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INTRODUCTION 

The nature of the stress field in front of a crack lying in 
the surface between bonded dissimilar materials was first investi- 
gated by Williams (ref. 1). He observed that not only do the 
stresses grow at a rate inversely proportional to the square root 
of distance from the crack tip, they also exhibit an oscillatory 
singularity with wave length inversely proportional to the absolute 
value of'the logrithm of distance from the crack tip. The problem 
of calculating stress intensity factors for various special load- 
ings and geometries has been treated by other authors, among them 
Erdogan (ref. 2 and 3 ) ,  England (ref. 4 ) ,  Rice and Sih (ref. 5 ) ,  
and Erdogan and Gupta (ref. 6). In all cases for which results 
are given the region is unbounded and the loads are uniform. 

For more general boundary value problems involving imperfect 
bonding of dissimilar materials numerical methods must be resorted 
to, and both the growth and oscillatory nature of the singularity 
can be expected to cause numerical difficulties. In addition, be- 
cause the elastic moduli of the materials are generally different, 
discontinuities in components of stress and strain develop nat- 
urally on the bond., 
method to problems of this type. It turns out that the nature of 
the loading and restraints, even on remote edges, can have a sig- 
nificant effect on the stress intensity. 
some example problems to illustrate this. 

Recently we extended the contour integral 

In this paper we treat 
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CONTOUR INTEGRAL METHOD 

The basic boundary value problem is illustrated in Fig. 1. 
Two dissimilar materials are joined along a straight edge with one 
or more cracks present. The composite is loaded or restrained on 
the remote boundary,and the crack faces are free of load. Local 
Cartesian and polar coordinates are introduced with origin at a 
crack tip and the negative x-axis ( 0  = k T) along the crack edges. 
The subscript 1 is arbitrarily assigned to material below the axis 
( - T  < 0 < 0), and the subscript 2 is used for  the other material 
(0 - x-0 - <-T). Also introduced is the so-called bimaterial constant 

1- l l  + 1.12% 
1-12 + %"2 

Y =  

weere 111' P2 are the respective shear moduli and K = 3-4v for plane 
strain, or K = ( 3 - 4 w ) ( l + v )  fo r  plane stress, v being Poisson's Ratic 

Notation for complex displacement and stress fields in terms 
of components referred to the local polar coordinate system are 
introduced as follows: 

0 u =  u + iu r 

- i- i ' c r8  'r - 'rr 

% - e 0  re CJ -i'c - 
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Then the displacement and stress fields in the neighborhood of the 
crack tip in each material are of the form? 

\ 

2Except for notational differences these results were also obtained 
in references 3 ,  4 and 5. 
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where 

In y) X = - + - l n y  - - + + € ( E = -  
2 2T 2 2T 
1 i  - 1 

and K = KoeiB is a complex stress intensity factor with the 
following “physical” interpretation: 

lim ae 
r+O 

I 

= aim (a - i-c + YY e=o x-to 

= Kr 1-1 - - Kor-&ei(~ln r + 8 )  

hence on the bond immediately in front of the crack tip we have 

cos(~ln r + 8 )  + remainder - - -  a 
YY Jr 

= -  sin(Eln r + 8 )  + remainder 
XY E- 

‘c 

(5 )  

Thus KO governs the amplitude growth rate of both the normal stress 
and shear stress while 8 determines a nonsignificant phase shift. 
The complex crack opening displacement is also governed by the 
stress intensity factor: 

The amplitude of the complex crack opening displacement can be put 
in the form 

A contour integral representation for the stress intensity 
factor is obtained from the reciprocal work identity by introduc- 
ing a suitable artificial singular elastic state. Briefly, 
we observe that for arbitrary values of the complex constant C ,  
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a singular elastic state corresponding to zero body force and with 
no traction on the lines 8 = 5 1~ is defined in the bimaterial 
region by 

1 i (1-1) e - e  -A (A+l) e * 
2p1u1 = EAr 

1 i ( A - 1 )  8 - e  * -A lei ( h + l )  8 2p2u2 = EAyr 

1 i ( A - 1 )  8 - e  * 2 - A - 1  ( A + l )  e oe1 = EX r 

* 
= CYA 2 r - A - 1  [ei ( A + l )  e - e  i (1-1) e l  

e2 cr 

This elastic state has the further property that on the contour 
CE (a circle of radius E centered on the origin) we calculate a 
finite contribution from the reciprocal work as the contocr 
shrinks to a point: 
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* 
= 1imJ (u*=t Y Y  - u-t Y . - ,  Ids 

'tip €+Oc 
E 

Upon noting that the reciprocal work vanishes on the complete 
+ contour CouC uCELk- indicated in Fig. 1 as a consequence of Betti's 

theorem, and on the crack edges C'UC- since the tractions in any 
case vanish there, we obtain the representation 

* * {;: E] = 1 (99: - u * Y  *t)ds (9) 

cO 

in Eq. ( 7 )  in calcu- 1-111-12 where fqr Re K we choose C = - T(l- l l  + 1-12K1) 

lating t and u , whereas for Im K we take C = -i 
Y Y T(1-11 UzK1) 

The values of 9 and $ on the contour Co are obtained numerically. 
For the results given in this paper we used code TEXGAP (ref. 7 )  
which performs isotropic linearly elastic plane analyses using 
conventional quadratic displacement triangles and isoparametric 
quadrilaterals. 

* * 1-111-12 

NUMERICAL RESULTS 

The four cases treated involve a finite bimaterial strip 
loaded in tension and are sketched in Fig. 2. From symmetry cQn- 
siderations we need to consider only the shaded region, and in 
Fig. 3 we show a typical grid (symmetrically defined in each half 
region) for the finite element analyses. Half the contour used 
for evaluation of the stress intensity factors is shown in dashed 
line in Fig. 3 .  We note that the four distinct problems con- 
sidered are obtained from the same grid and boundary conditions 
on the edges parallel to the crack, but with the following boun- 
dary conditions on the vertical edges: 
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i) Central crack - free edges: AB restrained, CD un- 

ii) Central crack - fixed edges: AB and CD restrained 

iv) Double edge crack: AB unrestrained, CD restrained. 

Two Sets  of results are plotted in Fig, 4 and 5. The first 
shows the effect of different crack sizes in a given strip for 
each case; the second shows’ the effect of changing the relative 
dimensions of the strip for a fixed crack length to width ratio. 
In each case the results are normalized using the stress intensity 
factor for an infinite region loaded uniformly in tension normal 
to the crack and restrained from motion parallel to the ‘crack on 
the remote boundary. This case is equivalent to an infinite bi- 
material plate with vanishing stresses at infinity and a uniformly 
pressurized crack on the bond, for which analytical results are 
given in references ( 4 )  and (5) : 

restrained 

iii) Single edge crack: AB and CD unrestrained 

i l o )  

It is interesting to note that for real materials the bimaterial 
constant y is restricted to values between 1 and 3;consequently, 
the maximum variation in K, that can be achieved by varying the 
properties of the two materials (this enters only through the 
parameter E )  is less than six percent, thus the isotropic case 
furnishes an excellent (lower bound) estimate for Koa. The data 
plotted in Fig. 4 and 5 are ba,sed on material properties 

which yields the value y = 1.5. 
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Material 1 

Figure  1.- Basic boundary va lue  problem. 
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F igure  2.- The fou r  cases considered. 
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F igure  3. -  F i n i t e  element g r id .  
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Figure  4 . -  Effec t  of crack length-  
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Figure  5.- Ef fec t  of s t r i p  length. 
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