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SUMMARY

A correspondence principle has been developed for treating the steady-
state propagation of waves from sources moving along a plane surface or inter-
face. This new principle allows one to obtain, in a unified manner, explicit
solutions for any source velocity. To illustrate the correspondence principle
in a particular case, the problem of a load moving at an arbitrary constant
velocity along the surface of an elastic half-space is considered.

¥NTRODUCTION

Certain problems in the linear theory of wave propagation are of fundamen-
tal importance to a wide variety of fields. One of these is the response of a
plane interface between two different materials to moving transient sources of
disturbance. The reflection and refraction of plane transient waves at an in-
terface (refs. 1-3) and the generation of waves from specified sources moving
at a constant velocity along an interface (refs. 4~7) are two important exam-
ples of this type of problem. In such cases it is usually assumed that the
surrounding media is in plane motion and that a steady-state wave pattern ex-
ists relative to an observer moving with the source of disturbance. The re-
sulting two-dimensional steady-state boundary value problem can then be solved
either by transform techniques or by the use of complex function theory and
the method of characteristics (see refs. 8 and 9).

In many problems, however, both of these traditional methods are very in-
efficient. This is because it is necessary to pose and solve separately the
special cases when the source velocity is less than or greater than each of the
characteristic wavespeeds in the surrounding media. This paper demonstrates
that it is possible to treat all such special cases in a simple, unified manner
through the application of a newly developed correspondence principle. In ad-
dition, this correspondence principle leads to a new and direct representation
for the gemeral solution of steady-state interface problems.

PROBLEM STATEMENT

Consider two homogeneous, isotropic semi-infinite media (either fluid or
solid) which are in contact along the plane y =20 and which contain disturbances
traveling at a constant velocity U in the negative x~direction. We assume that
these disturbances are uniform in the z-direction and that a steady-state motion
exists in the semi-infinite media. Under these conditions, the governing equa-

tions of motion in the two media reduce to (ref. 8):
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(1L-vU /c )3 ¢ /a + 3 ¢m/3y =0 (m=1,...3) (1)
in a set of moving coordinates (x,y,z) defined by x = x4+ Ut, y =y, z = z. In
equation (1), ¢m = ¢p(x,y) and ¢y are the displacement potentials and their
corresponding wavespeeds, respectively, for the two media.

Along the surface y = 0, the ¢, must satisfy a certain set of boundary or
continuity conditions which, in general, can be written in terms of the second
order partial derivatives of the ¢, as

Eﬁ(32¢m/8x2, 82¢m/8x8y, 82¢m/3y2) X m=1,... % (2)

where the E,; also depend on the source speed U and the material properties of
the two media and are linear functions of their arguments. The vector P =
{P,(x)} is determined by the values of the source disturbances along the plane
y = 0 and is assumed to be given.

Since the linear operators which appear in equation (1) are hyperbolic if
U > ¢y and elliptic if U < ¢, the steady-state solutions of these equations
will depend on the relative size of U and the wavespeeds cgmg Consider first

the "totally supersonic'" (TSS) case (i.e. where U > ¢, is satisfied for all m
in equation (1)).

Totally Supersonic Case

In the TSS case, the general solutions to the equations of motion (1) can
be written as

o =F (x -8 [y]) | (3)

m

where Bp = (U2/c2 - 1)1/2 and the bars denote "absolute value of". In equation
(3), solutions of the type Fp(x + Bm|y|) have been rejected since they repre-
sent disturbances traveling in the positive x-direction and, hence, would vio-
late the "radiation conditions" (ref. 8).

The second order partial derivatives of the ¢, then become
1n

32¢m/3X2 = F

2%, /3%dy = - sgn(y)B F_ @)

"

2 2 2

379, /0y = B “F_
"

‘where F denote the second derivatives of F with respect to their arguments

and sgn stands for "sign of'". Placing equation (4) into equation (2) thus

yields a set of linear equations in the F, ony =0, which using the summation

convention can be written as
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Aanm"(x) = P_(x) (a=1,... 9 (5)

Here, the A is a real jxj matrix involving only the material properties of the
given media and the disturbance speed U. Assuming that the matrix is non-
singular, we can then solve for the F, , obtaining formally

Fm"(x) - A;iPn(x) (6)

and these results can be continued into the two media, using equation (3), to
give: ‘

n -1
o, = A P (x -8 [y]) | (N
The stresses in each media can be obtained directly from equation (7) since
they are simply linear functions of the ¢, . The displacements or velocities,
however, must be found from these results by a single integration. This TSS
case is of fundamental importance for steady-state interface problems of the
type we have been discussing because it contains implicitly, through equation
(6), the solution for all other cases when this equation is interpreted in an
operational sense. To prove this we now consider the general case.

General Case
Consider the general case when U/ey, < 1 for m = 1,... k, where k < j.

Then the governing equations (1) are hyperbolic for m > k and elliptic for
m < k, and their general solutions are

¢

m

¢

m

Re{Gm(x + iémlyl)} m<k
(8)

F (x -8 |y]) k<m<j

where ém = (1 - Uzlcé)l/z, Re denotes "real part of", and the Gy for m < k are
analytic functions of the complex variables x + iBm!yl. For m > k, the second
order partial derivatives of the ¢p are again given by equation (4). For m < k,
we now obtain instead

82¢m/3x2 = Re{Gm"}
| 32¢m/3x8y = - sgn(y)énlm{Gm } | ¢))

2 2 _ =2 "
) cbm/By = -8B Re{cm}

vhere Im denotes "imaginary parf of". However, on the boundary y = O the real
and imaginary parts of these G, satisfy a pair of Hilbert transforms

Re{G "} H[Im{G "}]
m m

]

Im{Gm } = - H[Re{gm }
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where the Hilbert transform is

Hif) = 1/n s £4E/(E - %)

and the integral is understood to be taken in the principal value sense. Hence,
the partial derivatives on y = 0 can be written in terms of Re{G, } only as

32¢m/ax2 = Re{Gm"}
224, /oxdy = sgn(04)B HlRelC_ }] (10)
2% /oy’ = - B_? Refe )

Note now that on the boundary y = 0, equations (4) and (10) will be identical
if we make the following replacements in the TSS expressions (4) for m < k.

B> ~1B_ (11)

and identify the Fm" in the TSS case with the Gm" in the general case through
. the additional replacements for m < k given by:

" "
F - Ref{G 1}
m m

" n (12)
iF - H[Re{G }]
m m

Thus, on the boundary y = 0 there is a one-to-one correspondence between the
complex—-valued TSS problem obtained by making the substitutions given by equa-
tion (11) and the general case problem if, as equation (12) shows, the appear-
ance of the imaginary number i in the TSS problem is interpreted as represent-
ing the Hilbert transform operator in the general case. This correspondence
also means that the complex-valued matrices A and A~l, which result in equations
(5) and (6) from the substitutions given by equation (11), must be interpreted
as representing matrix operators in the general case. In particular, breaking
é‘l into its real and imaginary parts, we have

A" =a + 1bmn >a  + bmnH[-] (13)

where ap, and b,  are both real. Using this result and equations (6) and (12),
we see that on y = 0 the general case solution is given by
n
Fm (x) = amnPn(x) + bmnH[Pn(x)] k <m<ij
o 1t ’ (14)
Re{Gm (x)} = amnPn(x) + bmnH[Pn(x)] m < k

Since the general solutions for m > k are constant along the real characteris-
tics x - Bp|y| (see equation (8)), the F, can be continued directly into the
adjacent media and the general case solution written as
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"
¢ =a P (x-8|ly]) +b HIP (x-8 [|yD)] k<m<] (15)
For m < k, however, our problem consists of finding the functions Gy (x + 1B |y])
which are analytic in the upper half of the complex-plane and whose real part is
given on the real axis by equation (14). This is a standard problem in analytic
function theory whose solution may be written as

1" ®
. -1
Gm = l/1ﬂ_£ AmnPn(E)dE/(E zm) m<k (16)
provided the integral converges, where z_= x + i§m]y]. As before, the stresses

can be obtained directly from equations TlS) and (16) although a further inte-
gration is necessary for displacements and velocities.

With the general solutions given by equations (15) and (16), it is now
particularly easy to obtain the solution to steady-state interface problems for
arbitrary source velocity. All that is needed is the inverse matrix é‘l from
the TSS case solution. 1In the general case this matrix becomes complex-valued
when the substitution in equation (11) is wade. A simple algebraic decomposition
of A-l into its real and imaginary parts for each special case then gives the
necessary matrices for the expressions in equations (15) and (16). To illustrate
the use of this method we now consider a particular problem.

MOVING LOAD ON A HALF-SPACE

A number of authors (refs. 4-7) have previously considered the resp.nse of
an elastic half-space to loads traveling at a constant velocity on the plane
surface. Here, we will solve for the waves generated in the half-space y > 0,
—® < X <o, o < Z < @ by a moving distributed load of intensity P(x) in the mov-
ing coordinates x = x + Ut, y =y, z = z (figure 1). Then the normal stress,
tyy’ and shearing stress, txy’ on the surface are given by

t -P(x)sind
vy 7

P(x)cos8

t
Xy

where 6 is the angle between the direction of the applied load and the half-
space surface. In this case there are only two displacement potentials ¢; and
¢2, which correspond to dilatational and shear wave disturbances, respectively,
and two corresponding wavespeeds cj and c9. Application of the boundary condi-
tions (17) yields the matrix A and vector P given by (ref. 8):

(Mg - 2) —232 ~Psinb/u
A= P - (18)

| _ Ml o
281 (M.2 2) Pcos8/u

where p is the shear modulus and M2 = U/c2. Then the inverse matrix é—l is
given by
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2
(A, - 2)/D ~28,/D

i
1

(19)
2
-28,/D  -(M, - 2)/D

where D = (M% - 2)2 + 4B1By. Table 1 shows the breakdown of this inverse matrix
into its real and imaginary parts. In that table Dp = (M% - 2)% + 168187 and

Dy = (M% - 2)2 - 46132. When those results are placed back into equations (15)
and (16), the problem is then formally complete. To illustrate the use of these
expressions for a particular loading, consider the case of a moving concentrated
line load, i.e. P(x) = P8(x) where P is a constant and 8(x) is the Dirac delta
function. Then we obtain:

Totally Supersonic Case (U > ey > cz)

-©-
[
|

= (-a;,s1n6 + a,,cos0)Ps(x - Bly)/u

, = (—aleinG + a,,cos8)PS(x - BZY)/U

-
|

22

Transonic Case (c2 < U< cl)

(7]
It

1 (a1151n6 - a cose)P/uruZl + (b1181n6 -b

12 cos8)P/wuzZ

12 1

¢, = (-d, sind + a,,cos0)P8(x - B8,y)/u

+ (b2151ne - bzzcose)P/wu(xv— B,¥)

Subsonic Case (U < cz)

2]
it

1 (a1131n6 - iblzcose)P/lwuzl

G, = (—azzcose + 1b2131n6)P/1ﬂuZ

2
Similar results to these have been derived by the traditional complex wvariable
and characteristics approach in the treatise by Eringen and Suhubi (ref. 9).

CONCLUDING REMARKS

The correspondence principle developed above has led to a new unified form
of the solution for steady-state interface problems (equations 15 and 16) which
can be efficiently used to treat a number of problems. 1In addition, this prin-
ciple clearly demonstrates the close relationship that exists between the struc-
ture of the general solution and the TSS case. This relationship is currently
being extended to steady-state problems in anisotropic media.
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TABLE T. ~ REAL AND IMAGINARY PARTS OF 1}_

1

CASES MATRIX a MATRIX b
..1 _
U > C1 a=A " (eq. (19)) 12 =0
2 3 2 2 = 2 = 2
(M2 -2) /Dl —ZBZ(M2 - 2) /D1 48182('M2 - 2)/1)l —86182/D1
02 < U<l
=2 2 3 = 2 2 - 2
—86182/D1 -, - 2)7/; 28, (M5 - 2)7/D; ~48, 8,01, 2)/Dl
o - 2/ 0 0 28, /D
2 2 2%
U< C2
2 -
0 -, - 2)/D, 28,/D, 0
D = f - 2% + 165.8
1° Y 1%2
D, = M - 2% - 4FE
2 2 1%2
U
—f———
¥ X
;77 7 7777 /7 /7 777 7
Yy

Figure 1l.- Moving load on a half-space.




