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Contact-Tmpact proijlems fnvolving f i n i t e  deformation axisymmetric membranes 
are solved 6y the f in i t e  element method w i t h  explicit  time integration. The 
formulation of the membrane element and the contact constraint conditions are 
discussed in this paper. The hyperelastic, compressible Blatz and KO material 
i s  used t o  model the material properties of the membrane. 
are presented. 

Two example problems 

INTRODUCTION 

The purpose of th is  paper i s  t o  present a method for the dynamic analysis 
of contact-impact problems involving hyperelastic compressible membranes, A 
s train energy functional developed by Blatz and KO (ref.  1 )  i s  used t o  charac- 
terize the material of the membrane. Thi3 element was added t o  HONDO (ref. 2 ) ,  
a f in i te  element code that explicitly integrates the equations o f  motion. The 
contact-impact algorithm, which was also added t o  HONDO, was recently developed 
by Hallquist (ref.  3)  and i s  briefly described here. 

Two examples are provided t o  demonstrate the capability o f  the method: in 
the f i r s t ,  a f l a t  circular membrane i s  inflated by a pressure loading in to  a 
thick-walled sphere; and i n  the second, the sphere is impacted i n t o  the mem- 
brane. 

FORMULATION 

Equation of Motion 
Since an explicit  time integration scheme i s  being considered, the equation 

of motion becomes .. 

where $i is t h  diagonal (lumped) mass 
% = L F  (1 ) 

a global vector o f  nodal ac- 
celerations, f i s  the applied load is  the s t ress  divergence vector. 
This equation i s  integrated by the veloci ty-centered central difference method. 

* 
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Material Properties 
The strain energy density per u n i t  undeformed volume us for a compressible 

hyperelastic material i s  expressed as 
V 

u s = y I 1  , 3 +  1 - V 2v (I 3 -l--=z_ 1)] [ (2) 

where 1-1 i s  the shear modulus, v i s  Poisson"~ ratio,  and I i  i s  the i th  strain 
invariant. 
ratios hl ,  A2, A3 i n  the meridional, circumferential , and transverse directions, 
respectively, as 

These invariants can be expressed i n  terms of the principal stretch 

2 2 2  

2 2 2  I3 = hl A2 A3 

I1 = hl + h2 + h3 
(3) 

For thin membranes, the stress component normal t o  the midsurface i s  assumed t o  
be zero; hence,X3 can be expressed i n  terms of  A1 and 12 

V 

and the strain energy density becomes a function o f  hi and 12. 

Membrane Element 
An isoparametric axisymmetric membrane element i s  shown in Figure 1 .  The 

R, Z ,  and meridional coordinates S o f  the undeformed configuration are related 
t o  the natural coordinate L through 

1 1 j z = T (1 - L ) Z i  + 7 (1 + L ) Z  

1 i 1  s = T (1 - L)S + 7 (1 + L)Sj  

and similarly for the displacement components Ur and uz  
= T 1 (1 - L ) u r  i 1  + 7 (1 + L ) u r  j 

u z  = 2 1 (1 - L ) U Z  i 1  + 7 (1 + L ) U Z  j 
. .  

'r 

In the deformed configuration, the r and z coordinates along the midsurface are 
given by 

r = u r + R  
(7 1 

z = u z + Z  
The principal sketch ratios A 1  and h 2  can be defined as 
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(8) 
- r 

A1 = [(g- + (gY]i’* x P  - fT: 
Substitution of equati’ons (5) and (6) into equation (7), p u t t i n g  the resu l t  
i n t o  equation (8), and applying the chain rule  leads t o  expressions for  A1 
and A2 i n  terms of the nodal point quantit ies 

l2 = 1 
(1 - LJu,  i + {l - L ) u m  j 

where R = S j  Sf.  

stratn energy stored wiifil’n tFie membrane element d u r i n g  deformation can be ex- 
pressed as the integral 

Since 11 and A 2  a r e  now functions of the natural coordinate L ,  the to ta l  

u = IThR I‘ us RdL (10) 
J-1 

i n  which h is the thickness o f  the undeformed membrane, 

nents yield nodal point forces tha t  are  subsequently accumulated into the s t r e s s  
divergence vector. 
calculated very easi ly .  
direction a t  the i t h  node l’s given by 

The par t ia l  derivatives o f  U w-t’th respect t o  the nodal displacement compo- 

In tfie promem nqder consi’deratfon tfiese derivatives can be 
For example, tfie nodal point force actl’ng i n  the r- 

I - \ 

I 

= ThR I1 (T1 7 + T 2  5 ) R d L  a u i  
a ur 

where Ti and T2 are Lagrange s t resses  i n  the  meridional and circumferential d i -  
rections, respectively, 
above integrations.  

The  lumped masses for  each element a re  found by the addition o f  the off-  
diagonal terms of the consistent mass matrix to  the diagonal term, Each mem- 
brane element yields the following contributions t o  the nodal point mass a t  
nodes i and j ,  respectively, 

A two point Gauss quadrature i s  used t o  perform the 

= 27rpRh (Ri/3 f Rj/6) 

m = 27rpRh (Rj/3 + Ri/6) 
(12) 

j 
where p i s  the mass density of the undeformed membrane. 

For s t a b i l i t y  the time step A t  is  res t r ic ted  such tha t  the inequality 
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2 4  A t  c 7 (1 3)  
+ +  + A' 

is sa t i s f i ed  where A2 is the maximum eigenvalue of M'lK i n  which K is  the s t i f f -  
ness matrix. 

of the smallest value is  then used. 
exactly from 

A time step A t  is  calculated fo r  every element i n  the mesh and 90 percent 
For the membrane element h2 i s  calculated 

h 2 = -+ a2u 4. -& a2u -qT a2u T) a2u 
Mi a u r  auz I Mj a u r  a u Z  

Contact-Constraint Condi tions 
Two e l a s t i c  bodies occupying regions B l  and B2 i n  the reference 2onfigura- 

tion a t  time t = 0 are shown i n  Figure 2, 
noted by as1 and as2, r specti8ely. 

2 as1 and as2. Whenever b1 and b a re  i n  contact, the nodal pol'nts on as7 i n  the 
contact region are  constrained to  s l i de  along ll'ne segments connected by nodal 
points lying on as2. 
ne at ive.  Impact and release conditions a re  appll'ed whenever nodal points on 

eral izat ion of those given by Hughes, e t  a l ,  ( re f .  4),conserve l inear  and angu- 
1 a r  momen t u m  . 

The boundaries o f  B l  and B are  de- 
After deformation a t  ti e t #= 0, these Y The boundaries of b1 and 6 a re  denot d by bodies occupy regions b 'i and b 

as ? come into contact w i t h  as2. These conditions, which a re  based on the gen- 

node of as yi in contact w i t h  a segment o f  3s , These conditions are  imposed 

of as 8 on which i t  r e s t s ,  Since no separation i s  permitted d u r i n g  the time s tep 

Separation is  permitted when the interface pressure i s  

Const a in t  conditions must be imposed $nto the equations o f  motion fo r  each 

through a transformation of displacements which i s  performed a t  the beginning o f  
each time step.  
ponents of  the node on as] are  transformed into a displacement component tangen- 
t i a l  

the displacement, velocity,  and acceleration o f  this l a t t e r  component a re  s e t  t o  
zero. A transformation matr ix  7 is constructed which re la tes  the vector of 
global displacements i?i t o  a vector 3' containing the transformed components 

Letting 7 remain constant throughout the time step and different ia t ing equation 
(15) w i t h  respect t o  time yields  

q - + . y t  U - T U  
Equation (16) is  Srbst i tuted into equation (1) and the resulting equation i s  
premultiplied by T i n  order t o  obtain the modified equations of motion 

which+$ontains the contact constraints.  
onal M is not. For computational efficiency the appropriate off-diagonal mass- 
es a re  summed to  the diagonal. 

After e uation (17) i s  olved fo r  8', the normal accelerations of the nodes 

In this transformati-on the radial and vertl'cal displacement com- 

o the segment and a re la t ive  displacement component normal to  the segment 

(1 5)  + + - + I  u = T u  

(1 6) 

f i 1  $ 1  = l't(7; c 7) (17) 
+t - Here fi' = T MT. Although fi i s  diag- 

of as1 on as B re la t ive  t o  as 3 are  set to  zero. The global accelerations then 
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follow d i rec t ly  from equation (16). 

EXAMPLES 

In the following examples, a l l  physical quantl’ttes are glven i n  nondimen- 
sional form. Any consistent u n i t s  may 6e assumed wttfioat a l ter ing the results. 

Inflation of a Membrane i n t o  a Thick-Walled Sphere 
A f l a t  unstretched circular  membrane w i t h  a thickness of 0,Ol and a radius 

of 2.0 is  positioned beneath a tfiick-walled sphere having an inner radius o f  
0.40 and an outer radius of 0,60. 
measured perpendicularly from the center o f  the membrane t o  the center.of the 
sphere is 1.20, The hyperelastic material descrifjed by equation (2) i s  used to  
model the material o f  both the membrane’and the sphere w i t h  ‘v and 3 s e t  t o  
0,463 and 150, Densities of 1.5 and 0.15 were assumed for the material of  the 
membrane and sphere, respectively, 

In the undeformed configuration, the distance 

The membrane i s  inflated by a pressure p defined by 
0 5 t 5 0.11 

0.11 < t 5 0.15 

p 1,250 
0.11 p 1,250 - 1.125 ( i.40 ) (18) 

t > 0.15 p = 0.125 
and is brought into contact w i t h  the sphere. 

In Figure 3 the deformed shapes a t  various times throughout  the deforma- 
t i o n  time history are shown. 
note the l a s t  frame) and the calculati’on ceases t o  be meanTngfu1, A to ta l  o f  
e igh ty  elements were used l’n the calculation, 
brane type. 

A t  l a t e  times some w r i n k l l n g  occurs (for example, 

Forty elements were o f  the mem- 

Thick-Walled Sphere Impacting a Membrane 
In th i s  example the thick-walled sphere impacts the f l a t  c i rcular  membrane 

w i t h  an i n i t i a l  velocity of 1.0. The dimensions and material properties o f  the 
membrane and sphere are  identical t o  those o f  the preceding example. In Figure 
4 the deformed shapes a t  various times are shown. Maximum deflection occurs a t  
the center of the membrane a t  approximately t = 0,90 a f t e r  which rebound begins, 
Separation of the sphere and membrane occurs a t  approximately t = 1.94. 

significantly a f t e r  the i n i t i a l  contact thereby providing-evidence that  a large 
amount of s l i d i n g  occurs d u r i n g  contact. 

In the above examples the stress a t  the center o f  the membrane increases 
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Figure 1.- Definition of membrane element. 

Figure 2.- Two bodies in the reEerence and 
deformed-contact configurations. 
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t = 0.0 t.0.045 t.0.088 

t = 0. I30 t =o. 171 t.0.202 

t = 0.264 

Figure 3.- I n f l a t i o n  of c i r c u l a r  membrane i n t o  
thick-walled sphere. 

t =O. 296 t = 0.233 

.t = 0.00 t.0.26 t.0.58 

t.0.89 t=1.21 t.1.52 

t.1.84 t=2.15 t = 2.47 

Figure 4.- Impact of thick-walled sphere i n t o  
c i r c u l a r  membrane. 
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