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SUMMARY

This study presents variational theorems for a theory of
small motions superimposed on large statie deformations and
governing equations for prestressed beams on the basis of 3-D
theory of elastodynamics. First, the principle of virtual work
is modified through Friedrichs's transformation so as to describe
the 1nitial stress problem of elastodynamics. Next, the modified
principle together with a chosen displacement field is used to
derive a set of 1-D macroscopic governing equations of pre-
stressed beams. The resulting equations describe all the types
of superimposed motions in elastic beams, and they include all
the effects of transverse shear and normal strains, and the
rotatory inertia. The instability of the governing equations is
discussed briefly.

INTRODUCTION

Small motions superimposed upon large static deformations
have been tackled by a variety of investigators. And differential
as well as variational formulations have been derived for both the
so-called initial stress and initial strain problems (see, e.g.,
refs. 1-3, and references cited there). A classical variational
formulation for the initial stress problem is deduced from a
general principle of physics and has certain advantages over a
differential formulation (see, e.g., ref. 3, where the principle
of virtual work is taken as fundamental). This yields only the
stress equations of motion and the natural boundary conditions.
The remaining equations of the initial stress problem should be
introduced as constraints. The constraints, however, can be
removed through Friedrichs's transformation. This has been
illustrated by de Veubeke (ref. U4) for classical elastodynamics.

A1l the past efforts reveal how the static and dynamic
behavior of structures may significantly change by the presence
of initial stress or initial strain. Among those, we mention here
references 5-8 and references 9-12 on initially stressed shells
and plates, respectively. On initially stressed beams, the works
of Brunelle (ref. 13) and Sun (ref. 14) are cited. Brunelle
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derived the governing equations for a prestressed, transversely
isotropic beam via the direct integration of 3-D field equations.
Sun studied the equations for a Timoshenko beam having an initial,
in-plane compressive stress by the use of both Trefftz's and
Biot's formulations.

The purpose of this investigation is twofold. The first aim
is to modify the principle of virtual work, and then to obtain a
generalized variational theorem which describes an arbitrary state
of initial stress. The procedure used in achieving this is
analogous to the one used in reference 4. The second aim is to
construct the governing equations of anisotropie beams under
initial stress by the use of the generalized variational theorem
together with an incremental displacement field chosen a priori.
The displacement field allows to include all the effects of
transverse shear and normal strains, and the rotatory inertia for
the prestressed thick beam in which they are significant. The
resulting equations describe all the types of superimposed
extensional, flexural,and torsional motions of thick anisotropic,
elastic beam of uniform cross section. The dynamic instability
of the prestressed beam is also discussed.

SYMBOLS

In a Euclidaen 3-space, Cartesian tensors are used, and
Einstein's summation convention is implied for all repeated Latin
(1,2,3) and Greek (1,2) indices, unless indices are put within
parantheses.

L, A; C length and cross-sectional area of beam; Jordan curve
which bounds A

vV, S entire volume of beam and its total boundary surface

sSt, s" complementary subsurfaces of S, where stresses and
displacements are)respectively,prescribed

Xi5 X» x3 a system of right-handed Cartesian convected coordi-
nates; lateral coordinates and beam axis

Uy > u?’n components of displacement vector, displacement
functions of order (m,n)

0 mass . density

Nys Vi components of unit outward vector normal to S and C

eij’ 13 components of strain and symmetric stress ftensors

0 prescribed steady temperature field



isothermal elastic stiffnesses and strain-temperature

13k1% 71 constants
Imn moment of inertia of order (m,n)
a;= ﬁi, ti components of acceleration and traction vectors
T?En stress resultants of order (m,n)
F?’n, A?’n body force and accelération resultants of order (m,n)
Q?’n, P?’n effective load and external force of order (m,n)

("), () . partial differentiation with respect to time, t, and Xy
(%), (%) field quantities belong to the reference state and
prescribed quantities '

C functions with derivatives of order up to and including
m and n with respect to space coordinates Xy and time,t

FUNDAMENTAL EQUATIONS

Consider a simply connected elastic body V+S, with its
boundary S, in a 3-D Euclidean space %. The elastic body is
referred to a x,-fixed system of Cartesian convected coordinates
in this space. "When this body is prestressed, we distinguish two
states of the body: its reference (or initial) and spatial (or
final) state. The reference state is considered to be self-
equilibrating following static loading in the natural (or un-
disturbed) state of the body at time, t=t,. We may summarize, for
ease of quick reference, the fundamental equations (see, e.g.,
ref. 2) in the form

0 0p0 :
895.1 + fj 0 in V (1)
0 - 0% = ! o _ 0% - "
nisij tj 4] on S8' , ug Uy 0 on S (2)
0 = 0 0 - 5 (110 0 :
853 Cijkl €41 eij 1/2(ui,j + uj,i) in V (3)

for this state. Here, p® is the known mass density of the body
material, s!, the symmetric stress tensor, f£? the body force
vector per &ﬁit mass in V, u? the displacemeﬁt vector, n. the
unit outward vector normal td S, u?* and t%% the prescribed
displacement and traction vectors on the c mplementary sub-
surfaces S" and S' of S, eg the linear strain tensor, and C
(C, . = C,. = C 2.s) thejisothermal elastic stiffnesses.
ijkl Jikl klij

Now, suppose that an infinitesimal (or small) motion is

ijkl
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superimposed upon the reference state. For this motion, we have
the following fundamental equations:

s.. + 8% u, . + p%(f, —a.,) =0 in V L
(555 + sdpuy ) 5+ 0(f; - ay) ()
0 — ¥ = 1
ni(sij + Siruj,r) tj 0 on 3 (5)
u, - u¥ =0 on S" (6)
i i
€35 © 1/2(ui,j + uj,i) in V (7)
S;3 = Cijkl(ekl - Gakl) in V ‘ (8)
- v¥ = 1. - w¥ = i

uy v¥ 0 % ug w¥ 0 in V(t,) (9)
in the spatial state In these equatlions, s.. t. and so on
indicate small 1ncrementa1 quantltles superlmﬁoseé upon those of
the reference state (i.e. u?, t%). And a.=l, is the

acceleration vector, v¥ and wj* a%e t%e prescrl%ed displacement
vectors. © 1s an incrémental prescribed steady temperature field
and ao. .. the straln—temperature coefficients at constant
stres%J Aléo, V(ty) 1s used to designate V at t=t,.

Equations (1)-(9) describe completely the initial stress
problem of interest.

VARTATIONAL THEOREMS

To begin with, we express a principle of virtual work as the
assertation

0 = 0 0 _ 0
fv(sij + sij)GyijdV [y e%(£] + f£,)8u,dv fv pa,du,dv
0 *
+ fs(ti + t¥)du,ds (10)

in the spatial state. Here, Yy denotes the Lagrangian strain
tensor, and it 1is given by J

Yig = €13 + l/2(u1 Py p ) (11)

In equation (10), through the use of equation (11), we first carry
out the indicated variations, apply Green - Gauss integral
transformations and combine the resulting surface and volume
integrals. ©Next, we recall the usual arguments on incremental
field quantities (see, e.g., ref. 2), take into account equations
(1) and (2), and finally arrive at the variational equation of the
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form:

8y =8J_ =0 (12 a)
a0
with
= 0 0 -
83,4 fv(sij + Siruj,r),iéuidv + [y 0°(fy - a;)8u,dv
= 0 - t%
8755 fs[(sij + sirué’r)ni tjjaujds (12 b)

The variations of displacements are arbitrary and independent in
this equation. Hence, equation (12) leads evidently to the stress
equations of motion (4) in V and the natural boundary conditions
(5) on S, as the appropriate Euler equations.

Variational Theorem: Let V+S denote a regular, finite region
>f space (see, e.g., ref. 15) in %, with its boundary S, and define
the functional J whose the first variation is given by equation
(12). Then, of all the admissible displacement states u,eC 55 if
and only if, the one which satisfies the stress equation% o% motion

(4) and the natural boundary conditions (5) as the appropriate
iuler equations, renders &8J = 0.

This is a one~-field variational theorem in which equations (6)

-{9) of the initial stress problein remain to be satisfied as
ronstraints.

To include the rest of equations of the initial stress problem
n the variational formulation, we introduce dislocation potentials
ind use Friedrichs's transformation, and we closely follow de
Teubeke (ref. 4). Thus, we obtain the following theorem.

Generaligzed Variational Theorem: Let V+S denote a regular,
'inite regilon of space in E, with its boundary S (S'nS"=0 and
3'uS"=8), and define the functional I whose first variation is
tiven by

§I = 8I,, + 8314 (13 a)

rith

= g - t¥
§I,4 IS' [(sij + Siruj,r)ni tjjéujds

+ fsn(u; - u¥)st,ds (13 b)

8Ty, = [y Usyy = Cijuq (8 = Ooyq) 186, 4av (13 ¢)

6133 = IV [eij - 1/2(ui,g + uj,i)]ssijdv (13 a)

‘hen, of all the admissible states of uieclg, eijecoo’ tiecoofand
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. .€C, , if and only if, those which satisfy the stress equations
otImotfon (4) in V, the natural boundary conditions (5) and (6)
for displacements and tractions on S" and S', the strain-
displacement relations (7) in V, and the constitutive equations (8
in V, as the appropriate Euler equations, render §I=0. ’

In the generalized variational equation (13), the incremental
field quantities (s,., u,, t.,and e.,.) are varied independently.
"And this is a four-tield’vartatienal?theorem. The admissible
states are not required to meet any of the fundamental equations o
the initial stress problem but the initial conditions (9) only.

BEAMS UNDER INITIAL STRESS

Geometry and Kinematics

A straight elastic beam is embedded in the space Z. The beam
is of uniform cross section, A, and it occupies a regular, finite
region of space V with its boundary S in E. The total surface S
consists of two right and left faces, A_ and A., and a cylindrical
lateral surface S.. The beam is referrbd to t%e X,-system of
Cartesian convect%d coordinates located at the centroid of A,. The
X,—axis 1s chosen to be the beam axis, and the x -axes indicéte
tﬁe principal axes of A which is bounded by a Jo%dan curve C. The
beam is under an initial stress field in the reference state.

The incremental displacements of the prestressed elastic beam
are taken of the form:

M=1 ‘

- m.n (m,n)
ui(xj,t) ) . [x x5 uy ] (14)
m,n=0
(m,n) . .
Here, the u.,™ are functions of x, and time, t, only. These

terms readi}y accommodate 1ow—frequéncy extensional, flexural and
torsional superimposed motions. However, it should be kept in
mind that, in the case of torsion, equation (14) can represent
only the displacements of beams of elliptic and circular cross-
sections, and for all other sections, more terms should be retaine
in the expansion. The displacement field (14) 1is like the one
Mindlin (ref. 16) used in his recent derivation of the governing
equations for a non-initially stressed elastic bar.

Stress and Load Resultants

We define the stress resultants of order (m,n):

(m,n) _ m_n .
T3y [y %1%, 5504 (15 a;
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This represents the weighted, averaged values of stress tensor
over a cross section of the prestressed beam in the reference
state.

In addition, we introduce the body force, acceleration and
load resultants, and the moment of inertia of order (m,n):

p(msn) _ [, x1%5 £,4A, Ti(m’n) = [, x™xT t#4a

i 172 A 172 M4
M=1
- 0 (m,n) _ .+ (p,q)
Tnn fA 1%p 44, Ay B p%q=0 Im+p,n+qui-
[P(m n) P°(m’n)] =0 iz  [s s%.3as
O | C "172%a ai? “oi
M=1
2;(m,n) -3 C (pPi(m+p—1’n+q) + ng(m+p,n+q—1))u§paQ)‘
P70 ) (p,q)
+ PO m+p§n+q p:q
3 a3
M:l
J;(m,n) =7 { [mpTo(m+p -2,ntq) | (np+mq>To(m+p 1,n+q-1)
P,d=0 ( ) ( )
o (m+p,n+g-1 o {m+p-1,n+qg
+ an22 + pT31 3
o (m+p,n*q-1)- (p,q) o (m+p,ntq) (p,q)
*alsp 3 Juy + T33 ug’ 33
o(m+p 1,n+q) o (m+p,n+g-1)
+ [(p+m)T + (q+n)T23
+ o(m+p,n+q-l) (p;q)
T33,3 Jugt3™t g
M=1 ]
-;im »n) _ z [ (pTo(m+p -1,n+q) + qT§§m+P,n+Q-l))u§PaQ)
p,a=0

4 po{m+p,n+q) (p,a) ]

33 “1,3 (15 b)

Prestressed Beam Equations = Instability

Now, we shall derive the prestressed beam equations by the
se of the generalized variational theorem (13) together with the
ncremental displacement field (14). First, upon substituting
he expansion (14) into equation (13 a), we find the variational
gquation (16). In this equation, the variations Sum are
rbitrary and independent for any choice of m(=0, 1)*and n(= =0,1),
nd hence it evidently leads to the macroscopic equatlons of
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motion (17) as follows:

L M=1
[ ) U§m’n)6u§m’n);dx3 =0, m,n=0,1 (16)
m,n=0
(m,n) _ n(m,n) (m-1,n) _ (m,n-1) (m,n) o (m,n
Uy T31,3" = mTyy nTsy * Py * Q9
+ p°(F§m’n) - Aém’n)) =0, m,n=0,1 (17)
Here, Q;(m,n) is the effective initial load given by
o(m,n) _ o(m,n) o (m,n)
Qi Ni + Ri (18)

Similarly, we evaluate the variational equation (13 b) and
obtain the natural displacement and traction boundary conditions
in the form

uém,n) - uﬁ(m’n) = 0, m,n=0,1 on Sl
(19,
Ti(m’n) + n3(T§§’n) + N%ém’n)) =0, mn=0,lon A, and A
t = "= = =
Here, S ArUAl and S Sl’ and L +1 for A, and ny 1 for Al.

Upon using of equations (13 c¢) and (13 d) together with (14).
we have the strain distribution:

M=1 :
I 0 N E I (20 a
J m,n=0,1 J
with
(m,n) _ (m,n) (m,n)
b = 2 [u, 2 + u, 2
€4 3 1/2 [ i, uy i
(m+1,n) (m+1,n)
+ (m+1)(sliuj + Sljui )
(m,n+1) (m,n+1)
+ (n+1)(621uj + szui ) 1 (20 b
and the macroscopic constitutive equations:
T(m;n) - C El 7 (elpsa) _  olp,aly (21
ij ijkl m+p,ntqg " "kl kl

where we take the temperature increment of the form:
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M=1

o(xy) = §  xfxg e™Mxy) (22)
i _ l 2
m,n=0
Lastly, the initial conditions, based on equations (9) and
(14),
(m,n) *(m,n) — '(mgn) *(m,n) — *
ug - vi =0 uy - w¥ = 0 1in L(to) (23)

romplete the beam equations (cf., ref. 17, where non-initially

stressed beams are treated) under an arbitrary state of initial
stress field.

The beam eguations of equilibrium may be derived similarly

on the basis of equations (1)-(3); they are not written out here-
.n order to conserve space.

To examine the stability of the prestressed beam equations,
e first consider the beam with a set of initial forces x. Next,
e replace X by a prescribed set x¥. And, as usual, we arrive at
. system of linear homogeneous differentlal equations which

leseribes the 1nstab111ty problem under consideration. The sets
re defined by

X = (T°§m »1) in L, F°(m n) in L, T°(m n) on A)

x* = A(T;§(m »n) in L, FO*(m n) in L, TO*(m’"’ on A)

here A is a monotonically increasing factor, and whenever it
eaches certain values the equilibrating reference configuration
ecomes unstable. The behavior of the eigenvalues of this factor
s to be investigated in each particular case of interest. Some
xamples of 1nstability will be reported elsewhere.
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