
A RAYLEIGH-RITZ APPROACH TO THE SYNTHESIS OF LARGE STRUCTURES 

WITH ROTATING FLEXIBLE COMPONENTS* 
** *** 

L.  Meirovitch and A. L. Hale 
Department o f  Engineering Science and Mechanics 

Virginia Polytechnic Ins t i t u t e  and State  University 

SUMMARY 

The equations of motion for  large structures w i t h  rotating f lexible  com- 
ponents a re  derived by regarding the s t ructure  as  an assemblage o f  substruc- 
tures. Based on a s ta t ionar i ty  principle for rotating structures, i t  i s  shown 
that each continuous or discrete  substructure can be simulated by a sui table  
set o f  admissible functions or admissible vectors. 
sis approach provides a rational basis for truncating the number o f  degrees of 
freedom b o t h  of each substructure and o f  the assembled structure.  

This substructure synthe- 

INTRODUCTION 

The methodology for analyzing large complex structures has developed along 
different  l ines.  One approach represents a natural extension of methods de- 
veloped originally fo r  c iv i l  and a i r c r a f t  structures,  culminating i n  the f i -  
nite-element method (ref .  1 )  and the component-mode synthesis ( re fs .  2,3). Al- 
though rotation o f  the s t ructure  could be accounted for thraugh rigid-body 
modes, work u s i n g  the approach of references 1-3 has been concerned mainly 
w i t h  n o n s p i n n i n g  structures.  On the other hand, an ent i re ly  different approach 
was developed in conjunction w i t h  s p i n n i n g  and nonspinning spacecraft struc- 
tures.  T h i s  approach was dominated by the f a c t  tha t  early spacecraft could be 
treated as en t i re ly  r i g i d .  Hence, i n  the ear ly  stages o f  development, struc- 
tures were assumed t o  consist  of  point-connected r i g i d  bodies arranged i n  " to-  
pological trees" (refs. 4,5). W i t h  time, the r ig id i ty  assumption was relaxed 
gradually by f i r s t  allowing for  f lex ib le  "terminal bodies" ( re fs .  6,7) and 
then f ina l ly  for a l l  f lex ib le  bodies ( r e f .  8).  A t h i r d  approach t o  the prob- 
lem of s p i n n i n g  f lex ib le  spacecraft was concerned w i t h  spacecraft consisting 
o f  a r i g i d  body w i t h  f l ex ib le  appendages (ref. 9,lO). 
can be regarded as an early application o f  the component-mode synthesis to  
spinning structures.  

Most papers concerned w i t h  s tructures simulated by point-connected r i g i d  
bodies, such as references 4, 5, proposed t o  derive the equations of motion by 

T h i s  l a t t e r  approach 
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the Newtonian approach, on the assumption tha t  such a derivation was more suit- 
able fo r  d ig i ta l  computation. O f  course, an ear ly  d i f f i cu l ty  became immediate- 
ly apparent i n  the form of the handling of interbody constraints,  a major c r i t -  
icism of the Newtonian approach i n  most circumstances. Another d i f f icu l ty  was 
the relat ively large number of degrees of freedom involved, a d i f f icu l ty  only 
compounded by permitting various bodies t o  be f lex ib le .  As a r e su l t ,  there 
are no meaningful ways of truncating the problem. 

T h i s  paper i s  concerned w i t h  the mathematical simulation of large struc- 
tures,  where the s t ructure  i s  regarded as an assemblage of substructures. 
deed, the mathematical model i s  assumed to  consist  of a central substructure 
w i t h  a number of appended substructures, where some of the l a t t e r  can ro ta te  
re la t ive  t o  the central substructure. To ensure tha t  the various substructures 
ac t  as  parts of a whole s t ructure ,  an orderly kinematical procedure i s  used 
which takes i n t o  account automatically the superposition of motion of the cen- 
t r a l  substructure on the motion of the interconnected substructures. The sys- 
tem equations of  motion a re  derived by means o f  the Lagrangian approach, which, 
when used in conjunction w i t h  the kinematical procedure just described, does 
away w i t h  the question o f  constraints.  
from scalar  functions, namely, the kinetic and potential energy, where the 
f i r s t  requires the calculation of velocit ies only. In addition, discretiza- 
tion of the kinetic and potential energy i n  conjunction w i t h  l inearization 
ensures proper symmetry and skew symmetry of the coeff ic ient  matrices i n  the 
final equations of motion. Using  a Rayleigh-Ritz approach, the motion of each 
continuous (discrete)  substructure can be represented by a 1 inear combination 
of admissible functions (vectors) rather than substructure natural modes. 
T h i s  approach i s  based on a s ta t ionar i ty  principle for  rotating s t ructures  de- 
veloped recently by the f i rs t  author ( re f .  l l ) .  Finally, the truncation prob- 
lem can be handled much more e f f i c i en t ly  by the substructiire synthesis ap- 
proach, as the possibi l i ty  of truncating the number of degrees of freedom b o t h  
of the individual substructures and of the assembled s t ructure  provides a much 
more rational basis for  an overall truncation decision. 

In- 

The equations of motion a re  derived 

KINEMATICAL CONSIDERATIONS 

Let us consider a general s t ructure  consisting of a central substructure 
C and a given number of appended substructures (see f ig .  1 ) ,  where the l a t t e r  
are of three types: r i g i d  and rotating re la t ive  to  the central substructure 
(type R ) ,  e l a s t i c  and nonrotating re la t ive  t o  the central substructure (type 
E ) ,  and e l a s t i c  and rotating re la t ive  to  the central substructure (type A ) .  
Clearly, there can be more than one appendage of a given type, b u t  we shall  
confine our discussion t o  a representative one of each type, w i t h  summation i m -  
plied over the en t i r e  number of substructures. Although we consider here only 
peripheral substructures, the formulation can be easi ly  extended t o  chains of 
substructures, as discussed 1 a t e r .  

Let us introduce the ine r t i a l  system of axes XYZ w i t h  the origin a t  0 and 
identify a system of axes x yczc w i t h  the origin a t  an arbi t rary point C of 
the central substructure. $hen, denoting by wo the radius vector from 0 to  C ,  
by ]cc the position vector of  any mass point in !he substructure, and by LIC the 
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e la s t i c  displacement of  t ha t  p o i n t  measured relat ive t o  xcyczc, and 
t h a t  woc i s  i n  terms of components along X Y Z  and rC and uc are  i n  t e  
ponenfs along xcy ZC, the absolute position of t h e  mass b o i n t  i n  question i n  

trix of direction cosines between X Y Z  and xcyczc. Moreover, i f  61 i s  the angu- 
l a r  velocity of the frame xCyczc re la t ive  t o  XYZ, the absolute veiocity of the 
mass p o i n t  is  

terms of componen E s along xcyczc is  VJC = Tocwoc + rc + uC, where TaC is  the ma- 

- .., 

where rC + uc i s  a skew symmetric matrix associated w i t h  rc + uc - and i c  is  the 
e l a s t i c  velocity of the p o i n t  re la t ive  t o  axes xCyczc. 

To calculate the absolute velocity of a point i n  the substructure R, we; 
must f i rs t  obtain the velocity of p o i n t  R as well as  the angular velocity o f  
a reference frame XCRYCRZCR attached t o  the central substructure a t  R and w i t h  
axes parallel  t o  the rotor axes XRYRZR when a t  rest and when the central sub- 
structure is undeformed. Due t o  geometry alone the orientation o f  axes XCRYCR 
ZCR re lat ive t o  xcyczc is  given by the constant matrix of direction cosines 
LGR. Denoting by ~ C R  the e l a s t i c  deformation vector a t  p o i n t  R of the central 
substructure and assuming tha t  the components U C R ~ !  UCR!, UCR?, of ~ C R  are small, 
the rotation vector of axes XCRYCRZCR due t o  e l a s t i c  de ormation can be writ- 
ten i n  the form 

a 'CRx a u C R z  
a 'CR a XcR a 'CR aYCR 

(2 )  
a 'CRx - - -  -la?!.------ I T  a u  

Y 

where V ~ R  is a skew symmetric different ia l  operator matrix corresponding t o  the 
curl operator. 
before and a f t e r  deformation i s  - Hence, the matrix of direction cosines between axes XCRYCRZCR 

a u  auCRx auCRx a 'CRz 
axCR aYCR 

- - - -  
aXCR 

CRy--- 

1 auCRz '%Ry - -  
a 'CR a 'CR 

( 3 )  

Moreover, l e t t i ng  LR b e  the matrix o f  direction cosines between axes XRYRZR 
avd XCRYCRZCR; ;heLtransformation matrix between axes X R J ~ R Z R  and XCYCZC i s  

ZCR, the absolute-angular velocity of XRYRZR i n  terms of components along 
XRYRZR i s  

simply TCR - R CR GR- 
Denoting by WR the angular velocity of  the ro to r  re la t ive t o  axes XCRYCR 

- 
(4) GR = TcR CC + LR vCR(LGR + WR 
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where the second term i n  equation (4) is  the angular'velocity of axes XCRYCRZCR 
due t o  the e l a s t i c  motion of the central substru ure. Because the rotor i s  
r i g i d ,  the position of a mass point relative to  R is simply rR. Hence, the 
absolute velocity o f  the p o i n t  i n  question i s  simply 

where ~ C R  is the velocity o f  p o i n t  R obtained from Gc by s u b s t i t u t i n g  the coor- 
dinate: of the point R for those o f  an a rb i t ra ry  polnt. 

Next, l e t  us turn our a t tent ion to  the substructure E and denote by XEYEZE 
any convenient s e t  o f  axes w i t h  the origin a t  E and attached t o  the substruc- 
ture. Using the analogy w i t h  equation (4), the angular velocity of XEYEZE is 

= LCELGE. Moreover, by analogy w i t h  equation (5), the absolute ve- 
where loc i ty  TcF o a mass p o i n t  i n  the substructure i s  

where i~ i s  the e l a s t i c  displacement re la t ive  to  axes XEYEZE. 

The  extension t o  e l a s t i c  substructures rotating re la t ive  to  the central 
substructure i s  quite obvious. 
s t ructure  A re la t ive  to  a s e t  o f  axes XCAYC ZCA attached t o  the central body 

L e t t i n g  LOA be the angular velocity of the sub-  

a t  point A ,  the absolute angular velocity o 9 XAYAZA ?:s simply 

where TCA = LALCALGA, and the absolute velocity o f  an arb i t ra ry  point i n  A i s  

Finally, l e t  us consider chains of substructures. First, we note tha t  
the angular velocity of a peripheral substructure and the absolute velocity o f  
an arb i t ra ry  point i n  a peripheral substructure a re  written i n  terms o f  the 
angular velocity o f  a set o f  axes attached to  the central  substructure and 
w i t h  o r i g i n  a t  the interconnecting point and the translational velocity o f  the 
interconnecting point. As an example, see equations (4)  and (5 ) .  To write 
the angular velocity and absolute velocity o f  an arb i t ra ry  point o f  a sub- 
structure i n  a chain, we simply replace guantit ies-pertaining t o  the central 
substructures, such as TCR, CC, VCR(LGR IJCR), and w R i n  equations (4) and (5) 
by analogous quanti t i e s  pertaining to the irnmediat& preceding substructure 
i n  the chain. 
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SYSTEM DISCRETIZATION AND/OR TRUNCATION 

In general, each elastic substructure possesses a large number o 
of freedom. In f a c t ,  i f  the substructure is  continuous, then i t s  num 
degrees of freedom i s  infinite. For practical reasons, we must limit the for- 
mulation not only t o  a f ini te  number of degrees of freedom b u t  also t o  as small 
a number as possible consistent with a good simulation of the system dynamic 
characteristics. In this regard, we wish t o  use a Rayleigh-Ritz approach and 
represent the elastic displacements of a continuous substructure by a linear 
combination of space-dependent admissible functions mu1 tiplied by time-depen- 
dent generalized coordinates of the substructure. 
crete, then instead of  a ssible functions we must use admissible vectors. 
Note t h a t  i t  i s  common practice t o  use a s  admissible functions and admissible 
vectors the eigenfunctions and eigenvectors of the substructure. In  view of 
the stationarity principle for  gyroscopic systems developed in reference 11,  
however, this i s  not really necessary, and a reasonable set of admissible func- 
tions o r  admissible vectors shou ld  suffice. 
zation and/or truncation scheme 

If the substructure is dis- 

Hence, we shall use the discreti- 

where gC, zE, and T-IA are time-dependent vectors of generalized displacements 
w i t h  dimensions nc; nE, and nA,, respectively, and @c,  , and @A are 3 x nc,  
sible vectors, as the case may be. 
depends on continuous space variables and for a discrete substructure i t  de- 
pends on discrete space variables. In the la t ter  case, the t ia l  derivatives 
involved in the quantity V U  - are t o  be replaced by corresponding slopes. 

the above, we have made no attempt t o  make clear distinction between the two 
types o f  mathematical models. Neither have we elaborated on the various types 
3f  discrete models, such as lumped models, finite-element models, etc. 
:ourse, the mathematical model used depends on the substructure mass and s t i f f -  
less distributions, b u t  this i s  of no particular concern here. The reason for  
t h i s  i s  t h a t ,  independently o f  the mathematical model postulated for the sub- 
itructure, the general idea i s  the same, namely, t o  eliminate the spatial de- 
Iendence by the use of admissible functions or admissible vectors and t o  trun- 
:ate the problem by limiting the number of these functions or vectors. 

3 x nE, and 3 x qA space-dependent matrices admissib @f e functions or admis- 
Note t h a t  for a continuous substructure y 

Although we have mentioned bo th  continuous and discrete substructures i n  

Of 

LAGRANGE ’ S EQUATIONS OF MOTION 

To derive Lagrange’s equations of motion i t  i s  necessary t o  produce f i r s t  
lxpressions for the kinetic energy, potential energy, and nonconservative vir- 
ual work. Assuming t h a t  in equilibrium the central substructure C ,  substruc- 
ure R ,  and substructure A rotate with the uniform angular velocities $c about  
c ,  cR about  Z R ,  and QA aboutlzA, respectively, while any other motion i s  zero, 
le can write ~c = QC Z, + OC ! c ,  YR = QR ;R + OR HR, = QA !A + OA ;A, where 
A i s  the vector o f  direction cosines between zc and X Z ,  &R i s  the vector o f  
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direction cosines between ZR and XCRYCRZCR, 

depending on osci l la t ion of the axes xcyczc etc .  Using equa- 

vector of direction 
cosines between ZA and XCAYCAZCA. are  3 x 3 matrices 

tions (10) and retaining only l inear  terms, the absolute ve c i t i e s  of typical 
points i n  the various substructures become 

Moreover, o 

i C  = c1 4 C  + c2 9C i R  = R1 $R + R2 9 R  

f!E = $E + E2 QE 9 !?A $A + A2 9 A  

9 

(11 1 
= 

where 

1 + - q  ii =‘ \  G T G  dm - 1 4T ii T 
TA 2 -A -A A - 2 -A 11 !A + !A ’12 !A 2 -A 22 !A 

mA 

i n  which 

T - 
R .  R .  dmR T 

C .  C .  dmC , R i j  = 1 J 1  J 1  

E .  E i  dmE , rij - 

- 

mR 

“A 

c i j  = \ 
mC 

mE 

T 
- J A j  A i  dmA 

T 
J 

- 
E i j  = I (14 

- Note tha t  the square matrices Ti , Ri j , E i  j , and Ai 
w i t h  many of the off-diagonal sudmatrices equal to  ?ero. 
dimensional configuration vector fo r  the en t i r e  system i n  the form g = 

have parti t ioned forms, 
Introducing the n- 

[!!OC gg ’ !?R ’ ’ !?A ’ 1 QC I I g E  I ’, where n i s  the number of degrees o f  
the sys em, the kifietic energy can be written i n  the general form 

freedom of 
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where M and KT a r e  symmetric matrices. 
the en t i re  system i s  

Similarly, the potential energy fo r  

where Kv i s  a symmetric matrix, and-the nonconservative 
form 

T 
= 9 q 

0 6) 

vir tual  work has the 

where Q .., i s  the nonconservative generalized force vector. 

der certain circumstances, such as when the substructures R and A are  symmet- 
r i c ,  the time dependence disappears. A helicopter w i t h  a symmetric rotor ro- 
ta t ing re la t ive  to  an airframe while i n  hover is  an example, where the en t i r e  
rotor is  considered as a substructure. Another poss ib i l i ty  i s  t o  consider 
each rotor blade as a separate substructure. 
substructures forms a symmetric rotor and M and F will once again be constant 
natrices. 

In general, the matrices M and F depend expl ic i t ly  on time. However, un- 

In this case, a’ combination of 

Lagrange’s equations can be written i n  the symbolic form 

vhere L = T - V i s  the system Lagrangian. 
introducing equations (15) and (16)  i n t o  the Lagrangian L ,  and using equation 
:18), we obtain the Lagrange’s equations of  motion 

Assuming t ha t  M and F are constant, 

rhere FT - F is  a skew symmetric matrix. Hence, e,quation (19) represents a 
iypical gyroscopic system. The natural frequencies and natural modes of the 
omplete s t ructure  and the closed-form solution of  equation (19) can be ob- 
.ained by the methods developed i n  references 1 2  and 13. The in te res t  here 
s not so much i n  the response as i n  the dynamic character is t ics  of the sys- 
em, and i n  par t icular ,  the truncation e f fec t  on these character is t ics .  

THE EIGENVALUE PROBLEM AND TRUNCATION IMPLICATIONS 

Introducing the 2n-dimensional s t a t e  vector x ( t )  and the associated 2n- 
imensional force vector X ( t )  i n  the form 
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where 0 is the n-dimensional null vector, as well as the 2n x 2n matrices 

where 0 is  the null matrix of order n ,  the n second-order different ia l  equa- 
t ions of motion, equation (191, can be replaced by the 2n f i r s t -order  d i f fe r -  
ent ia l  equations i n  the s t a t e  space x ( t ) ,  where the equations have the eigen- 
Val ue problem 

XIx - + Gx = 0 (22) 

I t  is shown i n  reference 12 t h a t  the eigenvalue problem (22) can be reduced t o  
the real symmetric form 

2 2 w I Y = K ~  , W I Z = K Z  

where K = GTI'1G is a real symmetric matrix. The eigenvalue problem (23)  is  
i n  terms of two real symmetric matrices and i s  known to  possess real eigen- 
values. Assuming t ha t  I i s  posit ive def in i te ,  i t  follows tha t  K i s  posit ive 
def in i te ,  so t h a t  the e'genvalues are  not only real b u t  a lso positive. 

each w belong the eigenvectors and Zr. Because I and K are  positive defi-  

respect to  the matrix I .  

LLT, w ere L i s  a lower tr iangular matrix. 

More- over, ghe eigenvalues w r  3 (r  = l , 2 , . . . y n )  have multiplicity two, so that  t o  

nite a'il the .eigenvectors a re  i n  !ir ependent. In f ac t ,  they a re  orthogonal w i t h  

gr 1 -  - L P Z r y  ( r  = l , 2 , . . . y n ) ,  the eigenvalue problem (23)  becomes 
Next, l e t  us use the Cholesky decomposition and write I i n  the form I = 

Introducing the notation 1;. = LTyr! 

where K '  = L-1KL-T i s  a real symmetric posit ive def ini te  matrix, i n  which 
L-T = ( ~ - 1 j T .  

Denoting by v an a rb i t ra ry  2n-vector, Rayleigh's quotient associated 
w i t h  the eigenvalie problem (24) can be written i n  the form ( r e f .  11 )  

T v K'v 

v v  
R ( v )  = 

-, 

Because K '  i s  real and symmetric, i t  i s  well known tha t  Rayleigh's quotient 
has a stationary value i n  the neighborhood of an eigenvalue. Note tha t  the 
symmetric formulation (24)  permits us to  conclude tha t  a s ta t ionar i ty  prin- 
c iple  ex is t s  a lso fo r  gyroscopic systems. 
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Next, we wish t o  examine the truncation effect on the system characteris- 
t ics.  To this end, l e t  us examine the eigenvalue problem Av = A V ,  where A i s  
a real symmetric matrix of order N ,  and assume t h a t  the eigenvaliies of  A are 
ordered so t h a t  AI  5 h2  < ... < A N .  Now, l e t  us form the matrix B by deleting 
the las t  row and column cf A aKd write the eigenvalue problem Bu = y u ,  where 
the eigenvalues y .  (j = 1 ,2 ,  ..., N-1) are ordered so t h a t  y l  ~ y ;  5 ... L Y N - ~ .  
The question arisgs as  t o  how the eigenvalues yj relate t o  the eigenvalues h i .  
To this end, one can use the Courant's maximum-minimum theorem (ref. 14)  and 
prove that 

We shall refer t o  inequalities (26) as the inclusion principle. 

Now, l e t  us return t o  the truncation problem. The 2n x 2n matrix K '  was 
obtained as the result of representing the spinning structure by an n-degree- 
of-freedom system. Note t h a t  the rotational coordinates are also included in 
these degrees o f  freedom. 
of a given number of constraints on the original structure. For example, the 
f i r s t  of equations (10) can be written i n  the form 

This representation is  tantamount t o  the imposition 

- - - so t h a t  the constraints imposed on the system are nC,nC+l - 
Truncating the series ( 2 7 )  by assuming t h a t  q C , n C  = 0,  we obtain a matrix K" 
obtained from K '  by deleting two rows and the c rresponding two columns. If 
the eigenvalues of K' are such t h a t  w12 5 < < wn2 and the eigen- 
values 

... = 0. 

- of K" are such t h a t  e12 82 2 L . . . < 6;-i2; Then we have 

Note t h a t  the fact  t h a t  the eigenvalues o f  K '  and  K" have multiplicity two i s  
automatically taken into account in inequalities (28) .  On the other hand,  by 
relaxing one constraint, i .e.,  by adding one term t o  the series (27), we ob- 
tain a (2n  + 2 )  x (2n  + 2 )  matrix K"' which i s  obtained by adding  two rows 
and columns t o  K ' .  The eigenvalues C? of K" '  are such t h a t  

2 2 2  
n+ 1 < ... < a < wn L a  

2 2 2 2  
1 -  1 -  2 -  2 -  - n -  a < w  < a  < w  

The above developments permit us t o  conclude t h a t  the system estimated natural 
frequencies tend t o  decrease monotonically with each additional degree of 
freedom. A t  the same time there i s  a new frequency added which i s  higher 
than any of the previous ones. 

The question remains a s  t o  how t o  select the admissible functions or ad- 
missible vectors. The f i r s t  t h i n g  t h a t  comes t o  mind i s  t o  take them as the 
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eigenfunctions and eigenvectors of the various substructures. 
the solution of the eigenvalue problem fo r  a substructure can be qui te  a 
task i n  i t s e l f ,  so t ha t  i n  such cases one may wish to  use deformation patterns 
only approximating the actual modes. T h i s  can be regarded as imposing addi- 
tional constraints on the system, which tends to  ra i se  the natural frequencies 
of the system, b u t  this may be considered as  a viable a l te rna t ive ,  particular-  
ly  when the val idi ty  of the solution of the eigenvalue problem i s  question- 
able. Experience w i t h  the Rayleigh-Ritz approach shows tha t  the system natu- 
ral  frequencies a re  not very sensitive to  the admissible functions used, which 
can be traced to  the s ta t ionar i ty  principle.  
exists also f o r  discrete  systems, so tha t  the same conclusion can be extended 
to admissible vectors. 

In many cases, 

B u t  a s ta t ionar i ty  principle 

The truncation by substructures has a c lear  advantage over truncation 
of the s t ructure  as a whole. 
judgement based on the substructure properties, such as  the mass and s t i f fnes s  
dis t r ibut ions.  
modes o f  the complete structure.  
i s  l ike ly  to  have less  e f fec t  on the modes of the complete structure than a 
f lexible  heavy substructure. 
t h a n  the second. 
natural frequencies of the substructures. 
need solve the eigenvalue problem fo r  the substructures exactly. 
u s i n g  a Rayleigh-Ritz procedure fo r  continuous or discrete  systems, in con- 
junction w i t h  a preselected s e t  of admissible functions or  admissible vectors, 
i t  i s  possible to  obtain a reasonable estimate of  the lower frequencies of 
each substructure. Note tha t  the Rayleigh-Ritz method can be used to  produce 
and solve an eigenvalue problem of considerably lower dimension than t h a t  of 
the fu l l  eigenvalue problem fo r  the substructure. The! estimated lower natural 
frequencies o f  the substructure, when compared to  those of other substructures, 
can be used merely as a guide for  truncation purposes. In f ac t ,  the eigen- 
vectors serve no useful purpose and need n o t  be calculated, as the same ad- 
missible functions o r  vectors can be used to  represent the substructure i n  
the generation of the eigenvalue problem for  the complete assembled struc- 
ture.  T h i s  conclusion i s  based on resu l t s  shown i n  reference 11.  

The  reason i s  t h a t  i t  permits a more rational 

Generally one is  interested i n  only a limited number of lower 

Hence, one can truncate the f i r s t  more severely 
Some ideas for  truncation can be obtained by estimating the 

Hence, a very s t i f f  and l i gh t  substructure 

This by no means implies that  one 
Indeed, 

If  the dimension of the eigenvalue problem for  the complete assembled 
structure i s  s t i l l  too large,  and the higher modes a re  not rea l ly  necessary, 
then one can solve only fo r  a given number of lower modes by using such tech- 
niques as subspace i te ra t ion .  

CONCLUDING REMARKS 

A procedure has been shown whereby the equations of motion f o r  large 
structures w i t h  rotating f lex ib le  components can be derived by the Lagrangian 
approach. 
t ions i s  the superposition of substructure motions by means of an orderly 
kinematical procedure, which automatically eliminates the problem of con- 
s t r a in t s .  
o r  discrete  f lex ib le  substructure can be simulated by a f i n i t e  number of ad- 

A fundamental consideration i n  the derivation of Lagrange's equa- 

Using a Rayleigh-Ritz approach, i t  is  shown that  each continuous 
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missible functions o r  admissible vectors and exact substructure modes a r e  
not r ea l ly  necessary. T h i s  conclusion i s  based on a s t a t i o n a r i t y  pr inciple  
for ro ta t ing  s t ruc tures  developed recent ly  by the f i r s t  au r (ref.  11). F i -  
nal ly ,  the substructure synthesis approach provides a r a t i  1 basis f o r  t r u n -  
cating the number of degrees of freedom both of each individual substructure 
and of the assembled substructure.  

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9 .  

Turner, M. J . ,  Clough, R. W . ,  Martin, H .  C . ,  and Topp, L .  J . ,  "St i f fness  
and Deflection Analysis of Complex Structures",  Journal o f  Aeronautical 
Sciences, Vol. 23, 1956, pp.  805-824. 

Modes", AIAA Journal,  Vol. 3, No. 4, 1965, pp. 678-685. 

Component Mode S u b s t i t u t i o n " ,  AIAA Journal , Vol. 9 ,  No. 7 ,  1971 , 

Hurty, W .  C . ,  "Dynamic Analysis of Structural  Systems Using Component 

Benfield, W .  A. and Hruda, R .  F . ,  "Vibration Analysis of Structures by 

pp.  1255-1 261 . 
Hooker, William W .  and Margulies, G . ,  "The Dynamical Equations f o r  an n- 

Body S a t e l l i t e " ,  Journal-of Astronautical Sciences, Vol . 1 2 ,  No. 4, 
1965, pp. 123-128. 

Roberson, R.  E .  and Wittenburg, J . ;  "A Dynamical Formalism f o r  an Arb i -  
t r a r y  Number of Interconnected Rigid Bodies, w i t h  Reference t o  the 
Problem of S a t e l l i t e  Att i tude Control", Proceedings of the Third Con- 
gress of the International Federation of Automatic Control , London, 
1966. 

Hooker, William W. , "Equations of Motion f o r  Interconnected Rigid and 
Elas t ic  Bodies: 
t i a l  Mechanics Journal,  Vol. 11, 1975, pp. 337-359. 

of Motion o f  a Multibody Flexible Spacecraft w i t h  Topological Tree 
Configuration", Presented as  AIAA Paper No. 74-786 a t  the AIAA Mechanics 
and Control of F l igh t  Conference, August 5-9, 1974. 

A Derivation Independent o f  Angular Momentum", Celes- 

Ho, J .  Y. L . ,  "The Direct P a t h  Method for Deriving the Dynamic Equations 

Frisch, Harold P . ,  "A Vector-Dyadic Development o f  the  EqLtations of Motion 
f o r  N-Coupled Flexible Bodies and Point Masses", NASA TN D-8047, August 
1975. 

Meirovitch, L. and Nelson, H. A . ,  "On the High-Spin Motion of a S a t e l l i t e  
Containing E las t i c  Parts",  Journal of Spacecraft and Rockets, Vol. 3, 
N O .  11, 1966, pp. 1597-1602. 

10. Meirovitch, L., "Liapunov S t a b i l i t y  Analysis of Hybrid Dynamical Systems 
w i t h  Mu1 t i - E l a s t i c  Domains", International Journal o f  Non-Linear Me- 
chanics, Vol. 7, 1972, pp.  425-443. 

54 1 



11. Meirovitch, L . ,  "A S ta t ionar i ty  Pr inciple  f o r  the Eigenvalue Problem f o r  
i Rotating Structures",  Presented as  AIAA Paper No. 76-184 a t  the AIAA 

14th Aerospace Sciences Meeting, Washington, D.  C., January 26-28, 
1976. To appear i n  the AIAA Journal. 

12. Meirovitch, L ,  "A New Method of Solution of the Eigenvalue Problem f o r  
Gyroscopic Systems", AIAA Journal,  Vol. 12, No. 10, 1974, pp. 1337- 
1342. , 

13. Meirovitch, L . ,  "A Modal Analysis f o r  the Response of Linear Gyroscopic 
Systems", Journal of Appl ied  Mechanics, Vol. 42, No. 2 ,  1975, pp. 446- 
450. 

14. Franklin, J .  N .  , Matrix Theory, Prentice-Hall, Inc., Englewood C l i f f s ,  
N .  J . ,  1968. 

542 

BSTRUCTURE A 

SUBSTRUCTURE E 

x 
Figure 1.- The mathematical model. 


