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ABSTRACT

The response of a thin, rigid viscoplastic plate subjected to a spatially
axisymmetric Gaussian ideal impulse loading was studied analytically. The
Gaussian ideal impulse distribution instantaneously imparts a Gaussian initial
velocity distribution to the plate, except at the fixed boundary. The plate
deforms with monotonically increasing deflections until the initial dynamic
energy is completely dissipated in plastic work. The simply supported plate of
uniform thickness obeys the von Mises yield criterion and a generalized consti-
tutive equation for rigid, viscoplastic materials. For the small deflection
bending response of the plate, neglecting the transverse shear stress in the
yield condition and rotary inertia in the equations of dynamic equilibrium, the
governing system of equations 1s essentially nonlinear. A proportional loading
technique, known to give excellent approximations of the exact solution for the
uniform load case, was used to linearize the problem and obtain analytical
solutions. in the form of eigenvalue expansions. The linearized governing equa-
tion required the knowledge of the collapse load of the corresponding static
problem.

The effects of load concentration and an order of magnitude change in the
viscosity of the plate material were examined while holding the total impulse
constant. In general, as the load became more concentrated, the peak central
velocity increased and the time for plate motion to cease increased. TFor the
less viscous plate, these increases of velocity and time were more pronounced.
The final plate profile became more conical as the load concentration increased,
but did not approach the purely conical shape predicted for the point impulse by
the rigid, perfectly plastic analysis with the Tresca yield criteria. Profiles
of the less viscous plate were influenced more by the load concentration.

SYMBOLS
Ai series coefficient, equation (A6)
a Gaussian distribution parameter
_ /3 .
B = >h plate geometry and material constant
El’ 62 constants defined by equation (AS)
V3 pé R2
F' = M nondimensional collapse load amplitude
o
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yield function
plate half-thickness

impulse per unit area amplitude at the plate center

impulse parameter, sec

Bessel function of the first kind of real and imaginary
arguments, respectively

second invariant of the deviatoric stress tensor

radial and circumferential curvature rates

yield stress in simple shear

radial and circumferential bending-moment resultants

radial and circumferential bending-moment resultants at
initial yield

yield moment of the plate

nondimensional radial bending-moment resultant

nondimensional circumferential bending-moment resultant

pressure amplitude at the plate center at collapse

nondimensional pressure amplitude at the plate center at
collapse '

shear stress resultant
nondimensional shear stress resultant
plate radius

radial coordinate

deviator stress tensor



u(p,t)

U(p)

:ij

ij
(¥)
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(Xn,p,B)

deviator stress tensor at initial yield
time

time for motion to cease

dynamic component of velocity

steady component of velocity

initial velocity

nondimensional plate velocity
transverse deflection of the plate

transverse coordinate
plate geometry and material constant, sec

nondimensional Gaussian shape parameter
material constants

harmonic and biharmonic operators in cylindrical coordinates
final center deflection

strain rate tensor

eigenvalues determined from equation (A7)
mass density per unit area of the plate
nondimensional radial coordinate

stress tensor

yield stress in simple tension

function defined by equation (3)
circumfeyential coordinate

function defined by equation (Al3)

function defined by equation (Al2)
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INTRODUCTION

This paper presents the results of an analysis of the small-deflection
bending response of a simply supported circular plate of rigid, viscoplastic
material subjected to a spatially axisymmetric Gaussian ideal impulse. The
effects of load concentration and an order of magnitude change in the viscosit
of the plate material are examined while holding the total impulse constant.
Approximate expressions are developed for the time at which plate motion
ceases, the final shape of the plate, and the final central displacement.

Although there have been a number of papers (refs. 1, 2, 3) which permit
a time variation of the load, there have been few papers which consider a
radial variation other than linear (refs. 3, 4). The only general spatial
distribution of load which has received significant analytical attention is tt
Gaussian distribution. By varying a single parameter, this general distribu-
tion can span the extremes from the point load to the uniformly distributed
load. This versatility was recognized by Sneddon (ref. 5) who approximated
the dynamic loading of a projectile on a thin, infinite elastic plate by a
Gaussian distribution of pressure. Madden (ref. 6), in his study of shielding
of space vehicle structures against meteoroid penetration, related the
meteoroid-shield debris loading of the main vehicle wall to a Gaussian initia:
velocity distribution. The first study of this loading on a plastic plate wa:
by Thomson (ref. 7). He obtained the solution of a rigid, perfectly plastic
plate of material obeying the Tresca yield condition subjected to an initial
impulse of Gaussian distribution. Weidman (ref. 2), in/considering the
response of simply supported circular plastic plates to distributed time-
varying loadings, presented an example case of a radial Gaussian distribution
of pressure with an exponential decay. The plate material was also rigid,
perfectly plastic obeying the Tresca yield conditions.

A generalized constitutive equation for rigid, viscoplastic materials is
presented in the next section. Material elasticity is neglected in order to
simplify the analysis, as is frequently done in theoretical investigations of
dynamic plastic response of structures. Rigid-plastic analyses are generally
believed to be valid when the dynamic energy is considerably larger than the
maximum energy which could be absorbed in a wholly elastic manner and the
duration of loading is short compared with the fundamental period of vibratio

LINEARIZATION OF THE GENERALIZED CONSTITUTIVE EQUATIONS

FOR RIGID, VISCOPLASTIC MATERIALS

Perzyna (ref. 8) developed a generalized constitutive equation for rate
sensitive plastic materials by incorporating a general function in the
relationship to take the place of the yield function as used by previous
researchers (Hohenemser and Prager, ref. 9; and Prager, ref. 10). Utilizing

- . . . 1
the definition of the second invariant of the stress deviator, Jé = E—S..S.

PR
the yield function is expressed as 4
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F = K - 1 (l)

where S;: 1is the stress deviator tensor and k is the yield stress. The
generalized constitutive equation proposed by Perzyna is

. _ .0 oF
ETRRRICE (2)
where ’éij is the strain rate tensor,

O(F) =0 if F <0

3
O(F) #0 if F > 0

o ' . .
and Y denotes a physical constant of the material.

Perzyna (ref. 11) has shown that the generalized constitutive equation
for viscoplastic materials reduces to the constitutive equations of an incom-
pressible, perfectly plastic material first considered by von Mises and to the
flow law of perfect plasticity theory. As in the theory of perfectly plastic
solids, convexity of the subsequent dynamic loading surfaces and orthogonality
of the inelastic strain-rate vector to the yield surface follow from Drucker's
postulates defining a stable, inelastic material with inclusion of time-
dependent terms (Perzyna, ref. 8).

A method of linearizing boundary-value problems in the theory of visco~
plastic solids is described by Wierzbicki in reference 12. 1In this method, as
shown graphically in figure 1, the concept of proportional loading is used to
relate the state of stress §i- on the initial yield surface F = 0 to sub~-
sequent states of stress, nameiy, proportional loading requires the direction

cosine tensor of the state of stress in deviatoric space to be independent of
time: :

iy Py (4)
2

This is a reasonable approximation for axisymmetrically loaded simply supported
:ircular plates because the plate-center and boundary are automatically pro-
»ortionally loaded, that is, the bending moments must always be equal at the

>late center and the circumferential bending moment must always be zero at the
>late boundary.

Utilizing equation (4), the generalized constitutive equation (2)
yecomes .
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=X g3 _ g '
ei:j k<I> - 1 Sij (5.

where the viscosity constant 7Y = Y°/2k. For this analysis, the linear form
®(F) = F (6

is chosen. This simplified constitutive equation still is nonlinear in stress
However, in the solution of dynamical plate and rotationally symmetric shell
‘problems, the constitutive equation (5) with the linear function &(F) =F
produces full linearization of the governing equations.

For the problem of a uniformly loaded, simply supported circular plate
with @(F) = F, Wierzbicki (ref. 12) has shown that the approximate solution
obtained using the proportional loading hypothesis agrees very well with a
numerical finite-difference solution of the exact equations. The solution of
the linearized problem also agrees well with experimental data on impulsively
loaded plates by Florence (ref. 13).

 For the linear function equation (5) becomes

. =l _ &
€15 7k (B35 ~ 84y Y

where equation (7) is really a flow relation for a given structure rather
than a constitutive equation describing a given material (ref. 14).

GOVERNING EQUATIONS, BOUNDARY AND INITIAL CONDITIONS

A Gaussian ideal impulse is suddenly applied to the entire surface of a
rigid, viscoplastic plate of radius R and thickness 2h resulting in an
initial velocity distribution described by

—azrz
V@, 0) = T (8

=

where I 1is the impulse per unit area at the center of the plate and U is
the mass density per unit area of the plate middle surface. The boundary of
the plate at r = R 1s simply supported. The geometry of the plate and
initial velocity are shown in figure 2.

The parameter a in the distribution function is a shape parameter whict
controls the distribution of the impulse. For a = 0 equation (8) describes
a uniform impulse; and as a > ®, I + © equation (8) describes a point
impulse at the plate center.
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The internal forces and moments acting on a typical plate element are
shown in figure 3. If rotary inertia is neglected, but transverse inertia
taken into account, the equations of motion are

2
d )
5;(rQ)‘—‘ur—-—‘;2l
ot
9
)
37 (erz - M¢ = rQ
Utilizing the Love-Kirchoff hypotheses, the curvature~rate-moment rela-
tions, derived from the linearized constitutive equation, equation (7), are
k=2 ((a -m,) - (M -]
T Mo r ¢ ¢
(10)
L B —
K, =>—1|(eM -M)-(2M - M
p = L0 - M) - (- )]
where B = /3 Y/2h. ﬂr and M, are moments satisfying for any r the
equation of the initial yield surface
Mo - MM+ M = P (D)
T r ¢ (0] o)
M, = Oohz is the yield moment of the plate material and 0, 1is the yield

stress in simple tension.

For small deflections of the plate the curvature rates Kr and ﬁ¢ are
related to the deflection rate W by

. _ 3 : 1 3w
K = « = . = - = ——
4 3r2 ’ K¢ r or (12)

Equations (9), (10), and (12) form a linear parabolic system of partial
differential equations with six unknown functions — M., My, _Q, w, K, and
Ky — plus the unknown static moment distribution M, and My.

By eliminating all unknowns except W, the system of governing equations
can be reduced to the single, fourth-order equation

M

o 4 . ow 19 93 . = ~
3B Viwtu dt  r or [Br (er) - M¢] (13)
2 2
where vl‘= B____l_;_}_)_ .3___..,..1_§_
ar2 r Jdr Ir r or
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The right-hand side of equation (13) represents the internal force distribu-
tion at the initiation of collapse in the static case.

Let p, denote the static load-carrying capacity of the plate, then the

—n?
right-hand side of equation (13) can be replaced by —pé e ® T and the
governing equation becomes
2Mo 4 ow azr2
A . 22 = gt s
38 V' w+ U 7t P e (14)

This method of solution, proposed by Wierzbicki (ref. 12), has the impor-
tant property of replacing the unknown static moment distribution ﬁr and M¢,
whose explicit formulas are not known for the von Mises yield condition, by
the static load-carrying capacity pé. Thus, the need for explicit formulas
has been reduced to finding the value of a constant, pé, corresponding to a
particular value of the shape parameter, a. The determination of the load-
carrying capacity, pé, of a circular plate under a Gaussian distribution of
pressure is presented in reference 15.

Define the dimensionless quantities

r 2.2
pP=% » B=2aR (15)
1 ne
V=—J""§1 F'=/§p°R
2 ot °? T M
BR o]
2 3% . 13
and let V == +-5-a;. Then the final form of the governing equation,
ap
equation (14), is
2
Vivedatt-- 235 PP ' (16)

where o = uBR4/MO.

The boundary conditions of the simply supported plate are
m=n, g=0 at p=0

a7
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Using equations (10), (12), and (9), equations (17), in terms of
rate of deflection become

2 3 2
e, (G- 58)=0 g, (GFr e )
p+0 \3p° PP p~0 V35 Py o
(18)
3%y . 3y
2 2% % =03 v(1,8) = 0
9 p=1

For the Gaussian ideal impulsive loading the plate is initially flat and the
initial velocity has a Gaussian distribution

g2
w(p, 0) = 0; v(p, 0) = ——e " (19)

1R?

M
[

where 1I' =

RESULTS AND DISCUSSION

The solution to the governing equation, equation (16), with associated
boundary and initial conditions, equations (18) and (19) are presented in
the Appendix. The effects of load distribution and plate viscosity on plate
response are examined in this section while holding the total impulse constant.

The impulse amplitude, I' = IRZ/MO, sec, at the plate center is related
to the total impulse, IT, and distribution parameter, B, by the relation

T
I B
' = (20)
ﬂMo (l - e—B)

T

- MM
o
sec. The impulse becomes more concentrated at the center of the plate as B

is increased and the amplitude grows almost linearly as [ becomes large.
For B = 0, the impulse has a uniform distribution.

For comparison purposes the total impulse is held constant at =1x 10_3

The graphical results were obtained by programing the solution (equations
{Al4) and (Al5)) and summing the series term-by.term. The rapidly convergent
series with l/Ag and l/}\n factors did not present any computational diffi-
wlties; however, the last series in the velocity expression equation (Al4)
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has a 1/A, factor and prohibited the calculation of velocity-time histories
for small B and t. For t =0 the series is slowly convergent.

A representative plot of the plate central velocity is shown in figure 4
for B = 10 and viscosity parameter o = 1 x 102 sec. The initial central
velocity is seen to rapidly decline during the first 0.025 msec after which
the velocity more slowly tends to zero.

The plate is seen to deform monotonically with increasing deflection until
the initial dynamic energy is completely dissipated in plastic work and the
plate comes to rest. The deformed profiles of the plate at rest are shown in
figure 5 for two values of a (L x 107%, 1 x 10™3) and various values of B.
The profile becomes more conical as the impulse becomes more concentrated and
the profiles of the less viscous plate (0 = 1 x 10~2 sec) exhibit a wider
variation, thus are influenced more by the shape parameter f than are those
for the o = 1 x 10”3 sec case.

Approximations

An approximation to the deflection of the plate is obtained from equation
(Al15) by retaining only the first terms of series and using the approximation

‘ © n 2.n

1 2 28 n=1 (2n) n!
. _ 1681
1
The result is
L w(p,t) = - /3 F! {% +C pz +-l_.e—602 + (l.+ pz) ? ('1)n(692)#]
BRZ 48 1 2 28 B n=1 (2n) n!
0
1-e 20 3o, /BIV) 21)
4  4F
211

An approximate expression for the time for motion to cease can be obtained by
setting the derivative of the approximate displacement expression to zero,

that is; ow = 0, is
ot
t
f
L
30 1
tf=——ZJLn 1+ —— , (22)

2x 2/3 Fla
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Equation (22) is plotted in rigure 6 for 0 < 8 < 100 and several values of

0. Equation (22) is an implicit function of R since I' and F' vary with
B. The effect of B diminishes after an initial rapid rise of ¢ty with
increasing PB. The symboled points represent computed times using the complete
equation for the velocity, equation (Al4). Equation (22) is a very good
approximation for the case o = 1 x 10~3 sec. However, except for small values
of B, the approximation is poor for the o =1 x 102 sec case.

For o > » equation (22) limits to

L B
£ 4F!
(23)

UIIH

)
o
and represents the rigid, perfectly plastic case (Y + «) with the von Mises
yield condition. Equation (23) has the same form as Wang's (ref. 16) result
for the uniform ideal impulse problem using the Tresca yield condition for a
rigid perfectly plastic material. However, equation (23) gives slightly
smaller values of ¢ty since Eé = 6,51 for the von Mises yield condition
rather than 6 1in the case of the Tresca yield comndition.

The curve labeled Tresca, r.p.p. was obtained from the results of refer-
ence 7 where a simply supported circular plate of rigid, perfectly plastic
material obeying the Tresca yield condition and associated flow rule was
analyzed for a general Gaussian ideal impulse loading. For small { the two
curves differ only slightly, but as B grows larger and the impulse becomes
more concentrated, the two analyses predict drastically different times for the
plate motion to cease. The Tresca yield condition predcits very large times
for plate motion to cease, whereas the von Mises yield condition predicts more
realistic times for concentrated loads.

The substitution of equation (22) for tg into equation (21) provides
an approximate expression for the final plate displacements:

- ! 2 e 2
Lu(p,t) = - BE [5 Y TE R i >n]

BR2 Lg 1 el (2n) nt
b,
B I 3 AT
SF- o1 fnfl + ——— (24)
F 2>\§‘_ 2/3 F'a

and for the final center displacement ¢(0,tf) = w(0,te):
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4

2 ] — 1 }\ I'
B 600t = - ‘/34{; @, +35 —‘/-—%F—f— -3 a1+ —— (25)
o Zkl 2/3 F'o

Equation (25) is plotted as a function of B for the two values of o in
figure 7. The approximations are in excellent agreement with the points_
computed from the exact equations for both o =1 x 1073 sec and 1 x 10"2 sec,
even though the tg-approximations for the larger o were poor for large B

as shown in figure 6. The nondimensional central displacements are shown
smaller for the a = 1 x 10”2 sec case when, in reality the real displacements
are larger than for the o =1 x 10-3 sec case. This is caused by o Dbeing

in the denominator of the expression for the nondimensional central displacement.

Profiles obtained from the approximation, equation (24), were compared
with profiles obtained from the exact equation. For o =1 x 10-3 sec, the
differences between the approximate and exact profiles were negligibly small
for the entire range of B considered, 103 to 10,000. However, for the less
viscous plates, oo = 1 x 10-2 sec, the differences were not negligible and the
approximation, equation (23), should therefore be restricted accordingly.

CONCLUDING REMARKS

A thin, simply supported rigid, viscoplastic plate subjected to a Gaussian
ideal impulse has been analyzed within the realm of small deflection bending
theory. The plate material obeys the von Mises yield criteria and constitutive
equations due to Perzyna (ref. 11). These considerations lead, essentially, to
nonlinear equations governing the dynamic response of the thin plate. A pro-
portional loading hypothesis, proposed by Wierzbicki (ref. 12) and shown to be
an excellent approximation of the exact solution for the uniform load case,
was used to linearize the problem and obtain analytical solutions in the form
of eigenvalue expansions. The linearized governing equation on the velocity
of the plate required the knowledge of the collapse load of the corresponding
static problem, that is, the collapse load for the specific load distribution
parameter, B.

The effects of impulse concentration and an order of magnitude change in
the viscosity of the plate material were examined while holding the total
impulse constant. In general, as the impulse became more concentrated, the
peak central velocity increased and the time for plate motion to cease
increased. For the less viscous plate material, these increases of velocity
and time, tg, for plate motion to cease are more pronounced. The final plate
profile became more conical as the load concentration increased, but did not
approach the purely conical shape predicted by the rigid, perfectly plastic
analysis with the Tresca yield condition for a point impulse. As the viscos-
ity of the plate decreases, the shape parameter has more effect on the final
deformed plate profiles.
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Approximate expressions were developed for the time at which plate motion
ceases, tf, the final shape of the plate, and the final central displacement.
Comparisons with the series solution indicated that the approximations were
excellent for the o = 1 x 103 sec case. The approximation for the final
central deflection was good for the entire range of shape parameter £, the
other approximations were limited in usefulness.
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APPENDIX
SOLUTION OF EQUATION (16) BY EIGENVALUE EXPANSION#*

Since the right-hand side of equation (16) is not a function of time, it
can be solved by means of an eigenvalue expansion method. Substitution of

v(p,t) = u(p,t) + U(P) (AD)

into equation (16) results in

2
Vha(o,0) + 2 o L) 4 viy(p) = - 5/3 pr P

which separates into

4 3  du _
Vu + T 0 (A2)
and
4 ~Bp?
V' = - 2/3 F' e P (A3)

Equation (A3) is the same as equation (16) except for the absence of the
inertia term. Thus, U(p) is an equilibrium solution of equation (16) with the
same boundary conditions, equations (17).'

The solution to equation (A3) satisfying the boundary conditions, equa-
tions (18), is.

2 i m 2\
u(p) = {%w{él £ Ty0% + Lo+ Rv Py 3 UL (a%)
m=1 )
where o m,m
= _1 7 2 -B_1 (1) B
Ci=%8 "6 3B °© 5 L )y md (a5)

*

For more details, the reader can consult "Gaussian Impulsive Loading of
Rigid Viscoplastic Plates," by R. J. Hayduk, Ph. D. Thesis, Virginia Polytech-
nic Institute and State University, Blacksburg, Virginia, 1972.
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and

-~ i .7 1 -8B %
c,o=-L 4 I_L B_y
2 68 76 6B ey

(-1)"g"
(2m) m!

A general solution due to Wierzbicki (ref. 12) satisfying equation (A2)
and all prescribed boundary conditions can be written in the form

0 ~(2x} /30
u(p,t) =} A [T QA)DI (A p) - I (A)L (A p)] e (46)
n=1

where J,(x) and I,(x) denote the Bessel functions of the first kind of real
and imaginary arguments. The solution (A6) identically satisfies boundary con-
ditions (18 a, b, and d). The eigenvalues, A,, are roots of the following
transcendental equation stemming from the boundary condition (18c) of zero
bending moment at the plate edge

IO(An)Jl(An) + Il(An)JO(An) - hAnIo(An)JO(An) =0 (A7)

The only remaining unknowns in the solution are the series coefficients
A%. These coefficients are evaluated from the initial condition (19), that
is,
2

vmm)=umm)+um>=§—5“

Thus,
v _pal
u(p,0) = - U(p) + - e @

and after substituting equation (A6) for u(p,0) there results

(o) : _ 2
I Al (1 03 0 p) = 3 0T (o)1 = - UGp) +— P

n=1

(A9)

The coefficients I can be determined from (A9) by virtue of the orthogonal-
ity of the system [I,(Ap)Jo(App) = Jo(Ap)Io(Ape)] on the interval [0,1] where
p is used as a weighting function. Therefore, coefficients A% can be
determined as

1 2
I 8 _
AL _ Jq Ut ; p— e PO (DI (A p) =3I ()L (A p)] dp o

' 2
[o PII DI A p) = I AL (A p)1° dp

where U(p) is defined by equation (A4). The resulting coefficients are
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2
+3

S
5>

I _ A
AL [T 0T (O p) = I O)T (A p)] = [=F 6 050.8) (A11)

1
/A A

(=]

where the functions Y(A,,p,b) are defined by the relation

168
15 VOB = 00BN T 03, 000) = I 0T 0 )] (a12)
n
with
%ﬁf&&ﬁﬁx)- CJ(AH(A)+CIM)[—J(A) 3 (%)+%4J%ﬂ
n n A A
n n
- CJ(A) ——I(A) ——I(A +5—1(A y| + X () g '&2
}\n - }\ >\3 1 8 Io n Oxe Jo()\nx)dx
n n
L) B 1 ) ) Z (Ehi( 5
- xe I (A x)dx+ I (A J x (— + 50 (om)mt I (A x)dx
Y 24
-3 )J‘ —+ %2) 5_,‘ E—l—zz’{\k—)——” I (A x)ax
o(2,B) = — (A13)

IO(AH)JO(AH){2An[Io<An)Jl(An) - Il(An)Jo(An)] - 3Io(>\n)Jo(}\n)}

When equations (A4) and (A6) are summed and equation (All) is used, the
complete solution becomes

2 oed n 2
v(p,t) = E/—gF' {61 + 52p2 s 1By (%+ 02> (=1)%(Bp")" }

TR (2x /30)t 21 Z‘” 1 (2Ah/3a)‘t (Al4
o — F W(}\ ’p,B) n — — or— )\ 3P n )
1/5 . El )\5 © 3 o n=l1 k W( p B)

The displacement of the plate is determined by integrating (Al4) with
respect to time., Taking the initial condition of zero displacement into
account, the displacement becomes
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L S -8p? ()Rt |
13R2W(p,t)— hBFt[C1+Czp .,.%B_esp +(%+92)Z (-1n62n]

a=1  (2n) n!
_,"'. v 30 - 1l ! - L
+ = F' S ggi S W(AH,D,B)(l - e (2An/3a)t)
n
+ I Z 3'—5-4,()\ 20,8)(1 - e—(2)\§/3a)tv) (Al5)
=1 }\n n

Equations (Al4) and (Al5) represent the complete solution for the velocity
and displacement of the plate. 1In the limit as B -+ 0, the Gaussian ideal
impulse becomes the uniform ideal impulse and this solution reduces to the
solution presented by Wierzbicki (ref. 12).
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Figure 1.~ Representation of pro-
portional loading in deviatoric
space.
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Figure 2.- Simply supported circular
plate with Gaussian distribution
of initial velocity.
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Figure 3.- Element of the circular
plate with internal forces and

moments.
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Figure 4.- Representative time
history of plate central
velocity for the Gaussian
ideal impulse loading.



Ik
Ry =
A
I
b1
W(P,tf) ,5[-
w(O,tf) .
A
3+
21
Rig
] 1 | L i
0 1 2 3 4 5 6 7 8 9 10
p
(a) a=1%x 10" sec.
w(p,tf)
w(O,tf) )

() o=1x 102 sec.

Figure 5.- Final plate profiles for
various values of the ideal
impulse shape parameter, B.
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VON MISES, r.p.p.

TRESCA, r.p.p.
(REF. 7)
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Figure 6.~ Comparison of approximate
expression (eq. (22)) for motior
to cease, tg, and points deter-
mined from the complete equations
for the ideal impulse loading.
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Figure 7.- Comparison of approximate
expression (eq. (25)) for the
final central deflection and points
determined from the complete equa-
tions for the ideal impulse loading.



