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SUMMARY

This work is concerned with large deflections of a shallow elastic¢ conical
membrane fixed at the outer edge and loaded by either uniform or hydrostatic
pressure. The governing equations were solved by the method of matched asymp-
totic expansions and by a finite-difference method. Agreement between the two
methods was excellent for the small values of the perturbation parameter.’

INTRODUCTION

This paper is concerned with the moderately large axisymmetric deformation
of a shallow elastic conical membrane. The purpose of this work is to further
investigate the application of the method of matched asymptotic expansions (see
Van Dyke, reference 1) to the solution of membrane-shell problems involving
large deflections. The success of this method is based on the fact that for
small loads the linear membrane solution is a good approximation to the actual
solution everywhere except in the immediate vicinity of boundaries. In these
regions thin boundary layers exist where the variables undergo rapid changes to
accommodate themselves to the boundary conditions that cannot be satisfied by
the linear membrane solution. In the method of matched asymptotic expansions
separate perturbation expansions are found in the interior and boundary-layer
regions and matched in an appropriate way to insure that they join smoothly.

Bromberg and Stoker (ref. 2) initiated this type of analysis of membrane
shells when they found one term of both the interior and boundary-layer expan-
sions for a uniformly pressurized shallow spherical shell. The next two terms
in the interior and boundary-layer expansions were found by Smith, Peddieson,
and Chung (ref. 3) and used by them to investigate the accuracy of finite-
difference solutions of the same problem. One term of the interior and boundary-
layer expansions for deep membranes of arbitrary shape has been given by
Rossettos (ref. #). This work generalizes the results given in the references
listed in reference 4.

In the present paper three terms of the interior and boundary-layer expan-
sions are found for the case of a shallow conical membrane loaded by either
uniform or hydrostatic pressure. It is found that complications arise which do
not appear in the solution of the corresponding sphere problem. The solution
method is modified somewhat to account for this. Numerical results are pre-
sented to illustrate some of the interesting features of the solution.

575



GOVERNING EQUATIONS

Consider a shallow conical membrane (opening upward) with base radius &,
thickness h, and initial angle ¢o with the horizontal made of a linearly elastic
material with modulus of elasticity E and Poisson's ratio v. The equations gov-
erning moderately large axisymmetric deflections of such a structure can be
obtained from the work of Reissner (ref. 5). The resulting equations are (in
dimensionless form)

JUT YT/ - w/r? + (14e28/2)(B/r) =

(1+e2B)y =
= U)/PS Ne = \b'
us=rory' - vy, w'=8 (1)

where ar is the radial coordinate, V,ay/¢o is a stress function (V, being a
characteristic vertical force resultant), VoV is the vertical force resultant,
VoNp/do is the radial stress resultant VoNg/¢o is the transverse stress resul—
tant, € is a load parameter, a¢o€ u is the horizontal dlsplacement aboe?w is
the vertical displacement, ¢os B is the rotation, and a prime denotes differen-
tiation with respect to r.

In the present paper a uniform pressure po and a hydrostatic loading
Yo¢oa(l-r) are considered. It can be shown by considering the vertical equi-
librium of the membrane centered on the vertex and having radius r that

V=r/2 - ir?%/3 (2)

where j @ 0 for the uniform pressure and j = 1 for the hydrostatic pressure.
The characteristic vertical force resultant is given by

P2 . =0

Yoazd)oa 3 1 v ) : (3)
The load parameter e is defined to be

L ,
- 342
o (VO/Ehd>o)2 (W)

In the present work it is desired to solve equations (1) subject to the
boundary conditions

u(l) = w(l) = 0 '“ (5)

Special attention will be given to situations where e << 1.
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STRAIGHTFORWARD SOLUTION

To begin the solution process a straightforward perturbation solution to
equations (1) is sought for € << 1. To do this it is convenient to rearrange
equations (la) and (1b) to yield

e2(y" + ' /p - b/r?) - (1 - (xV/9)2)/(2x) = 0
B = (2V/¥ - 1)/¢? | (6)

A straightforward perturbation solution for € << 1 has the form

+ €29 o+ .. . (7)

v
\pS 1L’SO ¥ SmSl 82

where the subscript s indicates the straightforward solution. Substituting
equation (7) into equation (6a), expanding for e << 1, setting the coefficient
of each power of € equal to zero in the usual way, and soilving the resulting
algebraic equations yields ’ '
by v (0272 - 3r/3) + e2(2?/2 - §v3/3)(3r/2

~ 89r2/3) + e*(v2/2 - §v3/3)(7502/8

- 3(79r3/2 - 320")) + . . . | | (8)
From equations (1) and (6b) it can then be shown that

N o (2/2 = §02/3) + e2(v/2 - jr?/3)(3r/2

8ir2/3) + e*(r/2 - r2/3)(75r2/8

i

\

J(79r3/2 - 32p")) + . .

Nog ~ (e - 3o + eX(op?/u - j(220%/3 - 10r */9))
+ e*(7503/y - §(915r%/8 - 175r°
R 22ur8/3)) + . .

B, v-(3r/2 - 8ir%/3) - €X(57r?/8
- j(63r Y2 - 22ur9)) + .

ug v (1= wW2)r2 - (1 - v/3)r? + €(3(3 - VIr®/u
- 3011 - V%6 - 8(5 - VIr°/9))

+ €%75(4 - V)p'"/16 - §(183(5 - V)r /8

- 175(6 - Vr®/6 + 32(7 - V)r’/3)) + .
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W, -3(r2 - 1)/4 + §8(r3 - 1)/9 - £2(19(x3 - 1)/8
- §(63(r* - 1)/8 - 22u(r* - 1)/u5)) + . . . (9)

where equation (5b) has been used to determine the constants of integration in
equation (9c). By comparison with the results given in Kraus (ref. 6) it can
be seen that the first term in each series expansion is the linear membrane
solution. It should also be noted that the first terms in equations (94) and
(9e) are due to the second term in equation (8). Thus to obtain B_ and w_ to
0(e?) it is necessary to find ¥_ to 0(e"). The boundary condition represented
by equation (5a) cannot be satisfied by equation (9d). ' Thus a boundary-layer
expansion is needed in the vicinity of r = 1.

BOUNDARY-LAYER SOLUTION

There are several ways to carry out the boundary-layer analysis in this
problem. One is to work in terms of the original stress function ¢. "If this
is done the differential equation for the first boundary-layer approximation
turns out to be nonlinear. Bromberg and Stoker (ref. 2) discovered that a
linear equation could be obtained in the first approximation for a spherical
membrane by a method which is equivalent to working with a dependent variable
which is the difference between the actual and the linear stress functions.
This was tried in the present problem but matching difficulties were encountered.
These were due to the fact that equations (8) and (9) do not terminate with one
term for the cone as the corresponding straightforward expansions do for a
sphere. It was, therefore, decided to use the difference between the actual
stress function and the straightforward stress function as the dependent vari-
able. This guarantees that the outer expansion for this dependent variable will
be zero. Thus it is necessary to find only the inner expansion.

Substituting
R | - (10)

(where the subscript b denotes +the boundary-layer solution) into equation
(6), defining the boundary-layer variables F and & by the equations

wb = ¢F, r=1- gk, ‘ (11)
expanding F as
)
FoF +eF +e?F +. .., (12)
and carrying out the usual perturbation analysis yields
S e L
Fo - SF, =0 (13)

and two other equations governing Fl and Fz‘where

= (6/(3 - 23))% | (14)
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?n equati?n (13) ( ) = a( )/dEZ. Define Nrb’ Neb’ Bb, Uy s and Wy by the follow-
ing equations

Nr = Nrs * ENrb’ Ne = Nes + Neb

B = BS + Bb/ea uEugtu, WoEwW bW . , -~ (15)

Now expand as follows

Ay By sk ST, as)

where Ay 1s any one of the boundary-layer variables. Substituting equations
(10), (11), (12), (15), and (16) into equations (1), expanding for e << 1, and
equating the coefficients of like powers of £ +to zero one obtains

= 1 = - o= _82
Nrbo Fo’ Nebo F0’ BbO Fo
- = s2f"
W, Fos Moo { F & (17)
and two similar sets of equations relating and A toF ,F ,and F_. A

similar procedure applied to equation (5a) leads to B%undary condition
F(0) =1-3-(1/2-3/3) (18)
and boundary conditions for fl(O) and ?2(0).

To illustrate the solution procedure the first approximation will now be
carried out in detail. The solution of equation (13) is easily seen to be

FO = ¢ exp(SE) + c, exp(-SE) : !'(}9)

Since the outer expansion has been forced to vanish because of equation (10).
the matching process (see Van Dyke, reference 1) is equivalent in this case to
a statement that positive exponential terms must vanish. Thus

c, = 0 (20)

Substituting equations (19) and (20) into equation (18) yields

€y

-(1 -3 - (1/2 - §/3)v)/s (21)
Thus

Fo

-(1 - 3§ -(1/2 - 3/3)v)exp(-S£)/S ~ (22)
Substituting equation‘(22) into equations (17) one obtains

-(1 -~ § =(1/2 - j/3)v)exp(-S£)/S

Nrbo

N

obo (1L -9 - (1/2 - j/3)v)exp(-8E&)
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Bo = (1 -3 - (1/2 - 3/3)v)8 exp(-S¢)

Yo
W = ~(1 =3 - (1/2 - 3/3)v)(1 - exp(-8¢)) ' (23)

-(1 -3 - (1/2 - §/3)v)exp(-S¢)

The results for higher approximations are found in a similar way but the calcu-
lations are quite lengthy. For the sake of brevity this work is omitted.

To find the complete solution the boundary-layer expansions must be added

to the corresponding straightforward expansions. The first approximations to
these expressions are

Y= 12/2 - 9r3/3 - e(1 - § - (1/2 - j/3)v)exp(-S(1 - v)/e)/S

=
"
)
~
N

- jr2/3 - (1 - § - (1/2 - §/3)v)exp(-8(1 - »)/e)/S

Ny =7 - Jr2 + (1 - § - (1/2 - j/3)v)exp(-S(1 - v)/e)

w
1

~~

[
]

. j - (1/2 - 3/3)v)8 exp(~-S(1 - v)/e)/e
ug = (1~ v/2)r? - 3(1 - v/3)r3 - (1 - j 
- (1/2 - 5/3)v)exp(-S(1 - »)/¢)
w = 3(1 - r2)/4 - 85(1 - v3)/9 - (1 - j

- (1/2 - 3/3))(1 - exp(-S(1 - r)/e)) (2u)

In writing equations (24) the boundary-layer solution was treated as the funda-
mental expansion. All terms in the straightforward expansion with magnitude
equal to or greater than the first term in the boundary-layer expansion were
added to this term to form the first approximation. The same method was used
to obtain the second and third approximations.

RESULTS AND DISCUSSION

Numerical results were computed for the first, second, and third approxi-
mations to the variables ¢, Ny, Ng, B, u, and w. These calculations were made
for a variety of values of the load parameter € and Poisson's ratio v. To
evaluate the accuracy of the perturbation method, selected cases were compared
with numerical solutions to equation (6a) obtained by the finite-difference
method discussed by Smith, Peddieson, and Chung (ref. 3). It was found that
the third approximation to the perturbation solution agreed with the finite-
difference results up to € = 0.1. It should be pointed out that for small
values of €, the numerical method is difficult to apply because a variable
step size must be used near the edge and the optimum arrangement of step sizes
can only be approached by trial and error. The explicit formulas obtained in
the present work are much easier to use for e << 1.
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To illustrate the behavior of the solution some of the computed results
are shown in figures 1 --4. TFor the sake of brevity, data are presented
for only the radial stress resultant N, the transverse stress resultant Ng,
and the vertical deflection w. The solid lines vrepresent the three-term per-
turbation solution while the dashed lines represent the linear membrane solu-
tion. The linear membrane solution is shown only when It differs significantly
from the perturbation solution.

Figures 1 and 2 present rpresults for uniform pressurization (j = 0).
Figure 1 shows that thin boundary layers exist for Ng and w for € = 0.01
while Ny does not exhibit boundary-layer behavior. As € increases the bound-
ary layers become wider for all variables. This is illustrated by figure 2.
Figures 3 and 4 contain vresults for hydrostatic loading (j = 1). The para-
metric trends illustrated by these results are identical to those discussed
above but the behavior of the solution variables is more complicated. These
results illustrate the utility of the perturbation method. Complicated func-
tions of this type can be represented numerically only if extreme care is used.

Results were also computed for several other values of v. It was fourd
that the qualitative behavior of the solution is not significantly influenced
by this parameter.

CONCLUSION

In this paper, the rotationally symmetric moderately large deformation of
a linearly elastic shallow conical membrane subjected to either uniform or
hydrostatic pressure was investigated. A single differential eguation having
a stress function as dependent variable was solved by the method of matched
asymptotic expansions. The accuracy of the solution was verified by compari-
son with a finite-difference numerical solution of the governing equation for
the stress function. Selected results were presented graphically to illustrate
interesting features of the solutioms.
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