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INTRODUCTION

The results to be reviewed are divided into two categories: those that re-
late two-dimensional shell theory to three-dimensional elasticity theory and
those concerned with shell theory per se. In the second category I further dis-
tinquish between results for general elastic systems that carry over, by spe=
cialization or analogy, to shells and results that are unique to shell theory
itself. Because of the limitations of space and my interests, I do not men-
tion multilayered or sandwich shells, A good discussion of these with an
ample list of references may be found in Librescu's book [1]. Also, in view of
the excellent review articles by Stein [2] and Hutchinson and Koiter [3], I
have not attempted to review the enormous literature on shell buckling.

TWO APPROACHES TO SHELL THEORY

Most texts derive shell theory by a mixture of two-and three-dimensional
considerations. However, a number of recent papers have adopted one of the
following two extreme approaches:

A, A shell is idealized as a material surface in three-dimensional Eu-
clidean space capable of transmitting forces and moments. The physical laws
for this two-dimensional continuum are postulated in analogy with those for a
three~dimensional ore. Stress-—strain laws and even failure criteria are for-
mulated in terms of two-dimensional variables and may be deduced directly from
experiments on the shell material. The papers by Sanders [L4], '‘Ericksen and
Truesdell [5], Serbin [6], Budiansky [7], Simmonds and Danielson [8], and
Reissner [9], to mention but a few, as well as much of the monumental treatise
by Naghdi [10] are written in this spirit.

B. No matter how thin, a shell must be regarded as a three-dimensional con-
tinuum. However, the governing equations can be enormously simplified by con-
sidering various formal asymptotic expansions of the unknowns in terms of ap-
propiate "thinness" parameters. In the interior of the shell (i.e. away from
edges, concentrated loads or geometric discontinuities of one sort or another)
the leading terms of the expansions satisfy various sets of two-dimensional
equations that we call, collectively, the shell equations. Among those who
have contributed recently to this second approach are Green [11], Johnson and
Reissner [12], Cicala [13], Van der Heijden [1L4], and especially Goldenveiser
(see the references cited in [15].)
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The virtue of the first approach is also its shortcoming: there is no way
to estimate intrinsically the errors made by neglecting three-~dimensional ef-
fects. Or, from another viewpoint, there is no systematic way to construct a
refined shell theory.

A drawback of the second approach, aside from its tediousness, is that it
requires a knowledge at the edges of the shell of the distribution in the
thickness direction of the applied stresses or displacements. As Koiter has
emphasized [16], we never know these distributions precisely, except at a free
edge. Another drawback of the second approach is that, because the thickness
of the shell is always incorporated in the expansion parameters, one set of
uniformly valid interior (i.e. shell) equations does not emerge. Rather there
is one set of equations for a "membrane" state, another for an "inextensional
‘bending" state, another for a "simple edge effect”, another for a "degenerate
edge effect", and,if one is dealing, for example, with an infinite cylindrical
shell subject to self-equilibrating edge loads, still another set of equatiomns
is needed to recover the "semi-membrane" theory of Vlasov [17, p. 254].

THE ASYMPTOTIC APPROACH

The goal here is to provide a systematic method of refining the analysis
of thin-walled bodies. One important consequence of the asymptotic approach
is the verification and refinement of the classical Kirchhoff boundary condi-
tions. Another useful result is that it gives a method for computing the do-
minant stresses in the immediate vicinity of an edge without the need of
solving a full three-dimensional problem. We shall first illustrate the es-
sence of the asymptotic method by means of a simple example drawn from the
work of Goldenveiser and Van der Heijden. Then we shall indicate the implica~
tion of the results for nonlinear shell theory.

Let (r,0,z) denote a set of cylindrical coordinates and consider a homo-
geneous, elastically isotropic plate that occupies the region O<rs<R, -H<z<H,
Let the plate be free of body forces and edge tractions but subject to self-
equilibrating normal tractions on its upper and lower faces. The linear
equations of elasticity may be expressed as three equilibrium equations for
the six independent components (o , T, Og>T.»T ,0) of the symmetric stress
tensor plus six stress-strain relhtions with tRe strains expressed in terms of
the components (u,v,w) of the displacement vector. Let p=r/R and {=z/H. Then
the boundary conditions read

0(p,6, + 1)=¢ ¥i°0_p(0,0), T_(9,0:+1)=7(p,0,+ 1)=0 (3.1)

Or(laes§)=T(l965C)=Tr(1593C)=0a (3.2)

where 0 1is a reference stress chosen so that Ipls 1. The boundary conditions
induce a state of pure bending in which (Or,T,Ge,G,u,v) are odd in T and
(Tr,Te,w) are even.

Goldenveiser's approach, following earlier work by Friedrichs and Dressler
[18] and Green [11], is to express each unknown as the sum of a "basic" or in-
terior contribution plus two distinct "auxiliary" or edge zone contributions.
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The edge zogi contributions are expressed in terms of the scaled variable
z=(R-r)/HZe ~(1-p) so that, for example,

0,(p,8,z5€)=0 [Z (p,0,C;€)+3 (£,0,Z;€)+0 (£,0,c35¢)]
and u(p,6,z;e)+(R/E)[U(p,0,z;e)+u(&,0,05€)+0(E,0,T3e) ],

For a traction free edge, Goldenveiser [19] assumes the following formal as-
ymptotic expansions

(Zr,T 2,7 ,T,.,2,U,V,W)

] e) e’

~Ze (zn Tnzg,eT ,eTg,ean vt et (3.3)
(Er,...,W)~§en(88?,?n,e5g,eT ,Te,son,egﬁ,e?i,eg%) (3.14)
(85+ 0., M)vele™(87,e2",05 22 ,25,07 L2, 626 eaP), (3.5)

The edge zone contributions are assumed to vanish exponentially as T,

When these representations are substituted into the elasticity equations
and their assumed asymptotic character accounted for, there results an infi-
nite sequence of differential equations for each infinite sequence of coeffi-

cients.{Z;,...,Wn} {O oo}, {6 sesesW W'y, Furthermore, the boundary con-
ﬁtﬂms(&l)mﬁ(3£)1mﬂyth%:%r§ﬂj,

%=+ 1y, (zn+l 2, T0)=0 (3.6)
~ ~l ~n+2 -~ : -
(Te, 5oTg +‘Ee,'c +‘E ,548™)=0 (3.7)

and that for p=1 and &£=0:

( 0,~0 1 ~1 nt+l ~n+6 T

Z ST, T, 0T R N T +7 +%n) (3.8)

where n=0,1,2,400 &

The equations for the interior coefficients may be integrated systemati-
cally with respect to Z. Application of the face boundary conditions (3.6)
leads, in the first instance, to the classical equation of plate bending

o_ 2 O_yi°
(2/3)AMW —(l—\).)p, AW = :gg ’CC (3.9)

A1l of the remalnlng lowest order interior coefficients are expressible in
terms of W° 3 in particular

o_ - 0 O ‘
Zr—-(l—v ) c[W,pp+v(p R 2t w,ee]_2/3cMr(p,e) (3.10)
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1°=(149) oW g-p TS o 122/3¢%(p,8) (3.11)
0= (1-") " (1-2) (5°), = 3/4 (1-2%)a0(p,0). (3.12)

The first of the edge boundary conditions in (3,8), namely Z;=O, yields only
one of the two boundary conditions needed for W . To obtain the second, the
edge zone solutions must be considered.

The infinite sequence of differential equations for the set of edge zone
coefficients (G ,...,w) can be grouped into sets which resemble the nonho-
mogeneous St.-Venant equations for the torsion of a prism whose cross-section
is the semi-infinite strip g;o,[c]sl. Likewise the differential equations for
the coefficients (8 ,...,%) can be grouped into sets which resemble the non-
homogeneous equations of plane strain for the same semi-infinite strip. The
solutions of the torsion and plane strain problems. are coupled through the non-
homogeneous terms in the differential equations as well as through the boundary
conditions (3.7) and (3.8) which also link these solutions with the interior
solutions., It should be noted that in the edge zone differential equations, ©
appears only as a parameter.

In order that the edge zone solutions decay as &2, it is necessary that
the forces and moments applied to the boundary of the semi-infinite strip be
equilibrated by the non-homogeneous terms in the torsion and plane strain
equilibrium equations. These integral conditions yield, ultimately, the addi-
tional boundary conditions needed for the wvarious interior solutions. For ex-
ample, the Kirchhoff boundary condition that relates the shear stress resgl—
tant QO and the derivative along the edge of the twisting stress couple H is
obtainéd as follows.

The solution of the lowest order torsion problem may be expressed in terms
of a stress function Y , where

rp°=0, Vs (£,31)=0, ¥,.(0,0)=-C (3.13)

and
0= -2/3;H°(1;e)w?g, o= -2/3;H°(1,6)w?€ (3.14)

The lowest order equation for equilibrium in the g-direction for the plane
strain problem is

0,~0 0,~0 o -.0

+ + + = e = . ®
(?r Tr),g (67+G )’E 6.0 RE (3.15)
From the last of the boundary conditions (3.7) and (3.8), the condition that
the net forces in the z-direction add to zero, to lowest order, is

1 'e) © O -
- [T.(1,8,0) + /7 R.(E,8,0)ag]az=o0. (3.16)
With the aid of (3.12) and (3.13) to (3.15), (3.16) reduces to
Qi + H?e= 0 at p=1, (3.17)
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which is the second boundary condition gor WQ. It 1s important to note that
one never needs to actually solve for Y~ to obtain this result.

GOLDENVEISER'S EXTENSION AND KOITER'S SIMPLIFICATION OF THE PRECEDING RESULTS

The solution for (Zl, oo s Wl) reduces to the solution of a biharmonic
equation for wl, To obtain boundary conditions for W':L one again considers the
integral conditions of overall equilibrium necessary to guarantee decaying
edge zone solutions. To evaluaté these, one must solve explicitly for wo
(which is easily done) but needs only to consider the form of the solution of
the lowest order plane strain problem, After a straightforward but tedious
analysis, there results the refined boundary conditions of.Goldenveiser [19]:

_ o 1 1
Mi B AH’B’ Qr * H’e

where A=1.260...is computed from the solution for wo. The details of the cal-
culations leading to (4.1) may be found in a report by Van der Heijden [20].

+ AH?6=0, (h.1)

Goldenveiser's results may be restated in the following useful way. Con-
sider a plate of radius R and thickness 2H subject to a self-equilibrated nor-
mal pressure p but otherwise free of surface and edge tractions. Solve the
classical equation of plate bending subject to the refined boundary conditions.

M_ - A(H/R)H,q = 0, Q + H,q + A(H/R)H,5 = 0 at p=1, (4.2)

Then the stresses in the interior of the Blate, to within a relgtive error of
O(H2/R2), are given by the formulas for Z_, TO, ete. but with W replaced by
W. Moreover, in the edge zone of the pla%e,.the dominant stresses, to withina
relative error of O(H/R), are given by these same formulas except that T° is
replaced by T°+T°, and Ty is replaced by Tg, where T° and Tg are given by (3.14)

These results are simple and satisfying. Though derived for, perhaps, the
simplest, non-trivial problem imaginable, their qualitative implications for
shells with free edges undergoing large deformations is clear, namely 1), the
most importnat refinement of the classical shell equations are in the boundary
conditions and 2), the dominant stresses near a free edge can be inferred from
the solution of the shell equations and the solution of a torsion problem for
a semi-infinite strip. To give these statements a quantitative form via an
asymptotic analysis would seem to be a formidable task,

The problem of refining the Kirchhoff boundary conditions at a free edge
has, fortunately,been solved by Koiter [15] in an alternate way, using an in-
genious energy argument. As Danielson [21], and Koiter [22] have shown, the
three-dimensional tangential shear stress predicted by shell theory-at a free
edge does not vanish, even though the Kirchhoff boundary conditions are satis-—
fied exactly. Thus the conventional strain energy expression of shell theory
overestimates the torsional energy in the neighborhood of a free edge. To as-
sess this error, Koiter considers the torsional rigidity of a flat strip whose
thickness is equal to that of the shell. By comparing this expression with
that given by classical plate theory he is able to identify an edge zone cor-
rection factor which is proportional to the twist per unit length of the edge
of the strip. The torsional energy associated with this term is therefore
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expressible as a line integral, For an arbitrary shell with a smooth edge
curve Koiter argues that one merely needs to insert an appropiate expression
for the edge twisting per unit length for the shell into this line integral and
then subtract this expression from the conventional surface integral for the
shell energy.

Koiter's result may be of limited practical vslue. If the shell has other
edges that are not free of stress, it is most likely that the associated shell
boundary conditions cannot be refined because the corresponding boundary con-
ditions of elasticity theory cannot be determined precisely. The shell equa-
tions are elliptic, hence the influence of boundary conditions extend every-
where, and it would be inconsistent to use refined boundary conditions at a
free edge but unrefined ones at another edge.

The results of this section also imply that so-called thick shell theories
are meaningless if applied to homogeneous shells with edges., We should note,
however, that Van der Heijden has shown that Reissner's latest thick plate
theory [23] does give fairly good numerical results for stress concentration
factors for circular holes in infinite plates,

THE DIRECT APPROACH TO SHELL THEORY

Here and in the following section we mention briefly — space limitations
permit no more —— some recent work concerning different formulations, implica-
tions, simplifications and the reduction of certain problems of the now gen-
erally accepted equations of first-approximation shell theory.

Formulations of the Nonlinear Theory

A strictly mechanical theory of shells may be expressed entirely in terms
of the midsurface displacement components [5]. If dynamic effects are exeluded,
alternate formulations are possible in terms of the components. of a stress
function and rotation vector [8], or in terms of stress resultants and bending
strains [15]. In the last case, any displacement boundary conditions need to
be reformulated in terms of strains [2L4,25]. This in itself has advantages,
for it automatically leads to the boundary conditions for inextensional defor-
mation and, in the linear theory, it gives boundary conditions that are the
geometric analogues of the Kirchhoff conditions.

Thermodynamic Considerations

These are important for at least three reasons. 1) heating a shell may
cause it to fail, buckle, or vibrate; 2) the best justification of the static
approach to stability for a continuous body is a thermodynamic one; and 3) the
coupling of mechanical and thermal effects produces damping.

There is a plethora of papers on 1) that we shall not attempt to review;
a few texts give a discussion of the underlying ideas. The thermodynamic as-—
pects of stability in general elastic systems are discussed in [26,27,28].
These results are directly transferable to shell theory. The specific form
and role of the laws of thermodynamics in shell theory are discussed in [10].
The effect of thermal damping on the free vibrations of shells is considered
in [29] where it is also shown that, because the damping is light, perturbation
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methods may be used to advantage.
Variational Principles

A problem of long standing in nonlinear elasticity has been to. formulate
a principle of complementary energy. Recent work [30,31,32] has established
conditions under which this is possible, In particular, in [33] and [3Lk],
these results have been applied to the nonlinear von Karman plate equations
and Marguerre shallow shell equations to obtain upper and lower bounds on an
associated energy functional.

SOME NEW RESULTS IN LINEAR SHELI, THEORY
Shells As Beams

For general cylindrical shells and shells of revolution, one may consider
special classes of solutions that, in a St. Venant sense, correspond to the
stretching, bending, twisting, and flexure of a beam. In many cases the re-
sulting equations can be solved explicitly. See [35,36].

Reduction of the Governing Equations

The shell equations constitute a system of eighth order. For analytical
purposes, especially for the application of perturbation methods, it is often
convenient to attempt to express these equations as two coupled fourth order
eguations. (A single eighth order equation destroys the very useful static-
geometriec duality). Such reductions have been found for spherical, general
cylindrical, and minimal shells as well as for shells of revolution. A reduc-
tion for arbitrary, non-developable shells is also possible, but does involve
some loss of accuracy. See [37] where other references are cited.

Membrane Theory

It is well known that shells with the proper shape and boundary support
can be analyzed with good accuracy by membrane theory. The details of such
an approach are spelled out in a very general but useful way in [38].

Cracks and Cutouts

Shells may contain cutouts by design and cracks by accident. In practice
the dimensions of these cracks and cutouts is apt to be small compared to some
characteristic geometric dimension of the shell, permitting shallow shell the -
ory to be applied., The calculation of the stresses has been reduced to the
solution of coupled singular integral equations [39] that have been solved
numerically for several important problems. See [40O] and the references cited
there.

Pointwise Estimates For Approximate Solutions

The Prager-Synge hypercircle method is useful for constructing approxi-
mate solutions to linear shell problems, and provides mean sguare error es-—
timates for the approximate stress field. More desirable are pointwise es-
timates for both the approximate stress field and the approximate displace-
ment field. For recent work on this problem see [41] and the references cited
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therein,

Wave Propagation, Asymptotics, and St-Venant's Principle

These are three additional areas in which there has been significant re-

cent progress but which cannot be reviewed for lack of space.

‘
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