DYNAMIC INELASTIC RESPONSE OF THICK SHELLS USING ENDOCHRONIC THEORY
AND THE METHOD OF NEARCHARACTERISTICS

Hsuan-Chi Lin
Argonne National Laboratory

SUMMARY

The endochronic theory of plasticity originated by Valanis has been
applied to study the axially symmetric motion of circular cylindrical thick
shells subjected to an arbitrary pressure transient applied at its inner
surface. The constitutive equations for the thick shells have been obtained.
The governing equations are then solved by means of the nearcharacteristics
method.

INTRODUCTION

The problem of dynamic plastic response of shells has received consider-
able attention in recent years. Most of the published works are based on the
flow theory of plasticity and usually limited to isotropic linear work-
hardening materials. Theoretically, the flow theory is based on the existence
of an initial yield surface coupled with an assumed hardening rule to obtain
subsequent yield surfaces; an extensive bookkeeping is necessary to trace the
evolution of the yield surface which changes as deformation progresses. The
analysis of inelastic responses of the bodies is therefore complicated by path
dependence and the yield condition, which introduces different governing
equations in the distinct regions - elastic and inelastic. Valanis (ref. 1)
presented a new theory of plasticity termed endochronic theory, which com—
pletely abandoned the concept of a yield surface and its subsequent hardening
rule. . : E , o .

The endochronic theory of plasticity is based on thermodynamic theory of
internal variables and conforms to experimentally observed material behavior.
The basis of the endochronic theory is the assumption that the current state
of stress is a functional of the entire history of deformation. The influence
of past deformation on the current stress is measured in terms of a mono-
tonically increasing time scale of strain-defined (ref. 1) or stress-defined
(ref. 2) endochronic time. This theory has been applied to give analytic pre-
dictions for the quasi-static mechanical response of engineering materials
(metallic (ref. 3) and non-metallic (ref. 4)), the dynamic response of a
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thin-walled tube subjected to a combined longitudinal and torsional step
loading (refs. 5,6), and the dynamic plastic response of circular cylindrical
thin shells (refs. 7, 8). 1t has been shown that the theory does indeed have

the capability of explaining the observed phenomena quantitatively with
sufficient accuracy.

In this paper, the endochronic theory is applied to thick axially-
symmetric cylindrical shell subjected to dynamic loading. The governing equa-
tions are then solved by the method of nearcharacteristics.

FORMULATION OF THE PROBLEM

Consider a circular cylindrical thick shell with mean radius R and

thickness H. TFor the axisymmetric motion of shell, the stress and strain
states are ' ~
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where ¢ is the Cauchy stress tensor, € is small strain tensor, g and e are
the deviatoric stress and strain tensors, respectively, and subscripts x, r,
® refer to the components in longitudinal, radial, and circumferential
directions, respectively, Let U and W denote the displacements in the axial
and radial directions respectively at time t of the cross section a distance
x from a reference section, and u and w are the corresponding velocity

components. The equation of motion in the x and r directions have the
following form:
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where p is the density.
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The strain-displacement relations and the corresponding compatibility con-
ditions are
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For isotropic material under isothermal condition with the assumption of
elastic hydrostatic response, the constitutive equations in the endochronic
theory can be found from reference 1 as follows:

d% CI-I% d‘%
2u E—C— = mg + EZ )
%k=3K%k (10)
2 _
dg© = Kldekkéelz + szeijdeij (11)

where 0, 8, K, Ky are the material parameters, | is shear modulus, K is bulk
modulus, kk, 2%, and ij are subscripts denoting coordinates, df is the
endochronic time measure with the restriction that K; + Ko/3 2 0, Ko 2 0,

and K1 and K2 may not both be zero. From the definition of 8 and £ considered
in this problem, it is possible to express the time measure approximately as

de 2 de 2~1/2 |
= X\ __r
Bdr = + Bl [l +-(d€e) + (dee) ] dee (12)

where Bq = Et/co, Et is the asymptotic slope of the uniaxial stress-strain
curve for large straim, 0, is the intercept of this slope with the stress
axis, and the positive sign holds for straining while the negative sign is for
unstraining of deg. Using (12), and equations (9), (10) and the compatibility
conditions (5) to (8) results in the following:
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and E is elastic modulus, v is Poisson's ratio. Equations (3), (4), and (13)
to (16) are the fundamental equations of the problem considered here.

NEARCHARACTERISTIC SOLUTION

The governing equations presented in the previous section together with
the auxiliary equations can now be written in matrix form as follows:

[A1{x} = {B} an
where
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The above set of equations is of hyperbolic type; the conventional

bicharacteristic method would be very tedious for six dependent variables.
Using the method of mnearcharacteristics first proposed by Sauer (ref. 9), we look
for characteristic~1like lines in the coordinate planes along which the solu~
tion can be extended. (Sauer called these lines nearcharacteristics.) The
formulation and numerical technique in the nearcharacteristics resembles the
one~dimensional approach except that those partial derivatives which do not
lie in the plane of interest are comnsidered of zeroth order in that particular.
calculation. For example, when the bicharacteristics in the x-~t plane are of
interest, then those terms in [A] containing partial derivative in r-direction
are combined with terms in {B} in equation (17). WNow following the same
procedures as described in reference 8 for one-dimensional case, the near-
characteristics in the x~t and r-t planes, respectively, are obtained as follows:

dx = dr = 0,0 (18)
= 49x _dr _ __Q=v) _E '
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The nearcharacteristics obtained here indicate that there are two character-
istic cones existing in the present analysis; one of them (eq. (19)) corre-
sponds to the longitudinal wave propagation while the other (eq. (20))
corresponds to shear wave. They are right circular cones with their center
lines perpendicular to the x-r plane as shown in figure 1. This is an expected
result, because the governing equations have constant coefficients for the
highest order terms. There are no convected terms appearing in the present
analysis. The compatibility equations along the nearcharacteristics can be
found in the same way as in the one-dimensional case. In the x-t plane, we
have:

dox = + pCDdu + Cldx + Czdt along %%~= + CD (2D
doxr =+ pCde_+ C3dx -+ C4dt along %%.: + CS (22)
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where

Similarly

where
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Note that each set of the above characteristics lies entirely in planes paral-
lel to one of coordinate planes. Equations (21) to (28) have the appearance of
a one-dimensional method of characteristics formulation except that they con-
tain the partial derivative terms in the other coordinate direction. The
nearcharacteristics equation derived here can be solved numerically by the one~
dimensional technique. Two independent solutions can be obtained, each corre-
sponding to one of the coordinate planes.

NUMERICAL EXAMPLE

Consider a central segment of the Clinch River Breeder Reactor steam gen-
erator flow shroud with length 22 = 1.0668 m, mean radius 0.47 m, and thickness
0.0127 m. The material is 2.25 Cr-1 Mo at 756 K. The pressure input function
was generated by the hydrodynamics module (ref. 10). A constant volume, step
pressure pulse of 13.79 MPa was taken as the source pressure p at the center.
This is typical of the maxima observed in large sodium~water reaction experi-
ments during the transient period. Since the pressure loading was supposed to
be symmetric with respect to the mid-span, only half-length of the shell needed
to be considered here. The boundary conditions for the example are shown in
figure 2- as follows:

u=0 and o¢__ =0 atx=0
. Xr
u=0 and w=20 at x = %
(29)

=0 and o]

er r -p(x,t) atr =20

0 at r = H

6. =0 and o

XY r
It has been shown in reference 11 that the two independent solutions, each
based on one coordinate plane, are numerically unstable while a calculation
method obtained by averaging the above mentioned independent solution yields a
stable solution. In view of equations (21), (22) and the boundary conditions
(29), it appears that the nearcharacteristics equations in x-t plane are not a
proper choice at r = 0 and r = H because 0, are being prescribed there. There-
fore a combination technique is proposed here: on the boundaries r = 0 and

= H the solutions are obtained from r-t plane nearcharacteristics equations

while at other points the solutions are obtained from the x~t plane. The
numerical results here show that this leads to a stable solution. The advan-~
tage of this technique over the averaging method is a tremendous saving in
computation time. The resulting pressure history at the midspan (x = 0) of the
middle surface of the shell is shown in figure 3. The resultant dynamic
response of radial displacement and velocity as a function of time for the same
center point of the shell is also shown in the figure. In figure 4, shell
displacement profiles are shown for several times.

CONCLUDING REMARKS

The endochronic theory of plasticity originated by Valanis has been ap-
plied to study the axially symmetric motion of c1rcu1ar cylindrical thick
shells subjected to an arbitrary pressure transient applled at its inner
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surface. The constitutive equations for the thick shells have been obtained.
The governing equations are then solved by means of the nearcharacteristics
method. It has been shown that a stable solution can be obtained by treating
the radial boundaries in one coordinate plane while at other points the solu-
tions obtain from the other coordinate plane.

10.

11.
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Figure 1.- Nearcharacteristics lines.
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Figure 2.- Boundary conditions.
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Figure 3.~ Radial displacement velocity, pressure history at x
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