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SUMMARY

A review of some of the perturbation methods commonly used to study the
propagation of acoustic waves in turbulent media is presented. Emphasis is on
those techniques which are applicable to problems involving long-range propaga—-
tion in the atmosphere and ocean. Characteristic features of the various
methods are illustrated by applying them to particular problems. It is shown
that conventional perturbation techniques, such as the Born approximation, .
yield solutions which contain secular terms, and which therefore have a rela-
tively limited range of validity. In contrast, it is found that solutions ob-
tained with the aid of the Rytov method or the smoothing method do not contain
secular terms, and consequently have a much greater range of validity.

INTRODUCTION

In many real problems involving wave propagation im random media, such
as those arising out of investigations of sound propagation in the atmosphere
or ocean, the propagation medium may be regarded as weakly inhomogeneous in
the sense that it deviates only slightly from a uniform state. This is con-
venient from a theoretical standpoint, since it allows such problems to be
solved by perturbation methods. However, conventional perturbation methods,
such as the Born method, suffer from the drawback that approximations obtained
with them are generally limited in their range of validity. As a consequence,
such methods are applicable only to problems involving relatively short-range
propagation. For example, under conditions of moderately strong daytime tur-
bulence, the Born approximation for acoustic propagation in the atmosphere
may break down in as little as 100 meters.

The failure of the Born approximation in cases of long-range propagation
arises from the fact that it is a finite-order approximation; i.e., it includes
only a finite sum of terms of the complete perturbation expansion of the solu-
tion. Since such expansions usually involve secular terms (i.e., terms which
increase indefinitely in magnitude with propagation distance), the Born approx-—
imation itself is secular, and hence can not generally be uniformly wvalid in
the sense that the resulting error is bounded independently of propagation
distance. . :

*This report was prepared as a result of work performed under NASA Contract
No. NAS1-14101 while the author was in residence at ICASE, NASA Langley Re-
search Center, Hampton, VA 23665.
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It follows that any uniformly valid approximation must include at least
the sum of an infinite subseries of the complete perturbation expansion. It
is for the purpose of obtaining such approximations that infinite-order
methods, such as the two-variable method, the Rytov method, the smoothing
method, diagram methods, ete., have been applied to problems involving propa-
gation in inhemogeneous and random media. Two of these methods, the Rytov
method and the smoothing method, are discussed in this paper.

In section 1 the advantage of the Rytov method over the Born method in
the case of long-range propagation is illustrated by applying both methods to
a simple non-random problem which can be solved exactly. In section 2 the
essential features of the smoothing method are brought out by first developing
the method in a general context, and then applying it to a particular problem
involving propagation of sound in a turbulent fluid.

1. COMPARISON OF THE BORN AND RYTOV METHODS

The precise nature of the failure of the Born method in the case of long-
range propagation, as well as the improvement represented by the Rytov method,
can best be illustrated by means of an example.

Consider the one-dimensional, non-random problem defined by the equation
a" + kK2(4e)%u = 0, (1)

where the primes denote differentiation with respect to x . Here k and ¢
are real constants, with k>0 and € a small parameter. We':seek a solution
of (1) representing rightward-propagating waves in the region x>0, subject to
the boundary condition u(0) = 1. The exact solution of this problem can, of
course, be written down immediately, and is :

u(x;e) = exp{ik(l+e)x} . | (2)

Now let us solve this problem by the Born method, with € as the per-
turbation parameter. The procedure is as follows. We assume a solution of
(1) of the form

u(x;e) = uo(x) + eul(X) + EZUZ(X) + 7, (3

substitute into (1), expand in powers of € , and equate the individual coef-
ficients of the resulting series to zero. This yields a sequence of differ-
ential equations and boundary conditions for the functions Ugsly sy, etc.,

. which can be solved successively. By inserting the result into (3) we obtain
the expansion

uxze) = (1 + ickx - 2€2k2x2 + " )exp(ikx) , )
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which we recognize as being just the series expansion in powers of & of the
exact solution. Termination of this procedure after the calculation of ntl
terms of the series yields the nth Born approximation for this problem. Note
that the result is a finite-order expansion; i.e., it consists of a finite sum
of terms of the complete perturbation expansion given by (4).

It is clear that, for any fixed, bounded range of x, the nth Born approx-
imation can be made to approximate u as closely as we please by choosing n
sufficiently large. However, for any fixed n, no matter how large, the nth
Born approximation is not uniformly valid for all =x . This is due to the
presence of secular terms (i.e., terms which involve x raised to some posi-
tive power) in the expansion given by (4), which causes the resulting approx-—
imate expression for u to increase indefinitely in magnitude as x -« , 1In
contrast, the exact solution is obviously bounded as x - « ,

This secular behavior, which is characteristic of finite-order approxima-
tions and which limits their range of validity, constitutes the main drawback
of this type of approach. This is a practical, as well as a theoretical,
problem, since, for example, investigations of sound propagation in the atmos-
phere and ocean often involve propagation ranges that are greater than the
range of validity of the Born approximation.

The analysis given above, in addition to delineating the difficulty
arising from the presence of secular terms in the perturbation expansion, also
furnishes a clue as to how this difficulty may be overcome. Comparison of
equation (2) with equation (4) shows that the sum of an infinite series of
secular terms may be non-secular. This suggests the general idea of avoiding
secular behavior by summing infinite series of secular terms. Of course, when
dealing with more complicated problems involving propagation in inhomogeneous
or random media, we cannot expect, in general, to be able to sum the entire
perturbation series, as we did in the simple example treated above, since that
would be tantamount to writing down the exact solution. It may, however, be
possible to sum an infinite sub-series of the complete perturbation series,
thereby obtaining a non-secular approximation. This idea; i.e., the idea of
summing an infinite sub-series of the complete perturbation series, is central
to methods such as the two-variable method, the Rytov method, the smoothing
method, diagram methods, etc., which we call infinite-order methods.

With these thoughts in mind we turn now to a discussion of the Rytov

method. To apply this method to the problem considered above, we first write
the solution of (1) in the form

u = exp(iy) , (3)

where ¢ , the new unknown function, is assumed to have an expansion of the
form

YGese) = Y () + e () + e G + T 6)
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The functions wo,wl,wz,etc., can be determined by substituting (5) into (1),

after which the resulting equation for ¢ dis transformed and then solved by
a perturbation technique similar to that described above. The details of this
procedure are given in reference 1 for the general case of propagation in a
multi-dimensional random medium. (Note that Tatarski refers to the Rytov
method as the method of smooth perturbations.) An alternate approach, which
makes use of the corresponding Born series, has been suggested by Sancer and
Varvatsis (ref. 2). In this approach equation (6) is substituted into
equation (5), the right-hand side of which is then expanded in a power series

in € . Since the resulting series must be identical to that given by equa-
tion (3), we can equate coefficients to obtain
-

YA
= i = = i =
u, exp(lwo) . Uy 11]JluO > U, (1w2 6¢l)u0 s
etc., from which it follows that

. . o[ 1 2]
wo = wlloguo s Yy = -igT b, = tiléag'—i'QIa) J R N

etc. The nth Rytov approximation is obtained by terminating this process after
the calculation of n+l terms in the expansion of ¢ and substituting the
resulting truncated series into (5).

The essential feature of the resulting nth Rytov approximation is that,
for n>0, it is equivalent to the summation of an infinite sub-series of the
complete perturbation expansion of wu. For example, the first Rytov approxi-
mation,

uiR)= exp{i(w0+€¢l)} s (8)

is obviously equivalent to the summation

(R) 2.2

uy =(HiWﬁ-%€Wl+'“)%?ﬁ¢& >

which, from (7), is the same as

N

u{R) 2 goree ‘ (9)

Glﬂ

o

= + eu, + L%¢
uy 1 5

It is for this reason that the range of validity of the Rytov approximation is,
in general, much greater than that of the Born approximation. As an example,
the first Rytov approximation for the problem treated above is, from (8), (7),
and (4), '
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uiR)= exp{ik(1+e)x} , (10)

which is the same as the exact solution. Thus, in this case, the first Rytov
approximation is equivalent to the summation of the entire perturbation series
for wu, and consequently has an infinite range of validity.

More detailed discussions of the Rytov method can be found in references
1, 2, and 3.

2. THE SMOOTHING METHOD

One of the more useful perturbation techniques for treating problems

involving wave propagation in random media is the smoothing method. It is,
like the Rytov method, an infinite-order method, as we will show. 'However, the
smoothing method is more convenient than the Rytov method for treating problems
involving propagation in random media since it yields directly equations for
the desired statistical properties of the wave field.

Our development of the method is quite general and follows closely that
of Keller (ref. 4). We should emphasize here that the analysis which follows
is entirely formal; except for some special cases, rigorous proofs of con-
vergence of the series involved have not yet been given.

We begin our discussion of the smoothing method by considering the equa-
tion

(D+eR)u = £, (11)

where D and R are linear operators on some vector space and € 1is a small
parameter. Here D 1is assumed to be deterministic with a known inverse,
whereas R 1is assumed to be random with <R> = 0 (the angular brackets denote
an ensemble average). The source term f is assumed to be deterministic.

Since R is random, the solution u of (11) will also be random. We
shall therefore be interested in solving the following type of problem: Given
the operator D and the source term f , along with some appropriate statis-
tical properties of the operator R, find some specified statistical properties
of the solution u. 1In the analysis which follows we shall be concerned pri-
marily with <u>, the ensemble average of u.

We begin the analysis of <u> by multiplying equation (11) by D—1 and
writing the resulting equation in the form
u=D" - ep TRy . (12)
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Solving (12) by iteration yields

-7 - o lro e 4 el R tRo e 4 0 (13)

which is just the Neumann series for u. By averaging (13) and using the fact
that <R> = 0 we obtain

<u> = D Lf + e2p LtrpIRoD 7 E + 10t (14)

The series expansion for <u> given by equation (14) is analogous to
the Born series (i.e., equation (4)) of section 1. It can be shown that, like
the Born series, this series generally contains secular terms, and hence no
finite sub-series of it can be expected to yield a uniformly valid approxima-
tion for <u> .

In order to get a uniformly valid approximation for <u> , we proceed as
follows. TFirst, we note that, from equation (14), »

p7lf = <u> + 0(82) .

It follows, by replacing the term D f in the second term on the right-hand
side of (l4) by <u>, that

<u> = D rf + 2D Lerp TRo<u> + 0(53) . (15)
Now let w be a solution of the equation obtained by dropping the term of

order 83 from (15); i.e., let w be a solution of

-0t + el larp ow . (16)

Then by writing w as a Neumann series; i.e., by writing

= ple + e?p terpTRoD7LE + et terp trop t<mp YRop e 4+ vt o an

we see that w 1is the sum of an infinite series in € , and also, by comparing

(17) with (14), that w - <u> = 0(83) . Thus, by solving equation (16) we
obtain an approximation to <u> which is the sum of an infinite subseries of
the complete perturbation expansion of <u> , and which differs from <u> by

terms of order - 83 .
The procedure leading to equation (16) is called the smoothing method:
the resulting equation is referred to as the first-order smoothing approxima-

tion for the mean field. The above analysis shows that the smoothing method
is indeed an infinite-order method.
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The approach described here can also be used to obtain higher-order sta-
tistics of u, such as the mean square, the correlation function, etc. These
and other aspects of the smoothing method are discussed in more detail in
reference 5.

We present now results obtained by applying the smoothing method to a
problem involving propagation of acoustic waves in a turbulent fluid. The
starting point of the analysis is equation (60) of reference 6 which is written
here in the form

(C_ZDi—Vz)p -0 . (18)

This is a convected wave equation governing the propagation of high-frequency
acoustic disturbances in a moving, inhomogeneous fluid medium. Here p 4dis the
acoustic pressure, c¢ 1is the sound speed of the medium, and Dt = Bt +u-V,

where .g.[=(ul,u2,u3)] is the fluid velocity. Also. V = (9 83), where

1’82’

I
1

5 23 4 -3

t ot i Bxi 3 t is time and g_[=(xl,x
Since the basic flow is assumed here to be turbulemnt, both ¢ and u are to
be regarded as random functions of X and ¢t .

2,x3)] is the position vector.

We -assume that the basic flow represents a small perturbation of a uniform
fluid at rest. Accordingly we write

c = c0(1+%€u) . 19
u = ECO_I_,;._ s (20)

where Y and ﬁ_ are dimensionless random functions with zero mean, c,. is

the average sound speed of the medium, and € is a small parameter measuring
the deviation of the medium from a uniform motionless state. By inserting

(19) and (20) into (18), expanding in powers of € , and (in accordance with
the assumption of high-frequency waves) dropping derivatives of flow quantities,
we obtain

2 3
= 21
[Ltel,+e L2+O(€ Ylp=0 , (21)
where the operators LO’ Ll’ and L2 are given by
_ =2 ,2 2 I _ =2 02
LO =c, 8t -V, L1 = 2c0 @ V)Bt <o uBt ,
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—_ DA _ "1/\ _3__"222
L, uiujaiaj Zco u(u - V)Bt + 7 ant .

Equation (21) can be written in the same form as equation (11), provided we
define

2 3
> .
LO + €<L1 + € <L2> + 0(e™)

(o}
It

2

R=1L, - <L,> + E(L2—<L2>) + 0(62) .

1 1

tl

It follows that the smoothing method, as described above, is applicable to
this problem.

A detailed analysis of this problem based on the smoothing method is
described in reference 6 . The main result of that analysis is an approximate
expression for the quantity <p> (the coherent wave) which, for the case of a
plane, time-harmonic wave propagating in the x direction through a statis=
- tically homogeneous and isotropic medium which™is slowly varying in time, can
be written in the form

<p(x1,t)> = A gxp{i(kxl—wt)} ’ (22)

where A is an arbitrary amplitude factor, ® is the frequency, and

k = ko + Le k [4v (14 unok 2)+<u >(1+sim! kol)] . (23)
Here k., = W/c V2 = <@%> = <i%> = <G> m. and m' are positive con-—
0 0° 1 2 3 0 0 '

stants of order one, and % is the correlation length of the turbulence.

Equation (23) shows that Imk > 0 and also that Rek > k., . Thus, the
turbulence causes an attenuation of the coherent wave as well as a reduction
in its phase speed. The aspect of the solution given by equations (22) and
(23) which is of most interest to us, however, in view of the preceding
development, is that it is non-secular in the propagation distance X5

also that this solution can be written as the sum of an infinite sub-series
of the complete perturbation series for <p> , as can be seen by substituting
(23) into (22) and expanding in powers of € .

Note'
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