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INTRODUCTION

Numerous models of physical systems contain parameters whose values are
not known exactly. This paper attempts to address some of the physical and
mathematical complexities arrising in the prediction of the statistical be~
havior of such systems. Although the discussions in the paper are far from
providing a satisfactory solution to such problems, they perhaps, by utiliza-
tion of simple examples, will create a greater awareness of the statistical
effect of random parameters.

PROBLEM FORMULATION

Consider the problem of determining the statistical properties of the re-
sponse of a finite dimensional linear dynamical system with random coefficients
(constant with respect to time) and subjected to stochastic forces. Mathe-
matically the problem is represented by the following equation:

dx(t)

It = Ax(t) + £(£) 0<t

1)

x{0) =X

where x(t), f(t), and x are n-dimensional random vectors, A is an nxn random
matrix. The problem 1s°to determine statistical properties (mean value,
variance, correlation function, spectral density, distribution, ete.) of x(t)
knowing the statistical properties of X > f(t), and A.

EXISTENCE OF SOLUTION

If the derivative in equation (1) is interpreted in the almost sure sense
then existence and uniqueness of a solution follows from appropriate results
in R® and if f(t) is almost surely continuous then a solution in this sense
would exist and be given by:
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t z eA(t-T) f(t)dT (2)

x(t) = eA x + [
o

However, since the discussions in this paper will be concerned with second
moments of the solution, it would seem appropriate to require the derivative
in (1) to be a mean square derivative and to consider the differential equa-
tion (1) over the Hilbert space Zm' where Z denotes the space of second order
random variables. If A is a bounded operator over ZP (probably equivalent to
requiring A to be almost surely bounded) then the theory of ordinary differ-
ential equations would yield a unique solution given by (2), where the inte~
gral was a mean square integral, provided f£(t) is mean square continuous. In
general, however, A may not be bounded, i.e. the product of two second order
random variables will not be a second order random variable and then the
appropriate theory discussing existence of a solution to (1) would likely be
a requirement that the solution be the action of a semigroup on the initial
condition. For example, if there exists a real number Ao such that:

[IAD - AT7Y] < ¢, for all complex A with Re A>0, C, a real

number and [l ]! denoting the norm over R", then there will be a solution in
the mean square sense to (1) and further:

20t
T, At o T
xo) (e xo)] §_C2e E[XO xo]

E[(eAt

In particular if A can be chosen to be negative then the solution will be
asymptotically staBle. This approach to the problem exhibits a solution with
the only stipulations that x eZ" and f(t) be mean square continuous. Another
approach to finding a mean sauare solution to (1) would be to require condi-
tions on %y, A, f(t) such that (2) is a solution to (1). If x , A, and £(t)
are mutually independent, then requiring eAt and AeAt to have Second moments
would insure that (2) satisfies (1). The following elementary examples attempt
to illustrate the above discussion.

EXAMPLES

Example 1

Consider the first order homogeneous equation (n = 1).

dx _ =
T x(0) = X
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with a uniformly distributed between o and B. Clearly a is a bounded operator
over Z thus, for example, if x, is independent of a it follows that:

1

E[x(t)] = O (eBt

- %Y Elx_]

If B>0 then E[x(t)] becomes arbitrarily large even if the mean of a is nega~
tive.

Example 2 P

Consider the above problem with the density of a given by:

Pa(a) = aea(a-B) shown:
d
N —>
Although a is not a bounded operator over Z clearly [ Py ] < Cif AO>B
[}
for all Re A>0. Thus a solution exists. If X, is independent of a then it
can be shown that
aeBt
E[x(t)] = 25— ElxI.
Note again that if B8>0 E[x(t)] becomes arbitrarily large.
g -
Example 3
Consider the above example with a Gaussian with mean yu and variance o.
Clearly a is not bounded and further mo A, can be chosen to make <c

]

' A+Ao—a -~
However if a is independent of X then ae®t and eat do have second moments and
it follows that:

2 4 2
t o + 2uto
Gz } E[xO].

E[x(t)] = exp {

However, regardless of ¢ and u, E[x(t)] becomes arbitrarily large.

Example 4

Consider the above example with the demsity of a given by:
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P (a) _  —o(a-B)

shown:

.’C;%;<>C//’ 77 G

. =
Again it is not possible to pick a lo such that: l @
l——l———4 < €C and even if x dis independent of a it can be demon-
A+Ao—a - e}

strated that x(t) does not have a first moment for t>a. Thus it makes no
sense in this problem to attempt to calculate E[x(t)].

STATIONARY RESPONSE AND SPECTRAL DENSITY

Assume that the existence of the solution in the mean square sense to (1)
is known and is expressible as:

eAt A(t-T)

x(t) = xot fz e f(t)dr

If A, x , and £(£) are mutually independent and further if £(t) is stationary
with cofrelation matrix Rf then it follows that:

t+A t

O E[eA(t+A—n

E[Ge(t+h) - E[x(e40)]) (x(8) = E[=x(0)1)T] = /7 %
AT (t-n,) q
Rf(nl—nz)e ] dn, n,

If it can further be shown that I[e !l < CeB with B<0, then it follows in
the usual way that as t goes to « x(t) becomes stationary with:

T
Ang - Ang
R A) = f f Ele Rf(A Ny + nz)e 1 dnldn2

By taking the Fourier transform of R (A) it is easily shown that the spectral
density of x(t) is given by:

sx(w} = E[ [A+iw]'1 S (w) [Afim]’l 1
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Example 5

Of the previous examples only Example 1 with B<0 and Example 2 with B<O0
eventually have stationary solutions. In example 1 (with B<0) it is easily
seen that:

Sx(m) = %- [tan-l %-— tan—l %-] Sf(w)

If Sf(w) = 1 (white noise) then a plot of Sx(w) follows:

A

- 4

“g

s> LW
If a was not a random variable then Sx(m) " 5 and a plot of this follows:
a +w
A
—L
EiEL
> W

SUMMARY

Those readers who have gotten to this point in the paper recognize
it as a fraud. The paper (1) presents a physical problem, i.e.: how do you
calculate the statistical properties of the response of dynamical systems
which have random parameters, (2) presents possible mathematical models that
pertain to the physical problem and (3) presents, via simple examples, where
the problems are in trying to solve the problem. The result in example 3,
where a is Gaussian, shows that regardless of how negative the mean value and
how small the variance of a, the mean value of the solution goes to « as time
goes to @, In particular, it makes no sense to talk about the spectral demsity
of the solution.

In the opinion of the author closed form solutions to problems beyond n=1
are not feasible and current work centers around the study of the accuracy of
approximate methods that have been proposed in the literature.
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