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SUMMARY

The equations of motion for large structures with rotating flexible com-
ponents are derived by regarding the structure as an assemblage of substruc-
tures. Based on a stationarity principle for rotating structures, it is shown
that each continuous or discrete substructure can be simulated by a suitable
set of admissible functions or admissible vectors. This substructure synthe-
sis approach provides a rational basis for truncating the number of degrees of
freedom both of each substructure and of the assembled structure.

INTRODUCTION

The methodology for analyzing large complex structures has developed along
different lines. One approach represents a natural extension of methods de-
veloped originally for civil and aircraft structures, culminating in the fi-
nite-element method (ref. 1) and the component-mode synthesis (refs. 2,3). Al-
though rotation of the structure could be accounted for through rigid-body
modes, work using the approach of references 1-3 has been concerned mainly
with nonspinning structures. On the other hand, an entirely different approach
was developed in conjunction with spinning and nonspinning spacecraft struc-
tures. This approach was dominated by the fact that early spacecraft could be
treated as entirely rigid. Hence, in the early stages of development, struc-
tures were assumed to consist of point-connected rigid bodies arranged in "to-
pological trees" (refs., 4,5). With time, the rigidity assumption was relaxed
gradually by first allowing for flexible "terminal bodies" (refs. 6,7) and
then finally for all flexible bodies (ref. 8). A third approach to the prob-
lem of spinning flexible spacecraft was concerned with spacecraft consisting
of a rigid body with flexible appendages (ref. 9,10). This latter approach
can be regarded as an early application of the component-mode synthesis to
spinning structures.

Most papers concerned with structures simulated by point-connected rigid
bodies, such as references 4, 5, proposed to derive the equations of motion by
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the Newtonian approach, on the assumption that such a derivation was more suit-
able for digital computation. Of course, an early difficulty became immediate-
1y apparent in the form of the handling of interbody constraints, a major crit-
icism of the Newtonian approach in most circumstances. Another difficulty was
the relatively large number of degrees of freedom involved, a difficulty only
compounded by permitting various bodies to be flexible. As a result, there

are no meaningful ways of truncating the problem.

This paper is concerned with the mathematical simulation of large struc-
tures, where the structure is regarded as an assemblage of substructures. In-
deed, the mathematical model is assumed to consist of a central substructure
with a number of appended substructures, where some of the latter can rotate
relative to the central substructure. To ensure that the various substructures
act as parts of a whole structure, an orderly kinematical procedure is used
which takes into account automatically the superposition of motion of the cen-
tral substructure on the motion of the interconnected substructures. The sys-
tem equations of motion are derived by means of the Lagrangian approach, which,
when used in conjunction with the kinematical procedure just described, does
away with the question of constraints. The equations of motion are derived
from scalar functions, namely, the kinetic and potential energy. where the
first requires the calculation of velocities only. In addition, discretiza-
tion of the kinetic and potential energy in conjunction with Tinearization
ensures proper symmetry and skew symmetry of the coefficient matrices in the
final equations of motion. Using a Rayleigh-Ritz approach, the motion of each
continuous (discrete) substructure can be represented by a Tinear combination
of admissible functions (vectors) rather than substructure natural modes.

This approach is based on a stationarity principle for rotating structures de-
veloped recently by the first author (ref. 11). Finally, the truncation prob-
Tem can be handled much more efficiently by the substructiure synthesis ap-
proach, as the possibility of truncating the number of degrees of freedom both
of the individual substructures and of the assembled structure provides a much
more rational basis for an overall truncation decision.

KINEMATICAL CONSIDERATIONS

Let us consider a general structure consisting of a central substructure
C and a given number of appended substructures (see fig. 1), where the latter
are of three types: rigid and rotating relative to the central substructure
(type R), elastic and nonrotating relative to the central substructure (type
E), and elastic and rotating relative to the central substructure (type A).
Clearly, there can be more than one appendage of a given type, but we shall
confine our discussion to a representative one of each type, with summation im-
plied over the entire number of substructures. Although we consider here only
peripheral substructures, the formulation can be easily extended to chains of
substructures, as discussed later.

Let us introduce the inertial system of axes XYZ with the origin at 0 and
identify a system of axes xcyczc with the origin at an arbitrary point C of
the central substructure. %hen, denoting by wgc the radius vector from 0 to C,
by e the position vector of any mass point in %he substructure, and by uc the
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elastic displacement of that point measured relative to xcycze» and recognizing
that woe is in terms of components along XYZ and r¢ and yc are in terms of com-
ponents along Xcycze, the absolute position of the mass point in question in
terms of componen%s along xeycze is We = Tocwoc + r¢ + Uc» where Tpc is the ma-
trix of direction cosines between XYZ and Xcyczc. Moreover, if Q¢ 1s the angu-
lar velocity of the frame xcyczg relative to XYZ, the absolute ve?ocity of the
mass point is

We = Tockoe = (e + ¥c)ge * Y | (1)

where ;C + &C is a skew symmetric matrix associated with rp + uc and gc is the
elastic velocity of the point relative to axes xc¥cZg-

To calculate the absolute velocity of a point in the substructure R, we
must first obtain the velocity of point R as well as the angular velocity of
a reference frame Xxcpycprzcr attached to the central substructure at R and with
axes parallel to the rotor axes xpyrzg when at rest and when the central sub-
structure is undeformed. Due to geometry alone the orientation of axes XcrycR
zcp relative to Xeyezp is given by the constant matrix of direction cosines
Lgr- Denoting by ucr the elastic deformation vector at point R of the central
substructure and assuming that the components Ugpys UCRys UCRz» OF UCR are small,
the rotation vector of axes xcrycrzcr due to elastic de¥ormation can be writ-
ten in the form

T
% (L " . ) i} BUCRZ ) 3uc&y auCRX ) auCRZ BUCRy ) BUCRX (2)
CR'"GR-CR ayCR BZCR BZCR BXCR aXCR gyCR

where QCR is a skew symmetric differential operator matrix corresponding to the
curl operator. Hence, the matrix of direction cosines between axes XcpYcrRZCR
before and after deformation is

: SUcry _ PYcRx _(buCRx _ auCRz)
%R Yer %2R XeR
L. _(?UCRy i 2cpe) : dYcrz  Mcry (3)
R~ [\oxcg — 3gp/ Yer %R
Ucpx  2UcRg _(?UCRZ ) 8“CRX‘) :
| %% %R BYer %% _

Moreover, letting L be the matrix of direction cosines between axes Xpyprzp
and XcpYcpZcr» the transformation matrix between axes xpyRzR and xcyczc is
simp]y TCR = LRLCRLGR'

Denoting by wp the angular Ve]ocity of the rotor relative to axes Xcp¥cR
zcp» the absolute angular velocity of xpyrzr in terms of components along
XRYRZR 15

% = Ter % * Lr Verllar Yer) * %R - (4
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where the second term in equation (4) is the angular'velocity of axes xcpycrzcR
due to the elastic motion of the central substructure. Because the rotor 1is
rigid, the position of a mass point relative to R is simply rp. Hence, the
absolute velocity of the point in question is simply

YR = Ter Wer ~ "R TR (5)

where wep is the velocity of point R obtained from we by substituting the coor-
dinates of the point R for those of an arbitrary poift.

Next, Tet us turn our attention to the substructure E and denote by xpypzp
any convenient set of axes with the origin at E and attached to the substruc-
ture. Using the analogy with equation (4), the angular velocity of xpypzp is

2% = Tee 2¢ * Vepllge Yep) | | (6)

where Tep = LggLGE. Moreover, by analogy with equation (5), the absolute ve-
locity o% a mass point in the substructure is

We = Top Wep - (g ¥ U9 + U )
where QE is the elastic displacement relative to axes XgYEzE.

The extension to elastic substructures rotating relative to the central
substructure is quite obvious. Letting yp be the angular velocity of the sub-
structure A relative to a set of axes xcpycazca attached to the central body
at point A, the absolute angular velocity oé XpYpZs is simply

% = Tea % * Lo Veallga Yen) * en | (8)
where Tep = Lplcalga» and the absolute velocity of an arbitrary point in A is
Wa = Tea toa - (ra * Up)8 + Y )

Finally, let us consider chains of substructures. First, we note that
the angular velocity of a peripheral substructure and the absolute velocity of
an arbitrary point in a peripheral substructure are written in terms of the
angular velocity of a set of axes attached to the central substructure and
with origin at the interconnecting point and the translational velocity of the
interconnecting point. As an example, see equations (4) and (5). To write
the angular velocity and absolute velocity of an arbitrary point of a sub-
structure in a chain, we simply replace gquartities pertaining to the central
substructures, such as Tep, 9¢» Ver(Lgr UcR)» and wer in equations (4) and (5)
by analogous quantities pertaining to the immediate%y preceding substructure
in the chain. :
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SYSTEM DISCRETIZATION AND/OR TRUNCATION

In general, each elastic substructure possesses a large number of degrees
of freedom. In fact, if the substructure is continuous, then its number of
degrees of freedom is infinite. For practical reasons, we must 1imit the for-
mulation not only to a finite number of degrees of freedom but also to as small
a number as possible consistent with a good simulation of the system dynamic
characteristics. In this regard, we wish to use a Rayleigh-Ritz approach and
represent the elastic displacements of a continuous substructure by a linear
combination of space-dependent admissible functions multiplied by time-depen—
dent generalized coordinates of the substructure. . If the substructure is dis-
crete, then instead of admissible functions we must use admissible vectors.
Note that it is common practice to use as admissible functions and admissible
vectors the eigenfunctions and eigenvectors of the substructure. In view of
the stationarity principle for gyroscopic systems developed in reference 11,
however, this is not really necessary, and a reasonable set of admissible func-
tions or admissible vectors should suffice. Hence, we shall use the discreti-
zation and/or truncation scheme

Ye=% 0 c Y% o YaT %M (10)

where nee ”E’ and np are time-dependent vectors of generalized displacements
with dimensions Nes Ng» and Ny, respectively, and Oes @ , and oy are 3 X Ngs

3 x Mg, and 3 x n, space-dependent matrices of admissib e functions or admis-
sible vectors, as the case may be. Note that for a continuous substructure u
depends on continuous space variables and for a discrete substructure it de-
pends on discrete space variables. In the latter case, the partial derivatives
involved in the quantity vu are to be replaced by corresponding slopes.

Although we have mentioned both continuous and discrete substructures in
the above, we have made no attempt to make clear distinction between the two
types of mathematical models. Neither have we elaborated on the various types
)f discrete models, such as Tumped models, finite-element models, etc. Of
sourse, the mathematical model used depends on the substructure mass and stiff-
1ess distributions, but this is of no particular concern here. The reason for
this is that, independently of the mathematical model postulated for the sub-
structure, the general idea is the same, namely, to eliminate the spatial de-
yendence by the use of admissible functions or admissible vectors and to trun-
:ate the problem by limiting the number of these functions or vectors.

LAGRANGE'S EQUATIONS OF MOTION

To derive Lagrange's equations of motion it is necessary to produce first
xpressions for the kinetic energy, potential energy, and nonconservative vir-
ual work. Assuming that in equilibrium the central substructure C, substruc-
ure R, and substructure A rotate with the uniform angular velocities Qe about
c» %R about zp, and Qp about .Zp» respectively, while any other motion 1s zero,
e can write Q¢ = ¢ ¢ + o 8> WR = Qg 4R T OR R wp = 2 a +oep 6p» Where
p is the vector of direction”cCosines between zc and x@z 2R 1s the vector of
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direction cosines between zp and xcRrycrzcr, and £ is the vector of direction
cosines between zp and XCAYCAZCA- Moreover, o¢, OR, and o4 are 3 x 3 matrices
depending on oscillation of the axes xcyczg re at1ve to XYZ, etc. Using equa-
tions (10) and reta1n1ng only linear terms the absolute ve1oc1t1es of typical
points in the various substructures become

We=Cy 9 *Crac » Wp =Ry G *Ryqp
» e ) . . (]])
We = Ep Qe F By g Wy T Ay Ga Ay gy

T: ! T
where g¢ = [woc 1 o -nc] . gr = Dmdc, o0 n¢ 1oR1s 9 = Dwgco o¢ 1 nC . otd's
and gp = [wgc eg . ¢ |ex nA]T are configuration vectors for the substructures

The system kinetic energy can be written in the form

- : y
T=To+Tp+Tp + T, (12)
where
1 LT 1T T =~ 1 T=
Tc =2 Jm WeWe dme =79 83 9% T 9 G29% 2% G2 %
c
_ 1 T 1 Ts T = 1 T
R =2 fm MR ¥R dmp =2 R Ry R R PRz R TR R R
R (13
_l T _l.T-— . T = - lT_.
TE=2 JmE We WE Mg = 2 9g By Gt e B2 9 Y 7 9 Bap %
1 T . 1.T¢ Ty = .1 1
Th=2 Jm WA Wa dmy =5 Ga Ay G P A G T2 P I
A
in which
i T _— T
i " Jm cjcydng o Ry Jm R) Ry dn
c R (
14
_— T _— T
Eij - J Ej Ei de 'Y Aij - J Aj Ai dmA
Mg A

Note that the square matrices C; je Eij, and Ay, have partitioned forms,
with many of the off-diagonal suematrlces equal to ero. Introducing the n-
d1mens1ona1 configuration vector for the entire system in the form g =

]
[ ,eT :BX ;ng ,nT ' T]T, where n is the number of degrees of freedom of

the sys em, the k1net1c energy can be written in the general form
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LY.

K: 9 (15)

where M and Ky are symmetric matrices. Similarly, the potential energy for
the entire system is

1 T
V='2'g Kvg ; (16)

where K, is a symmetric matrix, and the nonconservative virtual work has the
form

oW = Q' 5g (17)

where Q is the nonconservative generalized force vector.

In general, the matrices M and F depend explicitly on time. However, un-
der certain circumstances, such as when the substructures R and A are symmet-
ric, the time dependence disappears. A helicopter with a symmetric rotor ro-
tating relative to an airframe while in hover is an example, where the entire
rotor is considered as a substructure. Another possibility is to consider
each rotor blade as a separate substructure. In this case, & combination of

substructures forms a symmetric rotor and M and F will once again be constant
natrices. '

Lagrange's equations can be written in the symbolic form
dt . " ag ¢ (18)

there L = T - V is the system Lagrangian. Assuming that M and F are constant,
introducing equations (15) and (16) into the Lagrangian L, and using equation
‘18), we obtain the Lagrange's equations of motion

Mg + (F'

: - Flg+ (K, - Kpdg = Q (19)
there FT - F is a skew symmetric matrix. Hence, equation (19) represents a
ypical gyroscopic system. The natural frequencies and natural modes of the
omplete structure and the closed-form solution of equation (19) can be ob-
ained by the methods developed in references 12 and 13. The interest here

s not so much in the response as in the dynamic characteristics of the sys-
em, and in particular, the truncation effect on these characteristics.

THE EIGENVALUE PROBLEM AND TRUNCATION IMPLICATIONS

Introducing the 2n-dimensional state vector g(t) and the associated 2n-
imensional force vector X(t) in the form

x(t) = [g(t) 17 (t)1T . x(t) = [g"(t) 0" (20)
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where 0 is the n-dimensional null vector, as well as the 2n x 2n matrices

1

1

:.l’_.._ (21)
!

where 0 is the null matrix of order n, the n second-order differential equa-

tions of motion, equation (19), can be replaced by the 2n first-order differ-
ential equations in the state space x(t), where the equations have the eigen-
value problem

AIx + Gx = 0 (22)

It is shown in reference 12 that the eigenvalue problem (22) can be reduced to
the real symmetric form

Wlly =Ky » wllz = Kz (23)
where K = GTI-1G is a real symmetric matrix. The eigenvalue problem (23) is
in terms of two real symmetric matrices and is known to possess real eigen-
values. Assuming that I is positive definite, it follows that K is positive
definite, so that the eégenva1ues are not only real but also positive. More-
over, %he eigenvalues wy 1,25...,n) have multiplicity two, so that to
each w4 belong the eigenvectors ﬁ and z,. Because I and K are positive defi-
nite aY] the eigenvectors are in ependent In fact, they are orthogonal with
respect to the matrix I.

Next, let us use the Cholesky decomposition and write I in the form I = 7

LLT, w?ere L is a Tower triangular matrix. Introducing the notation y} = L' Yp:
zp. = L'zp, (r=1,2,...,n), the eigenvalue problem (23) becomes
2Vl..ll 2I_ll '
op Yp = Ky s g 20= KizZg (24)

where K' = L TKL-T is a real symmetric positive definite matrix, in which
T= (- hT.
Denoting by v an arbitrary 2n-vector, Ray1e1gh s quotient associated
with the eigenvalue problem (24) can be written in the form (ref. 11)

vTK'y

vy

R(v) =

(25)

Because K' is real and symmetric, it is well known that Rayleigh's quotient
has a stationary value in the neighborhood of an eigenvalue. Note that the
symmetric formulation (24) permits us to conclude that a stationarity prin-
ciple exists also for gyroscopic systems.
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Next, we wish to examine the truncation effect on the system characteris-
tics. To this end, let us examine the eigenvalue problem Av = Av, where A is
a real symmetric matr1x of order N, and assume that the eigenvallies of A are -
ordered so that A7 < Ap < ... < AN. Now, Tet us form the matrix B by deleting
the last row and co1umn of A and write the eigenvalue problem Bu = yu, where
the eigenvalues vy. = 1,2, ,N-1) are ordered so that Y1 <Y vee < YN—1
The question ar1sgs as to how the e1genva1ues vi relate to the e1genva1ues A5
To this end, one can use the Courant's maximum-minimum theorem (ref. 14) and
prove that

MEYP 2R 22 oo Sy g Sy Sy (26)

We shall refer to inequalities (26) as the inclusion principle.

Now, let us return to the truncation problem. The 2n x 2n matrix K' was
obtained as the result of representing the spinning structure by an n-degree-
of-freedom system. Note that the rotational coordinates are also included in
these degrees of freedom. This representation is tantamount to the imposition
of a given number of constraints on the original structure. For example, the
first of equations (10) can be written in the form

ue = ]Z 2ci "ci | (27)

so that the constraints imposed on the system are nC,nc+] = MCongt2 T ottt T 0.

Truncating the series (27) by assuming that nC,ng = 0> we obtain a matrix K"

obtained from K' by deleting two rows and the cgrrespond1ng two columns. If
the eigenvalues wZ of K' are such that w] S wpt < ., < mn2 and the eigen-

values B% of K" are such that 512 < Brf S .l < 3n 15> then we have
2 2 2 2 2 2 2
wy S By Swy 2By 2 ees Swy g 2By Sy (28)

Note that the fact that the eigenvalues of K' and K" have multiplicity two is
automatically taken into account in inequalities (28). On the other hand, by
relaxing one constraint, i.e., by adding one term to the series (27), we ob-
tain a (2n + 2) x (2n + 2) matrix K"' which is obtained by adding two rows
and columns to K'. The eigenvalues a® of K'' are such that

2 2 2 2 2

a]iwlf_agiwgf_...ianf_w _<_C!.

(29)

The above developments permit us to conclude that the system estimated natural
frequencies tend to decrease monotonically with each additional degree of
freedom. At the same time there is a new frequency added which is higher

than any of the previous ones.

The question remains as to how to select the admissible functions or ad-
missible vectors. The first thing that comes to mind is to take them as the
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eigenfunctions and eigenvectors of the various substructures. In many cases,
the solution of the eigenvalue problem for a substructure can be quite a

task in itself, so that in such cases one may wish to use deformation patterns
only approximating the actual modes. This can be regarded as imposing addi-
tional constraints on the system, which tends to raise the natural frequencies
of the system, but this may be considered as a viable alternative, particular-
1y when the validity of the solution of the eigenvalue problem is question-
able. Experience with the Rayleigh-Ritz approach shows that the system natu-
ral frequencies are not very sensitive to the admissible functions used, which
can be traced to the stationarity principle. But a stationarity principle
exists also for discrete systems, so that the same conclusion can be extended
to admissible vectors.

The truncation by substructures has a clear advantage over truncation
of the structure as a whole. The reason is that it permits a more rational
judgement based on the substructure properties, such as the mass and stiffness
distributions. Generally one is interested in only a 1imited number of lower
modes of the complete structure. Hence, a very stiff and 1ight substructure
is 1ikely to have less effect on the modes of the complete structure than a
flexible heavy substructure. Hence, one can truncate the first more severely
than the second. Some ideas for truncation can be obtained by estimating the
natural frequencies of the substructures. This by no means implies that one
need solve the eigenvalue problem for the substructures exactly. Indeed,
using a Rayleigh-Ritz procedure for continuous or discrete systems, in con-
junction with a preselected set of admissible functions or admissible vectors,
it is possible to obtain a reasonable estimate of the lower frequencies of
each substructure. Note that the Rayleigh-Ritz method can be used to produce
and solve an eigenvalue problem of considerably lower dimension than that of
the full eigenvalue problem for the substructure. Tho estimated lower natural
frequencies of the substructure, when compared to those of other substructures,
can be used merely as a guide for truncation purposes. In fact, the eigen-
vectors serve no useful purpose and need not be calculated, as the same ad-
missible functions or vectors can be used to represent the substructure in
the generation of the eigenvalue problem for the complete assembled struc-
ture. This conclusion is based on results shown in reference 11.

If the dimension of the eigenvalue problem for the complete assembled
structure is still too large, and the higher modes are not really necessary,
then one can solve only for a given number of lower modes by using such tech-
niques as subspace iteration.

CONCLUDING REMARKS

A procedure has been shown whereby the equations of motion for large
structures with rotating flexible components can be derived by the Lagrangian
approach. A fundamental consideration in the derivation of Lagrange's equa-
tions is the superposition of substructure motions by means of an orderly
kinematical procedure, which automatically eliminates the problem of con-
straints. Using a Rayleigh-Ritz approach, it is shown that each continuous
or discrete flexible substructure can be simulated by a finite number of ad-
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missible functions or admissible vectors and exact substructure modes are

not really necessary. This conclusion is based on a stationarity principle
for rotating structures developed recently by the first author (ref. 11). Fi-
nally, the substructure synthesis approach provides a rational basis for trun-
cating the number of degrees of freedom both of each individual substructure
and of the assembled substructure.

10.

REFERENCES

Turner, M. J., Clough, R. W., Martin, H. C., and Topp, L. J., "Stiffness
and Deflection Analysis of Complex Structures", Journal of Aeronautical
Sciences, Vol. 23, 1956, pp. 805-824.

Hurty, W. C., “"Dynamic Analysis of Structural Systems Using Component
Modes", AIAA Journal, Vol. 3, No. 4, 1965, pp. 678-685.

Benfield, W. A. and Hruda, R. F., "Vibration Analysis of Structures by
Component Mode Substitution", AIAA Journal, Vol. 9, No. 7, 1971,
pp. 1255-1261.

Hooker, Willjam W. and Margulies, G., "The Dynamical Equations for an n-
Body Satellite", Journal of Astronautical Sciences, Vol. 12, No. 4,
1965, pp. 123-128.

Roberson, R. E. and Wittenburg, J., "A Dynamical Formalism for an Arbi-
trary Number of Interconnected Rigid Bodies, with Reference to the
Problem of Satellite Attitude Control", Proceedings of the Third Con-
gress of the International Federation of Automatic Control, London,
1966.

Hooker, William W., “Equations of Motion for Interconnected Rigid and
Elastic Bodies: A Derivation Independent of Angular Momentum", Celes-
tial Mechanics Journal, Vol. 11, 1975, pp. 337-359.

Ho, J. Y. L., "The Direct Path Method for Deriving the Dynamic Equations
of Motion of a Multibody Flexible Spacecraft with Topological Tree
Configuration", Presented as AIAA Paper No. 74-786 at the AIAA Mechanics
and Control of Flight Conference, August 5-9, 1974.

Frisch, Harold P., "A Vector-Dyadic Development of the Equations of Motion
for N-Coupled Flexible Bodies and Point Masses", NASA TN D-8047, August
1975.

Meirovitch, L. and Nelson, H. A., "On the High-Spin Motion of a Satellite
Containing Elastic Parts", Journal of Spacecraft and Rockets, Vol. 3,
No. 11, 1966, pp. 1597-1602.

Meirovitch, L., "Liapunov Stability Analysis of Hybrid Dynamical Systems
with Multi-Elastic Domains", International Journal of Non-Linear Me-
chanics, Vol. 7, 1972, pp. 425-443.

541



11. Meirovitch, L., "A Stationarity Principle for the Eigenvalue Problem for

/ Rotating Structures", Presented as AIAA Paper No. 76-184 at the AIAA
14th Aerospace Sciences Meeting, Washington, D. C., January 26-28,
1976. To appear in the AIAA Journal. .

12. Meirovitch, L, "A New Method of Solution of the Eigenvalue Problem for

Gyroscopic Systems", AIAA Journal, Vol. 12, No. 10, 1974, pp. 1337-
1342. .

13. Meirovitch, L., "A Modal Analysis for the Response of Linear Gyroscopic
Systems", Journa] of Applied Mechanics, Vol. 42, No. 2, 1975, pp. 446-
450.

14, Franklin, J. N., Matrix Theory, Prentice-Hall, Inc., Englewood Cliffs,
N. J., 1968.

ZASUBSTRUCTURE A

CENTRAL
SUBSTRUCTURE C

SUBSTRUCTURE E

Figure 1.- The mathematical model.
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