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SUMMARY 

Higher order spinning modes must be considered in the design of efficient 
noise suppressors with outer wall treatment such as in an engine inlet. These 
modes are difficult to measure and are in fact impossible to resolve with flush 
mounted wall microphones. 
here which potentially circumvents the problems of resolution in modal measure- 
ment. The method is based on the fact that the modal optimum impedance and the 
maximum possible sound power attenuation at this optimum can be expressed as 
functions of cutoff ratio alone. Modes with similar cutoff ratios propagate 
similarly in the duct and in addition propagate similarly to the far field. 
Thus there is no need to determine the acoustic power carried by these modes in- 
dividually, and they can be grouped together as one entity. With the optimum 
impedance and maximum attenuation specified as functions of cutoff ratio, the 
of f-optimum liner performance can be estimated using a previously published 
approximate attenuation equation. 

An alternative liner design procedure is presented 

INTRODUCTION 

The need to consider higher order spinning modes in the design of aircraft 
inlet suppressors with wall treatment only has been demonstrated in references 
1 and 2. Using spinning modes in the propagation theory to simulate an engine 
inlet requires information on the modal power distribution, which is very diffi- 
cult to measure. Assumptions of equal modal amplitude (ref. 3 )  or equal modal 
power (refs. 1 and 4 )  have been made. These assumptions may be valid for static 
test data (ref. 5) where the dominant source of noise may be from the inter- 
action of the rotor with random inflow disturbances. However, in flight the 
character of the noise source changes considerably (ref. 6) and the modal struc- 
ture giving valid liner designs has yet to be established. 

Because of the difficulty of modal measurement, an alternative and more 
easily used method has been proposed (ref. 7). This method involves the use of 
the distribution of acoustic power as a function of mode cutoff ratio (hereafter 
called acoustic power-< distribution) rather than the actual modal power distri- 
bution itself. This is much simpler since many modes may have nearly the same 
cutoff ratio and need not be separated because they a l l  behave the same when 
liner design is considered. This similar behavior is demonstrated by showing 
that the optimum wall impedance and the maximum possible sound power attenuation 
obtained at this optimum can be expressed as functions of cutoff ratio alone. 
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When these quantities are expressed in this way there is only a very small re- 
sidual modal dependence (lobe m and radial mode p), which can be ignored in 
a multimodal liner design. 

It was established in reference 7 that modal optimum wall impedance was 
The reference also implied that maximum intimately related to cutoff ratio. 

attenuation and the radiation pattern were dependent upon cutoff ratio. 
paper the method will be developed into a quantitative tool useable for liner 
design. 
optimum impedance and the maximum possible attenuation. 
identity occurs in these required inputs, modal decomposition of the noise 
source is replaced by the acoustic power-5 distribution which treats all simi- 
larly propagating modes as a single entity. 
usual input quantities such as flow Mach number, boundary layer thickness, noise 
frequency, and duct dimensions. 
tioned above involve only the optimum quantities, an off-optimum estimate pro- 
cedure is also provided. This involves the approximate equation of reference 8 
in which the off-optimum behavior is shown to be uniquely determined by the op- 

In this 

Approximate expressions are provided in terms of cutoff ratio for the 
Since no explicit modal 

These equations also contain the 

Since all of the correlated quantities men- 

timum impedance and damping along with the actual off-optimum wall 
The procedure outlined in this paper requires only the addition of 
ing of the acoustic power-( distribution. 

Methods for estimating the acoustic power-6 distribution from 
directivity pattern are nearing completion and should be available 
desirable method using direct duct measurements with flush-mounted 
transducers is currently being studied. 

impedance. 
the quantify- 

the far field 
soon. A more 
wall pressure 

The problem of changes in acoustic power-( distribution in going from a 
hardwall duct to a soft wall section is discussed. 

SYMBOLS 

A 

C 

D 
AdB 
AdBm 

F 

f 
G 

Jm 

K 
k 
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function of eigenvalue phase 
angle, eq. (15) 

speed of sound, m/sec 
duct diameter, m 
sound power attenuation, dB 
maximum possible sound power 

boundary-layer refraction 

frequency , Hz 
function of maximum possible 

Bessel function of first kind, 

wave number , k.r 
w/c, m-1 

attenuation, dB 

function, eq. (11) 

attenuation, eq. (18) 

order m 

L 

MO 
m 

N 

P 
R 
Rm 
r 
‘0 

vg 
t 

X 
a 

acoustic liner length, m 
axial steady flow Mach number, 
free-stream uniform value 

spinning mode lobe number 
(circumferential order) 

normalized expected number of 
modes versus cutoff ratio 

acoustic pressure, N/m2 
amplitude of eigenvalue a 
hardwall eigenvalue 
radial coordinate, m 
circular duct radius, m 
time, sec 
group velocity ( a m /  aK) 
axial coordinate, m 
complex radial eigenvalue (a = Re i+ 



B AdBm/AdB 
6 boundary-layer thickness, m 
E dimensionless boundary-layer 

thickness, 6/ro 
cm optimum specific acoustic 

impedance 
cm0 optimum specific acoustic 

impedance for E = 0 
rl frequency parameter, fD/c 
8 specific acoustic resistance 
8, optimum specific acoustic 

resistance 
w 

radial mode number 
cutoff ratio 
cutoff ratio in hardwall duct 
attenuation coefficient 
propagation coefficient 
angular coordinate, rad 
phase angle of eigenvalue, deg 
specific acoustic reactance 
optimum specific acoustic re- 

circular frequency, rad/sec 
actance 

DEFINITION OF THE CUTOFF RATIO 

Some preliminary expressions are given here to establish the notation and 
terminology. 
region). 

The modal pressure solutions are given by (in the uniform flow 

p = ~~(5) eiwt-im@-k(a+iT)x 

where P, a, 5 ,  and T should actually have m, 1-1 subscripts to associate 
them with the my 1-1 mode. For soft walled ducts the radial eigenvalue is com- 
plex and is given by 

a = Rei4 (2) 

The damping and propagation coefficients are given by 

(3) 
1 - Mi 

or 

L 
-iM + i d 1  - (1 - Mi)(+) (cos 24 + i sin 24) 

( 4 )  
0 a + i ~ =  

2 1 - Mo 

where rl is the frequency parameter given by 

Q = fD/c (5) 
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For hardwall  duc t  t h e  d e f i n i t i o n  of cu to f f  r a t i o  is  q u i t e  d i r e c t  s i n c e  t h e  
eigenvalue c1 i s  real and can be given by ( i n  a manner s i m i l a r  t o  r e f .  9 ) ,  

Th i s  d e f i n i t i o n  causes t h e  expression i n  t h e  r a d i c a l  of equat ion ( 4 )  (with 
4 = 0) t o  change s i g n  a t  
d i s t a n c e  f o r  5 < 1. 

= 1 and causes t h e  p re s su re  t o  be damped with 

For s o f t  walled duc t s  t h e  d e f i n i t i o n  of cu to f f  r a t i o  i s  no t  so simple. 
The modes possess  propagating c h a r a c t e r i s t i c s  a t  a l l  f requencies  so  there i s  no 
precise c u t o f f .  A d e f i n i t i o n  of cutoff  r a t i o  used i n  r e fe rence  7 w a s  

which causes t h e  real p a r t  of t h e  r a d i c a l  i n  equat ion ( 4 )  t o  be zero a t  5 = 1. 
The d e f i n i t i o n  w a s  q u i t e  a r b i t r a r y  w i t h  t h e  only advantage being t h a t  i t  re- 
duced t o  t h e  hardwall  d e f i n i t i o n  when I$ + 0. A b e t t e r  d e f i n i t i o n  might be 

3 3 5 =  

which is  thought t o  be  a new r e s u l t .  This w a s  der ived by i n s u r i n g  t h a t  t h e  
group v e l o c i t y  (v = a w / a K )  be  a t  a minimum when 
mum a c o u s t i c  power propagation. Fortunately t h e r e  i s  n o t  much d i f f e r e n c e  be- 
tween t h e  5 d e f i n i t i o n s  f o r  t h e  s m a l l  ang le s  @ encountered a t  t h e  optimum 
impedance. For t h e  l a r g e s t  d i f f e r e n c e  5 from equat ion (8) is  about 0.87 of 
t h a t  from equat ion (7). Thus t h e  ca l cu la t ed  r e s u l t s  of r e fe rence  7 are used 
h e r e  without modif icat ion.  

5 = 1, which impl i e s  a mini- g 

MODE CUTOFF RATIO AS THE BASIC PROPAGATION PARAMETER 

I n  t h i s  s e c t i o n  t h e  cu to f f  r a t i o  w i l l  be  shown t o  be  t h e  b a s i c  parameter 
governing n o i s e  propagation i n  a c o u s t i c a l l y  l i n e d  ducts .  This w i l l  be done by 
showing t h a t  t h e  optimum w a l l  impedance f o r  a l l  of t h e  modes can be  a c c u r a t e l y  
c o r r e l a t e d  by t h e  c u t o f f  r a t i o  a lone  and t h a t  t h e  maximum a t t e n u a t i o n  a t  t h i s  
optimum can be  adequately c o r r e l a t e d  by the c u t o f f  r a t i o .  A l l  of t h e  ca l cu la -  
t i o n s  presented h e r e  w e r e  obtained using t h e  c a l c u l a t i o n  procedure of r e fe rence  
10. 
l a y e r  p re sen t  n e a r  t h e  w a l l .  The classic uniform-flow sound propagation solu- 
t i o n s  w e r e  coupled t o  a Runge-Kutta i n t e g r a t i o n  s o l u t i o n  through the boundary 
l a y e r .  The d e f i n i t i o n  of modal optimum impedance is  t h e  same as i n  r e fe rences  

A uniform f low region w a s  assumed i n  t h e  duc t  i n t e r i o r  w i t h  a boundary 
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2 and 1 0  as w e l l  as t h a t  of r e fe rence  11 but  w i t h  the a d d i t i o n a l  cons ide ra t ions  
of Mach number, boundary-layer t h i ckness ,  and hrgher  o r d e r  modes. 

Optimum W a l l  Impedance 

The discovery that t h e  optimum liner w a l l  impedance depends only on mode 
F igure  1 is repeated from refer- c u t o f f  r a t i o  w a s  documented i n  reference 7. 

ence 7 f o r  completeness. 
p l o t t e d  i n  t h e  w a l l  impedance plane.  
General Electr ic  TF-34 engine. 
d e s p i t e  t h e  wide range of modes used. 
higher  l obe  number modes d e v i a t e s  from t h i s  common l i n e ,  and th i s  d e v i a t i o n  i s  
q u i t e  s m a l l .  (The first r a d i a l  i s  t h e  f u r t h e s t  p o i n t  toward the l e f t  s i d e  f o r  
a given lobe  number.) 
i n s e r t  t a b l e .  
r a t i o .  Addit ional  r e s u l t s  w e r e  shown i n  r e fe rence  7 which i l l u s t r a t e d  the ex- 
c e l l e n t  c o r r e l a t i o n  of optimum impedance with cu to f f  r a t i o .  

Figure l s h o w s  sample optimum impedance c a l c u l a t i o n s  
The cond i t ions  used are those  f o r  a 

Note that a common locus  of optima i s  ev iden t  
Only t h e  f i r s t  r a d i a l  of each of t h e  

Two co inc iden t  modes are s i n g l e d  out  and compared i n  t h e  
The only t h i n g  t h e s e  two modes have i n  common is t h e  cu to f f  

Maximum P o s s i b l e  Sound Power Attenuat ion 

The maximum p o s s i b l e  sound power a t t e n u a t i o n  is  gene ra l ly  expressed as 
AdB/(L/D) and p l o t t e d  a g a i n s t  t h e  frequency parameter (TI = fD/c) as i n  f i g u r e  5 
of r e fe rence  2. This t ype  of p l o t  has  been recast i n  t e r m s  of t h e  c u t o f f  r a t i o  
( f i g .  2). Seve ra l  r a d i a l  modes (p = 1, 2 ,  5, and 10) f o r  l obe  numbers of 
m = 1, 7 ,  and 20 are shown. I n  each case f o r  a given m, t h e  p = 1 curve i s  
t h e  lowest and t h e  a t t e n u a t i o n  inc reases  monotonically wi th  inc reas ing  1.1. Ex- 
cept  f o r  t h e  f i r s t  two r a d i a l  modes of t h e  lowest- l obe  number (m = l), t h e  
curves c l u s t e r  t oge the r .  I f  a n  average curve i s  used through t h e  c l u s t e r  of 
curves,  most of t h e  modes w i l l  be adequately represented wi th  t h e  maximum e r r o r  
dev ia t ion  from t h e  average being about a f a c t o r  of  two f o r  t h e  lowest o rde r  
modes. I n  a multimodal l i n e r  design,  t h i s  e r r o r  i n  only a few of t h e  lower 
o r d e r  modes is  n o t  a n t i c i p a t e d  t o  be  s i g n i f i c a n t .  I n  those  cases where a few 
low-order modes are known t o  c a r r y  t h e  bulk of t h e  a c o u s t i c  power, t h e  method 
proposed i n  t h i s  paper should no t  b e  used since f o r  these cond i t ions  t h e  d i r e c t  
modal approach i s  both s impler  and more accurate .  

With t h e  except ion noted previously,  t h e  maximum a t t e n u a t i o n  of t h e  multi-  
tude of modes can be  adequately represented by a s i n g l e  func t ion  of t h e  cu to f f  
r a t i o  a lone.  The equat ions involved wi th  t h e  a t t e n u a t i o n  w i l l  be given i n  t h e  
next  s e c t i o n  where approximate c o r r e l a t i o n s  are discussed.  

APPROXIMATE CORRELATING EQUATIONS 

I n  t h i s  s e c t i o n  approximate equat ions are developed f o r  t h e  optimum imped- 
ance and t h e  maximum p o s s i b l e  a t t e n u a t i o n .  The c o r r e l a t i o n  between exac t ly  
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c a l c u l a t e d  optimum impedance and cu to f f  r a t i o  i s  considered t o  be  f i r m l y  estab- 
l i s h e d ,  bu t  t h e  optimum impedance c o r r e l a t i o n  equat ion given he re  must b e  con- 
s i d e r e d  prel iminary.  I f  more exact results are requ i r ed  a t  th i s  t i m e ,  t h e  com- 
p l e t e  c a l c u l a t i o n  procedure of reference 10  is  suggested w i t h  a r e p r e s e n t a t i v e  
mode used a t  each cu to f f  r a t i o  v a l u e  under considerat ion.  

Optimum Impedance Cor re l a t ion  Equation 

The c o r r e l a t i n g  equat ion w a s  der ived us ing  the approximate equat ion o f  r e f -  
erence 10  as a s t a r t i n g  p o i n t ,  which i n  t u r n  w a s  der ived from t h e  t h i n  boundary- 
l a y e r  approximation theory of r e fe rence  12. 
10 is  

The s t a r t i n g  p o i n t  from re fe rence  

where 5, i s  t h e  optimum impedance with a boundary l a y e r  and where 

i s  t h e  optimum impedance w i t h  t h e  boundary-layer t h i ckness  
q u a n t i t y  F is given by 

E = b / r o  = 0. The 

F = (T)(l + 5) 
where t h e  f i r s t  t e r m  i s  t h e  s imples t  form of the equat ion i n  r e f e r e n c e  1 0  and 
t h e  second i s  an empi r i ca l  c o r r e c t i o n  needed i n  t h e  v i c i n i t y  of u n i t y  cu to f f  
r a t i o .  This  c o r r e c t i o n  is needed s i n c e  t h e  r e s u l t s  of r e fe rence  1 0  and thus 
presumably r e f e r e n c e  12 are no t  v a l i d  near  c u t o f f .  

The q u a n t i t i e s  i n  equat ion (10) must now be  cast i n  terms of t h e  cu to f f  
r a t i o  5 i f  equat ion (9) i s  t o  be a func t ion  of cu to f f  r a t i o  as it  i s  known t o  
be from t h e  exact c a l c u l a t i o n s .  Because of l i m i t e d  space,  t h e  d e r i v a t i o n s  can 
no t  b e  included here .  Equations (21)  t o  (23),  (30) and (31) of r e f e r e n c e  8 a- 
long wi th  equat ion (31) of r e fe rence  2 w e r e  used. The v a r i a b l e s  Mo and n ‘  
on which boundary-layer r e f r a c t i o n  e f f e c t s  s t r o n g l y  depend ( r e f .  10)  w e r e  car- 
r i e d  i n t a c t  through t h e  de r iva t ion .  Ce r t a in  l i b e r t i e s  w e r e  taken w i t h  t h e  o t h e r  
v a r i a b l e s  such as r ep lac ing  n e a r l y  f i r s t  o r  second powers of  t h e  mode numbers 
with f i r s t  and second powers of  t h e  eigenvalue. The eigenvalue had t o  be  re- 
covered i n  t h e  equat ions i n  o r d e r  t o  in t roduce  t h e  cu to f f  r a t i o  from equat ion 
(8). The f i n a l  equat ion,  which must be considered as empi r i ca l ,  i s  
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Equation (12) is surprisingly accurate for the zero boundary-layer thickness 
optimum resistance, but large percent errors can occur in the reactance for very 
small values of reactance. 

With equations (11) and (12) used in equation (9) the optimum wall imped- 
ance with a boundary layer can be calculated as a function of cutoff ratio. 
These approximate calculations are compared with the exact calculations (from 
ref. 7) in figures 3 and 4 .  The approximations predict the gross behavior of 
the exact calculations and are probably accurate enough for most liner design 
studies. 

Maximum Attenuation Correlation 

An expression for maximum possible sound power attenuation can be derived 
by using the real part 0 of equation ( 4 )  and the cutoff ratio from equation 
(8) in the following 

which then yields 

-17.4R AdB, 
- -  - 

LID I n 

expression (ref. 2) 

AdB, 
-17. ~ITY~O - =  

L I D  

@ d l  - 2($ cos 24 + ($ + cos 24 - (iyJl2 A (14) 

where A is given by 

3 - fi sin 3 
3 

Equation (14) was used to generate the curves in figure 2 with the eigenvalues 
(R, 4 )  used for each mode and with Mo = 0. 
tained by using the values of R and 4 near the center of the cluster of 
curves such as the 20, 1 (m, u )  mode (R = 26.662, 4 = 5.46') or the 7, 10 mode 
(R = 41.881, 4 = 3.53').  An approximate form of equation (14) can be derived 
for large 5 as 

An averaged equation can be ob- 

-40 AdBm 

LID 
-8.7RA sin 24 ~ 

N 

541 -MG 

where the average-curve values of R and 4 were used to arrive at the final 
expression. This corn ares favorably with the expression in reference 7 except 

that the term a is missing in reference 7. When expressed on a modal 
basis, the Mach number would not appear in equation (16) as discussed in refer- 
ence 2, but it is reinserted along with the cutoff ratio when equation (8) is 
used. Equation (16) is valid for the linear portion of the curves in figure 2 
but it will underpredict the maximum attenuation near 5 = 1. 
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OFF-OPTIMUM ATTENUATION 

A s  seen in figure 1 for any chosen impedance, at best only one value of 
cutoff ratio would be at an optimum. 
associated cutoff ratios would be the usual case encountered, off-optimum damp- 
ing must be considered. Since the optimum impedance and maximum damping are 
now known for any cutoff ratio value, the approximate attenuation equation of 
reference 8 is ideally suited for use here. This equation is expressed as 

Since a distribution of modes and their 

where 

and 

8.7 L/D 
2 G =  

AdBm(l + Mo) 

AdBm 
E = -  

AdB 

The off-optimum attenuation to be solved for is AdB occuring at an impedance 
given by 0 and x with optimum input values ern, x,, and AdB, and with the 
usual design inputs of L, D, and Mo. When operating off-optimum AdB cannot 
exceed AdB,, and B is always greater than unity. Thus a possible procedure 
for solving equation (17) is to increment f3 upward from unity until the equa- 
tion is satisfied and then solve for AdB from equation (19). 

OUTLINE OF USE OF THE ACOUSTIC LINER DESIGN PROCEDURE 

In the example that follows the use of the equations presented in the pre- 
ceding sections will be illustrated. 
is needed is the distribution of acoustic power as a function of cutoff ratio. 
Because of space limitation as well as the preliminary state of the development 
of this subject, the equations will be presented without proof and are intended 
for illustrative purposes only. 

The final element of the technique that 

The modal population density as a function of cutoff ratio is expressed as 

If equation (20) is integrated between 5, and E,, the normalized number of 
modes between these limits is 
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Note that N is normalized since, if 51 = 1 and 52 = Q), then N = 1. For 
simplicity equal energy per mode will be used, which may be a reasonable as- 
sumption for static test data (ref. 5). 5, and 5, is also given by equation (21). Next, choose 10 increments so that 0.1 
of the power falls in each interval with 0.05 of the power on each side of the 
interval center. The 10 5 intervals thus have centers located at 5 = 1.026, 
1.085, 1.155, 1.24, 1.35, 1.49, 1.69, 2, 2.58, and 4.47. 

Then the acoustic power between 

Now the attenuation calculation can be made for each value of cutoff ratio 
5 at the desired values of resistance 8 and reactance x. Assume that 
boundary-layer thickness E, Mach number Mo, frequency parameter 11, and the 
allowable duct diameter D and length L are known from other considerations. 
For each center value of 5, then, calculate the optimum impedance components 
em and xm from equation (9) using equations (11) and (12). Next, calculate 
the maximum possible attenuation AdB, for each 5 from equation (14) using 
equation (15) and the R and 4 values given just after equation (15). Now 
all the inputs are available (e ,  x, Om, xm, AdB,) to calculate f3 from equa- 
tion (17) and then AdB from equation (19), again, for each of the 10 values of 
5. 
overall AdB calculated by applying the AdB for each 5 catagory to its re- 
spective input power, summing the output powers, and comparing this sum with the 
total input power. The calculation is now complete at the selected value of . e  
and x. If a multimodal optimization study is being made, new values of 8 and 
x would be selected, and the calculations repeated until the total attenuation 
is maximized. 

The estimated liner output acoustic power can then be calculated, and an 

CONCLUDING RENARKS 

The acoustic liner evaluation method presented in this paper should provide 
a useful alternative to the more usual modal analysis approach. Some of the 
problems in the modal approach, which are not problems in the present approach, 
are as follows: The phase speed of a mode is inversely proportional to the pro- 
pagation coefficient T given by equation (3).  If the cutoff ratio from equa- 
tion (6) is used in equation (3), the term 41 - l/Cz will be found to contain 
all of the modal information. For well propagating modes (5 >> 1) this radical 
is essentially equal to one and the axial phase speed of all these modes is 
nearly identical. Also in a multimodal situation several modes may have almost 
equal cutoff ratios even though 5 z 1. These modes would also be indistin- 
guishable in an axial direction since they have the same axial phase velocity. 
Thus the modal acoustic power can not be uniquely determined by using axial 
microphone traverses, and radial traverses (which are undesirable) must be used. 
Modes with nearly coincident cutoff ratios do not present a problem to the 
method of this paper since they all behave similarly in the acoustic liner (with 
respect to optimum impedance and maximum attenuation) and are thus lumped to- 
gether. 
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Some s impl i fy ing  condi t ions  have been t a c i t l y  assumed t o  hold i n  the devel- 
opment of t h e  technique presented here.  It has been assumed t h a t  modal c ros s  
coupling is  not  important i n  t h e  a t t e n u a t i o n  c a l c u l a t i o n s  i n  t h e  l i n e d  duct  sec- 
t i o n ;  t h a t  i s ,  t h e  reduct ion  of a c o u s t i c  power of each mode can be ca l cu la t ed  
independently of a l l  t h e  o t h e r  modes. Theore t i ca l ly ,  t h e  c ros s  coupling should 
be considered (refs. 13 and 1 4 ) ,  but  f o r  p r a c t i c a l  purposes t h i s  coupling might 
be n e g l i g i b l e  (0.5-dB e r r o r  i n  t h e  r e s u l t s  of r e f .  15) .  Although not  d i r e c t l y  
a f f e c t i n g  t h e  r e s u l t s  presented here ,  t h e  problem of a p o s s i b l e  change i n  acous- 
t i c  power-6 d i s t r i b u t i o n  i n  going from a hard walled s e c t i o n  t o  a s o f t  walled 
s e c t i o n  must be recognized. 
hard duct  be used f o r  a t t e n u a t i o n  c a l c u l a t i o n s  i n  t h e  l i n e d  duct  s e c t i o n  o r  what 
modi f ica t ions  must be  made? This  can not  be answered d e f i n i t e l y  a t  this time, 
but some i n s i g h t  can be of fe red .  The cu tof f  r a t i o  should be r e l a t e d  t o  t h e  
angle  of inc idence  wi th  t h e  duc t  w a l l .  
wi th  angles  s i m i l a r  t o  those  i n  t h e  hard duc t ,  then  t h e s e  modes should be  ex- 
c i t e d .  Thus angle  of inc idence  is  preserved i n  much t h e  same way as t h e  lobe  
numbers are preserved. This analogy is no t  exac t  s i n c e  modes wi th  exac t ly  t h e  
same lobe  number are a v a i l a b l e  i n  both duct s e c t i o n s  whi le  angles  of inc idence  
can only be approximately t h e  same. Thus some s c a t t e r i n g  of acous t i c  power 
among t h e  va r ious  cu to f f  r a t i o s  should occur,  but i n  a multimodal s i t u a t i o n  t h i s  
is  not  suspected t o  be an extremely important e f f e c t .  A no tab le  s ingu la r  ex- 
cept ion  occurs  when a p lane  wave i n  t h e  hard duct  reaches t h e  s o f t  walled sec- 
t i on .  The plane wave wi th  5 = oJ is s c a t t e r e d  i n t o  s e v e r a l  s o f t  w a l l  modes 
wi th  f i n i t e  and poss ib ly  even small cutof f  r a t i o s  (depending on frequency param- 
e t e r ) .  
s i n c e  t h e r e  i s  no mode i n  a very s o f t  duct  t h a t  matches t h e  angle  of incidence 
of t h e  plane wave. 
acoustic.power-6 d i s t r i b u t i o n  i s  more a v a i l a b l e  than an a c o u s t i c  power-modal 
d i s t r i b u t i o n .  I n  r e fe rence  7 i t  was  implied that t h e  f a r - f i e l d  d i r e c t i v i t y  pa t -  
t e r n  is  in t ima te ly  r e l a t e d  t o  t h e  acous t i c  power+ d i s t r i b u t i o n .  This  approach, 
which has  been pursued and i s  near ing  completion, should al low a t  least a crude 
approximation t o  t h e  power d i s t r i b u t i o n .  Also, t h e  present  method o f f e r s  t h e  
p o t e n t i a l  f o r  avoiding some of t h e  problems a s soc ia t ed  wi th  modal measurement. 
Measurements of t h e  a c o u s t i c  power-5 d i s t r i b u t i o n  using w a l l  mounted micro- 
phones i n  t h e  duct  should be developable and u l t ima te ly  ava i l ab le .  

Could a power d e n s i t y  d i s t r i b u t i o n  determined i n  a 

I f  modes are a v a i l a b l e  i n  t h e  s o f t  duct  

This  s i t u a t i o n  does no t  comply wi th  t h e  condi t ions  assumed earlier, 

Perhaps t h e  most s e r i o u s  assumption of a l l  i s  t h a t  an 
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Figure 1. -Example higher order spinning mode optimum im- 
pedance locus. Frequency, 2890 hertz; frequency parameter, 
9.47; Mach number, -0.36; boundary layer, 6/r0 = 0.059. 

Figure 2 -Maximum possible attenuation a s  
function of mode cutoff ratio. Zero Mach 
number. 
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Figure 4. - Reactancecorrelation compared with exact cal- 
culations. 
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Figure 3. - Resistancecorrelation compared with exact cal- 
culations. 
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