo r  damage and f a i l u r e  can be r a t h e r  d i f f e r e n t  f o r  polymers than they 
are fo r  m e t a l s .  Some mechanisms of f a i l u r e  i n  polymers (e.g. crazing) do 
not even have d i r e c t  analogs i n  metals. It would appear, therefore ,  t h a t  
some caution must be  exercised i n  t r ans fe r r ing  design technologies from one 
material type t o  another. 

This 
g rea t e r  

Most engineering design criteria cur ren t ly  being used view t h e  material 
as a continuum (perhaps with mathematically introduced holes  o r  flaws) and 
assume f a i l u r e  occurs when some funct ion of t h e  "macroscopic" stress and 
s t r a i n  reaches a cr i t ical  value. Approaches of t h i s  type have lead t o  such 
extremely usefu l  design concepts and mathematical models as t h e  Tresca and 
Von Uses y ie ld  theor ies  and G r i f f i t h  f r a c t u r e  theory. Nevertheless, real 
materials are not continuous on an atomic scale, but  r a the r  are made up of 
molecules and atoms. 
happens on t h i s  scale. 
based on parameters obtained from laboratory tests t o  p red ic t  behavior under 
service conditions i f  t he re  is  a chance t h a t  t h e  fundamental mechanisms (un- 
known) involved are unknown and might i n  f a c t  possibly be d i f f e r e n t  i n  t h e  
two cases. One might, f o r  example, envision a laboratory test where i n  t h e  
t i m e  scale and under t h e  conditions of t h e  laboratory tests f a i l u r e  occurred 
by molecular s l ippage and shear,  but  i n  which service conditions w e r e  such 
t h a t  t h e  molecules degraded and t h e  mechanism of f a i l u r e  w a s  accompanied by 
chain sc i ss ion .  

A t r u e  understanding of f a i l u r e  should include what 
One might quest ion t h e  v a l i d i t y  of using a cri teria 

The need t o  understand molecular phenomena involved i n  failure is l i k e l y  
t o  be more acute  i n  polymers than i n  o ther  material because t h e  mechanical 
proper t ies  of polymers are so i n t r i c a t e l y  r e l a t ed  t o  t h e i r  macromolecular 
s t ruc ture .  For example, polymers t h a t  are chemically very similar but  whose 
physical s t ruc tu res  d i f f e r  can have t e n s i l e  moduli varying from as low as 
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7 2 10 dynes/cm 
of u l t rah igh  modulus f ibe r s ) .  
d r a s t i c  an e f f e c t  on s t rength.  
chemically similar polymers can exhib i t  practical s t r e n  t h s  ranging from 

t ical  models of f a i l u r e  have been developed, but only recent ly  have experi- 
mental techniques been developed t h a t  may be  used t o  observe occurences t h a t  
can be d i r e c t l y  r e l a t ed  t o  molecular phenomena associated with f rac ture .  
These techniques are comparatively new, but they have produced some i n t e r e s t i n g  
in s igh t s  i n t o  t h e  phenomena of polymeric f rac ture .  The purpose of t h i s  paper 
2s t o  discuss  these  methods and t o  review some of t h e  r e s u l t s  obtained. 

( t yp ica l  of rubbers) t o  as high as 10l1 dynes/cm2 ( typ ica l  
The molecular morphology can have almost as 
Depending on the  i n t r i e a c i e s  of s t ruc tu re ,  

less than 107 dynes/cm2 t o  as much as 5 x 1010 dynes/cm P . A number of theore- 

METHODS AND TECHNIQUES 

The methods used most extensively t o  d a t e  are Electron Paramagnetic 
Resonance (EPR) Spectroscopy, Inf ra red  (IR) Spectroscopy and molecular weight 
(MW) measurements. A l l  t h r ee  methods are used t o  de tec t  molecular bond 
rupture i n  t h e  materials studied. They cannot be  used t o  determine t h e  amount 
of secondary bond rupture  or  s l ippage t h a t  might occur during t h e  f r a c t u r e  
process. 

Each of t h e  techniques are w e l l  es tabl ished too l s  of ana ly t i ca l  chemistry. 
For t h e  formal development of EPR and I R  Spectroscopy theory and techniques 
of molecular weight measurements,the reader i s  r e fe r r ed  t o  t h e  many texts 
on Spectroscopy and polymer character izat ion.  
following very b r i e f  descr ip t ions  w i l l  hopefully suf f ice .  (1 )  
form of microwave absorption Spectroscopy i n  which t r a n s i t i o n s  are induced 
between Feeman energy levels with an applied magnetic f i e l d  ( re f  1 ) .  
When homolytic chain sc i s s ion  of a polymer takes place,  t h e  two e lec t rons  
composing a covalent bond may be uncoupled forming two f r e e  rad ica ls .  
net  microwave absorption t h a t  takes place i n  t h e  microwave cavi ty  i s  pro- 
port ional  t o  t h e  number of f r e e  r ad ica l s  (and hence t h e  extent  of chain 
sc i ss ion)  present.  The s t ruc tu re  of t h e  absorption S p e c t r a  provides c lues  
as t o  t h e  loca t ion  of t h e  unpaired e lec t rons  on t h e  polymer chain. ( 2 )  
Infrared absorption i n  a polymer can be  due t o  a number of d i f f e r e n t  causes 
(ref.  2) .  The absorption here  is t h a t  due t o  resonant v ib ra t ion  of t h e  
chemical bonds between atoms, i n  particular t h e  carbon atoms. The absorption 
bonds are c h a r a c t e r i s t i c  of t h e  nature  of t h e  bond and i t s  associated atoms. 
As a consequence,those bonds associated with end groups of t h e  molecular 
chain may have very d i f f e r e n t  absorption frequencies from t h e  o the r  backbone 
carbon atoms. Careful monitoring of t h e  change i n  t h e  number" of end groups, 
as a polymer is f rac tured ,  may be used as a measure of t h e  ex ten t  of chain 
sciss ion.  ( 3 )  There are a number of means by which molecular weight 
be  measured. The v i scos i ty  
of a d i l u t e  so lu t ion  of polymers i n  se lec ted  standard solvents  has been 
ca re fu l ly  ca l ibra ted  as a funct ion of the  polymers molecular weight ( r e f .  3 ) .  
By comparing v i scos i ty  (and hence molecular weight) f o r  v i r g i n  and s t r a ined  
samples,we once again obtain a measure of bond rupture.  
has i t s  advantages and l imi t a t ions  some of which w i l l  be discussed i n  t h e  
b r i e f  descr ip t ions  t h a t  follow. 

For our purposes here  t h e  
EPR is a 

The 

can 
One method commonly used is " i n t r i n s i c  viscosity." 

Each of these methods 
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EXPERIMENTAL RESULTS 

To da te  t h e  most extensively used method is  EPR. This method w a s  f i r s t  
suggested and used by Zhurkov and h i s  assoc ia tes  i n  Leningrad ( re f .  4-6). 
Since then EPR-Fracture s tud ie s  have been reported i n  t h e  United States ( re f .  
7-14), i n  Germany ( r e f .  15-16) and England (ref .  17-18). 

The f i r s t  and most extensive s tud ie s  were on or ien ta ted  polymer f i b e r s  
and f i lms,  most notably nylon. 
f i b e r s  loaded t o  approximately 80% ;f i ts  f a i l u r e  stress. 
summarized these demonstrate t h a t  (1) The thermal motion of atomic par tners  
i n  a covalent bond can be  viewed as t h e  fundamental process i n  f r ac tu re ,  
a t  least i n  some materials; (2) an increase  i n  temperature tends t o  b i a s  
t he  thermal motion i n  favor  of bond dissolut ion.  This process can be  des- 
cribed a n a l y t i c a l l y  i n  terms of reac t ion  rate theory with a c h a r a c t e r i s t i c  
ac t iva t ion  energy ( re f .  19). Application of an ex terna l  applied load reduces 
the  e f f ec t ive  ac t iva t ion  energy and f u r t h e r  b iases  t h e  thermal motion toward 
rupture;  (3) some of t h e  EPR behavior can be  r e l a t ed  t o  s p e c i f i c  proposed 
polymer morphology ( r e f .  20); (4) it appears t h a t  t h e  key t o  obtaining 
good agreement between experimental EPR observations of t h e  ex ten t  of bond 
rupture  ( f r e e  r a d i c a l  concentration) and models, based on absolute  reac t ion  
rate theory, is taking proper account of t h e  va r i a t ion  of t h e  "local" stress 
on t h e  load carrying elements i n  t h e  polymer s t ruc tu re ;  (5) f i n a l l y ,  there  
is  s t rong experimental evidence t h a t  t h e  s t rength  of a polymer can be  
s ign i f i can t ly  a l t e r e d  by processes t h a t  w i l l  a l ter  and improve t h e  stress 
d i s t r i b u t i o n  i n  t h e  material. (See r e f .  21.) 

Figure 1 shows t h e  EPR spec t ra  f o r  nylon's 
Very b r i e f l y  

EPR has  a l s o  been used t o  study f r a c t u r e  mechanisms i n  rubber; it has proven 
t o  be a very s e n s i t i v e  and informative means of monitoring bond rupture  i n  un- 
sa tura ted  rubbers under combined stress and exposure t o  ozone ( re f .  22-23). The 
EPR spec t ra  shown i n  f igu re  2, r e su l t i ng  from the  combined e f f ec t  of ozone and 
stress, are four orders  of  magnitude above threshold s e n s i t i v i t y  of t he  spectrome- 
ter. By comparing t h e  EPR r e s u l t s ,  rate of macroscopic crack growth, stress 
re laxa t ion  (or creep r a t e )  and using rubber e l a s t i c i t y ,  i t  is  poss ib le  t o  a r r i v e  
a t  some in t e re s t ing  deductions on the  manner i n  which ozone cracks develop and 
proceed through'a material ( r e f .  24). It has a l s o  been demonstrated t h a t  t h e  
EPR r e s u l t s  can be  cor re la ted  with a "molecular level" Griff i th- type energy 
balance ( r e f .  22-23). That is, cracks propagate, i.e., bonds rupture  only i f  
(and a t  rates dependent on) s u f f i c i e n t  s t r a i n  energy being present. Excellent 
numerical co r re l a t ion  between t h e  "energy released" from the  stress f i e l d  and 
the  number of f r e e  r ad ica l s  detected by EPR w a s  observed f o r  re laxa t ion ,  creep 
and cyc l i c  loading tests. 

Cryogenic and space appl ica t ions  ( i n  t h e  binder of some s o l i d  propel lan ts  
and i n  low-temperature seals, f o r  example) requi re  t h a t  rubber withstand 
very low temperatures, where i t  normally becomes b r i t t l e  and cracks can 
propagate e a s i l y  through t h e  material. Andrews, Reed and co-workers (ref. 
25-26) have demonstrated t h a t  pres t ra in ing  t h e  rubber before  cooling can 
d r a s t i c a l l y  modify its f r a c t u r e  behavior. I n  t h e i r  s tud ie s  and subsequent 
s tud ie s  by Brown, D e V r i e s ,  and W i l l i a m s  ( re f .  27) a va r i e ty  of rubbers 
ranging from na tu ra l  rubber t o  s i l i c o n e  were pres t ra ined  (100% a t  room 
temperature) before reducing t h e  temperature t o  - 5 O O C  (or  below). when 
fu r the r  s t r e s sed  a t  these  low temperatures, t he  rubbers d id  not f r a c t u r e  
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i n  a b r i t t l e  manner but  exhibi ted a y i e ld  poin t  followed by s i g n i f i c a n t  
p l a s t i c  deformation before f a i l u r e ,  
i n  t h e  engineering sense. 
deformation was followed by foaming and evolut ion of gases from t h e  material 
upon warming. They a l s o  observed t h a t  samples t h a t  were pres t ra ined  and 
f rac tured  a t  low temperature exhibi ted s t rong EPR s igna ls ,  while samples 
t h a t  were f rac tured  a t  t h e  same temperatures but  without p r e s t r a i n  showed 
l i t t l e  i f  any de tec t ab le  r ad ica l  production during deformation. 
observation w a s  confirmed by Brown and eo-workers ( ref .  28). 

I n  a n u t s h e l l  they had become "tough" 
Reed and h i s  assoc ia tes  reported t h a t  t h i s  p l a s t i c  

This la t ter  

The free r a d i c a l s  produced by deformation i n  t h e  pres t ra ined  rubber 
were character ized by a g value of approximately 2.00, c h a r a c t e r i s t i c  of 
organic f r e e  rad ica ls .  
spec t ra ,  no marked d i f fe rences  were noted i n  t h e  behavior of na tu ra l  rubber, 
acryloni t r i le-butadiene,  polybutadiene, and s i l i c o n e  rubbers though these  
rubbers reportably have very d i f f e r e n t  ' .crystal l izat ion c h a r a c t e r i s t i c s  
(na tura l  rubber c r y s t a l l i z e s  under stress while t h e  o thers  are of ten  des- 
cribed as noncrystal l izable) .  I n  each case, rubbers t h a t  were not  pre- 
s t r a ined  f rac tured  i n  a b r i t t l e  fashion, while those t h a t  w e r e  preoriented 
by pres t ra in ing  by 50% o r  more exhibited considerable d u c t i l i t y  before 
f racture .  P res t r a in  had only a s l i g h t  e f f e c t  on ul t imate  stress and i n i t i a l  
modulus, but o f t en  increased t h e  s t r a i n  a t  f r a c t u r e  by orders of magnitude. 
During t h i s  p l a s t i c  deformation t h e  concentration of f r e e  r ad ica l s  increased 
t o  e a s i l y  de tec tab le  l e v e l s  

Other than d i f fe rences  i n  t h e  shape of t h e  EPR 

t o  1017spins/cm3) 

The l a rge  number of r a d i c a l s  (chain sc i ss ions)  produced during t h i s  
deformation suggest t h a t  f r a c t u r e  i n i t i a t e s  i n  pres t ra ined  rubbers a t  a 
grea t  many sites throughout t h e  specimen volume. On t h e  other  hand, f r a c t u r e  
is apparently much more loca l ized  i n  t h e  unprestrained material and proceeds 
from an ex i s t ing  o r  e a s i l y  developed flaw, 
mechanics, t he  l a t te r  material might be ca l l ed  flaw-sensit ive and t h e  pre- 
s t r a ined  material "tough." 
on t h e  subsequent low-temperature d u c t i l i t y  and f r a c t u r e  behavior of rubbers 
w a s  in te rpre ted  by Brown and coworkers as probably being r e l a t ed  t o  s t r a i n  
and temperature-induced ordering and o r i en ta t ion  of t h e  material. It i s  
proposed t h a t  p r e s t r a i n  and subsequent cooling produces a g rea t  many small 
ordered regions throughout t h e  sample t h a t  are comparatively impermeable 
t o  cracks. As t h e  load is increased, a stress is  reached a t  which micro- 
cracks begin t o  form. From analogy with s tud ie s  of or iented semicrystal l ine 
nylon, these  would be expected t o  o r ig ina t e  i n  t h e  more amorphous regions 
of t h e  material, but t h e i r  growth with f u r t h e r  load increase i s  a r r e s t e d  
by t h e  more ordered o r  c r y s t a l l i n e  regions. 
more and more of t h e  microcracks are produced wi th  t h e  associated bond 
rupture and free-radical,  production (detectable  by EPR). Eventually, these  
microcracks start t o  coalesce and grow t o  a c r i t i ca l  s ize ,  a f t e r  which 
macroscopic f a i l u r e  ensues. In  essence, i f  somewhat oversimplified,  t h i s  
model suggests t h a t  t h e  low-temperature d u c t i l i t y  of pres t ra ined  rubbers 
may be  explained i n  terms of t h e  conversion of t h e  rubber i n t o  an or ien ted  
semicrys ta l l ine  polymer as a r e s u l t  of t h e  temperature and s t r a i n  treatment. 

I n  t h e  language of f r a c t u r e  

The e f f e c t  of room-temperature p re s t r a in ing  

As t h e  deformation increases ,  

As s t a t ed  above, t h e  behavior, i n  t h i s  respect  of t h e  e a s i l y  c rys t a l l i z -  
ab le  rubbers (e.g., na tu ra l  rubber) and those normally termed noncrys ta l l iz ing  
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(e.g., acryloni t r i le-butadiene and s i l i cone )  is very similar. Indeed, there  
is evidence t h a t  some ordering occurs i n  a l l  these  systems. The X-ray 
d i f f r a c t i o n  pa t t e rns  f o r  prestrained samples of n a t u r a l  rubber, SBR, and 
s i l i c o n e  rubber a t  low temperatures show t h e  Debye and Scherrer r i ngs  char- 
acteristic of c r y s t a l l i t e s  and t h e  t r a n s i t i o n  t o  elongated areas ind ica t ive  
of or ien ta t ion .  

A major disadvantage t o  t h e  use of EPR i n  studying polymeric f r ac tu re  
is t h e  fact t h a t  most polymeric f i b e r s  are inherent ly  unstable  entities. 
The unpaired e lec t ron  associated with t h e  f r e e  r a d i c a l  has an a f f i n i t y  f o r  
other  unpaired e lec t rons ;  as a consequence,free r a d i c a l s  can combine with 
o ther  f r e e  r a d i c a l s  o r  c e r t a i n  impurit ies.  I n  t h i s  way t h e  f r e e  r ad ica l s  
we annihi la ted.  The spectrometer "sees" only t h e  ne t  number of r ad ica l s  
present.  
f a i r l y  s t a b l e  with a ha l f  l i f e  of approximately an hour a t  room temperature. 
Radicals i n  many o ther  polymers are very unstable  a t  room temperature with 
half  l i v e s  of a second o r  less. I n  most rubber and p l a s t i c  t h e  r ad ica l s  
become s t a b l e  a t  cryogenic temperatures, and hence some s tud ie s  have been 
r e s t r i c t e d  t o  low temperatures. I f  one is  t o  ex t rapola te  from t h e  number 
observed t o  t h e  number produced by f r ac tu re ,  an understanding of t h e  decay 
k ine t i c s  a t  t h e  temperature of i n t e r e s t  i s  necessary. Several  s tud ie s  
of decay phenomena have been undertaken ( r e f .  29-31). and provide information 
he lpfu l  i n  t h i s  extrapolat ion.  

Radicals produced by f r a c t u r e  i n  nylon and ozone i n  rubber are 

The problem of f r e e  r a d i c a l  decay can be a l l e v i a t e d  by "working" with 
more s t a b l e  rad ica ls .  Ham and Davis suggest adding ch lo r ina l  t o  t h e  polymer 
being fractured.  
it w i l l  react, with radical-produced bond rupture  and r e s u l t  i n  a very 
s t a b l e  secondary rad ica l .  Chiang e t  al. ( r e f .  32) have reported using 
oxygen as a f r e e  r a d i c a l  s t a b i l i z e r  i n  PET and PE with some success. 
t he  r ad ica l  observed by EPR is  not t h a t  i n i t i a l l y  produced, but a secondary 
r ad ica l  r e s u l t i n g  e i t h e r  from rad ica l  migration along t h e  polymer chain 
or  i n t e rac t ion  between t h e  primary r ad ica l  and impuri t ies  (most notably 
oxygen). A recent  paper descr ibes  such phenomena (ref .  33) i n  some d e t a i l .  

They r epor t  t h a t  i f  ch lo r ina l  is  present i n  t h e  polymer 

Often, 

1NF-D SPECTROSCOPY 

When chain sc i s s ion  occurs i n  polymers, new end groups can r e s u l t  t h a t  
may be amenable t o  de tec t ion  by Infrared (IR) Spectroscopy. I R  Spectroscopy 
is not a new t o o l  f o r  polymeric end group ana lys i s  but  t o  our knowledge 
it has  only recent ly  been used t o  study mechanical degradation during f rac ture .  
This i n t e re s t ing  technique w a s  f i r s t  pioneered a t  t h e  I n s t i t u t e  of Materials . 

Research, i n  Leningrad, USSR. Zhurkov, Novak and Vettegran have recent ly  
reported s tud ie s  where t h e  formation of CH3 and C=C bonds during deformation 
of se lec ted  polymers ( re f .  34-35) w a s  monitored by IR. I n  these  s tud ies ,  
two specimens, one unstrained and the o ther  f rac tured ,  w e r e  interposed i n  
the  balanced l i g h t  beams of a double beam spectrometer. I n  t h i s  mode t h e  
spectrometer records t h e  d i f fe rence  i n  absorption, g-delta, of t h e  undeformed 
and t h e  f rac tured  specimen. I n  p r inc ip l e ,  t h i s  sheuld sub t r ac t  out  t h e  
end groups o r i g i n a l l y  present  i n  t h e  material and i n d i c a t e  only those re- 
s u l t i n g  from f rac ture .  They repor t  s t rong  absorpt ion bands a t  910, 965, 

31 



1379 and 1735 cm”. 
R-CH3 and (RCHO) groups. Thefr ana lys i s  of t h e  I R  r e s u l t s  is  both in te r -  
e s t ing  and puzzling. They repor t  t h a t  t h e  ana lys i s  of these  I R  spec t ra  
ind ica t e  t h a t  each f r e e  r a d i c a l  detected by EPR may represent  a g r e a t  many 
broken bonds. They pos tu la te  t h a t  once backbone rupture  has occurred with 
i ts  associated p a i r  of f r e e  rad ica ls ,  these  r ad ica l s  may act as a c a t a l y s t  
f o r  rupture  of a number of neighboring bonds. This chain reac t ion  pre- 
sumably occurs i n  such a way and over a t i m e  scale t h a t  there  i s  no ne t  
increase i n  t h e  number of rad ica ls .  
p re t a t ion  of t h e i r  s tudyathe  ne t  number of broken bonds is proport ional  to ,  
but much l a r g e r  than, the number of r ad ica l s  determined by EPR. 

These are a t t r ibu ted ,  respectively,  t o  (RCH=CH2), (RCH-CHR1) 

According t o  these  inves t iga tors ’ in te r -  

I R  has a s ign i f i can t  inherent  advantage over EPR i n  tha t  end groups 
once formed should be comparatively s tab le .  This should allow t h e  inves t i -  
gat ion of materials t h a t  cannot be s tudied by EPR, as w e l l  as f a c i l i t a t e  
inves t iga t ions  of long-term creep, fa t igue ,  aging and s imilar  behavior where 
the  t i m e  required would allow too much r a d i c a l  decay. 
yxts  of t h i s  method have l ed  t o  recent i n i t i a t i o n  of r e l a t ed  s t u d i e s  a t  
Case-Western Reserve University,  t h e  University of Utahland t h e  National 
Bureau of Standards. Our s tud ie s  a t  t he  NBS and Utah, t o  da te ,  have not 
reached t h e  s ta te  of quan t i t a t ive  measurement of dhanges i n  end groups due 
t o  mechanical damage. A l a rge  p a r t  of OUT problem has involved t ry ing  t o  
separate  t h e  e f f e c t s  of changes due t o  sample thickness,  o r ien ta t ion ,  crys- 
t a l l i n i t y ,  e tc .  with those due t o  new end groups produced by chain sciss ion.  
W e  have, therefore ,  undertaken s tudies  due t o  y- i r radiat ion damage i n  
polymers. This treatment produces chain sc i s s ion  but reduces t h e  o the r  
IR-sensit ive e f f e c t s  and hopefully can be used f o r  ca l ib ra t ion  purposes 
f o r  t h e  next and more i n t e r e s t i n g  phase of t h e  study. Figure 3 shows the  
r e su l t i ng  Spectra f o r  polyethylene i r r ad ia t ed  t o  produce levels of chain 
sc i s s ion  comparable t o  t h a t  reportably produced during f r a c t u r e  of some 
polymers. 
of some of these  r e s u l t s .  

The in t r igu ing  pros- 

The o r a l  presentat ion of t h e  meeting w i l l  present a discussion 

OTHER METHODS 

The extent  of bond rupture  detected by EPR and I R  would suggest t h a t  
s ign i f i can t  changes i n  molecular weight should occur during f rac ture .  
Preliminary s tud ie s  a t  t h e  University of Utah by R. E. Mehta and L. Shen ( r e f .  
36), B. C r i s t  of Northwestern University ( ref .  37) and D. K. Roylance of 
Massachusetts I n s t i t u t e  of Technology ( re f .  38) demonstrate t h a t  t h i s  i s  
indeed t h e  case. 
demonstrate roughly t h e  s a m e  t rends observed by EPR ( see  f igu re  4 by L. 
Shen). 
o ther  techniques w i l l  be given i n  the ora l  presentation. 

I n  these  s tud ie s  t h e  observed changes i n  molecular weight 

A quan t i t a t ive  comparison of these  observations with those by t h e  
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CONCLUSION 

We have b r i e f l y  out l ined some of t h e  techniques ava i l ab le  f o r  t h e  
observation of t he  ex ten t  of molecular bond rupture  during f r a c t u r e  of 
polymers. Additional pe r t inen t  information can a l s o  of ten  be in fe r r ed  from 
microscopic and macroscopic measures. Individual  or  a combination of such 
methods should be invaluable i n  development of techniques f o r  pred ic t ing  
material behavior and a l s o  as a too l  f o r  systematical ly  studying and modi- 
fying s t r u c t u r e  i n  t h e  e f f o r t  t o  design materials t o  ca r ry  ever g rea t e r  
mechanical loads. The author f e e l s  these  methods have t h e  p o t e n t i a l  of 
helping us approach t h e  goals of designing a material f o r  a given usage. 
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Figure 1.- Spectrum of secondary 
formed i n  stressed 6 nylon 

free radicals, 
f ibers . 

Figure 2.- EPR spectra of ozone-degraded NBR (HYCAR 1043). 
Lowest curve is residual Ozone concentration 2.8 Mg/l. 

signal; successively larger ones a t  5 min intervals 
after application of 25% strain. 
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Figure 3.-  I R  difference spectra between an untreated PE sample and 
after different levels  of irradiation. 

t 

Figure 

0 4 8 12 
(%) STRAIN 

4.- Percent change i n  molecular weight 
strain for nylon 6 fibers.  

versus 

36 



STRUCTURE-PROPERTY RELATIONSHIPS IN BLOCK COPOLYMERS 

James E. McGrath 
Virginia Polytechnic Institute and State University 

Blacksburg, Virginia 24061 

ABSTRACT 

long 
Block copolymers are a class of relatively new materials which contain 
sequences of two (or more) chemically different repeat units. Unlike ran- 

dom copolymers, each segment may retain some properties which are characteris- 
tic of its homopolymer. 
different homopolymers are incompatible on a macro-scale. 
block copolymers display only a microphase (eg. 100-200 domains) separation. 
Complete separation is restricted because of a loss  in configurational entropy. 
The latter is due to presence of chemical bond(s) between the segments. 

It is well known that most physical blends of two 
By contrast most 

Novel physical properties can be obtained because it is possible to pre- 
pare any desired combination of rubber-like, glassy or crystalline blocks. The 
architecture and sequential arrangement of the segments can strongly influence 
mechanical behavior. Thus, diblocks, A-B, are often quite different from A-B-A 
or fA-B-)n systems. Moreover, B-A-B and A-B-A sequences possess dramatically 
different properties when the "A" segment is glassy or crystalline and the "B" 
block is elastomeric. The major differences are due to the fact that the 
microphase separated domains can associate to form a physical network in the 
tri- or multi-block architecture. Thermoplastic elastomers are possible if the 
end blocks are glassy or crystalline and can reinforce an elastomeric continu- 
ous matrix. Impact resistant transparent thermoplastics can be prepared where 
an elastomeric microphase can toughen a continuous glassy matrix. A number of 
block copolymers are now commercially available. The structure and properties 
of these materials are reviewed. 

INTRODUCTION 

Block and graft copolymers differ significantly from random or alter- 
nating copolymers (ref. 1-14). The main and most interesting feature of blbcks 
and grafts is their ability to yield two phase systems in which the two phases 
are linked by a chemical bond. The latter insures a fine dispersion or inter- 
mixing of the phases thus yielding some very unique properties. 

Blocks of varying structures can be linked together (ref. 1,4,11,15) by 
anionic (ref. 16-27), step growth (ref. 28-37) and other techniques. 
rigid-rigid rigid-soft (so-called A-B-A or +A-B-)n "thermoplastic elastomers") 
and soft-soft block copolymers have been prepared and studied. 

Both 
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PHASE SEPARATION ANI) MORPHOLOGY 
Homopolymer Blends 

Homopolymer blends displaying even s l i g h t  s t r u c t u r a l  d i f fe rence  general ly  
exhib i t  d i s c r e t e  two phase morphology. 
b i l i t y ,  bas i c  thermodynamic p r inc ip l e s  (eq. (1)) requ i re  a negat ive value of t h e  
Gibbs f r e e  energy. 

I n  order  t o  achieve complete m i s c i -  

AG = AH - TAS ( 1) 

where AH = enthalpy of mixing 
AS = entropy of mixing 

T = absolute  temperature 

The de ta i l ed  p r inc ip l e s  surrounding t h e  thermodynamic ana lys i s  of phase separa- 
t i o n  i n  polymers has been t r ea t ed  elsewhere ( re f .  38,39) and w i l l  not be 
repeated here.  However, recent  important s tud ie s  r e l a t ed  t o  polymer-polymer 
s o l u b i l i t y  such as t h e  two-component s o l u b i l i t y  parameter approach by 
Shaw (ref .  4 0 ) ,  t he  adaptat ion of Flory's equation of state thermodynamics by 
McMaster ( re f .  41 ,42 ) ,  and t h e  solvent probe techniques discussed by K w e i  
( re f .  43)  and Olabis i  ( re f .  44)  are considered major advances and should be 
consulted. 

In  a t y p i c a l  polymer mixture, t he  morphology cons is ten t ly  va r i e s  as a 
function of t h e  composition. 
range, both components can exh ib i t  some degree of phase cont inui ty .  Geometric 
considerations requi re  t h a t  components present a t  <0.30 volume f r a c t i o n  e x i s t  
as dispersed phases. 

Generally, i n  t h e  0.30 t o  0.70 volume f r ac t ion  

Block Copolymers 

The a rch i t ec tu re  of block copolymers can be var ied from simple s t ruc tu res  
(i.e., AB) t o  tri- ( i .e . ,  ABA) and t o  mult iple  sequence blocks [ i . e . ,  (AB),]. 
The exis tence of covalent bonds c l ea r ly  imposes a r e s t r i c t i o n  t o  phase separa- 
t i o n  due t o  a decrease i n  t h e  entropy caused by configurat ional  considerations.  

Two bas i c  theor ies  of microphase separat ion i n  block copolymers have been 
developed by Meier (ref .  45-47) and Krause ( re f .  4 8 ) .  Both theor ies  r e l y  
heavily on Flory's  i n t e rac t ion  parameter XAB and hence are somewhat l imited t o  
non-polar polymer systems where only d ispers ive  in t e rac t ions  are important. 

By using t h e  simplest  case of an AB block copolymer, Meier ( r e f .  45) 
es tab l i shed  t h e  thermodynamic criteria f o r  domain formation. 
t h a t  higher block molecular weights w e r e  required f o r  phase separat ion i n  a 
copolymer than i n  simple homopolymer blends. 
case of a styrene-butadiene AB block copolymer, phase separat ion would occur 
when t h e  polybutadiene block Q is >50,000 and t h e  polystyrene block 
>5,000 t o  10,000. The most s t a b l e  domain s t r u c t u r e  w a s  a l s o  considered as a 

Meier calculated 

This theory predicted t h a t  i n  t h e  

i s  
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function of block molecular weight (or composition). 
predicted spherical domains existed as the preferred morphology at low A block 
M, (e.g., MA/MB < .25) .  
favored. Cylindrical domains were predicted in the intermediate region. These 
predictions have qualitatively been shown to be correct via electron microscopy 
and small angle x-ray studies. 

It was shown that the 

When the ratio of MA/MB > .30 lamellar structure was 

Note, however, that block copolymers can display various morphologies 
dependent upon the method of preparation. 
solvent-cast systems where the solvent can be preferentially absorbed in one 
phase at the point of phase separation. The resultant morphology was theoret- 
ically treated by Meier (ref. 47)  for block copolymer-solvent systems where it 
was emphasized that the morphology in the solvent free block copolymer will 
probably be fixed in a nonequilibrium state. 

This is particularly true in 

A different approach, which is strictly thermodynamic and not concerned 
with morphology, was developed by Krause (ref. 4 8 ) .  The critical interaction 
parameter (XAB)cr was related to the number of blocks per molecule, block 
molecular weight, homopolymer concentration, and component block concentration. 

Experimental data on poly(a-methylstyrene)-polystyrene AB block co- 
polymers (ref. 49,50) and the corresponding homopolymer blends has shown that 
phase separation occurs in homopolymer blends but that one phase behavior is 
observed in a block copolymer where the block molecular weights were greater 
than those of the homopolymers. 

Krause's theoretical treatment also considers the important case where 
crystallization is a mode of phase separation. 

TRANSITIONAL BEHAVIOR 
Amorphous Transitions 

Above certain critical block molecular weights, block and graft copolymers 

The determination of 
exhibit microphase separation. 
polar and dispersive forces and/or specific interactions. 
phase behavior is comonly accomplished via modulus-temperature measurements, 
mechanical loss  data and/or thermal analysis (i.e., differential scanning 
calorimetry). 

Exceptions can occur for blocks with similar 

Examples of phase separated systems include Bisphenol A polycarbonate- 
polysiloxane (ref. 31), polysulfone-polysiloxane (ref. 5 1 )  and polystyrene- 
polydiene (ref. 21) block copolymers. Single amorphous phase block copolymers 
(as determined by the existence of a single Tg intermediate between the con- 
stituents) include polystyrene-poly(a-methylstyrene) (ref. 49,50) and poly- 
sulfone-Bisphenol A polycarbonate (ref. 52). 

The magnitude of the respective transitions has been shown to be influ- 
enced by the method of preparation. Casting from different solvents leads tp 
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morphological changes and hence continuous structure variation. Examples of 
this dependence have been shown for polymethyl methacrylate-grafted-natural 
rubber (ref. 53)  and polysulfone-polydimzthyl siloxane block copolymer (ref. 
5 1 ) .  
feature for polysulf one-polydimethyl siloxane block Copolymer. 

Mechanical loss-temperature data (ref. 5 1 )  illustrates this 

Mechanical deformation has also been observed to yield changes in transi- 
tional characteristics. Canter (ref. 5 4 )  observed that pre-stressing styrene- 
diene block copolymers sharpened the polystyrene transition with a resultant 
lowering of modulus between the constituent Tg's. 

In cases of limited solubility, sharp microphase separation may not occur, 
and the characteristic Tg's may be slightly shifted and, indeed, new inter- 
mediate transitions may emerge. This was observed by Beecher et al. (ref. 55)  
for styrene-butadiene block copolymers cast from different solvent systems. It 
is important to point out that in well phase separated block copolymers the Tg 
will show a predictable dependence on block molecular weight. 
was observed €or polysiloxane block copolymers for which the hard blocks were 
either polysulfone (ref. 5 1 )  or Bisphenol A polycarbonate (ref. 3 1 ) .  Similar 
dependence of Tg on molecular weight was reported for both systems (with 
appropriate correction for infinite Tg's). 

Such behavior 

In the case of single phase block copolymers, Tg values intermediate 
between the infinite molecular weight Tg's are observed. 
displayed by the 5000/5000 block M, Bisphenol A polycarbonate-polysulfone block 
copolymer (ref. 52). 

This behavior was 

Crystalline Transitions 

Crystallinity provides another means for promoting phase separation in 
block and graft copolymers (ref. 4 8 ) .  Thermoplastic polyurethanes are the 
earliest example of block copolymers in which phase separation occurs via 
development of crystallinity. Important differences in crystallinity and 
melting point are noted for block vs. random copolymers. The principle was 
illustrated in polyester block copolymers investigated by Charch and Shivers 
(ref.,29). 
crystallinity) is observed with comonomer incorporation. This is much less 
pronounced in block systems because of the long sequences. Similar results 
have been reported for polyamide structures. 

In random copolymers a rapid decrease of the melting point (i.e., 

Other examples of copolymers containing crystalline segments include poly- 
sulfone-nylon 6 (ref. 56-58), polyethylene-polypropylene (ref, 59) p and poly- 
(butylene terephthalate)-poly(tetrahydr0furan) (ref. 6 0 ) .  In the polysulf one- 
nylon 6 block copolymer, the degree o f  crystallinity and melting point of the 
polyamide block are virtually the same as those of the nylon homopolymer. 

One additional feature of the crystalline transition behavior is worthy of 
mention. Segments which are essentially amorphous in the isotropic undeformed 
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state may develop crystallinity upon deformation. 
referred to as stress-induced crystallization and its result is to produce 
excellent ultimate properties. Maintenance of elastomeric behavior (e.g., 
recovery) requires that stress-induced crystallization disappear upon stress 
removal. 
and polyester sequences (i.e., poly(tetrahydr0furan) and poly(&-caprolactone)) 
present in thermoplastic polyurethanes. 
utilizing this principle is the poly(buty1ene terephthalate)-poly(tetrahydr0- 
furan) fAB3n block copolymer (ref. 32,60). 

This phenomenon is commonly 

Rubbery segments exhibiting this behavior include certain polyether 

A recently commercialized material 

Mechanical and Rheological Properties 

One of the most important characteristics of elastomeric block copolymers 
is their ability to display rubbery properties while still retaining thermo- 
plastic processability. 
comprised of hard segments (high Tg and amorphous), soft segments (low Tg and 
amorphous), arranged in an A-B-A or an I.A-B-)n architecture. Phase separation 
of the hard block results in physical domains serving as tie points or 
"physical" networks which are similar to covalent bonds present in a cross- 
linked elastomer. The microphase separation of the hard segments results in 
highly dispersed rigid particles which reinforce the elastomeric matrix in a 
manner similar to carbon black reinforced vulcanizates. Judicial choice of the 
hard block content, block copolymer architecture, and a high degree of block 
purity is required to attain useful ultimate properties. 

The type of materials exhibiting this behavior are 

AB and BAB elastomeric block copolymers (A = hard block) have been shown 
to have inferior tensile strength and permanent set properties compared to ABA 
and (AB), (n>l) systems (ref. 19,21). A new class of block copolymers termed 
radial block copolymers combine excellent ultimate properties with easier proc- 
essing than their linear counterparts (ref. 61-63).  

Elastomeric block copolymers, based on the thermoplastic polyurethanes and 
the polyester-polyether block copolymer exhibit high tensile strength (>5000 
psi) and excellent wear and abrasion resistance. 
buted to the ability of the soft block of these materials to stress-crystallize. 
The phenomenon can even be visually observed. 
opacity which disappears upon removal of stress. 
copolymers exhibit strengths characteristic of carbon black filled, crosslinked 
elastomers (- 2000-3000 psi). Hydrogenated versions of styrene-butadiene 
(Kraton G )  have tensile strengths approaching those of the thermoplastic poly- 
urethanes (- 5000 psi). 
better phase separation expected with an ethylene/butylene block compared to 
a polybutadiene block (ref. 6 4 ) .  Moreover, the presence of ethylene sequences 
in the center block may contribute to stress-induced crystallization. 

These properties are attri- 

High extension results in 
The styrene-diene ABA block 

This improvement has been suggested to be due to the 

Block copolymers exhibit a marked dependence of mechanical properties on 
the method of sample preparation. 
block preferred solvent to a B block preferred solvent) bring about significant 

Variations in casting solvent (from an A 
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variations in the stress-strain behavior. 

If the solvent is preferentially dissolved in the ltsoftll block phase, 
lower modulus, "more elastomeric" materials are obtained. 
out that the resultant morphology of solvent cast samples will generally be in 
a nonequilibrium state as has been theoretically discussed by Meier (ref. 47). 
This behavior is not unique to block copolymers. In fact, the initial experi- 
ments showing this effect were conducted with a polymethyl methacrylate-natural 
rubber graft copolymer (ref. 53). 

It must be pointed 

The modulus-composition behavior for polymer-polymer blends is generally 
quite similar to that of their block or graft copolymer counterparts. 
the ultimate properties of the block and graft copolymers are generally supe- 
rior due to the excellent interfacial adhesion obtained by the imposition of a 
covalent bond at the phase boundary. Examples where block copolymers exhibited 
ultimate properties superior to their counterpart homopolymer blends include 
polysulfone-nylon 6, polystyrene-polysiloxane, and, of course, the polystyrene- 
polydiene ABA block copolymers. 

However, 

Modulus-composition data can be used to assess the continuous phase of 
block copolymers. 
determine the continuous-phase contribution of the respective components of the 
polysulfone-polydimethyl siloxane block copolymers (ref. 51). It was shown 
that the predicted continuous structure based on modulus data agreed well with 
a similar analysis derived from permeability data. 

Kerner's analysis for a two-phase system has been used to 

An interesting study of the behavior of styrene-butadiene ABA block 
copolymers gas presented by Matsuo and Sagaye (ref. 65). Samples prepared by 
compression molding above 50 wt.% styrene gave superior strengths whereas 
samples prepared by casting from cyclohexane (a poor polystyrene solvent) were 
stronger below 50 wt.% styrene. 
continuous-phase structure agreed with strength data. 

Morphological characterization of the 

A characteristic feature of block copolymers is that the melt viscosity is 
higher than that which would be expected from the homopolymer constituents. 
This has been attributed to the fact that the network structure exists above 
the major transitions of the constituent blocks (ref. 66-68). 

Kraus and Gruver (ref. 67) noted that even at low shear rates non- 
Newtonian behavior was observed and a temperature-shear rate superposition of 
the data was not possible. At high frequencies, Arnold and Meier (ref. 68) 
found that typical thermoplastic behavior was observed, indicating that the 
network domains can be broken down. 

Matzner, et a1 (ref. 66) hypothesized that the melt viscosity was related 
to the difference in solubility parameter between the constituent blocks. 
a series of polydimethyl siloxane based block copolymers, it was shown that 
processability improved (melt viscisity decreased) as the hard block solubility 
parameter approached that of the soft block. 

In 
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Recently, radial or star-shaped block eopolymers have been shown to display 
lower melt viscosity while at the same the maintaking equal or superior 
mechanical behavior (ref. 61-63). Styrene-diene radial block copolymers have 
been cited as examples where these characteristics are achieved (ref. 61-63). 

Transport Behavior 

While mechanical properties of block copolymers have been investigated in 
detail, other physical properties have received less attention (i.e., electri- 
cal, thermal conduction, and permeability). The permeability of siloxane block 
copolymers is of particular interest (i.e., membranes for blood oxygenators) 
since high permeability (as well as penetrant selectivity1 can be attained 
while permitting enhanced film properties (stiffness and-strength) over those of 
crosslinked silicone rubber. 

An example of this behavior is the permeability of polysulfone-polydi- 
methyl siloxane block copolymers studied by Robeson et a1 (ref. 51,69). 
Maxwell's equation was utilized to determine the continuous-phase structure 
from 02 permeability data. The continuous-phase structure determined from 02 
permeability data agreed well with modulus data determinations thus lending 
credence to both approaches. It was hypothesized that once the continuous- 
phase structure was determined (i.e., from modulus or permeability data) other 
transport properties could then be calculated (i.e., thermal conductivity or 
electrical conductivity) from values for the homopolymer constituents. 

Blending Phenomena 

Inoue et a1 carefully studied the addition of homopolymer constituents to 
an A-B styrene-isoprene block copolymer (ref. 70). It was concluded that if 
the homopolymer molecular weight was greater than that of the constituent block 
the homopolymer will form a discrete phase in a blend with the block copolymer. 
In studies of polysulfone-nylon 6 block copolymers, a desirable average of 
mechanical properties was obtained over a broad composition range of blends 
comprising either polysulfone or nylon 6 and the block copolymer (ref. 56-58). 
However, when both homopolymers were added to the block copolymer, brittle 
materials were obtained. The brittle behavior was believed to be the result of 
poor interfacial adhesion between the constituent homopolymers thus yielding a 
flaw in the composite. 

Most blend studies have dealt with phase separated block copolymers. 
However, an investigation of blends of homopolymer constituents with the one 
phase a-methylstyrene-styrene AB block copolymers has been'reported and is of 
considerable interest (ref. 49). At similar molecular weight, poly(a-methyl- 
styrene) addition to the block copolymer produced a single phase system, 
whereas polystyrene addition resulted in a two phase system (polystyrene homo- 
polymer and block copolymer phases). 
and the homopolymer constituents resulted in a polystyrene-rich phase and a 

A ternary blend of the block copolymer 
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poly(wmethy1styrene) - block copolymer phase. 
copolymer with rigid homopolymer have been cited in many examples where the 
impact strength of the rigid polymer is improved. 

Blends of block and graft 

Applications 

Commercial acceptance of block copolymers has centered upon their utility 
as thermoplastic elastomers. The primary advantages of the thermoplastic 
systems vis-a-vis their chemically crosslinked analogs include fast cycle 
injection moldability, reuse of scrap, transparency, color selections possible 
(e.g., no carbon black required for reinforcement), fabrication via solvent 
casting, etc. Large volume markets such as automotive tires cannot be pene- 
trated due to property limitations such as high temperature compression set or 
poor solvent/oil resistance. 
been directed toward mechanical goods and specialty products. 
shown dramatic growth in the last decade and this trend has been projected to 
continue in the future. 

Therefore, most of the market penetration has 
These areas have 

Thermoplastic polyurethanes were the first commercial thermoplastic 
elastomers. They have emerged as the major block copolymer used in demanding 
applications where excellent strength, wear, and oil resistance are required. 
Typical end uses include footwear, automotive bumpers and facia, adhesives and 
coatings, etc. Novel applications such as snowmobile treads and horseshoes 
have also been developed. Thermoplastic polyurethanes are available from a 
number of suppliers. 

Polyester-polyether block copolymers based on poly(buty1ene terephthalate) 
and poly(tetrahydr0furan) are now commercially available under the trade name 
Hytrel. This material has property-profile characteristics which are similar 
to that of the thermoplastic polyurethanes. 
better processing stability and low temperature properties. 

It has been reputed to display 

The styrene-diene-styrene ABA block copolymers have shown promising growth 
in a variety of end uses since their introduction in 1965. 
applications in footwear, adhesives, sporting equipment, and general purpose 
rubber goods (e.g., toys). 

They have found 

Second generation ABA materials wherein the center polybutadiene block has 
been hydrogenated to yield a saturated ethylene/butylene structure have now 
been commercialized under the name of Kraton G (ref. 6 4 ) .  Obviously, this 
transformation results in vastly improved thermal oxidative and weather resis- 
tant properties. Such improvements should extend the end-use markets into 
areas where the precursor materials were marginal or unacceptable (e.g., auto- 
motive exterior parts). 

Styrene-diene A-B block copolymers have been commercial for many years and 
have been utilized in various crosslinked applications. 
to impart improved low temperature flexibility, increased hardness, and improve( 

They have been shown 
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processabi l i ty  i n  blends with other  conventional elastomers. 

Rigid, high styrene-butadiene r a d i a l  block copolymers have been recent ly  
introduced under t h e  t r ade  name of K-Resins ( ref .  62,63). These materials are 
t ransparent ,  r e l a t i v e l y  tough, and have been d i rec ted  towards clear packaging 
appl icat ions.  

Siloxane block copolymers wherein polydimethyl s i loxane s o f t  segments are 
combined with e i t h e r  polystyrene ( re f .  71)  o r  polycarbonate ( re f .  31) hard 
segments have been proposed i n  membrane appl ica t ions  such as blood oxygen 
Polysiloxane containing materials suFh as these  o f f e r s  p o s s i b i l i t y  of 
achieving high oxygen and carbon dioxide permeabi l i t ies  l e  a t  the  same t i m e  
displaying superior  mechanical proper t ies .  Moreover, s ince  ex terna l  reinforc- 
ing  f i l l e r s  and crossl inking addi t ives  are not required,  f ab r i ca t ion  of t h i n  
pin-hole-free f i lms is  f a c i l i t a t e d .  

One of t h e  o ldes t ,  but  s t i l l  important appl ica t ion  areas f o r  block 
copolymers is i n  nonionic sur fac tan ts .  For example, polyurethane-foam s tab i -  
l i z e r s  comprise alkylene oxide-sil icone block o r  g r a f t  copolymers. The poly- 
e the r  segment is so luble  i n  t h e  polyurethane. The s i l i c o n e  block is  phase 
separated and is believed t o  r e s ide  a t  t h e  gas-urethane in t e r f ace  where it is 
of major importance i n  t h e  production of uniform foam cel l  s t ruc tu res  ( re f .  72). 
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A CRITICAL REVIEW OF THE EFFECTS OF MEAN AND COMBINED STRESSES 

ON THE FATIGUE LIMIT OF METALS 

R. E. L i t t l e  
The University of Michigan-Dearborn 

SUMMARY 

The e f f e c t s  of mean and combined stresses on t h e  f a t i g u e  l i m i t  of metals 
are c r i t i c a l l y  re-examined. 
used f a t i g u e  l i m i t  analyses. 
required. 

Data are presented which cont rad ic t  t he  widely 
Further study of bas i c  f a t igue  mechanisms is  

INTRODUCTION 

Ten years  ago it  w a s  widely accepted t h a t  f a t i g u e  cracks i n i t i a t e  i n  
metals as a'consequence of a l t e rna t ing  shear deformations and propagate as t h e  
consequence of a l t e rna t ing  normal deformations. However, scanning e l ec t ron  
micrographs now indica te  t h a t  f a t i g u e  cracks can i n i t i a t e  i n  t h e  absence of 
s l i p ,  apparently as a consequence of l o c a l  inhomogeneous s t r a i n s  and the  associ-  
a ted l o c a l  stresses ( re f .  1 ) .  Thus, even f o r  simple uniax ia l  states of cyc l i c  
stress, there  remains considerable uncertainty regarding the  respec t ive  r o l e s  
of normal and shear stresses i n  t h e  f a t i g u e  crack i n i t i a t i o n  process. 

The discussion i n  t h i s  paper i s  r e s t r i c t e d  t o  f a t igue  l i m i t s  so t h a t  
cyc l i c  stresses may be assumed t o  be proportional t o  cyc l i c  s t r a i n s .  
assumption i s  almost un iversa l ly  employed i n  f a t i g u e  l i m i t  analyses even though 
i n  c e r t a i n  cases, depending on the  material and on the  mode of loading, t h e  
cyc l ic  y i e ld  s t rength  may l i e  w e l l  below t h e  f a t i g u e  l i m i t  ( re f .  2). 

This 

Engineering analyses of t h e  e f f e c t s  of mean and combined stresses on the  
f a t igue  l i m i t  of metals may be c l a s s i f i e d  as elementary and advanced. 
t a r y  analyses general ly  combine an empirical  mean stress r e l a t i o n  with a common 
s t rength  of materials f a i l u r e  c r i t e r ion .  Advanced analyses,  on the  other  hand, 
are general ly  based on a proposed f a i l u r e  c r i t e r i o n  t h a t  includes both mean 
and combined stresses. 

Elemen- 

SYMBOL s 

parameter (mater ia l  constant)  

normal stress 

shear stress 
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Subscripts  : 

a 

eqv 

m 

max 

m r  

0 

t 

TU 

U 

W 

Y 

cp 

e 

a l t e rna t ing  (allowable) 

equivalent 

mean 

maximum 

maximum range 

octrahedral  

t e n s i l e  

t r u e  u l t imate  t e n s i l e  s t rength  

ul t imate  t e n s i l e  s t rength  

f a t igue  l i m i t  (Wohler) 

t e n s i l e  y ie ld  s t rength  

o r i en ta t ion  of c r i t i c a l  plane 

d i r ec t ion  i n  c r i t i c a l  plane 

ELEMENTARY FATIGUE LIMIT ANALYSES 

Empirical Mean Stress Relations 

The following equations summarize and extend the  widely used empirical  
mean stress re l a t ions :  

Om 

OW U 

O 
L i t t l e  (2) = 1 - (AT) 

Soderberg Om (-1 ‘a (-) = 1 - 
OW OY 
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Fischer 

E J i  s hihar  a 

Gerber 

General 

E l l i p s e  

3 a A  *a A1 Gener a1 (-) = 1 - ( A A )  
OW 2 5 ) .  

= (1 - A-) Om A3 
General (-1 

OW 2aIJ 

*a A~ 

*W 
General (-) = A2 + (1 - A 2 ) [ 1  

The Gerber and Goodman r e l a t i o n s  w e r e  based 

(4) 

*m A4 

3*u 
- (A-1 1 

on t h e  pioneer a x i a l  load mean 
stress f a t i g u e  l i m i t  da t a  f o r  mild steels by Wohler. Gerber’s r e l a t i o n  is 
s t r i c t l y  empirical ,  whereas Goodman’s r e l a t i o n  w a s  o r i g i n a l l y  theore t ica l .  ?t 
was widely accepted around t h e  turn  of t he  century t h a t  a l ive o r  dynamic load 
causes a stress t h a t  is  twice as l a rge  as t h e  stress caused by a dead o r  s t a t i c  
load. It w a s  a l so  believed t h a t  t he  minimum c y c l i c  load corresponds t o  the  
s ta t ic  load and t h a t  t he  range of cyc l i c  load from minimum t o  maximum corre- 
sponds t o  t h e  dynamic load. Accordingly, Goodman argued tha t  the f a t igue  l i m i t  
i s  reached when t h e  minimum stress p lus  two t i m e s  t he  range of stress equals 
t h e  t e n s i l e  u l t imate  strength.  The predicted f a t i g u e  l i m i t  f o r  mild steels, 
one-third of t h e  t e n s i l e  u l t imate  s t rength  ( r e fe r  f i g .  l), agreed q u i t e  w e l l  
with Wohler’s data. Apparently t h i s  agreement and t h e  s impl ic i ty  of the rela- 
t i o n  led  t o  its widespread use -- which continues t o  t h e  present (with c e r t a i n  
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modifications t o  be discussed). However, it w a s  q u i t e  obvious even then t h a t  
Goodman's r e l a t i o n  d id  not agree with Wohler's da t a  f o r  f i n i t e  f a t i g u e  l i ves .  
Moreover, it soon became apparent t h a t  not  a l l  materials exhibited f a t igue  
limits equal t o  one-third of t h e  u l t imate  t e n s i l e  s t rength.  

By t h e  e a r l y  1920's t he re  w e r e  s u f f i c i e n t  f a t i g u e  l i m i t  da t a  ava i l ab le  f o r  

Accordingly, t he  Goodman 
var ious materials t o  ind ica t e  t h a t  t h e  r a t i o  of t he  f a t i g u e  l i m i t  t o  t he  u l t i -  
mate t e n s i l e  s t rength  depends on the  material tes ted .  
r e l a t i o n  w a s  modified t o  agree with t h e  data.  
design inf luence l e d  t o  a second modification; namely, l imi t ing  t h e  maximum 
cycl ic  stress t o  a value less than t h e  static t e n s i l e  y i e ld  s t rength.  
r e su l t i ng  modified-modified Goodman diagram is  displayed i n  f i g u r e  1. 

Approximately t en  years  later 

The 

Idea l ly ,  tests conducted t o  inves t iga te  the  e f f e c t  of mean stress on 
f a t igue  l i m i t s  pe r t a in  t o  var ious modes of loading, e.g., t o  bending, to rs ion ,  
and combined bending and tors ion.  However, a x i a l  load tests with t e n s i l e  mean 
stresses continue t o  dominate t h e  scope and perspect ive of elementary f a t igue  
l i m i t  analyses,  perhaps because of t he  s impl ic i ty  of t h e  test and t h e  ostensive 
design appl ica t ion  of t h e  data.  This dominance, whatever t h e  reason, causes 
severa l  problems i n  ana lys i s  and in t e rp re t a t ion  of f a t igue  l imi t s .  
cyc l i c  p l a s t i c  deformations can become excessively l a r g e  when t e s t i n g  with high 
mean stresses. 
Moreover, t h e  l a r g e  cyc l i c  p l a s t i c  deformations associated with high mean 
stresses can, but need not,  cause marked reductions i n  t h e  f a t igue  l i m i t  ( r e f .  
3 ) .  Unless t h e  low and high mean stress f a t i g u e  l i m i t  da t a  are separated,  the  
reduced f a t igue  limits a t  high mean stresses may tend t o  give the  erroneous 
impression t h a t  t h e  Gerber r e l a t i o n  accurately descr ibes  t h e  aggregate data. 

For example, 

(The specimen can undergo a change i n  area of 8 t o  10% or  more.) 

The Gerber and Goodman r e l a t i o n s  set t h e  pa t t e rn  f o r  most subsequent mean 
stress re l a t ions .  
i nco r rec t ly  t h a t  t h e  allowable a l t e rna t ing  stress must equal zero when the  
mean stress is equal t o  t h e  u l t imate  t e n s i l e  strength.  This a l l ega t ion  i s  
naive. The allowable stress diagram is  three-dimensional, with the  t h i r d  a x i s  
out of t h e  plane of t h e  paper representing f a t igue  l i f e ,  but is conventionally 
presented i n  t h e  misleading two-dimensional format given i n  f igu re  1. 
do t h e  s ta t ic  and cyc l i c  y ie ld  s t rengths  d i f f e r  markedly, the  maximum cyc l i c  
stresses associated with the  f a t igue  l i m i t  a t  high mean stresses may even 
exceed t h e  s ta t ic  u l t imate  t e n s i l e  s t rength.  
cyc l i c  stresses associated with t h e  bending f a t igue  l i m i t  a t  high mean stresses 
may even exceed one and one-half t i m e s  t he  static ul t imate  t e n s i l e  s t rength.)  
The real purpose of p lo t t i ng  a s ta t ic  s t rength  along the  abscissa  of an allow- 
ab le  o r  working stress diagram is  merely t o  descr ibe the  f a t igue  f a i l u r e  locus 
i n  terms of a r ead i ly  ava i l ab le  material-dependent parameter. 

These r e l a t i o n s  are s t i l l  being ra t iona l ized  by a l leg ing  

Not only 

(The corresponding maximum 

The engineering emphasis on t h e  f a t igue  l i m i t  of mild steels with t e n s i l e  
mean stresses has i n  e f f e c t  promoted a set of elementary analyses which v i r -  
t u a l l y  ignore t h e  remaining mean stress da ta ,  e.g., t he  contradictory da t a  f o r  
cast i ron  with high compressive mean stresses displayed i n  f igu re  2 ( re f .  4 ) .  
These da ta  cannot adequately be described by any of the  e m p i r i c a l  mean stress 
r e l a t i o n s  (1) through (12). Rather, t h e  port ion of t he  allowable stress 
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diagram per ta in ing  t o  very high compressive mean stresses may indeed be q u i t e  
complex, p a r t i c u l a r l y  i f  t e n s i l e  r e s idua l  stresses introduced by c y c l i c  loading 
have a s ign i f i can t  e f f e c t  on crack i n i t i a t i o n .  

Strength of Materials Fa i lure  Criteria 

The r a t i o  of t h e  to r s iona l  t o  bending f a t igue  l i m i t s  depends on t h e  m a t -  
erial and i t s  thermal-mechanical processing. Thus, elementary f a t i g u e  l i m i t  
analyses usua l ly  include an impir ica l  f ac to r  t o  co r rec t  f o r  "anisotropy." 
For example, t h e  modified p r inc ipa l  shear stress c r i t e r i o n  is 

1 2  % 2 2 1 / 2  
= -[a + (-1 Tal T 

,57 eqv,a 2 a 

Note t h a t  when Oa = 0 and Tw = OW/2, T 

grea te r  than o r  less than 

= T . Otherwise, T 
eqv,a a eqv 9 a 

is  

depending on whether %/% is  less than o r  

grea te r  than 1/2. 
modified i n  a s i m i l a r  manner. 

The o ther  common s t rength  of materials f a i l u r e  cri teria are 

Theoret ical  f a t igue  l i m i t  analyses usual ly  p e r t a i n  t o  the  plane of f a t igue  
crack i n i t i a t i o n .  
stresses ac t ing  on t h i s  plane should be used t o  pred ic t  t h e  inf luence of mean 
stress. For example, t h e  elementary hypothesis t h a t  t he  f a t igue  l i m i t  corre- 
sponds t o  the  amplitude of t he  shear stress ac t ing  on t h e  plane of maximum 

The primary i s s u e  i s  what combination of normal and shear 

range of shear 

ac t ing  on that 

stress $mr, modified by the  magnitude of t h e  mean shear stress 

plane, gives  

Although t h i s  c r i t e r i o n  accura te ly  descr ibes  c e r t a i n  f a t i g u e  l i m i t  da t a  by 
appropriate  s e l ec t ion  of parameters A 1 
l y  between t e n s i l e  and compressive mean stresses t o  have general  appl icat ion.  
The complementary c r i t e r i o n  

and A2, it does not d i s t i ngu i sh  adequate- 

T = A 1 + A a  
'mr 9 a 2 +mr9m 

overcomes the  object ion t o  c r i t e r i o n  (14), but has not been s t rongly advocated 
i n  t h e  l i t e r a t u r e .  
t h e  octrahedral  shear stress, v iz . ,  

The most widely accepted elementary c r i t e r i o n  is  based on 
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Sines ( re f .  5) shows t h a t  c r i t e r i o n  (16) p red ic t s  t h e  absence of a to r s iona l  
mean stress e f f e c t  on t h e  f a t igue  l i m i t  under a l t e rna t ing  tors ion  and under 
a l t e rna t ing  bending, and a l s o  p red ic t s  t h a t  a t e n s i l e  mean stress decreases 
the  tors iona l  f a t igue  l i m i t  whereas a compressive mean stress increases  it. 
These predic t ions  agree with t h e  mean stress da ta  examined by Sines. 
other  da ta  ind ica t e  that a mean t o r s i o n a l  stress decreases t h e  f a t i g u e  l i m i t  
under a l t e r n a t i n g  to r s ion  (cas t  iron, aluminum, a l l o y  steel) and under alter- 
nat ing bending (cast iron).  Moreover, Nishihara 's  da ta  ( re f .  6) f o r  both 0.1OC 
( f ig .  3) and 0.34C p l a i n  carbon steels ind ica t e  no decrease i n  the  f a t igue  
l i m i t  caused by superimposing t e n s i l e  mean stress on a l t e rna t ing  to r s iona l  
stress. 

However, 

Nishihara 's  da t a  f o r  a 0.72C p la in  carbon steel are a l s o  included i n  f i g u r e  
3 t o  show t h a t  t h e  e f f e c t  of mean stress d i f f e r s  f o r  a given mode of loading, 
depending on t h e  material tes ted .  Accordingly, advanced analyses general ly  
involve f a i l u r e  c r i t e r i a  with parameters which permit t he  e f f e c t  of mean stress 
t o  vary markedly f o r  a given mode of loading, depending on t h e  values  assigned 
t o  c e r t a i n  material-dependent parameters. 

ADVANCED FATIGUE LIMIT ANALYSES 

Although several advanced f a t igue  l i m i t  analyses appear i n  the  l i t e r a t u r e ,  
egg. Y 

Findley T = A 1 + A o  4, a 2 $,max 

Stulen and 
Cummings %,a - A1°3,a = A2 A3°1,m 

Nishi j ima 

(refs .  7 through 9 respect ively) ,  none of these criteria adequately descr ibe 
typ ica l  a x i a l  load da ta  f o r  both mild steels and c a s t  i rons.  I n  f a c t ,  i t  
appears t h a t  only a f a t igue  l i m i t  ana lys i s  with mult iple  f a i l u r e  criteria 
( i .e . ,  d i f f e r e n t  criteria f o r  d i f f e r e n t  modes of loading and ranges of cyc l i c  
s t r e s s )  w i l l  s u f f i c e  t o  descr ibe a l l  da ta  accurately.  Even then, r e l i a b l e  
predict ion of f a t i g u e  limits is  not a simple matter. 
c r i t e r i o n  ana lys i s  by Kawada and Kodama ( re f .  10) 

For example, t h e  mul t ip le  
A 

can be used t o  descr ibe t h e  a x i a l  load data  f o r  cast i r o n  and f o r  mild steels 
(f ig .  4 ) ,  as can t h e  Nishihara and Endo (ref.  11) analys is  
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(21) - 
l , a  - A1CT3,a - A2 4- A3CTl,m CT 

but both analyses  have shortcomings relative t o  accura te  descr ip t ion  of o ther  
mean stress data.  

CONCLUDING REMARKS 

Engineering f a t igue  l i m i t  analyses  r equ i r e  several a t t r i b u t e s  t o  be re- 
l i a b l e .  F i r s t ,  t h e  analyses should include both mul t ip le  f a i l u r e  criteria 
and material-dependent parameter values  which permit a wide range of response 
f o r  a given mode of loading. Essen t i a l ly  t h i s  means t h a t  f a t igue  limits should 
be categorized not only i n  terms of t h e  mode of loading, but a l s o  i n  terms of 
t h e  material. Moreover, t h e  analyses should pe r t a in  t o  a more general  state 
of cyc l i c  stress where a l l  (constant amplitude) stresses do not necessar i ly  
act i n  phase and a t  t h e  s a m e  frequency. This aspect  of f a t igue  l i m i t  analyses 
is v i r t u a l l y  unexplored. Engineering f a t igue  l i m i t  analyses should a l s o  be 
amenable t o  simple modification t o  p red ic t  t h e  f a t i g u e  l i m i t  of notched speci- 
mens. The primary reason i n  design f o r  attempting t o  pred ic t  the  f a t igue  l i m i t  
of unnotched specimens i s  t o  obta in  base l ine  da t a  from which t o  estimate the  
f a t igue  l i m i t  of notched specimens. In - tu rn ,  f a t i g u e  l i m i t  analyses f o r  notched 
specimens should be amenable t o  simple modification t o  pred ic t  t h e  f a t i g u e  l i f e  
of specimens under complex stress-time h i s t o r i e s ,  a t  least i n  t h e  intermediate 
t o  long l i f e  domains of cyc l i c  s t ress ing .  Further,  f a t i g u e  l i m i t  and f a t igue  
l i f e  analyses should be statist ical .  There i s  some evidence t h a t  t h e  f a t i g u e  
l i m i t  d i s t r i b u t i o n  f o r  unnotched specimens is  symmetrical, whereas t h e  f a t igue  
l i m i t  d i s t r i b u t i o n  f o r  notched specimens i s  skewed ( re f .  12). This area needs 
much more study. 

The most urgent problem a t  present is  how t o  use ex i s t ing  mean and com- 
bined stress da ta  f o r  unnotched specimens t o  pred ic t  t h e  behavior of notched 
specimens. 
l i m i t s  of notched specimens s ince  the  introduct ion of t h e  notch s e n s i t i v i t y  
index approximately f o r t y  years  ago. 
i n i t i a t i o n  and t h e  t r a n s i t i o n  from i n i t i a t i o n  t o  propagation i s  evident ly  t h e  
key t o  pred ic t ing  f a t igue  l i m i t s  f o r  notched and unnotched specimens. 

There has been very l i t t l e  progress made i n  estimating the  f a t i g u e  

Understanding t h e  na ture  of crack 
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Figure 1.- Original and modified-modified Goodman diagrams plotted 
on CI (T coordinates. oU = ultimate t ens i l e  strength; 

0 = fatigue l i m i t ;  and uY = tens i le  yield strength. 
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Figure 2.- Pomp and Hempel’s axial  load mean stress 
fatigue l imit  data for grey cast  iron (ref. 4) .  
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Figure 3 . -  Nishihara’s fatigue l i m i t  data for two plain carbon steels 
subjected to s ta t i c  tension superimposed on alternating torsion 
(ref.  6 ) .  
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Figure 4.- Example allowable stress diagram established by 

multiple fai lure cr i ter ia  for different domains of cycl ic  
stressing (ref.  10). 
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INFLUENCE OF ACOUSTICS IN SEPARATION PROCESSES 

Harold V. Fairbanks 
West Virginia University 

SUMMARY 

The purpose of this investigation was to study the effects of introduc- 
ing high energy acoustics into various filtering and drying systems. With 
very slow velocity filtration systems,it was found that the introduction of 
acoustics could substantially increase the flow rate and also aided in the 
coagulation of the particulates before reaching the filter media, In the dry- 
ing of temperature sensitive powders, the rate was increased by the intro- 
duction of acoustics. The acoustic frequency used was 2OkH.z with power levels 
up to 3 watts per square centimeter. 

FILTRATION 

Figure 1 shows a schematic sketch of the filtration equipment used in 
this study. The special assembly of the acoustic horn on the top of the fil- 
ter was built and consigned to us by the Branson Sonic Power Company of 
Danbury, Connecticut for this project. With this special head, the filter 
could be operated under pressure from both sides of the filtering media. 

A porous stainless steel filter, 0.6 cm thick, was used to separate the 
solids from a viscous oil slurry which contained 7.5% solids by weight. The 
mean channel diameter in the stainless steel filter was 120 pm while the 
mean diameter of the solid particulates was 20 pm. 

Figure 2 shows the filtration rates obtained when acoustics were intro- 
duced into the filtration system. The maximum flow rate was calculated to 
increase 9 times when using a system pressure of 0.91 kg/cm 
intensity of 2.15 W/cm2. The pressure drop across the 0.6-cm thick porous 
stainless steel filter media, 7.6 cm in diameter, was 0.05 kg/cm2. 
consisted of 7.5% fine solids in motor oil. The slurry simulated oil pro- 
duced from the hydrogenation of coal which contains a suspension of small 
mineral particles ranging from 1 to 100 pm in size. Besides increasing the 
oil flow rate, the acoustics also kept the filter media cleaner and aided in 
agglomerating the solids beneath the porous stainless steel filter. 

2 with an acoustic 

The slurry 
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DRYING 

Figure 3 is a schematic sketch of the experimental tray type drying 

was consigned to us by the Branson Sonic Power Company of Danbury, Connecticut 
for this project. The temperature sensitive powders used included: (1) fine 
coal powder, after pyritic sulfur removal, made up of particles less than 
150 pm in size, and (2) polymer powders having an approximate particle size 
of 20 pm. 

-system used in this study. The special air-coupling acoustic bell horn used 

Figure 4 compares drying rate curSSs with and without the introduction 
of acoustics. Two factors can be noted: (1) an increase in the drying rate 
during the constant drying rate period, and (2) an extension of the constant 
drying rate period. 

The increase in the constant drying rate period is due to the increased 
air turbulence caused by the sound waves at the evaporation surface. 
Cline (ref. 1) showed that a minimum sound intensity of 130 dB was re- 
quired at the evaporation surface for increased drying rate. 
(ref. 2) showed that too high a sound intensity can decrease the drying rate 
due to cavitation being produced in the liquid phase. 

R. E. 

J. M. Spain 

The extension of the constant drying rate period is conjectured to be 
due to the acoustics ability to increase the liquid flow rate from the in- 
terior of the powder mass or agglomerate to the evaporating surfaces. 

DISCUSSION 

In both the filtering and drying processes, the introduction of acoustics 
The main condition required was to satisfy 

F is the sound frequency in 
increased the liquid flow rate. 
Biot's relationship (ref.,, 3) where F = 7iV/4d2. 
hertz, V is the kinematic viscosity in square centimeter per second, and d is 
the m e a n  channel diameter in centimeters. When the cond5tions of the experi- 
ments did not satisfy Biot's relationship, it was found that the effectiveness 
of introducing acoustics into the system was greatly reduced. 

When Biot's relatio-nship is satisfied the liquid flow changes from the 
ROXTIE~~ viscous flow to a plug type flow. 
for the liquid flow through the small channels is significantly reduced. 

In other words, the friction factor 
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ACOUSTIC HORN 

Figure 1.- Schematic sketch of equipment used for 
acoustic a s s i s t  i n  f i l trat ion,  
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Figure 2.- Curves showing the effect of ultrasonic intensity upon 
f i l t ra t ion  increase uslng various gauge pressures on the system, 
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Figure 3.-  Schematic sketch of equipment used for 
acoustic a s s i s t  i n  tray drying. 
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Figure 4.- Drying rate curves showing the influence of 
acoustics upon drying minus 150 pm powdered coal particles.  
Approximately two liters of a i r  flow per second was used 
having a temperature of 2OO0C 
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MICROMECHANICS OF SLIP BANDS ON A FREE SURFACE* 
** 

S.R. Lin 
The Aerospace Corporation 

T.H. Lin 
University of California, Los Angeles 

SUMMARY 

A micromechanics analysis for  the +ormation and propagation of slip 
bands on the free  surface of a polycrystal under monotonic loading is presented. 
For  the growth of slip bands the analysis satisfies the conditions of both equi- 
librium and displacement continuity, as well as the relation between slip and 
the resolved shear s t ress  throughout the polycrystal. Numerical calculations 
show how the microstress field causes the concentration of plastic deforma- 
tion in-discrete sliding bands and give results which are in good qualitative 
agreement with known slip band observations on aluminum single crystals. 

INTRODUCTION 

Slip bands on metal surfaces under loading have been observed since 
early in this century. 
visible in the light microscope were clusters of fine lines spaced about 100 
atoms apart a s  resolved in the electron microscope. 
of slip bands increase with loading, and slip bands often run through the crys- 
tal (refs. 2 and 3) .  
and growth of these slip bands observed both on the surface and at  the interior 
of the deformed metal. 
yields to an applied s t ress  at some specific weak slip plane. Because the lat-  
tice around the active slip plane is so severely distorted as to require a higher 
s t ress  to cause slip to continue, the slip does not continue on the plane until 
fracture occurs but shifts to others. 
hypothesis fails to explain why slip bands once formed can exhibit increasing 
shear strain a t  the same time as  new bands are formed. If work hardening 
is due to distortion of lattice near the active slip plane, the planes on which 
slip has never occurred, being more nearly perfect, should be planes of 
easier slip than those which have slipped already. 

Heidenreich and Shockley (ref. 1) found that slip bands 

The number andintensity 

Many attempts have been made to explain the occurrence 

It was commonly assumed that a single crystal first 

As indicated by Brown (ref. 4), this 

.I. -I. 
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It is generally agreed that the interactions of slip bands determine their 
The observed mean slip band spacing of an aluminum single crystal spacing. 

is about 25p at an extension of 0.7% and 12p at 2.5%. Accumulation of large 
numbers of dislocations on slip planes produces residual stresses in the lat-  
tice causing difficulty for slip to occur within a zone on either side of the slip 
plane. 
the range of the stresses due to  dislocations in a plane array is much too 
small even to explain more'closely spaced slip bands. 

As indicated by Mott (ref. 5), the difficulty of this hypothesis is that 

The microstres s explanation of the nonuniform plastic deformation and 
slip bands in the interior of a polycrystal was proposed by Lin in 1972 (ref. 6), 
but that of the corresponding phenomena on the free surface is not available. 
Slip bands on the surface have great influence on the fracture characteristics 
of the metal. This paper aims to show, based on micromechanics, how slip 
bands are  formed a t  the free surface under a monotonic loading. 
mechanics here means the variation of stress and strain from one band to the 
other. 

Micro- 

RESOLVED SHEAR STRESS FIELD CAUSED BY SLIP 

Among the different mechanisms of plastic deformation in metals, crys - 
tallographic slip has been shown to be the principal process of plastic defor- 
mations at  low and intermediate temperature (ref. 7). 
tion is mainly due to the movement of dislocations (ref. 8). Single crystal 
tests have shown that slip starts when the resolved shear stress reaches a 
certain value, known as the critical resolved shear stress. The initiation and 
continuation of slip depend on this resolved shear stress and are  independent 
of the normal pressure on the sliding plane. Slip is caused by dislocation 
movement, and the force on a dislocation line to cause it to move varies 
linearly with the resolved shear stress (ref. 9). 
resolved shear stress. 

This plastic deforma- 

Hence, slip depends on the 

Imperfections such as dislocations exist in all metals and cause an 
initial s t ress  field denoted by T$. 

caused by loading denoted by thd T$ combines with the initial stress field to 
form a nonuniform stress field. 
resolved shear stress field ~~g in  a slip system, where (Y denotes the direc- 
tion along the normal to the slip plane and 6 along the slip direction. 
region with the highest resolved shear s t ress  slides first, when the critical 
shear stress T~ is reached. 
with loading. 
would remain and cause a residual stress field. 
assuming no further slip during the reloading, the resultant stress field 
is the sum of the initial stress TI 

Under loading, the elastic stress field 

The resultant stress field T i j  gives a 

The 

The amount of slip and the region of slip increase 
Should the load be removed after sliding in the region, the slip 

If the load is applied again, 

and the the residual slip stress field T~ applied s t ress  T - $ ~ .  CUP' 

To find the residual stress field due to localized slip, use is made of the 
analogy between the plastic strain gradient and the body force developed by 
Eshelby (ref. 9 )  and Lin (ref. 10). Consider an aluminum polycrystal loaded 
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in tension. Due to different orientations of the crystals, the resolved shear 
stresses vary from one crystal to another. 
the same initial critical shear stress. Those crystals that have the highest 
resolved shear stress,  known as  the most favorably oriented crystals, will 
slide first. 
most favorably oriented crystal has a slip system with the slip direction and 
slip plane at 45 deg to the loading axis, Since the length of the slip band (di- 
mension alongxg, axis in fig. 1) is much larger than its thickness, the plastic 
strain due to slip is assumed to be constant along the length. Hence, the de- 
formation state due to plastic strain can be considered under plane strain. 
For numerical calculation, the slide region is divided into parallelogram ele- 
ments in which, if slip occurs, the plastic strain e$p is assumed constant. 
The residual resolved shear stress in a semi-infinite medium due to a given 
plastic strain err  in a parallelogram with width a, thickness b and centered at 
(X1r,x2 ) was presented in closed form by Lin and Lin in 1974 (ref. 11) in the 
study ofthe surface fatigue crack initiation: 

All crystals are  assumed to have 

Under uniaxial tension along xz axis as shown in figure 1, the 

4 3  

pi = e" E t z a ,  1. x2 t 2" 1 t 
r Tap a p  4r(1-v2) 

- K(x,,x,; x t z a ,  1 x2 t z a  1 - 
l r  r 

- K(xl,x2; x1 - r a ,  1 x2 - - a  1 t 2 r r 
1 - - a  1 - Lb)] x1 - p, x2 2 2 r r 

where 

2 2 -1 w , U ( U t W )  u t 2 u v - v  t2vw - 
x1 2x2 

K X 1  ( , x  2 ; .x 1 2  ,x ) = tan-' (:) - tan (;> 
2 2  v(v-w)(u -v ) t 

x; 

1 - x1 u = x  2 2  x = u  t w  1 

v = x  t z  1 1  
- 

w = x 2 - x 2  

and E and v a re  elastic modulus and Poisson's ratio, respectively. 
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When the thickness of the grids is much smaller than the width, Le., 
b << a, it is shown that 

r r t k a )  

where 

2u 2u 2 (u-w) a - 3u 2 v t u 2 w t 2uvw - v 2 w - 5v 3 - - 
x; 1 

x1 x4 x2 

t 4v2 (u2 -v2)(vtw) 

x; 

The relief of the shear stress is proportional to the product of the plastic 
strain and the slip band thickness, beGg. 
extremely large plastic strain e" 

afJ stress relief in the sliding region. 

Since the slip band is very thin, 
is required to have a finite value of shear 

INTERACTION O F  SLIP BANDS 

A most favorably oriented crystal at the free surface of a tensile speci- 

To simplify numerical cal- 
men is considered (fig. 1). This crystal has a slip system with a slip direc- 
tion and a slip plane a t  45 deg to the loading axis. 
culation, slip is assumed to occur only in this slip system and has no strain- 
hardening. This crystal with linear dimensions of 50p x 105p (representing 
a typical grain size of pure aluminum) as shown in figure 2 is divided into 
fine parallelogram grids oriented 45 deg to the free surface. 
specimen the initial s t ress  field is a complicated function of material im- 
purities and lattice flaws. 
an idealized initial s t ress  field of 0.034 MN/m2 (5  psi) (approximately 10% 
of the critical resolved shear s t ress j  uniform shear stress exists in a thin 
slice 45 deg to the free surface and zero s t ress  elsewhere. 
each thin grid is assumed to be 0. l p  corresponding approximately to the 
observed slip band thickness ref. 12). The critical resolved shear stress 

68.9 x lo3  MN/m2 (107 psi) and the Poisson's ratio 9 to be 0.3, 
also correspond approximately to those for pure aluminum (ref. 13). 

In a real  metal 

For the numerical calculation, it is assumed that 

The thickness of 

T~ is taken to be 0.369 MN/m a (53.5 psi), the elastic modulus E to be 
These values 
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for 

For a slip system to s tar t  o r  continue sliding, the resolved shear stress 
Hence, the governing condition has to reach the critical shear stress T ~ .  

the sliding region is 

while in the non-sliding region, the magnitude of the resolved shear s t ress  
must be less  than the critical. For zero strain-hardening, 
stant, and equation (5) can be differentiated with respect to 
A 
a0 T 

-rC remains con- 
the applied stress 

where s h r n a t i o n  i s  over all sliding slip svstems with slide regions centered 
at  ( X l r , X  
unknowns?'de & / dT&' , as there are  equations. The change of the resolved 
shear s t ress  in a nonactive slip system is given as 

. This is a set of linear equakons with as  many non-zero 

From the known values of T at the nonactive points and the corresponding 
values of del /dTA the increment in T~ required for each nonactive point to 
initiate slip fan bg'dalculated and cornpgfed. The minimum of these incre- 
ments in TA is applied, resulting in one additional active point for the next 
load incregent. All de&/dTA obtained from equation (6) must be in the same 
sense as  T 
by de" If some Ae" Is are  of ogposite sense to T ~ ~ ,  these 
grids must be deleted from equation (67'wtil all AeaBe's are in the same sense 
as  T~ 

less &an the critical T ~ .  Consequently, some iterations are often required 
to obtain the desired results. It should be noted that the incremental calcula- 
tion of slip strains and stresses under monotonic loading outlined in the fore- 
going is rigorous within the framework of the discretized formulation. 

a$ 

of the same sli&?grid, i. e., the incremental plastic work done a$ must be positive. 

and at  the same time the shear stresses T ~ B  In a l l  nonactive regions are 

a$ 

The initially stressed band starts to yield when the applied s t ress  
reaches 0.668 MN/m2 (97 psi), followed by the neighboring grids near the 
interior of the initially stressed band (fig. 2). 
two regions away from this initially stressed band, one near the free  surface 
and the other in the interior, join the previous bands in sliding. 
bution of active slip bands in this most favorably oriented crystal at the 

As loading increases, grids in 

The distri- 
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2 applied load of 0. 743 MN/m 
slip bands a t  the free surface at three different loading stages is shown in 
figure 3. 
while some grids remain active and the amount of their slip increases with load- 
ing. 
while the observed spacing for aluminum single crystal a t  2OoC is about 2p. 
(ref, 12). The computed slip band spacing was found insensitive to the as -  
sumed initial s t ress  field when its magnitude was in the range of 0 to 0, 069 
MN/m2 (10 psi). Tests conducted by Yamaguchi (ref. 12) indicated that the 
number of slip bands in a single crystal varies linearly with the shear stress. 
The present calculation for a polycrystal also shows an approximately linear 
variation of the number of slip bands with s t ress  a s  shown in figure 4. The 
nurnber and the magnitude of load increments a re  also indicated in figure 4. 
These numerical results show how the microstress field causes the concentra- 
tion of plastic deformation in discrete sliding thin slices which a re  observed 
a s  slip bands, 

(107.9 psi) is shown in figure 2, The formation of 

It is seen that some originally active grids have become inactive 

The spacing of the slip bands computed for this polycrystal is about 3p, 

CONCLUSIONS 

A micromechanics analysis for the formation and propagation of slip bands 
on the free  surface of a polycrystal under monotonic loading is presented. The 
displacement of dislocations observed as sliding of slip planes causes plastic 
shear strain. The relief 
of resolved shear s t ress  in the regions adjacent to the active slip system pre- 
vents the sliding in those regions and causes the concentration of plastic defor- 
mation of metals. 
qualitative agreement with known slip band observations on an aluminum single 
crystal. The solution satisfies conditions of both equilibrium and displace - 
ment continuity, as  well as  the relation between slip and the resolved shear 
stress throughout the polycrystal. 

This localized plastic strain is  shown as  slip bands, 

Numerical calculations give results which a re  in good 
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a (NORMAL TO / SLIP PLANE) 

Figure 1.- Coordinates on a most favorably oriented crystal a t  the 
free surface of a polycrystalline aggregate. 

T A  = 0.743 MN/m2 (107.9 psi) 

Figure 2.- Distribution of active s l i p  bands i n  a most favorably - 
oriented crystal under uniaxial loading. 
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ON ONSAGER'S PRINCIPLE, DISLOCATION MOTION 

AND 

HYDROGEN EMBRITTLEMENT 

M. R. Louthan, Jr. and 
Virginia  Polytechnic I n s t i t u t e  

R. P.  M c N i t t  
and S t a t e  University 

SUMMARY 

Onsager's rec iproca l  re la t ionships  from the  l i n e a r  theory of i r r e v e r s i b l e  
thermodynamics are applied t o  hydrogen - dis loca t ion  in te rac t ions .  Exis t ing  
experimental evidence shows t h a t  d i s loca t ion  motion causes loca l ized  hydrogen 
accumulation; thus, from the Onsager pr inc ip le ,  loca l ized  hydrogen accumula- 
t ions  w i l l  a f f e c t  d i s loca t ion  motion and therefore  t h e  proper t ies  of metals 
and a l loys  exposed t o  hydrogen environments. 

INTRODUCTION 

A major l imi t a t ion  i n  the  design of many engineering systems is an 
incomplete understanding of t he  behavior of materials i n  h o s t i l e  environments. 
This is  pa r t i cu la r ly  t r u e  f o r  po ten t i a l  fu tu re  energy systems based on thermo- 
nuclear fusion, hydrogen, coa l  gas i f i ca t ion  and l i q u i f i c a t i o n  where the  
p o s s i b i l i t i e s  of high temperature errosion-corrosion, stress corrosion 
cracking and hydrogen embrittlement pose formidable problems. In te rd isc ip l inary  
approaches have indicated t h a t  exposure t o  hydrogen adversely a f f e c t s  most 
high s t rength  materials; f r ac tu re  mechanics s tud ie s  have shown hydrogen induced 
slow crack growth;. metal lurgical  and mechanical evaluat ions have demonstrated 
hydrogen in t e rac t ions  with dis locat ions and chemical analyses have suggested 
tha t  absorption is  a precursor t o  embrittlement. Hydrogen exposures have 
caused changes i n  f r ac tu re  mode, reductions i n  fa t igue  l i f e ,  delayed f a i l u r e s  
and increases  i n  creep rates. Rat ional izat ion of these various a f f e c t s  re- 
quires  the  use of i n t e rd i sc ip l ina ry  techniques. For example continuum 
mechanics, l i n e a r  i r r e v e r s i b l e  thermodynamics, and materials science might be 
combined t o  formulate a possible  embrittlement mechanism. 

HYDROGEN TRANSPORT BY DISLOCATIONS 

The thes i s  t h a t  moving d is loca t ions  might t ranspor t  s i g n i f i c a n t  quan t i t i e s  
of hydrogen w a s  f i r s t  suggested by Bastien and Azou (ref .  1 )  i n  1951. However, 
i t  w a s  no t  u n t i l  r e l a t i v e l y  recent ly  t h a t  d i r e c t  experimental support f o r  t h a t  
hypothesis w a s  developed, although Frank ( r e f ,  2) did  report  increased 
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hydrogen evolution during bending of hydrogen-charged mild steels in 1959. 
Fricke e t  a1  ( re f .  3)  =de similar observations about a decade later but  con- 
cluded that the deformation enhanced hydrogen release was due t o  the increased 
surface area. Subsequent s tud ie s  a t  Savannah River Laboratory (ref .  4,5,6,7,8) 
confirmed the  deformation enhanced release and demonstrated t h a t  t he  release 
w a s  due t o  hydrogen t ransport  by moving dis locat ions.  
demonstrated t h a t  when an i n i t i a l l y  hvdrogen f r e e  specimen w a s  p l a s t i c a l l y  
deformed while exposed t o  a hydrogen environment the  apparent hydrogen 
d i f f u s i v i t y  w a s  increased. 
increased t h e  amount of hydrogen absorbed. Furthermore, loca l ized  high 
hydrogen concentrations w e r e  observed along s l i p  l i n e s  emanating from regions 
of hydrogen embrittlement. 
charged before p l a s t i c  deformation indicated that the  p l a s t i c  s t r a i n  caused 
r ed i s t r ibu t ion  of hydrogen and t h a t  an i n i t i a l l y  homogeneous hydrogen d i s t r i -  
bution became qu i t e  heterogeneous as s t r a i n  progressed. These observations 
are summarized i n  Figures 1 through 3 and have been in te rpre ted  as evidence 
t h a t  hydrogen is transported by d is loca t ion  motion. The s t r a i n  enhanced 
tiydrogen r ed i s t r ibu t ions ,  t he  observed high hydrogen concentrations along 
s l i p  l i n e s ,  and t h e  hydrogen release da ta  from i ron ,  a u s t e n i t i c  s t a i n l e s s  steels 
and aluminum provide the  s t ronges t  evidence f o r  t h i s  e f f e c t .  

These s tud ie s  a l s o  

This increase i n  apparent d i f f u s i v i t y  s i g n i f i c a n t l y  

P a r a l l e l  s tud ie s  with samples t h a t  were hydrogen 

THE ROLE OF HYDROGEN TRANSPORT BY DISLOCATIONS 

Various processes have been advocated t o  explain the mechanism by which 
hydrogen absorption reduces the load carrying capacity of a m e t a l  o r  a l loy .  
These processes vary from assuming tha t  hydrogen reduces the  forces  necessary 
t o  cause lat t ice decohesion t o  assuming t h a t  hydrogen e i t h e r  i n h i b i t s  o r  
enhances d is loca t ion  movement. However, the  one common fea ture  of most, i f  
not  a l l ,  proposed embrittlement mechanisms is t h a t  regions of local ized,  high 
hydrogen concentrations are necessary for  embrittlement. Clearly the experi- 
mental evidence shows t h a t  indeed d is loca t ion  t ranspor t  can lead t o  the 
development of such regions and correspondingly the  r o l e  of d i s loca t ion  motion 
may simply be i ts  involvement i n  rapidly t ransport ing and loca l i z ing  hydrogen. 
However, most inves t iga tors  have attempted t o  e i t h e r  d i r e c t l y  involve the  
dislocation-hydrogen in t e rac t ion  i n  the embrittlement process ( re f .  7-11) o r  
discount a l toge ther  t h e  importance of t h a t  i n t e rac t ion  ( re f .  12). 

One model fo r  embrittlement pos tu la tes  that during p l a s t i c  deformation 
d is loca t ions  with t h e i r  associated hydrogen environments cont inual ly  arrive 
a t  some deposit ion si te.  -Inclusions,  grain boundaries, phase boundaries, 
twins, s t r a ined  lattices and o ther  sites f o r  possible  d is loca t ion  annih i la t ion  
are generally assumed t o  a l s o  be the  hydrogen deposit ion sites. 
deposit ion of hydrogen causes the  hydrogen concentration t o  increase.  Sub- 
sequently, molecular hydrogen w i l l  p r ec ip i t a t e  a t  defects  i n  the areas of 
loca l ized  hydro en concentrations.  Because l o c a l  equilibrium is maintained 
[i.e. C = C p 'I2exp (BHIRT) 3 the pressure of the  p rec ip i t a t ed  hydrogen may 

be q u i t e  high and cause the defect  t o  grow by mechanical processes. Such 
growth may involve e i t h e r  b r i t t l e  f rac ture  o r  p l a s t i c  deformation and w i l l  
continue u n t i l  the  pressure is relieved. The process by which the  defect  

Continued 
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grows w i l l  depend on specimen microstructure,  l o c a l  cons t ra in t  conditions,  
hydrogen content,  s t r a i n  rate, temperature, and p r i o r  treatment. 

The above model has recent ly  been quant i f ied by several inves t iga tors  
( r e f .  13,14) and refuted by others  ( r e f .  15) - i n  both cases by treatments 
of the k i n e t i c s  of t h e  accumulation processes. Furthermore, advocates of 
the decohesion model have tended t o  discount e n t i r e l y  the  r o l e  of d i s loca t ion  
t ransport .  In  f a c t ,  a t  least one inves t iga tor  has concluded t h a t  d i s loca t ion  
motion cannot be involved either d i r e c t l y  o r  i n d i r e c t l y  i n  the  process of 
hydrogen embrittlement. T h i s  conclusion discounts any r o l e  f o r  hydrogen 
t ransport  by d is loca t ions  and implys t h a t  embrittlement cannot develop be- 
cause of hydrogen e f f e c t s  on d u c t i l e  rupture  processes. 

Beachem (ref .  16) i n  1972, concluded t h a t  t he  term hydrogen embrittlement 
of metals was  misleading and based on extensive microscopic observations 
s t a t e d  t h a t  the  term "hydrogen a s s i s t e d  cracking" more nearly represented 
the a c t u a l  case. H i s  work implies that somehow, hydrogen accumulations made 
d is loca t ion  motion easier. 
and i n  f a c t  w a s  q u i t e  cont rovers ia l  when i n i t i a l l y  presented. However, 
severa l  subsequent inves t iga tors  ( r e f .  7,8,17) have shown t h a t  hydrogen 
absorption may a f f e c t  microvoid nucleat ion and/or microvoid growth. If, on 
the bas is  of such evidence, one accepts the premise that d is loca t ion  movement 
i n  a sample exposed t o  hydrogen causes loca l ized  hydrogen accumulations then 
one m u s t  ask if the  converse is  t rue.  
e f f e c t  d i s loca t ion  motion? 

To da te  t h i s  work has not received wide support 

Do local ized hydrogen accumulations 

IRREVERSIBLE THERMODYNAMICS CONSIDERATIONS 

Th'e question as t o  how seemingly diverse  thermal, electrical, and chemical 
events may be  i n t e r r e l a t e d  during a process has long been of i n t e r e s t  t o  the 
academic community. Onsager (see r e f .  18 f o r  a bibliography and background), 
surmised t h a t  t he  common fac to r  of a l l  real  processes w a s  the  production of 
entropy. Through t h i s  fac tor ,  he sought re la t ionships  between the  various 
changes i n  the thermodynamic proper t ies .  Indeed he  w a s  successfu l  i n  t h i s  
endeavor, f o r  a t  least small excursions about equilibrium states,  through the  
formulation of what is  now known as l i n e a r  i r r e v e r s i b l e  thermodynamics. A 
main poin t  of t h i s  theory is  tha t  entropy production is given by 

where T = temperature 

dS - = rate of entropy predict ion 
d t  

= an extensive var iab le  descr ibing the state of the  body (volume, 
electric charge), thermodynamic coordinates Qi 
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- 
X = an in tens ive  var iab le  (pressure, e lectr ic  f i e l d ,  e t c . ) ,  thermodynamic i forces 

I f  one chooses the extensive coordinates t o  cover the  sys-tem and y e t  be 
independent, and then recalls t h a t  i n  any real process t h e  entropy Eroduction 
must be pos i t i ve  semi-definite then some dependence between forces  X and i' 
dQ4 A must e x i s t ,  o r  - 
d t  

(note repeated subscr ip ts  imply summation) where b i j  = 1st order,  bi.k = 2nd 
order Onsager coef f ic ien ts .  
Onsager w a s  ab l e  t o  show tha t  ( i n  the absence of a magnetic f i e l d  and on an 
i n e r t i a l  platform) the f i r s t  order coe f f i c i en t s  were symmetric; t ha t  is  

Through the use of a t i m e  symmetry p r i d i p l e  

(3) bij  - - bji 

This simple statement i s  very powerful i n  r e l a t i n g  seemingly diverse  processes. 
As  an example of the usefulness of t h i s  re la t ionship ,  consider t he  case of an 
e l e c t r i c a l  cur ren t  through t h e  junction of two d iss imi la r  metals; one m e t a l  w i l l  
Cool and the  o ther  heat up. Equations 2 and 3 then tel ls  us t ha t  i f  w e  were 
t o  hea t  one junct ion and cool  the  other ,  then electric current  would flow, which 
of course is prec ise ly  what happens. 
useful  i n  considering t h e  dislocation-hydrogen in t e rac t ion  problem. 

Dislocation motion (-) under i r r e v e r s i b l e  shear stress ( i . e .  l o c a l  
shear stresses exceeding tgk y i e l d  values) r e s u l t s  i n  l o c a l  p l a s t i c i t y  i n  most 
materials. This is  an i r r e v e r s i b i l i t y  and hence would supply a term f o r  the  
r i g h t  hand s i d e  of Equation 1. Experimental evidence shows t h a t  when disloca- 
t ions  move hydrogen is red is t r ibu ted  through the material. The r ed i s t r ibu t ion  
leads t o  entropy production i n  various ways, pa r t i cu la r ly  i f  the l o c a l  la t t ice  
s o l u b i l i t y  is exceeded. The pa r t i cu la r  mechanism of entropy production is  
no t  required f o r  t h i s  discussion. W e  need only t o  assume the condition t h a t  
under the  dr iv ing  fugacity hydrogen r ed i s t r ibu t ion  i r r e v e r s i b i l i t y  occurs 
and entropy is produced. Thus def ining 

This type of observation can a l so  b e  

dQi 

- 
X = p l a s t i c  shear  stress -1 

- -  - dis loca t ion  motion dQl 
d t  

- 
X -2 = Fugacity o r  hydrogen dr iving "force" 

Hydrogen r ed i s t r ibu t ion  rate dQ2 - =  
d t  
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W e  have from Equation 2 

( 4 )  
- - dQ1 dQ2 + zl = bll dt + b12 dt . . . . . 

- s2 = b 2 1 d t + b 2 2 d t  dQl dQ2 + . . . . 
We know t h a t  b $0 because the  experimental 1 2  from Equation 3 that b12=b21. 

r e s u l t s  show t h a t  d i s loca t ion  motion' t ransports  hydrogen. 
from Equation 4 t h a t  hydrogen r ed i s t r ibu t ion  w i l l  indeed inf luence the  
d is loca t ion  motion which i n  turn" w i l l  sure ly  a f f e c t  the f r ac tu re  process! 
Thus Beachem's hypothesis seems t o  be bols te red  by the thermodynamics of 
i r r e v e r s i b l e  processes. 
t h i s  is  accomplished. 

Thus w e  conclude 

It remains f o r  fu r the r  work t o  show prec ise ly  h w  

I n  summary w e  have described experimental e d d e n c e  t o  demonstrate the  
t ranspor t  of hydrogen by d is loca t ion  motion and then applied Onsager's 
rec iproca l  r e l a t ions  t o  show tha t  an e f f e c t  of loca l ized  hydrogen accumulation 
w i l l  be t o  enhance d is loca t ion  motion. On the  macroscopic level such 
e f f e c t s  have been observed as hydrogen induced changes i n  f r ac tu re  processes 
and are i n  agreement with Beachem's evidence of hydrogen a s s i s t e d  cracking. 
Hence a powerful new. argument can be  u t i l i z e d  t o  b e t t e r  understand some of the  
mechanisms of hydrogen embrittlement . 
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WAVE SPEEDS AND SLOWNESS SURFACE I N  ELASTIC-PLASTIC 
MEDIA OBEYING TRESCA’S YIELD CONDITION* 

T. C.  T. Ting 
University of I l l i n o i s  a t  Chicago Ci rc le  

SUMMARY 

The p l a s t i c  wave speeds i n  elastic,  i s o t r o p i c a l l y  work-hardening 
materials obeying the  Trescals y i e l d  condition are obtained. With t h e  coordi- 
nate  axes chosen along the pr inc ipa l  axes of t h e  stress, the  plast ic .wave 
speeds cf and cs depend on the  d i rec t ion  of propagation, not on t h e  stress 
components. The d i rec t ions  along which cf and cs assume t h e  l a r g e s t  and 
smallest  values are determined. A means of determining the  slowness sur face  
when the  coordinate axes are not along the  pr inc ipa l  axes of stress i s  pre- 
sented. 

INTRODUCT 1ot4 

When the  material i s  i n  an e las t ic  s t a t e ,  t h e  r e l a t i o n  between t h e  
stress a i j  and the  s t r a i n  E i j  i n  a rectangular coordinate system X i  i s  
given by 

where A and 1-i are the  Lame constants.  Inversion of equation (1) i s  

6 . . 0  . 1 A E = -  
i j  211 ‘ij 2p(2p + 3 A )  ij kk 

When the  stress state i s  such t h a t  

1 s = 0 - -  6 . . 0  i j  3 ij kk ’ f ( s .  .) = k2, 
1J i j  

where f i s  a homogeneous function of S i ’  and k i s  t h e  y ie ld  s t r e s s  which 
depends on t h e  work-hardening, the  material  i s  i n  a p l a s t i c  state. 
t i o n  between ~ i j  and U i j  i s  given by H i l l  ( r e f .  1) s 

The rela- 

*This work i s  supported by t h e  U.S. Army Research Office-Durham, Grant DAAG 
29-76 G 0121 through the  University of I l l i n o i s  a t  Chicago Ci rc le .  
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&..; + G f f i j  , (4 1 x - 1 -  E = -  
i j  2p 'ij Zp(2p +3X) i j  kk 

where G i s  a known funct ion of k, a do t  s tands f o r  d i f f e r e n t i a t i o n  with 
respect  t o  time t, and 

a f  = -  
f i j  aoij 

To ensure zero p l a s t i c  volume change, we must have 

= o .  fii 

Equation (4) can be inverted as 

(5) 

where the  property (equation (6)) has been used. Since 1 = f .  .; multiply- 
ing both s ides  of equation (7) by f i j  y i e lds  ij i j '  

1 = (1 -h )2pf i j i i j  , 

(1 - h) = (1 + 2pG f i j  f i j ) - '  

With equation ( 8 ) ,  equation (7) can be wr i t ten  as 

; i j  = 2 V E i j  + X G i j E k k  - 4p2(1 - h)G fijfkLEkL . 
By spec ia l iz ing  equation (10) f o r  the  case of a simple shear,  it can be shown 
t h a t  (when t h e  Yresca's y ie ld  condition i s  used), 

where pp i s  t h e  s lope of t he  simple shear s t ress -shear  s t ra in  curve. Hence, 
O s h s l .  When t h e  material i s  elastic h = O  and when t h e  material i s  
pe r fec t ly  p l a s t i c  h = l .  

If w e  write equation (10) i n  the  form 

t h e  wave speed c, which depends on the  d i r e c t i o n  of propagation n i ,  is  
given by reference 2 
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where p i s  t h e  mass dens i ty  of t he  medium. Therefore, f o r  t h e  s t r e s s - s t r a i n  
r e l a t i o n  given by equation (10) w e  have 

Qik 
-= P 

(‘1 2-c2>n 2 i n k + (c2-c2)6ik 2 - 4vc;(l-h)G fijfkRnjnR . 
By a d i r e c t  ca lcu la t ion ,  o r  using the  i d e n t i t y  derived i n  reference 3, it can 
be shown t h a t  

IIQik I I  
= (c;-c2){ (c;-c2) (c:-c2) - 4pc$(l-h)G[ (c2- 1 j f i j  n . f .  j i t  n R P 3  

From equation (17), w e  see t h a t  c = c 2  i s  always a p l a s t i c  wave speed regard- 
less of t h e  form of y i e ld  funct ion (equation (3 ) )  one assumed. The o ther  two 
wave speeds are obtained from t h e  equation 

(c$-c2) (c:-c2) - 4pc2(1-h)G{ (c:-c2)f. . n . f .  n - (c2-c2) (fi jninj)  2 1 = 0 - 
2 1 J J l R R  1 2  

(18) 

WAVE SPEEDS 

For materials which obey the  Tresca’s y ie ld  condition, l e t  t he  pr inc ipa l  
devia tor ic  stresses be denoted by SI, S2 and S3, respec t ive ly .  We w i l l  
assume t h a t  

s l > s  2 > s 3  . (19) 

For  t h e  discussion of wave speed, w e  t ake  the  coordinate axes 
along t h e  d i r ec t ions  of t he  p r inc ipa l  stresses. 

xl ,  x2, x3 
Hence 
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(1 - h) = (1 + 4vk2G)-l. (23) 

Equation (18) then s impl i f ies  t o  

(c;-c2) (c:-c2) - hc;{ (c:-c2) (n:+n:) - (ci-c;) (n2-n2) 2 1 = 0. 
1 3  

Equation (24) shows t h a t  the  wave speeds c depend on t h e  d i r e c t i o n  n i  
only, not on the  stress components. Let cf and cs be t h e  two roots  of 
equation (24) where the subscr ipts  f and s stand f o r  llfastll and l'slowfl 
wave speeds, respect ively.  Since the left-hand s i d e  of equation (24) is 
p o s i t i v e  when c = O  and c = c 1 ,  and negative when c = c 2 ,  the  two roots  
c f ,  cs must l i e  i n  t h e  ranges given by 

O i C s - < C 2 5 C f  < c l  ' 

In reference 4, Cl i f ton  obtained the  p l a s t i c  wave speeds f o r  n i  which 
lies on one of t h e  pr inc ipa l  planes. Equation (24) is v a l i d  f o r  a r b i t r a r y  n i .  

DEPENDENCE OF C f ,  cS ON n i  

I t  i s  more convenient t o  wri te  equation (24) i n  a nondimensional form by 

C 2  

introducing the following notations:  

$ = 1= 1+- > 2 ,  (26) 
- c  

1-2v - 
cs 

c = c y  2 

where v i s  the  Poisson's r a t i o .  We then have 

(1-c2) (n2-E2) - h{ (q2-c2) (n:+nG) - (n2-1) (n:-n:)21 = 0 (27) 

- To see t h e  dependence of the two roots  C f ,  C s  on n i ,  we drFw on t h e  
(nl,n3) plane curves of constant Cf ( f ig .  1) and curves of constant cs 
( f i g .  2) with h and v being f ixed.  I t  i s  &en t h a t  the  curves are 
symmetric with respect  t o  t h e  n l  ax is ,  n3 ax is ,  and the  45" diagonals. 
Since n2 = constant represents  B circle i n  
t h e  (nl,n3) plane. In  p a r t i c u l a r ,  the  c i rc le  of rad ius  uni ty  corresponds t o  
n 2 = O  and t h e  o r i g i n  corresponds t o  n 2 = 1 .  One may consider t h e  curves i n  
f i g s .  1 and 2 as t h e  project ion on the  
surface of a u n i t  sphere i n  t h e  (nl,n2,n3) space. With f i g s .  1 and 2, cf 
and cs are r e a d i l y  obtained when t h e  d i r e c t i o n  of propagation n i  i s  given. 

2 n2 = 1 - (nf + n;) by equation (15) , 

(nl,n3) plane of curves drawn on t h e  
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A p a r t i c u l a r l y  i n t e r e s t i n g  r e s u l t  is the s t r a i g h t - l i n e s  f o r  t h e  par t icu-  
lar value c s = c g  shown i n  f i g .  2 .  By l e t t i n g  

nl = n 3 + b ,  (28) 

w e  see t h a t  equation (27) is  s a t i s f i e d  if 

I t  can be shown t h a t  1 / 2  < b2 < 2/3 f o r  2 < q 2  < m, 0 < h < 1. 

If w e  use t h e  polar  coordinates: 

n = r c o s e  , n = r s i n e  (31) 3 1 

we can v e r i f y  from equation (27) t h a t  

where t h e  equal i ty  holds a t  8 = 0  and ~ / 4 .  By rewri t ing equation (27) as 

we see t h a t  

(33) 

(34) 

- 2  -2  Hence c f + c S  i s  a constant along any c i r c l e  r = c o n s t a n t .  

THE LARGEST AND SMALLEST cf and cs 

From equation (25) t h e  l a r g e s t  cf is c1. If w e  l e t  5 = n 7  equa- 
t i o n  (27) i s  s a t i s f i e d  when h = O  ( e l a s t i c )  o r  n l = + n 3 .  In  f i g .  l ,  c f = c 1  
along t h e  two 45' diagonals. The locus of n l  = + n 3  i s  two orthogonal planes 
on which the  shear stress has t h e  l a r g e s t  value k. 

The l a r g e s t  cs by equation (25) is c2. When E = 1, equation (27) i s  
s a t i s f i e d  i f  h = O  o r  
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The so lu t ions  of equations (35) and (15) are n i  = (+ 1,0,0),  (0,t l , O ) ,  or  
( O , O , + l ) .  In  other  words, t h e  l a r g e s t  cs occurs along t h e  p r inc ipa l  d i r ec -  
t i ons .  

- 
From equation (34), t h e  smallest i s  obtained by l e t t i n g  cs and r 

assume the  l a r g e s t  values .  Hence 

(cg)min = n2 - h, a t  n = (+ 1,0,0) ,  (O,O,t 1) . ( 3 4 )  

Since rl depends on t h e  Poisson's r a t i o  v (equation (26)),  (cf)min 
depends on v and h. This dependency is  shown graphical ly  i n  f i g .  3. I t  i s  
seen t h a t  t he  smallest cf/cl  i s  obtained when v = O  and h = l  (perfect ly  
p l a s t i c ) .  

By a s imi l a r  argument using equation (34), t h e  smallest  cs i s  

n = O  3 '  2 = 1 - h, a t  n = f n  1 

Therefore, (Es)min depends only on h, not on v .  

(37) 

THE SLOWNESS SURFACE 

I n  t h e  (xlyx2,x3) space, t h e  slowness surface i s  obtained by the  locus 
of po in ts  : 

The slowness surface i s  useful i n  studying t h e  r e f l e c t i o n  and transmission of 
a wave f r o n t  a t  an in t e r f ace  boundary. In f a c t ,  we do not need the  e n t i r e  
slowness surface.  A l l  we need i s  a cross  sec t ion  of t h e  slowness surface 
given by equation (38) and a plane 

anl + Bn2 + yn3 = 0 , (39) 

where a, B ,  y are components of a u n i t  vector .  In f i g s .  1 and 2 ,  the  locus 
of (nl,n3) subjected t o  t h e  conditions (equations (15) and (39)) i s  an 
e l l i p s e  (dotted l i n e  i n  f i g s .  1 and 2) whose semi-major ax i s  i s  u n i t y  and t h e  
semi-minor ax is  i s  6. The o r i en ta t ion  of the  major ax i s  depends on a and 
y.  When B=0, t h e  e l l i p s e  i s  reduced t o  a s t r a i g h t - l i n e  (a diameter).  B =  1 
corresponds t o  the  u n i t  circle.  

In t h e  ana lys i s  presented so  far,  t h e  XI, x2, x3 axes are assumed t o  
be i n  t h e  d i r ec t ions  of t he  p r inc ipa l  stresses. 
i s  given on the  X i ,  X 2 ,  X3 axes which are not t h e  pr inc ipa l  axes, one can 
obtain t h e  wave speeds cf and cs i n  t h e  following way. Let N =  (Nl,N2,N3) 
be the  d i r ec t ion  of propagation r e fe r r ed  t o  the  
n =  - (nl,n2,n3) 

If t h e  d e v i a t o r i c s t r e s s  S i j  

(Xl,X2,XZ) coordinates while 
be, as  before,  t he  d i r ec t ion  of propagation re fer red  t o  the 
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pr inc ipa l  axes (x1,x2,x3). Both N and n are u n i t  vectors .  If we diago- 
n a l i z e  t h e  matrix s = € s i j )  as - 

where t h e  matrix is an orthogonal matrix, it can be shown t h a t  

m 

n = 9 ' ~  b 

A s  an example, consider 

0 1 0  

S i j  = +  [; ; ;] . 

From equation (40), w e  f i n d  S i  = k,  S2 = 0, S3 = -k ,  and 

If w e  are i n t e r e s t e d  i n  t h e  slowness s u r f a c e f o r  N i n  t h e  (X1,X2) plane, 
w e  have N = ( s i n  8 ,  cos 0 ,  0) where 8 i s  the anglg between N and t h e  
X2-axis. -Equation (41) then furnishes  n and Cf. C s  are ostained from 
equation ( 2 7 ) .  The dependence of Efl and on 0 f o r  t h e  stress s ta te  
given by equation (42) i s  shown i n  fig. 4. Only ha l f  of t h e  f igure  i s  shown 
because of symmetry about t h e  X 1  ax is .  

CONCLUSION 

We summarize t h e  r e s u l t s  obtained i n  the  following. 
1. When t h e  coordinate axes (xl,x2,x3) a r e  taken along t h e  pr inc ipa l  d i r e c -  

t i o n s  of t h e  stress, t h e  p l a s t i c  wave speeds cf and cs depend on t h e  
d i r e c t i o n  of propagation r e f e r r e d  t o  (x1,x2,x3). cf and cs are 
independent of t h e  stress components. 

2 .  The l a r g e s t  cf is c1 which occurs along t h e  d i r e c t i o n s  n l = + n 3 .  The 
smallest cf i s  

= l-h(?J , 
min 

(44) 
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which occurs along t h e  x1 and x3 d i r ec t ions .  

XI, x2 and x3. The smallest cs i s  
3 .  The l a r g e s t  cs is  c2 which occurs along t h e  t h r e e  p r inc ipa l  d i r ec t ions  

(2) = l - h  

min 
(45) 

which occurs along n l  = t n3, n2 = 0.  In  p a r t i c u l a r ,  ( ~ ~ ) ~ i ~  = 0 when 
h = 1 (per fec t ly  p l a s t i c ) .  

4. c f = c s = c 2  when v = O  and h = l .  The d i r ec t ions  along which c f = c s = c 2  
i s  t h e  x i  and x3 d i r ec t ions .  

The s igni f icance  of equation (44) is t h a t  f o r  v = 1/3 (which i s  the  value for  
most mater ia l s )  and h = 1 / 2  (which represents  a moderate loading),  
(Cf/cl)min= 0.935. 
e l a s t i c  wave speeds i s  no more than 6.5%. Therefore, i f  a three-dimensional 
ana lys i s  i s  used f o r  e a l s t i c - p l a s t i c  waves, the  p l a s t i c  precursor wave f r o n t  
w i l l  a r r i v e  a t  a speed within 6.5% of e l a s t i c  wave speed. 
percentage w i l l  be  smaller because not  a l l  p l a s t i c  waves propagate a t  the  
slowest speed. This is i n  d i r e c t  con t r a s t  with one-dimensional ana lys i s  i n  
which the  p l a s t i c  wave speed can be much lower than the  e l a s t i c  wave speed. 

That is, t h e  d i f fe rence  between t h e  fas t  p l a s t i c  and 

In  many cases ,  t h i s  
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Figure 1.- Contour l ines f o r  constant  c f / c l  
(drawn f o r  h=1/2,~=1/3) .  

Figure 2.- Contour lines f o r  constant  cs/c2 
(drawn f o r  h=1/2, ~ = 1 / 3 ) .  
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h Cf/c,=I/@ ’ 
Figure 3.-  Dependence of (cflmin. on h and V. 

0 1 0  

0 1 0  
S ij = [ I  0 I ]  

h=3/4 

~ 4 / 3  

*2 

Figure 4.- Intersection of the slowness surface 
with the (X1,X2) plane. 
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MATHEMATICAL MODELLING OF UNDRAINED CLAY BEHAVIOR 

Jean-Herv6 Pr6vost and K a a r e  Hgleg 
Norwegian Geotechnical I n s t i t u t e  

SUMMARY 

The proposed general  ana ly t i ca l  model descr ibes  the  anisotropic ,  elasto- 
p l a s t i c ,  path-dependent, s t r e s s - s t r a i n  proper t ies  of i nv i sc id  sa tura ted  clays 
under undrained conditions. Determination of t he  model parameters is  achieved 
by using r e s u l t s  from s t ra in-cont ro l led  simple shear tests on a sa tura ted  clay.  
Thereafter,  the  model’s accuracy is  evaluated by applying it t o  p red ic t  t he  
r e s u l t s  of o ther  tests on the  same clay,  including monotonic and cyc l i c  loading. 
The model explains the  very anisotropic  shear s t rength  behavior observed f o r  
weak marine clays.  

PROPOSED MATHEMATICAL MODEL 

The d e t a i l s  of the proposed mathematical model are given i n  reference 1. 
In  order t o  separate  the  contr ibut ions of the  elastic and p l a s t i c  proper t ies  
i n  the  t o t a l .  deformations, it i s  assumed t h a t  t he  material’s e l a s t i c i t y  i s  
l i n e a r  and i so t rop ic ,  and t h a t  non-linearity and anisotropy r e s u l t  from the  
material’s p l a s t i c i t y .  The model combines proper t ies  of i so t rop ic  (ref. 2) 
and kinematic ( r e f .  3)  p l a s t i c i t y  by introducing the concept of a f i e l d  of 
p l a s t i c  moduli (refs. 4 and 5 ) .  This f i e l d  i s  defined i n  stress space by a 
co l lec t ion  of y i e l d  surfaces  fo ,  . . . , f n  of respect ive s i z e s  k(O) , . . . , k ( n ) .  
p l a s t i c  shear modulus HA i s  associated with each of t he  surfaces ,  and the  
assoc ia t ive  flow r u l e  i s  used t o  compute the p l a s t i c  s t r a i n s .  
s t r a i n  i s  the  sum of the  e l a s t i c  and p l a s t i c  s t r a i n s .  The hardening ru l e  
( r e f .  5) spec i f i e s  t h a t  a l l  y i e ld  surfaces  may be t r ans l a t ed  i n  stress space 
by the stress poin t  without changing i n  form and or ien ta t ion .  
surfaces  w i l l  consecutively touch and push each o ther  bu t  cannot intersect. 
For any loading (or unloading) h i s to ry ,  the instantaneous configuration of the 
y ie ld  surfaces  is determined by ca lcu la t ing  the  t r ans l a t ion  and expansion (or  
contraction) of each y i e l d  surface during successive changes i n  load. The 
material behavior camthus be determined f o r  complex loading paths and f o r  
cyc l ic  loading. 

A 

The t o t a l  

The y i e ld  

During undrained loading, the yielding of sa tura ted  c lay  is independent 
of the imposed octahedral normal t o t a l  stress component. The y i e l d  surfaces  
may therefore  be expressed by equations of the form 

( I l l )  [T 3 (Sij  - a!m’, (Sij  - C X ~ ) ) ] ” ~  - k -(A)  = 0 ( m = O , l ,  . . ,n) 
1 3  

w e e the  tensor  ai?) represents  the  t r ans l a t ion  of the  y i e l d  surface fm and 
?mT 

k ( A )  
tensor  components. 
the  deformation process : 

is  a measure of i t s  cur ren t  s i ze .  S i j  denotes the devia tor ic  stress 
X is a scalar parameter monotonically increasing during 
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h =l[$ deyj de~j]1’2 

P where the  in t eg ra t ion  is  ca r r i ed  out  over t he  s t r a i n  path. 
incremental p l a s t i c  devia tor ic  s t r a i n  tensor  components. 

deij  denotes the  

DETERMINATION OF MODEL PARAMETbRS 

The clay samples w e r e  i n i t i a l l y  preconsolidated under a v e r t i c a l  
e f f ec t ive  stress of 400 kPa w i t h  the  condition of no horizontal  s t r a i n s ,  and 
the rea f t e r  w e r e  unloaded t o  a v e r t i c a l  e f f e c t i v e  stress O& = 100 kPa before 
undrained shearing. The model parameters are determined based on the  observed 
experimental behavior of the clay i n  slow monotonic ( s t r a i n  rate = 4.5%/hr) 
and rapid cyc l i c  (period = 10s.) two-way s t ra in-control led simple shear  tests. 

Figure l a  presents  the r e s u l t s  from a tes t  with monotonic loading. T 
‘denotes the  average hor izonta l  shear stress measured experimentally. 
i r r te r ior  of the  specimen, it has been shown t h a t  Txy = T 
a l s o  shows typ ica l  hys te res i s  loops obtained i n  one of the cyc l i c  s t r a in -  
control led tests f o r  which the  s t r a i n  amplitude is  y1 = 1.3%. After  a number 
of cycles,  the loops develop an S-shape which becomes even more marked as the  
number of cycles increases .  However, it is  an experimental f inding t h a t  the  
gradients  of a l l  hys te res i s  loops a t  peak shear stress s t a y  the same and a re  
approximately equal t o  the gradient  observed i n  the  monotonic t es t  a t  y1 = 
1.3%. 
stress amplitude f o r  d i f f e r e n t  imposed shear  s t r a i n  amplitudes a t  d i f f e r e n t  
numbers of cycles.  The v e r t i c a l  ax is  shows the  r a t i o  Th/Thf where Thf = 
0.714 O& = undrained shear s t rength  measured i n  the monotonic test. 
importance t o  note t h a t  the  shear stress which i s  necessary t o  produce a 
spec i f ied  s t r a i n  amplitude during the f i r s t  qua r t e r  cycle N = 1 of the  cyc l i c  
tests is  l a rge r  than the  one observed i n  the  monotonic test .  The stress- 
s t r a i n  curve constructed from the cyc l ic  t e s t  r e s u l t s  a t  N = 1 is shown by the  
upper curve i n  f igure  l a .  

In  tke 
1.11 Th. Figure l a  

The t e s t  r e s u l t s  are summarized i n  f igu re  l b  by p l o t t i n g  the  shear 

I t  is  of 

Complete spec i f i ca t ion  of the mathematical model parameters requires  the  
determination of (1) t he  i n i t i a l  pos i t ions  and s i z e s  of the y i e l d  surfaces  
before undrained shearing, (2) t h e i r  associated p l a s t i c  moduli, and (3) t h e i r  
s i z e  changes a s  loading proceeds. For s impl ic i ty ,  it is  assumed t h a t  the  
y i e l d  surfaces  change negl igibly i n  s i z e  during the  first loading sequence 
because h is  then small and therefore  k(m) ( h )  = constant.  Moreover, it is 
assumed t h a t  the length h of the  cyc l ic  p l a s t i c  devia tor ic  shear s t r a i n  
t r a j ec to ry  i s  the  same as the  length of the t o t a l  one because the elastic 
s t r a i n s  are not  cumulative and therefore  t h e i r  contr ibut ion i s  very s m a l l .  

Under an axisymmetric stress state (-rYz = T~~ = ayZ = a,, = 0) with equal 

i e l d  surfaces is  defined by the  determination of only t w o  
horizontal  normal stresses (0, = 0, and therefore  a, = az) ,  the  pos i t ion  i n  
stress space of the  
parameters a(m) and Bym) (m=O , and equation (1) s impl i f ies  t o  
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(m) (m) = 3 ap)/2 and f31m) = axy (m) n. It is  convenient here  where a 
t o  refer t o  the  shear modulus defined as 

= e) - ax 
2 1 2  - = - + -  

G HA 'rn 
(4) 

f o r  a l l  m, where G is the  elastic shear  modulus. 
f o r  the f i e l d  of y i e l d  surfaces and f o r  
mathematical so lu t ions  may be achieved i n  closed form. 

Simple ana ly t i ca l  functions 
and k(m) w i l l  be suggested so t h a t  

(m) b) The i n i t i a l  loca t ions  (ao ,Bo ) i n  stress space of the  y i e l d  surfaces  
are determined by the  s o i l ' s  consolidation h i s to ry  (ref. 11, and 

f o r  a l l  m,  where d = o& and k e )  denote the  s i z e s  of the  y i e l d  surfaces  under 
slow monotonic loading conditions.  Their associated shear  moduli are deduced 
from $he monotonic simple shear s t r e s s - s t r a i n  curve shown i n  f igure  la: 

(m) 2 
2 JTf  fl - ko 1 (6) - _ -  

Hm T f i  = khm) 3 a"Cf 

where Tf = 1.11 Thf and a '  is  an experimental constant.  
cyc l ic  loading, the  y i e l d  surfaces  a l l  change i n  s i ze :  

I n  the  course of 

u n t i l  they reach t h e i r  ul t imate  l imi t ing  s i z e s  k p )  , experimentally 
determined t o  be: 

The c y c l i c  two-way simple shear s t ra in-cont ro l led  experimental t es t  r e s u l t s  
( f ig .  l b )  may be combined t o  y i e l d  a s ing le  ana ly t i ca l  expression f o r  the  
i so t rop ic  sof tening function & ( A ) :  

with 
L n ( l  - 6,/6u,t4 

A =  
~ n ( 5  + b/Af)[B + Ln(5 + b/Ay)] 

, b,  c, and B are experimental constants:  6, = 0.15 T f f l  , 
6,lt = -0.70 b = 1.45, c = 5.96 and B = 1.67. 
i n  which 6,, 

devia tor ic  shear  s t r a i n  amplitude of the  cyc l i c  loading (Al = y l / n ) .  
denotes the  equivalent length of the  devia tor ic  shear s t r a i n  trajectory.which 
corresponds t o  the  cur ren t  A 1  value after N cycles  of loading: 
4 ( N  - l)]. Under cyc l i c  two-way s t ra in-cont ro l led  loading conditions,  is  
constant and thus h' = A .  

A1 denotes the  cur ren t  
A '  

1' = hl[l  + 

(m) Once the  y i e l d  surfaces  reach t h e i r  ul t imate  l imi t ing  s i z e s  kL ( e q . ( 8 ) ) ,  
t h e i r  respect ive shear  moduli s t a r t  t o  vary, and the  experimental t es t  r e s u l t s  
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( f ig .  la) suggest that: 

*m - - "L Tf 

T f f l  - kim) yL 2 4 ( Tf fl - kp) yL)2+ (k:) xL) 
with 2 

( s inh  y, ) 

(a' + y,) 

84/92 
~ ~ \ ) 3  - 848/92 y, = a'8 

where 6(x) is given by equation (9 ) .  

APPLICATIONS - MODEL PREDICTIONS 

I n  the previous sect ion,  the  model parameters w e r e  determined by using the 
r e s u l t s  from monotonic and cyc l i c  s t ra in-control led simple shear  tests. The 
model should be able t o  p red ic t  t h e  r e su l t s  of o the r  tests, and it w a s  
therefore  appl ied t o  p red ic t  t he  r e s u l t s  of (1) cyc l i c  two-way stress-contro- 
_I l l e d  simple shear  tests ( f i g .  2 ) ,  ( 2 )  monotonic t r i a x i a l  compression and 
extension tests ( f i g .  31, (3) cyc l ic  two-way s t r a i n -  and s t ress-control led 
t r i a x i a l  tests ( f ig s .  4 and 5, respect ively)  on t h e  same clay. A l l  t heo re t i ca l  
predict ions a r e  found t o  agree very w e l l  with the  experimental t e s t  r e s u l t s  
shown i n  f igures  2 t o  5. 

CONCLUSIONS 

It is  concluded t h a t  t he  proposed general  mathematical model f o r  undrained 
s o i l  behavior i s  very promising. 
i n  f i n i t e  element formulations f o r  the  ana lys i s  of the  complete general  
boundary value problem, i n  order t o  compute stresses and deformations under 

I n  subsequent work, the model w i l l  be used 

a s t r u c t u r e  subjected t o  cyc l i c  loading, such a s  waves 
exc i ta t ions .  
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NOTATION LIST 

= experimental constants  YLI  .YL a ’ ,  b, dt B, xLr 
2 

dA = [T dep = incremental p l a s t i c  dev ia to r i c  shear  s t r a i n  
i j  - 

1 - - 6 . . ( ~ ~ ~ )  = devia tor ic  s t r a i n  
e i j  = ‘ij 3 13 

f (  ) = general  y i e l d  funct ion 

G = e l a s t i c  shear modulus 
-1 

H = [& + ~~ 

= shear  modulus 
- 

H’ = p l a s t i c  shear modulus 

k( ) = instantaneous y i e l d  surface s i z e  

k = y i e l d  sur face  l i m i t  s i z e  

N = number of appl ied c y c l i c  loading 

L 

1 - - 6 .  . (Okk) = devia tor ic  stress 
’ij = ‘ij 3 ij 

x,y,z  = reference coordinate ax i s  f ixed  with respec t  t o  the  element and 
spec i f i ed  t o  coincide with the  a x i s  of preconsol idat ion 

a,@ = y i e l d  c i r c l e  cen te r  coordinates  i n  ‘c fi vs (0  - 0 )-stress plane 

y = yxy = shear  s t r a i n  i n  simple shear  tes t  

6 (  1 = i s o t r o p i c  sof ten ing  funct ion 

XY Y X  

= experimental constants  5, %lt 

EV Y 

‘k 

= E = v e r t i c a l  s t r a i n  

= v e r t i c a l  e f f e c t i v e  consol idat ion stress 

ov(= 0 1, Oh(= ox = aZ) = v e r t i c a l  and hor izonta l  stresses 

1: = 1.11 ‘c (= ‘I 1 = hor izonta l  shear  stress i n  simple shear  t e s t  

‘ch = average hor izonta l  shear  stress i n  simple shear  test  

Y 

h XY 
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Figure 1.- Simple shear strain-controlled experimental test results. 
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Figure 2.- Cyclic simple shear stress-controlled tests; 
model predictions; strain contours. 
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Figure 4 . -  Cyclic undrained triaxial strain-controlled 
tests; model predictions. 
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Figure 5.- Cyclic undrained triaxial stress-controlled 
tests; model predictions; strain contours. 
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SUMMARY 

A general  theory of or thodont ic  motion i s  developed t h a t  
can be appl ied t o  determine the forces necessary t o  induce a 
given tooth t o  move to  t h e  predetermined desirable pos i t ion .  
It is  assumed t h a t  the n a t u r a l  (non-orthodontic) forces may be 
represented by a periodic funct ion and the  or thodont ic  forces 
may be superimposed upon the  n a t u r a l  forces, A simple expression 
is derived for the appl ied  stress. 

INTRODUCTION 

The o b j e c t i v e  of t h i s  paper i s  t o  l a y  the foundation fo r  
a theory t h a t  may be used t o  p r e d i c t  t he  movement of teeth 
loaded by or thodont ic  appl iances  over moderately long per iods 
of t i m e ,  i .e, several hours t o  several years.  There is  some 
l i t e r a t u r e  on t h e  short  t e r m  movement of teeth and on t h e  
response of t h e  per iodonta l  l igament t o  loading, Thus, given 
a tooth occupying a given p o s i t i o n  i n  i ts  bone matr ix ,  t h e  
theory seeks to  p r e d i c t  t he  loads one needs t o  apply t o  t h e  
tooth t o  achieve the  appropr ia te  state o f  stress i n  t h e  
surrounding bone matr ix  t h a t  w i l l  y i e l d  the desired motion 
of the  tooth to  another  pos i t i on  and w i l l  r e t a i n  it there. The 
objective as stated above would no t  have been realist ic a few 
years  ago, because of a lack of q u a n t i t a t i v e  knowledge of the  
forces normally experienced by human teeth:.and a corresponding 
l a c k  of knowledge of the f o r c e s  produced by var ious  or thodont ic  
appliances.  The force  systems delivered by these  appliances- 
are known to be statically indeterminate,  Thus, there is l i t t l e  
i n  t h e  l i t e r a t u r e  concerning t h e  so lu t ion  of problems involving 
or thodont ic  forces. However, advances are being made toward 
the s o l u t i o n  of problems involving or thodont ic  force systems 
( r e f .  1 - ref. 3) . 
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At this time, one useful piece of information would be an 
appropriate constitutive equation that can be used to describe 
the properties of the bone matrix that the teeth are imbedded 
in, i.e. alveolar bone. However, the constitutive equations 
are not completely determined for any biomaterial, primarilly 
because of the difficulty in experimental programs (ref. 4 ) .  
Orthodontics is unique among the biological disciplines for it 
exploits the viscoplastic nature of alveolar bone to move teeth 
from one state of equilibrium in the alveolar bone to another 
and to retain them there until the alveolar bone's memory of 
its stress history fades and the movement does not relapse, A 
variety of experimental programs are available in the 
orthodontist's office if only one were to collect the appropriate 
data. To this end, a number of assumptions must be made to 
obtain tractable relations if the equations that are derived 
are to be useful to practitioners in the field. 
ASSUMPTION I. The teeth may be considered to be rigid bodies, 
Of course, the teeth are not rigid, however, the deformation 
of any tooth itself will be small compared to the osseous 
deformation, Also, a tooth does not remodel, per se, whereas 
the alveolar bone can. The crown of a tooth undergoes no 
remodeling. Root resorption and cementa1 tears are known to 
take place especially when a tooth is subjected to high forces. 
Since orthodontic treatment is usually initiated prior to the 
complete formation of the permanent dentition, some apposition 
of root structure normally occurs during the period of tooth 
movement, The adult root form can be somewhat altered by 
these orthodontic forces. Still, there is little lost in 
assuming that a tooth transmits forces like a rigid body. 

be taken into consideration since the osseous remodeling deter- 
mines the tooth movement. There exists a significant literature 
available on the qualitative aspects of tooth movements (refs. 
5 to 7). I 

Thus, in this theory only the alveolar bone deformation must 

SYMBOLS 

strain measure 

strain tensor 

strain tensor 

see equation (4) 

deformation gradient 
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i d e n t i t y  t enso r  

kerne l  funct ion 

func t ions  of frequency 

dynamic pressure  

func t iona l  opera tor  

pure r o t a t i o n  

present  t i m e  

displacement 

pure s t r e t c h  

p resen t  pos i t i on  

o r thodon t i ca l ly  deformed p o s i t i o n  

re ference  coord ina tes  

stress t enso r  

complex dynamic stress 

n a t u r a l  stress 

t i m e  variable 

cons tan t  

frequency 

THE LOADING SITUATION 

Orthodontic loads are appl ied  t o  a tooth by w i r e s ,  elastics, 
spr ings  or o t h e r  devices t h a t  can be manipulated by t h e  
o r t h o d o n t i s t  t o  supply a w i d e  range of forces and moments, and 
it is  these  loads t h a t  t h e  theory  w i l l  spec i fy .  The other loads a 
too th  experiences w i l l  be called n a t u r a l  loads. These are 
defined as loads experienced by a too th  i n  t h e  absence o f  any 
p r o s t h e t i c  devices. These fo rces  a r e  
a)  Occlusal Forces; due t o  t h e  process of mas t ica t ion ,  

gr inding ,  c lenching and o t h e r  s i t u a t i o n s  where t h e  maxil lary 
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(upper) and mandibular ( l o w e r )  t e e t h  come i n t o  contac t .  
Tongue Forces: due t o  the c o n t a c t  of t h e  tongue upon t h e  
t ee th .  These fo rces  can be of cons iderable  magnitude. 
Tongue pos tures  during speech, chewing, swallowing, playing 
wind instruments ,  r e s t i n g ,  etc. produce a v a r i e t y  of loads 
upon the den t i t i on .  
Buccal Forces; due t o  t h e  pressure  of l i p s ,  cheeks and 
circumoral musculature on the t ee th .  
A i r  Pressure:  due t o  swallowing, speaking, brea th ing  and t h e  
genera l  movement of a i r  i n  and through the  oral  cav i ty .  
Tooth Eruption; due t o  the absence of opposing teeth or  t h e  
nahural  e rup t ion  of a developing tooth.  This phenomenon 
is not  w e l l  understood. 
O t h e r  Forces; due t o  habits such as thumb sucking and n a i l  
b i t i n g ,  p ipe  smoking, s leeping  w i t h  t h e  face r e s t i n g  
a g a i n s t  an object, trauma, etc. 

These forces p lay  an important role i n  t h e  p red ic t ion  of 
tooth movement and must be taken i n t o  cons idera t ion  i n  any 
theory t h a t  a t tempts  accura te  pred ic t ions .  However, t he  
complexity of t h e  var ious  fo rces  and t h e i r  i n t e r a c t i o n s  preclude 
t h e i r  being used i n  the theory a t  t h i s  t i m e  i n  any detailed 
manner. This  leads us  to  
ASSUMPTION 11. The n a t u r a l  forces may be represented by a t i m e -  
harmonic expression of frequency w .  In  terms of t h e  stress 
experienced by the bone due to these n a t u r a l  forces,the n a t u r a l  
stress may be w r i t t e n  as  

u = a* exp (ion) (11  .-n .- 

where u* is  t h e  complex dynamic stress. 

d i s t i n c t  pa r t s :  t he  or thodont ic  load and the  n a t u r a l  load. 

- 
The loading s i t u a t i o n  has now been decomposed i n t o  t w o  

THE CONSTITUTIVE EQUATION 

L e t  t he  a l v e o l a r  bone be considered as phys ica l ly  standard- 
ized  a t  Some t i m e  p r i o r  t o  t h e  app l i ca t ion  of *he or thodont ic  
appl iances  and l e t  t h i s  t i m e  be set a t  r=O, where T is t h e  t i m e  
var iab le .  Now l e t  us  deal w i t h  the  symmetry of the bone. 
ASSUMPTION 111. The a l v e o l a r  bone is an i s o t r o p i c  mater$al. 

The a l v e o l a r  bone is n o t  i s o t r g p i c ,  bu t  the  order of 
magnitude of t h i s  error is  of the  o rde r  of magnitude of the error 
introduced by t h e  o t h e r  assumptions. When moving the too th  
through madulary bone i n  a buccal-l ingual and/or mesial-distal 

106 



direction, the bone behaves essentially as an isotropic 
material. Unfortunately, the alveolar bone does not react as 
an isotrop.ic material to intrusive and extrusi 
upon a tooth. Further, the thin 1 yer of cor 
covering the modulary bone is dens r than the 
and remodels at a somewhat slower ate, A too 
partially or entirely out of its surrounding 
but no one has demonstrated intrusion of a too 
bone. However, as a pr iminary theory we shall make this 
assumption. 

configuration, r=O, is denoted 5 in a rectangular Cartesian 
coordinate system. 
appliance is denoted by $, 
orthodontically deformed to the position X. The bone is then 
subjected to the natural forces, inducing-the generic particle 
to occupy the position x(r) (ref , 8) 

The position of a generic particle in the reference 

The time of”app1ication of the orthodontic 
The generic particle 5 is first 

.* 

-d 

The deformation gradient may be written as 

where 

and 

Let us use Johnson’s (ref, 8) history dependent 
constitutive equation to describe the properties of the alveolar 
bone 

where ( I T  denotes the transpose, S ( T )  = fTf is a measure of 
the strain relative to the orthodonticall9 aeformed bone, and 
by polar decomposition Eo = V R, then ..,- 

1 E = z (V2 - I) .“ - - 
and 

1 e(T) = z ( C ( r )  - I). 
The functional operator Q is defined on the interval re[O,t]. 

At this point another key assumption must be introduced. 

- .u - 
.. 

(7)  
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BiSSUMPTION IV. 
can be represented by the consti 
This assumption has been made be 
to a large extent, experimentally ind 
macroscopic point of view. Bone rem0 
of orthodontic loads to a tooth occ 
removed from areas where the stress 
which the tooth is to be moved - a 
the stress is low - areas where the tooth was prior to its 
movement. This is analogous to what one would observe in the 
situation of a rigid cylinder imbedded in viscoelastic medium 
with the cylinder loaded in a similar manner to the tooth. 

ASSUMPTION V. The natural forces produce motions e of 
magnitudes such that the squares and products of the components 
of e may be neglected. 

Therefore,the functional Q may be approximated by a linear 
functional in e 

The phenomena of creep and bone remodeling 

- 
- - 

- 4 . -  Q[E,e(T)l = go(!) + 1:- K(T,E) - . . .  ;(t-T)dT ( 8 )  

and as a consequence of Assumption II1,one may write 

2 2- K6 = KO 6 + K1(6E+EG) + K2 (eE -... +E ... e) ... + 
u- 5 ..3- ...- 

1 K tr(GEn)Em . mn ...- .u m,n=O 

Let 

be the displacement vector that is a measure of the displacement 
relative to the orthodontically deformed bone, and let 

e = -  (Vu + (Vu)T) 
- 2 -  5 

Recall equation (1) and decompose the stress into a orthodontic 
part, Q and a natural part, (3 . Further 

-0' -n 
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e(r) = e* exp (i0.r) (14 1 
.u N 

It can be shown (ref. 8) that. to a second-order approxima- 
tion 

5 Q*  = -p*I - + (P1(Vu*E) " + KO* e* N + K1*(eZE) ".... ' (15 1 

where (AB)' = A B + B A , p* is the dynamic pressure corresponding 
to the ?lFnamicYsZresz b*, K1* and KO* are functions of frequency 
only. The orthodontic part is given by 

T T  

L 

2 
Q 
-0 0- = -p I + (PIF + @25 (16) 

The forces applied by the orthodontic appliances are 
periodically varied as the tooth-bone system moves. 
adjustment one may apply the theory relative to the new forces 
applied. In this manner one may incrementally apply the theory. 
One may thus use the input-which is the motion desired - to 
calculate the desired stress that will cause the desired motion. 
The natural forces, taken as an average, are assumed to be 
invariable in time. Therefore, it is only the orthodontic 
forces that can be manipulated to induce tooth movement. So 
by incrementally measuring the displaeement, the force increment 
can be calculated that will cause-the tooth to move to its next 
incremental position. Alternatively, but not as accurately, 
the motion of the tooth may be predicted at time, knowing the 
motion Lor t, using the constitutive relation and the forces 
applied to achieve a desired movement, much as the orthodontist 
does in the office. 

After each 
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NONLINEAR EFFECTS IN THERMAL STRESS ANALYSIS 

OF A SOLID PROPELLANT ROCKET MOTOR 
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United Technologies, Chemical Systems Division, 

Air Force Rocket Propulsion Laboratory, 
MB Analysis 

INTRODUCTION 

Microstructural damage causes solid propellants to exhibit a nonlinear mechanical response when 
used under normal service conditions. Before such materials can be used in structural designs, accurate 
material descriptions of the observed phenomenological behavior must be obtained, and the structural 
analysis procedures modified to include this material nonlinearity. 

In this paper, direct characterization procedures were used to determine the relaxation modulus 
as a function of time, temperature, and state of strain. Using the quasi-elastic method of linear 
viscoelasticity, these properties were employed in a finite element computer code to analyze a thick- 
walled, nonlinear viscoelastic cylinder in the state of plane strain bonded to a thin (but stiff) elastic 
casing and subjected to slow thermal cooling. The viscoelastic solution is then expressed as a sequence 
of elastic finite element solutions. As will be seen, the material is regarded as nonhomogeneous in the 
nonlinear case. 

The strain-dependent character of the relaxation modulus is included by replacing the single re- 
laxation curve used in the linear viscoelastic (LVE) theory by a family of relaxation functions obtained 
at various strain levels. These functions may be regarded as a collection of stress histories or responses 
to specific loads (in this case, step strains) with which the cooldown solution is made to agree by 
iterations on the modulus and strain level. 
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SYMBOLS 

Values are given in both SI and U.S. Customary Units. The measurements and calculations were 
made in U.S. Customary Units. 

time-temperature shift function 

cross-sectional area of large test sample 

Young's modulus 

relaxation modulus 

apparent modulus in large test samples 

effective value of modulus for use in a linear viscoelastic (LVE) analysis 

effective value of modulus for use in a nonlinear analysis (NLVE) 

modulus response to ith step strain 

axial force on large test samples 

subscript denoting equivalent or effective value 

subscript denoting one in a series of values (i = 1,2,3, . . .) 

factor relating apparent modulus in large test samples to actual uniaxial modulus 

length of large test samples 

subscript denoting specific value in a series 

coordinate in radial direction in polar cylindrical system 

time 

temperature 

specific temperature level 

stress-free temperature 

time corresponding to E when E is associated with a relaxation curve 

glass transition temperature 



axial displacement in large test samples uz 

x 

z 

Greek Symbols: 

& uniaxial strain 

€0 

&I 

€0 

4 

symbolic reference to coordinates v,8 ,  Z 

coordinate in axial direction in polar cylindrical system 

strain of constant value 

von Mises “effective” strain 

Circumferential component of strain 

radial component of strain 

average axial strain in large test sample 
“.A V 

E reduced time 

V 

6 

(T 

“.A V 

‘kQ 
- 

‘kQ 

Poisson’s ratio 

coordinate in circumferential direction in polar cylindrical system 

uniaxial stress 

circumferential component of stress 

average axial stress in large test sample 

stress tensor (k, Q = 1,2,3) 

stress response to a unit step temperature change 

ANALYSIS 

In a linear viscoelastic, the state of stress and strain depends on the history of loading through 
integrals of the type (refs. 1 and 2) 

de 
0 dt’ 

o(t)  = f E ( t  - t’) - dt’ 
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so that the current stress is determined by the past strain as well as.the current value. The function 
E ( t )  is called the relaxation modulus and is determined from the stress response to a fixed strain 
input eo, i.e., 

In linear viscoelastic (LVE) materials, the relaxation modulus is independent of the magnitude 
of the imposed strain. The notation E(t,  T j )  refers to the standard e = 2% relaxation function at 
temperature T j .  

For the class of nonlinear viscoelastic materials considered here, the relaxation modulus varies 
considerably with strain level, decreasing monotonically with increasing values ej (i = 1,2,3, . . .). 
When the notation includes ei - for example, E (  t, e j ,  T I  ) - reference is being made to the relaxation 
function obtained for e = ei. The presence of a subscript I - for example, EI(tl , Tl ) - denotes a 
calculated effective modulus to be used in an elastic finite element program to obtain an LVE solution 
valid at a particular time t l  and temperature T I .  In the nonlinear viscoelastic (NLVE) solution, the 
subscripts n l  are added, i.e., E . 

In I 

The procedure for linear viscoelastic grain analysis is presented in the ICRPG Handbook (ref. 3), 
which shows how elastic solutions with different Young’s modulus may be used with the relaxation 
modulus function to construct time-dependent, linear viscoelastic responses. This paper modifies the 
ICRPG procedure by incorporating the observed dependence of the relaxation modulus on strain level. 
Since solid propellants are nearly incompressible, Poisson’s ratio is taken near one-half (v = 0.499). 

This quasi-elastic treatment of LVE problems (refs. 3 and 4) essentially replaces Young’s 
modulus in an elastic analysis by the instantaneous value of the relaxation modulus for the response 
to a step load. Let oM be the elastic state of stress at a point in a body subjected to a unit temperature 
change. The LVE response to a step temperature change ATi, applied at time t i ,  may be represented as 

where, assuming a thermorheologically simple (TRS) material, t is the “reduced time” 

d t  
(3) 

and aT [ T ( t ) ]  is the temperature shift factor that relates relaxation functions at different temperatures. 
Since the solution for more general loads consists of the appropriate superposition of solutions for step 
loads, a property of such LVE solutions is that the stress and strain fields at any given moment may be 
duplicated by an elastic analysis at the same temperature and a suitably chosen uniform value of 
Young’s modulus, termed the effective modulus EI. 

For a sequence of step temperature decreases, the total stress by equation (2) is 
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For the class of problems being considered (i.e., grains that are nearly incompressible mechanically and 
that are bonded to an elastic but stiff motor case), the stresses obtained in an elastic analysis are closely 
represented over'the range of interest (E  < 1000 psi) by 

- 
okQ = A,EaAT 

where A ,  depends on geometry and coordinates only. Substituting equation (5) into equation (4) 

so that by comparing equations (5) and (6) ,  the effective modulus is 

i 

where Ei = E([  - ti) 

When the material is not TRS, Ei may be obtained from a set of relaxation functions E( t, T j )  by 
moving at constant stress from one relaxation curve to the next as the temperature is stepped (fig. 1). 
Note that after the first step, the time t is no longer given by the abscissa of the graphs of E( t, T )  but 
by the sum of the separate times spent on each relaxation curve. 

Suppose E,(tn, T,  ) has been obtained using LVE methods and duplicates, by elastic analysis, 
the stress-strain fields arising in a motor cooled to temperature T, at time tn . The resulting strain 
field (near zero at case wall and 10-1 5% at the bore surface) covers a range of strain levels which 
indicate that the strain dependency of the propellant modulus should be important. For a material 
whose relaxation curve is sensitive to strain level, the resulting change in the stress history throughout 
thermal loading can be accounted for in the calculation of effective modulus. 

The procedure suggested in this paper corrected the strain level at each temperature step during 
cooldown by moving to the relaxation curve corresponding to the current strain level. (An appropriate 
measure of strain level for multiaxial states of strain is discussed later.) 

The effective modulus thus becomes a field variable and, in general, differs in every element of a 
finite element model. Finite element iterations are required following each temperature step to adjust 
the modulus in every element until no further strain change can be detected. Denote the value of EI 
obtained by this iteration procedure with the subscript n l  , Le., Ehl . The basis for calculating-q is 
to relate it to the value of EI obtained in the linear viscoelastic solution. Specifically, if the effective 
strain is eI in an element whose LVE modulus is El($, Tm), then 

n! 
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where t is obtained from 
In 

E ( $  , T m ) = E I ( t n y T m )  
n 

in general tm # t . 
Im 

In practice, the procedure is simpler than implied above and will be outlined briefly. 

(9) 

Effective Strain Level for Multiaxial States of Stress 

The state of strain in a body has several components upon which to base a strain level. Some 
special consideration must be given to define a measure of “effective” strain. An acceptable definition 
should satisfy the following criteria: 

0 Incorporate all given components of strain 
0 Relate to the uniaxial values associated with the strain-dependent relaxation curves 
0 Be independent of the coordinate system 
0 Recognize that only the portion of the strain that produces stress should contribute, since the 

thermal strains E ,  = e2 = e3 = aAT represent a change in the reference state of stress. 

One definition meeting these criteria is the so-called von Mises strain, which is an invariant of the 
strain deviation tensor normalized to the uniaxial state; i.e., 

EI = - fl ( ( E 1 - E 2 ) 2  + ( E 2  - e 3 ) 2  + ( E 3  
2(1 + v )  

where E ,  , e2 , e3 are the principal strains. 

eI is proportional to the octahedral shear strain at a material point; hence, it is independent of 
volume changes and, for the uniaxial state ( E ,  -VE, -ve) gives = E .  

Note that other combinations of strain invariants also meet the requirements listed above, but 
the von Mises strain was selected for this paper. 

Procedure for Selecting Nonlinear Effective Modulus 

The cooling of a case-bonded, solid propellant rocket grain can now be discussed in greater detail. 
The time-dependent temperature field in the strain is assumed to be spatially uniform and to produce 
a stress-free state at To. If the temperature-time curve is replaced by a series of steps such as shown* 
in figure 2, then suppose the first temperature step AT, to be imposed at time tl . 

*The stress due to polymerization shrinkage has been considered by assuming that the initial motor 
cooldown starts from zero stress temperature, which is slightly above the rocket motor cure 
temperature. 
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Since this is the first temperature increment to be applied, the expression for the effective 
modulus has only one term, so that equation(l9reduces to 

This expression is valid until the application of the second increment ,of temperature at time t ,  . For 
purposes of analysis, the time t ,  was selected-for the first set of nonlinear iterations. The LVE solution 
must first be obtained, however. The effective modulus is calculated by evaluatingithe above at t = t2 . 
Using the thermal AT, and the spatially unifommodulus E1(t2, T l )  for Young's modulus in an elastic 
finite element (FE) program, the result is the LVE solution at time t ,  . The resulting strain field 
prescribes the starting values for the first nonlinear iteration. 

The strain level el(x) in each element is calculated using equation (1 0). The spatial dependence of 
eI is emphasized with the argument x, which is a symbolic reference to the coordinates v, 0,z. 

To select an effective modulus E'(X>, associated with el(x), consider the strain-dependent family 
of relaxation curves E(t ,  e, Tl  ) at temperature T ,  . One member of this family is standard relaxation 
curve E(t, T1  ), used to obtain E1(t2, T1  ) in the LVE solution. If E1 is identified with a point on 
E(t, T , ) ,  an effective time t is defined through equation (9) with n = 2, rn = 1 , i.e., 

12 

Using b2 as the time for which the nonlinear iterations are to be performed, an interpolation curve of 
modulus versus strain level may be constructed from the points E(t1 ,$-,TI) obtained from the 
straindependent family of relaxation curves at the same temperature and tfme. Values of EInQ (x) 
corresponding to various el(x) may then be read and input to the fmite element program to implement 
the first nonlinear iteration. 

From the new FE results, a second set of values of eI(x)  is calculated, compared to the previous 
set, and (if necessary) used to find revised set EhQ1(x) for another iteration. This procedure is repeated 
until the change in the effective strain is insignificant. After two iterations, the LVE solution usually 
shows the desired consistency between Elnp and eI. The FE results so obtained constitute the nonlinear 
solution at time t2 just prior to the application of the next step temperature. 

Returning to the LVE solution, at time t2 a second step temperature change AT, is imposed and 
the grain temperature is reduced to T ,  = T1 - AT,. There are now two stress responses present: 
(1) the response to AT, 

and (2) the response of A T , ,  which now obeys E(t ,  T , ) ;  i.e., 

where t:! is given by solving 

(13) 
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In practice, recalling figure 1, the value of E on the curve for Tl at t2 - t l  is transferred to the curve 
for T2 and the corresponding time is read as &. The effective modulus becomes 

Suppose a solution is desired at time t3 , just before AT, is applied, then equation (7) is evaluated 
at t3 and E'(t3, T 2 )  is used in a finite element computer run which becomes the LVE solution at t3 , 
and provides the starting values for the first nonlinear iteration. The effective time Q2 , corresponding 
to E,(t, , T2) ,  is given by equation (9) with n = 3, rn = 2. 

An interpolation plot is next made of values of E versus e from the strain-dependent family 
E(t ,  9, T 2 )  at 4,. The effective strains e1(x) calculated from the LVE solution are then used to obtain 
E(eI) for the first iteration. This procedure is repeated until convergence is obtained for each step 
temperature assumed. 

NONLINEAR MATERIAL BEHAVIOR 

Many materials, such as filled plastics, advanced composites, etc., exhibit a nonlinear viscoelastic 
behavior that is now commonly termed permanent memory behavior. The Mullins effect in rubbers 
and elastoplastic response are simple examples of such behavior. 

The microstructural variations change the macroscopic response properties following a given 
displacement, which is termed deformation or load-induced damage. This damage is seen primarily as 
a decrease in the relation modulus - that is, a softening that is a function of the loading/strain 
condition. Furthermore, it has been observed that a given deformation produces a new equilibrium 
zero-state of stress of the material with respect to which a new material constitutive relation exists 
(ref. 5). 

Typical constant strain-stress relaxation data for a highly filled solid propellant (TP-H10 1 1 - 86% 
solids) are presented in figure 3. End-bonded test samples 6 in. X 0.5 in. X 0.5 in. (15.24 cm X 1.27 cm 
X 1.27 cm) were ramp-loaded t.0 the 2.64% strain level and held fixed while the stress relaxation was 
monitored as a function of time. These uniaxial stress data were then converted to the viscoelastic 
modulus data in figure 3, using an experimental time-temperature shift that is reasonably close to the 
theoretical shift (ref. 6) developed for pure polymers (fig. 4). The master viscoelastic modulus curve 
in figure 3 has been used for routine solid propellant rocket motor structural analysis. However, if the 
stress relaxation test is conducted at different strain levels, a family of modulus curves can be deter- 
mined which shows that modulus is a strain-dependent parameter. These strain-dependent data for the 
same propellant are shown in figure 5. 

These data represent the viscoelastic modulus behavior of a solid propellant tested at four different 
strain levels from small to intermediate strains. Modulus differences due to the damage: incurred at 
each strain level are significant. Small strain modulus numbers at 0.5% strain are nearly three times 
greater than the modulus at 5% strain. Accurate modulus data below the 2.5% strain level have 
generally been difficult to obtain. In the past, machining and handling of the small, soft viscoelastic 
samples prior to testing has damaged the propellant. To avoid this damage to the pretest sample, 
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a larger specimen was cast, which required no machining and which was large enough not to be damaged 
by careful human handling. Samples used for these tests are shown in figure 6.  Both circular and 
rectangular samples have been tested, but the circular samples were selected for this study because they 
can be readily analyzed as a result of their symmetry. These large test specimens are cast like the 
rocket motor grain when the propellant is fluid. Over a period of 5-10 days at approximately 140°F 
(333"K), they cure in casting molds into a nonlinear viscoelastic solid. Samples are removed from the 
casting hardware and are ready for immediate testjng. These large cast bulk samples have been a major 
factor in obtaining reliable modulus data in the small strain range typical of most solid propellant 
grains. 

These large samples can be adjusted in length/diameter ratio to match any kind of loading, stress, 
or strain axiality needed for accurate simulation of full-scale motor grain conditions. 

The much higher modulus detected at small strains with the larger specimen would be expected 
to cause a large difference in motor stresses, since the strain gradient in the rocket motor from the case 
wall to the internal bore surface (where combustion occurs) varies from a fraction of a percent to as 
much as 15% strain. This same modulus strain softening has been reported by Francis et al. (refs. 7 
and 8) for other propellants at larger strain levels and at lower temperatures. 

LARGE SAMPLE FINITE ELEMENT ANALYSIS 

When these large samples are loaded in axial tension, the resulting state of stress is not simple 
tension. The bonded end restraint prevents the lateral contraction that would be present due to the 
effect of Poisson's ratio. Because of the low Iengthldiameter ratio (L/D < 2), the multiaxial stress 
field near the ends makes a significant difference in the overall displacement when compared to that 
due to a simple tensile state. There is enough similarity between the two tests to interpret the results 
of the large sample using a finite-element-determined factor applied to the test results. Specifically, 
an axial force F, when applied to the sample, produces an average axial stress 

where A = cross-sectional area. If the axial displacement noted by the finite element is uz , then the 
average strain is 

where L = sample length. The apparent modulus is then 

"A V 
Ea = - 

"A V 
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which is always greater than the E employed in the finite element program. Defining kF by 

Ea = kFE 

then 

FL 
u* = ~ 

AEkF 

In a laboratory test, an effective large sample EI may be obtained from the apparent value by 

Examples of this kF value were determined for two sample geometries using finite element analysis to 
demonstrate the magnitude of the uniaxial large sample correction factors. 

The analyzed test sample geometries and computer-determined kF values are listed below: 

Sample No. Length Radius kF 
1 5 in. (12.7 cm) 1.4625 in. (3.71 cm) 1.115 

2 3 in. (7.62 cm) 3 in. (7.62 cm) 1.51 

STRUCTURAL ANALYSIS 

The impact of this variation in modulus as a function of strian level has been assessed by 
comparing linear elastic analysis, linear viscoelastic analysis, and iterative nonlinear analysis. Data 
presented in figure 3 were used to select the linear viscoelastic behavior. Figure 7 presents modulus 
strain sensitivity data for specific motor analysis time-temperature loading increments. These data 
were obtained by shifting data to the appropriate time-temperature conditions and selecting the correct 
modulus versus strain response for this condition. 

The iterative nonlinear solution included analysis for five different temperature cooling steps. 
This cooldown history was selected so that the rocket motor would be cooled from a zero stress state 
at 141°F (334°K) to 21°F (267'K) in 50,000 minutes, using five evenly spaced temperature-time steps. 

Plane strain finite element analyses were conducted with the Texas Institute for Computation 
Mechanics Grain Analysis Program (TEXGAP-2D). TEXGAP-2D was selected because of its highly 
accurate determination of stress and deformation fields in solid propellant rocket motors, especially 
in the critical areas near the interfaces of the case, insulation, liner, and propellant (ref. 9). Although 
material nonlinearities are introduced in the analyses under consideration, TEXGAP-2D is a linear 
elastic finite element computer code. 
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The solid propellant rocket motor, with its assumed infinite length, is shown in figure 8. A 
0.010-in. (0.0254-cm) thick liner is applied directly to the 0.235-in. (0.597-cm) thick steel case. The 
liner, which consists of a thin layer of adhesive, is used to improve the chemical bond between the 
propellant and the case and is included in the structural analysis. The grain is composed of TP-HI01 1 
propellant, in a center-perforated, 0.438-in. (1.1 13cm) bore-radius, circular port with an outside 
radius of 1.990 in. (5.055 cm). The elastic moduli for the liner and case were 150 psi (1.03 X lo6 N/m2) 
and 30,000,000 psi (207 X lo9 N/m2), respectively, while the corresponding linear coefficients of 
thermal expansion were -2.5 X 
(1 0.8 X 1 O6 / O K ) .  The effective propellant equilibrium elastic modulus was approximately 120 psi 
(8.26 X lo5 N/m2) and the linear coefficient of thermal expansion was 5.0 X 
(9 X 105/OK). Poisson's ratio for the case (0.310), liner (0.499) and propellant (0.499) was assumed 
constant for all analyses. 

in./in.-"F (4.5 X 10-4/0K) and -6.0 X lom6 in./in.-OF 

in./in.-"F 

The solid propellant rocket motor was modeled as shown in figure 9. The grid, generated using 
the TEXGAP-2D polar option, spanned a 30" (0.524 rad) segment with 5" (0.0873 rad) per angular 
element and ten evenly spaced radial propellant elements between the liner and the bore. Both 
propellant and liner were modeled with the QUAD element, which is a reformulated isotropic, 
quadrilateral element. Minor modifications in TEXGAP-2D allowed the material properties to be 
decoupled element by element (i.e., normally the hydrostatic variable would be constrained). The 
case was modeled using a subparametric quadrilateral element entitled QUAD 8. The Y axis was aligned 
as shown in figure 9 so that numerical values of stress and deformation as a function of radial location 
could be read directly from the computer printouts. SLQPE boundary conditions with zero value 
were specified along the outer sides of the propellant, liner, and case elements, resulting in sloping 
rollers on a +15" (k0.262 rad) angle. 

DISCUSSION OF RESULTS 

Figures 10 to 14 compare circumferential stress as a function of grain radius for linear and 
nonlinear viscoelastic analysis at various times during cooldown. The times selected for analysis are 
chosen to precede directly the application of each temperature increment, Le., t = tj. This minimizes 
errors introduced by the high values of the relaxation modulus at short times. 

Since the effective.modulus for the LVE cases is uniform throughout the grain, the familiar form 
of oe ( r )  is observed, with a maximum at the bore monotonically decreasing to a lesser value at the 
propellant liner bond. At any given station, the stress is essentially proportional to the temperature 
change from the stress-free state and to the modulus which also increases here as the temperature 
decreases. 

The strain axiality varies significantly from the bondline to the free bore surface as shown in 
figure 15 for linear elastic analysis with a propellant modulus of 300 psi. The ratio of radial strain to 
hoop strain is -1.08, indicating a near one-to-one field at the bore surface. At the bond line, this 
ratio has changed to -1 24. Clearly, a single component of strain is not an indicator of strain level, 
which should depend instead on all nonvanishing components. 

The nonlinear distribution oe (Y) changes its shape during cooldown, eventually reaching a form 
similar to the linear case. For higher temperatures, the modulus dominates the determination of the 
distribution, producing a curve that increases toward the bond. This is due to the low strain levels 
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which imply high modulus values. The strains, which are primarily determined by the temperature 
field, agree with the LVE pattern, i.e., monotonically decreasing toward the bond. The associated 
effective modulus values thus increase toward the bond (see table 1) producing a stress field that 
also tends toward higher values with radius, in contrast to the linear distribution. 

In general, the accounting for strain dependence of the relaxation modulus increases the bond 
stresses early in cooldown and decreases them atjlower temperatures as strains increase. This is 
evident from figure 16, which shows the circumferential stress in the grain next to  the bond during 
cooling. In this bond region, strain levels are low (<0.2%), so that the high associated modulus drives 
the stress above the corresponding linear result, which employs a (lower) relaxation function obtained 
at approximately 2% strain level. 

In contrast to this result, the nonlinearly obtained circumferential stress at the bore surface 
ue (a), which exceeds the 2% strain level at 130°F (328"K), operates with an effective modulus below 
that used in the linear viscoelastic theory. This nonlinear surface stress remains below the linear 
viscoelastic values throughout the remainder of the cooldown (figure 17). 

This high-strain, low-bore stress agrees with the work of Martin (ref. lo), who used a similar 
approach to evaluate this nonlinearity. The low strain consequences of the strain-dependent modulus 
method were not discussed by Martin because he did not have access to accurate, small-strain modulus 
data. 

In figure 10, the upturn in the nonlinear distribution at the bore is indicative of a tendency, 
evidenced later in figures 11 to 14, to assume a shape similar to the distribution for a linear material. 

As cooling continues and strain levels increase, the modulus values decrease (see table 1 ) and 
approach a more uniform distribution. This follows as the strain-sensitivity of the solid propellant 
modulus diminishes as the strain increases. 

At 93°F (307°K) and 20,000 minutes, the linear and nonlinear distributions (fig. 11) approach 
each other. Also, the nonlinear distribution begins to assume the shape of the linear curve. 

At 69°F (294°K) and 30,000 minutes (fig. 12), the two distributions are very close in shape and 
magnitude, crossing at statiofi 4. 

At 45°F (280°K) and 40,000 minutes (fig. 13), the strain level specifies modulus levels below the 
linear values. The crossover point of the stress distributions moves out to station 7 as the two curves 
move apart. 

Finally, at 21°F (267°K) and 50,000 minutes (fig. 14), the two distributions no longer cross, and 
although the effective modulus near the case is double that near the bore, the modulus distribution is 
flat enough that the familiar, monotonically decreasing (with radius) stress distribution is observed. 

Comparison should be made with a previous higher rate cooldown analysis (ref: 11) on this same 
geometry in which the circumferential strain in each element was used as a measure of strain level. 
Using a hoop strain modulus selection criterion increases the stress levels near the motor case. A high 
relaxation modulus was selected since ee gets vanishingly small in this neighborhood due to case 
restraint. This could be misleading as the radial strain is of the order of 3arAT. The von Mises strain 
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here is about 2aAZ leading to a lower modulus selection and hence lower stresses. Near the bore, the 
difference in predicted stress is small because (1) the von Mises stress is close numerically to the hoop 
stress (within 20%) and (2) the strains are large enough that strain level changes produce only small 
changes in modulus. Use of the von Mises strain is expected to yield more realistic analytic predictions 
since it meets the earlier criteria, which account for stress-strain axiality variations that occur between 
the bore surface and case bond region of a solid propellant rocket motor. 

This nonlinear rocket motor grain bond stress buildup over the conventional linear elastic and 
linear viscoelastic analysis is a new phenomenon that has been observed only as more accurate small 
strain modulus test methods have been developed for soft propellant material. The very small strain 
modulus limit of 1580 psi (10.9 X lo6 N/m2) was obtained from a Duomorph test and was supplied 
by Dr. R. Schapery of Texas A&M University. Strain data ranging from 0.5% to 3% were obtained at 
Chemical Systems Division with large cast test samples that minimized sample handling damage prior 
to testing. These large cast samples have been a major factor in obtaining good reliable test data in 
this smaller strain range. This small strain modulus sensitivity of highly filled solid propellants has 
been predicted by Schapery (ref. 12), using a nonlinear constitutive theory that is based on time- 
dependent microstructural damage, crack growth theory, and material statistical representations. 

Samples normally used for laboratory testing of propellant are damaged by machining and hand- 
ling before test initiation and have as much as 0.5% permanent strain damage. This level of damage 
essentially removes the higher modulus portion of the propellant response. In a rocket motor, the 
propellant grain is cast while propellant is in the liquid state and then cured to the solid state at an 
elevated temperature. The stress builds up very slowly during the cooldown process so that the bulk 
of the strain never sees a large strain value and is not damaged as are conventional laboratory samples. 

CONCLUSIONS 

Stresses predicted using the nonlinear effects considered here are in general higher than those 
calculated by linear theory in the early part of cooldown over the bulk of the grain, i.e., T > 69°F 
(7' > 294°K). The nonlinearly determined stress is consistently higher near the bond for T > 25°F 
(T  > 269°K). Nonlinear bore stress predictions are lower than linear results because of the large 
strain levels arising in this region throughout cooldown. (See figures 16 and 17.) 

Stresses predicted using linear analysis methods are generally lower because the properties used 
for the conventional analysis reflect a significant damage state before and during the test. The rocket 
motor does not experience this damage during the initial cooldown cycle. Conventional laboratory 
test samples have already gone through a permanent set and are in a secondary softened material 
status for normal viscoelastic modulus evaluation. Accurate motor analysis requires a more detailed, 
small strain modulus evaluation of undamaged propellant and usage in a complete or approximate 
nonlinear analysis. 
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TABLE 1. - DISTRIBUTION OF EFFECTIVE NONLINEAR MODULUS IN GRAIN 
AT HIGH AND LOW TEMPERATURES 

T = 117 "F (320'K) (Reference linear viscoelastic modulus = 132 psi) 

Finite Element Station 

1 (bore) 
2 
3 
4 
5 
6 
7 
8 
9 

10 (next to liner) 

Nonlinear E 

(Psi) 

117.5 
175 
220 
270 
350 
460 
630 
780 
875 
940 

(N/m2 X lo3) 

810 
1205 
1516 
1860 
2412 
3169 
434 1 
5374 
6029 
6477 

T = 21°F (267°K) (Reference linear viscoelastic modulus = 173 psi) 

1 (bore) 
2 
3 
4 
5 
6 
7 

130 
140 
150 
158 
163 
175 
195 

896 
964 

1034 
1089 
1123 
1206 
1344 

8 225 1550 
9 

10 (next to liner) 
25 5 
285 

1757 
1964 
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MODULUS, E 

Figure 1. - Change in the response to a step load due to a sudder 
change in temperature TI to T2 at time t2 .  

TEMPERATURE, T 

t2 

TIME 

Figure 2. - Nomenclature associated with step function approximation 
to cooldown time-temperature history. 
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Figure 3. - Master viscoelastic modulus curve at 80°F (299°K) and 
2.64% strain for TP-H1011 propellant. 
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Figure 4. - Time-temperature shift factors as a function of'temperature. 
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Figure 5. - Conventional viscoelastic modulus data and 
strain-dependent modulus for TP-H 10 1 1 solid m-ouellant. 
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Y 151-5 Figure 6.  - Large sample in I-beam test fixture. 
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Figure 7. - Propellant modulus-strain behavior at specific 
motor time-temperature increments. 
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Figure 8. - Cross section of a solid propellant rocket motor. 
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Figure 9. - Finite element grid. 
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Figure 10. - Distribution of circumferential stress with radius at 11 7°F (320'K) 
and 10,000 minutes by linear and nonlinear theory. 
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Figure 11. - Distribution of circumferential stress with radius at 93°F (307°K) 
and 20,000 minutes by linear and nonlinear theory. 
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Figure 12. - Distribution of circumferential stress with radius at 69°F (294OK) 
and 30,000 minutes by linear and nonlinear theory. 
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Figure 13. - Distribution of circumferential stress with radius at 45°F (280OK) 
and 40,000 minutes by linear and nonlinear theory. 
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Figure 14. - Distribution of circumferential stress with radius at 21°F (267°K) 
and 50,000 minutes by linear and nonlinear theory. 
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Figure 15. - Distribution of circumferential and radial strain 
with radius at 45°F. 
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Figure 16. - Comparison of circumferential stress at bond line 
during cooldown, as calculated by linear and nonlinear methods. 
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Figure 17. - Comparison of circumferential stress at bore surface during cooldown, 
as calculated by linear and nonlinear methods. 
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The atomi 

COMPUTER SIMULATION OF SCREW DISLOCATION IN ALUMINUM 

Donald M. Esterling 
Joint Institute for Advancement of Flight Sciences 

The George Washington University 

SUMMARY 

stru ture in a <110> screw dislocation core for luminum is 
obtained by computer simulation. The lattice statics technique is employed 
since it entails no artificially imposed elastic boundary around the defect. 
The interatomic potential has no adjustable parameters and was derived from 
pseudopotential theory. The resulting atomic displacements were allowed to 
relax in all three dimensions. 

INTRODUCTION 

Extended defects, such as dislocations and cracks, play a well-known role 
in determining the mechanical properties' of a solid. 
modeled extensively using a continuum approach. In many circumstances, 
however, final quantification of the model requires an understanding of 
processes on an atomic scale, e.g. at the crack tip or the dislocation core. 
Continuum theories typically acquire singularities in these regions, whereas 
discrete, or lattice models are well behaved. 
to use the latter models for these extended defects (Ref. l), but usually 
large scale computer calculations are required in contrast to the analytical 
solutions available in continuum mechanics,, Since little or no experimental 
data is available concerning these restricted atomic scale regions, reliable 
calculations will require careful modeling. Some of the necessary precautions 
will be discussed in the following as well as a brief description of the 
approach used in this calculation. 
next section and we conclude with the resulting atomic configuration associated 
with a <110> screw dislocation in aluminum. This represents the first step in 
a path which will permit atomic level effects to be incorporated into contin- 
uum calculations and subsequent engineering applications. Portions of this 
work were previously reported (Ref. 2 ) .  In that work, the atomic displace- 
ments were constrained to lie along the dislocation core axis, whereas in this 
report full three dimensional relaxations are permitted. 

These defects have been 

There have been a few attempts 

Calculational details are given in the 

Many computer simulations of dislocations and cracks have employed'a 
molecular dynamics approach with interatomic potentials derived empirically. 
Some care must be exercised with this approach. The molecular dynamics method 
embeds a discrete lattice (containing the defect) in a elastic continuum. 
Computational constraints keep the discrete region small (-1000 atoms) whereas 
some calculations (Ref. 3) suggest that the discrete region must contain 
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-10,000 atoms before the elastic predictions are valid for even so simple a 
defect as a single vacancy in aluminum. In addition, although many simulation 
results are somewhat insensitive to the choice of interatomic potential with- 
in a general class of potentials, the latter area is also one of concern. As 
an example, a recent atomistic study of hydrogen-enhanced crack propagation in 
BCC iron (Ref. 4) found very different enhancement effects from the hydrogen 
depending on the choice of empirical potential. We will now briefly describe 
an alternative approach which addresses each of these possible problem areas. 

We will use a lattice statics technique. This method was first proposed 
by Matsubara (Ref. 5) for point defects. Maradudin (Ref. 6) applied it to 
dislocations. More recently, Boyer and Hardy (Ref. 7 )  have performed calcula- 
tion quite similar to that described in this paper (but in all of the preced- 
ing work, the forces were all restricted to being harmonic or linear in the 
displacements). For harmonic forces, Fourier transform techniques permit an 
evaluation of an atomic displacement anywhere in the crystal once the nature 
of the defect and the force constants are given. 
symmetry of the undistorted lattice is exploited as an integral part of the 
lattice statics method. 
seconds rather than hours as required by a molecular dynamics solution. 
Eventually, the displacement field approaches the continuum values but no 
specific boundary is imposed. Even the harmonic approximation breaks down 
(though no singularities occur) within a few atomic spacings of the defect. 
We will report the first lattice statics calculation for an extended defect 
which includes an anharmonic region as well. 

The underlying crystal 

This leads to computational times on the order of 

In order to complete the solution in the anharmonic region, the entire 
interatomic potential is required. We will assume pair potentials. This work 
will not address directly the validity of this approximation. Pseudopotential 
theory provides a rigorous basis for such an approach, both for simple metals 
and for certain classes of d-band metals (Ref. 8). More germane to this 
calculation is the choice between empirical potentials (e.g., Johnson, Born- 
Mayer, Morse, etc.) and a potential derived from a more fundamental perspectivq 
such as our pseudopotential. A brief summary of the method used to generate an 
interatomic potential will%e given in the next section. At this juncture, we 
only wish to point out that there are no adjustable parameters (input is based 
on atomic data), yet the potential accurately describes a wide variety of 
electronic and lattice properties. 

SYMBOLS 

H Hamiltonian 

Hhar harmonic part of Hamiltonian 

anharmonic part of Hamiltonian Hanhar 
u (R) displacement of atom R in direction a a 
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D 

A 

PB 

V 

v 
W 

Y 

a 
0 

-t 

al 
-+ 
b 
-+ 
X 1 

m 

force on atom R in direction a 

force constant 

anharmonic force 

external force 

effective pair potential between ions 

electron-ion potential 

electron-ion pseudopotential 

wave function 

pseudowave function 

unit cell dimension 

primitive fcc lattice vectors 

Burger's vector 

vectors for orthogonal coordinate system 

Planck's constant 

mass of electron 

CALCULATIONAL DETAILS 

Lattice Statics 

The problem is to find the atomic displacements (u) due to prescribe-d 
The equilibrium condition is that exteknal and/or internal stress fields. 

the sum of all the forces on each atom must vanish or: 

where F (R) is the force on an atom at site R in theadirection, u (2) is a a 
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the corresponding displacement, and H is the Hamiltonian. 
be written as: 

The Hamiltonian can 

= Hint + Hext 
where H 
a sum of pair potentials: 

is the contribution from external forces and the internal part is 
ext 

We decompose H further as int 

+ H  - 
Hint - %ar anhar 

where the harmonic contribution is defined as: 

( 4 )  

a ,  B 
Note that the sums over lattice sites (R and E’) extend over the entire 
crystal. Such an expression would only be valid if the atoms were everywhere 
coupled by linear restoring forces. Note also that the force 

will be the key to 
constants (D& and by the undistorted crystal. This fact 

statics method. 

The anharmonic contribution, H involves a sum over lattice sites anhar ’ 
which are not coupled harmonically. 
substracted out and the exact” pair potentials are substituted. Note, 
however, that this latter set of terms involve only a finite, and typically 
small, number of sites. The detailed expression for H depends on the 
defect considered. An explicit expression for a screw dislocation will be 
given in the next section.App1ication to a model crack calculation may be 
found in Reference 9. 

The appropriate harmonic terms are 

anhar 

The equation of motion can then be obtained from equation (1) and takes 
the form: 

R E (We have assumed 
represents the external term force applied to atomRand the termAarises from 
the anharmonic contributions. 
ments in the anharmonic re ion. Equation (6) represents N coupled equations 

properties of 
region from those associated with the harmonic region. 
found in Reference 9, but in essence is described in the following. 

inversion symmetry so that Da vanishes.) Here F 

Note thatAis functional only of those displace- 

in N unknowns, ere N -10 93 . However, we can take advantage of certain 
to decouple the equations associated with the anharmonic 

Some of details can be 
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As a first step, we wish to obtain where 5 is the matrix inverse of 
a8 b. Now DRROretains the full symmetry of the distorted lattice, in particular 

the lattice translational symmetry. Working. for simp1 ty, with a Bravais 
lattice, this is a function of r(R) - r(RO)* As such, we may obtain its 
Fourier transform D (4) in the usual manner. Fourier transforming back with 
DaB(q) - where we only require the 3 x 3 matrix inversion in the (a,@) 
coordinates - we finally obtain D 

a13 

.., a8 

-RR’ 
aB’ - 

Once we have D, the solution immediately follows as: 

The procedure is to first solve Equation (7) self-consistently for the u 
in the anharmonic region. This then specifies A . 
placements anywhere since the right hand side involves all known quantities. 

(R) a 
We may then obtain dis- 

Pseudopotential TheorCy 

The use of pseudopotentials in the theory of simple metals is discussed 
at length in Reference 10. 
tion of an interatomic pair potential from pseudopotential theory. 

We give here-only a brief outline of the deriva- 
The formal 

result of importance to us is that the total binding 
as aluminum can be written, both for the undistorted 
as : 

energy of a metal such 
and the distorted lattice, 

Both E 
pseudopotential, but their forms are independent of the structure, i.e., the 
positions of the ions r(R) in the metal. 
is explicit through the summation over r(R) and r(R’) . 

and the pair potential v are volume-dependent functionals of an atomic 
0 

on structure total All dependence of E 

Equation (8) is obtained by first exactly transforming the one-electron 
Schrodinger equation 

for the true valence eigenstates Y to an equivalent pseudo-Schrodinger 
V I  

equation 



where the full self-consistent potential V is replaced by a weak pseudopoten- 
tial W and Y 

may be solved by perturbation theory for the val 
energy of the metal can then be calculated by (1) summing Ev over all occupied 
valence states, (2) adding in the direct Coulomb interaction between ions and 

(3) substracting off an energy equal to the electron-electron interaction, 
which is counted twice in the sum over E . Equation ( 8 )  follows rigorously 
by terminating the caLculation at second-order in W. 

is replaced by a smooth pseudowavefunction (I 
V V 

Equation (10) 
e eigenstates Ev. The total 

V 

The atomic pseudopotential W used in the present work was constructed by 
John A. Moriarty entirely from first-principles using the zero-order pseudo- 
atom method described in Reference 11 plus one refinement. 
correlation contribution to the self-consistent screening of W has been 
included through the G(q) function of Reference 12 rather than that employed 
in Reference 11. In the Tables of Ref. 11 are listed various calculated 
physical properties of aluminum that can be compared with experiment to 
indicate the reliability of our pseudopotential, and hence our pair potential. 

The exchange 

Core Dislocation Structure in A1 

Boyer and Hardy have applied the lattice statics method to screw dis- 
locations in cubic metals, including aluminum (Ref. 7). In the following, we 
will conform to their notation and coordinate system throughout. 
elaboration may be obtained from their paper. 

Further 

The undistorted lattice sites are at positions: 

and R ) are half-odd integers and (al, a2, a 1 are the primi- where ( RlY R2, 3 3 
tive lattice vectors for the fcc aluminum lattice: 

a a a 

2 

The 'Burger's vector % 

O [llO] (12) 
3 0 0 -t [101], a3 = - a = - [OII.], 8, = 2 1 2 

where a = 7.65278 A.U. is the unit cell dimension. 
is taken parallel to the a 
an orthogonal coordinate system: 

3 
0 

axis, % = a It will be convenient to introduce 3 3' 

Note that the (110) plane has reflection symmetry in both the x and x2 axes. 1 
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&&eyer and Hardy did not include anharmonic effects in:.their calculation. 
Further, the force constants used in the calculation were obtained by a fit to 
elastic constant data. As they indicated in an earlie 
is a considerable lack of uniq ess associated with t 
tential approach provides the uired force co 
employing an explicit pair potential we may inc 

The calculation proceeds in two stages. First, the harmonic displacement 
field is determined as was done in the Boyer/Hardy paper - though using revised 
force constants. Second, an anharmonic llcore" region is chosen. Within this 
region, all harmonic forces are replaced by the exact forces derived from the 
pair potential. The assumption is made (for calculational simplicity) that 
all forces between atoms outside the core or between a pair of atoms located 
inside and outside the core are harmonically coupled. 
enough core size this becomes an accurate approximation. 
define FE and A respectively and the computation then proceeds as outlined in 
Section 11. 

Clearly for large 
These two steps 

The first stage corresponds to introducing a cut half-plane terminating 
on the a axis and containing the a axis. 
tion, bonds which cross this plane are lrcutll and then "rejoined" to a partner 
ztarr. one Burger's vector up (or down, if crossing the cut plane in the opposite 
lirection). Mathematically, this corresponds to introducing a Hamiltonian of 
the form (ua (2%') E u (2) -ua (R')): 

In order to form the screw disloca- 3 1 

a 

aB 

Here (RIR') is defined as +1 if a line from R to R'crosses the cut plane 
from left to right, -1 if the line crosses the cut plane from right to left, 
and zero otherwise. If the line crosses the a axis line, then the above 
prescription is reduced by a factor of 1/2. 
reduces to the haramie Hamiltonian, using the symmetry properties of D. 
By taking H-€$ we tIien define the term H ar ' ext 
nal" force field in Equation (6). 

3 
For b = 0, the above Hamiltonian 

in Equation (2) and the "exter- 

The resulting harmonic displacement field is quite similar to that obtain- 
ed by Boyer and Hardy and will not be reproduced here. 
from the continuum values for the ( 3 1 2 ,  -1/2) and (3/2, 1/2) points as -0.01062 
and 0.00097 respectively. 
comment - they obtained a spurious cut over the entire R 
than over the chosen half-plane. 
obtain the function "F(x,y)" in their paper, they did not include an additional 
contribution to the sum which arises when x+O and which becomes proportional 
to a delta function for an infinite lattice. 
required to restore the cut to the appropriate half plane. 

We obtained deviations 

The rest agreed within about 10% or less. One 
= 0 plane, rather 

When performing a certain infinite sum to 2 

This term is exactly what is 
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As noted earlier, these harmonic displacements are quite close to the 
elastic continuum values. The screw dislocation in an fcc lattice retains a 
very high degree of symmetry which is the basis for this result. 
displacements equal the elastic field values along these axes and, hence, 
never deviate far from the elastic values. For a defect with lower symmetry 
(e.g., with the dislocation line at a saddle point configuration) this would 
no longer be true. 

The harmonic 

E 
obtained from the harmonic calculation and fl is related to appropriate 
derivatives of the pair potential. 
Equation ( 6 ) ,  becomes for an atom in the core 

The anharmonic field was obtained by solving Equation ( 6 )  where F was 

The equation of motion, equivalent to 

where the anharmonic force field A is 

In the above equation, v is the effective pair potential, R(RR’) is the 
magnitude of the separation of lattice sites R andR’ ; Ra 
of that separation vector, and the superscript o indicates evaluation at the 
undistorted lattice position. 

is the a component 

Note that the above derivations were evaluated at the actual atomic 
positions in the core region and hence, the solution required an iterative 
technique. 
The starting configuration was the harmonic field, but the atoms in the core 
were no longer constrained to maintain a cut across the R = 0 plane. 
computational convenience , the effective ion-ion potentia$ was truncated 
after fifth nearest neighbors. 

A Newton-Raphson method was used to obtain a consistent solution. 

For 

The results for an anharmonic core containing an array of atoms 4 x 4 x m  
in size are displayed in the Table. 
displacement field repeating for each (110) plane. Only the displacements 
for Rf positive are listed. 

Translational symmetry leads to the 

1’ The in-plane displacements are odd for (R R2)+ 
(- R1, -1 ), whereas the displacements along the core are even. 2 

The atoms were allowed to relax in the plane as well as along the core 
(a,) axis. However, the displayed values should be considered as preliminary. 
?he anharmonic region for this calculation was small and a larger core will be 
kequired for the final converged values. 
interesting. The relaxations in the plane are larger than anticipated 
and indicate the necessity of in-plane relaxation which were ignored in 

These preliminary results are quite 
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earlier ca lcu la t ions ,  
longer vanish f o r  sites along the  x1 o r  x2 axes and are q u i t e  d i f f e r e n t  from 

the  va lues  obtained when the  in-plane displacements were constraine 
vanish. 
cores,  but t h e  q u a l i t a t i v e  r e s u l t s  should be retained. 

The anharmonic displacements p a r a l l e l  t o  the core no 

We may a n t i c i p a t e  some quan t i t a t ive  changes f o r  l a rge  anharmonic 

I n  a later publ icat ion,  i n  addi t ion  t o  l i s t i n g  the  f i n a l  converged dis-  
placement f i e l d ,  we plan t o  address configurat ions re levant  t o  the  movement of 
t he  d is loca t ion ,  This includes the  displacement f i e l d  and associated Peierl's 
b a r r i e r  when t h e  d i s loca t ion  is  i n  a saddle  point  configurat ion,  as w e l l  as 
vacancy-dislocation in te rac t ions .  

TABLE 1 

Anharmonic Displacement F ie ld  (Units of Bohr Radii) 

1 
3 

Parallel t o  x a x i s  

R1/R2 312 112 -112 -312 

31 2 0,010 -0.007 -0.240 -0,223 

11 2 -0,009 -0 . 015 -0.336 -0.121 
-b 

Parallel t o  x axis 2 

R11R2 312 112 -112 -312 

31 2 0.262 0.272 0 . 050 0,026 

11 2 0.325 0.478 -0.011 0.005 

Parallel t o  x3 a x i s  
3 

312 -0.008 0.062 -0 045 -0 . 003 

1/ 2 -0,107 0.011 -0 . 004 0 . 118 
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MOISTURE TRANSPORT IN COMPOSITES" 

George S. Springer 
The University of Michigan 

SUMMARY 

The moisture d i s t r i b u t i o n  and moisture content of composite materials ex- 
posed t o  humid a i r  or  t o  w a t e r  are discussed. 
estimating the  weight gain of both s ing le  and mu1tilayeLt.i composites when the  
moisture content and the  temperature of t h e  environment are constant.  The para- 
meters needed f o r  solving problems i n  t h e  t i m e  varying environmental condi t ions 
are spec i f ied ,  and a numerical approach f o r  the so lu t ion  of such problems is  
indicated . 

Expressions are presented f o r  

INTRODUCTION 

The mechanical and e l e c t r i c a l  p roper t ies  of composite materials may change 
considerably when the  material is  exposed t o  a moist environment. 
the response of such materials t o  moisture must be known i n  order t o  u t i l i z e  
t h e i r  f u l l  po ten t i a l .  
c h a r a c t e r i s t i c s  of composite materials are described, and the  r e s u l t s  needed 
t o  estimate the  moisture content of t h e  material are summarized. 

Therefore, 

In  t h i s  paper  t he  moisture absorption and desorption 

SYMBOLS 

a,b,d constant (dimensionless) 

-3 C moisture concentration (g mm 1 

C spec i f i c  heat  (J g -1 K-l) 

2 -1 D mass d i f f u s i v i t y  mm s 

G parameter defined by eq. (14) (dimensionless) 

h thickness (mm) 

K thermal conductivity (W mm-1 K'l) 

m moisture content i n  the  material (g mm-2> 

M 

t time (s) 

percent moisture content i n  the  material (dimensionless) 

* 
This work w a s  supported by the United S ta t e s  A i r  Force Materials Laboratory, 
A i r  Force Systems Command, Wright-Patterson A i r  Force Base, Dayton, Ohio. 
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T temperature (K) 

Vf 

a, B, Y f i b e r o r i e n t a t i o n  with respect t o  the  x, y and z axes (rad) 

volume f r a c t i o n  of f i b e r  (dimensionless) 

4 percent relative humid it y (d imen s ion le  ss ) 

P dens i ty  (g mm-') 

Subscripts 

r 

11 

22 

ambient condition 

dry  material 

f i b e r  

i n i t i a l  s ta te  

layer  number 

maximum sa tu ra t ion  

matrix ( res in)  

i n  the  d i r e c t i o n  paral le l  to  the  f i b e r  

i n  the  d i r ec t ion  normal t o  the  f i b e r  

THE PROBLEM 

The following problem is considered. A p l a t e  of thickness h i s  exposed t o  
a moist environment (Fig. 1 ) .  The p l a t e  may be made of e i t h e r  homogeneous o r  
composite materials, and may cons is t  of a s ing le  layer  or  of severa l  layers .  
In  the  lat ter case the  propert ies ,  as w e l l  as the  thicknesses of the  layers,may 
d i f f e r .  The c h a r a c t e r i s t i c s  of each subsequent layer  are denoted by the  sub- 
s c r i p t s  j = 1 , 2  ... k. The p l a t e  is  taken t o  be i n f i n i t e  i n  the  y and z direc-  
t i ons  so t h a t  t h e  moisture content and the  temperature in s ide  each layer  vary 
only i n  the  x d i r ec t ion  (one dimensional problem). I n i t i a l l y ,  (time t<O) the  
temperature T i  and the  moisture concentration C i  ins ide  the  material i s  known. 
T i  and C i  are not necessar i ly  constant,  but may vary with pos i t ion  x. The two 
s ides  of t he  p l a t e  (x=O and x=h) are exposed t o  moist enviranments where t h e  
temperatures are Ta(0) and Ta(h) and the  moisture concentrations are Ca(0) and 
Ca(h). Alternately,  one s i d e  of t he  p l a t e  may be insulated,  so as t o  be im- 
permeable t o  both hea t  and moisture. The objec t ive  is  t o  determine the  tem-  
perature  d i s t r i b u t i o n  T, t he  moisture d i s t r i b u t i o n  C y  and the  t o t a l  moisture 
content of t h e  material as a funct ion of time. The t o t a l  mass of t he  moisture 
per u n i t  area i n  the  j t h  l aye r  is given by 

mj(t)  = I"' C(t)dx (1) 
0 
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Generally, the  moisture content is expressed i n  terms of the  percent mass 
(or weight) gain which is  defined as 

m a s s  of mois,t material-mass. o f  dry material M = M(t) = x 100 percent (2) mass of dry material 

or  

m 
md md 

M = M(t) - - (msmd)-w x 100 = - x 100 percent (3) 

When the  material is f u l l y  sa tura ted  C = C, and eqs. (2) and (3) give the  maxi- 
mum mass o r  weight ga in  (maximum sa tu ra t ion  l eve l )  of t he  j t h  layer  as 

Note t h a t  md = p-h .  
thickness of' the  3 ti' layer .  

where p j  i s  the  dens i ty  of t h e  dry material and h j  is  the  

The temperature and the  moisture concentration i n  each layer  are described 
by the  Fourier and the  Fick equations (e.g. see r e f .  1 ) .  Solution of these  
equations is  a d i f f i c u l t  t a sk  and, f o r  most problems, so lu t ions  can be obtained 
only by numerical means. 
t a i n  assumptions must be made regarding t h e  parameters character iz ing the  m a t -  
e r ia l .  Two of t h e  necessary assumptions pe r t a in  t o  the  thermal d i f f u s i v i t y  
Kx/pc and t h e  m a s s  d i f f u s i v i t y  D ~ :  (1) In  pr inc ip le ,  these parameters may de- 
pend both on the  temperature and on the  Znoisture concentration. 
KX/pc  and Dx are insens i t i ve  t o  the  moisture content and therefore ,  may be taken 
t o  depend on temperature alone ( re fs .  1, 2 ) .  (2)  For most materials the r a t i o  
(Kx/pc)/D, is of t he  order of 106. Since t h i s  r a t i o  represents  the  "speed" by 
which the temperature and moisture "fronts" t r a v e l  i n s ide  the  material, the high 
value of t he  r a t i o  implies t h a t  the  temperature e q u i l i b r i a t e s  much f a s t e r  than 
the  moisture content. Thus, t he  ca lcu la t ions  of t he  temperature and moisture 
d i s t r i b u t i o n  may be decoupled. The temperature d i s t r i b u t i o n  can be calculated 
f i r s t  by the  Fourier equation, followed by the ca lcu la t ion  of t he  corresponding 
moisture concentration by the Fick equation. 

However, even when numerical methods are employed cer- 

I n  prac t ice ,  

The t h i r d  assumption which must be made i n  solving the problem described 
above pe r t a ins  t o  the re la t ionship  between the moisture content of t he  environ- 
ment and t h e  moisture content a t  t h e  surface of t he  material (Cm, Fig. 1). Ex- 
perimental evidence ind ica tes  t ha t  f o r  a material exposed t o  humid air  the  maxi- 
mum sa tura t ion  l e v e l  Mm is r e l a t ed  t o  the  humidity $J by the expression 

Q = a 4' (humid a i r )  (5) 

For a material immersed i n  w a t e r  

M, = d (immersed i n  water) (6)  

a, b and d are constants  which depend on the  material and on the  temperature. 
The values of these constants  must be determined experimentally. The da ta  ob- 
tained thus f a r  is  f o r  a l imited temperature range only ( i .e .  300-400K). I n  
t h i s  range the  constants  and appear t o  be in sens i t i ve  t o  temperature. How- 
ever, there  is some evidence tha t  a, b, and d (and consequently %) depend on 
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t he  temperature when t h e  material i s  exposed t o  higher o r  lower temperatures. 
Unfortunately, t he  ex i s t ing  experimental r e s u l t s  do not  ye t  provide the  needed 
re la t ionship  between t h e  constants  and the  temperature. Un t i l  such information 
becomes ava i l ab le  the  so lu t ions  must be made on the  bas i s  of t he  assumption t h a t  
the va r i a t ion  of Ih with temperature is ins igni f icant .  

I n  addi t ion  t o  the  maximum moisture content,  t h e  mass d i f f u s i v i t y  of t he  
material must a l s o  be specif ied.  
v i t y  are given below. 

The appropriate  expressions f o r  t h e  d i f f y s i -  

D I F  FUS I V  ITY 

The d i f f u s i v i t y  of the  material i n  the  d i r ec t ion  normal t o  the  surface is  
denoted by Dx. 
t he  f i b e r s  with respec t  t o  the  x ,  y, z axes are a ,  B and Y 

For f i b e r  re inforced composites i n  which t h e  or ien ta t ions  of a l l  

Dx = Dllcos 2 a + D22sin 2 a 

where D 1 1  and D22 are the  d i f f u s i v i t i e s  i n  the  d i r ec t ions  parallel  and normal 
t o  the  f i b e r s .  Equation (7) appl ies  t o  the  j t h  layer  and, therefore ,  a l l  sym- 
bols  should be subscripted by j .  For s implici ty ,  the subscr ip ts  w e r e  omitted, 
This p rac t i ce  w i l l  be followed throughout t h i s  sect ion.  

For f i b e r  reinforced composites D 1 1  and D22 (and consequently D,) can a l so  
be estimated from the  expressions ( r e f .  1 )  

Dll = (1-Vf) Dr + VfDf 
I 

where D r  and Df are the  d i f f u s i v i t i e s  of the  matrix ( res in)  and the  f i b e r  re- 
spect ively,  Vf is the  volume f r ac t ion  of t he  f i b e r ,  and B=2(Dr/Df-l). Gener- 
a l l y ,  t he  d i f f u s i v i t y  of t he  f i b e r  is  s m a l l  compared t o  the d i f f u s i v i t y  of the 
matrix (Df<<Dr) and eqs.  (8) and (9) reduce t o  (Vf<O.785) 

D22 = ( 1 - 2 G  )Dr 

Equations (7), (10) and (11) give Dx. 

Comparisons between measured values of D22 and values calculated by eq. 
(11) f o r  composites of Graphite T-300 and F i b e r i t e  1034 are shown i n  Fig. 2. 
As can be seen the re  i s  good agreement between t h e  measured and calculated 
d i f f u s i v i t i e s .  

NUMERICAL SOLUTION 

A s  indicated i n  t h e  problem statement, t he  temperature d i s t r ibu t ion ,  mois- 
t u r e  concentration, and weight gain of t h e  material may be calculated by nu- 
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merical methods when t h e  following parameters are specif ied i n  each layer ;  
thickness h j ,  2) dens i ty  P j ,  3) thermal conductivity K j ,  4) d i f f u s i v i t y  &j, 
5) maximum moisture content  b j ,  and 6) the constants  a j ,  b j  and d j .  
t ion,  t he  so lu t ion  requi res  t h a t  t h e  i n i t i a l  condi t ions ( the i n i t i a l  tempera- 
t u r e  and moisture d i s t r i b u t i o n  in s ide  each layer )  and boundary condi t ions on 
both s ides  of t he  p l a t e  ( the  temperature and humidity of t he  environment as a 
function of time) be spec i f ied .  A computer code providing so lu t ions  t o  such 
problems has  been developed a t  The University o f  Michigan and may be obtained 
from t h e  Fluid Dynamics Laboratory, Department of Mechanical Engineering, The 
Univ er s it  y of Michigan. 

1 )  

I n  addi- 

STEADY STATE SOLUTION - SINGLE LAYER COMPOSITE 

Although the  ca l cu la t ion  of t h e  moisture content of composite materials 
requires  a numerical procedure, ana ly t i ca l ,  closed form so lu t ions  may be ob- 
tained i n  some special, r e s t r i c t e d  cases. Analyt ical  so lu t ion  i s  f e a s i b l e  when, 
i n  addi t ion  t o  t h e  assumptions made earlier (see Problem Statement), t h e  follow- 
ing conditions are m e t :  
pos i te ,  2) i n i t i a l l y  the  temperature and moisture concentration ins ide  the  p l a t e  
are uniform, 3) the  p l a t e  is suddenly exposed t o  a moist environment i n  which 
the temperature and moisture concentrat ion are constant .  I n  t h i s  case, a t  t i m e  
t the  moisture concentration in s ide  the  material is ( r e f .  3) 

1 )  t he  p l a t e  is made only of a s ing le  layer  of com- 

and the  weight gain of the  material i s  

M = G(Mm-Mi) + Mi 

where 

(13) 

The foregoing r e s u l t s  apply during both desorpt ion and absorption. 
r e s u l t s  may a l s o  be used when the  material i s  exposed on both s ides  t o  the  s a m e  
environment ( i n  which case  s = h) and when the material is  insulated on one 
s ide  ( i n  which case s = 2h). 
values  of moisture contents  f o r  composites of Graphite T-300 and F i b e r i t e  1034 
i s  presented i n  Fig. 3. 

The 

A comparison between calculated and measured 

It is emphasized tha t  t he  foregoing s i m p l e  expressions must be used only 
when the  condi t ions of t he  environment are constant.  When t h i s  i s  not  t he  case 
and t h e  environmental condi t ions vary with time,the use of these expressions 
may r e s u l t  i n  considerable e r r o r  as i l l u s t r a t e d  i n  Fig. 4. 
t ha t  t he  r e s u l t s  of t h e  "steady state" ana lys i s  (eqs. 13 and 14) may underesti-  
mate the  weight gain by as much as 100 percent. 

This f igu re  shows 
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STEADY STATE SOLUTIONS - LAYERED COMPOSITES 

Equations (12), (13) and (14) apply only t o  s ing le  layered composites. 
These r e s u l t s  may be extended t o  multi layered materials i f  an appropriate  aver- 
age d i f f u s i v i t y  and average maximum weight gain are subs t i t u t ed  f o r  Dx and Mm. 
The average d i f f u s i v i t y  may be approximated by 

- h - 
Dxavg hl/Dxl + h2/DX2 + . .. 

while t h e  maximum moisture content may be estimated by 
Mml hl + hi h + ... - 2 2  

(Mm)avg - h 

(151 

Comparisons between ca lcu la ted  and measured values of Davg and Mavg are 
given i n  Figs.  5 and 6.  The agreement between the  ca lcu la ted  and measured r e -  
s u l t s  support t he  v a l i d i t y  of t h e  above expressions.  However, t h e  values of 
Davg and (Mm)avg must be used with caution i n  ca l cu la t ing  the  moisture contents  
of layered composites. When the  humidity of t he  environment i s  changed, f o r  
some period of  time only the  outer  layer  w i l l  sense t h i s  change, Dependingupon 
the  temperature and t h e  material t h i s  time may be a s  long as 500-1000 hours. 
Therefore, duriqg t h i s  i n i t i a l  time period the  moisture content should be ca l -  
cu la ted  by the  ac tua l  d i f f u s i v i t y  and maximum moisture content of t he  outer  
layer ,  and not  by the  average values.  
s u l t  i n  subs t an t i a l  e r r o r s  i n  the  calculated moisture content.  

The use of  t he  average values may re- 

THERMAL SPIKES 

I t  has been observed t h a t  t he  absroption and desorption c h a r a c t e r i s t i c s  of 
composite mater ia l s  change considerably when the  material i s  exposed t o  very 
high ( ~ 4 5 0 K )  and very low ( ~ 2 0 0 K )  temperatures. Preliminary da ta  suggest 
t h a t  sudden l a rge  temperature changes r e s u l t  i n  microcracks i n  t h e  mater ia l .  
Due t o  these  cracks both the d i f f u s i v i t y  and t h e  maximum moisture content (max- 
i m u m  s a tu ra t ion  l eve l )  of t h e  mater ia l  changes. Thus, t o  obtain v a l i d  r e s u l t s ,  
t he  ca lcu la t ions  described previously must be performed using the  proper values 
of Dx and Mm. 
the  ca lcu la ted  r e s u l t s  w i l l ,  of course, be i n  e r ro r .  

If changes i n  Dx and Mm caused by thermal spikes  a r e  neglected 
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F - 7  

Figure 1.- I l l u s t r a t i o n  of problem. 

d 

Figure 2.- Matrix d i f f u s i v i t y  Dr, t ransverse  d i f f u s i v i t y  D22, and 
longi tudina l  d i f f u s i v i t y  D l l  of Graphite T-300 and F i b e r i t e  1034 
composites. ( D 1 1  and D22 are f o r  Vf = 0.68 and a = g o o . )  
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Figure 3 . -  Comparison of calculated (eq. (14)) and measured G values 
for unidirectional and 7r/4 Graphite T-300 and F iber i t e  1034 
composites (Vf = 0.68 and a = g o o ) .  

TIME, Years 

Figure 4.- Weight gain of a 12-mm-thick graphite-epoxy composite. 
Solid l i n e  was calculated for the t i m e  varying environment 
shown. 
temperature (290 K ) ,  constant humidity (82%) environment. 

Dotted l ine  was calculated assuming a constant 

155 



1 4 ~ 1  I I I I I J 
2.4 2.6 2.8 3.0 3.2 

I / T  x103,K-' 

Figure 5.- Average d i f f u s i v i t y  as a funct ion of temperature f o r  a 
12-mm-thick, layered,  graphite-epoxy (48 l aye r s )  and boron- 
epoxy composite (48 l aye r s ) .  

b 
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X I  a 
I 
d s 

HUMIDITY % 

Figure 6 . -  Average m a x i m u m  moisture content  f o r  a 12-mm-thick, layered, 
graphite-epoxy (48 l aye r s )  and boron-epoxy composite (48 l ayers ) .  
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A HIGH ORDER THEORY FOR UNIFORM AND LAMINATED PLATES 

King H. Lo 
Washington Un ive rs i t y  

Richard M. Christensen and Edward M. Wu 
Un ive rs i t y  o f  Ca l i f o rn ia ,  Lawrence Livermore Laboratory 

SUMMARY 

A theory o f  p l a t e  deformation i s  der ived here in  which accounts for the  
ef fects  o f  t ransverse shear deformation, transverse normal s t r a i n ,  and a 
nonl inear  d i s t r i b u t i o n  o f  the in-plane displacements w i t h  respect to the  
thickness coordinate.  The theory i s  compared w i t h  lower order  p l a t e  theor ies 
through a p p l i c a t i o n  t o  a p a r t i c u l a r  problem invo lv ing  a p l a t e  acted upon by a 
s inusoida l  surface pressure. Comparison i s  a l s o  made w i t h  exact e l a s t i c i t y  
so lu t i on  o f  t h i s  problem. It i s  found t h a t  when the  r a t i o  o f  the charac- 
t e r i s t i c  length o f  the  load p a t t e r n  t o  the p l a t e  th ickness i s  o f  t he  order of 
un i ty ,  lower order theor ies  a re  inadequate and the present h igh  order  theory 
i s  requi red t o  g i ve  meaningful resu l ts .  

App l ica t ion  o f  the present p l a t e  theory t o  laminated composites i s  
i l l u s t r a t e d .  Results a r e  given for  the  bending o f  symmetric cross-ply and 
angle-ply laminates. Comparison w i t h  exact e l a s t i c i t y  so lu t ions  ind ica tes  
t h a t  the present p l a t e  theory i s  s u f f i c i e n t l y  accurate f o r  p r e d i c t i n g  the  
behavior o f  t h i c k  laminates. 

I NTRODUCT I ON 

The development and a p p l i c a t i o n  o f  the c l a s s i c a l  p l a t e  theory i s  one o f  
the achievements of modern engineering. I t  i s  cont inuously being appl ied t o  
new problems to  ga in  new and needed design informat ion.  Despite i t s  successes, 
however, the inherent l i m i t a t i o n s  of  the c lass i ca l  theory necess i ta te the  
development o f  more r e f i n e d  and h igher  order p l a t e  theor ies f o r  problems 
where the c l a s s i c a l  theory i s  inadequate t o  descr ibe the  behavior o f  t he  
p la tes.  Such problems concern p la tes  w i t h  cutouts, contact  problems invo lv ing  
p la tes,  and laminated p la tes .  The present paper concerns the  der iva t ion ,  
evaluat ion,  and a p p l i c a t i o n  o f  a p a r t i c u l a r  h igh  order theory o f  p l a t e  
behavior. 

Before descr ib ing  the present theory, a b r i e f  review o f  some of  the 
developments i n  the  genera l i za t ion  o f  c lass i ca l  p l a t e  theory i s  i n  order.  
Reissner ( r e f .  1 and r e f .  2) obta ins a consis tent  theory which incorporates 
the  e f f e c t s  o f  transverse shear deformation and transverse normal s t ress  
through appropr ia te ly  assumed s t ress  d i s t r i b u t i o n s .  The d e r i v a t i o n  given by 
Reissner r e s u l t s  i n  a displacement f i e l d  o f  the  form 
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u = U"(X,Y) + z$x(x,Y) , v = V"(X,Y) + z$ (X,Y) 9 w ' =  W0(X,Y) ( 1  1 Y 

$Y 
where z i s  the coordinate normal t o  the middle plane o f  the p l a t e  and QX, 

and wo are weighted displacement averages. 
M i n d l i n  ( r e f .  3) employs kinematic assumptions o f  t he  form o f  equation ( l ) ,  
and wi thout  in t roducing corresponding s t ress d i s t r i b u t i o n  assumptions, 
obtained the governing equations from a d i r e c t  method. A co r rec t i on  factor  
i s  introduced i n t o  the  shear s t ress  r e s u l t a n t s  t o  account f o r  t he  nonuniform 
shear s t ress d i s t r i b u t i o n s  through the thickness of the p l a t e .  The value of  
t he  c o r r e c t i o n  f a c t o r  i s  evaluated by comparison w i t h  an exact e l a s t i c i t y  
so l  u t  ion. 

A t  the same leve l  o f  approximation 

The next higher order p l a t e  theory involves an assumed displacement 
f i e l d  o f  the form 

which includes the e f f e c t  o f  transverse normal s t ra in .  Displacement assump- 
t i o n s  o f  the form o f  equation (2) along w i t h  the corresponding s t ress  
d i s t r i b u t i o n  assumptions has been used by Essenburg ( r e f .  4) t o  de r i ve  a one- 
dimensional p l a t e  theory. I n  the context  o f  contact  problems, Essenburg 
( re f .  4) demonstrates the u t i l i t y  and advantages o f  the theory based upon 
equation (2) over lower order theor ies.  

Many other  h igh  order p l a t e  theor ies t h a t  have recen t l y  been proposed 
mainly deal w i t h  laminated composite p la tes .  Correct ion fac to rs  are introduced 
i n  these theor ies as i n  reference 3 t o  improve the accuracy o f  the predic ted 
p l a t e  behavior. A t y p i c a l  h igh order laminated p l a t e  theory i s  t h a t  given by 
Nelson and Lorch ( r e f .  5) w i t h  the f o l l o w i n g  assumed displacement f i e l d  

2 

2 

2 

u = U"(X9Y)  + Z$,(X,Y) + z CX(X,Y) 

v = V"(X,Y)  + 4JY(X,Y)  + CY(X,Y) 

w = W"(X,Y) + Z$,(X,Y) + rz (X,Y)  (3  1 

However, f o r  laminated p la tes i t  can be shown t h a t  the i nc lus ion  o f  the 
quadrat ic  terms i n  the  in-plane displacements does not  necessar i ly  provide a 
s i g n i f i c a n t  improvement over the lower leve l  theory as t h a t  represented by 
equation (2) .  Moreover, the use o f  a large number o f  c o r r e c t i o n  f a c t o r s  
made the a p p l i c a t i o n  o f  the p l a t e  theory a l o t  more complicated. 

The theory t o  be presented here i s  based on the f o l l o w i n g  assumed 
displacement f i e l d :  
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which obv ious ly  i s  o f  higher  order  than t h  heor ies mentioned prev ious ly .  
The l e v e l  o f  t r u n c a t i o n  inequat ion  (4) i s  ense t h a t  t he  
transverse shear s t resses due t o  in-p lane displacements u an r e  o f  t h e  
same order  i n  z as t h a t  determ ed by t h e  t ransverse d i sp lac  w. The 
accuracy o f  t h i s  theory  i n  corn r i s o n  w i t h  lower order  theor  ill be 
assessed by d i r e c t  comparison w i t h  an exact s o l u t i o n  from the  theory o f  
e l a s t i c i t y .  I t  w i l l  be shown t h a t  equation (4) g ives a f a r  more accurate 
d e s c r i p t i o n  o f  p l a t e  deformation behavior under sho r t  wave-length cond i t i ons  
than do lower o rder  p l a t e  theor ies.  
laminates ind ica tes  t h a t  t he  present p l a t e  theory i s  s u f f i c i e n t l y  accurate 
f o r  p r e d i c t i n g  the behavior o f  laminated p la tes .  

App l i ca t i on  o f  the  theory t o  composite 

SYMBOLS 

Q Y 5 Y O  

0 

90 

L 

coord inates o f  the  p l a t e  

displacements i n  the  x,y, and z d i r e c t i o n s ,  respec t i ve l y  

displacement c o e f f i c i e n t s  

superscr ip t  f o r  q u a n t i t i e s  i n  the middle p lane o f  the p l a t e  

St ress r e s u l t a n t s  

equ i va 1 en t sur face t r a c t  ions 

normal and shear s t ress  components 

th ickness o f  t he  p l a t e  

normal and tangent ia l  d i r e c t i o n s  

amp1 i tude o f  sur face t r a c t i o n  

c h a r a c t e r i s t i c  dimension o f  the  load p a t t e r n  

C.. s t i f f n e s s  . coe f f i c i en ts  

W non-dimensional mid-plane d e f l e c t i o n  
IJ - 

159 



HIGH ORDER PLATE THEORY 

P la te  theories can be developed by expanding the displacement components 
i n  power ser ies of the coordinate normal t o  the middle plane of the p la te.  I n  
p r i nc ip le ,  theor ies developed by t h i s  means can be made as accurate as desired 
simply by inc lud ing a s u f f i c i e n t  number o f  terms. I n  pract ice,  h 
p o i n t  o f  d iminishing returns i s  reached whereby the complexity of 
r e s u i t i n g  theor ies becomes too great. 
terms which include the e f f e c t s  o f  the transverse shear de rmat ion, trans- 
verse normal s t ra in ,  arid warpage o f  the cross section. Th the displacement 
components are taken i n  the form o f  equation (4).  

We here seek the minimum number of 

The p r i n c i p l e  o f  s ta t i ona ry  po ten t i a l  energy i s  used t o  der ive the 
fo l l ow ing  governing equ i l i b r i um equations and boundary condi t ions for the 
present p l a t e  theory 

+ q x = O ; N  + N  
Y,Y XY,X + 4Y = O N + N  

x,x XYSY 

+ q = o ;  
R , x  4. ' t , Y  

= O ; M  + M  
Y,Y XYSX 

M + M  - Qx + mx 
XSX XY,Y 

x,x Y,Y 

x9x XY,Y 

x,x YPY 

R + R  - N Z + m = O ;  

P + P  

s + s  - 2MZ + n = 0; 

- 2 R  + n x = O ; P  + P  - 2 R  + n  = O  
X Y,Y X Y t X  Y Y  

where the stress resul tants  are defined by 

and 
h/2 I - h/2 

z2 [ T ~ ~ T ~ ~ ~  dz I s x  sy l  = 
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w i t h  

[(Ix nxI = [T xz ( h / 2 ) - ~ ~ ~ ( - h / 2 ) ] [ 1  h2/4] 

[qY n Y 1 = [T YZ (h/2)-Tyz(-h/2)][1 h2/4] 

hX Rx] = [ ~ ~ ~ ( h / 2 ) + ~ ~ ~ ( - h / 2 ) ]  [h/2 h3/8] 

[m 

[q n] 

3 = [T (h/2)+'ryz(-h/2)] [h/2 h'/81 
Y Y  Y+ 

= [OZ(h/2)-o (-h/2)1[1 h2/4] 
Z 

m = [az (h/2) +az (- h/2) ] h/2 (9) 

Finally,the boundary condi t ions along the edge o f  the p l a t e  requi re t h a t  
one member o f  each o f  the fo l l ow ing  eleven products must be prescribed: 

where n and t are the d i rec t i ons  normal and tangent ia l  t o  the edge of  the 
p la te .  

When expressed i n  terms o f  displacement coe f f i c i en ts ,  equation (5) 
comprises a s e t  of  eleven coupled second order p a r t i a l  d i f f e r e n t i a l  equations 
which govern the behavior o f  the present p l a t e  theory. They can be appl ied 
t o  both homogeneous i s o t r o p i c  as wel l  as an isot rop ic  laminated plates.  

EVALUATION OF PLATE THEORY 

The present h igh order theory can be c r i t i c a l l y  assessed by comparing 
the so lut ions for  a p a r t i c u l a r  problem w i t h  the corresponding exact e l a s t i c i t y  
so lut ions.  The problem o f  i n t e r e s t  here i s  t h a t  o f  the deformation o f  an 
i n f i n i t e  homogeneous i s o t r o p i c  p l a t e  o f  thickness h subjected t o  a pressure 
on the top surface z = h/2 o f  the form 

TX oZ = qosin - L 

w i t h  a l l  other surface t rac t i ons  vanishing i d e n t i c a l l y .  Obviously the solu- 
t i o n s  f o r  the generalized displacement functions would involve terms 
proport ional  t o  sin(nx/L) and cos(.rrx/L). Due t o  l i m i t a t i o n  on the length of 
t h i s  paper, d e t a i l s  o f  the so lut ions w i l l  not be given here. 

The stresses and displacements obtained by the present p l a t e  the0r.y a re  
compared w i t h  the exact e l a s t i c i t y  so lut ions ( r e f .  6) .  Comparisons are a l so  
made w i t h  the so lut ions obtained from other lower order approximate p l a t e  
theories, 
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Figure  1 shows the  maximum def lec t ions  o f  the  middle plane o f  the p l a t e  
according t o  var ious  p l a t e  theor ies .  I t  i s  seen t h a t  for  values o f  h/L 
(;.e. r a t i o  of thickness o f  p l a t e  t o  c h a r a c t e r i s t i c  l eng th  o f  the  loading 
pa t te rn )  equal to  1.5 t h e  dev ia t i ons  between the  approximate theo r ies  and t h e  
exact r e s u l t s  a r e  subs tan t i a l ,  and the  dev ia t i ons  cont inue t o  increase w i t h  
increas ing values of h/L. 
r e s u l t s  c l o s e s t  t o  the  exact so lu t ions .  

The present h i g h  order  theory can be seen to  g i v e  

The f l e x u r a l  s t ress  d i s t r i b u t i o n s  across t h e  thickness of  the  p l a t e  a r e  
shown i n  f i g u r e  2 f o r  h/L = 1.0. A l l  approximate theor ies  g i v e  t h e  same 
l i n e a r  s t ress  d i s t r i b u t i o n  w i t h  the except ion o f  the  present h igh  order  theory. 
Considering the complex shape o f  the exact  s o l u t i o n  s t ress  d i s t r i b u t i o n ,  t he  

3 
h igh  order  theory can be seen t o  p rov ide  a more e f f e c t i v e  model o f  p l a t e  
deformation. I n  add i t i on ,  f i g u r e  2 reveals  the  essen t ia l  presence of the z 
terms i n  the  displacement f i e l d .  Comparison o f  t he  r e s u l t s  g iven i n  f i g u r e  2 
w i t h  those g iven i n  f i g u r e  1 shows t h a t  s t ress  d i s t r i b u t i o n  i s  a more 
s e n s i t i v e  measure o f  t he  accuracy o f  p l a t e  theo r ies  than i s  displacement 
d i s t r i b u t i o n .  

APPLICATION TO LAMINATED PLATES 

The present theory o f f e r s  a ready extens ion t o  laminated p l a t e  problems 
where the  c l a s s i c a l  p l a t e  theory i s  inadequate for p r e d i c t i n g  the  nonl inear  
s t ress  and displacement d i s t r i b u t i o n s  o f  these laminated s t ruc tu res .  The 
c o n s t i t u t i v e  r e l a t i o n s  f o r  any l aye r  o f  t he  laminate a r e  o f  t he  form 

‘ 1 1  ‘12 ‘13 ‘16 

‘12 ‘22 ‘23 ‘26 

‘13 ‘23 ‘33 ‘36 

‘16 ‘26 ‘36 ‘66 

where C i  a r e  the  components o f  t he  a n i s o t r o p i c  s t i f f n e s s  mat r ix .  With t h e  

assumed displacement f i e l d  as g iven by equat ion (4), no shear c o r r e c t i o n  
f a c t o r s  a r e  needed t o  r e l a t e  the  t ransverse components o f  s t ress  and s t r a i n  
as i n  o ther  lower o rder  laminated p l a t e  theor ies .  

The degree o f  accuracy o f  the  r e s u l t i n g  h i g h  order  laminated p l a t e  model 
i s  assessed by comparing the  so lu t i ons  f o r  angle-p ly  and c ross-p ly  laminates 
subjected to s inuso ida l  sur face loadings as given by equation (11) w i t h  the  
corresponding exact  e l a s t i c i t y  so lu t ions .  
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Angle-ply and Cross-ply Laminates 

Numerical r e s u l t s  o f  f l e x u r a l  s t ress  d i s t r i b u t i o n s  a r e  g iven i n  f i g u r e  3 
fo r  a [+30°, -30"], angle-ply laminate and i n  f i g u r e  4 for a [ O o ,  9 0 ° ] s  

cross-p ly  laminate. Typica l  values o f  s t i f f n e s s  c o e f f i c i e n t s  for h i g h  
modulus graphite/epoxy composites as g iven i n  reference 7 a r e  used. 

For the angle-p ly  laminate, the agreement w i t h  exact e l a s t i c i t y  so lu t i ons  
( r e f .  7) i s  excep t iona l l y  good i n  the  regions o f  h i g h  values of f l e x u r a l  
stresses. A s  the  i n t e r f a c e  between d i f f e r e n t  l aye rs  i s  approached, the  
s t resses i n  the  +30° l aye r  a r e  s l i g h t l y  d i f f e r e n t  from t h a t  g iven by exact 
e l a s t i c i t y  so lu t i ons .  However, such s l i g h t  d iscrepancies a r e  immaterial, 
e s p e c i a l l y  i n  the  reg ions of l o w  values o f  s t resses.  

The c ross-p ly  laminate serves as a more c r i t i c a l  t e s t  o f  the  p l a t e  
theory. A s  i n  t he  case o f  angle-p ly  laminate, c lose  agreement o f  t he  
numerical r e s u l t s  w i t h  exact e l a s t i c i t y  so lu t i ons  ( r e f .  8) i s  again obtained. 
The r e l a t i v e l y  l a rge  d iscrepancies i n  the values o f  t he  f l e x u r a l  s t resses a t  
the  i n t e r f a c e  between d i f f e r e n t  layers  a r e  due t o  the  h igh  d i s c o n t i n u i t y  i n  
the  values o f  the  s t i f f n e s s  c o e f f i c i e n t s  across the  i n t e r f a c e  of d i f f e r e n t  
layers.  As before, such d iscrepancies occur i n  the  regions o f  l o w  values of 
f l e x u r a l  stresses where accurate p red ic t i ons  o f  t h e  values o f  t he  s t resses 
a re  immaterial.  

CONCLUDING REMARKS 

By comparing the  r e s u l t s  obta ined w i t h  the  exact e l a s t i c i t y  so lu t ions ,  
the  r e l a t i v e  accuracy o f  var ious approximate theor ies ,  i nc lud ing  the  one 
presented here in,  has been studied. I t  i s  obvious t h a t  the  present h i g h  
order  theory i s  a much more accurate approximation o f  t he  behavior o f  p la tes .  
Due t o  the  h igh  order  of terms involved, i t  i s  o f  course no t  convenient t o  
use. However, f o r  problems w i t h  d i s t u r b i n g  features,  such as holes, cu tou ts  
and sub-surface cracks w i t h  a c h a r a c t e r i s t i c  leng th  o f  the order  o f  the  
thickness o f  the  p la te ,  a theory a t  l e a s t  o f  the o rde r  o f  t h e  one presented 
here would be requ i red  to p roper l y  model t he  e f f e c t s  o f  t h e  t ransverse s t ress  
and s t r a i n  components o f  t h e  p l a t e .  

I n  add i t i on ,  the present  h i g h  order  theory has been shown t o  be 
s u f f i c i e n t l y  accurate f o r  p r e d i c t i n g  the  behavior o f  t h i c k  laminates. The 
use of c o r r e c t i o n  f a c t o r s  t o  improve t h e  accuracy o f  t h e  approximated p l a t e  
behavior i s  unnecessary. 
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Figure 1.- Mid-plane deflections for a homogeneous isotropic plate. 
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Figure 2.- Flexural stress distributions for a homogeneous 
isotropic plate at L/h = 1.0. 
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Figure 3.- Flexural stress distributions for a [+30°, -3O0Is 
angle-ply laminate at L/h = 4.0. 
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Figure 4.- Flexural stress distributions for a [Oo, 9O0Is 
cross-ply laminate at L/h = 4.0. 
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STOCHASTIC MODELS FOR THl3 TENSILE STRENGTH, FATIGUE 

AND STRESS-RUPTURE OF FIBER BUNDLES 

S. Leigh Phoenix 
Cornell University 

SUMMARY 

A n  overview i s  presented of recent theore t ica l  developments concerning 
the study of the  t e n s i l e  s t rength and time-to-failure of f i b e r  bundles under 
a var ie ty  of loadings. The time-to-failure of a s ing le  f i b e r  is modeled as a 
functional of the  f ibe r  load his tory and reasonable forms f o r  t h i s  functional 
are proposed. Earlier models by Daniels and Coleman are shown t o  be spec ia l  
cases of the proposed model and apparent d i s p a r i t i e s  i n  t h e i r  behavior are 
discussed. Techniques are presented f o r  determining ana ly t ica l ly  the asymp- 
t o t i c  d i s t r ibu t ions  of the t e n s i l e  s t rength and time-to-failure f o r  bundles of 
a large number of f ibe r s .  For smaller bundles, exact r e s u l t s  are f a r  too 
cumbersome t o  be of use so t h a t  e f f i c i en t  Monte Carlo simulation procedures 
are proposed. Using these techniques we  consider an example of p rac t i ca l  
importance and conclusions are drawn regarding t h e  fat igue behavior of cables 
and other fibrous s t ruc tures .  

INTRODUCTION 

Consider a bundle of n p a r a l l e l  f i b e r s  t o  which is  applied a nonnegative 
time-dependent load program L S ( t ) .  A s  t i m e  passes, f i be r s  f a i l  i n  a random 

manner t h a t  depends on t h e i r  individual load h i s to r i e s .  A f i b e r  supports no 
load a f t e r  f a i l i n g  so t h a t  the  surviving f ibe r s  a t  any time t must share the  
load according t o  a specif ied load sharing rule .  W e  l e t  Tl,...,T denote n 
the f a i l u r e  t i m e s  of the n individual f i be r s  respectively and l e t  
T < ... < T be these f a i l u r e  t i m e s  arranged i n  increasing order. The [11 - - [nl 
time-to-failure of the  bundle i s  then T the  f a i l u r e  t i m e  of the las t  

[nl ' -- -- 
surviving f ibe r .  The problem is t o  determine t h e  p robab i l i s t i c  charac te r i s t ics  
of the time-to-bundle f a i l u r e  under reasonable assumptions on s ingle  f i b e r  
f a i lu re ,  on the  load sharing ru le ,  and on the  load program L s ( t ) .  

In  t h i s  paper we w i l l  discuss recent theore t ica l  developments regarding 
the  study of t h i s  problem. 
mining the  asymptotic d i s t r ibu t ion  of T when n grows large.  For a wide 

is found to  be asymptotically normally dis t r ibuted.  var ie ty  of cases T 

For small n exact r e s u l t s  are too cumbersome t o  be useful.  However,efficient 
Monte Carlo simulation techniques have been developed f o r  use when 

In  particular,we w i l l  discuss techniques f o r  deter- 

[nl 

[n I 

n is 
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moderate. W e  w i l l  d iscuss  these techniques b r i e f l y  and give s o m e  r e su l t s .  
It w i l l  be demonstrated t h a t  under reasonable assumptions regarding s ing le  
f i b e r  behavior, t he  mean l i f e t i m e  of a bundle i s  diminished considerably 
r e l a t i v e  to  t h a t  of a s ing le  f ibe r  under s ta t ic  and dynamic fa t igue  load pro- 
grams which are comparable on a load per f i b e r  basis .  
reduction i s  approached as n grows large.  But by reducing the bundle load 
a moderate amount the  los t  l i fe t ime can be restored.  
v a r i a b i l i t y  i n  the  time-to-failure of t he  bundle i s  reducible simply by 
increasing the number of f ibers .  
remarkably s imilar  to  t h a t  of a s ingle  f ibe r  under load programs of engineering 
significance . 

However, a l i m i t  on t h i s  

On the  other hand,the 

Otherwise the  behavior of a la rge  bundle is  

ASSUMPTIONS AND EARLIER ANALYSIS 

Assumptions on loadin%. W e  natural ly  ask how the probabi l i s t ic  charac- 
terist ics of the bundle time-to-failure compare with those of a s ingle  f iber .  
A fa i r  comparison i s  made when the  load per f i b e r  i n  the  bundle i s  the same as 
the t o t a l  load on the  s ing le  f i b e r .  Hence w e  w i l l  speak i n  terms of the 
nominal f i b e r  load program L ( t )  = L S ( t ) / n ,  though w e  w i l l  of ten call  L ( t )  

simply the load program. Now the actual loads on the  f ibe r s  of t he  bundle 
w i l l  generally d i f f e r  from L ( t ) .  For example, t he  load-strain ru l e s  for  the 
f i b e r  may vary from f i b e r  t o  f i b e r  as a r e s u l t  of say random variat ions i n  
s t i f fnes s ,  existence of random f ibe r  slack, ormixing of f ibe r  types. Under 
such conditions r e s u l t s  have been obtained f o r  the strength d i s t r ibu t ion  of 
c l a s s i c  f i b e r  bundles where the  s t rength of each f i b e r  i s  random but remains 
f ixed i n  t i m e .  (See references 1 t o  3 f o r  an extensive treatment).  Unfor- 
tunately,  f o r  the time-dependent problem being considered here, r e s u l t s  are 
avai lable  only under t h e  equal load sharing r u l e  f o r  which the surviving 
f i b e r s  a t  any t i m e  t must share the load equally. Here w e  proceed under the  
equal load sharing r u l e  so t h a t  each f ibe r  of t he  bundle i s  thereby subjected 
t o  the load 

-- 

/ 
L( t ) / ( l - i / n )  f o r  T < t < T[i+l l ,  i = O ,  ..., n-1 

[ i l  - I 
ln(t) = \  

co f o r  T < t, 
[nl - 

5 0. W e  ca l l  /.. (t) the  ac tua l  [OI n up to  i t s  t i m e  of f a i l u r e ,  where w e  set T 

f i b e r  load program. Three pa r t i cu la r  forms of t h e  load program L ( t )  are of 
p rac t i ca l  i n t e re s t .  
-7 

The constant load program 

where L is  a pos i t ive  constant, is  appropriate f o r  studying stress-rupture 
or s ta t ic  fa t igue  behavior. The l i nea r ly  increasinq load program 
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L 2 ( t )  = Lot,  t - > 0 (3) 

where the  nonnegative constant Lo 

considering short-term t e n s i l e  s t rength  behavior. 
t ions  w e  consider 'the periodic load program 

is the  loading rate, is of i n t e r e s t  i n  

I n  dymanic fa t igue  s i tua-  

where the  pos i t i ve  constant v is -the frequency of repetition, b = l / v  i s  
the  period and m is the  number of complete cycles that has occurred i n  t h e  
time in t e rva l  [O,tl.  

Assumptions on s ingle  f i b e r  behavior. W e  assume that the  f ibe r s  are 
sampled independently from a common source which imparts random physical prop- 
erties to them, Of these propert ies  w e  are in te res ted  i n  t h e  influence of 
f ibe r  load h is tory  on the  fiber time to  f a i lu re .  W e  assume, then, t h a t  a 
s ing le  f i b e r  subjected t o  t h e  known load h is tory  L ( t ) ,  has a random f a i l u r e  
time T with cumulative d i s t r ibu t ion  function (c.d.f.1 of the  form 

where G! ( t ; L )  i s  a non-anticipating (history-dependent) funct ional  of L ( t )  and 
is  non-decreasing i n  t. W e  c a l l  G!(t;L) the  f iber hazard functional and 
assume it to  be known f o r  a l l  fiber load h i s t o r i e s  L t h a t  are possible 

I n  order t o  derive meaningful r e s u l t s  w e  restrict  our a t ten-  Ln outcomes of 

t i on  to  the special f i b e r  hazard functional 

where K[x] ,  x 3, 0 is  a nonnegative increasing unbounded and continuous func- 
t ion?  Y(x,y) i s  a s t r i c t l y  increasing unbounded continuous.function of both 
x 2 0  and y -  > 0 f o r  which Y ( 0 , O )  = 0. ( H e r e  sup(f (T), 0 T 5 t) 
is  es sen t i a l ly  the  maximum value the  function f ( . r )  achieves i n  the  t i m e  
in te rva l  [ O , t ] .  Also a function is increasing (decreasing) if it i s  non- 
decreasing (nonincreasing) i n  i t s  argument). If L ( t )  is increasing w e  may 
drop the  sup i n  equation (6) and put  T = t. I n  solving spec i f ic  cases fur ther  
assumptions on L,Jl and K w i l l  generally be necessary. 

Earlier analysis.  Previous probabi l i s t ic  models of the t e n s i l e  s t rength 
and time-to-failure of f i b e r  bundles have been developed under restricted 
versions of equation (6) .  I n  the  classic (static) f i b e r  bundle s t rength prob- - l e m  or ig ina l ly  studied by Daniels ( ref .  4)  and later generalized by Phoenix 
and Taylor and others  (refs. 1 ,2 ,3 ,5) ,  t i m e  is not e x p l i c i t l y  involved. Spec- 

of the  n individual f ibers  are 

assumed t o  be f ixed i n  t i m e  and t o  be independent i den t i ca l ly  d is t r ibu ted  
(i . i .d.)  random variables  with common c.d.f. 

where Ys(x) is a s t r i c t l y  increasing and unbounded function with Ys(0) = 0. 

i f i c a l l y  the  t e n s i l e  s t rengths  r; 1' - - I sn 

Fs(x) = l-exp{-Ys(x)), x 0 
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are .C1, ... , arranged i n  'n < ... 5 Tfn1* 

n 

It is eas i ly  seen t h a t  i f  5 

increasing order then the  bundle s t rength Q is  given by 
111 - 

* 
and the  t ime-to-failure under L ( t )  is T = i n f i t  0; L ( t )  > Q 1, t h a t  i s  

is  the  smallest time f o r  which the  load exceeds the  bundle strength.  The T 

r e s t r i c t i o n  then f o r  t h i s  classic problem i s  t h a t  

n - [nl 

[nl 

Y(x,y) = Ys(x) (8) 

so t h a t  Q ( t ; L )  = sup{Ys(L(~)) ;  0 T t). 

M o s t  of t he  earlier analysis  on the time-to-failure of f ibe r  bundles was ---- 
performed by Colenan (refs. 6 t o  1 2 )  who essent ia l ly  assumed t h e  hazard 
functional to  be of t he  form 

where Yc (x) 

Yc(0) = 0. W e  ca l l  Yc(x) t he  hazard form. Although Coleman proposed the 

model of equation (9), only by taking Y (x) = x was he able  t o  der ive the 

exact or  even the  asymptotic probabi l i ty  d i s t r ibu t ion  of the  bundle f a i l u r e  
t i m e  T 

t h a t  Y (x) = x s implif ies  the  analysis grea t ly  but  unfortunately it is unduly 

r e s t r i c t i v e  i n  l i g h t  of avai lable  experimental data .  More recent ly ,  asymptotic 
normality of the  time-to-system f a i l u r e  has been demonstrated by the  author i n  
reference 13 f o r  a broad var ie ty  of useful hazard forms 

K (x) and loadings L ( t )  . Some of these r e s u l t s  w i l l  be discussed later. The 
r e s t r i c t i o n  then for  Coleman's time-dependent problem is  t h a t  'Y(x,y) = Yc(y). 

Since the  in t eg ra l  i n  equation (9) i s  automatically increasing i n  t, the 
supremum function i n  equation (6)  is not necessary. 

i s  an increasing, conthuous and unbounded function with 

C 

and most of h i s  analysis  dea l t  with t h i s  case. Now the assumption 
[nl 

C 

Yc(x), functions 

Following Coleman w e  call  t he  function K ( X )  the  breakdown ru l e .  Of 
pa r t i cu la r  i n t e r e s t  are the exponential breakdown r u l e  

K1 (X) = a exp (6x1 

and the power l a w  breakdown r u l e  

where ",$,!LO and p are a l l  nonnegative constants. These two ru l e s  lead t o  
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t he  two common formats fo r  presenting fat igue data,namely the  load versus log- 
t i m e  format and the  log-load versus log-time format,respectively. 
i n t e r e s t  is the  Weibull hazard form 

A l s o  of 

r Y (x) = x c w  

since s ing le  f i b e r s  under the  constant load program L (t) = L w i l l  have the  

popular Weibull time-to-failure d is t r ibu t ion .  
1 

Shortcomings of previous models. One might expect t h a t  t he  classic 
(static) fiber bundle s t rength m o d e l  would be a special case of the  time-depen- 
dent model introduced by Coleman. For the  most p a r t  t h i s  is  not the  case. 
For example, consider t he  appl icat ion of the l i nea r ly  increasing load program 
L 2 ( t )  

w i l l  be independent of the loading rate L but  more important, ties are 

t o  both types of bundles. For the classic bundle t h e  observed s t rength 
* 

Qn 0 
and i n  f a c t  the  last  few f i b e r s  are l i k e l y  to 

In1 
possible among T 111 I - - I T  

f a i l  together a s  t he  bundle collapses.  For the  Coleman time-dependent model, 
the bundle s t rength w i l l  depend on the  loading rate and the  f a i l u r e  t i m e s  w i l l  

Hence the  l as t  surviving f i b e r  generally be d i s t i n c t  with T 

w i l l  support the load f o r  a nonzero t i m e .  The d i f f i c u l t y  is t h a t  i n  the  
classic case, jumps i n  L ( t )  generally r e s u l t  i n  jumps i n  F(t ]L)> whereas i n  
the Coleman time-dependent model F ( t ] L )  i s  continuous even under jumps i n  
L ( t )  as can be seen from the hazard functional given by equation ( 9 ) .  The 
special  f i be r  hazard functional (eq. ( 6 ) )  of i n t e r e s t  i n  t h i s  paper w i l l  
alleviate these d i f f i c u l t i e s ,  and w i l l  give us a more real is t ic  model struc- 
ture .  

En1 * 
< ... < T I l l  

CURRENT ANALYTICAL APPROACH 

The crux of our approach l ies i n  formulating a bundle model whose 
statist ical  propert ies  are equivalent t o  those of t h e  real bundle but  whose 
time-to-failure may be wri t ten i n  t e r m s  of n specific i . i . d .  random varia- 
bles.  The benef i t  is t h a t  much is  known about t h e  s t ruc tures  of t he  i . i .d .  
random variables  t h a t  arise and w e  may draw on t h i s  knowledge. Of course w e  
must prove the  s ta t is t ical  equivalence of the  models and unfortunately t h i s  i s  
not a simple task.  W e  proceed by formulating t h e  equivalent bundle model. 

With the  ith f i b e r  w e  associate  the  exponential random variable  

are i . i .d .  with common exponential c.d.f. 

and 'i 
w e  assume t h a t  

H(x) = l-exp{-x}, x > 0. W e  let  V < ... < V be these random variables  

arranged i n  increasing order. 

V1, ..., V n 

I l l  - - In1 - 
Now w e  define 
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n, i 

L (SI / (l- i /n) 

f o r  i=l,. . . ,n. 

I 

fo r  T < s  
[ i l  - 

(14) 

Conjecture: Under reasonable assumptions on L ( t )  and the  behavior of 
- the  random vec&s ,..., T ) 

1 I (T [ l l  [nl 
- the  hazard functional 

(T . . ,T  1 have the same probabili ty d is t r ibu t ion .  

Q (t; L) , 

[nl - - - 
It is  easy t o  show t h a t  the conjecture i s  t r u e  f o r  s ing le  f ibers ,  t h a t  is, 

when n=l. I n  f a c t  w e  may permit L ( t )  t o  be a random process when n=l. 
Under reasonable assumptions the  author has shown the  conjecture _--- to  be t rue  fo r  
Coleman's time-dependent model where L?(t;L) is  given by equation (9). (See 
reference 13) .  
general, however, the  proof is  not complete as yet.  The benef i t  of verifying 
the conjecture i s  t h a t  w e  need only study the  random propert ies  of 

Henceforth w e  may drop the  primes f o r  convenience. 

- --- 
There is  very l i t t l e  doubt t h a t  the conjecture is t rue  i n  

I I 

[nl-  T Ill  - * ,T  

and 
[nl 

i n  terms of Vll1, .  . . ,V 

Equations (13) and (14) y ie ld  n expressions re la t ing  T . ,T  

11-11 . In1 
The objective i s  t o  express T [nl * V [ l ]  I .  * rv 

w e  may determine 
[nl Then by knowing the  random propert ies  of v[ll I . .  . r V  

In  genera1,the inversions are very d i f f i c u l t  
[nl * 

t h e  random propert ies  of T 

t o  perform analyt ical ly .  
t he  technique and are tractable. 

Hence w e  consider some special  cases which i l l u s t r a t e  

Constant load program and the  special  hazard functional. For L ( t )  = 
L (t) = L and Q ( t ; L )  given by equation (6) w e  may rewrite equations (13) 

and (14) as 
1 

1 +. . .+ K [I%/ (n-i+il) 1 [t-T I )  L V E i l )  [21 -T [ l l  [ i-l I + K [nL/ (n-1) I [T 

for i=l , . . . ,n  . W e  l e t  y = Y-'(x,u) be t h e  solut ion t o  Y(x,y) = u 
f o r  u - > 0 with x > 0 held fixed. By our earlier assumptions y 2 0 

and Y-'(x,u) i s  increasing and continuous i n  'u and decreasing and con- 
tinuous i n  x. W e  let  
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(16) -1 
[i l)  W = 1 (nL/(n-i+l), V Eil 

and def ine the  random process Wn(y) by 

0 5 Y < l / n  

l /n  2 y < 2/n (17) 

(n-l)/n L Y 2 1. 

a re  ordered 

... 121.' 

En1 

W [11 , . . . ,W are not 
- En1 [nl 

is  not by nature 

Observe t h a t  while V < ... < V 

necessarily arranged i n  increasing order so t h a t  
E11 - 

W,(y) 

increasing i n  y. However w e  require  an associated random process 

f o r  0 5 y 21, which increasing i n  y. Now i n  view of equation (16) w e  
may rewrite (15) as 

) L W  1 E i l  
+. . .+ K [ ~ L /  (n-i+l) I (t - T [i-11 

f o r  i=l, ..., n. By inspecting equations (19) successively w e  observe t h a t  
T 

> 0 i f  and only i f  W > max[O,W I f o r  a l l  j=1, ..., i-1. T 

I n  fact, w e  may combine equations (19) i n  view of equations (17)  and (18) t o  
yield 

> 0 i f  and only if W > 0 and f o r  i = 2 ,  ..., n t h a t  

- T  
[ l l  c11 

[ i l  [ i - 1 1  Eil [j 1 

... 

By successive subs t i tu t ions  w e  may combine equations (20) t o  y ie ld  an expres- 
sion which is  equivalent t o  

where w e  have used the  f a c t  t h a t  K ( X )  grows unbounded i n  x. Equation ( 2 1 )  
serves as a s t a r t i ng  point  f o r  determining the probabi l i s t ic  charac te r i s t ics  of 

173 



writ ten as a l inear func- 
[nl 

f o r  w e  have T 
[nl 

the  bundle time-to-failure T 

t i ona l  of W (y) which is  a random process involving 

... v ordered values V 

V1, . . . , V through t h e i r  # 
n n 

111 - - [n l*  

Although much is known about the  probabi l i s t ic  cha rac t e r i s t i c s  of 
V [ l ]  I - - - IV 

by equation (21)  i s  a very complex one. A s  a r e s u l t ,  an  expression f o r  the  
exact probabi l i ty  d i s t r ibu t ion  of T 

any use whatsoever)for among other  d i f f i c u l t i e s  it w i l l  involve an n-fold con- 
volution in t eg ra l  (except perhaps i n  a few unrea l i s t i c  special cases). On the  
other  hand Monte Carlo simulation of outcomes f o r  T 

This i s  because outcomes fo r  

VE1] , - - * ‘V[n] I L, K 

is a simple task.  For large n there  is the  poss ib i l i t y  of determining the  
asymptotic d i s t r ibu t ion  of T 

associated proof, this has been done and w i l l  be reported on a t  a later date.  
W e  say more on the approach short ly .  

as given V [.], . . . ,V 

w i l l  be far too cumbersome to  be of 

[nl 
and 

In1 
the  re la t ionship  between T 

[nl 

i s  straightforward. 
[nl 

are eas i ly  generated and given 
[nl Vll1,  ..., V 

and Y the  computation of the in t eg ra l  i n  equation (21) 

Save f o r  a few technical d e t a i l s  i n  the 
[nl 

For the  more r e s t r i c t i v e  Coleman hazard functional as given by equation 

(91, w e  have W - - Yc (Vt i1)  so w e  define 

i s  increasing i n  y 0 w e  f i nd  t h a t  W t l 1  1. . . . < w  are W1, ..., Wn 

arranged i n  increasing order. Furthermore since V1, ..., V are i . i .d .  with 

common c.d.f. H(x) = 1-expi-x), x > 0, then it follows t h a t  W1,. .- ,W are 

-1 -1 = Yc ( V i ) .  Now since Y (y) -1 
wi C [ i l  

- [nl 

n 

n - 
i . i .d .  with common c.d.f. 

G ( w )  = l-exp{-Yc(w) 1 ,  w 0. (22) 

Hence W [ l ]  - < . * *  < w a re  a set of order statist ics from G ( w )  . Also 

Wn(y) i s  nonincreasing so t h a t  Wn(y) = Wn(y) where Wn(y), 0 5 y 5 1 is # - [nl 

(Quantile processes 
[nl * 

now the  quant i le  process associated with W [11 I . .  . I W  

are receiving considerable a t t en t ion  i n  the  mathematical s ta t is t ics  l i t e r a t u r e  
(refs. 14-16) and may w e l l  be the  most useful  vehicle f o r  determining the 
asymptotic d i s t r ibu t ion  of T >. Hence i n  view of equation (17) w e  may 

in tegra te  i n  equation ( 2 1 )  t o  obtain 
[nl 

n 
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is a l inea r  combination of t he  
En1 

Since the  bundle time-to-failure T 

w e  may determine the asymptotic d is t r ibu t ion  order s t a t i s t i c s  

as n grows la rge  provided t h a t  the  weighting constants Cni have of T 

the  appropriate behavior as 

t ions  t h a t  d{ IC [L/ (1-y) ] -'}/dy be bounded and continuous on [0,11 and t h a t  
the  second moment of Gc(w)  

with Remark 2 of S t i g l e r  ( r e f .  14) to  assert the  following theorem. 

[nl W [11 r - - r W  

[nl 
n +- m. Indeed i f  w e  require  t h e  reasonable condi- 

ex i s t ,  then w e  may use Theorems 1 to  3 together 

L e t  

t = jE4j (1-G ( y )  1 dy (25) b 

and 

where 

and 

and 4 '  ( y )  = d4 (y)/dy. Then w e  have the main theorem. 

Theorem 1: A s  n +- the  standardized system f a i l u r e  t i m e  

2 
b' is  asymptotically normally d is t r ibu ted  with mean zero and variance 0 

L a t e r  w e  examine some practical consequences of Theorem 1, but f i r s t  w e  
comment on our ana ly t ica l  approach - f o r  determining asymptotic r e s u l t s  fo r  the  
special hazard functional.  Now i n  reference 13, w e  have proven Theorem 1 under 
s l i gh t ly  more r e s t r i c t i v e  conditions but  by using a d i f f e r e n t  approach. W e  

which i s  
[nl 

have operated with the  empirical c.d.f. of WI1,,  ..., W 

111 f o r  O < w < W  - 

for W < w < W 
[ i l  - 

for W < w. 
[nl - 

i=l, ..., n-1 [ i + l ]  

Note t h a t  the  quant i le  process 

G,(w). 

Wn(y) is  the  inverse of the empirical c.d.f. 

as 
Cnl 

For the  Coleman hazard functional w e  could have wri t ten T 
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T En1 = /;K [L/ (1-G n (w) ) I-ldw. 

Hence T i s  a nonlinear functional of the  empirical c.d.f. Gn(w) and 
# from equation (21)  with Wn(y) = Wn(y) we  see t h a t  T 

functional of the  quant i le  process 

ab le  conditions both the empirical c.d.f. 

Wn(y) 
appropriately processes respectively.  By expanding the functionals for T 

about G ( w )  f o r  the  empirical c.d.f. and about G (y) f o r  the quant i le  
process we  may use r e s u l t s  i n  weak convergence theory t o  obtain the  asymptotic 
normality of T as given by Theorem 1. Now it is believed t h a t  a similar 

approach may be used for  the spec ia l  hazard functional of equation ( 6 )  since 
it turns  out  t h a t  T a s  given by equation (21), is  s t i l l  a functional of 

Wn(y) 

current ly ,  and r e s u l t s  w i l l  be forthcoming. 

is a l so  a l i nea r  
En1 

[nl 
Wn(y). Now it is known t h a t  under reason- 

Gn(w) and the  quant i le  process 

when properly normalized converge i n  d i s t r ibu t ion  t o  spec i f ic  Gaussian 

En1 -1 

P I  

En1 
a l b e i t  a much more complicated one. W e  are pursuing t h i s  approach 

Time-dependent load programs and the special  hazard functional.  When the  
load program L ( t )  is  an a rb i t r a ry  function of time, it is  not possible  t o  
a r r ive  a t  an expression s i m i l a r  to  equation (21) except i n  some spec ia l  cases 
where a convenient fac tor iza t ion  arises. For example, under the  Coleman haz- 
ard functional with K ( X )  taken as the power l a w  breakdown r u l e  (eq. (11) ) , 

In1 
a convenient fac tor iza t ion  arises which r e s u l t s  i n  the replacement of T 

with /o[nlL(s)Pds and L with uni ty  i n  equation (21) .  Hence asymptotic 

w i l l  r e s u l t  i n  most cases. (For d e t a i l s  t he  reader i s  normality of T 

referred t o  reference 1 3 ) .  If ,  on the  other  hand, a convenient fac tor iza t ion  
does not occur, then it appears possible t o  generate from equations (19) a 
s tochas t ic  d i f f e r e n t i a l  equation a s  n + 00 involving the  l imit ing Gaussian 
process of the normalized empirical c.d.f. G (w)  o r  quant i le  process Wn(y) 

- - 
T 

[nl 

n 
The solut ion 

of t h i s  s tochast ic  d i f f e r e n t i a l  equation would y ie ld  t h e  asymptotic d i s t r ibu-  

En1 * 
t i on  of T 

Otherwise one may resort to Monte Carlo simulation procedures using equations 
are e a s i l y  generated and the  calcula- (15) s ince outcomes for  

In1 
and the l i m i t  of an empirical process involving T [11 r - - IT 

This approach is being pursued and appears t o  show promise. 

En1 VEll , .. . , V  

t i o n  of the  associated T[ l l , . . . ,T  i s  straightforward given Y (x,y) , L ( t )  
En1 

and ~ ( x ) .  
t ion .  

Some simulation r e s u l t s  w i l l  be reported on i n  a fu ture  publica- 
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PRACTICAL I?ESULTS 

Results of engineering s ignif icance have been generated t o  da te  only for 
the  Coleman hazard functional given by equation (9) with the hazard form JI (x) 

taken as the  Weibull hazard form (equation (12))  and the  breakdown rule K (x) 
taken as either the exponential breakdown r u l e  (equation (10)) or the power 
- l a w  breakdawn r u l e  (equation (11)) .- Even under these restrictions, the r e su l t -  
ing model is surpr is ingly f lex ib le .  In  f a c t  t he  s ing le  f i b e r  model generates 
behavioral features  which are remarkably consis tent  with the cur ren t  proba- 
b i l i s t i c  view of the  stress-rupture,  fa t igue  and t e n s i l e  s t rength behavior of 
s t ruc tu ra l  materials. The s ingle  f i b e r  model satisfies a probabi l i s t ic  i n t e r -  
p re ta t ion  of Miner’s fa t igue  r u l e  because of t he  in t eg ra l  i n  equation (9 ) -  
Also, two popular formats f o r  presenting fa t igue  and s t ress-rupture  data  
r e su l t .  The exponential breakdown ru le ,  K ~ Q x )  i s  associated with the  common 

- load versus log-time format and the associated equiprobabili ty of f a i l u r e  
curves under the  constant (stress-rupture) load program L and fat igue load- 

ing L3 form a set of s t r a i g h t  p a r a l l e l  l i n e s  whose spacing i s  governed by 

the hazard f o r m  Y(x). The power l a w  breakdown rule K ~ ( x )  on the other hand 

generates similar behavior except the  format is the  log-load versus log-time 
format. The time-to-failure d i s t r ibu t ion  for  s ing le  f i b e r s  under the  constant 
load program L1 and the  Weibull hazard form I is the popular Weibull 

d i s t r ibu t ion  as is  the  t ens i l e  s t rength d i s t r ibu t ion  under the  power l a w  break- 
down r u l e  K and the  l i nea r ly  increasing load program L2 but with d i f f e r e n t  

parameters. 
ra ther  w e  summarize a f e w  p rac t i ca l ly  important asymptotic r e s u l t s  fo r  the time- 
to- fa i lure  of a bundle of f i b e r s  as compared with t h a t  of a s ing le  f ibe r .  For 
a thorough discussion w e  r e f e r  t he  reader iim references 13  and 17’- W e  w i l l  
restrict our a t t en t ion  t o  r e s u l t s  under the power l a w  breakdown ru l e ,  t h e  
Weibull hazard form, and the  constant load program. These r e s u l t s  w i l l  i l l u s -  
t r a t e  typ ica l  behavior. 

C 

1 

c w  

2 
W e  w i l l  not expand i n  any d e t a i l  on the  above statements but 

Single f i b e r  r e s u l t s .  For a s ing le  f i b e r  under the constant load program 
L, ,  the cumulative d i s t r ibu t ion  function of the  time-to-failure T is  eas i ly  
I 

found t o  be 

which i s  the Weibull 

ameter r. The mean 
of t h i s  d i s t r ibu t ion  

d i s t r ibu t ion  with scale parameter 

are respectively 

(RO/L)P and shape par- 

EETI and coef f ic ien t  of var ia t ion  CV[T] E a / E [ T I  

and 
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the  lat ter being independent of and p .  N o t e  t h a t  

w e  f ind  that a graph of log L versus log E[T] forms a 
slope - l /p .  I n  fact the  equiprobabili ty of f a i l u r e  curves for F(tlL1) also 

i f  w e  f i x  

s t r a i g h t  l i n e  with 

Eo, P > 0, 

- 

form a set of p a r a l l e l  s t r a i g h t  l i n e s  with slope 
behavior earlier. 

- l / p .  W e  alluded t o  t h i s  

Fiber bundle r e su l t s .  For a f i b e r  bundle under the  constant load program 
L1 w e  consider asymptotic r e s u l t s  f o r  large n since exact r e s u l t s  are not 

ava i lab le  as we  pointed out  earlier. For moderate n, Monte C a r l o  simulation 
procedures have been used, and w e  w i l l  include some of those resu l t s .  Using 
Theorem 1 and performing the appropriate calculat ions w e  f ind t h a t  t he  time-to- 
bundle f a i l u r e  T is  asymptotically normally d is t r ibu ted  with mean 

In1 

tb = [aO/L)Pp-’Jrr (1+1/r) (35) 

W e  have obtained the above asymptotic expansion because the  in t eg ra l  i n  equa- 
t i on  (26) cannot be obtained i n  closed form. Equations (36) and (37) yield 
the  f i rs t  f e w  t e r m s  of an expansion of Coleman‘s r e s u l t  i n  reference 8 f o r  t he  
spec ia l  case r=l. Typically r < 2  and p>20 so equations (36) and (37) w i l l  
y ie ld  accurate resu l t s .  
C V ~  ub/(tj3Y(;;) is  

The bundle coef f ic ien t  of var ia t ion defined by 

Comparison of bundle and s ingle  f i b e r  r e su l t s .  To i l l u s t r a t e  the compari- 
son of bundle and s ingle  f ibe r  behavior w e  have constructed a graph (Figure 1) 
using estimates of the  parameters r, !to and p based on stress-rupture da ta  

f o r  epoxy-impregnated Kevlar-49 strands.  (See reference 17 f o r  fur ther  d e t a i l s )  . 
One impregnated s t rand plays the  r o l e  of a s ingle  f i b e r  i n  our model. Resin- 
impregnated Kevlar-49 strands are being used i n  the  construction of high-strength 
cables and l i n e s  and are becoming an important s t ruc tu ra l  material. F i r s t  w e  
observe t h a t  on a log-log scale the  graph of the  asymptotic mean time-to-bundle 
failure \ 
E[T]. However a t  a l l  stresses the mean l i f e t i m e  of the  large bundle i s  almost 

is  v i r t u a l l y  parallel t o  t h a t  f o r  the  s ing le  strand time-to-failure 
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two orders of magnitude less than t h a t  of a s ingle  strand. 
quantity f o r  r e f l ec t ing  t h i s  l o s s  is the  time-to-failure eff ic iency E 
tb/E[T] which i n  t h i s  case is  simply p . Seco i f  w e  stress a la rge  

bundle to  about 90% of that for a SingLestrand, the  mean l i fe t ime of the bundle 
w i l l  approximately equal that f o r  the  s ing le  strand. 

case is  simply p -l’(rp) . In te res t ing ly ,  t h i s  
bundle s t rength eff ic iency obtained under the  l i nea r ly  increasing load program 
L 2 ( t ) .  Third w e  compare the s ing le  f i b e r  coef f ic ien t  of var ia t ion  CV[T] with 

CV for the  bundle. Numerically we  have CV[T] = 1.15 whereas 

5.08n 
the bundle coef f ic ien t  of var ia t ion  r e l a t i v e  t o  t h a t  of a s ing le  strand. 

The appropriate 

t - l/r 

The load ratio i n  t h i s  

- 
cvb - . Evidently a f a i r l y  large number of s t rands i s  necessary t o  decrease -1/2 

The question na tura l ly  arises as t o  the app l i cab i l i t y  of t he  asymptotic 
r e s u l t s  f o r  bundles of a moderate number of f ibe r s .  I n  Figure 1 w e  have plot-  
ted Monte Carlo simulation estimates of the  mean time-to-bundle f a i l u r e  
E[TLnII.  

for n>50 say. W e  are current ly  studying other aspects  of t he  proximity of the 
using asymptotic time-to-failure d i s t r ibu t ion  to the t r u e  d i s t r ibu t ion  of T 

Monte C a r l o  simulation techniques, especial ly  i n  the  very important lower t a i l  
regions of t he  d is t r ibu t ions .  

W e  see t h a t  the  asymptotic r e s u l t s  a r e  qu i t e  accurate i n  t h i s  respect  

[nl 

The behavior j u s t  described i s  believed t o  be typ ica l  though numerical 
values w i l l  vary subs tan t ia l ly  over t h e  various f i b e r  types. 
the  bundle time-to-failure character is a l t e r ed  under the  spec ia l  hazard func- 
t i ona l  is current ly  under study. 

To what extent  
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SUMMARY 

An incrementa1,non-linear, finite-element program capable of t r ac ing  
the  damage t h a t  occurs i n  a notched laminated composite,before u l t imate  
f a i l u r e  takes  p l a c e , i s  described. The program uses only the  proper t ies  
of t h e  cons t i tuent  p l i e s  t o  model t h e  progressive f a i l u r e  and t o  p red ic t  
t he  ul t imate  f a i l u r e  load f o r  t he  laminate. Computer predict ions f o r  
t he  ul t imate  f a i l u r e  load and f a i l u r e  modes are compared t o  experi- 
mental r e s u l t s  f o r  two laminates containing holes and loaded i n  uniax ia l  
tension. The comparison i s  qu i t e  favorable. 

INTRODUCTION 

The predict ion of t h e  s t rength  of unnotched composite laminates on a 
macroscopic level has proceeded i n  a number of d i rec t ions .  
one approach has been t o  use a ply f a i l u r e  c r i t e r i o n ,  such as t h e  maximum 
s t r a i n  o r  d i s t o r t i o n a l  energy c r i t e r i o n ,  i n  conjunction with laminated 
p l a t e  theory t o  pred ic t  t h e  f a i l u r e  of t he  laminate. Although appropriate  
f o r  pred ic t ing  f i r s t  p ly  f a i l u r e  i f  one i s  concerned with t h e  ul t imate  
f a i l u r e  of t h e  laminate, such an approach of ten  r e s u l t s  i n  highly conserva- 
t i v e  s t rength  estimates because f i r s t  ply f a i l u r e  usual ly  does not r e s u l t  
i n  the  t o t a l  f a i l u r e  of t he  laminate. Another approach has been t o  
use a phenomenological f a i l u r e  surface f o r  a laminate ( re f .  1 ) .  Since 
t h i s  approach does not  make use of t he  known f a i l u r e  c h a r a c t e r i s t i c s  
of t he  cons t i tuent  p l i e s ,  however, such a surface must be generated 
anew f o r  each d i s t i n c t  laminate of a pa r t i cu la r  material system. An 
i n t e re s t ing  approach t h a t  does make use of t h e  individual  f a i l u r e  
c h a r a c t e r i s t i c s  of t h e  p l i e s ,  while s t i l l  accounting f o r  t h e  u l t imate  
f a i l u r e  of t h e  laminate i t s e l f  through a progressive f a i l u r e  mechanism, 
is t h a t  of P e t i t  and Waddoups ( re f .  2). Here, use w a s  made of laminated 
p l a t e  theory and t h e  c o n s t i t u t i v e  r e l a t i o n s  f o r  t h e  individual  p l i e s  
t o  pred ic t  t h e  s t r e s s - s t r a in  curve of t h e  laminate i n  uniax ia l  tension. 
This approach w a s  shown t o  r e s u l t  i n  reasonable s t rength  predict ions 
f o r  such loadings. 

For example, 

Support from t h e  University of Utah Research Fund f o r  computer t i m e  is 
g ra t e fu l ly  acknowledged. 
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The in t roduct ion  of through-the-thickness notches i n  laminates, e i t h e r  
by design (e.g., f a s t e n e r  holes) o r  by acc ident  (e.g., p r o j e c t i l e  pene t ra t ion) ,  
complicates s t r eng th  predic t ions  f u r t h e r  because of t h e  r e s u l t i n g  stress 
inhomogeneity and b i a x i a l i t y  such notches produce. 
approach t o  t h e  p red ic t ion  of t h e  s t r eng th  of notched laminates i n  un iax ia l  
tension has been presented i n  references 3 and 4 .  This method has l e d  t o  
s a t i s f a c t o r y  s t r e n g t h  predic t ions  f o r  laminates containing a v a r i e t y  of 
notch shapes and s izes  and has served t o  provide a simple explanation f o r  
t he  observed hole  s i z e  e f f ec t .  However, t h i s  approach does not t ake  i n t o  
account progressive damage of t h e  laminate and t h e  r e s u l t i n g  stress r e d i s t r i -  
bution t h a t  can occur due t o  such damage. Furthermore, i t  does not t a k e  
i n t o  account stress i n t e r a c t i o n  e f f e c t s  on f a i l u r e  and assumes t h e  d i r e c t i o n  
of f a i l u r e  t o  be known. 
therefore,  such as i n  t h e  case  of non-proportional b i a x i a l  loadings, t h e  
modification of t h e  approach used i n  re ferences  3 and 4 t o  account f o r  such 
e f f e c t s  is not  obvious. 

A r e l a t i v e l y  simple 

Where these  cons idera t ions  are of importance, 

To avoid these  d i f f i c u l t i e s  as w e l l  as t o  provide add i t iona l  under- 
standing of t h e  underlying f a i l u r e  process,  an approach i s  presented i n  
t h i s  paper t h a t  accounts f o r  t h e  p r o g r e s s i v e ' f a i l u r e  of a notched o r  
unnotched laminate, t h a t  is ,  f o r  t h e  damage t o  t h e  matrix and f i b e r s  
i n  t h e  ind iv idua l  p l i e s  t h a t  is  known t o  occur before u l t imate  f a i l u r e  of 
the  laminate takes  place ( r e f s .  5 and 6) .  The approach taken is  s i m i l a r  
t o  t h a t  of re ference  2 ,  t h a t  is, as p a r t i a l  o r  t o t a l  f a i l u r e  0 f . a  p ly  takes 
place, appropr ia te  s t i f f n e s s  changes are made i n  t h e  laminate v i a  laminated 
p l a t e  theory. However, t h e  more complicated b i a x i a l  and inhomogeneous 
stress f i e l d  surrounding a through-the-thickness notch makes t h e  problem 
two-dimensional and of a s u f f i c i e n t l y  complicated na ture  t o  r equ i r e  a com- 
puter  t o  follow t h e  progressive f a i l u r e  process. 
incrementa1,finite element program developed t o  trace t h e  damage t h a t  leads  
t o  u l t imate  f a i l u r e  of a notched o r  unnotched laminate under un iax ia l  o r  
b i a x i a l  loading condi t ions  and t o  p red ic t  t h i s  u l t imate  f a i l u r e  load. Com- 
parison of t h e  computer pred ic t ions  is made with experimental r e s u l t s  obtained 
f o r  several un iax ia l ly  loaded graphite-epoxy laminates containing a c i r c u l a r  hole. 

This paper descr ibes  an 

FAILURE CRITERIA 

Since t h e  f i n i t e  element program which has been developed i s  inherent ly  
dependent on t h e  p ly  f a i l u r e  c r i t e r i o n  and p ly  pos t - fa i lure  c o n s t i t u t i v e  
r e l a t i o n s  used, t hese  are described i n  more d e t a i l  along with how they are 
combined t o  trace damage and p r e d i c t  u l t imate  f a i l u r e  i n  t h e  laminate. As 
an ind iv idua l  p ly  f a i l u r e  c r i t e r i o n ,  t h e  u l t ima te  s t r a i n  c r i t e r i o n  is used. 
This c r i t e r i o n  assumes f a i l u r e  of t h e  p ly  t o  occur i n  t h e  f i b e r  d i r e c t i o n  
when t h e  s t r a i n  i n  t h a t  d i r e c t i o n  reaches a c e r t a i n  value determined from 
experiment. 
e i t h e r  t h e  t r ansve r se  o r  shear s t r a i n s  reach a c r i t i ca l  value. This c r i t e r i o n  
has been chosen, a t  least i n i t i a l l y ,  p a r t l y  because of i t s  s impl i c i ty  bu t ,  
more importantly, because i t  enables a physical i n t e r p r e t a t i o n  of t h e  f a i l u r e  
t o  be made,and t h i s  is important i n  determining t h e  pos t - fa i lure  c o n s t i t u t i v e  
r e l a t i o n s  of t h e  ply. It should be noted t h a t  t h i s  f a i l u r e  c r i t e r i o n  does 
not account f o r  stress i n t e r a c t i o n  e f f e c t s  on t h e  f a i l u r e  of t h e  ply. How- 

Simi la r ly ,  f a i l u r e  of t h e  matrix i s  assumed t o  occur when 

184 



ever, these  e f f e c t s  are considered t o  b e  of secondary importance and, of 
course, any o the r  p ly  f a i l u r e  c r i t e r i o n  could e a s i l y  be s u b s t i t u t e d  i n t o  t h e  
computer program. 

Since a f t e r  f a i l u r e  the p ly  does no t  necessa r i ly  l o s e  i t s  e n t i r e  s t i f f -  
ness, pos t - fa i lure  c o n s t i t u t i v e  r e l a t i o n s  must be  developed. To accomplish 
t h i s ,  t h e  following assumptions, based on the  phys ica l  na ture  of t h e  u l t ima te  
s t r a i n  f a i l u r e  c r i t e r i o n ,  are made: 1 )  i f  a p ly  fa i ls  i n  t h e  f i b e r  d i r e c t i o n ,  
i t  lo ses  i t s  s t i f f n e s s  i n  t h e  f i b e r  d i r e c t i o n  and i n  shear,  bu t  not i ts  
s t i f f n e s s  i n  t h e  t r ansve r se  d i r e c t i o n  (E11 = "12 = 612 = 0, E22 # 0) ;  2) i f  a 
p ly  sus t a ins  matrix f a i l u r e ,  whetheir due t o  t r ansve r se  tension o r  shear,  i t  
loses  i t s  s t i f f n e s s  i n  t h e  t r ansve r se  d i r e c t i o n  and i n  shear,  bu t  not i t s  
s t i f f n e s s  i n  t h e  f i b e r  d i r e c t i o n  (E22 = 
assumptions are made pr imar i ly  f o r  t e n s i l e  conditions,  Modifications would 
have t o  be made i f  loadings w e r e  s u b s t a n t i a l l y  compressive. 

V12 = G12 = 0, E 1 1  # 0). These 

The s t i f f n e s s  of t h e  laminate is determined using t h e  p ly  s t i f f n e s s e s  
i n  conjunction with laminated p l a t e  theory. Therefore, before f a i l u r e  of 
t he  f i r s t  p ly  takes place,  t h e  undamaged ply s t i f f n e s s e s  are pieced toge ther  
i n  t h e  usual fashion t o  form the  laminate s t i f f n e s s .  I f  f a i l u r e  o a p a r t i -  

suf fe red  (matrix o r  f i b e r  f a i l u r e )  i s  used t o  r ep lace  t h e  o r i g i n a l  undamaged 
s t i f f n e s s  of t h a t  p ly  i n  t h e  laminated p l a t e  equations. Thus, f o r  any s ta te  
of damage of t h e  laminate, an appropr ia te  s t i f f n e s s  can be derived. It 
should be  noted t h a t  s ince  only mid-plane symmetric laminates and in-plane 
loads are considered here,  t h e  damage should a l s o  be mid-plane symmetric. 
The use of laminated p l a t e  theory is  thus j u s t i f i e d  provided extensive delami- 
nation does not precede u l t imate  f a i l u r e .  

cu l a r  p ly  occurs, t h e  appropr ia te  reduced s t i f f n e s s  f o r  t h e  type d f damage 

Fa i lu re  of a p a r t i c u l a r  p ly  wi th in  t h e  laminate is  determined 
by transforming t h e  laminate s t r a i n s  i n t o  s t r a i n s  i n  t h e  p ly  p r inc ipa l  
d i r e c t i o n s  and.applying t h e  u l t imate  s t r a i n  f a i l u r e  c r i t e r i o n ,  as 
previously discussed, When damage t o  a ply occurs, t h e  s t i f f n e s s  of 
t h e  laminate is  changed appropr ia te ly ,  as described i n  t h e  preceding 
paragraph. As more load  is applied,  more and more damage accumulates, 
u n t i l  f i n a l l y  t h e  load can no longer be sustained and u l t imate  f a i l u r e  
of t h e  laminate takes place. 

NUMERICAL PROCEDURE 

I n  cases where t h e  in-plane stress f i e l d  i s  non-homogeneous, such as 
when t h e  laminate conta ins  a through-the-thickness notch, t h e  f a i l u r e  
process is  t raced  by t h e  use  of a f i n i t e  element procedure. 
cedure becomes necsssary because t h e  d i f f e r e n t  stresses a t  d i f f e r e n t  po in t s  
i n  t h e  laminate cause d i f f e r e n t  states of damage and, therefore ,  inhomogen- 
eous s t i f f n e s s e s .  The finite-element method i s  w e l l  s u i t e d  t o  t h i s  problem 
because t h e  l a r g e s t  s t i f f n e s s  grad ien ts  occur where t h e  stress and s t r a i n  
grad ien ts  are a l s o  largest and because non-linear incremental procedures 
are w e l l  e s tab l i shed  f o r  t h i s  method. An o u t l i n e  of t he  numerical procedure 
follows . 

Such a pro- 
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The first s t e p  i n  t h e  numerical ana lys i s  is  t h e  formation of t h e  
s t r u c t u r a l  s t i f f n e s s  matrix using standard numerical procedures, t h e  un- 
damaged p ly  s t i f fnes s , and  laminated p l a t e  theory. A load increment, e i t h e r  
applied stress o r  applied displacement, is applied t o  t h e  specimen being 
analyzed,and t h e  stresses and s t r a i n s  i n  t h e  g loba l  coordinate system are 
determined. Then, f o r  each p ly  of each element, t h e  s t r a i n s  i n  t h e  p ly  
p r inc ipa l  d i r e c t i o n s  are ca l cu la t ed  and compared t o  t h e  f a i l u r e  values. 
If e i t h e r  matrix o r  f i b e r  f a i l u r e  occurs, t h e  change i n  s t i f f n e s s  of t h a t  
p ly  and, therefore ,  of t h e  laminate f o r  t h a t  element is  ca lcu la ted .  However, 
i f  f a i l u r e  occurs i n  any element, t h e  lowering of i t s  s t i f f n e s s  impl ies  
t h a t  t h e  previous values obtained f o r  stress are too l a r g e  f o r  t h e  given 
s t r a i n s ,  Le., i t s  load-displacement poin t  lies above t h e  load-displacement 
curve. To co r rec t  f o r  t h i s ,  an iterative procedure (of ten  c a l l e d  t h e  

incrementa l - in i t ia l  s t r a i n "  method)is used i n  which i t e r a t i o n  back t o  
t h e  a c t u a l  load curve is  accomplished a t  a cons tan t  load value i n  a saw- 
too th  fashion. This is  accomplished by applying a set of 'lpseudo" body 
fo rces  t o  t h e  nodes t o  e q u i l i b r a t e  t h e  applied loads and then removing 
them by allowing t h e  s t r u c t u r e  t o  deform appropr ia te ly .  This process is  
repeated u n t i l  t h e  s t r e s s - s t r a i n  i n  each element converges t o  t h e  a c t u a l  
damaged o r  undamaged s t r e s s - s t r a i n  curve. Once convergence i s  achieved, 
a new increment of load o r  displacement i s  applied t o  t h e  specimen being 
analyzed and t h e  i t e r a t i o n  process is repeated. Tota l  f a i l u r e  of t h e  
laminate is considered t o  take  p lace  when equilibrium can no longer b e  
achieved o r  when t h e  peak load  i s  reached. 
re ference  7. 

11 

Further d e t a i l s  can be found i n  

An incremental procedure has been used here r a t h e r  than t h e  
d i r e c t  i t e r a t i o n  procedure sometimes used i n  nonlinear e l a s t i c i t y  because 
t h e  damage process is  path dependent. That is ,  upon loading pas t  f a i l u r e  
and then unloading, healing of t h e  damage does not t ake  place; therefore ,  un- 
loading proceeds along a d i f f e r e n t  curve than does loading. This can be 
of importance i n  t h e  ana lys i s  of a notched body s ince  f a i l u r e  i n  a s m a l l  
region of t h e  notch where t h e  i n i t i a l  stress concentration i s  high can 
r e s u l t  i n  an unloading of t h e  surrounding region. 

COMPARISON TO TEST DATA 

To eva lua te  t h e  use  of t h e  described f i n i t e  element method as a f a i l u r e  
c r i t e r i o n  f o r  laminated composites, several test cases w e r e  run. These 
cases w e r e  chosen on t h e  b a s i s  of a v a i l a b i l i t y  of t h e  test d a t a  and are 
reasonably r ep resen ta t ive  of problems of i n t e r e s t .  I n  p a r t i c u l a r ,  s eve ra l  
unnotched un iax ia l  t e n s i l e  specimens of var ious  p ly  o r i en ta t ions  w e r e  run 
as an i n i t i a l  check. 
two d i f f e r e n t  p ly  o r i e n t a t i o n s  containing c i r c u l a r  holes and subjected t o  
uniax ia l  t e n s i l e  loadings. Further analyses are planned t o  inc lude  o the r  
notch shapes and b i a x i a l  loadings,  but t hese  are not ye t  ava i lab le .  

These were followed by an ana lys i s  of specimens of 

A s  an i n i t i a l  check of t h e  program, s t r e s s - s t r a i n  curves w e r e  generated 
using t h e  d a t a  of re ference  8 f o r  un iax ia l  t ens ion  of various Thornel 
300/Narmco 5208 graphite-epoxy laminates. Since t h i s  has previously been 
done by o the r s  (e.g. r e f s .  2 and 9) using similar procedures, i t  s u f f i c e s  
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t o  say t h a t  f o r  t h e  cases run, (0°/-t-450/0")s, (0°/+450/90")s, (Oo/900/Oo/900)s 
and (90"/+45"/90")s, t h e  computer r e s u l t s  compared-very favorably with t h e  
da ta  with-respect t o  t h e  poin t  of i n i t i a l  f a i l u r e ,  subsequent slopes, and 
u l t imate  f a i l u r e  stresses and s t r a i n s ,  
f a i l u r e  of a p ly  t h a t  occurs i n  t h e  present program l e d  t o  d i s c r e t e  jumps 
i n  t h e  computer generated s t r e s s - s t r a i n  curves, bu t  t h i s  i s  not considered 
t o  be p a r t i c u l a r l y  important i n  p red ic t ing  t h e  u l t ima te  f a i l u r e  load, nor, 
f o r  t h a t  matter, t h e  s lopes  of t h e  s t r e s s - s t r a i n  curve before and a f t e r  
i n i t i a l  p ly  f a i l u r e .  Furthermore, t h e  smooth experimental s t r e s s - s t r a i n  
curves are usua l ly  generated by ramp displacement loadings which tend t o  
mask any such d i s c r e t e  jumps t h a t  might tend t o  t a k e  place. F ina l ly ,  i n  
t h e  case of notched laminates, jumps i n  t h e  load-displacement r e l a t i o n s h i p  
usually f a i l  t o  occur because only a few elements f a i l  during each load 
increment. Thus, t h e  o v e r a l l  s t i f f n e s s  of t h e  specimen s u f f e r s  no l a r g e  
d i scon t inu i t i e s ,  

Of course, t h e  sudden unloading upon 

A more i n t e r e s t i n g  comparison of t h e  computer generated r e s u l t s  w a s  
made with t h e  d a t a  of re ference  4. I n  t h i s  re ference ,  a series of tests w a s  
run on specimens of var ious  s i z e s ,  p ly  o r i en ta t ions ,  material systemqand 
notch shape and s i z e ,  a l l  under un iax ia l  tension. Furthermore, many of 
these  speciments w e r e  s t r a i n  gaged with seve ra l  vertical gages loca ted  
across t h e  ligament of t h e  cracked and c i r c u l a r l y  notched specimens ( t h e  
readings from these  gages w e r e  no t  included i n  re ference  4). Two of t h e  
Thornel 300/Narmco 5208 graphite-epoxy specimens of width 7.62 c m  (3 inches) 
containing holes 2.54 c m  (1 inch) i n  diameter w e r e  s e l ec t ed  f o r  comparison. 
The p ly  o r i en ta t ions  of t hese  specimens were (0"/+45"/90°)2s and (Oo/9O0)4s. 
These o r i e n t a t i o n s  were o r i g i n a l l y  chosen becauseof  t h e  quas i - i so t ropic  
na ture  of t h e  first and l a r g e  stress concentration f a c t o r  (5.11) of t h e  second. 

The computer simulation of t hese  test specimens w a s  made using a 99 
element g r id  and an appl ied  displacement loading of .002 c m  (.0008 inches) 
per increment. The p ly  s t i f f n e s s e s  used were those  of re ference  8 f o r  t h e  
same material system. The p ly  f a i l u r e  s t r a i n s  used were taken from t h e  
da ta  of re ference  8 as w e l l .  Spec i f i ca l ly  these  w e r e  taken t o  be: 1) f i b e r  
f a i l u r e  s t r a i n ,  0.0095; 2) t r ansve r se  f a i l u r e  s t r a i n ,  0.0041; and 3) shear 
f a i l u r e  s t r a i n ,  0.023. 

RESULTS AND DISCUSSION 

For t h e  (0"/+45"/90")~s laminate containing a c i r c u l a r  hole,  eleven in- 
crements of t h e  appl ied  displacement were needed t o  reach t h e  predicted 
ultimate f a i l u r e  load of 174.4 MN/m2 (25.3 k s i ) .  The maximum number of 
i t e r a t i o n s  needed wi th in  a s i n g l e  displacment increment up t o  t h i s  po in t  
w a s  49, which occurred immediately a f t e r  f a i l u r e  of t h e  f i b e r s  i n  t h e  0" 
ply  of t h e  element along t h e  ho r i zon ta l  a x i s  c l o s e s t  t o  t h e  hole. 
c e n t r a l  processing u n i t  (CPU) t i m e  f o r  t h i s  computer run w a s  about 2 
minutes. 

The 

For t h e  (10"/90") laminate containing a c i r c u l a r  hole, twelve incre- 
ments of t h e  appl ied  &splacement w e r e  needed t o  reach t h e  pred ic ted  u l t i -  
mate f a i l u r e  load of 286.1 MN/m2 (41.5 k s i ) .  
needed i n  any one displacement increment up t o  f a i l u r e  w a s  105, which 

The maximum number of i t e r a t i o n s  
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occurred f o r  t h e  l a s t  increment due t o  f i b e r  f a i l u r e s  i n  several elements 
near t h e  hole boundary. The CPU t i m e  f o r  t h i s  run w a s  almost 5 minutes. 

The computer predicted f a i l u r e  loads w e r e  i n  q u i t e  good agreement wi th  
I n  t h i s  re ference  

r o s s  f a i l u r e  stresses w e r e  given as 194.4 MN/m2 (28.2 hi) and 315.1 
t h e  experimentally observed values given i n  re ference  4. 
t h e  

(0"/+45"/90")2~ and (0"/90")4s graphite-epoxy laminates, respec t ive ly ,  
t h e r e  i s  reason t o  be l ieve  t h a t  a more r ep resen ta t ive  f a i l u r e  load f o r  t h e  
(0"/90°)4s specimens would be  about 275.8 MN/m2 (40 k s i ) ,  as can be  seen from 
t h e  d a t a  f o r  f a i l u r e  loads  f o r  t h e  same laminate containing smaller holes.  
This anomaly w a s  r e f e r r ed  t o  i n  reference 4 as w e l l .  

MN/m 4 (45.7 hi) f o r  t h e  2.54 cm ( 1  inch) hole  diameter specimens of t h e  
However, 

I n  order  t o  trace t h e  progressive damage t h a t  takes place i n  a laminate 
before u l t imate  f a i l u r e  occurs, t h e  computer program p r i n t s  out t h e  state 
of damage i n  each p ly  of each element a f t e r  equilibrium i s  achieved f o r  
each increment. Thus, f o r  each displacement increment, whether a p a r t i c u l a r  
p ly  is i n t a c t  o r  has f a i l e d , i n  t h e  f i b e r s  o r  matrix o r  b o t h , i s  known f o r  t h e  
e n t i r e  laminate. 
two examples being considered i s  shown i n  f i g u r e s  1 and 2. To keep these  
f igu res  reasonably simple, only two d i s t i n c t i o n s  have been made: matrix 
f a i l u r e  and f i b e r  f a i l u r e .  Matrix f a i l u r e  r e f e r s  t o  t h e  f a i l u r e  of t h e  
matrix f o r  any ply wi th in  t h a t  element, with no d i s t i n c t i o n  between p l i e s  
being shown (although t h i s  information i s  p r in t ed  out by t h e  computer). 
S imi la r ly ,  f i b e r  f a i l u r e  r e f e r s  t o  the  f a i l u r e  i n  the  f i b e r  d i r e c t i o n  of 
any ply within t h a t  element. It is  i n t e r e s t i n g  t o  consider t h e  f a i l u r e  pro- 
gression shown i n  f i g u r e s  1 and 2 i n  more d e t a i l .  

The progressive damage t h a t  i s  predicted t o  occur f o r  t h e  

I n  f igu res  1 and 2, t h e  four s tages  of damage shown correspond t o  t h e  
f i r s t  f a i l u r e  t h a t  occurs, t h e  f i r s t  f i b e r  f a i l u r e  t h a t  occurs, t h e  u l t imate  
load, and t h e  pos t - fa i lure  process where t h e  load rap id ly  drops off as t h e  
applied displacement continues t o  increase.  As expected f o r  both laminates, 
t h e  f i r s t  f a i l u r e  is  t h e  matrix f a i l u r e  of t h e  90" p l i e s  a t  t h e  edge of t h e  
ho le  where t h e  h ighes t  stress and s t r a i n  concentrations occur. Up t o  t h i s  
po in t ,  t h e  load-displacement r e l a t i o n  f o r  t h e  specimen i s  a l i n e a r  one. Af te r  
t h i s  f i r s t  f a i l u r e ,  t h e  r e l a t i o n  becomes only s l i g h t l y  nonlinear u n t i l  f i b e r  
f a i l u r e  of t h e  0" p ly  occurs, a l s o  i n  t h e  element along t h e  ho r i zon ta l  axis 
neares t  t h e  hole. This is shown i n  t h e  second drawing of each f igure .  I n  
between t h e  f i r s t  matrix and f i r s t  f i b e r  f a i l u r e s ,  damage of t h e  matrix spreads 
out i n  both the -hor i zon ta l  and vertical d i r ec t ions .  I n  t h e  (0°/900)4s laminate,  
matrix f a i l u r e  of t h e  +45" p l i e s  a l s o  occurs i n  t h e  elements nea res t  t h e  hole. 
After f a i l u r e  i n  t h e  f i b e r s  of t h e  0" ply  near t h e  hole,  t he  rap id  spread of 
matrix damage is apparent. 

Two d i f f e rences  i n  t h e  f a i l u r e  of t h e  (0"/+45°/900)~s and (0°/90")4s 
laminates become not icable  i n  t h e  l as t  two drawings of f i g u r e s  1 and 2. The 
f i r s t  d i f f e rence  is t h e  tendency f o r  matrix f a i l u r e  i n  t h e  (0"/90°)4s laminate 
t o  spread up t h e  ou te r  edges of t h e  specimen. 
t h e  r e s u l t  of t h e  d i f f e rence  between t h e  stresses near t h e  center  of t h e  speci- 
men 
specimen away from t h e  hole).  

This "columnating" e f f e c t  is  

and near the edge of t h e  specimen (both considered near t h e  top of the 
Although even i n i t i a l l y ,  before any f a i l u r e s  
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occur, t h e  (0°/900)4s specimen has l a r g e r  stresses toward t h e  edge than 
i n  t h e  cen te r  than does t h e  (0° /~450/900)2s  specimen, as t h e  u l t ima te  loads 
f o r  each specimen are reached, t h i s  concentration of stress towards t h e  
edges becomes even mora pronounced f o r  t h e  (0°/900)4s specimen, whereas 
f o r  t h e  (0°/&450/90p)2s specimen t h i s  does not occur. A more important 
d i f f e rence  i n  t h e  predicted f a i l u r e  modes of t h e  two laminates concerns t h e  
predicted u l t imate  path. This is represented i n  f i g u r e s  1 and 2 by t h e  
blackened elements represent ing  f i b e r  o r  t o t a l  f a i l u r e  of t h a t  element. 
Although it is apparent t h a t  t h e  las t  drawing of f igu res  1 and 2 i s  Calcula- 
ted  f o r  an equilibrium s i t u a t i o n  when i n  a c t u a l i t y  uns tab le  dynamic conditions 
would exist a t  t h i s  po in t  f o r  t y p i c a l  experimental conditions,  i t  is  
expected t h a t  t h e  d i r e c t i o n  of t h e  f a i l u r e  path i s  a t  least i n i t i a l l y  
cor rec t .  Although not  c l e a r l y  displayed i n  t h e  photographs of f a i l e d  
specimens i n  re ference  4,  examination of t h e  a c t u a l  f a i l e d  specimens shows 
the  predicted f a i l u r e  modes t o  be i n  c l o s e  agreement with those  observed. 
Thus, t h e  (0°/+450/900)2s laminates showed a f a i l u r e  mode t h a t  began a t  the  
extreme h o l e  edges and propagated e s s e n t i a l l y  s t r a i g h t  across  t h e  specimen 
along t h e  ho r i zon ta l  a x i s  of symmetry. Fa i lu re  of t h e  (0°/900)4s laminates 
on t h e  o the r  hand, although beginning a t  t h e  outer  edges of t h e  hole ,  pro- 
pagates from t h e  hole i n  an asymmetric manner, angling up a t  one edge and 
down a t  t h e  o the r  f o r  about a t h i r d  of t h e  ligament width before  becoming 
hor i zon ta l  out t o  t h e  edge. 

The comparison of s t r a i n s  across  t h e  ligament of t h e  specimen from 
t h e  hole edge w a s  less successful.  Although t h e  predicted s t r a i n s  agreed 
w e l l  with t h e  s t r a i n  gage d a t a  f o r  t h e  gages loca ted  away from t h e  hole ,  
t h e  predicted s t r a i n s  very c l o s e  t o  t h e  hole ( c loses t  element) were much 
too high once f i b e r  f a i l u r e  of t h a t  element occurred. This i s  thought 
t o  happen because of t h e  model of f a i l u r e  used. A f a i l u r e  model which 
takes i n t o  account t h e  unloading process a f t e r  f a i l u r e  would be expected 
t o  a t  least dimenish t h i s  problem. It appears, however, t h a t  t h e  present  
f a i l u r e  model is successfu l  a t  modeling t h e  decrease i n  s t i f f n e s s  of t h e  
laminate near t h e  hole ,  thus  lowering t h e  stress concentration and r e d i s t r i -  
buting t h e  stress out away from t h e  hole. 

CONCLUDING REMARKS 

An incremental f i n i t e  element program capable of modeling damage 
accumulation i n  notched composites and p red ic t ing  u l t ima te  f a i l u r e  loads, 
from a knowledge of p ly  behavior alone,has been described. 
reasonably successfu l  i n  pred ic t ing  f a i l u r e  s t r eng ths  and f a i l u r e  modes 
i n  two simple examples of notched laminates, d e f i n i t e  conclusions re- 
garding t h e  success of t h i s  method a w a i t  comparisons with a g r e a t  d e a l  more 
experimental data, including notches under b i a x i a l  loadings. 
a number of s i g n i f i c a n t  improvements could be made t o  t h e  present pro- 
gram,such as including a gradual unloading mechanism a f t e r  f a i l u r e  of a 
ply and t h e  known nonlinear behavior of a ply i n  shear.  However, both 
of t hese  improvements are considered t o  be of secondary importance i n  
t h e  modeling of damage. 
although capable of considerable improvement, can model t h e  damage process 
on a macroscopic scale and shows considerable promise as an a n a l y t i c a l  
method of p red ic t ing  t h e  f a i l u r e  of notched composite laminates. 

Although 

Furthermore, 

It i s  concluded t h a t  t h e  method described, 
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m0 M A T R J X  F A W U R E  I F I B E R  F A I L U R E  

P= 0.82 Pult 

p = Pult p< Pult 

Figure 1.- Progressive failure: (0/+45/90)2,. 
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M A T R I X  F A I L U R E  111 F I B E R  F A I L U R E  

P = 0.36 ?,it 

p =  ?,It 

P=  0.76 P,lt 

Figure 2. - Progressive failure: (0/90) 4s. 
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RESIDUAL STRESSES IN POLYMER MATRIX 

COMPOSITE LAMINATES 

H. Thomas Hahn 
University of Dayton Research Institute 

SUMMARY 

Residual stresses in composites a r e  induced during fabrication and by 
The theory formulated can describe the shrinkage 

Comparison between the 
laminates of various material 

environmental exposure. 
commonly observed after a thermal expansion test. 
analysis and experimental data for [ O z / f  451 
systems indicates that the residual stress-free temperature can be lower than 
the curing temperature, depending on the curing process. Effects of residual 
stresses on ply failure including the acoustic emission characteristics a r e  
discussed. 

INTRODUG TION 

By definition a composite is composed of several different material 
phases and residual stresses a r e  induced due to the heterogeneity. 
of these residual stresses depends on the history of environmental exposure 
a s  well as  on the constituent properties. 
attracting increased attention a r e  the curing s t ress  and the swelling s t ress .  
The former is induced by the thermal expansion mismatch during fabrication 
and the latter by the difference in swelling when moisture is absorbed. 

Magnitude 

Typical residual s t resses  which a r e  

The curing s t ress  in certain graphite/epoxy laminates may be large 
enough to cause ply failure in the absence of applied s t ress  or premature 
failure upon tensile loading (refs. 1 and 2). 
a s  boron/aluminum, the curing s t ress  may cause plastic deformation in the 
matrix (ref. 3 ) .  
thermal fatigue can be attributed to the curing s t ress  among others (ref. 4). 

In metal matrix composites such 

The damage observed in boron/aluminum composite after 

In the present paper we shall analyze the residual stresses resulting 
from fabrication and moisture absorption and compare the analytical results 
with experimental data. Although the analysis method can be extended to 
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metal matrix composites, the discussion will be limited to thin resin matrix 
composite laminates. 
will also be discussed. 

Effects of residual stresses on mechanical behavior 

PREDICTION OF RESIDUAL STRESSES 

Whereas the curing stress in advanced composites increases with 
decreasing temperature, viscosity becomes less influential at  room temper- 
ature. 
negating effect on the resultant residual s t ress  because it is caused by the 
swelling of matrix in contrast to  the curing stress. Thus the total residual 
stress is likely to be of sufficiently low magnitude as to justify the assump- 
tion of elastic behavior (refs. 5 and 6).  
ence is also necessitated by the difficulty associated with characterizing the 
actual behavior and implementing it in the subsequent analyses. 

Furthermore, the swelling s t ress  due to moisture absorption has a 

The assumption of history independ- 

Let us consider a homogeneous material subjected to a stress ui, at  
temperature T, and with moisture content H. Measured from a stress-and 
moisture-free reference configuration a t  To, the total strain can be written 
as the SUM of the mechanical and nonmechanical strains, 

The mechanical strain is assumed to be proportional to the stress, 

and the nonmechanical strain is divided into the thermal and swelling parts, 

T H = e (T) t ei (H) . N e 
i i 

Note that the compliance depends on T and H in the currknt state and that any 
interaction between temperature and moisture is neglected in the nonmechan- 
ical strain. 

Unidirectional Lamina 

Residual s t ress  distribution due to the thermal expansion and swelling 
can be calculated by following the same procedure a s  described for the deter- 
mination of thermal expansion coefficients in references 7 and 8. However, 
in practical composites uniform distribution can be assumed of the strain in 
the longitudinal direction and of the stress in the transverse direction. The 
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equations for the nonmechanical strain, and for the residual stress,of the 
composite a re  then formulated in terms of the nonmechanical strains of the 
constituents. 

Similar equations for thermal expansion coefficients were shown to be 
close to more sophisticated solutions (ref. 7) and also to agree favorably 
with experimental data for specimens of dimensions large enough to avoid 
boundary effects (ref. 9). 
stress being the only nonvanishing component was seen to be valid in the 
residual fringe patterns in a glass/polyester composite. In fact, the resid- 
ual stresses calculated from the simple equations described above were in 
close agreement with those from the residual fringes (ref. 10). 

The as sumption of longitudinal (average) residual 

The most important but difficult problem which is not encountered in 
the usual thermal expansion coefficient analysis is the determination of the 
residual stress-free temperature To. Most matrix materials have larger 
thermal expansion than fiber materials and the thermal expansion coefficients 
usually increase with the temperature. Thus a small e r ror  in To can lead to 
a large e r ror  in the calculated curing stress. 
discussed in the following section. 

Details concerning To will be 

When the thermal and the moisture diffusion occur concurrently, the 
temperature can be assumed t o  reach equilibrium instantaneously because 
the typical ratio of the thermal diffusivity t o  the moisture diffusivity is of 
the order of 10 6 (ref. 11). Therefore, changing moisture content may lead 
to an erroneous measurement of thermal expansion. Shrinkage observed 
after complete thermal cycles is a direct result of moisture desorption 
(refs. 12 and 13). 

Figure 1 shows the transverse strain observed in a T300/5208 Gr/Ep 
The heating and cooling curves during the subjected t o  two thermal cycles. 

second cycle are almost the same and consequently only one curve is shown. 
For most resin matrix composites, the moisture content depends on the 
relative humidity only and the diffusivity om the temperature only. Thus, 
assuming the relative humidity within the test chamber to be zero, we can 
apply the method in reference 14 to the present problem. 

For the material chosen the diffusivity is 

2 
D = 0,0849 exp(-4328/T) cm /min 

Using the approximate equation in reference 11 and the modified time in 
reference 14, we obtain the weight loss as 
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0.75 G = (M-Mi) / ( M - M . )  = 1- exp(-7.3 r ) , f 1  
t 

= (0.0849/L2) 1 h(u)du 
0 

Here Mi and Mf a re  the initial and final equilibrium values of the average 
moisture content M. The thickness L is 1.04 mm and the function h is 

h(u) = exp [-4328 / (2954- 2.222 u) ] for heating , 

= exp [-4328 / (450- 2.222 u) ] for cooling , 

The resulting value of G is shown as a function of time in figure 2. The 
moisture desorption is seen to accelerate during heating but decelerate 
during cooling. Although one third of the total moisture loss is predicted to 
occur during the second cycle, no further shrinkage was observed (ref. 13). 
Therefore, we chose the curve for the second cycle as  representative of the 
true thermal expansion. 

From the observed shrinkage of 0.061% and the swelling coefficient of 
The calcu- 0.7, we calculate the initial equilibrium content Mi to be 0.29%. 

lated weight loss of 0.087% after one cycle compares favorably with the 
observed value of 0.08%. 
figure 1 is lower than observed. However, limited amount of data available 
shows that the absorbed moisture produces relatively little swelling until 
th'e moisture content reaches a certain level and then increases proportion- 
ally to the additional moisture content. 
incorporated in the analysis, the contraction due to moisture desorption wi l l  
start at a later stage, resulting in a better correlation. 

The final prediction for the transverse strain in 

Thus, if this threshhold level is 

Multidir ectional Laminat e 

Equations for  the curing s t ress  prediction a re  formulated in reference 
5 within the framework of the laminated plate theory. The same equations 
can be used for general residual stress prediction if  we simply replace the 
thermal strain by the nonmechanical strain. 

Analyses have been performed for the curing strain data of reference 
15 for [ 02/f45] laminates of different material systems. Thermophysical 
and mechanical properties of unidirectional laminae were taken from ref er- 
ence 15 and the curing temperature was taken as the residual stress-free 
temperature. 
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The calculated in-plane curing strains of the laminates in three differ- 
ent directions a r e  listed in table I. 
stresses included a r e  within 45O plies. 
Oo plies. 
observed in  all composites except B/PI. Therefore, it is suspected that the 
actual stress-free temperature is lower than the curing temperature for the 
following reasons. 

The normalized transverse and shear 
Less stresses a re  predicted within 

The calculated strains in the 90° direction a r e  higher than the 

true If the true stress-free temperature T is lower than the curing 
temperature To, then the curing strain in t a l e  I will be the sum of the true 
curing strain between To true and room temperature and the strain between 
TirUe and To. Since the transverse and shear moduli at To a re  much lower 
than those at room temperature, the sum of these separate strains will be 
smaller than the strain based on To alone. 
thermal expansion increases with temperature, as is the case in most com- 
posites. 

The difference increases i f  the 

In the 90° direction Oo plies force 4 5 O  plies to contract through the 
residual s t ress  built up. 
curing temperature increases with the degree of curing. As the temperature 
decreases, 00 plies gain enough stiffness to contract the neighboring 45O 
plies. However, the overall curing strain a t  room temperature will be lower 
in case of incomplete curing. 
as  shown by the numbers inside the parentheses. 
free temperature will be lower for  undercured laminates. 

The magnitude of the residual s t ress  near the 

This is exactly the case for Gr/Ep in table I, 
Accordingly, the stress- 

As for B/PI which exhibits higher strains than calculated, the readings 
during curing and postcuring a re  reported t o  have been erroneous and the 
data shown was taken in the subsequent thermal cycling. The analysis shows 
that the transverse s t ress  is higher than the strength. 
that the anomalous behavior might be due to the microcracking caused by the 
curing stress. However, effect of microcracks on macroscopic response is 
not well understood at  present (cf. ref. 16). 

Thus it is possible 

In order t o  study influence of ply orientation, curing strains and stress- 
es have been calculated for [ 02/*0] 
in both figures is the angle 0 and the stresses a r e  within Qo plies. Again, 
the analysis yields higher strains than observed (data from ref. 15). The 
transverse s t ress  increases with 0 reaching the maximum at 0 = 90°. 
assumed To is correct, transverse failure of Go plies is expected for 0 
greater than about 3 5 O .  However, the actual s t ress  will be lower when the 
correct value is used for T . 

Gr/PI, figures 3 and 4. The abscissa 

If the 

0 
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A direct method of determining To suggested in references 6 and 17 
makes use of unsymmetric [*e] laminates. Two measurements are recom- 
mended in this method: warpage and the temperature at which the laminates 
become flat. The warpage is more sensitive to the curing s t ress  than is the 
curing strain, and therefore depends more critically on To. 
to note that the suggested value of To for T300/5208 Gr/Ep and Scotchply 
1002 Gl/Ep is 394OK while the curing temperature is 450°K (ref.16). 

It is interesting 

EFFECTS OF RESIDUAL STRESSES 

Curing stresses in the transverse direction in table I a r e  higher than 
the transverse strengths in all cases but B/Ep. Even a conservative esti- 
mate based on To being about 60% of the curing temperature indicates that 
the curing stresses can be higher than 50% of the transverse strengths. 
However, failure of 45O plies has negligible influence on the initial modulus 
and Poisson's ratio in the Oo direction for  [02/*45Is laminates (ref. 15). 
The reason is because even an Approximation based on EL/2 yields a fairly 
accurate modulus. However, in laminates such as  [(*45)2/904] premature 
failure of 90° plies can clearly be detected by a substantial change in the 
axial stress-strain relation (ref. 2). 

In [0/90] laminates Poisson's ratio is more sensitive to the failure of 
90° plies than is the modulus. After 100 thermal cycles between room 
temperature and 533OK while under 70% of the ultimate load, Poisson's ratio 
of [0,/902]a Gr/Ep decreased from an initial value of 0.035 to 0.013, 
apparently indicating the failure of 90° plies (ref. 15). 

Effect of the curing stress can also be seen in the acoustic emission 
characteristics of composite laminates. 
specimens were preloaded to the levels shown: one a t  room temperature 

temperature. Preloading produces delayed A. E. activity when the specimen 
is tested a t  455OK. However, the same specimen, when tested later a t  
room temperature, exhibits A.E. activity earlier than it did at  455OK. The 
reason for this difference is because the curing stress that was absent at  
455OK is recovered a t  room temperature and causes earlier failure of plies. 
The specimen preloaded a t  room temperature shows the so-called Kaiser 
effect, i. e., A. E. activity is negligible until the preload level is exceeded. 

In figure 5 two [ 0/*45/90] Gr/Ep 

Both specimens were then tested to failure at  room I 
I and the other a t  455OK. 

In determining the effect of curing s t ress  on ply failure, extra care 
should be exercised not to expose specimens to  moist environment, since 
absorbed moisture will almost cancel the curing stress.  For example, only 
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about 0.4-0.5% m o i s t y e  content is required to completely negate the trans- 
verse curing strain e in Gr/Ep. Approximately the same amount of mois- 
ture is observed to exzst in Gr/Ep exposed to laboratory conditions. In this 
case the absorbed moisture can eliminate the curing s t ress  and render com- 
posite laminates free of residual stress.  

T 

CONCLUSIONS 

Equations for the analysis of residual stresses have been formulated 
under the assumption of elastic behavior and within the framework of the 
laminated plate theory. The formulation includes both the curing s t ress  
resulting from fabrication and the swelling stress due to  moisture absorption. 
Comparison between the predictions and experimental data for the laminates 
studied leads to  the following conclusions. 

1 .  The residual stress-free temperature is lower than the curing 
temperature and depends on the curing process. 

2. Curing s t ress  in the transverse direction is higher than 50% of the 
transverse strength. 

3. Moisture absorption under room conditions can render laminates 
free of residual stress.  

4. Shrinkage after thermal cycling is mainly due to  moisture desorp- 
tion and can be predicted. 
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TABLE I.- CURING STRAINS AND CURING STRESSES 

U 
T 

U 
LT - - 45 ' % T -e T 

90 ' ?6 
- e  T 

-eo . % 

xT XLT EXP. CAL. EXP. CAL. EXP. CAL.  

B/Ep 0.123 0.109 0.234 0.259 0.171 0.184 0.99 0.13 

B/PI 0.100 0.075 0.214 0.186 0.163 0.131 4.09 0.33 

GrlEp -0.018 -0.019 0.104 0.122 0.036 0.052 1.09 0.11 

Gr/PI 0.002 -0.004 0.031 0.051 0.017 0.028 1.20 0.11 

(-0.009) (0.068) (0.026) 

GllEp 0.105 0.117 0.260 0.361 0.182 0.239 1.39 0.65 

Remarks: Numbers inside the parentheses for Gr/Ep are measured during the cooling stage of 
curing and the heating stage of postcuring. 
respectively. 

XT and XLT are the transverse and shear strengths. 
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Figure 1.- Transverse strain during thermal cycling. 
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Figure 2.- Moisture desorption during thermal cycling. 
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INFLUENCE OF SPECIMEN BOUNDARY ON THE 

DYNAMIC STRESS INTENSITY FACTOR 

E. P. Chen and G. C. Sih 
Lehigh University 

SUMMARY 

The dynamic interaction of a crack w i t h  specimen boundaries has received 
very l i t t l e  attention i n  the l i t e r a t u r e  mainly because of the d i f f i cu l t i e s  en- 
countered i n  the analytical treatment. 
paper is the sudden appearance of a flaw or  crack i n  a strip of material of 
f i n i t e  height subjected to  tens i le  loading. Stress waves are generated w i t h i n  
the strip and are  reflected from boundary t o  boundary. 
i m u m  value of the dynamic stress intensi ty  factor a t  a given instance of time 
as the strip h e i g h t  t o  crack l eng th  r a t i o  i s  varied. 

The  problem t o  be considered i n  this 

O f  interest i s  the max- 

INTRODUCTION 

The dynamic interaction of cracks w ' i t h  neighboring f ree  surfaces o r  bound- 
a r ies  poses d i f f i cu l t i e s  t o  analytical treatment. Available solutions i n  this 
area are  meager. 
t i o n  o f  harmonic waves by a crack near an interface (refs. 1 and 2)  and dynamic 
loading on cracks i n  specimens w i t h  f i n i t e  dimensions (refs .  3 and 4 ) .  

The few published results deal t  w i t h  the steady s t a t e  diffrac- 

Considered i n  this paper is  the sudden appearance of a f i n i t e  length crack 
parallel  t o  the edges of a strip of material. 
pu l led  apart  by equal and opposite tensile s t resses .  T h e  mixed boundary value 
problem as formulated by means of Laplace and Fourier transforms can be reduced 
t o  the solution of a pair  of dual integral equations i n  the Laplace transform 
domain. Further reduction leads to  a Fredholm integral equation of the second 
kind. The time dependence of the problem is recovered by u t i l i z i n g  a numerical 
Laplace inversion scheme developed by S i h ,  Embley and Ravera (ref. 5). 

The edges of the strip are  

Numerical values of the dynamic stress intensi ty  factor and the crack 
opening displacement a re  obtained as functions of time for various strip h e i g h t  
t o  crack l e n g t h  ra t ios .  
o sc i l l a t e  w i t h  decreasing ampli tude and reduce t o  the s t a t i c  values as time be- 
comes infinite. For large cracks confined i n  a narrow strip, small osci l la t ions 
i n  the stress intensi ty  factor k l ( t )  curves are  observed p r i o r  t o  k l ( t )  reaching 
i t s  maximum value. Similar phenomenon occurs fo r  the crack opening displacement 
curves. 
and the crack opening displacement a re  reached simultaneously. As the crack 
length to  str ip height r a t io  is reduced, the reflected boundary waves become 

The general behavior of the curves is tha t  they a l l  

Moreover, the peak values o f  both the dynamic stress intensi ty  factor  
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less s ignif icant  and do not a f fec t  the near f i e l d  result. The larger peaks are  
predominately caused by the interaction of waves emanating from the crack t i p  
and they are larger than the corresponding s t a t i c  value. 

A1 though only traction boundary condition is considered, other conditions 
can be prescribed on the strip edges and the problem can be handled i n  a simi- 
l a r  manner w i t h o u t  addi t iona l  d i f f i cu l t i e s .  

FORMULATION OF THE 

Consider the case of a strip of material 
of length  2a. A set of Cartesian coordinates 
of the crack. The geometry of the problem is 

PROBLEM 

of hei h t  2h containing a crack 
(x,y,z 3 is attached t o  the center 
shown i n  figure 1. 

Let the displacement components i n  the x, y and z directions be denoted 
by ux, u and uz, respectively. 
ishes everywhere and ux and u are functions of x ,  y and time t only. Y 
of the wave potentials $(x,y,t)  and JI(x,y,t), the displacement f ield may be 
written as 

Under plane s t ra in?,  the displacement uz van- Y 
In terms 

Through the generalized Hooke's Law and equations (1) ,  (2) and ( 3 ) ,  the stress 
f ie ld  may also be expressed i n  terms of the wave potentials. 
equations of motion, the wave equations 

Making use of the 

a re  obtained. 
and c2 are given by 

In equations (4), the di la ta t ional  and shear wave veloci t ies  c1 

'Sih ( r e f .  6 )  has shown that 'a s t a t e  of plane s t r a in  always prevails near the 
edge of a crack. 
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where h and 1.1 are the Lam6 constants for an isotropic e l a s t i c  sol id  and p i s  
the mass density of the material. 
+ a2/8y2. 

The Laplacian operator V2 stands for  a2/ax2 
Note t h a t  cp and 9 constitute the solution t o  the problem. 

A uniform tens i le  s t r e s s  o f  magnitude oo is appl ied  t o  the upper and lower 
boundaries a t  y = A h .  
i t  is  only necessary t o  consider the equivalent problem of specifying -oo t o  
the upper and lower crack surfaces, i .e. 

For the determination of dynamic stress intensity factor ,  

i n  which H ( t )  i s  the Heaviside unit step function. 
normal and shear s t resses ,  respectively. 
respect t o  the xz-plane, an additional condition previals a t  y=O: 

The symbols o and T are 
Since the problem is  symmetric w i t h  

T (x,o,t)  = 0, -ex<Co (8) 
X y  

The equivalent problem requires the surfaces y = +h to  be free from tractions 
a t  a l l  times: 

DUAL INTEGRAL EQUATIONS 

Applying the Laplace and Fourier transforms to  equations (4), the Laplace 
transform of 4 and 9 may be written as 

where p is the Laplace variable and yj (j = 1,Z). are defined by 

J 

The conditions i n  equations (8) and (9) require tha t  not a l l  o f  the functions 
A j  ( s , p )  (j = 1,2,3,4) be independent o f  one another and they can be expressed 
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in terms of a, single unknown as follows: 

Aj(s,p) = fjA(s,p), j = 1,2,3,4 (1 3) 

in which 

f4 = exp (-Y2h )["4f, exp (-Y1 h )  + a3f2exP (Yl h )I/ (ZSYza, 1 (16) 

The following contractions m. and a .  (j = 1,2,3,4) have been made: 
J J 

- a3 = a1 + a*, a4 = a, 

Finally, equations (11) and (12) yield a pair of dual integral equations 
00 

I A(s,p)cos(sx)ds = 0, x2a 
0 

from which A(s,p) may be determined. 
defined by 

In equation (24), the function F(s,p) is 
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w i t h  ic2 = c2/c1. 
equations (23) and (24) t h a t  

Following the method of Copson (ref. 7), it  can be shown from 

where Jo is  the zero order Bessel function of the f i r s t  kind.  
@ ( 5 , ~ )  may be computed numerically from a Fredholm integral equation i n  the 
Laplace transform plane: 

The function * 

The symmetric kernel K(S,n,p) i s  given as 

NUMERICAL RESULTS AND DISCUSSION 

Following the same procedure as  i n  reference 5, the in-plane stresses 
near the crack t i p  may be expressed i n  terms of the local polar coordinates r 
and 8 in figure 1 as 

8 38 8 
o,(r,e,t) = - cos 7 [I - sin 2 sin + o(ro) m 

i n  which the dynamic stress intensity factor kl is  defined by 

In equation (32), the symbol L-' represents the Laplace inversion operator and 
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* * 
cp (1,p) is  value of cp [gyp) a t  the crack t i p  {g=l). 
normalized stress intensi ty  fac tor  kl {t)/crofi i n  equation (32) are obtained as  
a function of c2t/a fo r  a Poisson’s r a t io  of v = 0.25 and a/h = 0.0, 0.5, 1.0 
and 2.0. The general behavior of the curves i n  figure 2 is t h a t  they a l l  os 
c i l la te  w i t h  decreasing amplitude and reduce t o  the s t a t i c  values i n  table I 
as t becomes infinite. 
a/h and a time delay between each maximum i s  observed as a/h is  increased. 
a/h = 2.0, the dynamic stress intensi ty  factor  can be one and a half times 
greater t h a n  the corresponding s t a t i c  value. 
for large cracks i n  a narrow strip o r  large a/h ra t ios ,  small osci l la t ions of 
the k l ( t )  curves for c2t/a < 0.5 are  observed. 
by the arrival of the reflected waves from the strip boundaries t o  the crack 
t i p  region. For small values of a/h or  as the strip he igh t  is increased, the 
reflected boundary waves become less  s ignif icant  and eventually do not affect  
the resul ts .  The larger peaks as discussed ea r l i e r  are  predominantly caused 
by the interaction of waves emanating from the crack tips. 

Numerical values of the 

Note t h a t  the maximum value of k l ( t )  increases w i t h  
For 

I t  is  interesting t o  note tha t  

These small peaks are generated 

Another quantity of in te res t  i s  the crack opening displacement. I t  can 
be calculated from 

Variation of the normaltzed crack openfng dtsplacement u” wtth the distance 
9r 

x/a is depicted i n  f igure 3 for v = 0.25, a/h = 0.25 and various c2t/a values. 
The e l l i p t i c  shape of the crack profile is maintained. However, the magnitude 
of 3 osc i l la tes  w i t h  time. 
4 where the crack opening displacement a t  the center of the crack is  plotted 
against c2t/a for v = 0.25 and a/h = 0.25 and 1.0. These curves have essen- 
t i a l l y  the same behavior as  the stress intensi ty  factor curves. 

T h i s  behavior can better be observed from figure Y 
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FINITE-ELEMENT ANALYSIS OF DYNAMIC FRACTURF* 

J. A. Aberson, J. M. Anderson and W. W. King 
Georgia Institute of Technology 

SUMMARY 

Applications of the finite-element method to the two-dimensional elasto- 
dynamics of cracked structures are presented. Stress-intensity factors are 
computed for two problems involving stationary cracks. The first serves as a 
vehicle for discussing lumped-mass and consistent-mass characterizations of 
inertia. In the second problem the behavior of a photoelastic dynamic-tear- 
test specimen is determined for the time prior to crack propagation. 
some results of a finite-element simulation of rapid crack propagation in an 
infinite body are discussed. 

Finally, 

INTRODUCTION 

During the last few years, the writers and several of their graduate stu- 
dents have been exploring the application of the finite-element method to 
elastodynamics problems of two-dimensional linear fracture mechanics. 
work originated with the development, by Aberson and Anderson (ref. l), of 
crack-tip singularity elements for use in equilibrium problems. These elements, 
one for opening-mode problems and one for mixed-mode problems, are rectangular 
so as to facilitate their utilization in regular-grid finite-element models. 
Displacement fields within the elements are represented by a finite series of 
Williams' eigenfunctions. Subsequently, Morgan (ref. 2) deduced the consis- 
tent-mass matrices for these elements and developed a finite-element computer 
program, employing the Newmark-fl method (B = 1/4) for time integration, for the 
analysis of transient elastodynamic problems of bodies with stationary cracks. 
Appraisals of the elastodynamic performances of the singularity elements and 
the solutions of several problems may be found in references 3 and 4 .  

This 

Recently the writers have initiated a research program on finite-element 
simulation of rapidly propagating cracks in order to address questions associ- 
ated with unstable crack propagation and crack arrest. 
work have been reported in references 5 and 6. 

Initial results of this 

The purposes of this paper are threefold: (1) to present results of nu- 
merical experiments motivated by questions as to the advantages of different 
mass distribution schemes and time-integration algorithms; (2) to report a 
finite-element simulation of specimen behavior, prior to crack propagation, in 

* The research described in this paper was supported in part by the U.S .  hir 
Force under contract F08635-76-c-0136 with the Armament Development and Test 
Center, EgHn Air Force Base. 
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a dynamic tear test; (3) to supplement results of a study (ref. 5) of finite- 
element simulation of rapid crack propagation in an infinite sheet. 

STATIONARY CRACKS 

A Test Problem 

The scheme for assigning mass distribution in a finite-element model and 
the choice of time-integration algorithm are worthy of some discussion. 
consistent-mass scheme is favored by many vibration analysts primarily for its 
role in providing upper bounds on fundamental frequencies. 
substaptial body of opinion, e.g. references 7 and 8, that lumped-mass charac- 
terizations are superior to consistent-mass characterizations of inertia for 
problems of wave propagation. 
calculations with the Newmark-8 method, since in this implicit method a linear 
combination of mass and stiffness matrices must be inverted. 
integration by the explicit central-difference method, only the mass matriy 
need be inverted, and this becomes trivial with the lumped-mass scheme, since it 
results in a diagonal mass matrix. The Newmark-8 (8 = 1/4) method which is 
often called the constant-average-acceleration method has the virtue of uncon- 
ditional stability, while for stability the central-difference method requires 
a time step substantially less than the least natural period of the discretized 
structure under study. Since such a small time step usually is not justified 
by requirements of accuracy, in many instances the Newmark-8 method, with its 
more complex calculations, may be more economical than the central-difference 
method. To shed some light on these issues, a series of numerical experiments 
have been conducted for a problem solved by Chen (ref. 9) using finite differ- 
ences in space and time. 

The 

However, there is a 

Neither scheme holds a significant advantage for 

However, for time 

Chen's problem consists of the plane-strain response of a centrally 
cracked (2a = 0.48 cm) rectangular strip (2 cm X 4 cm) subjected to suddenly 
applied and maintained tension (5 at each end. Properties of the strip were 
taken to correspond nominally to steel. The geometry of the problem is shown 
in figure la, where the shaded quadrant indicates the region of 5000 mesh 
points used by Chen in his finite-difference analysis. A finite-element model 
composed of constant-strain triangles and singularity-element ABCD and repre- 
senting this region is shown in figure lb. Time integration was accomplished 
by the Newmark-8 method with 75 steps, each of 0.2 p s ;  this choice of time in- 
crement was motivated by the transit time (0.22 ps) of a longitudinal wave 
across the smallest of the triangular elements. Stress-intensity factors ob- 
tained from the finite-element model using the consistent-mass and lumped-mass 
schemes are shown in figure 2. These results are in substantial agreement, the 
most striking differences occurring around sharp local maxima and minima of the 
stress intensity factor. 
shown to be in excellent agreement with those of Chen. 
predicts a peak stress-intensity factor 5% higher than that reported by Chen 
while the consistent-mass model predicts a value 2% lower than that of Chen. 

In reference 4 the consistent-mass results have been 
The lumped-mass model 

Contrary to the contention of Bazant et a1 (ref. 8 ) ,  essentially the same 
results were obtained for each case when the time step was reduced to 0.01 p s  
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(ref. 10). At this smaller step, central-difference calculations yielded re- 
sults indistinguishable from those of Newmark-@ when plotted to the scale of 
figure 2. 
the maximum time step for stable central-difference integration of the lumped- 
mass model was 0.016 p s .  
that the critical step size will be approximately the longitudinal-wave transit 
time across the smallest element in the model. This discrepancy apparently is 
attributable to the stiffness characteristics of the singularity element; when 
the element was replaced by six constant-strain triangles, the critical time 
step increased dramatically to about 0.19 p s  which is consistent with the tran- 
sit time of 0.22 p s .  Consequently, because of the small time step required, it 
appears that, when used in conjunction with the singularity element, the cen- 
tral-difference integration scheme offers no computational advantage. 

Frick, in reference 10, discovered by numerical experiments that 

This is surprising in light of the often-used rule 

Analysis of a Dynamic Tear Test 

Impact of a falling weight with a precracked beam is an experimental 
method for determination of dynamic fracture toughnesses. Successful inter- 
pretation of such tests depends upon an accurate appraisal of the elastody- 
namics of both the specimen and the hammer; the ideal situation is one in which 
the hammer may be treated as a rigid body and the specimen behavior is quasi- 
static. However, often it is not possible to satisfy both of these conditions; 
in that event a dynamic finite-element analysis may play a useful role in pre- 
dicting time-dependent stress-intensity factors. 

Depicted in figure 3 is a finite-element model of a dynamic-tear-test 
specimen of Homafite-100, a photoelastic material, with which experiments have 
been conducted by Kobayashi and Chan (ref. 11). The specimen support and 
loading configuration is essentially that of a Charpy test except that a trans- 
lating steel hammer is used in place of a pendulum for the impact source. 
Since steel has an acoustic impedance of approximately eighteen times that of 
Homalite-100 and a longitudinal-wave speed of about two and one-half that of 
Homalite-100, it is reasonable to regard the hammer as a rigid body in an 
analysis of the specimen. 
only half of the specimen because of symmetry, the node corresponding to the 
impact point is assigned a mass equal to one-half the mass M 
This node is then given an initial velocity 
all other nodes have zero initial velocity. 

Thus, as is indicated in figure 3,  which depicts 

of the hammer. 
Vo equal to the impact velocity; 

Since the specimen is relatively thin (0.0095m), plane-stress forms of 
the elements were used in the computations which were carried out using the 
consistent-mass Newmark+ scheme (time step = 2 p,s) for a crack length of 
0.005m. The numerical results are given in figure 4 where the stress-intensity 
factor and hammer acceleration are plotted for the first 200 p s  following con- 
tact of the hammer with the specimen. 
concerned primarily with the crack propagation phase of the motion, and they 
reported only limited data that bears on the interval prior to propagation. 
Nonetheless, the experimental evidence suggests that for conditions corre- 
sponding to the analytical model, the crack began to extend at some time prior 
to 200 p s  after impact. 

The Kobayashi-Chan experiments were 

It should be noted from figure 4 that the static 
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toughness, kc = 342 kPa - 6, is attained during this interval. Moreover, 
Professor Kobayashi has communicated to the writers that the peak specimen 
load, deduced from strain gages on the hammer tup, is in excellent agreement 
with the peak hannner acceleration deduced from the finite-element model. 
Of greatest importance, perhaps, is that there is apparently no simple corre- 
spondence between the stress-intensity factor and the hammer acceleration (or 
specimen lpad). This is not surprising in light of the fact that the time for 
a longitudinal wave to propagate from the impact point to one of the supports 
and then to the crack is about 185 1 s  (the first signal of impact is felt at 
the crack tip at 44 p s ) .  Thus, for the time interval of interest, the motion 
of the specimen is definitely not that of a beam. 

RUNNING CRACKS 

Problems of unstable crack propagation are the subjects of much current 
research activity, and, in the absence of exact solutions, there is a real need 
for reliable numerical methods for analyzing the motions of finite bodies con- 
taining rapidly propagating cracks. The writers (refs. 5 and 6) and other in- 
vestigators (refs. 12 and 13) have endeavored to bring the finite-element method 
to bear on such problems. A problem solved by Broberg (ref. 14) is one of the 
few genuine initial-value problems of physically meaningful crack extension to 
which an exact solution has been obtained, and, therefore, it has been selected 
as a test problem to provide guidance in establishing mesh-size and time-step 
requirements for finite-element simulation. In this section some results of 
the first stage of a program of numerical experimentation are presented. 

Shown in figure 5 is a finite-element model of one quadrant of a rectangu- 
lar region of sufficient size to simulate, for the time intervals and crack 
speeds of interest, the infinite space of Broberg's problem. 
that of an infinite body in equilibrium with a uniform uniaxial tension ffy = 0 
prior to t = 0 ,  at which time a crack begins to grow symmetrically, from zero 
initial length, each tip moving at constant speed c. 
analysis crack propagationis simulated by the sequential release of restraints 
on the nodes at the base of the model. Thus, one crack tip starts at the lower 
left corner of the model (fig, 5) and moves along the x-axis, and a nodal re- 
straint is removed at the time at which the crack tip (from a continuum point 
of view) reaches the node in question. Each element of the model is a con- 
stant-strain triangle, and the characteristic length L is the largest half- 
length of the crack; the smallest distance between nodes is L/10. For material 
properties such that the ratio of longitudinal and shear wave speeds cl/c2 = 2, 
crack speeds of c/c2 = 0.2, 0.4, 0.6,and 0.8 have been considered. Introducing 
dimensionless time, T = c2t/L, the time of propagation is T = 5, and the in- 
terval between releases of adjacent nodes is AT = 0.5 for the case c/c2 = 0.2. 
Within this interval the equations of motion were integrated using the consis- 
tent-mass Newmark-p method; ten time steps, AT = 0.05,were used. 
steps also were used within an interval of incremental propagation for each of 
the other crack-speed cases; e.g. at c/c2 = 0.8  the time step was AT = 0.0125. 
It should be noted that the largest time step used was the transit time of a 
longitudinal wave across the smallest element in the model. 

The problem is 

In the finite-element 

Ten time 
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Displacements resulting from these calculations have been used to compute 
stress-intensity factors which were reported in reference These stress- 
intensity factors were determined by a least-squares fitting of near-tip nodal 
displacements to an assumed near-tip displacement field described by a finite 
series of running-crack eigenfunctions, one of which describes the stress 
singularity at the crack tip. While stress-intensity factors were determined 
(for all four crack speeds) to within 15% of the exact solution using one parti- 
cular pattern of near-tip nodal displacements and a four-term series of eigen- 
functions, Malluck (ref. 15) has shown that the results are sensitive to the 
nodal pattern and number of eigenfunctions employed. Thus, the approach for 
extracting stress-intensity factors is promising, but additional studies are 
needed. 

5 . 

One issue of concern is the effect of the necessarily discrete advance of 
the crack tip in the finite-element simulation. This effect is difficult to 
identify in the calculated stress-intensity factors because they have been de- 
duced from "averaged" near-tip nodal displacements. It is therefore useful to 
compare crack-face displacements determined from the finite-element analysis 
with those deduced by Broberg. With v as vertical displacement and p, as shear 
modulus, dimensionless displacements pv/oL at two points, x/L = 0 and 0.5, 
are plotted in figure 6 against dimensionless time for the case c/c2 = 
0.2. 
occur at ct/L = 0, 0.1, 0.2, etc. While the finite-element results generally 
follow those of Broberg, they oscillate somewhat erratically, which is likely 
a consequence of the simulation process. 
plotted in figure 7 for c/c2 = 0.8. 
ments vary more smoothly with time, although errors are about the same as in 
the first case. The time span of figure 6 is, of course, four times that of 
figure 7, and the time steps in the numerical integrations were in the same 
ratio. 
using smaller integration steps, indicate that the results shown in figure 6 
are not significantly altered by this requirement. It appears, therefore, that 
a procedure, perhaps similar to that of reference 13, for gradually releasing 
nodes would be beneficial to the finite-element analysis. An appropriate 
method for this igbeing studied currently. 

ct/L 
It should be noted that in the finite-element analysis nodal releases 

Displacements of the same points are 
For that case the finite-element.displace- 

However, recent calculations by J. F. Malluck for the case c/c2 = 0.2, 

CONCLUDING RENARKS 

Successful applications of the finite-element method to a number of sta- 
tionary-crack elastodynamic problems (of which two have been presented here) 
support the conclusion that this is a reliable and practical method for comput- 
ing time-dependent stress-intensity factors even under conditions of stress- 
wave loading. 
foremost among these are impact tests designed to determine fracture toughnesses 
associated with the onset of crack propagation under high rates of loading. 
The writers believe that the finite-element approach can play a significant 
role in the interpretation of current experiments and possibly in the design of 
improved tests. 

It is now appropriate to consider engineering applications; 
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Although additional numerical experimentation is required before the 
finite-element method can be relied upon to provide accurate analyses of rapid 
crack propagation, initial results are encouraging. For this kind of analysis, 
there exist many important potential applications, most notably the support 
of experiments designed to establish criteria for rapid crack propagation and 
crack arrest. 
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Figure 1.- Chen’s problem and the finite-element model. 
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Figure 2.-  Stress-intensity factors predicted using 
different mass distributions. 
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Figure 3.- Finite-element model of a dynamic-tear-test specimen. 

Figure 4 . -  Stress-intensity factor and hammer acceleration 
for a dynamic tear test. 
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Figure 6.- Crack-face displacements. c/c2 = 0.2. 
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Figure 7.- Crack-face displacements. c/c2 = 0.8.  
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APPLICATION OF A NOVEL FINITE DIFFERENCE METHOD 

TO DYNAMIC CRACK PROBLEMS" 

Yung M. Chen 
State University o f  New York a t  Stony Brook 

Mark L. Wilkins 
Lawrence Livermore Laboratory 

INTRODUCTION 

A versatile finite difference method (HEMP and HEMP 3D computer programs) 
has been developed originally for solving dynamic problems in continuum 
mechanics (refs. 1, 2, 3, 4). Now it has been extended to analyze the stress 
field around cracks in a solid with finite geometry subjected to dynamic loads 
and to simulate numerically the dynamic fracture phenomena (refs. 5, 6, 7, 8, 
9 ) with success. This method is an explicit finite difference method applied 
to the Lagrangian formulation of the equations of continuum mechanics in two 
and three space dimensions and time. The calculational grid moves with the 
material and in this way it gives a more detailed description of the physics of 
the problem than the Eulerian formulation. 

The important features of these computer programs are: 

(a) 
ximated by calculating fluxes through the boundaries. 
tion is of second order accuracy. 
shaped calculational-grid can be generated to accommodate free-form boundaries 
of a particular object and no change in the computer logic is required if cubes 
are collapsed to triangles. In actual large-scale computation, using lower 
order accuracy method with more calculational grids to obtain better accuracy 
is often preferred to using a higher order method with less calculational grids. 
This is because less programing effort is needed and less uncertainty is en- 
countered in applying boundary conditions for the lower order methods. The 
first order time derivative is approximated by the central difference scheme 
and the time step in calculation is determined automatically by the numerical 
stability criterion contained in the computer programs. 
is contained in the HEMP programs to damp out the stable numerical oscillations 
in the neighborhood where the solution has either a discontinuity or a steep 
gradient ( Gibb's phenomenon ). With %he explicit finite difference method, 

The first order space partial derivatives of a scalar function are appro- 
This type of approxima- 

It has the advantages that the cubical 

Artificial viscosity 

* Work done at Lawrence Li'vermore Laboratory under Energy Research and Develop- 
ment Administration contract No. W-7405-Eng-48 and at Department of Applied 
Mathematics and Statistics, State University of New York at Stony Brook under 
U. S. Army Research Office grant No. DAAG 29-76-G-0197. 
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the integration scheme itself does not impose the large computer-storage re- 
quirements that are necessary with the implicit finite difference methods and 
the well-known finite element methods. 

(b) 
equation of state. Hence for solving problems with different materials 
( e l a s t i c  s o l i d s ,  p l a s t i c  so l id s ,  f l u i d s ,  etc.), t h e r e  i s  no change i n  t h e  main 
computer program. 

( e )  
of the numerical solution near a singularity is incorporated into the main 
computer program. 
the successful application of the extrapolation scheme. It is especially 
useful for computing the dynamic stress intensity factors. Additional im- 
provement can be obtained by employing Richardson extrapolation. 

The complex descriptions of material behavior are contained only i n  t h e  

A special sub-routine of extrapolation scheme for improving the accuracy 

A priori knowledge of the type of singularity is needed for 

(d) To simulate the dynamic fracture phenomenon in a solid numerically, the 
Lagrangian calculational grid must be able to split in order to describe the 
breakage of the solid. Two sub-routines are available for introducing the 
desired free-surface boundary conditions:  
grid (sliding-open-interfaces logic) and the other introduces the effect of the 
free-surface boundary conditions without actually splitting the calculational 
grid (method of equivalent free-surface boundary conditions). 

(e ) 
errors which will then propagate in the calculational grid. In this case, 
the artificial viscosity in the main computer program is not sufficient for 
damping out this undesirable phenomenon. Hence a smoothing procedure, the 
method of artificial velocity, is incorporated in the main computer program 
to make each incremental volume break up smoothly. 

One a c t u a l l y  s p l i t s  t h e  

Suddenly s p l i t t i n g  t h e  c a l c u l a t i o n a l  g r id  introduces spurious numerical 

To demonstrate the capability of the numerical technique, dynamic stress 
intensity factors for crack problems of different three-dimensional finite 
geometry are calculated. 

FINITE DIFFERENCE SCHEME 

The partial derivatives of a scalar function F(x ,x ,x ,t) P F(r- , t) 1 2 3  are approximated by 

where 1 is the unit 
norma1'l;ector of the 

vector in the direction of xi, 31 is the outward unit 
surface A s  enclosing the incremental cubical volume AV 

and r is the center of AV . 
trapsoidal rule. 
order. 
this scheme will degenerate into a first order approximation. 

The surfaie integral is approximated by the 
Basically, this type of finite difference scheme is second 

However, if the cubical AV is badly deformed from its original shape, 
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For s implici ty ,  only some of t h e  important features are pointed out  f o r  
Details are given i n  references 1, 2, 4, and 7 . t he  HEMF’ code. The first 

order space p a r t i a l  der iva t ives  of ve loc i t i e s  are computed at  t h e  zone center  
( f i g .  1) and t h e  half-integer t i m e  s t ep ,  e. g. 

The first order space p a r t i a l  derivat-ives of stresses are computed at the  g r i d  
point ( f i g .  2 )  and t h e  integer  t i m e  s t ep ,  e. g. 

Boundary conditions can be implemented by using only one layer  of 
phantom zones, where t h e  quant i t ies  associated with t h e  phantom zones can be 
adjusted t o  s a t i s f y  t h e  given boundary condition. 

THREE-DIMENSIONAL CRACK PROBLEMS 

To demonstrate t h e  capabi l i ty  of t h e  HEMP 3D code fo r  solving dynamic prob- 
l e m s  i n  l i n e a r  f r ac tu re  mechanics, several  d i f f e ren t  crack geometries under 
Heaviside-function t i m e  dependence loads a r e  considered (refs.  6, 7, 9 ) .  

tangular parallelopiped under normal tension P H t t )  with 1-1 = 77 GPa, K (bulk 
modulus) = 165 GPa and p o  = 7.9 Mg/m3 i s  considered. 
of one octant  of t h e  ac tua l  specimen are shown i n  f igure  3. 
kl /P vs. t curve i s  shown i n  f igure  4. 
of  cen t r a l  crack i n  a rectangular ’bar under plane s t r a i n  loading. The corres- 
ponding semie l l ip t ic  surface crack i s  a l so  considered. The geometry and zon- 
ing o f  one quadrant of t h e  ac tua l  specimen and t h e  calculated kl/P vs .  t curve 
a r e  shown i n  f igures  3 and 5, respectively.  The maximum value of t he  dynamic 
s t r e s s  i n t ens i ty  f ac to r  undergoes a re laxa t ion  which can be cor re la ted  with 
t h e  changes i n  t h e  shape of crack surfaces under t h e  dynamic load. 

F i r s t ,  a cen t r a l ly  embedded e l l i p t i c a l  crack i n  a l i n e a r  e l a s t i c  rec- 

The geometry and zoning 
The calculated 

I ts  dynamics are s i m i l a r  t o  t h e  case 

Next, a sect ion of a pipe with a through-the-thickness crack i n  e i the r  
t h e  a x i a l  d i rec t ion  or t h e  circumferential  d i rec t ion  i s  shown i n  f igu re  6 .  The 
material i s  l i n e a r  e l a s t i c  with 1-1 = 76.923 GPa, K = 166.667 GPa, and p o  = 5 
Mg/m3. Symmetry boundary conditions were assumed f o r  each end of t h e  pipe. 
A sudden pressure PH(t) has been applied t o  t h e  i n t e r i o r  of t h e  pipe. Figures 
7 and 8 show 3k1/4P versus r a d i a l  pos i t ion  R i n  t h e  cylinder w a l l  a t  several  
t i m e s  f o r  t h e  a x i a l  crack with length 64 mm and t h e  circumferential  crack with 
approximate length 68.12 mm, respect ively.  The calculated t i m e  h i s t o r i e s  of 
t h e  dynamic stress in t ens i ty  fac tors  f o r  an ax ia l  and a circumferential  crack 
a r e  shown i n  f igure  9. It shows t h a t  k l ( t )  [ ax ia l  crack]>> k l ( t )  [circumfer- 
e n t i a l  crack of approximately equal crack length]. F ina l ly ,  f igure  10 shows 

229 



t h e  normalized dynamic stress i n t e n s i t y  f a c t o r  3k1/4P f o r  axial cracks with 
d i f f e ren t  crack lengths.  
length and t h e  longer crack length i s  completely dynamical. 

The difference between k l ( t )  f o r  t h e  sho r t e r  crack 

COMPUTER SIMULATION OF F R A C W  

There are two requirements f o r  computer simulation of the  i n i t i a t i o n ,  
propagation and a r r e s t i n g  of cracks (refs. 1, 2, 7) .  
physical  model represented by a sequence o f  programing i n s t r u c t i o n s  which 
determine i f  a crack i s  going t o  i n i t i a t e  or t o  s top  and describe the  condi- 
t i ons  f o r  i t s  propagation. The second requirement i s  a method t o  represent 
a moving crack i n  the  ca lcu la t iona l  scheme. 
underlying physics, the  f irst  requirement w i l l  not  be discussed here.  Never- 
the less ,  t he  important point here i s  t h a t  a t  bes t  t h e  computer can do only 
what it i s  ins t ruc ted  t o  do. 

The first is the  

Due t o  the  complexity of t he  

To simulate t h e  dynamic f rac ture  phenomena i n  a s o l i d  numerically, t h e  
continuous Lagrangian ca lcu la t iona l  g r i d  m u s t  be able t o  s p l i t  i n  order t o  
describe t h e  breakage of  the  so l id .  Two sub-routines are avai lable  f o r  
introducing t h e  desired free-surface (under tension)  and quasi-free-surface 
(under compression) boundary conditions.  One sub-routine does ac tua l ly  
s p l i t  t h e  g r i d  (sliding-open-interfaces log ic) .  It has t h e  advantage of 
providing accurate f rac ture  geometry and t h e  disadvantage of double storage 
needed f o r  each g r i d  point.  
of a zone without ac tua l ly  s p l i t t i n g  the  ca lcu la t iona l  g r id  (method o f  equiv- 
a l en t  free-surface boundary conditions ) . However, the f rac ture  geometry here 
i s  represented a t  bes t  by a band of  f rac tured  zones with s ing le  zone width. 

The o ther  introduces the e f f e c t  of  f rac tur ing  

Due t o  t h e  nature of  hyperbolic p a r t i a l  d i f f e r e n t i a l  equations , sudden 
s p l i t t i n g  (or e f fec t ive ly  s p l i t t i n g )  of t he  ca lcu la t iona l  g r i d  introduces 
s ign i f i can t  disturbances i n  the  stresses and displacements i n  the  neighbor- 
hood of t h e  crack t i p  which w i l l  then propagate i n  the  cha rac t e r i s t i c  
direct ions of t h e  ca lcu la t iona l  gr id .  I n  t h i s  case, t h e  a r t i f i c i a l  v i scos i ty  
imbedded i n  the  main computer program i s  not s u f f i c i e n t  f o r  damping out t h i s  
undesirable phenomenon. Hence a smoothing procedure , t he  method of a r t i f i c i a l  
veloci ty ,  i s  incorporated i n  t h e  main computer program t o  make each incre- 
mental volume break up smoothly. 
c r i t i c a l  f rac ture  c r i t e r i o n  i s  reached a t  t i m e  t,, a smoothing parameter 

Here i n  HEMP ca lcu la t ions ,  when t h e  

is ca lcu la ted .  

and Vc i s  an estimated a r t i f i c i a l  crack propagation veloci ty .  
V, i s  not c r i t i c a l  i n  t h e  smoothing process here.  
f rac ture  and F = 0 denotes i n t e g r a l  material. 
i n  t h e  accelerat ion equations t o  apply free-surface boundary conditions t o  
a zone. 
independent of  the  zone s i ze .  
depend on the  load, t h e  geometry, and t h e  phys ica l  model of t h e  p a r t i c u l a r  
problem. 

Here tn+l = (n+l)At i s  some t i m e  after t,, AX i s  a typ ica l  zone dimension 
The parameter 

F = 1 denotes complete 
The parameter F i s  then used 

This procedure allows a f rac ture  t o  run smoothly through t h e  g r id  
The ac tua l  computed f rac ture  veloci ty  w i l l  
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Figure 1.- F in i t e  d i f ference  scheme for s tra ins .  
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Figure 2.- F in i t e  difference scheme for equations of motion. 
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Free surface for  sur- 
face crack and  plane 
o f  symmetry for  im- 

Figure 3 . -  Lagrange gr id  used i n  ca lcu la t ions  of a 
s e m i e l l i p t i c  surface crack and an imbedded 
e l l i p t i c a l  crack. 
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Figure 4.- Normalized stress i n t e n s i t y  factor  
versus time for  imbedded e l l i p t i c a l  crack. 
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Figure 5.- Normalized stress intensity factor 
versus time for semielliptic surface crack. 

TAXIAL C R A C K  -CIRCUMFERENTIAL CRACK 

.L 
L = 2 4 0 m m ,  Ro=120mm, Qn= 1 0 0 m m  

Figure 6 . -  Geometry of the axial and circumferential cracks in the wall 
of a section o f  cylindrical pipe. 
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Figure 7.-  Normalized stress intensity factor 3k1/4P versus R 
at several time s teps  for the axial crack. 
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Figure 8.- Normalized stress intensity factor 3k1/4P versus P 
at  several time steps for the circumferential crack. 
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Figure 9.- Normalized stress  intensity factor 3k1/4P 
versus t a t  a position 11.67 mm from the inner 
cylindrical surface for the axial and circumferential 
cracks. 
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3k1/4P VS t AT 11.67mm F R O M  I N N E ' 6  
/ C Y L I N D R I C A L  S U R F A C E  

0 

Figure 10.- Comparison of 3k1/4P versus t curves for 
two axial  crack lengths at  a position 11.67 mm from 
the inner cylindrical surface. 
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RAPID INTERFACE FLAW EXTENSION WITH FRICTION 

L. M. Brock 
University of Kentucky 

INTRODUCTION 

Layered dissimilar materials vary from strata in the earth's 
crust to structural elements such as laminated composites. When 
appropriate loading is applied the bonding between layers may fail 
causing rapidly extending interface flaws and stress wave propaga- 
tion. If complete separation does not occur then this extension 
process may be characterized by relative slip between the flaw sur- 
faces opposed by friction. 

This paper examines an idealized two-dimensional example of 
such a process. Referring to figure 1 initially undisturbed dis- 
similar isotropic, homogeneous, linearly elastic half-spaces are 
perfectly bonded along the interface y=O. Quantities associated 
with the half-space y <  0 are denoted by the prime superscript or 
the subscripts 3 or 4Fhile those in y >  0 carry the subscripts 1 
or 2. At time t=O adjacent material pTints at x=O, y=+O are 
forced apart horizontally with a constant relative velocity Av. 
This results in a zone of bond failure which extends symmetrically 
along the interface at a constant rate c. The newly created flaw 
surfaces are in sliding contact resisted by Coulomb friction. The 
friction coefficient is y. Stress waves are also generated and we 
assume that c is subcritical, i.eb, 

Here the odd and even subscripts denote dilatational and rotation- 
al wave speeds. Although the case in figure 1 is often treated 
explicitly the analysis will be valid for all six possible inequal- 
ity relations between these speeds. The other symbols denote Ray- 
leigh (R) and Stoneley (S) wave speeds. As Cagniard (see ref. 1) 
has shown the existence of Stoneley waves depends on the half-space 
properties, To analyze this process we first examine a closely re- 
lated boundary value problem. 

RELATED BOUNDARY VALUE PROBLEM 

For y ~ 0  the pertinent displacements (u) and stresses (0) are 
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u = u r +iu 8 ’  s 8 = cs8-iar8, r(A+92w) = (ru),r-iu, 8 (2a- c) 

where r,8 are the polar coordinates, A and w are the dilatation 
and rotation and a subscripted variable after a comma means a de- 
rivative with respect to that variable. The constitutive rela- 
tions are 

mk = c /c -1 
k m  - 1) A-r (r u) , r- ir- ‘u, e 2 - 2  TS = (ml m2 8 

where l/-c is the shear modulus. The governing equations are 

cfV2h = A,tt c;v2w = 

where V2 is the Laplacian operator in r,B. 
hold for y ~ 0 .  
AF and GL (see fig. l), respectively, 

Similar expressions 
Along the flaw surfaces FG and interface segments 

1 I 1 
= kAv (5a-d) r ,t-Ur ,t are+yae = 0, s 8 - s 8  = 0, u p 8  = 0, u 

t 1 

u-u = 0, s - s  = 0 (6a,b) 8 8  

where equation (5d) holds only at x=*O. Arcs AL and ARSL are 
moving into undisturbed material so that 

I I t t 

U’t = 0, h = = = U’t = o  (703) A = s  
8 

respectively. Similarly arcs AMNL and APQL are moving into re- 
gions disturbed only by dilatational waves so that, respectively, 

I 

w = o  w = o  (8a,b) 

Clearly the initial conditions are that u,ul f 0 for tLO. Inte- 
grable singularities in the stresses and particle velocities 
should be expected only at the flaw edges and the Stoneley wave- 
fronts E, H. Finally when y=O the solution should be antisymmet- 
ric about x=O. 

METHOD OF ANALYSIS 

The differentiability of equations (5c) and (6a) and the ab- 
sence of a characteristic length in the problem imply that 
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displacement derivatives are homogeneous of degree 0 in r and t. 
Thus for y > O  - we define 

(sa-c) L L 
cp1(s,e) = c1 A ,  $$s,e) = -2c2 W ,  s = r/t 

and equations (4) become hyperbolic for s,ck so that 

while for SLCk they are elliptic so  that 

where Re and Im denote real and imaginary part. Here the real f 
and complex Q , Y  functions are arbitrary, Similar equations hold 
for y ~ 0 .  The characteristic properties of the f ' s  allow equa- 
tions (5) to (8) to reduce to coupled conditions on the 4 ' s  every- 
where on the boundaries of the semicircles OLAO, BKSR, CJNM and 
DIQP (see fig. 1). In view of equation (11) the problem can now 
be studied by mapping techniques. The transformations 

Zk = x k k  +iy = mksech(Bk+i8) (12) 

map these semicircles on the upper or lower halves of the complex 
plane and 

are defined where the p-functions are analytic in the plane cut 
along Im z=O, IRezl <mk. It can then be shown that 

cmu = J1[ (vt-r/cm)U(Wl) l-iJ2[(vt-r/cm)U(w2) 1 (14) 
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2 2  v(wk) [Z-K(v)pk(v) I'k- [Z+K(V)pk(v) Iwk, K(v) = 2-v /mz 
(17a,b) 

formally satisfy equations (1) to (4) ,  (7), (8) and the initial 
conditions where - denotes complex conjugate. Similar equations 
hold for y20. Here 

gkCe> 
4Jk(h) = I ~ - ~ h d v ,  5 = r/cmt (18a,b) 

5 

wher- for v < m k  - and mkLvzgk(9), respectively, 

for 181 <n/Z(+) and 101 > ~ / 2 ( - ) .  In equation (18a) 

-1 for O <  - l e (  - <cos mk and IT-cos mkL 101 - < IT but is unity otherwise. 

In view of equations (14) to (18) and figure 1 it is.readily 
shown that conditions (Sb,c) and (6) will be satisfied if 

Rl,iRZ = (hKL I p2-Rp2-2hp4z 2 2  /m4 ,2hL 1 1  -R -hKp1p4z 2 /m4 2 F  ) s  
(21a,b) 

in the lower half of the complex plane while in the upper half 

(22a,b) 

Identical expressions hold for the w's  in the corresponding oppo- 
site half of the complex plane. The arbitrary function F is ana- 
lytic everywhere except perhaps Imz=O,IRezl < p  where p = c/cmwhile 

(23a-d) 
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2 2  2 1 2  4 2 2  s = (h') +M p1p2p3p4-~ P1P2-(N I p3p4-hz CP,P~+P~P~)/~~ m4 

t M = K -hK, N = 2-hK, Nt = Zh-K', h = T'/T, h' = 2(1-h) 
(25a-e) 

Here R,R and S are the Raylei h and Stoneley functions, The ori- 
gin s=O and the wavefronts at 'i 8 1 = 1 ~ / 2  are ordinary points while 
integrable singularities are expected at the flaw edges. Thus 

t 

-I-&) (0 < E 1) (26a-c) F = O(z ) F = 0(1) F = O(lz5pI 3 

for z + O ,  z-+m and Iz+pl " 0 ,  respectively. Stoneley waves arise 
when S has non-zero roots. These roots occur at z=+n and exist 
only if S(m) > 0 where 

n = cS/cm n < m m = min(m2,m4) (27a- c) 

These roots are manifested as logarithmic singularities and jump 
discontinuities at the Stoneley wavefronts. Finally it can be 
shown that the limit case y-0 will be antisymmetric only if F is 
imaginary when y,Rez=O. With equations (21) and ( 2 2 )  at hand con- 
dition (Sa) reduces to a Hilbert form for Imz=O,)Rezl <p: 

+ (A-iyC)F+ + (A+iyC)F- = 0, 

A = hz p4R/m:+z p2R /m2 , 

F- = F(Rez+iO) 

C = hL'R-LR 
2 2 ' 2  t 

Here A and C are evaluated on Imz=+O. A solution which 
for the above observations on F and also condition (Sd) 

1 
3 2 2 - 3 / 2  b(v)dv] , .rrb(v) = tan -1 

F(z) = BZ (p -Z ) exP[/ v-z 
'P, 

accounts 
is 

T / 2  
I ~ B  = cmhv I~ = I cos~'(v)(p~+tan v) -3'2sinvsec 3 vdv 

C31a,b) 0 

A' (v) = Zb(0) tan-l(pcotv)+Ztanvf b(w)-b(0) dw (321. o wZ+tan2v 
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THE COULOMB FRICTION PROBLEM 

Although they satisfy all the conditions on the related 
boundary value problem the previous results will not represent a 
solution to the original problem unless (I) a compressive stress 
exists everywhere over the flaw surfaces and (11) the shear stress 
everywhere opposes the relative slip velocity of the flawsurfaces. 
It can be shown that these conditions are guaranteed for the fol- 
lowing two situations: 

AV,Y,C(V) ’ 0 AV,YYC(V) < 0 (1.1 <PI (33ayb) 

From a fracture mechanics view point the flaw edges are of inter- 
est. .It is readily shown that the stresses and relative particle 
velocities behave as 

on the flaw surface as x+fct. Similar expressions hold on the 
interface as x++ct. Equations ( 2 9 )  and (30b) demonstrate that 
-4 b(.p) L O  for both cases (33a,b). In light of (34) it follows 
that the flaw edge integrablesingularities are either stronger or 
weaker than the square-root singularity associated with a stress- 
free flaw surface. The functions C and b are plotted vs. the sub- 
critical range of v in figure 2 for various values of the mls and 
h. The curves indicate a rapid variation with flaw extension rate 
and that the rate for which the entire flaw surface experiences 
Coulomb friction may be limited by material properties. 

DISCUSSION OF RESULTS 

This paper considered interface flaw generation and extension 
caused by bonding failure and accompanied by Coulomb sliding fric- 
tion between the flaw surfaces. A closely related boundary value 
problem was solved and under some restrictions imposed on the ma- 
terial properties and flaw extension rate the solution was found 
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to represent the process. It was also found that the particle 
velocities and stresses at the flaw edges exhibit integrable sing- 
ularities whose order depends on the material properties, friction 
coefficient and flaw extension rate. Similar behavior occurs in 
the static analysis o f  rigid indentation with friction (see ref. 
n .  

‘ I  

Although such a study is not pursued here, perhaps the bound- 
ary value problem can yield further insight. For xample the sol- 
ution restrictions may indicate that the flaw sur ces near the 
edges completely separate above certain flaw extension rates. 
Moreover the relative slip-shear resistance relationship along the 
flaw surface might be of interest. Finally it should be noted 
that future work will consider the more useful problem of flaw ex- 
tension with friction due to a specified loading. In regard to 
the method of analysis used here homogeneous function solution 
techniques can be applied to a variety of wave propagation prob- 
lems; see for example the recent work of references 3 and 4. 
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DYNAMIC DUCTILE FRACTURE OF A CENTRAL CRACK* 

Y. M. Tsai 
Iowa Sta te  University 

SUMMARY 

A central  crack, symmetrically growing a t  a constant speed i n  a two- 
dimensional duct i le  material  subject t o  uniform tension a t  i n f in i ty ,  i s  in- 
vestigated using the integral  transform methods. 
the Dugdale crack, and the f i n i t e  s t r e s s  condition a t  the crack t i p  is sa t -  
i s f ied  during the propagation of the crack. 
a re  obtained for  the f i n i t e  s t r e s s  condition a t  the crack t i p ,  the crack 
shape, the crack opening displacement, and the energy release ra te .  
expressions are wri t ten as the product of exp l i c i t  dimensional quant i t ies  and 
a nondimensional dynamic correction function. 
associated s t a t i c  r e su l t s  when the crack speed tends t o  zero, and the non- 
dimensional dynamic correction functions were calculated for  various values 
of the parameter involved. 

The crack is  assumed t o  be 

Exact expressions of solution 

All those 

The expressions reduce to  the 

The f i n i t e  stress condition is  used t o  determine the p l a s t i c  zone size.  
It is  shown tha t  the p l a s t i c  zone width shrinks s ignif icant ly  with increas- 
ing crack speed. A general convenient method i s  described to  determine the 
p l a s t i c  zone s i ze  using the nondimensional dynamic correction curves obtained. 
Due to  the e f fec t  of crack propagation, the crack opening displacement and 
the energy release r a t e  are  found t o  decrease with increasing crack speed. 

INTRODUCTION 

The Dugdale model was applied to  a dynamic problem of a rapidly extend- 
ing semi-infinite crack under traveling "wedging" pressures (refs.  1 and 2) and 
to  the study of a ductile-crack propagation (ref.  3 ) .  The f i n i t e  stress 
condition a t  the crack t i p  i n  both the theoret ical  studies on dynamic 
duc t i le  f ractures  ( refs .  2 and 3)  predicted that  the proportion of the p l a s t i c  
zone s ize  t o  the crack length is  independent of crack speed and remains 
exactly the same as tha t  fo r  the corresponding s t a t i c  problems? However, 
experimental r e su l t s  indicate tha t  the crack t i p  p l a s t i c  zone i n  s t ee l s  may 
shrink as  the crack increases i n  velocity ( ref .  4 ) .  

The present work, using integral  transform methods similar t o  those used 
i n  reference 5, investigates p l a s t i c  zone s ize ,  crack shape, crack opening 

* 
The research is sponsored by the National Science Foundation under Grant 
No. ENG 74-08147 and by the Engineering Research Ins t i tu te ,  Iowa Sta te  
University, Ames, Iowa. 

247 



displacement, and energy re lease  rate of a cen t r a l  crack which is s p e t -  
r i c a l l y  growing a t  a constant speed i n  a two-dimensional duc t i l e  Dugdale 
material .  
shrinkage of the p l a s t i c  zone and the var ia t ions of crack 
opening displacement, and energy release rate as a function of crack speed, 
applied stress, and material  properties.  

Exact expressions of solution a re  obtained whic 

CRACK SWAPE AND PLASTIC-ZONE SIZE AT VANISHING CRACK SPEED 

Consider a two-dimensional so l id  material  subjected t o  uniform tensions 
A Dugdale crack starts to  propagate i n  the  x-direction a t  time a t  i n f in i ty .  

t = 0 i n  a plane, y = 0, perpendicular t o  the d i rec t ion  o f  tension. 
propagation the crack t i p  i s  specified by R(t), and the p l a s t i c  zone t i p  is a ( t ) .  
Solution of the problem can be obtained by superposing a uniform tension f i e l d  Po 
and the  stress f i e l d  which is  set up by a pressure, Po, act ing on the  crack 
surfaces and the  t e n s i l e  stress, Y - Pot;acting i n  the plastic zone. 
problem is the main subject of i n t e re s t  i n  the present work. For convenience, 
the above normal s t r e s ses  a re  described by a function o(x, t ) ,  which is equal 
t o  -po f o r  x * R(t )  and Y - po for  R(t)  < x 5; a ( t ) .  
t ions  on the crack plane y = 0 fo r  t > 0 can be prescribed as oxy = 0, 
V = w (x , t )  fo r  x * a ( t )  and ax 
displacement normal t o  the c r a d  plane and w(x,t) is an unknown crack shape 
function t o  be determined i n  terms of o(x , t ) ,  The methods of in tegra l  
transforms similar t o  those used i n  reference 5 can be used here t o  solve 
the equations of motion and the  dynamic boundary conditions. 
the normal s t r e s s  on y = 0 can be wri t ten as  ( ref .  5):  

During 

The latter 

The dynamic boundary condi- 

= V = 0 for  x > a ( t ) .  V is the ve r t i ca l  

After inversions, 

p, p and cl are ,  respectively,  the material density,  the shear modulus, and 
the d i l a t a t iona l  wave speed. Go as defined i n  reference 5. IQ1 and L2Q2 
are,  respectively,  equal t o  QI &!d L2Q2 i n  reference 5, The operator Lz 
over 7 is the same as L1 i n  reference 5 while the operator L defined i n  the 
Appendix is a modified form of the in tegra l  representation of the zeroth 
order Bessel function involved i n  Q 1  of reference 5. 
converted in to  an in tegra l  equation t o  solve fo r  the unknown w embedded i n  
the in tegra ls  on the r i g h t  hand s ide  of the equation. 
i n  reference 5, the equation obtained can be wr i t ten  as 

Equation (1) may be 

As shown i n  d e t a i l  

0 
w(x,t) = w (x, t )  - 2 w /m; 

q 
a n 

x 0 

where q = qA(X,t), x < A ( t ) ;  q = qr(X,t), R(t) x < a ( t )  (3 1 

w i n  equation (2) can be determined by the method of successive approximations 
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(ref. 5). 
are  dropped temporarily and equation (1) reduces t o  the associated static 
equation. 
be the f i r s t  approximation of w as 

For the f i r s t  approximation, the wave-effect integrals  Q 1  and Q2 

In terms of CT and a = po/Y, the reduced equation is integrated t o  

w,(x,t) = w 0 (x , t )  = - K { ~ - - ~ ~ w l }  a n  q 

1 wq is defined i n  equation (2) with qR = -po and qr = Y - po. In terms of 
equation ( 4 ) ,  the f i r s t  approximation-of ow i n  equation (1) for  x > a is 
obtained as 

(4) 

If there is no p l a s t i c  zone where 1 is equal t o  a ,  equation (5) reduces t o  the 
corresponding e l a s t i c  solution (ref .  5 ) .  
the crack t i p  is  imposed, equation (5) exactly gives the w e l l  known equation, 
i .e. ,  B = 0 i n  equation (6) for  determining the p l a s t i c  zone s i ze  obtained 
by Dugdale ( ref .  1)  from a d i f fe ren t  approach. The equation is  t o  be shown 
as a par t  i n  the dynamic equation for  determining the p l a s t i c  zone s i ze  as 
a function of crack speed. 

If the f i n i t e  stress condition a t  

DYNAMIC CRACK SHAPE 

The successive approximations of w can be obtained from equation (2) in  
terms of poq i n  equation (1). 
assumed tha t  the crack t i p  and the p l a s t i c  zone t i p  a re  running a t  constant 
speeds of e and v, respectively; i.e., R = e t  and a = vt.  
assumption, the cosine transform of equation (4) and i t s  derivative can be 
obtained and used t o  obtain the f i r s t  approximation of L2Q2 as 

To obtain closed-form solutions,  it i s  

Under t h i s  

v/e 
h J  (sRh)dh 2 

dTds (7) 2e Po b 
where L2Qi2 = L2 

0 0 

where J, is  the Bessel function and Q21 i s  ident ica l  with L1Q2 i n  reference 5 i f  
KD there is  replaced by K here. 
reference 5 a s  

The integrated r e su l t s  can be obtained from 

( 8 )  

(9) 

2 
Q21 = P ~ V ~ L ~ D ~ ( ~ ~ , V ~ ) / K , X  < a 

and Q21 = pov2L2D6(q,v2,x/c2t,x/a,l)/K 2 ,a < x < c2t  (C2 =m) 
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where D 

gration over h compared to  Q21. 

very similar. 
and can be wri t ten i n  terms of D7 i n  the Appendlx as: 

and D6 a r e  nondimensional dynamic functions which a re  defined in 
terms o 2 v2 = v/c2 i n  the Appendix. Equation (7) involves an additional inte- 

However, the procedures for  integration a re  
1 For x < A ,  L2Q22 is  similar t o  Q for  x < a i n  equation ( 8 )  2 1  

(10) 1 2 
W2Q22 ~ ~ D L ~ D ~ ( r l , e ~ , l ) / a , x  < a ;  D = 2 ( 1  - V)e2/a,e2 = e/c2 

For 
and the r e su l t s  can be wri t ten as: 

< x < a,  L Q' is s imilar  t o  the combination of equations (8) and (9), 
2 22 

Dg is defined i n  the Appendix. 
written as 

Similarly, the f i r s t  approximation of IQ1 can bc 

1 =-- 2ePo a 
where uQ12 r n ~  a t  

nJo (sn) dn a 

dTds (13) 
42-3 

1 Q1l is ident ical  with Q1 i f  cosh 5 is replaced by rl i n  reference 5. 
t ion  of Q$ i n  reference 5 was explained i n  d e t a i l ,  and the integrated forms of 
Q l l  a r e  found to  be the same as the expressions on the right-hand sides of Q21 
i n  equations (8) and (9)  i f  c2, v2, and L2 are,  respectively, replaced by c1, 

Integra- 

VI = v/c l ,  andlL1, which is defined i n  the Ap endix. 
integrating uQ12 are  similar t o  those for  LzQ 2. The integrated forms of uQ12 
i n  fquation (13) are  ident ical  with the on the right-hand s ide of 

The procedures for 

L2Q22 in  equations (10) and (11) i f  c2 and L2 a re  replaced by c1 and L1, 
respectively. 

In terms of equations (6) and (12), the f i r s t  approximation of poq can 
now be wri t ten as follows: 

where the subscript i is  1 for  the operator L1 and becomes 2 for  the operator 
L2. The quantity el i s  equal to  e/cl and D8 is  defined in  the Appendix. The 
above procedures can be continued t o  obtain higher order approximations. A s  
a continuation of equation (14), poq i s  found to  be an a l te ra t ing  ser ies  of 
the general expressions as  follows: 
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(17) 

(18) 

= D j (L1 + L )D .(q,eiyl) 
gj 2 73 

and h j = Dj(L1 f- L2)[D 83 .(?l,ei,x/d) f- D 73 .(qyei,x/a)] 

- 
The time derivative of h j  leads t o  EJ+l i n  the Appendix. A c lear  pattern can 
be seen i n  the process of higher ord r approximations. After i n f in i t e ly  many 
approximations, the f i n a l  form of w is found as follows: 

Where is found to  be the product of two ser ies ,  one of which can be 
writ ten in to  a simple form as follows: 

03 

1 j , A B + a  C (-1) c j  a m 

j 11 1 + qo j =I 

J I 
[ 

B - 1 4 -  C (-1)jq:]= 

where G j = Fj sin-' -4- [ h. (a2 - h2)-1/2dh 2/7r 

03 
j +l 

gj Equation (2) defines w- i f  q i s  replaced by 4. which is equal t o  

f o r  x < A and 

and hence B y  must be vanishing i n  order t o  sa t i s fy  the f in i t e - s t r e s s  condition 
a t  the extended crack t i p  of the Dugdale crack. 

= c (-1) j=1 
= C (-1)j"h. for  R < x < a. It w i l l  be shown l a t e r  that  A, - j =I J 

DYNAMIC PI&TIC-ZONE SIZE 

The p la s t i c  zone s ize  can be determined by sat isfying the condition 
In order t o  sa t -  
i n  equation (1) 

that  the stress s ingular i t ies  a t  the crack t i p s  vanish. 
i s fy  t h i s  f i n i t e  stress condition, the normal stress 0 
must be calculated. 
x < a,  ayy i n  equation (1) exactly reduces t o  the surface stress prescribed. 
Following the techniques similar t o  those for- equation (5), the integration 
over s gives fo r  x > a: 5 

In terms of equation (19), it is T o tained tha t  for  

r * -11.2 kl  - gqo) - (1 - - s i n  -1 --)/a a 
rr oo /p = x(x - a 

Y Y O  

2 1  + - -  
V U  
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poq in  equation (1) can be integrated i n  terms of equation (19) by using the 
methods similar t o  those fo r  equations (10) and (11) and the techniques used 
i n  reference 5. The integrations are  obtained for  x > a as follows: 

- 1) + poq = po(L1 + L2) { (1 - V)iiVi [D4(rl,Vi)(X (x2 - a 2 1 -1/2 

I f  equations (22) and (23) a re  substi tuted in to  equation ( l ) ,  the normal 
stress on y = 0 is obtained and the f i n i t e  stress condition a t  the crack 
t i p s  can be wri t ten i n  terms of equations (6) ,  (15), and (20) in to  the 
following exact expression: 

Equation (24) i s  sa t i s f i ed  i f  or KI vanishes. 
lower crack speed than K, does. Therefore, the 

In f ac t ,  vanishes a t  
vanishing of A i n  equation 

(20) determines the s izelof  the p las t ic  zone. I f  crack speed vanishes, a l l  
8 .  became zero and equation (20) reduces t o  the corresponding s t a t i c  condi- 
t ion  of B = 0. 
of e;. 
order of and the second power term C2 is 10-3. It appears that  i n  
equation (20) converges very rapidly. The calculations were carried out by 
means of the regular four point integration formula using an IBM 360/65 
electronic computer. It appears pract ical ly  accurate enough to  include 
only C 1  i n  calculating A i n  equation (20). 
f o r  various values of e2 and A/a a t  v = 0.3 and shown i n  figure 1. The 
value of B i n  equation (6) was a l so  calculated and shown in  figure 1. 
intersect ion of the curves for  B and C l / U  gives the nondimensional quantity 
Ala fo r  determining the plastic-zone size. 
a - A ,  and the r a t i o  of the width t o  the half  crack length is determined as 
shown i n  figure 2 for  various values of u and e2 a t  V = 0.3. For values of 
a and e2, d i f fe ren t  from those i n  figure 2 ,  the p l a s t i c  zone s i ze  can also 
be determined by interpolating the value of ~1 and B in  figure 1 a t  a 
proper Ala which makes A i n  equation (20) vanishing. 
f igure 2 tha t  the p l a s t i c  zone width expressed i n  (a - A ) / A  shrinks 
s ignif icant ly  with increasing crack speed i n  terms of e2 = e/c2. 
U = po/Y = 0.8, the reduction of the p l a s t i c  zone width a t  e2 = 0.6 is 85% 
of the corresponding s t a t i c  p las t ic  zone width a t  e2 = 0. This is clear ly  
consistent with the experimental findings of the t rans i t ion  of duc t i le  
f racture  t o  b r i t t l e  f racture  a t  suff ic ient ly  high crack speeds (ref .  4 ) .  

-I In equation (20) A can be seen as an al ternat ing power series 
The f i r s t  power term of A, €1, i s  found numerically t o  be of the 

The value of €1 was calculated 

The 

The width of the p l a s t i c  zone is  

It can be seen from 

For 
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CRACK OPENING DISPLACEMENT AND ENEBGY RELEASE RATE 

The crack opening displacement (C.O.D.) can be obtained from equation 
= 0 for  sa t i s fy ing  the f in i t e - s t r e s s  condition as 

v le  

(19) with 
wa = poAQ(e2,a,V)/K. 
is  obtained as: 

The nondimensional dynamic C.O.D. correction function 

The value of fw above was calculated by the computer as shown in  figure 2. 
Similarly, the dynamic crack shape i n  equation (19) with * 0 can a l so  be 
calculated. 
calculation fo r  the work done t o  an e l a s t i c  medium i n  equilibrium (ref .  6) 
can also be used i n  the elastodynamic problem. Therefore, the release r a t e  
of the work wk done t o  the medium by the crack surface pressure can be 
calculated i n  terms of equation (19) as 

In energy consideration, it is assumed tha t  the method of 

where E is  Young’s mudulus and the nondimensional dynamic correction function 
for  the energy release r a t e  ;is 

The value of f was calculated by the computer and a l so  plotted in  figure 2. R Both the C.O.D. and the energy release r a t e  can be seen as functions with 
an expl ic i t  factor of the crack length R and reduce to  the associated s t a t i c  
expressions as the crack speed, e,  tends to  zero. The crack opening d i s -  
placement and the energy release r a t e  can be seen t o  be decreasing with 
increasing crack speed i n  figure 2. 

APPENDIX 
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Figure 1.- Nondimensional curves of &I and B f o r  determining the  
p l a s t  ic-zone s i z e .  
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Figure 2.- Normalized plastic-zone width (a - R ) / R  and t h e  nondimensional 
dynamic co r rec t ion  curves of fw f o r  t h e  C.O.D. and fR f o r  t h e  energy 
release rate. 
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A STUDY OF THE EFFECT OF SUBCRITICAL CRACK GROWTH ON THE GEOMETRY 

DEPENDENCE OF NONLINEAR FRACTURE TOUGHNESS PARAMETERS 

D. L. Jones, P. K. Poulose,and H. Liebowitz 

The George Washington University 

ABSTRACT 

The e f f e c t  of s u b c r i t i c a l  crack growth on t h e  geometry dependence of non- 
l i nea r  f r a c t u r e  toughness parameters w a s  s tud ied  by comparing t h e  toughness 
values f o r  d i f f e r e n t  specimen geometries a t  the  onset of s u b c r i t i c a l  crack 
growth and at  t h e  i n i t i a t i o n  of unstable crack propagation. Center-cracked 
t h i n  shee t  specimens of 2024-T3 and 7075-T6 aluminum a l l o y s  w e r e  t e s t e d  by 
varying t h e  specimen length  L , width w ,  and crack length-to-width r a t i o  c/w 
When the  onset of uns tab le  crack propaggtion was se l ec t ed  as t h e  c r i t i ca l  
po in t ,  t h e  nonlinear energy toughness Gc and the  R curve toughness GR in- 
creased with increas ing  w and decreasing L and c/w. 
of s u b c r i t i c a l  crack growth w a s  taken as t h e  cr i t ical  poin t ,  Gc and the  l i n e a r  
toughness values w e r e  independent of t hese  geometrical va r i ab le s .  

The e f f e c t  of thickness on t h e  nonlinear energy toughness Gxc , t h e  J in- 
t e g r a l  J I ~  , and the  l i n e a r  toughness & 
compact tens ion  specimens o f2124-T851a l~ inum a l loy .  
crack propagation the toughness values increased with decreasing specimen 
thickness,  bu t  a t  t h e  point of crack growth i n i t i a t i o n  they w e r e  independent 
of thickness 
the  thickness requirement according t o  ASTM E399. 

However, when t h e  onset 

- 
values w a s  i nves t iga t ed  by t e s t i n g  

A t  t he  onse t  of uns tab le  

and w e r e  almost t h e  same as t h e  GIc value f o r  specimens that m e t  

INTRODUCTION 

I n  b r i t t l e  materials f o r  which t h e  l i n e a r  elastic f r a c t u r e  mechanics(LEFM) 
ana lys i s  is  v a l i d ,  t h e  c r i t i ca l  values of load and crack length i n  f r a c t u r e  
toughness t e s t i n g  are e a s i l y  i d e n t i f i e d  s ince  the  common f r a c t u r e  mechanics 
specimen geometries do not  exh ib i t  s u b c r i t i c a l  crack growth. 
hand, i n  s e m i b r i t t l e  materials crack-tip p l a s t i c  deformation and s u b c r i t i c a l  
crack growth introduce ambiguities i n  t h e  determination of t he  cr i t ical  poin t  
and, consequently, i n  t h e  f r a c t u r e  toughness values.  Two po in t s  have received 
considerable a t t e n t i o n  as c r i t i c a l  po in t s  : ( i )  t h e  onset of s u b c r i t i c a l  crack 
growth and ( i i )  t h e  i n i t i a t i o n  of uns tab le  crack propagation, which usua l ly  
corresponds t o  t h e  peak load. 

perimental complexities i n  addi t ion  t o  those caused by crack-tip p l a s t i c  de- 
formation. 
displacements i s  not a v a i l a b l e  today, most of t h e  nonlinear methods suggested 
as f r a c t u r e  cri teria are modifications of t h e  l i n e a r  toughness c r i t e r i o n  and 
represent  approximations t o  t h e  a c t u a l  s i t u a t i o n .  Fur ther ,  a l l  of t hese  
methods, except t h e  R curve,are considered t o  be v a l i d  only when the re  is no 
s u b c r i t i c a l  crack growth. C r i t i c a l  examinations of t h e  a n a l y t i c a l  bases of 
several of t hese  methods have been given i n  re ferences  1 and 2, and experi- 

On t he  o the r  

The occurrence of s u b c r i t i c a l  crack growth introduces a n a l y t i c a l  and ex- 

Since an exact e l a s t i c - p l a s t i c  so lu t ion  f o r  crack-tip stresses and 
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mental comparisons have been given i n  re ferences  3,4,and 5. The 
( re f .6)  w a s  introduced s p e c i f i c a l l y  f o r  s i t u a t i o n s  involving subc 
growth, as is commonly observed i n  the  f r a c t u r e  of  t h i n  shee t  m a t  
method eva lua tes  t h e  f r a c t u r e  toughness from t h e  peak load and t h e  c r i t i ca l  
crack length  a t  t h e  i n i t i a t i o n  of unstable crack propagation. 
advantage t h a t  elastic formulas are emp 
values even though s u b c r i t i c a l  crack gr 
represent  inelastic processes. 
determination of t h e  c r i t i ca l  crack s i z e  is  by f a r  t h e  most d i f f i c u l t  measure- 
ment i n  a f r a c t u r e  toughness test. 

has a l s o  been proposed(ref.1) 
as a f r a c t u r e  toughness parameter based on t h e  app l i ca t ion  of a general  energy 
balance c r i t e r i o n  t o  a cracked body. 
having a through-the-thickness crack of length  c ,  & is  defined as 

It has t h e  d i s -  
ed t o  determine f r a c t u r e  toughness 

and crack-tip p l a s t i c i t y  c l e a r l y  
A f u r t h e r  disadvantage of t h i s  method is  t h a t  

- 
The nonlinear energy f r a c t u r e  toughness G, 

For an a r b i t r a r i l y  shaped, p lane  body 

ar aue aup 
GC = - - - - - = - ac ac ac ac 
- aw 

where W is  t h e  work done, U e  is  t h e  elastic s t r a i n  energy, Up is  t h e  p l a s t i c  
s t r a i n  energy,and I' is  the  sur face  energy. It is emphasized t h a t  equation(1) 
is  based on a general  energy balance which permits t he  incorporation of large- 
scale p l a s t i c i t y  and s u b c r i t i c a l  crack growth i n t o  t h e  f r a c t u r e  toughness de- 
termination. However, no procedure has  y e t  been es tab l i shed  t h a t  is capable 
of eva lua t ing  equation(1) exac t ly  f o r  a p rac t i ca& f r a c t u r e  mechanics geometry. 
Therefore, an approximate method f o r  evaluating G, has been developed(ref.1) 
t h a t  is  based on t h e  Ramberg-Osgood representa t ion  of t h e  load-displacement 
record 

F F n  V = Z +  k ( z >  . 
I n  equation 2, M is  t h e  i n i t i a l  tangent modulus ancj n and k are cons tan ts  f o r  
a given test. From equation(2) an expression f o r  G, has been obtained as 

\ 

where Gc i s  t h e  l i n e a r  toughness value employing the i n i t i a l  crack length  and 
t h e  load corresponding t o  t h e  c r i t i c a l  po in t ,  and C is  pr imar i ly  a measure of 
t h e  curvature of t h e  load-displacement record. 

Another f r a c t u r e  toughness parameter J I ~  
has been proposed f o r  s i t u a t i o n s  of e l a s t i c - p l a s t i c  material response i n  t h e  
absence of crack growth. 
l i n e a r  elastic material response and w a s  a l s o  shown t o  be given by 

based on t h e  J i n t e g r a l ( r e f . 7 ) ,  

The J i n t e g r a l  w a s  o r i g i n a l l y  defined only f o r  non- 

where P is  t h e  global elastic p o t e n t i a l  energy. This d e f i n i t i o n  w a s  used by 
Begley and Landes(ref.8) as a b a s i s  fo r  determining J I ~  a t  t h e  onset of sub- 
c r i t i ca l  crack growth. 
tens ion  of t h e  l i n e a r  elastic toughness c r i t e r i o n  GIc , v a l i d  only i n  t h e  
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absence of s u b c r i t i c a l  crack growth. 

toughness parameters on the  specimen geometry and on t h e  choice of c r i t i c a l  
points.  
c r i t i c a l  crack growth and a t  uns tab le  f r ac tu re .  The i n e a r ,  R curve,and non- 
l i n e a r  energy toughness parameters w e r e  evaluated f o r  t h e  t h i n  shee t  specimens. 
For the  compact tens ion  specimens t h e  l i n e a r ,  J integra1,and nonlinear energy 
toughness parameters were evaluated and compared. Then, t h e  r e l a t i v e  merits 
of t h e  var ious  nonlinear f r a c t u r e  toughness methods were compared and discussed. 

The purpose of t h i s  paper i s  t o  d i scuss  t h e  dependence of several f r a c t u r e  

The r e s u l t s  are based on comparisons t h a t  w e r e  made a t  the  onset of sub- 

EXPERIMENTAL PROCEDURE 

The inf luence  of s u b c r i t i c a l  crack growth on geometry dependence w a s  stud- 
ied  using center-cracked, 1.6mm(O.O63in.) t h i ck  shee t  specimens of 7075-T6 and 
2024-T3 aluminum a l l o y s  and compact tens ion  specimens of 2124-T851 a l loy .  In  
center-cracked specimens t h e  displacements w e r e  measured a t  t h e  loading points.  
The gauge length  w a s  nominally 76.2mm(3in.) less than  t h e  specimen length.  The 
notch t i p  w a s  f i l e d  t o  a r ad ius  of 0.076-0.127mm(0.003-0.005in.). 
were conducted i n  load contro1,and slow crack growth w a s  monitored v i s u a l l y  
using a 1 O X  magnifier and l i n e s  scr ibed  a t  i n t e r v a l s  of 1.27mm(O.O5in.). Three 
series of tests were performed on each a l l o y  i n  t h e  L-T o r i e n t a t i o n  by varying: 
( i )  t he  length  L from 254 t o  89Omm(10 t o  3 5 i n . ) , ( i i )  t h e  width w from 102 t o  
356mm(4 t o  14in.), and ( i i i )  t h e  crack length-to-width r a t i o  c / w  from 0.3 t o  
0.6, while keeping t h e  o the r  parameters constant i n  each series. 
tests wereconductedfor each geometry, and anti-buckling guides w e r e  no t  used. 

The e f f e c t  of specimen thickness on t h e  nonlinear f r a c t u r e  toughness 
values w a s  examined using compact tens ion  specimens of 2124-T851 with thick- 
nesses above and below t h e  ASTM minimum requirement f o r  plane s t r a i n  f r a c t u r e  
(E399). 
Since i t  w a s  not poss ib le  t o  d i r e c t l y  measure t h e  s u b c r i t i c a l  crack growth i n  
these  specimens, i nd ica t ions  of crack growth w e r e  obtained from sudden changes 
i n  the  s lope  of t h e  load-displacement curves. 

Nonlinear Energy Method,- The experimental procedure f o r  eva lua t ing  equation(4) 
is  gtraightforward due t o  t h e  separa t ion  of t h e  l i n e a r  and nonlinear por t ions  
of G,. G, can be obtained d i r e c t l y  from standard expressions fo? t h e  stress 
i n t e n g i t y  f a c t o r s  and t h e  appropr ia te  G K  r e l a t i o n s .  It has been shown(eq.3) 
t h a t  C can be evaluated by t h e  equation 

The tests 

Duplicate 

The specimens conformed t o  t h e  ASTM standard except f o r  t h e  thickness.  

- 

where 

I n  these  equations t h e  values of F1 and F2 are obtained from reduced modulus - 
secant l i n e s  drawn t o  t h e  nonlinear load-displacement curve. The second secant  
l i n e  with s lope  a2M should i n t e r s e c t  t h e  load-displacement record at  t h e  cri t-  
i ca l  poin t  (F2=Fc), and t h e  f i r s t  should approximately b i s e c t  t h e  angle between 
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t he  tangent modulus M and a2M. 

R Curve.-For t h e  center-cracked panels t e s t ed ,  s i g n i f i c a n t  measurable sub- 
cr i t ical  crack growth w a s  observed p r i o r  t o  uns tab le  f r ac tu re .  
f r a c t u r e  toughness 
parison with the  nonlinear energy f r a c t u r e  toughness. 
cussions on the  R curve method(ref.2,6), GR is evaluated by s u b s t i t u t i n g  t h e  
crack s i z e  and load a t  t h e  i n s t a b i l i t y  point i n t o  the  appropr ia te  l i n e a r  stress 
i n t e n s i t y  f a c t o r .  
ployed i n  the  form 

Therefore, t h e  
GR according t o  t h e  R curve method w a s  eval 

According 

For t h e  center-cracked shee t s ,  t h e  ASTM polynomial w a s  em- 

It is  acknowledged, however, t h a t  measurement of t he  c r i t i ca l  crack s i z e  i s  
d i f f i c u l t ,  e spec ia l ly  f o r  materials such as 2024-T3 aluminum i n  which t h e  
transformation from s u b c r i t i c a l  cracking t o  uns tab le  f r a c t u r e  occurs gradually 
r a t h e r  than instantaneously.  

J Integral .-For determining J I ~  toughness values from t h e  compact tens ion  
specimens, an approximate procedure suggested for' bend type s p e c i m e n ~ ( r e f . 8 ~ 9 )  
w a s  followed from which JIc w a s  obtained as 

2A 
J I C  = B(w-c) ' 

I n  equation(8) t h e  area A under the load-load po in t  displacement curve w a s  
obtained from t h e  Ramberg-Osgood representa t ion  as 

EF2 A = c  . 
2M 

RESULTS AND DISCUSSION 

The tests conducted on t h e  center-cracked and compact tens ion  specimen 
The s e l e c t i o n  of geometries covered a wide range of geometrical var iab les .  

t h e  c r i t i c a l  po in t  on t h e  load-displacement curve corresponding t o  t h e  onset 
of uns tab le  f r a c t u r e  w a s  easy s i n c e  i t  corresponded t o  t h e  peak load. However, 
load-displacement diagrams f o r  t h e  center-cracked specimens d id  not  e x h i b i t  a 
marked change i n  s lope  a t  t h e  onset of s u b c r i t i c a l  crack growth; therefore ,  t h e  
exact po in t  of crack extension w a s  not r e a d i l y  determined. Hence f o r  t hese  
specimens, load versus c rack  length  p l o t s  w e r e  made,and t h e  loads  corresponding 
t o  one percent crack growth w e r e  chosen t o  represent  t h e  i n i t i a t i o n  of slow 
crack growth. For the  compact tens ion  specimens,the onse t  of s u b c r i t i c a l  
crack growth w a s  de tec ted  by sudden changes i n  t h e  s lope  of t h e  load-displace- 
ment curve. 

The r e s u l t s  of t he  tests of t h e  e f f e c t s  of specimen length  on f r a c t u r e  

i s  appl icable  only a t  t h e  maximum load, t he  
A t  t h e  

w a s  com- 

toughness values f o r  3075-T6 center-cracked shee t s  are shown i n  f i g u r e  1. 
Since the  R curve toughness GR 
nonlinear energy toughness be w a s  compared wi th  GR only a t  t h i s  p9int.  
onset of s u b c r i t i c a l  crack growth,the nonl inear  energy toughnsss Gsc 
pared with the  l i n e a r  toughness csc . A t  t h e  peak load,both G, and GR increased 
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with decreasing specimen length, with Ec cons i s t en t ly  l a r g e r  than GR. 
is  noted t h a t ,  as the gauge length  decreased, t h e  d i f f e r e n  
and GR increased s i g n i f i c a n t l y .  The authors f e e l  t h a t  t h i s  d i f f e rence  
i s  due t o  t h e  non l inea r i ty  i n  t h e  load-displacement record r e s u l t i n g  
from crack-tip p l a s t i c i t y ,  since t h e  R curve method does not incorpora te  
crack-tip p l a s t i c i t y  in to- the  GR toughness values. 
s t a b l e  crack growth,both Gsc and ESc remaineg p r a c t i c a l l y  independent 
of specimen length.  
s l i g h t l y  as t h e  gauge length  decreased. 
caused only by non l inea r i ty  i n  the  load-displacement record r e s u l t i n g  
from crack-tip p l a s t i c i t y ,  s i n c e  the  only d i f f e rence  between t h e  two 
toughness values is  e. The most d i r e c t  compar_isons of t h e  e f f e c t  of 
s u b c r i t i c a l  crack growth are obtained between Gc and GSc,when t h e  non- 
l i n e a r i t y  of t h e  load-displacement response is  included,and between GR 
and csC,when t h e  non l inea r i ty  is  not considered. 
seen t h a t  a severe pena l ty  i n  terms of decreased toughness values is 
paid whenever s u b c r i t i c a l  crack growth is  excluded from consideration. 

In  t h e  more d u c t i l e  2024-T3 alloy, t h e  v a r i a t i o n  of Ec and GR with 
length  a t  peak load w a s  g r e a t e r  than f o r  t h e  7075-T6(fig.2), bu t  both 
a l l o y s  displayed the  same trend. A s  i n  t h e  case of 7075, t h e  toughness 
parameters f o r  2024 a l s o  exhib i ted  a length  independency when evaluated 
a t  t h e  onset of  s tab&e crack growth. 
d i f f e rences  between Gc and GR are much g r e a t e r  f o r  2024-T3 than f o r  
7075-T6. This r e s u l t  shows more dramat ica l ly  t h e  decreased toughness 
values which r e s u l t  when the  crack-tip p l a s t i c i t y  i s  not  considered. 
When both crack-tip p l a s t i c i t y  and s u b c r i t i c a l  crack growth are-taken 
i n t o  account, f i g u r e  2 shows t h a t  t he  h ighes t  toughness value Gc ( f o r  
t h e  s h o r t e s t  gauge length) ,  i s  approximately four  t i m e s  t h e  lowest 
The width series and c/w series tes t s ,which  are not included i n  t h i s  
paper, showed t h a t  both cc and GR determined a t  peak load increased with 
increas ing  width and decreasing c/w i n  2024, while t h i s  e f f e c t  w a s  less 
pronounced i n  7075. 
s t a b l e  crack growth i n  these  a l l o y s  exhib i ted  l i t t l e  dependency on width 
and c/w. 

Hence 
i n  compact tension specimens, t h e  nonlinear energy toughness C I ~ ,  t h e  J 

and t h e  l i n e a r  toughness F were compared. The v a r i a t i o n  i n t e g r a l ,  J I ~ ,  - 
of Z p ,  J I ~ ,  and G I ~  on compact tens ion  specimens of 2124-T851 with thick- 
ness  is  i l l u s t r a t e d  i n  f igu re  3 .  Also included i n  f i g u r e  3 are the  values 
of these  toughness parameters evaluated a t  the  onse t  of s u b c r i t i c a l  crack 
growth and designated G ~ ~ ~ , J ~ ~ ~ ~ a n d  GIsc respec t ive ly .  As i n  t h e  center- 
cracked specimens,the toughness parameters determined a t  peak load showed 
a geometry dependence; they increased with decreaszng thickness,and a l l  . 
t h r e e  parameters var ied  i n  a s i m i l a r  manner. 
haved i n  a similar manner, with GIc cons i s t en t ly  l a r g e r  than J 
t h e i r  d i f f e rence  from EIc increased with decreasing thickness .''The J I ~  
and c~~ values  agreed with t h e  ASTM value  G I ~  
s u f f i c i e n t  t o  cause plane s t r a i n  f r ac tu re .  Therefore, these  toughness 

It 
n Ec 

A t  t h e  onse t  of 

The difference-between Gsc and gsc a l s o  increased 
This d i f f e rence  is  c l e a r l y  

In  both cases it is 

However, i t  is  a l s o  noted t h a t  t h e  

- 
Gsc. 

The toughness values determined a t  t h e  onset of 

The R curve method has not been suggested f o r  t h i c k  specimens. 

IC 

v - 

The G I ~  and JIc values be- .., , and 

when t h e  thickness w a s  
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values f o r  t h e  two th i ckes t  specimens were not included i n  f i g u r e  3 s ince  
they overlapped z ~ ~ ~ ,  JIseand gISc. When determined a t  t h e  onset of 
s u b c r i t i c a l  crack growth, GIsc,GI C,and JIs 
each other,and t h e  values remaine8 unchange8 w i t h  changes in  specimen 
thickness.  

crack growth GIsc remain e s s e n t i a l l y  constang i n  t h e  e n t i r e  
range wi th  no appreciable d i f f e rences  between 
ness. Thus, i t  w a s  concluded t h a t  v a l i d  l i n e a r  toughness values can be 
obtained from specimens much th inner  than t h a t  required by A S P  E399 by 
eva lua t ing  EIsc. 
J I ~ ~  values a t  a l l  thicknesses,  t h e  d i f f e rences  of 
from E I ~  increase  with decreasing thickness.  The ex ten t  of s u b c r i t i c a l  
crack growth a l s o  is  l a r g e r  when t h e  thickness i s  smaller. This indi-  
c a t e s  t h a t  t h e  non l inea r i ty  due t o  crack-tip p l a s t i c  deformation before 
crack growth i n i t i a t i o n  is  very l imi ted  and t h a t  t he  major cont r ibu t ion  
t o  non l inea r i ty  i s  due t o  s u b c r i t i c a l  crack growth and p l a s t i c  defor- 
mation a f t e r  t h e  onset of s t a b l e  crack growth. 

- 
w e r e  wi th in  ten percent of 

The l i n e a r  - toughness values determined a t  t h e  onse t  of s u b c r i t i c a l  

and t h e  l i n e a r  tough- 

As compared t o  t h e  agreement between clSc, GIsc, and 
and J I ~  values 

CONCLUSIONS 

The e f f e c t  of s u b c r i t i c a l  crack growth on t h e  geometry dependence 
of t h e  l i n e a r  and several nonlinear toughness parameters w a s  inves t iga ted  
by varying t h e  specimen length,  width,and crack length-to-width r a t i o  i n  
center-cracked specimens and by varying the  thickness i n  compact tension 
specimens. 
toughness parameters w a s  dependent on t h e  choice of t h e  c r i t i c a l  po in t .  
The following conclusions were made. 

It w a s  observed t h a t  t h e  geometry dependence of var ious  

1. 

2. 

3. 

I n  t h i c  shee t  specimens,when t h e  peak load w a s  chosen as t h e  c r i t i c a l  
point Gc and + increased with increas ing  width and decreasing length  
and c/w. 
i t i a t i o n ,  t h e  geometry dependence w a s  neg l ig ib ly  small. The geometry 
dependence M a s  more pronounced i n  t h e  more d u c t i l e  2024-T3 than i n  
t h e  more b r i t t l e  7075-T6. 

I n  t h e  compact tension specimens 
c reas ing  thickness i n  a s imilar  fashion when the  peak load w a s  chosen 
as t h e  c r i t i ca l  point.  When t h e  onset of s u b c r i t i c a l  crack growth 
w a s  used as t h e  c r i t i ca l  p o i n t , a l l  of t h e  toughness parameters w e r e  
independent of specimen thickness.  

The r e s u l t s  of t hese  experiments i n d i c a t e  t h a t  v a l i d  G I ~  values can 
be obtained from specimens of thickness much lower than t h a t  required 
by ASTM E399, i f  t h e  onset of s u b c r i t i c a l  crack growth is  chosen as 
t he  c r i t i c a l  point.  

When t h e  cr i t ical  point w a s  t h e  onse t  of crack growth in- 

Elc, and J I ~  increased with de- 
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4. The contribution of nonlinear e f f e c t s  t o  toughness values is very 
small pr io r  t o  crack growth i n i t i a t i o n ;  t he  major contribution arises 
from s u b c r i t i c a l  crack growth and p l a s t i c i t y  a f t e r  the  
crack growth. 

t of s t a b l e  
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Figure 1.- Fracture toughness of 7075-T6 sheets as a function of 
gauge length, evaluated at the onset of subcritical crack 
growth and a t  peak load. 
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Figure 2.- Fracture toughness of 2024-T3 sheets a s  a function of 
gauge length, evaluated at  the onset of subcritical crack 
growth and a t  peak load. 
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ON A 3-D "SINGULARITY ELEMENT" FOR COMPUTATION OF 

COMBINED MODE STRESS INTENSITIES* 

Satya N. Atluri and K. Kathiresan 
Georgia Institute of Technology 

ABSTRACT 

A special three-dimensional llsingularity'' element is developed for the 
computation of combined modes I, I1 and I11 stress intensity factors, which 
vary along an arbitrarily curved crack front in three-dimensional linear- 
elastic fracture problems. 
ment-hybrid" finite element model, based on a modified variational principle 
of potential energy, with arbitrary element-interior displacements, inter- 
element boundary displacements, and element boundary tractions as variables. 
The special crack-front element used in this analysis contains the square root 
singularity in strains and stresses, where the stress-intensity factors K , 
KII, and KIII are quadratically variable along the crack front and are so € ved 
directly along with the unknown nodal displacements. 
for buried elliptical flaws of various aspect ratios, semi-elliptical flaws 
of various aspect ratios and crack-depth/specimen thickness ratios, and 
quarter-elliptical corner flaws of various aspect ratios, in a finite-sized 
uni-axial tension specimen are presented. The qualitative nature of these 
results is discussed. 

The finite element method is based on a "displace- 

Stress intensity factors 

INTRODUCTION 

The problem of computing stress-intensity factors (SIF) for three-dimen- 
sional crack geometries is receiving considerable attention currently. This 
task, however, is a formidable one, with analytical solutions being limited to 
simple embedded crack geometries in an infinite space. 
bedded circular or elliptical flaws near a free surface have been studied using 
the Schwarz-Newmann alternating technique for instance (ref. 1,Z). Part cir- 
cular and semi-elliptical cracks intersecting with a free surface ("surface- 
cracks") have also been studied (ref. 3,4) by the alternating technique. How- 
ever, as is now widely recognized, the alternating technique suffers from an 
intrinsic difficulty when the crack intersects a free surface, viz., at each 
alternating step where residuals are removed from the crack faces, a singular 
spike of residual normal stress is introduced on the free surface which inter- 
sects the crack. Treatment of embedded and surface flaws through the boundary- 
integral equation method have also been presented (ref. 5) for mode I type 

* This work was supported by AFOSR Grant 74-2667, and in some parts by NSF 
grant ENG-74-21346. We gratefully acknowledge these, and the encouragement of 
Dr. W.J. Walker. 

The prqblems of em- 
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problems. 
integral-equation type modelling of the three-dimensional cracked body; how- 
ever, with a finer surface element breakdown near the crack-front. 
mode I were then computed in reference 5 from the computed crack-opening dis- 
placements. 
singularity," special crack front element based on the hybrid-displacement 
model, which is used to compute directly the combined modes I, 11, and 111 
SIF variations along a crack front. 

The procedure used in reference 5 is to use the usual boundary- 

The SIF in 

The object of the present paper is to describe an "embedded- 

BRIEF DESCRIPTION OF "EMBEDDED-SINGULARITY", SPECIAL CRACK FRONT ELEMENT 

Consider a triad of orthonormal coordinates: "t" tangential to crack 
border; In1, local outward normal to the crack border and lying in the crack 
plane; and ' z '  normal to both the 't' and 'n' axes. From the well-known, 
general solution of an embedded elliptical crack the asymptotic solution for 
displacements near the crack front is known to be, 

where r,e are polar coordinates centered at a point on the crack border and in 
the n-z plane, and the index i = 1,2,3 is used such that U 1 s  Ut, U2 3 Un and 
U3 Our aim is to embed the above asymptotically correct singular dis- 
placements, and the corresponding singular stresses, in finite elements immed- 
iately near to the crack front. 
optimally finite, we include also regular, arbitrary order, polynomial dis- 
placement assumptions in these near field elements. In doing so, interelement 
displacement compatibility and traction equilibrium cannot be achieved in a 
trivial manner. To this end, we use the displacement-hybrid finite element 
model (refs. 6,7) which enforces these interelement conditions through a 
Lagrange Multiplier technique. It has been shown in reference 6 that the vari- 
ational principle governing this hybrid finite element model for linear elas- 
tic problems, is 6rr = 0, where 

U,. 

To keep the size of the finite element 

M 

A6 m=l m 

4- Ti(Ui-Ci) ds - TLi(Ui-Vi> dp} 
Pm S 

U m 

0 m 

Eij kR where Qm is the domain of mth element, E . .  = 1/2(UiYj + U ) is strain, 
1J  j,i 
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are e l a s t i c  constants, Ui are displacements i n  the  i n t e r i o r  of the element, pm 
is the  interelement boundary, Vi is independently assumed interelement boundary 
displacement (at pm) and T L ~  are Lagrange Mult ipl iers  (which are physically 
the  independently assumed boundary t ract ions)  a t  pm, needed t o  enforce the  con- 
s t r a i n t  of interelement compatibility, Ui = Vi a t  pm fo r  adjoining elements. 
I n  developing the  ' s ingular i ty  element', w e  then make the  following assump- 
t ions  fo r  each of such elements: 

(3) 

where superscript  R i s  used t o  denote regular,  a rb i t r a ry  order, polynomials, 

We note tha t  boundary displacements Ls contain f i  variat ion on appropriate 
boundaries and likewise boundary t rac t ions  Rs contain l / f i  var ia t ion  on appro- 
p r i a t e  boundaries, of a singular element. Referring t o  reference 7 for  a l l  
the intermediate d e t a i l s  of assumed functions and the var ia t ional  procedure 
t o  obtain the f i n a l  matrix equations, we note tha t  the above hybrid-displace- 
ment method, as applied t o  f racture  calculations,  leads to  the f i n a l  equations: 

are the  combined mode stress i n t e n s i t i e s  a t  a l l  nodes a t  the  crack front ,  
J = 1,2 ... m y  and thus these a re  calculated d i rec t ly .  
present method are  given below. 

Some applications of the 

BURIED ELLIPTICAL CRACK I N  A FINITE SPECIMEN 

The specimen dimension i s  2H X 2H X 2H, H = 5. The area of quarter 
e l l i p se ,  v i z . ,  (n/4) ab is  kept constant, and the aspect r a t i o  (a/b) i s  
varied from 4 t o  1 ( f ig .  1). I n  t h i s  and a l l  the following cases, the Pois- 
son's r a t i o  v = . 3 .  The exact solution fo r  a buried e l l i p t i c a l  crack i n  an 
i n f i n i t e  so l id  is  displayed i n  f igure  2 fo r  convenience, and the  f i n i t e  ele- 
ment modelling of the  present f ini te-s ized specimen i s  shown i n  f igure 3.  The 
computed KI var ia t ions and t h e i r  comparison with the infinite-domain exact 
solution are shown i n  f igure 4 . f o r  various (a/b)rat ios .  We note tha t  the nor- 
malizing factor  used i n  f igure 4 i s  the  exact KI' solut ion fo r  a buried circle 
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of radius by in an infinite solid. It is seen that when (a/b) = 4 (and corre- 
sponding a/H = .4 and b/H = .l) the finite-width correction is about +20 
the ellipse major axis location, and this correction drops to about +5% 
the minor axis location where the stress-intensity is the mum. These 
finite-width corrections reduce progressively as a/b decreases, and when 
a/b = 1 (buried circular crack) the finite-width correction is +3%. We note 
that the boundary-integral method (BIE) (ref. 5) for the identical problem 
yields little or no finite-width corrections to the infinite-domain solutions 
for all aspect ratios. Part of this discrepancy in reference 5 could be due 
to the fact the solutions reported in reference 5 were normalized w.r.t. the 
numerical solution, obtained through BIE method, for the buried-circle crack. 
However, it appears that in reference 5 the numerical solution of the buried 
circular crack was 8-10% lower than the corresponding infinite-domain solution. 

SEMI-ELLIPTICAL SURFACE FLAWS IN A FINITE SPECIMEN 

The KI variations for the surface crack, for various a/b ratios, normal- 
ized with respect to the solution of a buried crack of the same aspect 
ratio and in an infinite solid, are shown in figure 5. Unfortunately, in 
varying a/b ratio, because H was kept constant, the depth ratio b/H (and hence 
a/H) also varied continuously. It is seen that for a/b = 4 (a/H = .4 and b/H= 
.l) the maximum stress intensity magnification occurs near the free surface. 
This free-surface stress-intensity magnification factor decreases continuously 
as a/b is decreased. At a/b = 1 (semi-circular surface flaw) the obtained 
solution is found to agree well with reference 4, It is interesting to note 
that as a/b becomes less than 1, the maximum stress-intensity magnification 
occurs at the point of deepest penetration, rather than at the free surface. 
It is seen from figure 5, that for a/b = 0.25 (a/H = .1, b/H = :4) i.e., 
when the crack depth is 40% of the specimen thickness, the stress-intensity 
magnification at point of deepest penetration is about 17% higher than that of 
the free surface. For this case of a narrow and deep surface flaw, it may be 
expected that the KI value in the neighborhood of the free surface approaches 
that of a through-the-thickness crack, and the presently computed results 
appear to confirm this. The present results, however, are found to differ 
significantly from those in reference 5 for identical problems. 
parison of the present results with those in reference 5 is omitted here for 
want of space. 

t Further com- 

QUARTER-ELLIPTICAL CORNER CRACKS IN A FINITE SPECIMEN 

The KI variations, normalized using the same procedure as in figure 5, are 
shown in figure 6 for various a/b ratios. 
maximum stress-intensity magnification occurs near the point of intersection 
of the major axis of the ellipse, the crack front, and the free surface, as may 
be expected. 
creases, until when a/b = l, this quantity is the same at both points of inter- 
section of the crack front with the free surfaces. Once again, the present 

Once again, it is seen that the 

This maximum stress-intensity magnification drops as a/b de- 
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results differ significantly from those in reference 5, and further discussion 
of this is omitted for want of space. However, one reason for this discrepancy 
may be the particular normalization procedure, mentioned earlier, that is used 
in reference 5 . 

CLOSURE 

An efficient embedded singularity element is developed and applied in 
several problems of buried, surface, and corner cracks that usually occur in 
practical situation. However, since the developed procedure hinges on em- 
bedding a l / f i  type stress singularity near the crack front, it cannot be ex- 
pected to yield any new insights into the nature or strength of singularity 
right at the intersection of the crack front with a free surface. 
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INFLUENCE OF A CIRCULAR HOLE UNDER UNIFORM NORMAL PRESSURE ON THE 

STRESSES AROUND A LINE CRACK I N  AN INFINITE PLATE 

Ram Narayan and R. S. Mishra 
Banaras Hindu University, India 

SUMMARY 

Based on the two-dimensional theory of e l a s t i c i t y  and by the  use of 
Muskhelishvili's technique, t h e  influence of a c i r cu la r  hole, under uniform 
normal pressure,  on the  stresses around a l i n e  crack i n  an i n f i n i t e  p l a t e  
subjected t o  tension is  discussed. Numerical calculat ions were carr ied out 
and the va r i a t ion  of the  crack-tip stress in t ens i ty  fac tor  due t o  the  geometry 
w a s  c l a r i f i ed .  

INTRODUCTION 

The regions near crack t i p s  are usually i n  an e l a s top la s t i c  stress state 
f o r  which ana ly t i ca l  solut ions are d i f f i c u l t  t o  obtain except for  qu i te  
simple cases. I n  the design of a i r c r a f t s ,  ships ,  and other machines, i t  is  
of ten  important t o  know the  s t a t e  of stress and s t r a i n  around cracks i n  sheet  
s t ruc tures .  

The study i n  crack problems was f i r s t  i n i t i a t e d  by I n g l i s  ( ref .  1); 
however, t h e  i n t e r e s t  i n  such problems stemmed from Gr i f f i t h ' s  paper ( ref .  2 ) .  
The cases of s t r a i g h t  crack, c i r cu la r  crack, star crack, and penny-shaped 
crack have been studied by many invest igators .  
p l a t e  containing a c i r cu la r  hole w a s  discussed by Greed ( re f .  3) and others.  
The problem of a c i r cu la r  hole under uniform normal pressure i n  an i n f i n i t e  
p l a t e  was considered i n  reference 4. 
problems forms the  subject  matter of t he  present paper. 

The problem of an i n f i n i t e  

An e f f o r t  t o  combine the  above two 

This paper deals  with t h e  problem of an i n f i n i t e  i so t ropic  elastic 
material ca l led  matrix containing a s t r a i g h t  crack from (a,O) t o  (b,O) and a 
c i r cu la r  hole of radius  R with center  a t  any point  M (M may be complex). 
crack and the  hole do not  overlap. 
external. t r ac t ions  and the  boundary of t he  c i r cu la r  hole is subjected t o  a 
uniform normal pressure P. 
(see f i g .  1). It is  assumed tha t  ro t a t ion  a t  i n f i n i t y  i s  zero, as it does not' 
a f f e c t  t h e  stresses. 
two functions $(z) and Q(z) by using the  condition given a t  the  r i m s  of the  
crack. Solution of t he  Hi lber t  problem is  obtained by the  use of the  complex 

The 
The r i m s  of t h e  crack are f r e e  from 

The matrix is  subjected to  a load a t  i n f i n i t y  

A dual homogeneous Hilber t  problem i s  formulated. f o r  
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v a r i a b l e  technique developed by Muskhelishvili.  Once t h e  functions $(z) and 
Q ( z )  are known, t h e  elastic f i e l d  i n  t h e  region under consideration can be 
determined very e a s i l y .  

SYMBOLS 

N1' N2 

B 

An 2 Bb 2 Dn 9 En 

Cartesian stress components 

po lar  stress components 

Cartesian displacement components 

complex p o t e n t i a l  f o r  shee t  

shear modulus and Poissonts  r a t i o  of shee t ,  respec t ive ly  

f o r  plane deformation, 3-4v, f o r  generalized plane stress, 
(3-u)/( l+v) 

values of p r i n c i p a l  stresses a t  i n f i n i t y  

angle between t h e  p r inc ipa l  a x i s ,  corresponding t o  N1 and 

parametric c o e f f i c i e n t s  included i n  $ ( z )  and Y ( z )  

x-axis 

BASIC EQUATIONS 

The f a c t  t h a t  t h e  so lu t ion  of a two-dimensional e l a s t i c i t y  problem de- 
pends upon f ind ing  two holomorphic func t ions  $(z) and Y ( z )  is  well-known. 
The stress and displacement components are r e l a t e d  t o  t h e  functions 
Y ( z )  by t h e  following r e l a t i o n s :  

$(z) and 

+ i u ) = K$(z) - $ ( z )  - z $ ' ( z )  - Y ( z )  21J(ux,x Y YX 

where the  bar denotes t h e  complex conjugate and the  comma after t h e  func t ion  
s tands  f o r  p a r t i a l  d i f f e r e n t i a t i o n  with r e spec t  t o  subsc r ip t s  following it. 

W e  de f ine  a new funct ion  Q ( z )  as follows: 
- 

Q ( z )  = $(z) + z 9 ' ( z )  + F(2) 

Hence, 
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Y(z) = - cp + E ( z )  - z$-yz)  (3) 

Substitution of Q(z )  instead of Y(z) in equation (1) leads to 

Thus, for the function Y(z), the stresses and displacements are expressed in 
terms of two functions $(z) and Q(z ) .  

BOUNDARY CONDITIONS 

The boundary conditions of the problem can be scated as follows: 

where 

+ + 
Y XY 

(ii) On the rims of the crack L, CF-- i T- = 0 

++(t) + f(t) = 0, $--(t) + Q+(t) = 0 

where 
- refer to the boundary values of the functions as z approaches t from 
the upper and lower half-plane respectively. 

t is the coordinate of the point on the cut L and superscripts + and 

(iii) On the circular hole r = R, when origin is considered at M, 

COMPLEX POTENTIALS FOR THE PLATE 

Since equations ( 6 )  are dual homogeneous Hilbert probxems for two 
functions $ ( z )  and Q ( z ) ,  which are analytic in the entire plane cut along 
L, the complex potentials r$(z) and Q ( z )  can readily be constructed for the 
infinite plate which satisfy the conditions in equations (5) and ( 6 )  by the use 
of Muskhelishvili's technique. Taking account of the fact that @ ( z )  and 
Q(z)  
follows: 

could have poles of various orders at z = M, we can write them as 
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1 1 
2 2 

- -  where 

X(z) = (z-a) (z-b) 
- -  

m 

Equation (9) means that the branch is analytic in the entire plane cut along L 
such that X(z) * (l/z) for 1.1 3 w . The coefficients An and Bn are to 
be determined by equation (7). 

The origin of the coordinate system is now shifted to M. The functions 
{$J(z) , Y (z) 1 transform to new functions {@1(z1), Yl(zl) 1. 
script 1 for convenience but remember these are the potentials obtained after 
shifting the origin to M. 

We drop the sub- 

The function @(z) in equation (8) and the corresponding potential Y(z) 
obtained from equation (3 ) ,  can be expanded in the following Laurent series, 

W W 

@(z) = C D zn, Y(z) = C En zn (10) 
nZ-03 n n=-W 

where 
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Here 6 is Kronecker del ta .  The constants pn's are known quant i t ies  

determined from the r e l a t ion  
mYn 

1 - -  1 
CQ - -  

(13) C p z n =  ( z + M - a )  ( z + M - b )  2 
n n= 0 
Using equation (7) along with equation (lo), one may obtain 

(n 1 0) (14) - pn-2  - E = - P 6  
-n-2 0 ,n -n R~ D~ + (n + I ) R - ~  D' 

R - ~  D - (n - 1 ) ~ ~  En - R = 0 (n c > 1) (15 1 n-2 - 
-n 

When (14) and (15) are solved, the following expressions are obtained: 

D-l = 0 

D 

E-1 = 0 

2n-2 - 
En-2 = (n - 1 ) ~ ~ ~  zn + R -n 

= (Rn P + Do 4- Do)R26 + 
E-n-2 OYn 

2{R2n En + + 

By equations (11) and (12) and (16) and (17) 

' [2pk 'n+k+2 - (M - (n + l){pk Bn+k+l - - 'k+lBn+k+2 11 o,n k=O 

= 2R2 (R? + De + Do) 6 0 ,n + 2R2n+2 Gn (1 - 6 OYn ) + 2{(n - l)R 2 2n+2 - 
Dn + 

+ (n + 1) R2n En-2)(1 - 6 o,n - 6 1,n + 2{(n + 1 ) R  

2 2n+4 - 2n+2 - -2{(n + 1) R 

+ R2n+2 En} - 2n+4 
Dn+2 

Dn+2 + (n + 1) R En' 



Since Dn and En are l i n e a r  functions of B n l s ,  equations (19) 
Bn, when 

determined earlier. 

solve completely the problem of determining t h e  coef f ic ien ts  
values of ro, I'1, m y  a, b y  and R are known. The values of A,'s are 
determined from equation (18) using the values of 
Thus the po ten t i a l s  {$(z) , Y ( z )  } are completely known. 

Bn's 

NUMERICAL EXAME'LES 

I n  order t o  c l a r i f y  the  e f f e c t  of a hole under uniform normal pressure 
on t h e  crack-tip stress in t ens i ty  fac tor ,  some numerical calculat ions were 
carried.  out 

a = -0.5 b 

Here,  it is  
of t he  hole 

It may 
when P -+ 0 
crack under 

f o r  t h e  following values: 

= 0.5 M = (0,-2) R = 0.5(.25)1.75 ro = rl = o 

noted t h a t  the  stress in t ens i ty  f ac to r  decreases as the radius  
decreases (see f ig .  2). 

be v e r i f i e d  from the  theore t ica l  r e s u l t s  given i n  t h i s  paper t ha t  

tension a t  i n f i n i t y .  
and R -+ 0, w e  revert t o  the  case of a matrix with a s ing le  

Also, when the  length of the  crack and 
t r ac t ions  a t  i n f i n i t y  vanish, we ge t  the  r e s u l t s  of c i r cu la r  cavi ty  under 
uniform normal pressure i n  an i n f i n i t e  elastic p la te .  
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THE EFFECT OF SEVERAL INTACT OR BROKEN 

STRINGERS ON THE STRBSS INTENSITY FACTOR 

IN A CRACKED SHEET* 

K. Arin 
Lehigh University 

ABSTRACT 

The e f f ec t  of several  s t r i nge r s  on the  stress in tens i ty  fac tors  a t  the 
t i p s  of a crack is considered. The s t r ingers  which are continuously attached 
t o  the  p l a t e  and placed perpendicular t o  the crack may be p a r t i a l l y  debonded 
due to  high stress concentrations. Since the s t r inge r s  may even break under 
excessive loading conditions, both i n t a c t  and broken s t r inge r s  are considered 
t o  invest igate  the e f f ec t  of rupture. The continuity of displacements along 
the  bond l i n e s  leads t o  an in tegra l  equation which is solved t o  give the shear 
stress d is t r ibu t ion  i n  the adhesive and the  stress in tens i ty  fac tors  a t  the 
crack tips. 

INTRODUCTION 

Stiffened panels, i.e. m e t a l  sheets  with s t r inge r s  continuously bonded 
through M adhesive have long been of major i n t e r e s t  ( re fs .  1-6). G r e i f  and 
Sanders have given the  solution of a s t r inge r  perfect ly  bonded t o  a cracked 
sheet ( re f .  1). On the  other  hand, t he  case with r iveted s t r inge r s  - both 
in t ac t  and broken - has been t rea ted  by Poe ( re fs .  2 and 3 ) .  Furthermore, the  
problem of a cracked i so t ropic  p l a t e  s t i f fened  by a s t r inger  which may be par- 
t i a l l y  debonded has been considered by Arin (ref .  4 ) .  It has been concluded 
t h a t  the debonding process as w e l l  as the  s t r inge r  placing are qui te  important 
as f a r  as the  s t i f f en ing  e f f e c t  of the s t r inger  is  concerned. I n  a separate 
work ( r e f .  5) t he  e f f e c t  of lateral bending s t i f f n e s s  of the s t r inge r  has 
been investigated. 

However, due t o  high load leve ls  s t r inger  breakage can occur i n  addition 
t o  debonding. A l s o ,  i n  ac tua ls t ruc tures  several  s t r i nge r s  are present in- 
stead of one. 
considered i n  t h i s  paper. The method employed here is the same as the  one 
used i n  reference 4 and therefore most of the r e s u l t s  w i l l  be used without 
derivation. 

Hence the  problem of several i n t a c t  o r  broken s t r inge r s  w i l l  be 

* 
This work has been supported by the  National Aeronautics and Space Administra- 
t i on  under the  Grant NSG 1178. 
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For i n t a c t  s t r inge r s  t he  case where the  loads are applied on the  crack 
surfaces w i l l  be considered (see f igure  1). This w i l l  a l s o  give the singular 
pa r t  of the solut ion around the  crack t i p s .  The ac tua l  problem where the loads 
are applied a t  i n f i n i t y  can be obtained by a simple superposition. However, 
for  broken s t r inge r s  the  actual  problem w i l l  be t reated as it is (see f igure 2) 
due t o  d i f f i c u l t i e s  involved i n  superposition. 
be considered uniform. 

I n  a l l  these cases, loads w i l l  

The technique used here makes it possible t o  consider any number of 
s t r ingers  located a t  a rb i t r a ry  locations. For the sake of s implici ty  the  nu- 
merical r e su l t s  w i l l  be given fo r  uniformly spaced s t r ingers  a l l  located along 
the pos i t ive  x axis .  However, the  r e s u l t s  f o r  t hes t r inge r s loca ted  along the  
negative x ax i s  can be obtained by simply subs t i tu t ing  f o r  do - the  distance of 
the first s t r inge r  t o  the y ax i s  - its value with a negative sign. 

FORMULATION OF THE PROBLEM 

The problem w i l l  be formulated using the  s a m e  notation" as i n  reference 4. 
The Also, due t o  symmetry only the  upper half  of t he  p l a t e  w i l l  be considered. 

adhesive w i l l  be treated as a shear spring and the  shear stresses w i l l  be con- 
sidered as body forces i n  the  p l a t e  solut ion (generalized plane stress). L e t  
q represent the  uniform pressure applied on the  crack surfaces i n  the case of 
i n t a c t  s t r ingers  (see f igure 1) and the  uniform tension applied a t  i n f i n i t y  i n  
the  case of broken s t r inge r s  (see f igure 2 ) .  Then the  continuity of displace- 
ments can be wri t ten as (ref .  4) 

a vp(z) - vs(z) = - P ( z )  , z on L 
ds'a 

Here, L denotes the  union of s t r a igh t  l i n e s  L j  defined by x=cj, b-<y<a;  
j=l ,  ... ns where ns is the  number of s t r ingers ,  b j  is the  half  debond length 
of t h e  j t h  s t r inger .  

3 -  

For uniformly spaced s t r ingers  w e  have 

where d l  is  the  s t r inger  spacing and do is  the  dis tance of the first s t r inger  
t o  the  mid-point of the  crack. 

(E,v)  : Elastic constants of the plate .  pp=E/2(l+v) ,  ~=(3-v) / ( l+v)  fo r  

(Es,As): 
P a  : 
($,ha): 
a: Half crack length. 
ds : Str inger  width. 
vp(z) vs ( z )  :Displacements of the plate and the  corresponding s t r inge r  a t  z 

P(z)  : Shear stress i n  the adhesive a t  z location. 
0 :  

Y 

generalized plane stress. 
Elas t ic  modulus and cross-sectional area of the s t r inger .  
Shear modulus of the adhesive. 
Thicknesses of the  p l a t e  and the  adhesive. 

location. 

S t ress  i n  the y direct ion.  
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Moreover, f o r  broken s t r ingers ,  t h e  equilibrium equations can be s ta ted  as 
f 01 lows : 

- - E A q  i f  t he  load a t  n i t y  is  a l so  
s s  t ransferred t o  s t r inge r  

P(zo)dyo - 

0 i f  the end of the s t r inger  a t  
i n f i n i t y  is stress free 

j=l,. . .n (3) 
S 

- I it I 
Lj 

where y = Im(zo) . 
0 

Hence, using the  appropriate displacement expressions equation (1) w i l l  
give the in t eg ra l  equation of the problem as 

which w i l l  be considered together with equation (3 )  and solved fo r  the shear 
s t r e s s  d i s t r ibu t ions  and the  r i g i d  body displacements. Note t h a t  C i n  equa- 
t ion  (4) which represents t he  r i g i d  body displacements assumes a d i f f e ren t  
constant value on each broken s t r inger ,  i .e . ,  C=C j=l, ... ns. 

j‘ 
H e r e ,  the kernels k(z,zo) and k ( z )  can be obtained s imi la r ly  as i n  refer- 

0 ence 4. 

The stress in tens i ty  factor  is  defined as 

and given i n  f igures  3,4,5,6, and 7. 

NUMJ3RICAL RESULTS AND CONCLUSION 

The numerical r e s u l t s  are obtained f o r  the  following data: 

P la te  : 

Stringer:  

v = 0.-30, E = 703000 kg/cm2 ( l o 7  ps i ) ,  % = 0.229 cm (0.09 in )  

As = 1.065 cm2 (0.165 in2) , E, = 871720 kg/cm2 

(1.24 x l o 7  ps i )  
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Adhesive: 1.1, = 11600 kg/cm2 (1.65 x l o 5  ps i ) ,  ha = 0.01 c m  (0.004 in)  

q = constant 

In t ac t  Stringers:  The effect of debond length bl of t h e  first s t r inge r  is 
It is seen t h a t  for bl/a>2 the s t i f f en ing  e f f e c t  w i l l  i l l u s t r a t e d  i n  figure 3. 

decrease appreciably even i f  the  other  s t r inge r s  still  remain per fec t ly  bonded 
t o  the  plate. One can show t h a t  (ref. 6) the effect of a s t r inge r  i s  m o s t  sig- 
n i f i can t  i f  it is located between the  crack tips, The number of s t r inge r s  is 
less s igni f icant  i f  these s t r inge r s  are placed away f r o m  the  crack tips. The 
effect of the  locat ion of the first s t r i n g e r  (do), is shown i n  f igure  4. It is 
observed t h a t  for d0/a>2 a l l  K/q& values rapidly approach unity. 

Broken Stringers:  In  t h i s  case, the r e s u l t s  are obtained fo r  both crack 
surface loading (perturbation problem) and t h e  loading a t  i n f i n i t y  ( the  actual 
problem). 
t he  i n t a c t  s t r inge r  problem. 

The solut ion t o  the  f i r s t  case is  given t o  make a comparison with 

Figure 5 indicates  a s imi la r  trend as i n  f igure  3 and can be interpreted 
the  same way. 
the  loads are applied a t  i n f in i ty .  This important r e s u l t  i s  shown i n  f igure 6. 
K/q& values decrease with increasing debond length b l .  
i l l u s t r a t e d  i n  f igu re  7 f o r  crack surface loading where K/q& values approach 
unity as do increases. 

The stress in t ens i ty  f ac to r s  have considerably higher values i f  

The effect of do is 

More d e t a i l s  and numerical r e s u l t s  can be found i n  reference 6. 
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j t h  
stringer 
j = 1 ,  ...I$ 

Figure 1.- Geometry of the problem ( in t ac t  s t r inge r s ) .  

i nger 

Figure 2.- Geometry of the problem (broken s t r ingers ) .  
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-.- . n,=3, b 2 = b g = 0  

b,/a 

( intact  s t r inge r ,  Figure 3 . -  K/q& vs. b /a 
do/a = 0.5, dl/a ='l.O, ds/a = 0.2).  

cb'a 

Figure 4.- K/q& vs. c i  /a (intact  s t r inge r ,  
bl/a = 1.0, 8,/a = 0.2).  
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Figure 5.- K/q& vs. bl/a (broken s tr inger ,  loading on the 
crack surfaces, dl/a = 0.5,  ds/a = 0 . 2 ) .  
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-n ,=1  

-.-. n =2, b 2 / a = 0 . 1  
5 

Figure 7.-  K/q& vs. d /a (broken stringer, loading on the crack 
0 surfaces, bl/a = 1.0, dl/a = 0.5, ds/a = 0 . 2 ) .  
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ON THE PROBLEM OF STRESS SINGULARITIES 

IN BONDED ORTHOTROPIC MATERIALS* 

F. Erdogan and F. Delale 
Lehigh University 

SUMMARY 

The problem of stress s ingu la r i t i e s  a t  the- leading edge of a crack lying 
i n  the  neighborhood of a bimaterial  in te r face  i n  bonded orthotropic materials 
is considered. The main objective of the  paper is t o  study the  e f f ec t  of ma- 
ter ia l  orthotropy on the  singular behavior of the stress state when the crack 
touches o r  in te rsec ts  the  interface.  The r e su l t s  indicate  t h a t ,  due t o  the  
large number of material constants involved, i n  orthotropic materials the  power 
of stress singular i ty  as w e l l  as the stress in tens i ty  factor  can be consider- 
ably d i f f e ren t  than tha t  found i n  the  isotropic  materials with the s a m e  s t i f f -  
ness r a t i o  perpendicular t o  the crack. 

INTRODUCTION 

In  the  design of a s t ruc tu ra l  component i n  which f rac ture  f a i l u r e  is a 
prime consideration, a t  one point it i s  necessary t o  apply a f a i l u r e  c r i t e r ion  
which is usually the comparison of a "charac te r i s t ic  strength parameter'' of the 
material  with a " c r i t i c a l  load factor".  The strength parameter represents the  
resis tance of the material fo r  the par t icu lar  mode of f rac ture  f a i l u r e  and is  
an experimentally measured quantity. The load factor ,  on the other  hand, is a 
measure of the  in t ens i ty  of  applied loads and the severi ty  of component geome- 
t ry ,  and generally is a calculated quantity. It is  therefore clear t h a t  i n  any 
given s i tua t ion  the spec i f ic  choice of f rac ture  c r i t e r ion  and the corresponding 
strength parameter and load fac tor  w i l l  have t o  depend on the  par t icu lar  mode 
of fracture which may be the mos t  l i k e l y  mechanism of failure. 

If the material is  homogeneous and isotropic  i n  i t s  strength as w e l l  as 
i ts  mechanical properties,  par t icu lar ly  i n  the absence of la rge  scale p l a s t i c  
deformations, t he  f rac ture  process is re l a t ive ly  well-understood and the tech- 
niques dealing with the  re la ted  problems are su f f i c i en t ly  well-developed. On 
the other hand i n  composites, par t icu lar ly  i n  fiber-reinforced laminates, t he  
s i tua t ion  is much more complicated not  only because of the nonhomogeneity and 
anisotropy of the medium which make it d i f f i c u l t  t o  analyze the  problem, but 
a l so  because of the  highly nonhomogeneous and nonisotropic d is t r ibu t ion  of the 
strength parameter which makes the  development and application of a proper 
f rac ture  c r i t e r ion  a l so  very d i f f i c u l t .  

*This work w a s  supported by NASA-Langley under t h e  Grant 

I n  such materials it is qui te  possible 

NGR 39-007-011. 
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that  the concept of the progressive growth of a dominant flaw with a well- 
defilied leading edge may not be appropriate to  model the gross fracture behav- 
ior. Very often somewhat irregular and diffused damage zones may develop 
around the flaw and the fracture process may be governed by a principle of 
"weakest l ink",  the local fracture propagation being progressive or i n  discrete 
steps. Nevertheless, whatever the gross mechanism governing the fracture fa i l -  
ure of the medium, one may nearly always assume that  locally fracture i n i t i a -  
tion and propagation w i l l  take place along the leading edges of existing imper- 
fections where the conditions of the relevant fracture criterion are  satisfied. 
Thus, i n  order t o  treat the local fracture phenomenon i n  composites quantitat- 
ively, one needs t h e  solution of the mechanics problem for flaws o r  cracks lo- 
cated a t  or near the phase boundaries o r  bimaterial interfaces. 

For composites which consist of bonded isotropic materials a wide variety 
of prablems have been solved i n  which either the asymptotic behavior of the 
s t ress  s ta te  around the points of geometric singularity or  the'results for a 
specific idealized crack geometry have been discussed (see, for example, refs. 
1 t o  5) .  
tropic materials remain relatively unexplored. 
refer to either an inf ini te  homogeneous plane with a crack (refs. 6,7), or  two 
bonded semi-infinite planes with an interface crack (ref. 8).  These solutions 
indicate that for the crack geometries under consideration the singular be- 
havior of the s t ress  s ta te  around the crack t ips  is  essentially identical to  
the corresponding isotropic problems, namely square root power singularity for 
the crack i n  a homogeneous medium and oscil lating stress singularity with a 
one-half power for the interface crack. The problems regarding the cracks in  
the neighborhood of or intersecting the bimaterial interfaces i n  anisotropic 
nonhomogeneous materials do not seem to  have been investigated. I n  th i s  paper 
th i s  question is discussed for a group of plane problems i n  which the specific 
geometry used is that  of periodically arranged two different sets  of bonded 
orthotropic strips. The primary emphasis i n  the paper is on the examination of 
the effect of material orthotropy on the behavior of the stresses around the 
singular points. 

Compared to  the isotropic case, the crack problems for the aniso- 
The existing solutions - 

FORMULATION OF THE PROBLEM 

Xf u and v respectively correspond t o  the x and y components of the dis- 
placement vector, for an orthotropic plane the equations of equilibrium may be 
expressed as follows (see, for example, ref. 9 ) :  

where the elast ic  constants B1, B2, and 6 are  given bY 3 
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for generalized plane stress, and 

'1 = bll/b66 ' '2 = b 22 /b 66 ' '3 = b12/b66 (3)  

f o r  plane s t r a in .  H e r e  the engineering material constants and t h e  matrix 
B=(b .  .) are defined by the  following standard r e l a t ions  (ref. 9) : 17 

-1 
E = A0 , A = (a.  .) , ( i , j=l , . . ,  6) , B = A 

a = I / E ~  , a = - vXy/~,  , a = - uxz/Ex , a = a = 0, ... 
11 

11 1 2  13  1 4  4 1  

...... 
- (4) a 44 = l /Gyz t a55 - l/Gxz I a 66 = V G X y  r 

- 
' ExVzx - EZvxz ' E v  = E v  , E V  = E v  

(r = o  E =  * ... , (5 = (5 

Y X Y  X y x  z YZ Y =Y 
, E = 2E , ... 

4 YZ 1 xx ' 1 €XX 4 YZ 

Consider now the  per iodical ly  arranged bonded or thotropic  strips shown i n  f ig-  
ure la.  L e t  t he  plane be loaded uniformly p a r a l l e l  to  the  in te r faces  and away 
f r o m  the region of cracks. Then the  solut ion of t he  problem may be wri t ten as 
the  sum of a uniform solut ion obtained from the  plane without cracks and under 
given applied loads, and a perturbation solution obtained from the  cracked 
plane i n  which self-equi l ibrat ing crack surface t r ac t ions  are the only external 
loads. From t h e  f rac ture  viewpoint the  relevant  solut ion is the  latter.  N o t -  
ing t h a t  x and y are local axes of symmetry, t he  solut ion of equations (1) may 
be expressed as 

where j=1 ,2  refer to  strips 1 and 2 ,  respectively.  Subst i tut ing equations (5) 
i n to  equations (l), one obtains  a system of ordinary d i f f e r e n t i a l  equations 
which are coupled i n  pairs. Solving these equations and using the  symmetry 
conditions t h e  unknown functions are obtained i n  the  following form: 
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. . . . . .  

B j ,  (j=1,2) are unknown functions and sjl and s where A , 
the  following charac te r i s t ic  equation 

are the  roots of j 2  

I n  addition t o  A j  and B j ,  ( j=1 ,2)  which appear i n  the  expressions of f j  and m j ,  
the  solution contains four more unknown functions C j  and D j  appearing i n  the 
expressions of h j  and n j ,  ( j = 1 , 2 ) .  
epoxy, graphite-epoxy, o r  f iberglass  laminates B4 is negative. Therefore, t he .  
four roots  of the  charac te r i s t ic  equation (7)  are e i the r  a l l  real i n  which case 
the  material is sa id  t o  be of type I, o r  a l l  complex i n  which case the material 
is said t o  be of type 11. 

I n  most orthotropic materials such as boron- 

I n  the  crack problem described by f igure  l a ,  there are s i x  homogeneous 
conditions which may be used t o  eliminate s i x  of the e ight  unknowns, Aj, B j ,  
Cj, and D j , . ( j = l , 2 ) .  
ment and stress vectors along the  in te r face  (xl=hl,  x2=-h2, OSy<m), and two 
conditions of vanishing shear stress on y=O plane i n  the  s t r i p s  1 and 2. The 
remaining two functions are determined from the  following two mixed boundary 
conditions: 

These are the four conditions of continuity of displace- 

where the single-valuedness condition requires tha t  

(9) 

After some very lengthy manipulations it can be shown t h a t  a l l  e ight  un- 
known functions A j ,  B j ,  C j ,  and D j f  ( j=1 ,2 )  can be expressed i n  terms of $1 
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and $2, and the  mixed boundary conditions (8) and (9) can be reduced t o  a sys- 
t e m  of in tegra l  equations of the  following form: 

ra 

where the  kernels k i j  and t h e  crack surface t rac t ions  p i ,  ( i , j = 1 , 2 )  a r e  known 
functions, and M 1  and M2 are known material constants. 
terials the  expressions fo r  k i j  (which a l so  depend on the  elastic constants of 
the two materials) and M i  ( i , ]=1 ,2 )  are very com l i ca t ed  and fo r  bonded s t r i p s  

I n  orthotropic ma- 

of material type I may be found i n  reference 10 ( *P . 

SOLUTION AND SOMF: RESULTS 

I f  t he  cracks are f u l l y  imbedded i n t o  the homogeneous media 1 and 2 as 
shown i n  f igure  la,  then the  kernels kij ( x i , t ) ,  ( i , j = 1 , 2 )  given i n  equations 
(11) are bounded functions and the in t eg ra l  equations may be solved i n  a 
straightforward manner. In  t h i s  case the stress state around the crack t i p s  
has the standard square root  s ingular i ty .  I f ,  on the  other hand, one of t he  
s t r i p s  is f u l l y  ruptured o r  t h e  crack t i p  touches the interface,  using the  
complex function technique it can be shown tha t ,  f o r  exampke, €or a=hl, d<h2 
(see ref .  10) 

1 9, (X,) = F (x )(h2-x2)-' I okij(r,O)= - f (e)  , 1 1 1 1  r y  k i j  

Al(y) = 0,k = 1 , 2  , ( i , j ) = ( r , e )  , f2,,(0)/Zy = ka 

where (r,e) are the  polar coordinates a t  the  crack t i p  with r<<hl ,  (see f ig .  lb) 
ka is defined as the  stress in tens i ty  factor ,  and Al(y) is t h e  charac te r i s t ic  
function fo r  the material p a i r  1 and 2. The power of stress s ingular i ty  y is 

The r e s u l t s  f o r  material type I1 may be found i n  a Technical R e p o r t  by F. 
Delale, submitted t o  the  Materials Division, NASA, Langley, March 1976, 
Grant N o .  NGR 39-007-011. 

-* 
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a real number between 0 and 1 f o r  a l l  material combinations and generally 
y#1/2 i f  the materials 1 and 2 are not ident ical .  

Similarly, i f  the  crack crosses the interface,  i.e., if a=hl, d=h2, 00, 
then the  intersect ion of the crack l i n e  and the  in te r face  is a point of singu- 
l a r i t y ,  and again it can be shown t h a t  

(-a<x <a 
1 

A 2 ( B )  = 0 k=l ,2 f200  (%/2’ 2 = kxx 

where ( r , 9 )  are the  polar  coordinates around the singular point xl=a, y=O (see 
fig.  IC), A 2 ( B )  i s  the re la ted  charac te r i s t ic  function, k, and kxy are the 
stress in tens i ty  fac tors  (which a re  l i nea r ly  dependent), the  power of singu- 
l a r i t y  13 is  real, and O<B<1/2 .  Unlike the corresponding i so t ropic  case, i n  
orthotropic materials tge charac te r i s t ic  functions A, (8 )  and A2 (B )  a re  qui te  
complicated. It appears t h a t  these functions contain s i x  independent ma- 
ter ia l  parameters and hence do not lend themselves t o  a simple systematic 
study. However, once the  material  pa i r  is specif ied the roots  y and B can be 
calculated very accurately. 

To give an idea about the influence of t he  material orthotropy on the  
power of s ingular i ty  y for a crack terminating a t  the  in te r face  and B f o r  a 
crack crossing the  in te r face  some of the  calculated r e su l t s  are shown i n  tab le  
1. 
t ions  are given i n  t ab le  2. 
i sotropic  and the  remaining materials are orthotropic.  
e ight  materials the roots  of the charac te r i s t ic  equation (7) s 1 , . . , ~ 4  are r e a l ,  
meaning t h a t  these materials are of type I. Materials 9 and 10 a r e  of type 11. 
The materials are boron-epoxy o r  graphite-epoxy laminates with various ply 
or ientat ions.  

The e l a s t i c  propert ies  of ten  d i f f e ren t  materials used i n  these calcula- 
H e r e  the  materials 3 ,  4, and 6 are essent ia l ly  

Also, f o r  the f i r s t  

A s  indicated before, the solut ion of t he  in tegra l  equations (11) f o r  
cracks f u l l y  imbedded i n t o  the  homogeneous s t r i p s  is qui te  straightforward. 
Figure 2 shows some sample re su l t s  for  a crack i n  s t r i p  1. In  order t o  show 
the e f f ec t  of material orthotropy on the  stress in tens i ty  faetor ,  i n  the  ex- 
amples given i n  t h i s  f igure the longitudinal s t i f f n e s s  r a t i o  and the crack 
length w e r e  f ixed (E1 /E =5.5, a/hl=0.8)  and the stress in tens i ty  factor  
ka w a s  calculated for  various material combinations. y 2 Y  

296 



DISCUSSION AND SOME CONCLUSIONS 

Aside from the  examples shown i n  f igure 2 and table 1, large  number of 
calculations were done by f ix ing  longitudinal s t i f fnes ses  E l y  and Ezy, syste- 
matically varying one a t  a time the  remaining s i x  constants and evaluating the 
stress in t ens i ty  fac tor  ka fo r  t he  configuration shown i n  f igure  2 and p 6 w e r s  
of stress singular i ty  y and (3 (see f igure  l b  and c). 
the  following: 
containing the  crack w e r e  increased, ka and y increased, and as E2x, Gzxy, and 
V2xy w e r e  increased ka and y decreased. 
ican t  fac tor  influencing ka and y appeared t o  be the  r a t i o  Glxy/G2xy which may 
c lear ly  be observed from t a b l e  1 and f igure 2. 
combinations I, 111, I V ,  and V t h i s  r a t i o  is 0.2, 2.58, 5.75, and 70.8, re- 
spectively. 
a l l  r e su l t s  converge t o  the solution fo r  col l inear  periodic cracks i 
geneous isotropic  plane. 

The general t r e  
A s  t he  elastic constants Elx ,  Glxy, and vlxy of the  medium 1 

Among these var iables  the  most signif-  

I n  f igure 2 f o r  the  material 

From f igure 2 it may a l so  be observed t h a t  fo r  h230 as 

A c lose examination of the  r e su l t s  given i n  t ab le  1 would indicate tha t ,  
generally there  is a relaxation i n  the  stress s ingular i ty  a t  the point of in- 
tersect ion of a through crack and the  in te r face  (see figure IC) i f  the adjoin- 
ing materials are orthotropic.  This may be seen by comparing the  f3 values f o r  
various material combinations given i n  table 1. I n  f a c t  for  cer ta in  combina- 
t ions it is even possible to  obtain (3= 0 ( i -e . ,  t o  have bounded stresses a t  the  
apex of two rectangular wedges shown in ' f igure  IC), whereas f o r  i so t ropic  ma- 
terials f3 is known t o  be always pos i t ive  (e.g., re fs .  l and 4 ) .  The value of 
B has, of course, an important bearing on the i n i t i a t i o n  of a possible delam- 
inat ion f rac ture  from the s t ress - f ree  boundaries i n  bonded materials. A t  f i r s t  
the r e s u l t  regarding the poss ib i l i t y  of B = O  may appear t o  be somewhat para- 
dox ica lo r  unexpected. However, considering the f a c t  t h a t  i n  two bonded iso- 
t rop ic  wedges forming a half  plane f3 may be zero fo r  cer ta in  ranges of the  
wedge angles, t he  r e s u l t  is  not  unreasonable. The poss ib i l i t y  of reduction o r  
complete elimination of s ingular i ty  power f3 by varying secondary material con- 
s t an t s  seems t o  introduce an added f l e x i b i l i t y  i n  designing against  edge de- 
lamination. 
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Figure 1.- Crack geometry for the composite medium, 
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Figure 2.-  Stress -. intensity factor for the crack i n  medium 1. a /h l  = 0.8, 
= 5 .5  (see tables 1 and 2 for material properties). 
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HIGHER-ORDER EFFECTS OF INITIAL DEFORMATION ON THE 

VIBRATIONS OF CRYSTAL PLATES* 

Xanthippi Markenscoff 
Virginia Polytechnic Institute and State University 

SUMMARY 

A system of plate equations for the thickness-shear and flexural vibra- 
tions superposed on large initial deflection due to bending is derived; in the 
stress-strain relations the terms associated with the fourth-order elastic 
stiffness coefficients are retained. 
the fundamental cut-off thickness shear frequency is obtained and the effects 
of the terms associated with the fourth-order constants appear to be signifi- 
cant for large gradients of the rotation angles. 

An explicit formula for the change in 

INTRODUCTION 

The changes in the resonance frequencies of crystal plates subjected to 
initial stresses have been studied both experimentally and theoretically in 
the last twenty years (ref. 1). The ratio of the frequency change to the 
resonance frequency without initial stress, f-fo/fo, has an order of magnitude 
of 10-5 to 10-8 but accurate predictions of it have been obtained (refs. 1,2) 
by including in the stress-strain relation the nonlinear terms associated with 
the third-order elastic constants and taking into account the initial defor- 
mations. However, in the case of a plate sttbjected to large initial bending 
some discrepancies have been observed between experimental and both analytical 
and numerical results as described in reference 2. It was conjectured that in- 
cluding the fourth-order elastic constants in the stress-strain relations 
would accommodate these differences. 

In reference 1 the basic plate equations of the theory of small deforma- 
tions superposed on finite deformations are derived in Lagrangian formulation 
while in the stress-strain relations terms up to quadratic in the strain are 
kept. 
the fourth-order elastic coefficients have been included ant; plate equations 
are derived to accommodate the thickness-shear and flexural vibrating of 
rotated Y-cuts of quartz superposed on a state of large initial bending. 
initial strain components are assumed small but large deflection gradients 
and rotation angles are allowed. 
change of the fundamental thickness-shear frequencies in terms of the initial 
deformation and second-, third- and fourth-order constants. 

In the present paper the cubic terms in the strain, associated with 

The 

An explicit formula is obtained for the 

*This work was supported by NSF Grant No. ENG 75-11875. To appear in the 
Journal of the Acoustical Society of America. 
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The higher-order elastic constants can be measured by observations in 
For a detailed phenomena in which the elastic nonlinearity is manifested. 

discussion on this the reader is referred to Thurston (ref. 3). Measure- 
ments of some of the fourth-order elastic constants have already been made. 
Based on the phenomena of intermodulation in thickness-shear and trapped 
energy resonators Tiersten obtained an estimate of ‘6666 for AT-cut quartz 
(ref. 4). Using shock-compression experiments Fowles (ref. 5) and Graham 
(ref. 6) have measured the longitudinal constants 61111, C3333 for different 
cuts of quartz and sapphire. Their technique, however, is restricted to 
solids that can sustain large elastic compressions in uniaxial strain and to 
longitudinal elastic coefficients only. Some fourth-order constants for 
several cesium halides have been measured by ultrasonic techniques (ref. 7) 
and combinations of fourth-order constants of fused quartz have been deter- 
mined in uniaxial tension experiments (ref. 8). Also Thurston and Shapiro 
demonstrated that the growth of the third harmonic in an initially sinusoidal 
finite-amplitude wave depends on both third- and fourth-order elastic con- 
stants (ref. 9) .  

In this work a different method for the determination of the fourth-order 
constants is presented. The constants C6611, c6633, ‘6655 can be determined’ 
to accommodate the differences between experiments and analytical predictions. 
As it appears from figure 6 and in particular figure 7 - where the differences 
are more pronounced - of reference 2, a symmetric function in $ with respect 
to $ = 180’ is needed and the additional quadratic terms included in the 
formula for Af/f provide qualitatively this type of distribution. The order 
of magnitude of the fourth-order constants involved m y  be seen to be the 
same as that of the constants measured by the previously mentioned investi- 
gators. 

STRE SS-STRAIN RELATION 

The notation followed here is the same as in reference 1 - also shown 
in table 1 - and the formulation of the problem is Lagrangian. 
present final state and the initial static one the stress-strain relations 
are expressed, respectively, by 

At the 

1 E % + higher order - 
E E + - C  1 + - C  

- - - - 
Tij ‘ijkREkE 2 ijkRmn kR mn 6 ijkRmnpq kR mn pq 

terms in i? k% 

E E E + higher order 1 1 + - C  2 
- 

Tij - ‘ijkkEkE ijkRmnEkREmn + a ‘ijkhunpq kR mn pq 
(2) kR terms in E 

and their difference is defined as the incremental stress-strain relation 

E E n  I 
tij = ‘ijkR‘kR ‘ijkEmnEkE‘mn 7 ‘ijkRmnpq kR mn pq + higher order terms (3) 
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where t h e  products of t h e  incremental s t r a i n  have been omitted, t he  superposed 
motion being in f in i t e s ima l .  Following Mindlin's ( r e f .  10) general  procedure 
of series expansion i n  t h e  thickness coordinate x2, equations (2) and (3) yield. 

= ( f )  1 C E(f)E(q) 
33 f a(ef)CijkREkR + f , g  a(efg) ijkRmn kR mn 

1 C E (f) E (8) (h) 
a(efgh) ijkRmnpq kR mn pq + -  

f , g ,h  

2bs+l/s+l (s even) 

(s odd) 
(efgh.. .) where a 

s = e 4- f + g + h + ..., and 2b i s  t h e  p l a t e  thickness.  

Truncating t h e  i n f i n i t e  series and r e t a i n i n g  terms of o rde r s  zero and 
one only, t h e  s t r e s s - s t r a i n  r e l a t i o n s  i n  equations (4) and (5) reduce t o  

(5) 

where t h e  abbreviated Voigt no ta t ion  i s  used ( r e f .  1) and 
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INCREMENTAL, MOTION SUPERPOSED ON INITIAL BENDING 

In this paper the initial stress-strain-displacement fields for a plate 

subjected to initial bending are taken the same as in reference 2, where a 

detailed analysis is presented. The initial strains E(') (i = 1,6) 

assumed small but the initial rotation angles of the plate elements 

(O) U(O)  are considered U:'), as well as the deflection gradients U2,1, 

terms up to quadratic in these quantities and their derivatives are 

i 

293 

are 

large and 

retained. 

(O0) are discarded. 
cPq 

Therefore,under these assumptions terms in C 
P4 

The stress-equations of motion for vibrations superposed on initial 
bending are presented in reference 2 (eq. (23)). Substituting the stress in 
terms of the strain according to equations (6)-(9) and using the strain-dis- 
placement relations (eqs. (27) and (28)) of reference 2, the displacement 
equations of motion in the thickness-shear and flexural modes are obtained: 

where 
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The displacement equations of motion accounting f o r  t he  coupling with t h e  
u:’) mode as w e l l  and v a r i a t i o n s  of t h e  incremental motion i n  t h e  -X di rec-  
t i o n  have been derived, bu t  being very lengthy are no t  reported here? 
w i l l  be published i n  a subsequent Technical Report. 

They 

I n  t h e  previous s t u d i e s  ( re ferences  1,2) of p l a t e  v i b r a t i o n s  i t  w a s  shown 
t h a t  d i f f e rences  between t h e  changes i n  t h e  fundamental thickness-shear cut- 
off  frequency a t  zero wave number and t h e  changes i n  t h e  thickness-shear f r e -  
quencies are very s m a l l .  
fashion as i n  re ference  2 f o r  t h e  v a r i a t i o n  of t h e  fundamental cut-off f r e -  
quency of r o t a t e d  Y-cuts of quartz:  

A s impl i f ied  formula is  obtained i n  a similar 

- -  C$”I + higher order terms 

where 

‘66 (0) - - ‘661E1 (0) + C662Eio) + C663E$o) + C664E10) (13) 

305 



2 IT k2 r: - 12 , k being a co r rec t ion  f a c t o r  (reference 1). 

A s  i t  may be  seen from equation (12),the frequency change depends on t h e  

long i tud ina l  s t r a i n  E:') (i.e. s t r e t c h i n g  of t h e  middle plane) d i r e c t l y  as 

w e l l  as through t h e  third-order e l a s t i c  cons tan ts  (en. (13)), and on shear 

s t r a i n  (eq. (14)) and long i tud ina l  s t r a i n  due t o  bending (eq. (15)). For 

0.1 f i n  t h e  case of t h e  p l a t e  of re ference  2 t h i s  would r e s u l t  Ei, j i 

i n  s t r a i n  a t  t h e  ou te r  f i b e r s  of 0.05% >, t h e  cont r ibu t ion  of t h e  terms 
appearing i n  equation (15) is  of t h e  same order as those i n  equation (14), 
provided t h a t  t h e  assoc ia ted  fourth-order cons tan ts  are bigger than t h e  th i rd-  
order ones by a f a c t o r  of 10 - which is  t o  be expected given t h e  order of 
magnitude found f o r  t h e  fourth-order cons tan ts  by t h e  previously mentioned 
inves t iga tor% An estimate is  not made here ,  however, because more d a t a  are 
needed and f u r t h e r  experiments required.  It may be seen, however, t h a t  t he  
order of magnitude of t h e  fourth-order cons tan ts  must be t h e  same as t h a t  
found by t h e  o ther  i nves t iga to r s ,  i f  t h e  d iscrepancies  between t h e o r e t i c a l  
p red ic t ions  and experimental d a t a  are t o  be  explained t h i s  way. 

('1 E(') 

The phenomenon of small amplitude v i b r a t i o n s  o r  wave motion superposed 
as a state of i n i t i a l  bending could be used t o  determine t h e  fourth-order 
elastic coe f f i c i en t s .  
terms r e l a t e d  t o  t h e  f i f th -order  and higher cons tan ts  do not  vanish i n  
formula (eq. (12)). 
bending is required i n  order t o  obta in  a l l  of t h e  fourth-order elastic eo-- 
e f f i c i e n t s  and t h i s  c o n s t i t u t e s  a top ic  f o r  f u r t h e r  research. 

A shortcoming of t h i s  method i s  t h a t  t h e  higher-order 

A thorough study of wave-motion superposed on l a r g e  
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Table 1 

Total (a t  I n i t i a l  (a t  
present state) i n i t i a l  s t a t e )  Incremental 

Displacement 

Rirchhoff-Piola Stress 
- 
Ei j  Lagrangian Strain 

'i 
- 

- ui u = ui i 

i j  i j  
- 

t = T - Tij 
- 

q . . = E  - E  
XJ i j  i j  
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BIODYNAMICS OF DEFORMABLE HUMAN BODY MOTION* 

Alvin M. S t r a u s s  and Ronald L. Huston 
Engineering Analysis  Dept., Univers i ty  of C inc inna t i  

SUMMARY 

The o b j e c t i v e  of t h i s  paper i s  t o  c o n s t r u c t  a framework 
wherein t h e  va r ious  models of  human b iomate r i a l s  f i t  i n  o rde r  
t o  describe t h e  biodynamic response of t h e  human body. The 
behavior of  t h e  human body i n  va r ious  s i t u a t i o n s ,  f r o m  l o w  
frequency, l o w  amplitude v i b r a t i o n s  t o  impact loadings  i n  
automobile and a i rc raf t  crashes, i s  very complicated with 
r e spec t  t o  a l l  a s p e c t s  of t h e  problem: Materials, Geometry 
and Dynamics. The materials problem is t h e  primary concern 
here ,  b u t  t h e  m a t e r i a l s  problem is  i n t i m a t e l y  connected wi th  
geometry and dynamics. 

INTRODUCTION 

There are unique d i f f i c u l t i e s  associated w i t h  desc r ib ing  
i n  v ivo  biomaterials. F i r s t ,  t h e  material p r o p e r t i e s  of 
human t i s s u e s  vary s i g n i f i c a n t l y  wi th  t h e  ind iv idua l .  And 
a t  t h i s  t i m e  there do n o t  exis t  s tandards  a p p l i c a b l e  t o  t h e  
material p r o p e r t i e s  of  human t i s s u e s .  Even f o r  design purposes 
there is  no agreement on t h e  moduli of bone, muscle or  tendon. 
Moreover, i f  s tandards  e x i s t e d  they  would be r e s t r i c t e d  t o  a 
given age, weight,  and sex. The mechanical p r o p e r t i e s  of bone, 
for example, reach  t h e i r  optimum values  when t h e  ind iv idua l  i s  
i n  h i s  o r  h e r  e a r l y  twent ies  and they  deteriorate slowly the re -  
a f t e r .  The mechanical p r o p e r t i e s  of  t h e  va r ious  human t i s s u e s  
a lso va ry  wi th  t h e  weight and phys ica l  dimensions of t h e  
ind iv idua l ,  D i e t  has  an in f luence  as does t r a i n i n g  and 
d i sease .  If  these problems concerned with t h e  v a r i a b i l i t y  of 
phys ica l  p r o p e r t i e s  w e r e  t h e  on ly  d i f f i c u l t i e s  involved 
it would n o t  be beyond o u r  c r e a t i v i t y  t o  c o n s t r u c t  a r a t i o n a l  
process  f o r  ob ta in ing  numbers, as i n p u t s  and cons t an t s ,  i n  t h e  
var ious  biodynamic problems of i n t e r e s t .  However, t h e r e  are 
s i g n i f i c a n t  problems involved i n  performing measurements of 
even t h e  m o s t  basic material p r o p e r t i e s ,  such as the  modulus 

*This work w a s  p a r t i a l l y  supported by g r a n t s  ENG 75 21037 and 
ENG 75 06619 from t h e  Nat ional  Science Foundation. 
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of elasticity, of any human tissue. It is almost impossible to 
implant instruments in the human body to obtain a, Moreovez, 
even if it were technically feasible to make so 
measurements, we cannot violate medi 
rights of individuals by surgically 
then having the subjects perform the required controlled tasks. 
It is also extremely difficult to implant devices in animals 
to obtain biomaterials data. However, this data is essential, 
because it has been shown many times that the mechanical 
properties of living subjects are significantly different from 
those of cadavers. And the mechanical properties of even the 
most stable of human tissues such as bone are different in vivo 
from those of a cadaver or of an embalmed specimen (refs. 1 and 2). 

RP 
a 

AO 

BO 

ijk e 

fll 
F 
“4 

FR 

j 
I 

*i jk 

i m 

M 
.r 

jk 
M 

N 

Q 
.u 

SYMBOLS 

see equation (1) 

function of invariants 

function of invariants 

permutation symbol 

see equation ( 3 )  

force vector 

resultant applied force 

generalized active forces 

invariants 

centroidal inertia dyadics 

masses 

moment vector 

moment 

number of rigid bodies 

functional operator 
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t 

'i jk 

j 
X 

a 

'I 

"i jk 

present time 

partial rate of change of position 

generalized coordinate, position vector 

constant 

time variable 

partial rate of change of orientation 

BIOMATERIALS 

The human skeletal system is composed of 206 distinct bones, 
26 in the vertebral column, 22 in the skull, 25 ribs and 
sternum, the hyoid bone, 6 auditory ossicles, 64 comprising 
the upper .extremities and 62 comprising the lower extremities. 
The stress-strain curves for these bones show a definite 
viscoelastic behavior (refs. 3 to 5). Thus in many situations 
it will be necessary to model bone as a viscoelastic material. 

It is more clear that muscle, tendon, skin, vascular walls, 
ligaments, and the various internal organs are viscoelastic 
(refs. 6 to 14). The state-of-the-art in biodynamic modeling can 
be gleaned from the papers in (ref. 15). 

There are no widely accepted models of human biomaterial 
response for any portion of the human body. For example, the 
human head has been modeled as a rigid tube, a spherical shell 
with an elastic core, a spherical elastic shell with a visco- 
elastic core, a viscoelastic shell and core, a static empty 
shell, a layered shell, a spherical shell with a fluid core, 
a rigid spherical shell with an elastic/viscoelastic core 
among others (ref. 16). This serves to point out that even 
though there may be agreement on the qualitative properties of 
human biomaterials there is no agreement towards a rational 
approach to modeling any portion of the human body in a given 
biodynamic situation. 

Thus a basic problem confronting the mechanicist is how to 
develop a biomaterials model that will interface in an efficient 
manner with models for other portions of the human bbdy.. For 
example, to develop a model of the.human head for predicting 
its response to impact loads, one might need to develop a model 
for the scalp, outer table of the skull, diploe layer, inner 
table of the skull, meninges and cerebrospinal fluid and the 
brain. In this case a gross continuum model with one 

311 



constitutive equation for the entire head wouZd not yield any 
useful results, but perhaps the scalp-skull system could be 
modeled by a single constitutive relation instead of the four 
suggested above. Often the results desired may determine the 
sensitivity built into the mathematical model. 

This contribution is directed towards developing biomater- 
ials models for use in gross human body modeling. As such only 
a general finite deformation model will be developed to be 
used for large portions of the human body as a first step with 
the second step being a model where bone and muscle-tendon 
systems are modeled separately and interdigitated with the 
dynamics of human body. 

DYNAMICS 

Recently a number of finite-segment human body models have 
been developed to study the dynamics of the head-neck system., 
spine deformation, and crash victim motion (refs. 17 to 25). Basi- 
cally, these models are gross-motion simulators. They are composed 
of rigid bodies shaped to simulate the human skeletal system 
and flesh structure. The bodies are generally connected 
by ball-and-socket, hinge, or sliding joints. The muscles, 
ligaments, and joint tissue are usually modeled by springs 
and dashpots. It is at this point that the constitutive 
equations developed in this paper can make their contribution 
to deriving more sophisticated and sensitive models. 

Consider the model developed by Huston, et.al. (refs. 24 to 2 8 ) .  
This model makes use of a set of governing dynamical equations 
of motion, for the description of the dynamics of the human 
body, in the form, 

.. 
(R=1,. . . ,3N+3) (1) aRp xp = fR 

where p is summed from 1 to 3N+3 and where a and fR are given 
RP by I 

aRp = m V V j jpk jRk + 'jkn Wjpm WjRk 

and 
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fa = -(Fg + m j V jak 'jqk 'q + 'jkn Oj8.h 'jqk t q 

+ Ojqn Ojqr OjRk I jmr f q fs, (3 1 

where j, q, and s are summed from 1 to N and the other repeated 
indices are summed from 1 to 3. 

j' 
N is the number of rigid bodies in the model and the X 

where j=1,...,3N+3, are the generalized coordinates of the 
model system [3 for the translation of the first rigid body 
and 3 for the rotations of each of the N bodies]. 

The Wijk and vijk (i=l, ..., N; j=1,:..,3N+3; k=1,2,3) are 
the partial rates of change of orientation and position (ref. 29) 
of the bodies and their mass centers, 

ma and Iijk (i=l,. ..,N; j,k=1,2,3) are the masses and 
centroidal inertia dyadics of the N bodies. ei'k (i,j,k=1,2,3) 
is the standard permutation symbol. The Fa @ . = I ,  .. . ,3N+3) 
are the generalized active forces on the system, and they are 
given by, 

where the Fjk and Mjk are the components of the resultant 
applied force and moment on body B 

These applied forces and moments can arise externally due 
to the action of gravity, seat belts, or impact and also arise 
internally on account of the response of the joint tissue. The 
modeling of tkie tissue response by means of spring and dashpot 
models has been one of the weakest links in existing gross 
biodynamic motion simulators (ref. 30). Therefore we derive 
immediately below, a constitutive theory of human tissue 
response in a force moment formalism. 

j' 

BASIC FINITE MODEL 

Let us assume that, for example, the mechanical properties 
of the human leg can be described by a single constitutive 
relation. In other wards we assume we can write a mathematical 
relation and say "this is the constitutive equation that describes 
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the response of the human leg". 
assumed the leg to be made of a single material, call it leg 
material. We, of course, know that the leg is made up of bone, 
muscle, tendon, various fluids, blood vessels, skin, etc., but 
the kind of answers we are looking for do not demand the 
refinement df a composite-solid-fluid analysis. We can, however, 
describe the leg as an anisotropic material - a refinement 
well within the capability of the analysis and needed to provide 
the accurate numbers needed for a sufficient valid description 
of the biodynamic response of the human body. 

This implies that we have 

The human leg can also be modeled with the fremework of the 
UCIN model (ref. 24), if the human leg is assumed to be made up 
of alternating concentric cylinders of rigid material and 
deformable material. This type of model is subsumed by the 
finite segment model discussed above. In either case the 
constitutive relations developed below will hold. 

Consider a generic particle that is initially unloaded. 
We wish to develop a history dependent relationship between 
the force vector and the moment vector e .  Assume the 
moment at the present time t depends on the past history of 
the force, or 

over the interval TE[O,- )  and Q is the functional operator. ... 
It can be shown (refs. 31 and 32) that if the material is 

isotropic then we may write Q in the form, 

where 

The functionals Q 
linear approxima&.on to tge constitutive relation can be written 
as 

and Q (2 )  are linear in the forces. The 
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where AQ is a function of I1 and 12. 
nonlinear behavior one may write 

For more significant 

where Bo is also a function of I1 and 12. 

A differential approximation to equation (10) may be 
obtained by writing the Taylor series, 

yielding 

where 

If the material is assumed to be transversely isotropic 
one may write (ref. 31) 

Q = Q(l) [F(t-r); .., 11,12,13] + ... 



where 

I3 = F3(t-r). (16) 

DISCUSSION AND CONCLUSIONS 

Until this time biomaterial modeling in gross-motion 
simulators has been performed with springs and dampers. And 
whereas this has been marginally successful, it has often 
required many hours of "tuning" and adjusting constants to 
match some experimental data. Equations ( 9 )  and (10) provide a 
means of avoiding this problem. Indeed, since the gross-motion 
simulators such as UCIN are generally developed to numerically 
accept arbitzary moment functions, the relation described 
above can be used directly upon writing of suitable computer 
algorithms for their inclusion in the computer codes. 
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IMPACT TENSILE TESTING OF WIRES 

T. H. Dawson 
U. S .  Naval Academy 

SUMMARY 

A simple impact test is examined for determining the dynamic tensile re- 
sponse of metal wires. The test consists of fixing one end of a wire specimen 
and allowing a threaded falling weight to strike the other. 
dynamic stress in the wire to be a function only of its strain, energy consider- 
ations show for negligible wire-inertia effects that the governing dynamic 
stress-strain law can be determined directly from impact-energy vs. wire- 
elongation data. 
wire-inertia effects for ratios of wire mass to striking mass of the order of 
10-2 or less. 
stress-strain curve so determined is found to beabout30 percent higher than the 
corresponding static curve. 

Assuming the 

Theoretical calculations are presented which show negligible 

The test method is applied to soft copper wires and the dynamic 

INTRODUCTION 

The impact testing of wires and rods provides a subject of continuing 
interest in the field of mechanics (ref. 1). The experimental problem is com- 
plicated by the fact that under impact loading the inertia on the material can 
become important and thus invalidate assumptions of uniform stress and strain 
such as customarily employed in simple quasi-static testing. For this reason, 
modern impact studies generally take into account the wave character of the 
problem and involve dynamic measurements at various positions along the specimen. 
Technological interest remains, however, in a simple yet reliable impact test to 
determine dynamic material response. The present paper discusses such a test 
and gives experimental results for the case of soft copper wires. 

SIMPLE THEORETICAL MODEL 

The situation considered is that of a wire fixed at one end and struck at 
the other by a threaded falling weight (fig. 1). The inertia of the wire is 
assumed small in comparison with that of the striking mass so that the stress 
and strain along the wire may be regarded as uniform, or approximately so.  
addition, the response of the wire is assumed such that the dynamic stress in 
the wire is a function only of its strain. Under these circumstances, the 
initial kinetic energy of the striking mass and the work done by it as it falls 
through the maximum end displacement of the wire must equal the uniform internal 
work done by the wire as it stretches. This fact is expressed mathematically by 

In 
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the equation: 

E m 
-- 1 pIv,2 + ? E  = i o  CT (E) de 2 A L  m 

where M and Vo denote the mass and striking velocity of the falling weight, A 
and L denote the initial sectional area and length of the wire, g denotes the 
acceleration of gravity, CT and E denote nominal (or engineering) stress and 
strain and denotes the maximum strain induced in the wire by the impact. 

On writing the 
equation (1) as 

and differentiating 

total impact energy appearing on the left-hand side of 

with respect to the maximum strain ern, it thus follows that 

so that the stress CT associated with the strain is given directly by the 
corresponding rate of change of the impact energy with respect to the maximum 
strain. Once the condition for negligible wire-inertia effects used in writing 
equation (1) has been established, this last equation can then be used to 
determine the governing impact stress-strain law from experimentally determined 
impact-energy vs. wire elongation date. 

Equations similar to those given above have previously been employed by W. 
Soper (ref. 2) in interpreting compression data from impact tests on thin 
aluminum discs. 
a rough estimate of the number of wave passes through the specimen during its 
compression. 
analyzed in an altogether different way. 

In Soper's work, the neglect of specimen inertia was based on 

It will be seen in the next section that the question may be 

WIRE INERTIA EFFECTS 

The condition for ensuring negligible wire-inertia effects in the above 
described impact test is subject to exact theoretical determination, although 
the problem is extremely complex. When, for instance, the falling weight 
strikes the end of the wire, tension waves are propagated upward, followed by 
less intense unloading waves caused by the slowing of the weight. 
reflect an increase in strength at the fixed end and then race back down the 
wire, increasing the stress as they go. Upon reaching the struck end, they 
again reflect an increase in strength and the entire wave process is repeated. 
In this way the wire force acting on the impacting weight is progressively 
increased and its downward speed continually reduced. 

These waves 
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To untangle the above waves and analyze the stress distribution in the wire 
as the striking weight is brought to rest is a difficult problem which has not 
yet been undertaken. Fortunately, however, the details of these waves can be 
side-stepped altogether and the impact mechanics analyzed approximately using a 
lumped-mass numerical model. Such a model is illustrated in figure 2 where the 
mass of the wire has been assumed concentrated at eleven equally spaced positions 
along the wire, with ten massless wire elements connecting them. The stress- 
strain law governing the wire elements has been assumed, somewhat arbitrarily, 
to be the same as that governing quasi-static deformations of soft copper wires. 
This law is shown in figure 2. 

If u1, u2, ... denote the displacements of the concentrated masses shown in 
figure 2 and if al, a2, ... denote the stresses in the corresponding wire 
elements, the equations governing the motion of the masses may be written as 

d2u1 Vo2 (a2 - al) 
dt2 2 a R T K  
- -  - 

2 2 

dt 

d y o  vo (as - GlO) 
-=  

2 (20 + a )  R TK 

where t denotes the time, R denotes the length of the individual wire elements, 
Vo denotes the striking velocity of the falling weight, and a ,  TK and as are 
defined by 

with m denoting the total wire mass and, as earlier, M, A, L and g denoting, 
respectively, the mass of the striking weight, the sectional area and length of 
the wire and the acceleration of gravity. 

These equations may be integrated numerically starting from time t = 0 
using initial conditions corresponding to all displacements zero and all veloc- 
ities zero except that of the struck end where the velocity there initially 
equals the impact velocity Vo. 

. 

This numerical program has been carried out using a standard fourth-order 
Runge-Kutta integration scheme and an integration time-step interval of 0.001 
R/Vo. To fix numbers, the following typical constants were assumed 
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2 = 8.56 N / ~ u I  2 
(JS 

= 4.28 N/mm , TK 

corresponding in the case of negligible wire inertia to a maximum induced strain 
Em of 0.05 and an impact-energy division such that 

in equation (I). From the above set of governing equations it can be seen that 
these two constants, together with the mass ratio a ,  are sufficient to allow 
determination of the dimensionless displacements ul/R, u2/R, . . in terms of the 
dimensionless time tVo/R. Using the dimensionless displacements, the strains in 
the individual wire elements can, of course, also be determined. 

Figure 3 shows typical strain-time histories at the wire ends for the case 
where the ratio of wire mass to striking mass is equal to 0.01. Also shown is 
the average strain-time history calculated by dividing the struck-end displace- 
ment by the total wire length. It will be seen that the strain variations are 
negligibly small for this mass ratio. 
larger mass ratios are examined, the strain variations become more pronounced. 
On the basis of these results, it may therefore be concluded that the strain - 
and hence the stress - variations along the wire may safely be ignored for ratios 
of wire mass to striking mass of the order of or less. 

Moreover, as expected, when significantly 

IMPACT TESTS ON COPPER WIRES 

Impact tests satisfying the above condition for negligible wire-inertia 
effects have been carried out using soft copper wires having initial diameters 
of 0.079 cm and various initial lengths. 
is characterized by the stress-strain law given earlier in figure 2. 

The static deformation of these wires 

Table 1 lists impact data for these wires, with Um denoting the maximum 
displacement of the struck end. The first set of data refers to tests where the 
impact energy was held fixed (within 5 percent) at 7.3 N/mm2. 
strains ern determined from these data are plotted against their maximum strain 
rates Vo/L in figure 4 .  It will be seen that the strains are sensibly independ- 
ent of these ratios so that the material may thus be regarded as rate insen- 
sitive over this range of rates. This result is in agreement with earlier work 
on hardened copper wires (ref. 3). 

The maximum 

Figure 5 shows impact-energy vs. strain data as determined from the above 
data as well as the remaining data of Table 1. 
curve calculated from equation (1) using the static stress-strain law of figure 
2. The large differences between the two clearly indicate that the governing 
impact stress-strain law is considerably different from the static one. This is 
shown more clearly in figure 6 where impact stress-strain data, as determined 
from the smoothed curve in figure 5 and equation (3), are contrasted with the 
static curve. 

Also shown is a theoreticaf 

It will be seen, in agreement with other more sophisticated 
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studies (ref. 4-5), that the impact curve is about 30 percent higher than the 
static curve. 

vO 

c m l s e c  

1. 

2. 

3. 

4. 

5. 

m/M T 'm* L M 

- c m  kg N/mm2 e m  
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50.8 
31.8 
88.9 
97.8 
66.0 
37.1 
63.5 
68.6 

136.9 
55.9 
56.4 
45.7 
55.9 

105.9 

I 

CONSTANT IMPACT ENERGY 

I I I 
7.66 
7.17 
7.42 
7.33 
7.24 
7.50 
7.48 
7.05 
7.07 

0.29 
0.57 
0.29 
0.29 
0.29 
0.36 
0.57 
0.43 
1.07 
0.50 
0.78 
0.86 
0.86 
0.78 
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0.002 
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0.010 
0.005 
0.005 
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0.006 
0.005 
0.003 
0.002 
0.003 
0.006 

1.80 
2.99 
3.22 
3.97 
4.71 
5.45 
6.55 
6.90 
8.24 
9.10 

10.42 
11.17 
11.66 
12.28 

4.92 
3.10 
1.27 
2.03 
2.54 
4.14 
7.14 
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3.02 

0.64 
0.64 
2.34 
2.82 
2.51 
1.42 
3.10 
3.02 
8.08 
3.10 
4.01 
3.25 
4.22 
9.36 

* A v e r a g e  of two tests 
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Figure 1.- Simple impact tensile test. 
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Figure 2.- Numerical model for analyzing impact. 
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Figure 3.- Theoretical  s t r a i n  h i s t o r i e s  f o r  case where the  r a t i o  
of w i r e  mass t o  s t r ik ing  m a s s  equals 0.01. 
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s t ra in- ra te  i n sens i t i v i ty .  
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Figure 5.- Impact-energy r e l a t i o n s  f o r  copper wires. 
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Figure 6.- Comparison of impact and s ta t ic  s t r e s s - s t r a i n  l a w s  
f o r  copper wires. 
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NUMERICAL DETERMINATION OF THE TRANSMISSIBILITY CHARACTERISTICS 

OF A SQUEEZE FILM DAMPED FORCED VIBRATION SYSTEM 

Michael A. Sutton 
Babcock and Wilcox Company 

Philip K. Davis 
Southern Illinois University at Carbondale 

SUMMARY 

Numerical solutions of the governing equations of motion of a liquid squeeze 
film damped forced vibration system were carried out to examine the feasibility 
of using a liquid squeeze film to cushion and protect large structures, such as 
buildings, located in areas of high seismic activity. The mathematical model 
used was that for a single-degree-of-freedom squeeze film damped spring-mass 
system. The input disturbance was simulated by curve fitting actual seismic 
data with-an eleventh order Lagrangian polynomial technique. Only the normal 
component of the seismic input was considered. The exact solution to the fluid 
flow equations, as developed by Ishizawa (ref. 1) for the liquid squeeze film 
undergoing oscillatory motion, was used to include the damping force in the 
equation of motion of the vibratory system. The non-linear, non-homogeneous 
governing differential equation of motion was solved numerically to determine 
the transmissibility over a wide range of physical parameters using a fourth- 
order Runge-Kutta technique. It is determined that a liquid squeeze film used 
as a damping agent in a spring-mass system can, for certain combinations of the 
physical parameters of the system, significantly reduce the response amplitude 
for a seismic input disturbance. 

INTRODUCTION 

The term "liquid squeeze film" as used herein is defined as the liquid 
located between two nearly parallel plane surfaces which are closely spaced 
compared to the dimensions defining the boundary surfaces. The fluid motion 
which results from the approach or separation of the surfaces is called "squeez- 
ing flow". If the surfaces are in relative oscillatory motion, the fluid will 
dissipate energy and damp the motion. If the squeezing motion is slow enough 
that the fluid inertia can be neglected, the resulting fluid flow conforms to 
Reynold's theory (ref. 2) .  However, most vibration problems are inherently 
dynamic in nature and therefore fluid inertia is not expected to be negligible. 
An interest in the possible application of liquid squeeze films to cushion and 
protect large structures, such as buildings, located in areas of high seismic 
activity led to this study which examines the transmissibility characteristics 
of a liquid squeeze film damped forced vibration system. 

A literature search has shown that little research has been carried out 
concerning the application of liquid squeeze films as a damping agent in forced 
vibration systems. It was suggested by Sommer (ref. 3 )  that a liquid squeeze 
film might serve well as a damping agent in practical applications in which high 
damping is required but space is limited. The importance of the non-linear 
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inertia terms in the liquid squeeze flow equations was first discussed by Jack- 
son (ref. 4). Jackson and Kuzma (ref. 5) obtained approximate solutions to 
these equations with some of the fluid inertia terms included. However, 
Ishizawa (ref. 1) obtained an exact solution to the complete liquid squeeze 
film equations in a "multifold" infinite series form, using only the assumptions 
that the fluid was incompressible and the oscillatory flow was axisymmetric. 
Theoretical and experimental studies of liquid squeeze film damping were com- 
pleted by Yabe and Davis (ref. 6) for a single-degree-of-freedom system under- 
going free vibrations. 

In the absence of previous research, it was decided to carry out a theoret- 
ical investigation of the transmissibility characteristics of a liquid squeeze 
film damped spring-mass system subjected to the normal component of a seismic 
disturbance. The transmissibility characteristics were studied as the physical 
properties of the system were varied. The results indicate that under certain 
conditions a liquid squeeze film might be used to effectively cushion a struc- 
ture subjected to forced oscillatory input motions. 

SYMBOLS 

Values are given in both SI and U.S. Customary Units. 

maximum output amplitude, cm (in) 

maximum input amplitude, cm (in) 

acceleration, cm/s2 (in/sec2) 

total derivative with respect to time 

force of liquid squeeze film, N (lb) 

force of spring, N (lb) 

gap width between mass and support at any time, cm 

Initial gap width between mass and support, cm (in) 

Variable to account for entrance flow effects. J = 
greater than ho. 

Spring constant, N/cm (lb/in) 

numerically approximated derivative 

mass, kg (slug) 

t) 

J = 0 if h is less than h,. 

mv/~r: an 

v/h; an 

in 

1 if h 



r0 

t 

At 

V 

X(t), x 

i(t) ,i 
X(t), x 

X*(t), x* 

k*(t), k* 

X*(t), x* 

x(t), x 

.. .. 

ht), 2 
;(t), x 

.. 

x*(t), x* 

x*(t>, x* 
.. 
x*(t), ;* 
IT 

P 

V 

w, 

c 

radius of circular cylindrical mass, cm (in) 

time, s (sec) 

numerical time step, s (sec) 

velocity, cm/s (in/sec) 

Input displacement as function of time, an (in) 

Input velocity as-a function of time, cm/s (in/sec) 

Input acceleration as a function of time, cm/s2 (in/sec2) 

Non-dimensional input displacement 

Non-dimensional input velocity 

Non-dimensional input acceleration 

Response displacement as a function of time, cm (in) 

Response velocity as a function of time, cm/s (in/sec) 

Response acceleration as a function of time, cm/s2 
( in/sec2 

Non-dimensional response displacement 

Non-dimensional response velocity 

Non-dimensional response acceleration 

3.14159 

Density of squeeze film fluid, kg/cm3 (slugs/in3) 

Kinematic viscosity of squeeze film fluid, cm2/s 
( in2/sec) 

natural frequency of the spring-mass sys tem, l/s (sec- ) 

Summation symbol 

THEORETICAL DEVELOPMENT 

A simplified schematic diagram of the squeeze film spring-mass system, 
which is used as a basis for developing the governing differential equation of 
motion, is presented in figure 1. 
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cylindrical 

Figure 1: Schematic of Spring-Mass Squeeze F i l m  System 

The equation governing the  displacement of the m a s s  m i s  obtained by use 
of Newton's Second Law, 

The forces on the mass include the force of the  spring 

and the  pressure force due t o  the l iqu id  squeeze film. The la t ter  force is  
incorporated by retaining the f i v e  primary components of the i n f i n i t e  series 
solut ion t o  the f l u i d  flow equations fo r  a l iqu id  squeeze fi lm undergoing 
osc i l la tory  motion as determined by Ishizawa ( r e f .  1) 

h h (h )4  fi - 277 (h )3  (h)331 
+ 260 (V)  323 (400) (V) 

The squeeze f i lm gap width a s  a function of t i m e  is  

h = h o  + X -X 

The t i m e  der ivat ives  of equation (4)  are a s  follows: 

h = X - x  
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6) (ii) = x - x (i) - i (2) + j; (&) (5) 

Utilizing equations (21, (3), (4) and (51, equation (1) is transformed to 
. .  

3~rpr: (x-x> ) j; 
520V 

3lrrpr; + (m + 20 (ho + X-x) 

- 3 (277)~rpr: (&) 3'Trpr; (5/28 - 5/12] 
800(323)V (h, + X-X) + ( 2 (ho + X - x)' 

+ 

( 6 )  

the problem. For 

3lrprg X - 3(277)'Trpr; (i) 
520 V 800(323) V (ho + X - X) 

Equation (6) is the dimensional governing equation for 
large values of m, k, ho, and ro, large differences of the order-of l o 5  in some 
cases 
puter techniques, disparities of this order can cause serious problems. One 
method of minimizing the effects of these disparities is to non-dimensionalize 
the equation. Equation ( 6 )  is non-dimensionalized by using a pertinent length 
(ho) and time (Ub). The non-dimensional relationships are: 

between the values of the ratios of these constants do occur. In com- 

X = X* ho x = x * &  

X = X* ho x = X* h, W, 

(7) 

Substitution of these relationships into equation ( 6 )  and division by the 

2 2 2 = x* ho wn wn 2 = X* ho 

arbitrarily chosen non-dimensional parameter grouping 

gives the following 
freedom spring-mass 

non-dimensional equation of motion for the single degree of 
squeeze film system shown in figure 1: 
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520 + 37FQ (2) 
[Q(1) + 20(1 + x* - x*) 

3n(5/28 - j/12) Q(2) 
2(1 + x* - X*IL ) ( & * I 3  + ( 

3 (277)'~ 
- (323(800) (1 +X* - x*) 

9 (277) 'I&* 3'K (Q (2 1 ) + 
323(800) (1 + X* - X*) - x*jr 
3'K(5/28 - j/l2)k* Q(2) 3vX* 9 (277) 'K (k*) - + - -  (1 + x* - x*)Z 520 323(800) (1 + X* - x*)) 

3'K2* (Q(2))2 + 3'K2* Q (2 )  
2(1 + x* - x*)T 20(1 + x* - x*) 

3T%*2* - 3'K (2.) (5/28 - j/12) Q (2) - 3 (277) 'K (?*) 
520 2(1 + x* - X*IL 323(800) (1 + X* - x*) + 

where Q(1) = mv D 3 F a G  
V 

and Q(2) = - ~qqJ-h 

Inspection of equation (8) shows that the solution to the equation is a 
function of the input forcing function X, the time derivatives of X, Q(l), 
Q(2) and the time t. This is true for constant values of & and Wn, which 
are the parameters used to non-dimensionalize the dimensional seismic input data 
prior to insertion into equation (8). Therefore, it is reasonable to expect 
that equation (8) can be solved for fixed values of h, and %. The parameter 
ho is limited in magnitude by the radius of the cylindrical mass, ro, since 
the ratio ho/ro is generally taken to be equal to or less than 0.10 to assure 
that "squeezing flow" will result. Also, W, is determined by the mass, m, and 
the spring constant, k, such that % = w m .  
one structure to another, the solutions to equation (8) were charted for varying 
values for wn and &. 

Since h, and b+-, may vary from 

Equation (8) is a second order, non-linear, non-homogeneous ordinary dif- 
ferential equation with variable coefficients. Since the existence of a closed 
form solution to this type of equation is unknown, 
carried out. 

COMPUTER TECHNIQUES 

Equation (8) was solved on an 'IBM-370 digital 
order Runge Kutta technique attributed to Kutta; 

KK1 = f (ti, xi) 

a numerical solution was 

computer using a fourth- 

KK, = f [ti + At/2, xi + (At/2) 

KK, = f [ti + At/2, xi + (At/2) 
( K K ~ ) ]  

( ~ ~ ~ 1 1  
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KK, = f [ti + At, xi + (At) (I(K,)I 

Where KK values are approximate derivatives of the object function, X, at vari- 
ous points in the time interval, At. 
quired to be less than 1 /20 th  of the period of oscillation o 
tion. By trial and error, the value of At used herein was set at 0.01 seconds. 

The value of the time step, At, was re- 
the object func- 

The input disturbance, X, and its derivatives are based on actual seismic 
data from a San Fernando earthquake occurring in 1971. 
seismic displacement function used. 
ence interpolation routine was developed and used to obtain values of X, X and 
2 at intervals of 0.01 second. 

Figure 2 shows the 
A Lagrangian eleventh order finite djffer- 

40.0 forcing function _..._..._ 

5 CI 20.0 uE 
e.-...--.... 

-...-. y.; 0.0 
-le g.20 
is I 

5 IO 15 20 25 30 55 40 
TIME 

(seconds) 

Figure 2: Seismic Input Displacement Function Versus Time 

Equation (8) was then solved using a computer technique which is based 
on the synthesis of these numerical procedures. The results of this study 
are presented in plots of the transmissibility versus Q ( 1 )  for five values 
of Q ( 2 )  with ho and wn held constant. Transmissibility as used herein, is 
defined as the ratio of the maximum response amplitude (Amo) of the mass to 
the maximum input disturbance amplitude (Ami). Table 1 shows the,parmeter 
values used to obtain the data presented in each figure. 

ho wn- 1 
Figure Range of Q U I  Range of Q ( 2 )  
Number Values Values (cm) (Sec . ) - 

3 1 0 6  to to io1 57.42 125.66 

4 l o 6  to 10'~ to io1 57.42 6.2832 

5 l o 6  to to io1 57.42 0.062832 
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6 l o 6  to to io1 177.8 125.66 

7 l o 6  to to io1 177.8 6.2832 

8 l o 6  to to io1 177.8 0.062832 

TABLE 1: Paramete alues Used in Figures 3 Through 8 

DISCUSSION OF RESULTS 

The transmissibility of the system, Am0 would be unity if 
connection existed between the mass and the support. However, as the data 
indicate, it is possible to have combinations of the physical parameters 
such that Amo/Ami is greater than unity. Such conditions are undesirable 
when the purpose is to protect the model from input seismic disturbances. 

Several conclusions can be drawn from the data shown in figures 3, 4 and 
5. 
ing all three figures together. 
is reduced to levels significantly below unity. Figure 5 shows the most 
intriguing results. 
and Q(2) ,  zero transmissibility exists. 

The effect of wn on the transmissibility can best be observed by consider- 
For values of Wn -? 1, the transmissibility 

These results indicate that for certain values o f  Q(1) 

I . . I 

I 240°  

,.- 

w n= 125.66 final stable pr. -O Q2= 10' -*-- -  

IO6 io4 to2 IO0 IO2 la4 la6 
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m v  

Pro 4 h ~  o n 
0, = - 

Figure 3: %o/%i Versus Q1 for Five Values 

of Q2 with ho = 57.42 cm and wn = 125.60 rad/s. 
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r n v  Q,= - 
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Versus Q for Five Values of Q2 Amo'Ami 1 Figure 4: 

with ho = 57.42 cm and Wn = 6.2832 rad/s 

final stable pt. --o 

m v  
O,=- 

P r: houri 
Figure 5: &o/%i Versus Q1 for Five Values of Q2 

with ho = 57.42 cm and on = 0.062832 rad/s 

The values of ho and Wn were again held constant for the data shown in 
figures 3, 4 and 5. 
Q(1) is only a function of V and Q(2)  is a function of the product, mV. 
Therefore, as shown in figures 3, 4 and 5, for each value of kinematic viscos- 
ity, V, there appears to exist a value of mass, m, for which minimum trans- 

If the values of pr; also were assumed to be fixed, then 
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missibility occurs. 

Further inspection of the results shown in Figure 5 shows that for those 
cases exhibiting zero transmissibility, a range of approximately lo5 in 
kinematic viscosity ( V I  has negligible effect on transmissibility. 

Figures 6, 7 and 8 portray essentially the same trends as shown in 
Figures 3, 4 and 5. Since the value of ho used to obtain the data shown in 
Figures 6, 7 and 8 is three fold greater than the values used to obtain the 
data shown in Figures 3 ,  4 and 5, the results indicate that ho has a small 
but discernible effect on transmissibility. 

final stable p t . 4  

io4 IO2 IO0  IO-^  IO-^ ioa 

Figure 6: %o/&i Versus Q1 for Five Values of Q2 

with ho - 177.8 cm and Wn - 125.66 rad/s 
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with ho = 177.8 cm and wn = 6.2832 rad/s 
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Figure 8: Amo/Ami Versus Q, for Five Values of Q2 

with ho = 177.8 cm and wn = 0.062832 rad/s 

CONCLUSIONS 

1. The results demonstrate that a liquid squeeze film used as a damping agent 
in a spring-mass system can, for certain combinations of the physical parame- 
ters, significantly reduce the response amplitude of the mass with respect to 
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the input amplitude for seismic input disturbances applied normal to the base 
of the model. The data therefore indicate that under certain conditions a liq- 
uid squeeze film might be used in the system to effe 
isolate a structure, e.g. a building, from the norma ent of a seismic 
disturbance. 

2. The effect of the initial squeeze thickness (h,) on transmissibility was 
found to be small for the range of data taken. 

3. For values of Wn greater than unity, the transmissibility was greater than 
unity for most values of Q(1)  and Q(2) .  
transmissibility is reduced to levels significantly below unity for most values 
of Q(1)  and Q(2) .  Furthermore, for Wn = 0.062832 and for certain values of 
Q(1)  and Q(21, a point of zero transmissibility was predicted. 

4. 
value of mass (m) for which minimum transmissibility occurs. 

cushion or partially 

For values of Wn less than unity, the 

un and V, there exists a 
ho! 

In general, for constant values of pr:, 
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A MODEL STUDY OF LANDING MAT SUBJECTED TO C-5A LOADINGS* 

P. T. B l o t t e r ,  F. W. K ie fe r ,  V. T. Chr i s t iansen  
Utah S t a t e  Univers i ty  

INTRODUCTION 

A v a r i e t y  of  l i g h t  weight pane ls  have been developed t o  provide  expedient  
landing  s u r f a c e s  f o r  d i f f e r e n t  gene ra t ions  of  a i r c r a f t  and m i l i t a r y  condi t ions .  
Chambers ( r e f .  1) reviewed d i f f e r e n t  types  of landing  m a t  and t h e  des ign  
requirements  as r e l a t e d  t o  such f a c t o r s  as m a t  weight,  minimum subgrade 
s t r e n g t h s ,  wheel loads ,  t i r e  p res su re ,  number of l and ings  and placement rates. 
Chambers' s tate of  t h e  a r t  review noted  t h a t  l i t t l e  q u a n t i t a t i v e  information 
w a s  a v a i l a b l e  relative t o  t h e  dynamic m a t  response t o  moving loads  a p p l i e d  by 
t h e  a i r c r a f t  wheels. 

I n  1970, a t t e n t i o n  focused on t h e  dynamic response of landing  m a t  when a 
s e c t i o n  of AM2 m a t  f a i l e d  dur ing  t h e  f o u r t h  landing  of t h e  C-5A a i r c r a f t  a t  
Dyess AFB ( r e f s .  2 t o  4 ) .  
e r a t i n g  a i r c r a f t  which w a s  even tua l ly  overrun.  
hu r l ed  i n t o  t h e  a i r  and cons ide rab le  damage w a s  done. A s  a consequence, a model 
s tudy  w a s  i n i t i a t e d  t o  ana lyze  t h e  dynamic response of AM2 m a t  sub jec t ed  t o  C-5A 
landings.  
phys i ca l  model. 
Dyess AFB and v e r i f i e d  t h e  modeling concept.  Model tests on p o s s i b l e  m a t  
modi f ica t ion  showed t h e r e  w a s  no s i g n i f i c a n t  improvement i n  t h e  s t a b i l i t y  o f  AM2 
m a t  w i th  increased  f r i c t i o n  a t  t h e  mat-subgrade i n t e r f a c e .  
t h e  bottom of m a t  pane l s  were no t  e f f e c t i v e .  
a long  t h e  top  of  t h e  runway were e f f e c t i v e  and no buckl ing  occurred d e s p i t e  
increased  d e c e l e r a t i o n  rates. However, l o n g i t u d i n a l  s t i f f e n e r s  connect ing 
t h r e e  o r  f o u r  pane ls  t oge the r  d i d  n o t  e l i m i n a t e  buckl ing.  The l a y i n g  p a t t e r n  
and geometry of  t h e  m a t  seemed t o  i n f l u e n c e  t h e  m a t  behavior  and suggested 
a d d i t i o n a l  t e s t i n g  . 

A bow wave formed i n  the runway i n  f r o n t  of t h e  decel-  
Panels  were disconnected,  

I n  r e fe rence  5, K i e f e r  r epor t ed  t h e  r e s u l t s  of t h e  i n i t i a l  1 / 7  scale 
The model s imula ted  t h e  buckl ing  f a i l u r e  which occurred a t  

Cleats a t t a c h e d  t o  
Longi tudina l  pre tens ioned  bands 

B l o t t e r  ( r e f .  6) developed a n  a n a l y t i c a l  model t o  p a r a l l e l  t h e  1 / 7  scale 
phys ica l  model i n  t h e  s imula t ion  of  p ro to type  m a t  behavior .  
model cons i s t ed  of d i s c r e t e  r i g i d  elements in te rconnec ted  and suspended by 
s p r i n g s  and dashpots  and provided a r a p i d  and inexpensive p r e d i c t i o n  of  dynamic 
m a t  performance as r e l a t e d  t o  h o r i z o n t a l  t h r u s t ,  s o i l  s t i f f n e s s ,  m a t  geometry, 
pane l  connect ions,  damping, a i r c r a f t  v e l o c i t i e s  and o t h e r  parameters.  

The a n a l y t i c a l  

The i n i t i a l  phys i ca l  model s tudy  considered on ly  t h e  0.61 x 3.66 m ( 2  x 1 2  
f t )  AM2 m a t .  The conten t  of t h i s  paper  i s  r e l a t e d  t o  subsequent model s t u d i e s  
where both 1 . 2 2  x 1.37 m ( 4  x 4.5 f t )  and 0.60 x 2.74 m ( 2  x 9 f t )  Dow t r u s s  
web m a t  w e r e  s tud ied .  

*Work supported under c o n t r a c t  number F29601-73-C-0131 f o r  USAF/AFWL, 
K i r t l a n d  AFB, N.M. 
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MODEL, DEVELOPMENT 

S i m i l i t u d e  c o n d i t i o n s  r e l a t i n g  the model C-5A l anding  gear  and t h e  expedient  
landing  s t r i p  t o  t h e  pro to type  system were developed by K i e f e r  ( r e f .  5). 
fundamental independent v a r i a b l e s  considered i n  t h e  phys ica l  model are given i n  
t a b l e  1. 
seven dimensionless  parameters  given i n  equat ion  (1). 

The 

M a t  performance I) w a s  t h e  dependent v a r i a b l e  and w a s  a func t ion  of 

The pro to type  t o  model d e n s i t y  r a t i o  pr and t h e  g r a v i t a t i o n a l  a c c e l e r a t i o n  
r a t i o  g were se t  equal  t o  un i ty .  The l i n e a r  scale r a t i o  of pro to type  t o  model 
w a s  a r b i t r a r i l y  set equal  t o  n. Other  pro to type  t o  model r e l a t i o n s  fo l low as 
given i n  t a b l e  2. For t h i s  model s tudy  t h e  va lue  of n w a s  chosen as 7. 

r 

The model a i r c r a f t  tare weight w a s  5.9 kN (1330 l b )  t o  s imula t e  t h e  2.02 MN 
(455,000 l b )  pro to type .  Each of  t h e  four  bogies  cons i s t ed  of s i x  wheels wi th  
0.1 m (4  i n )  and 0.2 m ( 8  i n )  o u t s i d e  diameter  rubber  tires wi th  t h e  t r e a d  
ground down and i n f l a t e d  t o  approximately 83 kPa 
opera ted  c a l i p e r  t y p e  d i s k  brake  w a s  a t t ached  t o  each wheel p a i r  as shown i n  
f i g u r e  1. 
board. The model a i r c r a f t  is shown i n  f i g u r e  2. 
suspended by steel r o l l e r s  and a c c e l e r a t e d  a long  a t r ack .  Touchdown w a s  made 
as t h e  rubber  wheels f i r s t  contac ted  t h e  l and ing  m a t  wh i l e  t h e  model descended 
a long  t h e  f i n a l  p o r t i o n  of t h e  track cant‘ i levered over  t h e  runway a t  a 3 degree 
s l o p e  and t h e  s teel  r o l l e r s  w e r e  l i f t d d  o f f  t h e  a c c e l e r a t i o n  t r a c k .  Touchdown 
w a s  made a t  t h e  same l o n g i t u d i n a l  l o c a t i o n  each landing;  however, t h e  t r a n s v e r s e  
p o s i t i o n  v a r i e d  accord ing  t o  a random d i s t r i b u t i o n  p a t t e r n  over  a 0.56 m 
d i s t a n c e  e i t h e r  s i d e  of t h e  c e n t e r l i n e .  Model touchdown v e l o c i t i e s  w e r e  a t  
least 12.2 m/sec and d e c e l e r a t i o n  rates ranged from 2.4 m/sec2 t o  9.9 m/sec2. 

(12 psi) .  A h y d r a u l i c a l l y  

The braking  and s t e e r i n g  of  t h e  model a i r c r a f t  were done by a p i l o t  on 
The model a i r c r a f t  w a s  

The model runway w a s  37 m long  and 4 . 3  m wide. Addi t iona l  e f f e c t i v e  
l eng ths  w e r e  modeled by adding end weights  t o  t h e  runway. The subgrade w a s  
prepared by excavat ing and b a c k f i l l i n g  w i t h  0 .3  m (1 f t )  o f  blow sand. The” 
sand had a modulus of subgrade r e a c t i o n  of 108.6 Wa/m t o  135.7 MPa/m (400 t o  
500 p s i / i n )  a f t e r  dry ing  and w a s  covered wi th  a s h e e t  of po lyv iny lch lo r ide  upon 
which t h e  landing  m a t  w a s  placed.  The runway had a 2 1 / 2 %  s l o p e  down from t h e  
c e n t e r l i n e  t o  t h e  edges and t h e  complete runway w a s  covered w i t h  a bui ld ing .  

Models of t h e  1.22 x 1.37 m and 0.60 x 2.74 m Dow t r u s s  web m a t  w e r e  con- 
s t r u c t e d  of  a Styrofoam c o r e  sandwiched between two s h e e t s  of f i b e r g l a s s  w i th  
aluminum edge p i e c e s  bonded t o  t h e  f i b e r g l a s s .  The m a t  edges were made of 
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extruded aluminum shaped t o  resemble t h e  p ro to type  m a l e ,  female and edge 
connectors  reduced t o  1 / 7  scale. The k i n e t i c s  of t h e  mat w e r e  given des ign  
p r i o r i t y  and t h e  model mats c l o s e l y  s imula ted  t h e  s i z e ,  shape and j o i n t  
movement of  t h e  pro to type .  However, t h e  f l e x u r a l  s t i f f n e s s  of  t h e  model w a s  
about  1.8 t i m e s  t h e  c o r r e c t  va lue  and t h e  t e n s i l e  s t r e n g t h  exceeded t h e  proper  
value.  The model m a t s  weighed approximately 1 . 6  N and v a r i e d  p l u s  o r  minus 5% 
from t h e  scaled-down pro tofype  weight.  

S t a t i c  measurements of l o n g i t u d i n a l  and lateral m a t  d isplacements  w e r e  
made. Dynamic measurements o f  l o n g i t u d i n a l ,  v e r t i c a l  and r o t a t i o n a l  m a t  
d isplacements  and v e l o c i t i e s  w e r e  a l s o  completed. The model a i r c r a f t  v e l o c i t i e s  
w e r e  measured wi th  a r a d a r  speedgun. 
a i r c r a f t  monitored t h e  m a t  k inemat ics  i n  f r o n t  of t h e  wheels.  Measurement 
d e t a i l s  are given i n  r e f e r e n c e  5. 

A high  speed camera mounted on t h e  model 

TEST RESULTS 

The runway p a t t e r n s  t e s t e d  are i d e n t i f i e d  i n  f i g u r e  3. I n  t h e  s t anda rd  
b r i c k  p a t t e r n ,  t h e  un res t r a ined  (no runway end weights)  0.6 x 2.74 m m a t  
runway buckled a f t e r  1 2  l and ings  and t h e  buckl ing  f o r c e  w a s  es t imated  a t  1100 N 
(85,000 l b  p ro to type ) .  I n  t h e  s a m e  p a t t e r n ,  t h e  1.22 x 1.37 m model m a t  showed 
no s i g n s  of buckl ing a f t e r  60 landings .  A buckl ing  f a i l u r e  w a s  even tua l ly  
produced by adding weights  t o  t h e  end of t h e  runway. A t y p i c a l  buckl ing 
f a i l u r e  is shown i n  f i g u r e  4 .  Approximately 2300 N (180,000 l b  pro to type)  
f o r c e  w a s  r equ i r ed  f o r  buckl ing.  The 1.22 x 1 . 3 7  m m a t  w a s  more s t a b l e  than  t h e  
0.60 x 2.74 m m a t  i n  t h e  s tandard  b r i c k  p a t t e r n .  

Only t h e  1.22 x 1.37 m m a t  w a s  t e s t e d  i n  t h e  a l t e r n a t e  b r i c k  p a t t e r n  and 
90' r o t a t e d  b r i c k  p a t t e r n .  
l o n g i t u d i n a l  j o i n t s  w e r e  r e s p e c t i v e l y  100 and 300 wi thout  buckl ing f a i l u r e .  
E l imina t ion  of t h e  t r a n s v e r s e  hinged j o i n t  made a much more s t a b l e  runway and 
reduced l o n g i t u d i n a l  movement. 

T o t a l  l andings  on t h e s e  two p a t t e r n s  wi th  continuous 

Simulated edge t i e  downs w e r e  t e s t e d  on t h e  0.60 x 2.74 m m a t  i n  t h e  
s t anda rd  b r i c k  p a t t e r n s .  
anchor provided a t i e  down of approximately 31 N (2400 l b  pro to type) .  
t i e  down w a s  i n e f f e c t i v e  i n  t h e  prevent ion  of buckl ing.  A s p i k e  dr iven  through 
t h e  edge m a t s  i n t o  t h e  wooden anchor reduced t h e  edge movement; however 
accumulated displacement a t  t h e  c e n t e r l i n e  r e s u l t e d  i n  a f i v e  pane l  wave a f t e r  
28 landings .  
h igh  connector  stresses. 

A s t a p l e  a t t a c h i n g  t h e  edge m a t s  4x1 a bur i ed  wood 
Tnis  

A p o s i t i v e  edge f i x  r e s u l t s  i n  s e v e r e  in-plane d i s t o r t i o n  and 

I n  o t h e r  tests t h e  touchdown end of t h e  runway w a s  anchored t o  restrict  
t h e  h o r i z o n t a l  displacement of t h e  forward edge. 
w i t h  t h e  f a r  end of t h e  mat anchored t o  s imula t e  a n  a d d i t i o n a l  39 m of model 

I n  t h e  s t anda rd  b r i c k ' p a t t e r n  
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m a t ,  t h e  runway su rv ived  100 test landings  on both  t h e  0.60 x 2.74 m and 1.22 x 
1.37 m m a t  wi thout  buckl ing.  
s t a b l e .  The l ead ing  anchor tended t o  r e s t o r e  t h e  m a t  and t h e  j o i n t s  remained 
s u f f i c i e n t l y  open t o  e l i m i n a t e  any compression build-up and even tua l  buckl ing 
of t h e  m a t .  

Even wi th  inc reased  d e c e l e r a t i o n s ,  t h e  m a t  w a s  

The 26' d iagonal  p a t t e r n  wi th  t h e  model 1.22 x 1.37 m m a t  w a s  on ly  
s l i g h t l y  more s t a b l e  than  t h e  s t anda rd  b r i c k  p a t t e r n .  The results of t h e  tests 
are summarized i n  t a b l e  3. 
lower d e c e l e r a t i o n s  which d id  n o t  produce buckl ing  are n o t  included i n  t a b l e  3; 
however such t e s t s  were completed and are documented i n  r e fe rence  5. 

Landing tes ts  w i t h  l i g h t e r  model weights  and/or  

c;O NCL US IONS 

1. The 1.22 x 1.37  m m a t  runway i n  t h e  s t anda rd  b r i c k  p a t t e r n  wi th  
t r a n s v e r s e  hinged j o i n t s  is more s t a b l e  and less s u s c e p t i b l e  t o  a buckl ing  
f a i l u r e  than  t h e  0.60 x 2.74 m m a t  runway. 

2. U s e  of t e n s i o n  anchors  appears  t o  b e  a f e a s i b l e  means of c o n t r o l l i n g  
l o n g i t u d i n a l  displacement of t h e  runway and p o t e n t i a l  runway buckl ing.  Anchors 
appear  t o  be  a p r a c t i c a l  means t o  reduce maintenance on m a t  runways. 

0 
3. The 1.22 x 1 . 3 7  m m a t  i n  t h e  alternate b r i c k  p a t t e r n  o r  t h e  90 

r o t a t e d  s t anda rd  b r i c k  p a t t e r n  forms a dynamically more s t a b l e  runway wi th  a 
high r e s i s t a n c e  t o  buckl ing  f a i l u r e .  The runway i n  t h e s e  p a t t e r n s  i s  much 
s t i f f e r  and l o n g i t u d i n a l  movement w a s  less than  f o r  t h e  s t anda rd  b r i c k  p a t t e r n .  
I n  t h e s e  two p a t t e r n s  t h e r e  is a continuous l o n g i t u d i n a l  j o i n t  which may l e a d  
t o  r u t t i n g  problems on s o f t  subgrades.  S l i d i n g  along t h e  continuous longi tu-  
d i n a l  j o i n t s  w a s  n o t  a problem. 

4. The model 1.22 x 1.37 m a l t e r n a t e  b r i c k  p a t t e r n  runway w a s  d i f f i c u l t  
t o  assemble and extremely d i f f i c u l t  t o  t ake  a p a r t .  A proto type  runway i n  t h i s  
p a t t e r n  would r e q u i r e  development of s p e c i a l  adap te r s  o r  techniques t o  r ep lace  
damaged i n t e r i o r  pane ls .  

5. The d iagonal  a n g l e  f o r o t h e  t r a n s v e r s e  j o i n t  of t h e  s t anda rd  b r i c k  
p a t t e r n  must be g r e a t e r  than  26 t o  have any s i g n i f i c a n t  i n f luence  on t h e  m a t  
s t a b i l i t y  and buckl ing p o t e n t i a l .  

6. Edge t i e  down anchors are n o t  e f f e c t i v e  i n  prevent ing  m a t  buckl ing.  

7. Anchoring t h e  runway edge by p ins  prevented l o n g i t u d i n a l  movement 
a long t h e  runway edge b u t  displacment  a t  t h e  runway cen te r  l i n e  w a s  l a r g e  
enough t o  develop a buckl ing f a i l u r e .  With t h e  brak ing  f o r c e  app l i ed  nea r  t h e  
runway c e n t e r  l i n e  and t h e  f i x e d  p o i n t s  a t  t h e  edge, a l a r g e  in-plane m a t  bow 
develops p u t t i n g  severe stresses on t h e  m a t  end j o i n t s .  
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TABLE 1 

Symbol 

1JI 
W 

A ’  

a 

FUNDMNTAL VARIABLES CONSIDERED I N  THE PHYSICAL MODEL 

D e f i n i t i o n  Dimensions - FLT 

Performance (bow wave, f a i l u r e ,  e t c . )  - 
Weight of  a i r c r a f t  F 

A l l  o t h e r  d i s t ances  o r  l eng ths  L 

Densi ty  of materials FT2Lm4 

S t i f f n e s s  modulus of a l l  materials FL-’ 

Acce le ra t ion  of  g r a v i t y  L F 2  

Other a c c e l e r a t i o n  LT-2 

A l l  v e l o c i t i e s  LT-l 

A l l  c o e f f i c i e n t s  of f r i c t i o n  FL-’ 

P r e s s u r e - t i r e  and s o i l  FL-’ 

Number of landings  o r  coverages - 
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TABLE 2 

SIMILITLTDE CONDITIONS FOR THE PHYSICAL MODEL 

Variable and Sca le  Factor Comments 

3 Model weight l / n  
proto type 

t h a t  of t h e  3 Wr = n 

a = l  r (:) =(:) acce le ra t ions  t h e  same i n  model 
and pro t o  type 

f r  = 1 ( f )  = (Om s a m e  c o e f f i c i e n t  of f r i c t i o n  i n  

Nr = 1 (N) = (NIm s a m e  number of coverages i n  model 

model and prototype 

and prototype 

vr = J;; ($) =($m 

(9) = (%+)m 

(5%) = 

Er = n 

Pr = n 

model v e l o c i t i e s  l/& t h a t  of 
proto type 

s t i f f n e s s  modulus of materials i n  
model l / n  t h a t  of prototype 

pressure  and stress i n  model l / n  
t h a t  of prototype 

tr = J;; t i m e  i n  model l//k t h a t  of proto- 
type 

k = 1  FL-3 modulus of s o i l  r eac t ion  t h e  same r i n  model and prototype ( p l a t e  
bearing t e s t )  

m a s s  moment of i n e r t i a  o f  model 
landing mat about l ong i tud ina l  
ax i s  l / n 5  t h a t  of prototype m a t  

FLT* 5 f = n  r 
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Figure 1.- Model landing gear wheel assembly. 

Figure 2.- Model a i r c r a f t .  
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MALE EDGE 

(a) Standard b r i ck  p a t t e r  e rna te  b r i ck  pa t t e rn .  

CONNECTOR 
(c) 900 ro t a t ed  standard (d) Diagonal pa t te rn .  

b r i c k  pa t te rn .  

Figure 3.-  Mat laying pa t te rns .  

Figure 4.- A t y p i c a l  buckling f a i l u r e .  

EDGE 



ROCK FAILURE ANALYSIS BY COMBINED THERMAL 

WEAKENING AND WATER JET IMPACT? 

Adnan H, Nayfeh 
Aerospace Engineering Department 

University of Cincinnati 

SUMMARY 

The influence of preheating on the initiation of fracture in 
rocks subjected to the impingement of a continuous water jet is 
studied. Preheating the rock is assumed to degrade its mechanical 
properties and strength in accordance with existing experimental 
data. The water jet is assumed to place a quasi-static loading 
on the surface of the rock. The loading is approximated by 
elementary functions which permit analytic computation of the 
induced stresses in a rock half-space. The resultimg stresses 
are subsequently coupled with the Griffith criteria for tensile 
failure to estimate the change, due to heating, in the critical 
stagnation pressure and velocity of the water jet required to 
cause failure in the rock. When the results are specialized to 
the representative Charcoal Granite rock it is shown that the 
critical jet pressure and velocity are reduced substantially even 
for moderate amounts of preheating. 

INTRODUCTION 

As nations become increasingly urbanized, use of underground 
space for transportation and utility systems becomes more attrac- 
tive for both economic and environmental reasons. The more recent 
quickening of needs for drilling and fracturing of geologic for- 
mations for recovery of energy and mineral resources has clearly 
increased the interest and potential payoff of improved excavation 
technology. Thus, it became necessary for researchers to investi- 
gate a variety of novel techniques that appear to be promising 
alternatives to the drill-and-blast methods that are often em- 
ployed for rock disintegration, One of these techniques, rock 
cutting and fragmentation by high velocity water jets, has 
received considerable attention both experimentally (refs. 1 to 10) 
and analytically (refs, 1, 10, and 11). Although it is recognized 

t This research was supported inpartsby the National Science 
Foundations Grants GI-39224 and ENG 7520850. 
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t h a t  t h e  processes  by which a water j e t  f r a c t u r e s  t h e  rock are 
highly complic 
conclusion i s  ong p o t e n t i a l  

I t  now appear 
c i e n t  by coupl in  
f a c t ,  t h e  rec 
Thirmulai (re 

sugges ts  t h a t  many rocks lose s t r e n g t h  when heated. Ide  ( r e f ,  1 4 )  
has  repor ted  decreases  i n  e las t ic  wave speeds when socks w e r e  
heated t o  success ive ly  h igher  temperatures.  I d e ' s  r e s u l t s  have 
been confirmed by t h e  r e c e n t  measurements of Wingquist (ref. 15) 
Barbish and Gardner ( r e f ,  16), and more r e c e n t l y  by those  of Sprunt 
and Brace (unpublished) on a v a r i e t y  of rocks. 

The importance of t h e  i n t e r a c t i o n s  between thermal micro- 
c racking  and hydrau l i c  j e t  e ros ion  has  been recognized by Fle t che r  
( r e f .  1 7 )  who a l s o  obtained a p a t e n t  based on t h i s  novel method of 
rock fragmentation. In  t h i s  contex t  w e  a l s o  i n d i c a t e  t h a t  t h e  
es tab l i shment  of thermally induced stresses i n  rock as an ad junc t  
t o  mechanical fragmentation techniques has  been evaluated by 
Clark e t  a1 ( r e f  . 18)  and L a u r i e l l o  and Chen (ref. 1 9 )  

-7 

t h e  s ta te  

f r a c t u r e  m 
i m a t e  t h e  de-- 
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indicate that any adopted fracture criterion should somehow re- 
flect the influence of the fluid pore pressure. However, the com- 
plicated dependence of this pore pressure on the permeability of 
the thermally cracked rock will lead to complications in the 
present treatment which cannot be resolved now and are being 
referred to a further investigation. 

CHARACTERIZATION OF THE JET'S PRESSURE LOADING 

The experimental evidence indicates that a steady state con- 
tinuous water jet applies a quasi-static pressure loading to the 
flat rock surface. Leach and Walker (ref. 1),for example, measured 
the steady-state pressure distribution imposed upon a rigid flat 
surface by a continuous jet impinging normally at relatively low 
speed. They also presented an empirical fit to the measurements 
which Powell and Simpson (ref. 11) later used as the loading 
function to calculate the axisymmetric stress field induced in a 
homogeneous linear elastic solid by such a nonpenetrating jet. 

The surface pressure fit utilized by Powell and Simpson is 

where P is the pressure, p is the density of water, v is the jet 
velocity and b is an "effective radius" related to the radius of 
the jet, ro, by 

kind, the mathematical problem is formulated in terms of the well- 
known Airy stress function 4 which satisfies the compatibility 
condition 

4 

b = rod- 

As is generally the case in problems in elasticity of this 

( 2 )  V $ = O  

where V is the Laplace operator in cylindrical coordinates. By 
applying the boundary condition that the normal stress on the rock 
surface equals -P(r) as given .in Eq. (I), one may formally 
obtain the induced stresses in the half space. As pointed out by 
Powell and Simpson, however, the exact analytic solution of the 
biharmonic equation subjected to the particular form of the sur- 
face pressure given in Eq. 
such as integral transforms. Accordingly, they extended the re- 
sults obtained by Timoshenko and Goodier (ref. 21) for the stress 
response to a normally applied point load and were able to obtain 
numerical stress distributions in the rock in terns of infinite 
series expansions. 

(1) is impossible by conventional methods 

Then the computer stress distribution was used, 
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together with a fracture criterion derived from the Griffith 
theory of crack propagation in solids, to predict the rock cutting 
properties of water jets in relation to the mechanical strength of 
the target rock. More recently, Forman and Secor (ref. 10) allowed 
the water jet to penetrate the rock, utilized the surface distri- 
bution (Eq. (1)) and investigated the combined effects of the Pore 
pressure and surface loadings using finite element methods. 

In the present analysis we propose the following alternative 
approximation to the surface pressure (Eq. (1)): 

where 
u I 
0 

f(r,ro) = Ps 2 3/2 ' (r2 + r ) 
0 

(4) 

2 Ps is the stagnation pressure 
given as 

p v /2 and a, b ,  c constants are 

a = 1.02134 , b = 0.2169 , c = -0.01459 . 
The pressure distribution (Eq. (3)) has the advantage of being made 
up of an elementary combination of the elementary function f(r,ro) 
and its derivatives. It also has the advantage of leading to 
simple classical analytic solutions for the distribution of 
stresses in the half space. In Figure 1, this proposed pressure 
distribution is compared with Leach and Walker's data and 
empirical fit. 

STRESS DISTRIBUTION IN THE HALF SPACE 

In this section we calculate the Stresses induced in a pre- 

It is assumed that heating will not change the basic 
heated rock half space subjected to the mechanical surface loading 
(Eq. (3) ) . 
mechanical behavior of the rock from being linear elastic. In the 
analysis, the properties of the rock will be assumed to depend 
upon the temperature in an arbitrary manner. However, the final 
results will be specialized to Charcoal Granite whose properties 
are known to depend upon the temperature in the manner depicted in 
Table 1. In this table, the variations of the mechanical proper- 
ties E and v are obtained from the experimental data of Wingquist 
(ref. 15) whereas the variation in the strength S is deduced from 
the experimental data of Barbish and Gardner (ref. 16) which relate 
the variation of the tensile strength of Charcoal Granite to its 
Young's Modulus. The room temperature value of the strength 
So = 0.15 kbar 
Johnson (ref. 22). [l kbar = 100 MPa]. 

is the experimental value obtained by Savanick and 
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TABLE 1 
VARIATION OF CHARCOAL GRANITE PROPERTIES WITH TEMPERATURE 

~ ~ ~~ 

Young's Modulus, Poisson's Tensile Strength, 
T ("(2) E, kbar Ratio,v SI kbar 

27 
100 
200 
300 
400 
500 
600 
700 
800 
900 

865 
760 
'572 
420 
314 
158 
84 
95 
126 
106 

0.246 
0.184 

- 0.075 
-0.014 
-0.076 
-0.167 
-0.211 
-0.204 
-0.186 
-0.198 

0.15 
0.127 
0.105 
0.0927 
0.08 
0.052 
0.031 
0.035 
0.044 
0.038 

From these data a polynomial fit to the variation of S(T) 
with E(T) is constructed as 

S(T) = 55.49 E(T) - 11.437 E2(T) + 0.09697 E3(T) (5) 

where E(T) is given in Table 1. For a detailed discussion of this 
fit we refer the reader to (ref. 23). 

Now, since we are dealing with a linear problem, if the re- 
sponse Fi(r,z), i = r, 9, z, rz, produced by the loading f(r,ro) 
is found, the complete stress distribution 
structed in accordance with Eq. (3) as 

oi(r,z) - - ro 

oi(r,Z) can be con- 

2 d Fi dFi 2 P,h Fi(r,z) + b ro (r,z) + c r (r,z)l 
2 

0 (6) 0 

The response Fi(r,Z) to the load f(r,ro) is however known and 
lis given in (ref. 24) as 

(7,5) 2 -5 FZ = -[ror2 +(ro+z) C3z+ro) JR-5 ; Frz = -3rz (ro+z)R 

(9) = -{3r 2 z + ro[r2 +(ro+z) 2 1 3R-5 -(1-2v) (R-ro-z)R-l rW2 
Fr 

(10) 
= - r Rm3 +(1-2v) { (ro+z)[2r2 +(z+ro) 2 3 -13~'~ r -2 

F9 0 

2 1/2 where R = [r2 +(z + ro) 1 
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Substitution from Eqs. (7 to 10) into Eq. (6) gives the com- 
Notice that f f z  plete stress distribution in the rock half space. 

and orz will not depend upon the properties of the medium and that 
and ae will depend upon the Poisson's ratio In the present 'r 

context these stresses depend upon the temperature in an implicit 
manner through their dependence on v. 

v.  

GRIFFITH FRACTURE CRITERIA 

Having determined the stress distributions and their implicit 
dependence upon the temperature in the rock half space, we now 
proceed to use the Griffith criteria for tensile failure of rocks 
to estimate the critical pressure needed to initiate fractures. 
For this criteria to be applicable, the material under considera- 
tion must contain incipient microcracks having uniform and random 
distribution and orientation. In the present application, the 
presence of such cracks are assured, at least, due to heating. 

The features of the stress distribution required for the 
application of the Griffith theory are most concisely defined in 
terms of the maximum and minimum principal stresses Omax and u in, 
respectively. The principal stresses olf o2 and 0 are define2 3 in terms of the triaxial stress o r #  0 8 ,  u z ,  and arz as: 

(11) 
I u 3  = a e  

u r - u z  2 2  1/2 
f. [ (  2 1 + Orzl - Or + ' z  

2 
- 

I f 2  
u 

For the present application, the Griffith condition required 
to propagate the cracks may be stated as 

[Omax(T) - umin (TI I 
[Omax ( + amin' T) 1 = - 8 S(T) 

In the (r-z) plane, Eq. (12) determines the contours along 
which fracture will just occur for jet pressures which are multi- 
ples of S(T). These contours will have the form of surfaces of 
revolution about the z-axis and will in particular intersect it. 

Since we are mainly interested in calculating the values of 
the critical pressures needed to start failure, and, since the 
fracture contours intersect the line r = 0, great simplifications 
in the analysis leading to the calculation of such critical values 
can be affected by specializing our subsequent analysis to the 
limit r -+ 0. This will undoubtably restrict our information re- 
garding the fracture regions off the r = 0 axis but in no way 
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will influence the values of the critical pressures. Moreover, 
since r and ro are treated to be independent of each other, one 
can easily show that the final results are the same whether the 
limit r -t 0 is reached before or after differentiation with 
respect to ro as required in Eq. (6). 

Thus, in the limit as r -t 0, equations (7 to 10) reduce to 

Equations (13) when substituted in Eq. (6) and Eq. (11) Yield 

- 3c 

Which, if further used in Eq. (12) finally yield 

2 ’s (-aq { (2q-7) 17+6)+2b317{ (2v-10) n+9}-6cC (2v-13)n-t.12)) S ( T )  = 1 -an2{ (2v+5) n-2)+2bnC (2v+6) n-33-6ci (2v-t.7) n-41 
(16) 

where y = z/rO and n = y + l  (17) 

Before proceeding to calculate the critical pressures as functions 
of the temperature increase, we shall compare our room temperature 
results with those predicted by Forman and Secor (ref. 10) and 
Powell and Simpson (ref. 11). Using the room temperature values 
v = 0.25 and So = 0.15 kbar for Charcoal Granite (see Table 11, 
Eq. (16) dictates that failure will first occur when Ps reaches 
P* = 19.63 So E 2.94 kbar at a distance of about 
alent to 0.625 nozzle diameter beneath the surface). Compared 
with these results, Forman and Secdr predicted the value 
PE = 18.8 So 
eter below the rock surface. Powell and Simpson (ref. 11) on the 
other hand did their calculations for v = 0 . 3  and predicted the 
value 
tion Pi = 21 So also calculated for v = 0.3, 

q = 2.25 (equiv- 
S 

that occurs at a distance of about 0.75 nozzle diam- 

Pz = 20 So , which may be compared to the present predic- 
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* 
The th re sho ld  p re s su re  (P,) a s soc ia t ed  wi th  t h e  remaining 

temperature-dependent Poisson ' s  r a t i o s  and s t r e n g t h s  l i s t e d  i n  
Table 1 are normalized with r e s p e c t  t o  t h e  room temperature value 
of 19.63 So and are p l o t t e d  as funcgions of temperature i n  Figure 
2. A s  can be seen from Figure 2 ,  Ps decreases  wi th  inc reas ing  
temperature up t o  about 60OOC. For h igher  temperatures,  t h e  
threshold  p re s su re  inc reases  then  decreases  again.  This  behavigr 
is due t o  a phase change i n  t h e  quar tz  a t  about 573OC. Using P,s = 
po (u:) 2/2, with p = 1 g/cm3 and using So = 0.15 kbar,  Figure 2 1s 
r e p l o t t e d  i n  F igure  3 f o r  t h e  v a r i a t i o n  of t h e  threshold  j e t  speed 

* with temperature.  
uO 

CONCLUSIONS 

I n  conclusion,  w e  have demonstrated t h a t  prehea t ing  t h e  rock 
weakens it and makes it more s u s c e p t i b l e  t o  breakage by continuous 

S p e c i f i c a l l y ,  t h e  appl ied  
water j e t  pressure  r equ i r ed  t o  i n i t i a t e  f r a c t u r e  a t  a s p e c i f i e d  
l o c a t i o n  i s  reduced by an order  of magnitude ( r e l a t i v e  t o  room 
temperature) i f  t h e  rock su r face  i s  f i r s t  heated t o  about 300OC. 

1 w a t e r  jets  o r  o t h e r  mechanical methods. 
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