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SUMMARY

Contact-impact problems involving finite deformation axisymmetric membranes
are solved by the finite element method with explicit time integration. The
formulation of the membrane element and the contact constraint conditions are
discussed in this paper. The hyperelastic, compressible Blatz and Ko material
is used to model the material properties of the membrane. Two example problems
are presented. g -

INTRODUCTION

The purpose of this paper is to present a method for the dynamic analysis
of contact-impact problems involving hyperelastic compressible membranes. A
strain energy functional developed by Blatz and Ko (ref. 1) is used to charac-
terize the material of the membrane. This element was added to HONDO (ref. 2),
a finite element code that explicitly integrates the equations of motion. The
contact-impact algorithm, which was also added to HONDO, was recently developed
by Hallquist (ref. 3) and is briefly described here.

Two examples are provided to demonstrate the capability of the method: in
the first, a flat circular membrane is inflated by a pressure loading into a
thick-walled sphere; and in the second, the sphere is impacted into the mem-
brane.

FORMULATION

Equation of Motion

Since an explicit time integration scheme is being considered, the equation

of motion becomes .
Mu="P-F (1)
where M is thg diagonal (Tumped) mass matrix)ﬁ és a global vector of nodal ac-

celerations, P is the applied load vector, and F is the stress divergence vector.
This equation is integrated by the velocity-centered central difference method.

*WOrk was performed under the auspices of the United States Emergy Research
and Development Administration under contract No, W-74-05-eng-48,
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Material Properties

The strain energy density per unit undeformed volume ug for a compressible
hyperelastic material is expressed as

- LY
ug = u[I] <3+ 'vZV <}3 =2v 1>] (2)

where u is the shear modulus, v is Poisson's ratio, and I; is the ith strain
invariant. These invariants can be expressed in terms of the principal stretch
ratios A1, Ao, A3 in the meridional, circumferential, and transverse directions,
respectively, as

I, = A2 + 22 4 32 | |
150 T Ayt A
2.2.2 | (3)

For thin membranes, the stress component normal to the midsurface is assumed to
be zero; hence,A3 can be expressed in terms of Ay and Ap

V

)'T:G

Ay = (A]AZ (4)

and the strain energy density becomes a function of A7 and Ao.

Membrane Element

An isoparametric axisymmetric membrane element is shown in Figure 1. The
R, Z, and meridional coordinates S of the undeformed configuration are related
to the natural coordinate L through

R

1 L BTN
5 (1 - LR + 5 (1 + L)R

Ta-nt e L)z (s)
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and similarly for the displacement components u, and u,

u

= (-l e (1 L)

. , (6)
%«(1 - L)u; + %—(1 + L)u%

Uz

" In the deformed configuration, the r and z coordinates along the midsurface are
given by ;

r u_ + R
r (7)

= +
z uZ Z

The principal sketch ratios Ay and Ay can be defined as
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1= I\gs) t\& Ay TR (8)

Substitution of equations (5) and (6) into equation (7), putting the result
into equation (8), and applying the chain rule leads to expressions for M
and Xy in terms of the nodal point quantities

N Y P \211/2
1 J Jo_gpl_ i jo_ L0
2 [ RY + Ui, R ur> + (? + u, Z uz> ] (9)

i 3
a - L)ur + (1 - L)ur

1/2
. = [ dr 2 dz 2 r

n

M

Ay = 14

2 (1 - L)Ri + (1 + L)Rj

where % = sJ < si,

Since A7 and 25 are now functions of the natural coordinate L, the total
stratn energy stored within tRe membrane element during deformation can be ex-
pressed as the integral

1
U = wh /.vus RdL (10)

J-

in which h ié the thickness of the undeformed membrane,

The partial derivatives of U with respect to the nodal displacement compo-
nents yield nodal point forces that are subsequently accumulated into the stress
diyergence vector. In the problem under consideration these derivatives can be
calculated very easily. For example, the nodal point force acting in the r-
direction at the ith node fs given by

’

BN N
A A
R T —1 . T, —2\p4L ()
v3u1 au1 Bu1
r -1 r v

where Ty and Tp are Lagrange stresses in the meridional and circumferential di-
rections, respectively, A two point Gauss quadrature is used to perform the
above integrations.

The lumped masses for each element are found by the addition of the off-
diagonal terms of the consistent mass matrix to the diagonal term, Each mem-
brane element yields the following contributions to the nodal point mass at
nodes i and j, respectively,

1]

Ma

;= 2mpgh (RY/3 + Ri/6)

(12)

m. = 2mp2h (RI/3 + R1/6)

J
where p is the mass density of the undeformed membrane.

For stability the time step At is restricted such that the inequality
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At2 < -%'— : (13)
A

> g >
is satisfied where A% is the maximum eigenvalue of M=K in which K is the stiff-
ness matrix.

A time step At is calculated for every element in the mesh_and 90 percent
of the smallest value is then used, For the membrane element A% is calculated

exactly from .
2 2 2 2
2_ 1/(.3U LY 1/ 37U U
S F (“"‘1’2 ¥ "‘“1'2)‘F . (“T'z ¥ ‘”3‘2‘) (14)
/ Buz

Bur auz J Bur

Contact-Constraint Conditions

Two elastic bodies occupying regions Bl and BZ in the reference §onfigura-
tion at time t = 0 are shown in Figure 2. The boundaries of B! and B¢ are de-
noted by as! and 352, r?spectige]y. After deformation at ti¥e t # 0, these
bodies occupy regions b'_and b The boundaries of bl and B2 are denot?d by

as! and 3s2.” Whenever b! and b2 are in contact, the nodal points on 3s' in the
contact region are constrained to slide along 1line segments connected by nodal
points lying on 3s2, Separation is permitted when the interface pressure is
negative. Impact and release _conditions are applied whenever nodal points on
as! come into contact with 3s2. These conditions, which are based on the gen-
eralization of those given by Hughes, et al, (ref. 4),conserve linear and angu~-
lar momentum.

Constyaint conditions must be imposed %nto the equations of motion for each
node of 3s' in contact with a segment of 9s¢. These conditions are imposed
through a transformation of displacements which is performed at the beginning of
each time step. In this transformatfon the radial and vertical displacement com-
ponents of the node on 3s! are transformed into a displacement component tangen-
tial Eo the segment and a relative displacement component normal to the segment
of 9s% on which it rests. Since no separation is permitted during the time step
the displacement, velocity, and acceleration of this latter component are set to
zero. A transformation matrix T is constructed which relates the vector of
global displacements U to a vector U' containing the transformed components

T=Td (15)

Letting T remain constant throughout the time step and differentiating equation
(15) with respect to time yields :

»

i=TH (16)

Equation (16) is §%bst1tuted into equation (1) and the resulting equation is
premultiplied by T* in order to obtain the modified equations of motion

M E = THE - ) (17)

which contains the contact constraints. Here M= ?t ﬁ?. Although M is diag-
onal M is not. For computational efficiency the appropriate off-diagonal mass-
es are summed to the diagonal.

After e%uation (17) is-ao]ved for ﬁ', the normal accelerations of the nodes
of 3s! on 3sZ relative to 9sZ are set to zero, The global accelerations then
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follow directly from equation (16),

EXAMPLES

In the following examples, all physical quantities are given in nondimen-
sional form. Any consistent units may be assumed without altering the results,

Inflation of a Membrane into a Thick-Walled Sphere

A flat unstretched circular membrane with a thickness of 0,01 and a radius
of 2.0 is positioned beneath a thick-walled sphere having an inner radius of
0.40 and an outer radius of 0,60. In the undeformed configuration, the distance
measured perpendicularly from the center of the membrane to the center. of the
sphere is 1.20, The hyperelastic material described by equation (2) is used to
model the material of both the membrane and the sphere with v and 1 set to
0.463 and 150, Densities of 1.5 and 0.15 were assumed for the material of the
membrane and sphere, respectively,

The membrane is inflated by a pressure p defined by

0<t<0,11 p=1,250
- _ t - 0.11
0.11 <t < 0,15 p=1.250 1.]25<—~6T16——) (18)
t > 0.15 p = 0.125

and is brought into contact with the sphere.

In Figure 3 the deformed shapes at various times throughout the deforma-
tion time history are shown. At late times some wrinkling occurs (for example,
note the last frame) and the calculation ceases to be meaningful, A total of
eighty elements were used in the calculation., Forty elements were of the mem-
brane type.

Thick-Walled Sphere Impacting a Membrane

In this example the thick-walled sphere impacts the flat circular membrane
with an initial velocity of 1.0. The dimensions and material properties of the
membrane and sphere are identical to those of the preceding example. In Figure
4 the deformed shapes at various times are shown. Maximum deflection occurs at
the center of the membrane at approximately t = 0,90 after which rebound begins.
Separation of the sphere and membrane occurs at approximately t = 1.94.

In the above examples the stress at the center of the membrane increases
significantly after the initial contact thereby providing-evidence that a large
amount of sliding occurs during contact.
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Figure 1.- Definition of membrane element.

Figure 2.~ Two bodies in the reference and
deformed~contact configurations.
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Figure 3.- Inflation of circular membrane into
thick~walled sphere.
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Figure 4.~ Impact of thick-walled sphere into
circular membrane.



