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SUMMARY 

This study presents variational theorems for a theory .of 
small motions superimposed on large static deformations and 
governing equations for prestressed beams on the basis of 3-D 
theory of elastodynamics. First, the principle of virtual work 
is modified through Friedrichs's transformation so as to describe 
the initial stress problem of elastodynamics. Next, the modified 
principle together with a chosen displacement field is used to 
derive a set of 1-D macroscopic governing equations of pre- 
stressed beams. The resulting equations describe all the types 
of superimposed motions in elastic beams, and they include all 
the effects of transverse shear and normal strains, and the 
rotatory inertia. The instability of the governing equations is 
discussed briefly. 

INTRODUCTION 

Small motions superimposed upon large static deformations 
have been tackled by a variety of investigators. And differential 
as well as variational formulations have been derived for both the 
so-called initial stress and initial strain problems (see, e.g., 
refs. 1-3, and references cited there). A classical variational 
formulation for the initial stress problem is deduced from a 
general principle of physics and has certain advantages over a 
differential formulation (see, e.g., ref. 3, where the principle 
of virtual work is taken as fundamental). This yields only the 
stress equations of motion and the natural boundary conditions. 
The remaining equations of the initial stress problem should be 
introduced as constraints. The constraints, however, can be 
removed through Friedrichs's transformation. This has been 
illustrated by de Veubeke (ref. 4) for classical elastodynamics. 

All the past efforts reveal how the static and dynamic 
behavior of structures may significantly change by the presence 
of initial stress o r  initial strain. Among those, we mention here 
references 5-8 and references 9-12 on initially stressed shells 
and plates, respectively. On initially stressed beams, the works 
of Brunelle (ref. 1 3 )  and Sun (ref. 14) are cited. Brunelle 
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derived the governing equations for a prestressed, transversely 
isotropic beam via the direct integration of 3-D field equations. 
Sun studied the equations for a Timoshenko beam having an initial, 
in-plane compressive stress by the use of both Trefftz's and 
Biot's formulations. 

The purpose of this investigation is twofold. The first aim 
is to modify the principle of virtual work, and then to obtain a 
generalized variational. theorem which describes a.n arbitrary state 
of initial stress. The procedure used in achieving this is 
analogous to the one used in reference 4. The second aim is to 
construct the governing equations of anisotropic beams under 
initial stress by the use of the generalized variational theorem 
together with an incremental displacement field chosen a priori. 
The displacement field allows to include all the effects of 
transverse shear and normal strains, and the rotatory inertia for 
the prestressed thick beam in which they are significant. The 
resulting equations describe all the types of superimposed 
extensional, flexura1,and torsional motions of thick anisotropic, 
elastic beam of uniform cross section. The dynamic instability 
of the prestressed beam is a l so  discussed. 

SYMBOLS 

In a Euclidaen 3-spaceY Cartesian tensors are used, and 
Einstein's summation convention is implied for all repeated Latin 
( 1 , 2 , 3 )  and' Greek (1,2) indices, unless indices are put within 
parantheses. 

L, A; C length and cross-seckJonal area of beam; Jordan curve 
which bounds A 

v, s entire volume of beam and its total boundary surface 

S ' ,  S" complementary subsurfaces of S, where stresses and 
displacements are,respectively,prescribed 

X ' X  a system of right-handed Cartesian convected coordi- 

Ui' ui myn 

iy et' x3 nates; lateral coordinates and beam axis 

components of displac%ment vector, displacement 
functions of order (m,n) 

P mass-density 

ni, vi components of unit outward vector normal to S and C 

S components of strain and symmetric stress tensors ij' ij & 

0 prescribed steady temperature field 
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'ijkl' a ij 

Imn 

'mn 

isothermal elastic stiffnesses and strain-temperature 
constants 

moment of inertia of order (m,n) 

components of acceleration and traction vectors 

stress resultants of order (m,n) 

body force and acceleration resultants of order (m,n) 

effective load and external force of order (m,n) 

partial differentiation with respect to time, t, and xi 

field quantities belong to the reference state and 
prescribed quantities 

functions with derivatives of order up to and including 
m and n with respect to space coordinates xi and time,t 

FUNDAMENTAL EQUATIONS 

Consider a simply connected elastic body V+S, with its 
boundary S, in a 3-D Euclidean space E. The elastic body is 
referred to a x -fixed system of Cartesian convected coordinates 
in this space. iWhen this body is prestressed, we distinguish two 
states of the body: its reference (or initial) and spatial (or 
final) state. The reference state is considered to be self- 
equilibrating following static loading in the natural (OP un- 
disturbed) state of the body at time, t = t o .  We may summarize, f o r  
ease of quick reference, the fundamental equations (s,ee, e.g*, 
ref. 2) in the form 

+ pof! = o in V 
J 

SO ij ,i 

n.so - t?+ = o on S'  , up - up* = o on S" ( 2 )  
1 ij J 
0 

si j E o  - 
- 'ijkl kl 

for this state. Here, p o  is the known mass density of the body 
material, s !  the symmetric stress tensor, f! the body force 
vector per ?dit mass in V, uo the displacemeht vector, n. the 
unit outward vector normal t& S, u!* and to* the prescrifjed 
displacement and traction vectors bn the chmplementary sub- 
surfaces S" and S '  of S ,  E O  

('ijkl - 'jikl 'klij 
the linear strain tensor, and Cijkl - - - ) the ij isothermal elastic stiffnesses. 

Now, suppose that an infinitesimal (or small) motion is 
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superimposed upon the reference state. For this motion, we have 
the following fundamental equations: 

O u ) + po(fj - a.) = o in V ('ij + 'ir j,r ,i J 

ni(sij + s o  u ) - t? = o on S '  

u - UT = 0 on S "  

ir j,r J 

i 

= 1 / 2 ( ~ , ~  + u ) in V 
'i j ,i 

( 4 )  

( 5 )  

( 7 )  

u - v ; = o  ti G - WT = o in V(to) i i (9) 

in the spatial stat'e. In these equations, si., u., ti and so on 
indicate small incremental quantities superim$ose?i upon those of 
the reference state (i.e., s o  
acceleration vector, v* and 
vectors. 
and a . . =  a. the strain-temperature coefficients at constant 
stresh? A l i d ,  V(to) is used to designate V at t= to .  

u!, t!). 
a+e the prescribed displacement 

And a.=Gi is the 

0 is an incrdmental prescribed steady temperature field 

Equations (1)-(9) describe completely the initial stress 
problem of interest. 

VARIATIONAL THEOREMS 

To begin with, we express a principle of virtual work as the 
assertation 

Iv'spj + s ij )Gy..dV IJ = Iv po(fl + fi)GuidV - Iv p0ai6uidV 

in the spatial state. 
tensor, and it is given by 

Here, yij denotes the Lagrangian strain 

Yi j = E ij + 1/2(ui,ruj,r) 

In equation (lo), through the use of equation (ll), we first carry 
out the indicated variations, apply Green -Gauss integral 
transforamations and combine the resulting surface and volume 
integrals. Next ,  we recall the usual arguments on incremental 
field quantities (see, e.$., ref. 2), take into account equations 
(1) and (2), and finally arrive at the variational equation of the 
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form: 

with 
6 J l l  = Iv(sij + s! ir u j ,r ) ,i .6uidV + Iv P o ( f i  - ai)6uidV 

- tS]Gu.dS ( 1 2  b) 6~~~ = IsC(sij + sqruj,,)ni 5 a  
The v a r i a t i o n s  of d i sp lacements  are a r b i t r a r y  and independent i n  
t h i s  equat ion .  Hence, equa t ion  ( 1 2 )  leads e v i d e n t l y  t o  t h e  stress 
equa t ions  of  motion (4) i n  V and t h e  n a t u r a l  boundary cond i t ions  
(5 )  on S ,  as t h e  a p p r o p r i a t e  Eu le r  equa t ions .  

V a r i a t i o n a l  Theorem: L e t  V+S denote  a r e g u l a r ,  f i n i t e  r e g i o n  

Then, of a l l  t h e  admissible  displacement  s ta tes  U . E C  2 3  i f  

3 f  space (see, e . g . ,  r e f .  1 5 )  i n  3, w i t h  its boundary S, and d e f i n e  
the f u n c t i o n a l  J whose t h e  f i r s t  v a r i a t i o n  i s  g iven  by equa t ion  
( 1 2 ) .  
2nd only if, t h e  one which s a t i s f i e s  t h e  stress equat ion& o$ motion 
(4) and t h e  n a t u r a l  boundary c o n d i t i o n s  ( 5 )  as t h e  a p p r o p r i a t e  
3uler  equa t ions ,  r e n d e r s  6 J  = 0 .  

T h i s  i s  a one- f ie ld  v a r i a t i o n a l  theorem i n  which equat ions  (6) 
- ( 9 )  of t he  i n i t i a l  s tress problem remain to be sa t i s f ied  as 
: o n s t r a i n t s .  

To i n c l u d e  t h e  res t  of equa t ions  of t h e  i n i t i a l  s tress problem 
-n t h e  v a r i a t i o n a l  fo rmula t ion ,  w e  i n t roduce  d i s l o c a t i o n  p o t e n t i a l s  
tnd use  F r i e d r i c h s f s  t r ans fo rma t ion ,  and w e  c l o s e l y  fo l low de 
Teubeke ( re f .  4 ) .  Thus, w e  o b t a i n  t h e  fo l lowing  theorem. 

General ized V a r i a t i o n a l  Theorem: L e t  V+S denote  a r e g u l a r ,  
' i n i t e  r e g i o n  of space i n  E ,  w i t h  i t s  boundary S (S1qS"=0 and 
; 'uS"=S),  and d e f i n e  t h e  f u n c t i o n a l  I whose f i r s t  v a r i a t i o n  i s  
; iven by 

6 1  = G I i i  + 6J l l  (13 4 
r i t h  

= Iv [c i j  - 1/2(uiYj + u ) ] G s i j d V  6133 5 , i  
t . E C  ,and E i j E c O O '  1 00 hen, of a l l  t h e  admissible  states of ui~C12, 
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s EC i f  and only i f ,  t h o s e  which s a t i s f y  t h e  stress equat ions 

f o r  displacements and t r a c t i o n s  on S” and S f ,  t h e  s t r a i n -  
displacement r e l a t i o n s  ( 7 )  i n  V, and the  c o n s t i t u t i v e  equat ions ( 8  
i n  V, as t h e  appropr i a t e  Euler  equat ions,  render  6 I = O .  

In t h e  genera l ized  v a r i a t i o n a l  equat ion (13), t h e  incremental  
f i e l d  q u a n t i t i e s  ( s . .  , u t., and E .  .)  a r e  var ied  independently.  
And t h i s  i s  a four-?’Peldi~arEationafJ theorem. 
s t a t e s  a r e  not requi red  to meet any of the  fundamental equat ions o 
t h e  i n i t i a l  s t r e s s  problem but  t h e  i n i t i a l  condi t ions  ( 9 )  only.  

o $3 mo 40’ i on  (4) i n  V, t h e  n a t u r a l  boundary condi t ions  ( 5 )  and ( 6 )  

The admiss ib le  

BEAMS UXDER INITIAL STRESS 

Geometry and Kinematics 

A s t r a i g h t  e l a s t i c  beam i s  embedded i n  t he  space E .  The beam 
i s  of uniform c ross  s e c t i o n ,  A ,  and i t  occupies a r e g u l a r ,  f i n i t e  
r eg ion  of  space V w i t h  i t s  boundary S i n  E .  The t o t a l  su r f ace  S 
c o n s i s t s  of two r i g h t  and l e f t  f a c e s ,  Ar and A , and a c y l i n d r i c a l  
l a t e r a l  su r f ace  S . The beam i s  r e f e r r e d  to t h e  x.-system of 
Car tes ian  convect&d coord ina tes  loca ted  at t h e  c e n h o i d  of A . The 
x -ax is  i s  chosen to be the  beam a x i s ,  and t h e  x -axes i n d i c k e  
t d e  p r i n c i p a l  axes of A which i s  bounded by a Joydan curve C .  The 
beam i s  under an i n i t i a l  s t r e s s  f i e l d  i n  t h e  r e fe rence  s t a t e .  

The  incremental  displacements of  t h e  p re s t r e s sed  e l a s t i c  beam 
are taken of t h e  form: 

Here, t h e  u .  ( m 9 n )  a r e  func t ions  of  x These 
terms r e a d i t y  accommodate low-frequsncy ex tens iona l ,  f l e x u r a l  and 
t o r s i o n a l  superimposed motions. However, it shou ld  be kept I n  
mind t h a t ,  i n  t h e  case of t o r s i o n ,  equat ion ( 1 4 )  can r ep resen t  
only t h e  displacements of beams o f  e l l i p t i c  and c i r c u l a r  cross-  
s e c t i o n s ,  and f o r  a l l  o the r  s ec t ions ,  more terms should be r e t a i n €  
i n  t h e  expansion. The displacement f i e l d  ( 1 4 )  i s  l i k e  t h e  one 
Mindlin ( r e f .  1 6 )  used i n  h i s  r ecen t  d e r i v a t i o n  of t h e  governing 
equat ions f o r  a n o n - i n i t i a l l y  stressed e l a s t i c  bar. 

and t i m e ,  t, only.  

Stress and Load Resul tan ts  

We de f ine  t h e  stress r e s u l t a n t s  of order  (m,n): 
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This represents the weighted, averaged values of stress tensor 
over a cross section of the prestressed beam in the reference 
state. 

load resultants, and the moment of inertia of order (m,n): 
In addition, we introduce the body force, acceleration and 

Prestressed Beam Equations -Instability 

Now, we shall derive the prestressed beam equations by the 
se of the generalized variational theorem (13) together with the 
ncremental displacement field (14). First, upon substituting 
he expansion ( 1 4 )  into equation (13 a), we find the variational 
quation (16). In this equation, the variations 6ui are 
rbitrary and independent for any choice of m(=0,1) and n(=Oyl), 
nd hence it evidently leads to the macroscopic equations of 
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motion (17) as follows: 

(myn)6upyn) dx3 = 0, m,n=O,l 
0 m,n=O 

Here, Q!(myn) is the effective initial load given by 

Similarly, we evaluate the variational equation (I3 b) and 
obtain the natural displacement and traction boundary conditions 
in the form 

Tf(myn) + n3(T3i + qi (myn)) = 0, m,n=O,lon Ar and A 

Here, S'=AruA1 and S"=S1, and n =+1 for AI, and n =-1 for Ala 

we have the strain distribution: 

3 3 
Upon using of equations (13 e) and (13 d) together with (14) 

(20 a' 

with 

and the macroscopic constitutive equations: 

where we take the temperature increment of the form: 
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M = l  

m,n=O 
@(Xi) = 1 

Lastly, the initial conditions, based on equations (9) and 
(141, 

:omplete the beam equations (cf., ref. 1 7 ,  where non-initially 
;tressed beams are treated) under an arbitrary state of initial 
;tress field. 

The beam equations of equilibrium may be derived similarly 
)n the basis of equations (l)-(3); they are not written out here 
-n order to conserve space. 

To examine the stability of the prestressed beam equations, 
re first consider the beam with a s e t  of initial forces x. Next, 
re replace x by a prescribed set x*. And, as usual, we arrive at 
t system of linear homogeneous differential equations which 
Lescribes the instability problem under consideration. The sets 
.re defined by 

in L, Fi o b,n> in L, Ti o(m,n) on A) 

here X is a monotonically increasing factor, and whenever it 
eaches certain values the equilibrating reference configuration 
ecomes unstable. The behavior of the eigenvalues of this factor 
s to be investigated in each particular case of interest. Some 
xamples of instability will be reported elsewhere. 
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