
LARGE DEFLECTIONS OF A SHALLOW CONICAL MEMBRANE 

Wen-Hu Chang and John Peddieson, Jr. 
Tennessee Technological University 

SUMMARY 

This work is concerned with large def lect ions of a shallow elastit! conical 
membrane fixed a t  t he  outer edge and loaded by e i t h e r  uniform or hydrostatic 
pressure. 
t o t i c  expansions and by a f ini te-difference method. 
methods w a s  excel lent  f o r  t he  s m a l l  values of t h e  perturbation parameter. 

The governing equations were solved by the  method of matched asymp-. 
Agreement between the two 

INTRODUCTION 

This paper is  concerned with the  moderately la rge  axisymmetric deformation 
of a shallow. e l a s t i c  conical membrane. 
invest igate  the  application of the method of matched asymptotic expansions (see 
Van Dyke, reference 1) t o  the  solut ion of membrane-shell problems involving 
large deflections.  
small loads the  l i n e a r  membrane solut ion is  a good approximation t o  the  actual 
solut ion everywhere except i n  the immediate v i c in i ty  of boundaries. In  these 
regions t h i n  boundary layers  exist: where the var iables  unGergo rapid changes t o  
accommodate themselves t o  the  boundary conditions t h a t  cannot be s a t i s f i e d  by 
the  l i n e a r  membrane solution. In  the  method of matched asymptotic expansions 
separate perturbation expansions me found i n  the  i n t e r i o r  and boundary-layer 
regions and matched i n  an appropriate way t o  insure t h a t  they jo in  smoothly. 

The purpose of t h i s  work is  t o  fur ther  

The success of t h i s  method is based on the  fact t h a t  for 

Bromberg and Stoker ( r e f .  2 )  i n i t i a t e d  t h i s  type of analysis of membrane 
s h e l l s  when they found one term of both the  i n t e r i o r  and boundary-layer expan- 
sions f o r  a uniformly pressurized shallow spherical  she l l .  The next two terms 
i n  the  i n t e r i o r  and boundary-layer expansions were found by Smith, Peddieson, 
and Chung ( re f .  3 )  and used by them t o  invest igate  the  accuracy of f i n i t e -  
difference solut ions of the  same problem. 
layer  expansions f o r  deep membranes of a rb i t r a ry  shape 
Rossettos ( r e f .  4) .  
l i s t e d  i n  reference 4. 

One t e r m  of t he  i n t e r i o r  andboundary- 
has been given by 

This work generalizes the r e s u l t s  given i n  t he  references 

I n  the  present paper’ th ree  terms of the i n t e r i o r  and boundary-layer expan- 

If i s  found tba? complications arise which do 
sions are found for the  case of a shallow conical membrane loaded by e i t h e r  
uniform OF hydrostat ic  pressure. 
not appear i n  the  so lu t ion  of the  corresponding sphere problem. 
method is  modified somewhat t o  account for t h i s .  
sented t o  i l lus t ra te  some of the  in t e re s t ing  features of the solution. 

The solut ion 
Numerical r e s u l t s  are pre- 
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GOVERNING EQUATIONS 

Consider a shallow conical membrane (opening upward) with base radius  a,  
thickness h ,  and i n i t i a l  angle @o with the horizontal  made of a l i n e a r l y e l a s t i c  
material with modulus of e l a s t i c i t y  E and Poisson's r a t i o  v. The equations gov- 
erning moderately large axisymmetric def lect ions of such a s t ruc ture  can be 
obtained from t h e  work of Reissner ( re f .  5 ) .  
dimensionless form) 

?he resu l t ing  equations are ( i n  

where ar is  the r a d i a l  coordinate, V0a$/@, is a stress function (Vo being a 
cha rac t e r i s t i c  v e r t i c a l  force r e su l t an t ) ,  VoV is the v e r t i c a l  force r e su l t an t ,  
VoNp/$o i s  the r a d i a l  stress re su l t an t ,  VoN~/$, i s  the  transverse stress resul-  
t a n t ,  E is a load parameter, 
the vept ica l  displacement, $ o ~ 2 B  is  the ro t a t ion ,  and a prime denotes differen- 
t i a t i o n  with respect t o  r. 

is the  horizontal  displacement, a@os2w is 

In the present paper a uniform pressure po and a hydrostat ic  loading 
Yo@oa(l-r) are considered. I t  can be shown by 
librium of the membrane centered on the vertex 

v = r / 2  - j r2 /3  

where j 0 f o r  the uniform pressure and j = 1 
The cha rac t e r i s t i c  v e r t i c a l  force resu l tan t  is  

The load parameter E is defined t o  be 

considering the v e r t i c a l  equi- 
and having radius r t h a t  

f o r  the  hydrostat ic  pressure. 
given by 

In  the  present work it is desired t o  solve equations (1) subject  t o  the 
boundary conditions 

u(1)  = w(1) = 0 (5)  

Special  a t ten t ion  w i l l  be given t o  s i tua t ions  where E << 1. 
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STRAIGHTFORWARD SOLUTION 

To begin the so lu t ion  process a straightforward perturbation 
equations (1) is sought for E << 1. 
equations ( l a )  and (lb) t o  y ie ld  

To do t h i s  it is convenient t o  rearrange 

E ~ ( * T '  + q ' / r  - Q/r2) - (1 - ( r ~ / ~ / . ~ ) 2 > / ( 2 r )  = o 

B = (rv/* - L ) / E ~  ( 6 )  

A straightforward perturbation solut ion f o r  E << 1 has the form 

where the  subscr ipt  s indic'ates t he  straightforward solution. Subst i tut ing 
equation ( 7 )  i n t o  equation ( 6 a ) ,  expanding for E << 1, s e t t i n g  the coeff ic ient  
of each power of E equal t o  zero i n  the  usual way, and solving the  r e su l t i ng  
algebvai c e quat ions y ie Ids 

% ( r 2 / 2  - j r 3 / 3 )  + ~ 2 ( r 2 / 2  - j r 3 / 3 > ( 3 r / 2  
$S 

- 8 j r 2 / 3 )  + d + ( r 2 / 2  - j r3 /3 ) (75 r2 /8  

- j (79r3 /2  - 32r4 ) )  + . . ( 8 )  

From equations (1) and (6b) it can then be shown t h a t  

Nrs 'L ( r / 2  - j r 2 / 3 )  + ~ ~ ( r / 2  - j r 2 / 3 ) ( 3 r / 2  

- 8 j r 2 / 3 )  + ~ ~ ( r / 2  - j r2 /3 ) (75 r2 /8  

- j (79 r3 /2  - 32r4 ) )  + . . . 
+ (r - j r 2 )  + ~ ~ ( 9 r ' / 4  - j (22 r3 /3  - 40r4/9) )  

+ C4(75r3/4 - j(915r'/8 - 175r  

f 224r6/3))  + . . . 

0s 
5 

BS - (3 r /2  - 8 j r 2 / 3 )  - E2(57r2/8 

- j (63 r3 /2  - 224r4/9))  + . . . 
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w 'L -3(r - 1) /4  + j 8 ( r 3  - 1)/9 - tz2(19(r3 - 1 ) / 8  S 

- j(63(r4 - 1)/8 - 224(r4  - 1)/45))  + . . . (9)  

where equation (5b) has been used t o  determine the  constants of i n t  
equation (9c). By comparison with the r e s u l t s  given i n  Kraus 
be seen t h a t  t he  first term i n  each series expansion is the 1 
solution. 
(9e) are due t o  the  second term i n  equation (8).  
0(c2) it is necessary t o  f ind  9, t o  O b 4 ) .  
by equation (5a) cannot be s a t i s f i e d  by equation (9d). 
expansion is needed i n  the v i c i n i t y  of r = 1. 

I t  should a l so  be noted t h a t  t he  first terms i n  equations (9d) and 
Thus t o  obtain Bs and ws t o  

Thus a boundary-layer 
The boundary condition represented 

BOUNDARY-LAYER SOLUTION 

There are several ways t o  carry out the  boundary-layer analysis i n  t h i s  
problem. One is t o  work i n  terms of the  o r ig ina l  stress function +. If t h i s  
is  done the  d i f f e r e n t i a l  equation f o r  the first boundary-layer approximation 
turns  out t o  be nonlinear. 
l i n e a r  equation could be obtained i n  the first approximation f o r  a spherical  
membixaae by a method which is equivalent t o  working with a dependent var iable  
which is the  difference between the  actual  and the  l i nea r  stress functions. 
This w a s  t r i e d  i n  the present problem but matching d i f f i c u l t i e s  wereencountered. 
These were due t o  the f a c t  t h a t  equations ( 8 )  and (9)  do not terminate with one 
term f o r  the  cone as the  corresponding straightforward expansions do fo r  a 
sphere. I t  w a s ,  therefore ,  decided t o  use the  difference between the  ac tua l  
stress function and the  s t ra ightfornard stress function as the dependent vari-  
able. 
be zero. 

Bromberg and Stoker ( r e f .  2 )  discovered t h a t  a 

This guarantees t h a t  the  outer expansion f o r  t h i s  dependent var iable  w i l l  
Thus it is necessary t o  f ind only the inner expansion. 

Subst i tut ing 

@ = 9, + $b (10) 

(where t h e  subscr ipt  b denotes the boundary-layer solut ion)  i n t o  equation 
(61, defining the  boundary-layer variables F and 6 by the equations 

= EF, r = 1 - €6, 

expanding F as 

and carrying out the usual perturbation analysis  y ie lds  
.. 
F,, - S2Fo = 0 

and two other  equations governing F1 and F where 2 
% S = (6/(3 - 2 j ) )  
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13 = Bs + Bb/E, u = u + l”b, w = ws + Wb (15) 

Now expand as follows 

” A b o  + E%1 + E2%2 + * . (16) 

where Ab is  any one of the  boundary-layer variables.  
(101, (11) , (121, (15 , and (16) i n t o  equations (1) expanding fo r  E << 1, and 
equating the  coef f ic ien ts  of l i k e  powers of 

Subst i tut ing equations 

E t o  zero one obtains 

= -s2F 
0 ’  ’bo 0 

= -F - 
Nrbo - Fo’ Nebo 

and two s i m i l a r  sets of equations r e l a t ing  Abl and A 
s i m i l a r  procedure applied t o  equation (5a) leads t o  boundary condition 

t o  Fo ,  F1, and F,. A 

F,(o) = 1 - j - ( 1 / 2  - j /3)v (18) 

and boundary conditions f o r  I?,(O) and ?,(O). 

To i l l u s t r a t e  the  solut ion procedure the first approximation w i l l  now be 
carr ied out i n  de t a i l .  The solut ion of equation (13) is  eas i ly  seen t o  be 

F, = c 1 exp(S5) + c2 exp(-SS) (19) 

Since the  outer expansion has been forced t o  vanish because of equation (10) 
the  matching process (see Van Dyke, reference 1) i s  equivalent i n  t h i s  case t o  
a statement t h a t  pos i t ive  exponential terms must vanish. Thus 

c = o  1 

Subst i tut ing equations ( 1 9 )  ani! (20) i n t o  equation (18) yie lds  

Thus 

Fo = -(1 - j -(l/2 - j/3)v)exp(-Sf)/S (22) 

Subst i tut ing equation (22) i n t o  equations (17) one obtains 

Nrbo = -(I - j - ( U p  - j / 3 ) v ) e x p ( - ~ < ) / ~  

Neb0 - (1 - j - (1 /2  - j / 3 ) v ) e x p ( - ~ ~ )  - 
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ub0 = -(1 - j - (1 /2  - j/3)v)exp(-S<) 

w = -(1 - j - (1/2 - j / 3 ) v ) ( l  - exp(-SS)) (23) 

The r e s u l t s  f o r  higher approximations are found i n  a similar way but  the  calcu- 
l a t ions  are qui te  lengthy. 

bo 

For t he  sake of brevi ty  t h i s  work is omitted. 

To f ind the  complete so lu t ion  t h e  boundary-layer expansions must be added 
t o  the  corresponding straightforward expansions. 
these express: ~ o n s  are 

The f irst  approximations t o  

$, = r 2 / 2  - jr.3/3 - ~ ( 1  - j - (1/2 - j / 3 ) v ) e x p ( - ~ ( 1  - r ) / E ) / S  

= r / 2  - j r2 /3  - ~ ( 1  - j - (1/2 - j / 3 ) v ) e x p ( - ~ ( 1  - r ) / E ) / S  N r o  
N~~ = r - j r 2  t (1 - j - (1/2 - j / 3 ) v ) e x p ( - ~ ( l  - r ) / E )  

B O  = (1 - j - (1/2 - j /3)v)S exp(-S(1 - r ) / E ) / E  

= (1 - v/2)r2 - j ( 1  - v/3)r3 - (1 - j u 
0 

- (1/2 - j/3)v)exp(-S(1 - T I / & )  

w = 3 ( 1  - r 2 ) / 4  - 8 j ( l  - r3)/9 - (1 - j 
0 

- (1/2 - - j / 3 ) v ) ( ~  - exp(-S(l - r ) / E ) )  (24) 

In wri t ing equations (24) the  boundary-layer solut ion w a s  t rea ted  as the  funda- 
mental expansion. A l l  terms i n  the straightforwardexpansion with magnitude 
equal t o  or grea ter  than the  first term i n  the boundary-layer expansion were 
added t o  t h i s  t e r m  t o  form the  first approximation. 
t o  obtain the second and t h i r d  approximations. 

The same method w a s  used 

RESULTS AND DISCUSSION 

Numerical r e s u l t s  were computed f o r  t he  first, second, and t h i r d  approxi- 
mations t o  the var iables  $, N p ,  N e ,  8 ,  u, and w. These calculat ions were made 
f o r  a var ie ty  of values of the  load parameter E and Poisson's r a t i o  v. To 
evaluate the  accuracy of t h e  perturbation method, selected cases were compared 
with numerical solut ions t o  equation (6a) obtained by the  f ini te-difference 
method discussed by Smith, Peddieson, and Chung ( r e f .  3 ) .  It  w a s  found t h a t  
the  t h i r d  approximation t o  the  perturbation solut ion agreed with the  f i n i t e -  
difference r e s u l t s  up t o  E = 0.1. 
values of 
s t e p  s i z e  must be used near t he  edge and the  optimum arrangement of s t ep  s i z e s  
can only be approached by t r i a l  and error .  
the present work are much eas ie r  t o  use for E << 1. 

It should be pointed out t h a t  f o r  s m a l l  
E , ~  the  numerical method is d i f f i c u l t  t o  apply because a var iable  

The exp l i c i t  formulas obtained i n  
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To i l l u s t r a t e  t he  behavior of the  solut ion some of the  computed r e s u l t s  
are shorwn i n  f igures  I. -- 4. For the  sake of brev i ty ,  da ta  are presented 
fo r  only the  r a d i a l  stress resu l tan t  Nr, the  transverse stress re su l t an t  Ne, 
and the v e r t i c a l  def lect ion w. The s o l i d  l i nes  represent the  three-term per- 
turbat ion solut ion while the dashed l i n e s  represent t he  l i n e a r  membrane solu- 
t ion.  
from the perturbation solut ion.  

The l i nea r  membrane solut ion is shown only when it d i f f e r s  s ign i f icant ly  

Figures 1 and 2 present r e s u l t s  for uniform pressurizat ion (j = 0) .  
Figure 1 shows 
while Nr does not exhib i t  boundary-layer behavior. A s  E increases the  bound- 
a r y  layers  become wider f o r  a l l  variables.  
Figures 3 and 4 contain r e s u l t s  €or hydrostat ic  loading ( j  = 1). The para- 
metric t rends i l l u s t r a t e d  by these r e s u l t s  are  iden t i ca l  t o  those discussed 
above but t he  behavior of t he  solut ion variables is  more complicated. 
r e s u l t s  i l l u s t r a t e  t he  u t i l i t y  of the perturbation method. 
t i ons  of t h i s  type can be represented numerically only if extreme care is  used. 

t h a t  t h i n  boundary layers  e x i s t  f o r  Ne and w f o r  E = 0.01 

This is i l l u s t r a t e d  by f igure  2, 

These 
Complicated func- 

Results were also computed f o r  several  other values of v .  It w a s  found 
t h a t  the  qua l i ta t ive  behavior of the solut ion is not  s ign i f icant ly  influenced 
by t h i s  parameter. 

CONCLUSION 

In  t h i s  paper, the  ro ta t iona l ly  symmetric moderately large deformation of 
a l i nea r ly  e l a s t i c  shallow conical membrane subjected t o  e i t h e r  uniform or 
hydrostatic pressure w a s  investigated.  A s ingle  d i f f e r e n t i a l  equation having 
a stress function as dependent var iable  w a s  solved by the  method of matched 
asymptotic expansions. The accuracy of the  solut ion was ve r i f i ed  by compari- 
son with a f ini te-difference numerical solut ion of t h e  governing equation for 
the  stress function. Selected r e s u l t s  were presented graphically t o  i l l u s t r a t e  
in te res t ing  features  of t he  solut ions.  
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