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INTRODUCTION 

Numerous models of phys ica l  systems contain parameters whose values are 
not known exactly.  This paper attempts t o  address some of t h e  physical and 
mathematical complexities a r r i s i n g  i n  t h e  p red ic t ion  of t h e  s ta t i s t ica l  be- 
havior of such systems. Although the  discussions i n  t h e  paper a r e  f a r  from 
providing a s a t i s f a c t o r y  so lu t ion  t o  such problems, they perhaps, by u t i l i z a -  
t i o n  of simple examples, w i l l  c r ea t e  a g r e a t e r  awareness of t h e  s t a t i s t i c a l  
e f f e c t  of random parameters. 

PROBLEM FOWLATION 

Consider t h e  problem of determining t h e  s t a t i s t i c a l  p rope r t i e s  of t h e  re- 
sponse of 
(constant 

m a t  i cal ly 

a f i n i t e  dimensional l i n e a r  dynamical system with random c o e f f i c i e n t s  
with respect t o  time) and subjected t o  s t o c h a s t i c  fo rces .  Mathe- 
the problem is  represented by the  following equation: 

dx(t) = h ( t )  + f ( t )  ozt d t  

x(0)  = x 
0 

where x ( t )  , f (t) , and x are n-dimensional random vec to r s ,  A i s  an nxn random 
matrix. 
variance,  co r re l a t ion  func t ion ,  s p e c t r a l  dens i ty ,  d i s t r i b u t i o n ,  e t c . )  of x ( t )  
knowing the  s t a t i s t i c a l  p rope r t i e s  of x 

The problem is'to determine s t a t i s t i ca l  p rope r t i e s  (mean value, 

0' 
f ( t ) ,  and A. 

EXISTENCE OF SOLUTION 

If  t h e  de r iva t ive  i n  equation (1) i s  in t e rp re t ed  i n  t h e  almost s u r e  sense  
then ex is tence  and uniqueness of a so lu t ion  follows from appropr ia te  r e s u l t s  
i n  Rn and i f  f ( t )  is almost s u r e l y  contfnuous then a so lu t ion  i n  t h i s  sense 
would e x i s t  and be given by: 

7 4  1 



f (.r)d.r A t  x ( t )  = e x + lo e 
0 

However,since t h e  discussions i n  t h i s  paper w i l l  be concerned with second 
moments of t h e  so lu t ion ,  i t  would s e e m  appropr ia te  t o  r equ i r e  t h e  de r iva t ive  
i n  (1) t o  be a mean square de r iva t ive  and t o  consider t h e  d i f f e r e n t i a l  equa- 
t i o n  (1) over t h e  Hi lber t  space Zn where Z denotes t h e  Space of second order 
random var iab les .  
requi r ing  A t o  be almost su re ly  bounded) then the  theory of ordinary d i f f e r -  
e n t i a l  equations would y i e l d  a unique so lu t ion  given by (2), where t h e  in t e -  
g r a l  w a s  a mean square i n t e g r a l ,  provided f ( t )  i s  mean square continuous. I n  
genera l ,  however, A may no t  be bounded, i .e. t he  product of two second order 
random va r i ab le s  w i l l  not be  a second order random va r i ab le  and then the  
appropr ia te  theory discussing ex is tence  of a so lu t ion  t o  (1) would l i k e l y  be 
a requirement t h a t  t h e  so lu t ion  be t h e  ac t ion  of a semigroup on t h e  i n i t i a l  
condition. For example, i f  t h e r e  e x i s t s  a real  number A such t h a t :  

I f  A is  a bounded operator over Zn (probably equivalent t o  

0 

-1 I lXIX+Xo - AI I I C y  f o r  a l l  complex X with Re A > O ,  - 1  C a real 

n number and I I 1 I denoting t h e  norm over R , then t h e r e  w i l l  be a so lu t ion  i n  
the mean square sense  t o  (1) and f u r t h e r :  

In  p a r t i c u l a r  i f  X 
asymptotically stagle. 
the  only s t i p u l a t i o n s  t h a t  x &Zn and f ( t )  be mean square continuous. 
approach t o  f ind ing  a mean square so lu t ion  t o  (1) would be t o  r equ i r e  condi- 
t i ons  on xo, A, f ( t )  such t h a t  (2)  is  a so lu t ion  t o  (1).  If xo, A, and f ( t )  
are mutually independent, then requi r ing  eAt and AeAt t o  have second moments 
would in su re  t h a t  (2) s a t i s f i e s  (1) .  The following elementary examples attempt 
t o  i l l u s t r a t e  t h e  above discussion. 

can be chosen t o  be nega t ive  then t h e  so lu t ion  w i l l  be 
This approach t o  t h e  problem exh ib i t s  a so lu t ion  with 

Another 
0 

EXAMPLES 

Example 1 

Consider t h e  f i r s t  order homogeneous equation (n = 1 ) .  

- _  dx - ax d t  x(0) = x 
0 
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with a uniformly d i s t r i b u t e d  between a and 6. 
over Z thus ,  f o r  example, i f  xo is independent 

Clear ly  a is a bounded opera tor  
of a it follows tha t :  

I f  P O  then E[x( t ) ]  becomes a r b i t r a r i l y  l a rge  even i f  t h e  mean of a is  nega- 
t ive . 
Example 2 P 

Consider t h e  above problem with t h e  dens i ty  of a given by: f 
shown: Pa(a) = ae  

< C i f  Ao>$ x 
I h+Xo-a I - Although a i s  no t  a bounded opera tor  over Z c l e a r l y  

f o r  a l l  Re X>O. Thus a s o l u t i o n  exists. 
can be shown t h a t  

I f  xo i s  independent of a then it 

f3t 
E[x ( t ) ]  = - E[xol. 

ae 
t+a 

Note again t h a t  i f  B>O E[x(t)]  becomes a r b i t r a r i l y  la rge .  

Example 3 
I 

Consider t h e  above example wi th  a Gaussian with mean 11 and variance (3. 

Clearly a is  not bounded and-fur ther  no Xo can be chosen t o  make X I c, I,+, -a - 
However i f  a is  independent of x then 
it follows t h a t  : 0 

2 4  2 
1 t (T + 2pto 

E[x ( t ) l  = exp C 
(3 

0 a t  a t  ae and e do have second moments and 

E[xol 

However, regard less  of (3 and p, E[x( t ) ]  becomes a r b i t r a r i l y  l a rge .  

Example 4 

Consider t h e  above example with t h e  dens i ty  of a given by: 
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Again t is  not  poss ib l e  t o  pick a A such tha : 
0 

and even i f  x is  independent of a i t  can be demon- A 
IA+Ao-a l  5 c 0 

s t r a t e d  t h a t  x ( t )  does not have a f i r s t  moment f o r  t>a. Thus i t  makes no 
sense  i n  t h i s  problem t o  attempt t o  ca l cu la t e  E[x( t ) ] .  

STATIONARY RESPONSE AND SPECTRAL DENSITY 

Assume t h a t  the ex is tence  of t h e  so lu t ion  i n  t h e  mean square sense t o  (1) 
is  known and is  express ib le  as: 

x ( t >  = eAtx t J e f (.c)d-c 
0 0  

I f  A, xo, and f ( t )  are mutually independent and f u r t h e r  i f  f ( t )  is  s t a t i o n a r y  
with co r re l a t ion  matrix Rf then it follows t h a t :  

t + A  t A( t+A-ql)  
E[(x(t+A) - E[x(t+A)l) ( x ( t )  - E [ ~ ( t ) l ) ~ ]  = lo lo E[e 

I f  i t  can f u r t h e r  be shown t h a t  I leAt I I < CeBt with B<O, then it  follows i n  
the usua l  way t h a t  as t goes t o  m x ( t )  becomes s t a t iona ry  with: 

By taking t h e  Fourier transform of Rx(A) it  is  e a s i l y  shown t h a t  t h e  spectral  
dens i ty  of x ( t )  is given by: 
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Example 5 

Of t h e  previous examples only Example 1 w i t h  f3<0 and Example 2 with f3<0 
eventually have s t a t i o n a r y  so lu t ions .  I n  example 1 (with B<O) i t  i s  e a s i l y  
seen tha t :  

-1 M, E -  t a n  - 1 sf(w) 1 Sx(w) = - [ t an  w w w 

I f  Sf(w) = 1 (white noise)  then a p l o t  of Sx(w) follows: + 

I f  a was not  a random v a r i a b l e  then S (w) = - and a p l o t  of t h i s  follows: X 2 2  a +w 

SUMMARY 

Those readers  who have gotten t o  t h i s  point i n  t h e  paper recognize 
it as a fraud. 
ca l cu la t e  t he  s ta t i s t ica l  proper t ies  of t h e  response of dynamical systems 
which have random parameters, (2) p resents  poss ib l e  mathematical models t h a t  
pe r t a in  t o  t h e  physical problem and (3) presen t s ,  via simple examples, where 
t h e  problems are i n  t ry ing  t o  so lve  t h e  problem. The r e s u l t  i n  example 3 ,  
where a i s  Gaussian, shows t h a t  regard less  of how negative t h e  mean value and 
how s m a l l  t h e  variance of a, t h e  mean va lue  of the  so lu t ion  goes t o  m as t i m e  
goes t o  0 0 .  

o f  the so lu t ion .  

The paper (1) presents  a phys ica l  problem, i.e.: how do you 

In  p a r t i c u l a r ,  i t  makes no sense t o  t a l k  about t h e  s p e c t r a l  dens i ty  

I n  t h e  opinion of t he  author closed form so lu t ions  t o  problems beyond n= l  
are not f e a s i b l e  and cur ren t  work cen te r s  around t h e  study of t he  accuracy of 
approximate methods t h a t  have been proposed i n  t h e  l i t e r a t u r e .  
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