STABILITY OF NEUTRAL EQUATIONS
WITH CONSTANT TIME DEIAYS

L. Keith Barker
NASA Langley Research Center

John L. Whitesides -
-Joint Institute for Advancement of Flight Sciences
The George Washington University

SUMMARY

A method has been developed for determining the stability of a scalar
neutral equation with constant coefficients and constant time delays. A
neutral equation is basically a differential equation in which the highest
derivative appears both with and without a time delay. Time delays may appear
also in the lower derivatives or the independent variable itself. The method
is easily implemented and an illustrative example is presented.

INTRODUCTION

Ordinary differential equations with time delays are called differential=-
difference equations (ref. 1). Two basic types of differential-difference
equations are retarded and neubral equations. The stability of the solutions of
thege equations is related to the roots of a characteristic equation. Generally
this characteristic equation is transcendental and thus has an infinite number
of roots.

A convenient method is developed in reference 2 for examining the
stability of retarded equations with many time delays (not necessarily distinct)
and a scalar neutral equation with one delay. The purpose of the present paper
is to develop the basic method of reference 2 for neutral equations with nany
time delays.

SYMBOIS
aj, bj’ c, d real constants
HK(s) function of s in equation (11)
i imaginafy unit, \[:ET
JK(S) function of s in equation (12)
J integer
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refers to Tx
characteristic equation
resulting polynomial with zero delays in IL(s)

highest derivative in neutral equation

number of roots of I(s) with ¢ > - at T Tor fixed

| K

T 37

function of s in equation (20)
integer

function of s in equation (21)

complex variable, g + iwm

an upper bound on magnitude of s which satisfies
I(s) = O, where s = =0l + i

time

testing function defined in equation (17)
scalar function of time

real numbers

small positive number

positive real number

specified value of u

real gain constant

real part of s

asymptote of real part of large modulus roots
constant real time delays
final desired value of Ty

yaw angle, radians

imaginary part of s

an upper bound on o in L(s) = O, where s = = + im



Mafhematical notations:

, | absolute value or magnitude

arg argument

0 arbitrarily small positive values

Dots over a symbol denote derivatives with respect to time.
ANATYS IS

A method is developed herein for determining the stability of the neulral
equation

t Lo, x3) + b, =) (6 = )1 - (1)
. J—O
where 'amgéo, by 7!o,o<rcj Stp for §=0,1,00 , N=1,

and x(9) (t) denotes the jth derivative of x(t).
The characteristic equation associated with equation (1) is

-7, S .
L(s) = z (a.+b.e 9 Js9=o0 (2)
P I

Tt has been shown (ref. 3) that if all the roots s =g + iw of
squation (2) satisfy the property

oS ~u<O : (3)

vhere U is a positive constant, then the solution of eguation (1) is of
saxponential order as +t — «; that is

lx(4)l < g ™ ® (1)

there d > 0 is a constant real number ahd ¢ is arbitrary on the
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interval (0, 1). Hence, if all the characteristic roots have negative real
parts and are not asymptotic to the imaginary axis, then x(t) -0 as t - o
(asymptotically stable).

If there is a root of I(s) with positive real part, then equation (1)
has a divergent mode and is said to be unstable.

Relative Stability

If it can be determined that there are no roots of the characteristic
equation with real parts greater than a specified negative real number, then
the solution to the neutral equation is asymptotically stable.

Relative stability for a specified value ﬁ of p in equation (3) is
1nd1cated herein by the number of roots of the characteristic equation with
g > - For example, the neutral system is said to be relatively more stable
when all the roots satisfy g <« - < 0, than when there is a root with
-1 < g < 0. Relative stability boundaries in the plane of two system parameters
are boundaries corresponding to a root with & = -l.

The stability method to be presented is based on determining the number of
roots of the characteristic equation with real parts greater than a specified
negative real number ~{i. The method is convenient for determining the number
of roots of the characteristic equation with real parts located between specifie
negative real numbers. The approach consists of separately examining the
arbitrarily large modulus roots and the finite roots. The large modulus roots
are examined by using a simple expression for their asymptote; whereas, the
finite roots are examined by computing the magnitude of a complex-valued functioc
on a finite interwval.

Targe Modulus Roots

A1l roots of equation (2) must satisfy the inequality

. o =T« O . :
lagl = Il e © [[sl” Ji o]+ oyl e 37 [l (5)

obtained from equation (2). Tt can be shown that since any 4 0 and bN 4 0,
the roots have bounded ¢g. Hence, in order for the large modulus roots
(1s] - ®) to satisfy equation (5)

Lim | lag] = oy e 7)o (6)

5] -
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From equation (6), a becomes arbitrarily close to

L g, |
b

By N

(7)

This relation represents the asymptote of the large modulus roots and is shown
graphically in figure 1.

a
For |m=— i< 1 in figure 1, ¢ > 0; and equation (3) with ¢ = o, is not
N
a
satisfied. Now, consider XN >1 and let o = i correspond to T, = 2
by © N N

in figure 1. Then, ¢ = o, satisfies equation (3) with u = ﬁ, whenever

a
A _ 1 N :
T < Ty T 7 In —bN (8)

There are then no infinitely large modulus roots with ¢ > - in the/\neutral
system. It remains to examine the number of finite roots with & > =i.
Finite Roots

For Ty = O+, I(s) has N roots arbitrarily close to the N roots of
the polynomial equation

N .
L(s)= ¥ (a.+b.)s%=0 (9)
0 . i J J
J—-
and the remaining roots have arbitrarily large moduli (ref. 2). For
a
Ty = ot and =| >1 in equation (7), g > = < -0, Therefore, L(s) and
)

T.(s) have the same number of roots with o > -0 (initial relative stability).
Since the complex roots occur in complex conjugate pairs, only roots with non-
negative imaginary parts (w = 0) are considered.

As one of the time delays, say Ty, 18 increased in a continuous manner
with the remaining delays held fixed, &e finite roots of IL(s) move in some

continuous manner (ref. 2), generating root locus curves in the complex root
plane (s-plane).
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Intersection Points s = = + iw and
Corresponding Delays

A root locus curve must intersect the =fi-line (dashed line) in figure 2
in order for the number of roots of IL(s) with & > -I to change. These
intersection points (-, ®) and the corresponding values of the delay T}
which result in these intersection points are discussed in this section. The
change in the relative stability as a root locus curve crosses an intersection
point is presented in the next section.

For a specific time delay Ty, equation (2) can be written as

"'TK S

I(s) = HK(S) - JK(s) e = =0 (10)
where
HK(S) = ::—‘%0 a ¢d 4 jlgo bj g9 e-Tj s (1;)
J#K
and
JK(S) = =b, et ‘ (12)

At an :'Lntexjsection point 8 = -ﬁ + iw, equation (10) is equivalent to

A

N N MTK
TE (=) )| = |Tp(~, )] e (13)
and.
J -A, 03)
T = & arg —Ié-—u——— + 2pn : (14)
® HK("»G: U))
where HK(-ﬁ, w) = HK(-[Z + .:Tm), JK(-ﬁ, ) = JK(-ﬁ + iw), and
JK("E} (D) :
- < arg ————— S = (15)

I’%("U') 03)
It is assumed that o —Tl 0 and HK(-Q, w) -TI 0. To handle these special cases,

the approach used in reference 2 may be followed. Only non-negative values of
the integer p in equation (14) are of interest because g 20 and o> 0.
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Equation (13) gives the points (-{I, ®) where the root locus curves
intersect the ~{=line in figure 2, and equation (1%) gives the corresponding
values of 7Ty which result in these intersection points. In general, the
values of w at an intersection point must be found by an iteration process.
The values of ® which may satisfy equation (14) are restricted to some finite
interval (0O, mm] s where is an upper bound on « determined from
equation (5). ~Also, a useful bound on the integer p in equation (14) is
obtained as

1. % 'k .
[p] £ 5+ == : (16)
<=
where Tg = Tg and o £ W

Change in Number of Roots
With o > =i

Iet N(TK, -ﬁ) denote the number of roots of I(s) with & > -ﬁ' at

T
K
for fixed T3 J 7-’ K; and define the testing function

JK(@} (D) _@TK

Welas @) = Bl o) © (17)

Then, the following theorem can be used to determine the change in the number
of roots of IL(s) with o > -1 as T varies.

Theorem: Let (=fI, ®) be an intersection point with corresponding delay Ty.
Let ay <w and o, >w be real numbers for which WK(-ﬁ, U“l> and WK(-ﬁ, ocE)

are defined, and such that there are no other intersection points with
imaginary parts which lie on the interval [onl, OLQ] Then, for ¢ an
arbitrarily small posrblve number

(1) N(ryg + e -1) = Mg -0) + 1

it (=, o) > 1 and W (-0, o))f < 13

(2) Nty + ey =0) = N(rp, =) = 1

if !WK(-ﬁ, al)] <1 and ]WK(-ﬁ, @2)] > 1; and
(3) Wt + &5 =B) = N(zy, ~f) if both
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IWK(-ﬁ; al)‘ and IWK(-ﬁ, @2‘ are greater than 1 or both less than 1.

This theorem is developed in reference 3 by extending the t=decomposition
method, as refined by Lee and Hsu (ref. 4).

The theorem is interpreted as follows: Iet (-, ») be an intersection
point, where o is specified and ® is a root of equation (13). If this is
the only value of w on the interval o £ w £ o,, which satisfieg
equation (13), then the change in the relative stability at the intersection
point is determined by computing |Wg(=@, @q)| and |Wg(~Z, an)}. For example,
from condition 1 of the theorem, if [Wg(-Z, aq)| > 1 “and [Wg(-0, )| < 1,
then the system gains exactly one root with o> -ﬁ; that is, N(TK + e, -{1)=
N(tp, =) + L.

The values of Tk at all the intersection points are ordered by
increasing magnitude to obtain the change in the relative stability as Tx

increases to its final desired value T

K* As each delay is varied, that
delay becomes Ty in the theorem.

Intersection points (-0, ) satisfy equation (13), or [WK(-ﬁ, w)| = 1.

In choosing ml and cy, in the theorem, it is expedient to note that

IWK(-ﬁ, ®)| increases as p increases for each value of o ¢(0, wm].
APPTLICATTION

The relative stability of the neutral equation

01024 (t) + .0070k ¥(t) + 250 ¥(t) + .163EY(t - TK) =0 (18)

where € 1is a system gain constant and Ty > 0 1is a constant time delay may

now be determined. This equation was used in reference 5 in examining a yaw

damper control system for an airplane with rudder deflection made proportional
to the yawing acceleration.

The characteristic equation associated with equation (18) can be written

as
~Tg S
L(s) = P(s) - Q(s)ee =0 (19)
where
P(s) = .0102Ls® + .0070ks + .250 (20)
Qs) = 16357 (21)
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With s = =0 + iw, equation (19) can be used to write

'E' = _PL-_ﬁL_(D_). e-UTK ‘(22’)

Q("ﬁ-" (D)
and

T

,:/\ 2
=§;- argQ-M 8 +2p§t (23)

K P("ﬁ, CD)

Now, with 1 specified, equations (22) and (23) can be used to partition the
plane of E and Tx into different regions as w > O is allowed to vary.
The solid lines in figure 3 were generated in this manner. Any point on a
partitioning line or boundary corresponds to & root locus curve intersecting -
the «{=line in figure 2.

To examine tp\e stability condition (stable or unstable) or the number of
roots with ¢ > =i in the regions of figure 3, it is useful to write
equation (19) in the form

-TK s

IL(s) = HK(S) - JK(s)e =0 (24)
where

H(s) = P(s) - (25)
and

Ie(s) = gals) . (26)

The initial stability of equation (24) along the E£-axis (TK - 0") 1is
evaluated by using equations (7) and (9), which become
N S . 01024 l (27)

and

Lo(s) = (.0102% + .163§)32 + .00TOks + 250 = O (28) |

For tg - ot and € = .0k, there is one root with g = =.21 and Gp = =@

As 7y increases from ot with £ = .0k in figure 3, the relative stability
boundary for =i = =.5 is intersected. For this intersection point, it can
be shown that o4 and o, in the theorem can be chosen ag o, = 3 and

ay =k, Then, since [W(-.5,3)]< 1 and [We(-.5, ¥)] > 1, condition 2 of
the theorem applies. Thus, the neutral system loses one root with g > =.5.
(This is the root which originally had o = -.21) Inside the closed region for
L= - 5, there are no roots with ¢ > =.5. This same procedure is used to
determine which side of the curves in figure 3 should be hatched.
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The hatching convention is as follows: Passing from the hatched (unhatched)
side of a boundary line corresponding to & particular value of - u to the
unhatched (hatched) side of the boundary results in the gain (loss) of exactly
one root with g > =i

At the point (§, tg) = (.04, .2), the system has no roots with ¢ > =.7.
The value of o_ in equation (27) at this point is ¢ = =2.257.

CONCLUDING REMARKS

A method has been developed for determining the stability and relative
stability of scalar neutral equations, with constant coefficients and constant
time delays. The approach was to determine the number of roots of the
characteristic equation with real parts greater than specified negative real
numbers. The method consists of separately examining the large modulus roots
and finite roots.- The large modulus roots are examined by using a simple
expression for their asymptote; the finite roots are examined by computing
the magnitude of a complex-valued function on a finite interval.

The stability method is convenient for determining the number of roots of
the characteristic equation with real parts located bebween specified negative
real numbers. An example which has occurred in practical application has been
provided to illustrate the method.
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Figure 1.~ Real part of large modulus roots.
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Figure 2.~ Illustration of intersection point.
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Figure 3.- Relative stability boundaries.
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