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SUMMARY 

Simple acous t i ca l  ideas  can be used t o  descr ibe  t h e  d i r e c t  and multiply 
r e f l e c t e d  paths involved i n  the  propagation of no ise  i n  regions with compli- 
cated shapes such as those found i n  urban and i n d u s t r i a l  areas. Several 
s t u d i e s  of propagation i n  streets, and the  discrepancies between t h e o r e t i c a l  
analyses and f i e l d  measurements are discussed. Also a cell-model i s  used t o  
es t imate  the  general  background l e v e l  of no ise  due t o  vehicu lar  sources 
d i s t r i b u t e d  over t h e  urban area. 

INTRODUCTION 

This paper descr ibes  some aspects of the  propagation of sound i n  urban 
areas and i n  open i n d u s t r i a l  p lan ts .  Of the many f a c t o r s  t h a t  are important 
i n  determining noise  levels due to  various sources i n  such areas only the  
geometric o r  topographic e f f e c t s  w i l l  be discussed here.  Sound propagation 
i n  urban areas involves multipath propagation, and r e f l e c t i o n ,  absorption and 
s c a t t e r i n g  must a l l  be taken i n t o  account. The geometries discussed are of 
i n t e r e s t  f o r  sources such as automobiles, cons t ruc t ion  sites, machinery i n  
open i n d u s t r i a l  sites, and, i n  some cases f o r  low-flying a i r c r a f t .  

Factors such as wind and temperature grad ien ts  are not  included. These 
are not thought t o  be of g r e a t  importance over s h o r t  d i s tances .  Atmospheric 
absorption i s  included only i n  the  estimates of genera l  background noise  
l e v e l s .  

Much of t h e  au thor ' s  work t h a t  is  described he re  w a s  done a t  MIT as 
p a r t  of a program on Transportation Noise. 
R. H. Lyon. Much of t h e  work of t h e  group has been reviewed by Lyon ( r e f .  1 ) ;  
t h e  present paper extends and complements Lyon's review. 
g r a t e f u l  f o r  t h e  he lp  and encouragement of fe red  by Professor Lyon. 

The program w a s  d i r ec t ed  by 

The author is  

Each s e c t i o n  of t h e  paper dea l s  w i th  a p a r t i c u l a r  approach t o  t h e  
problem of noise  propagation. The top ic s  include simple source models and 
eigenfunction models f o r  es t imat ing  noise  l e v e l s  due t o  i d e n t i f i a b l e  sources,  
and a c e l l - l i k e  model f o r  estimating general  background noise  l e v e l s .  
Acoustic s c a l e  model experiments are discussed b r i e f l y .  

Barriers such as e a r t h  berms are used q u i t e  ex tens ive ly  now f o r  noise 
cont ro l  along highways. D i f f r a c t i o n  over b a r r i e r s  i s  a top ic  i n  i t s e l f  and 
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i s  not  discussed here. 

SIMPLE SOURCE MODELS 

Incoherent Poin t  Sources 

The most obvious and important geometric f a c t o r  i n  sound propagation 
from a s i n g l e  po in t  source i s  the 6dB/dd (dB per doubling of d i s tance)  due 
t o  geometric spreading. Salmon ( r e f .  2)  has charac te r i sed  the  propagation 
from various shapes and a r r ays  of incoherent po in t  sources. 

Manning and o the r s  ( r e f .  3) have shown how the  very s i m p l e  technique 
of adding the  energ ies  from incoherent po in t  sources can be used very 
e f f e c t i v e l y  i n  determining noise levels ad jacent  t o  c e r t a i n  types of open 
i n d u s t r i a l  p l an t s .  The technique has been used t o  help design new p lan t  
layouts  t o  reduce noise  l e v e l s  i n  nearby communities. 

Application t o  Propagation i n  Ci ty  S t r e e t s  

Noise propagation i n  c i t y  streets involves mul t ip le  r e f l e c t i o n s  i n  the  
bui ld ing  facades bordering the  streets. Typical f i e l d  d a t a  taken by Delaney 
and o the r s  ( r e f .  4 )  i s  shown i n  f i g u r e  1. The L50 l e v e l  i s  shown ( t h e  l e v e l  
exceeded 50% of the  time). The source of sound is  f r e e l y  flowing t r a f f i c  
i n  the main a r t e r y .  The v a r i a t i o n  of no ise  l e v e l  with d is tance  from the  
source is q u i t e  complicated. 

Lyon's group a t  MIT has done considerable t h e o r e t i c a l  and experimental 
work on the  propagation of sound i n  c i t y  streets, so c a l l e d  channel propaga- 
t i o n  (see,  f o r  example, r e f s .1 ,  and 5 t o  10 ) .  The r e s u l t s  t o  d a t e  are 
encouraging y e t  no firm conclusions can be made about the  important r o l e  t h a t  
s c a t t e r i n g  seems to  play i n  the  propagation, and no theory can p r e d i c t  
accura te ly  a l l  t h e  f ea tu res  of experimental r e s u l t s  such as those shown i n  
f i g u r e  1. Several  aspects of t h e  problems involved are discussed below. 

Wiener and o the r s  ( r e f . l l ) ,  S c h l a t t e r  ( r e f . 5 ) ,  and L e e  and Davies ( re f .6)  
have described t h e  mul t ip le  r e f l e c t i o n s  i n  channel propagation interms of 
image sources along the  l i n e  perpendicular t o  the  street through the  source 
pos i t ion .  None of them consider sur face  s c a t t e r i n g .  The noise  level i s  
estimated by adding the  mean square sound pressure l e v e l s  due t o  each source 
i n  a simple extension of Salmon's work. 
decay must be a t  6dB/dd except when the  absorption c o e f f i c i e n t  a of t h e  
building w a l l s  equals one, i n  which case t h e  decay (from an i n f i n i t e l y  long 
l i n e  source) is  only a t  3dB/dd. S c h l a t t e r  showed t h a t b o t h  incoherent and 
pure-tone sources l ead  t o  e s s e n t i a l l y  s i m i l a r  r e s u l t s  provided an average 
of t he  sound level is taken f o r  various rece iver  pos i t i ons  across  t h e  width 
of t h e  street. 

S u f f i c i e n t l y  f a r  down the  street the  

L e e  and Davies ( re f .6)  summed the  source and image f i e l d s  numerically, 
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and included a l s o  the  e f f e c t s  of propagation ac ross  i n t e r s e c t i o n s  and around 
corners. 
levels. 

A l l  t h e  d a t a  w e r e  reduced t o  a s i n g l e  nomogram f o r  estimating noise  

Typical values obtained from t h e  nomogram are shown i n  f i g u r e  1. 

The sound power output w a s  chosen a r b i t r a r i l y  t o  be 105 dB. 

A 
s i n g l e  source a t  t h e  cen t r e  of t h e  a r t e r y  and s i d e  street i n t e r s e c t i o n  w a s  
used. 
estimates using d i f f e r e n t  values of t h e  absorption c o e f f i c i e n t  are shown. 

Two 

There are marked discrepancies between measured and estimated values 
p a r t i c u l a r l y  a t  l a r g e  d is tances  from t h e  source. The houses along t h e  
street are typ ica l  B r i t i s h  suburban two-storey semi-detached with gaps 
between t h e  bui ld ings .  a = 0.2 seems a reasonable number f o r  t he  average 
value of t h e  absorption c o e f f i c i e n t  of the  building w a l l s .  Several f a c t o r s  
should be  included t o  improve the  t h e o r e t i c a l  estimates. Donovan ( re f .7)  
has suggested t h a t  the e f f e c t  of s c a t t e r i n g  can be  approximated by using an 
a r t i f i c i a l l y  high va lue  f o r  t he  e f f e c t i v e  absorption c o e f f i c i e n t .  
case the comparison between observed and estimated d a t a  f o r  a = 0.5 is 
hardly improved. 
clear. 
Delaney's f i e l d  s i t u a t i o n .  

But i n  t h i s  

The p rec i se  r o l e  t h a t  s c a t t e r i n g  plays i s  by no means 
Cer ta in ly  a considerable amount of s c a t t e r i n g  must be involved i n  

Donovan's suggestion w a s  made on the  b a s i s  of scale model s t u d i e s  with 
a r t i f i c 2 a l l y  roughened bui ld ing  facades. Delaney and o t h e r s  (ref.12) comment 
t h a t  s c a l e  model experiments can only be made t o  reproduce f u l l  scale f i e l d  
d a t a  i f  the model bu i ld ing  sur faces  are made i r r e g u l a r .  The r o l e  of scatter- 
ing  i s  an important one t h a t  needs f u r t h e r  i nves t iga t ion .  

An equally important e f f e c t  no t  accounted f o r  i n  the  estimates shown i n  
f igu re  1 involves the  d i f f e rences  i n  s p a t i a l  ex ten t s  of t h e  sources. Those 
sources with no l i n e  of s i g h t  along the  s i d e  street are not included i n  the  
estimates. Such sources would increase  markedly t h e  sound f i e l d  c lose  t o  the  
a r t e r y  b u t  would have a neg l ig ib l e  e f f e c t  on noise  l e v e l s  f u r t h e r  up the  
s i d e  street. Quant i ta t ive  work on t h i s  aspect remains t o  be completed. 
However, prelgminary estimates suggest t h a t  including no-line-of-sight sources 
does not expla in  the  d iscrepancies  completely. 

I n  t h i s  context i t  is  i n t e r e s t i n g  t o  note t h a t  t he  nomogram of Lee  and 
Davies p r e d i c t s  a drop of between 10  and 20 dB as t h e  rece iver  "turns" a 
corner away from a source. This i s  cons i s t en t  with measured va lues .  However, 
t he  amount of t h e  drop depends very much on the  absorption c o e f f i c i e n t ;  high 
absorption c o e f f i c i e n t s  give l a r g e  drops. This may w e l l  have a bearing on 
Donovan's scale model s tud ie s .  .7c 

It is  reasonable t o  ask i f  s i m p l e  s t u d i e s  such as those above with 
s t a t i o n a r y  sources can estimate the  noise  l e v e l s  due to  flowing t r a f f i c .  
Kurze (ref.13) has estimated the mean and standard devia t ions  of no i se  from 
f r e e l y  flowing t r a f f i c  when the  rece iver  can see e i t h e r  a very long s t r a i g h t  
road o r  is  sh ie lded  from p a r t  of t he  road by b a r r i e r s .  H e  showed t h a t  t h e  
value of t he  mean noise  l e v e l  can be estimated from s t a t iona ry  sources spaced 
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1 / X  a p a r t  where X i s  t h e  average number of veh ic l e s  per u n i t  l eng th  of yoad- 
way. 
where d is  the  perpendicular d i s t ance  from t h e  observer t o  t h e  road. "he 
mean l e v e l  is equiva len t  e s s e n t i a l l y  t o  the  L level. Higher levels such as 
the  L level are important i n  determining no i se  in t rus ion .  Kurz,e f inds ,  as 
mightlge expected, t h a t  l e v e l s  such as L and L are f a r  more s e n s i t i v e  than 

propagation, bu t  i t  s e e m s  reasonable t h a t  he re  again mean levels a t  least can 
be estimated from s t a t i o n a r y  source d i s t r i b u t i o n s .  

For long s t r e t c h e s  of roadway t h e  standard devia t ion  is 1. 8(Ad)-5 

50 

L50 t o  non-uniform t r a f f i c  flows. Kurze 4.0 s work Aid not  include channel 

The geometry of Delaney's experiment ( re f .4)  is  very s i m i l a r  t o  t h e  
geometry involved when a he l i cop te r  o r  V/STOL a i r c r a f t  f l i e s  low over a 
c i t y  street. 
t h e  a i r c r a f t  is  almost overhead. Pande ( re f .8)  and P ie rce  and o the r s  ( re f .9)  
have shown t h a t  the  sound l e v e l  when the  a i r c r a f t  i s  overhead may be  increased 
typ ica l ly  by 5 dB over the  d i r e c t  o r  open t e r r a i n  l e v e l  because of t he  mul t ip l e  
r e f l e c t i o n s  . 

A receiver a t  street l eve l - i s  shielded from the  noise u n t i l  

OTHER MODELS FOR NOISE PROPAGATION I N  STREETS 

Sound propagation i n  co r r ido r s  with absorbing w a l l s  has been discussed 
by Davies (ref.14).  The r e s u l t s  are appl icable  mainly t o  i n t e r i o r  no ise  
propagation. The sound f i e l d  is  described i n  t e r m s  of t he  eigenfunctions f o r  
a hard-walled co r r ido r  and each eigenfunction i s  expressed as a set of four 
plane waves. Each wave lo ses  energy when i t  is r e f l e c t e d  i n  absorbing 
material. This approximate ray  t r ac ing  technique appears  t o  work q u i t e  w e l l  
c lo se  t o  the source. It works w e l l  a l s o  when only two opposite w a l l s  of t h e  
cor r idor  absorb energy+ and p red ic t s  c o r r e c t l y  i n  t h i s  case a 3 dB/dd rate 
of decay a t  l a r g e  d is tances  from the  source. However, when seve ra l  w a l l s  
are absorbing such as i n  a street (where t h e  "top" of t h e  co r r ido r  is open) 
the  theory underestimates the  a t t enua t ion  q u i t e  considerably. Many of t he  
r e s u l t s  presented i n  re ference  14 are f o r  t h e  most p a r t  n e i t h e r  adequate nor 
very appropr ia te  t o  propagation i n  streets. 

A d i f f e r e n t  eigenfunction approach has been taken r ecen t ly  by Bullen and 

I n  p a r t i c u l a r ,  p ro t rus ions  on bui ld ings  
An example 

Fricke ( re f .15) .  
t he  building w a l l s  along the  street. 
are regarded as c o n s t i t u t i n g  a change i n  the  width of t h e  street. 
of t he  geometry discussed is shown i n  f i g u r e  2. The w a l l s  are hard. Eigen- 
func t ion  o r  modal expansions are wr i t t en  f o r  each region with cont inui ty  of 
pressure and ve loc i ty  used t o  match the  expansions a t  the  boundaries between 
regions. 
i n  region 1 and t h e  mode i n  region 2 t h a t  has t h e  c l o s e s t  wave number. The 
agreement obtained between t h e i r  theory and s c a l e  model experiments i s  
exce l l en t  f o r  t h e  range t h a t  w a s  measured, namely up t o  e i g h t  street widths 
from the  source. But the  types of pro t rus ions  used s t i l l  lead  over most of 
t he  measured range t o  a t t enua t ion  rates of less than 6 dB/dd, It remains t o  
be seen whether t he  theory can be extended t o  include absorbing w a l l s  and a 

They attempt t o  account f o r  some aspects of s c a t t e r i n g  a t  

The assumption i s  made t h a t  coupling occurs only between a mode 
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s t ronger  amount of s c a t t e r i n g .  

An i n t e r e s t i n g  l i m i t i n g  case can be evaluated i f  t h e  s c a t t e r i n g  is suf f -  
i c i e n t l y  s t rong  t h a t  t h e  sound f i e l d  may be  assumed d i f f u s e  a t  a l l  poin ts ,  
t h a t  is, there  i s  equal energy propagating i n  a l l  d i r e c t i o n s  down the  street. 
I n  f igu re  3 only a f r a c t i o n  of the  energy propagating i n  a given d i r e c t i o n  
i s  r e f l e c t e d  a t  t h e  w a l l  w i th in  t h e  d i s t ance  dx, 
14 
dx i s  

From t h e  r e s u l t s  of re ference  
f o r  equal energy i n  a l l  d i r e c t i o n s  t h e  t o t a l  power inc ident  on the  element 

+ 2 -1 2L + dx p ( 1 - - t a n  - ) z P  - 
7T dx 7TL 

+ 
where P 
assumed t h a t  a f r a c t i o n  a of t h i s  i nc iden t  power i s  absorbed, and the  remainder 
of t h e  inc iden t  power i s  sca t t e red  equal ly  i n  a l l  d i r e c t i o n s  so as t o  maintain 
the  d i f fuseness  of t h e  sound f i e l d .  

represents  t h e  t o t a l  input  acous t ic  power a t  s t a t i o n  x. It i s  

An energy balance then gives 

+ dx + dx dx 
I x+dx = P 1 ( 1  - z) + %(l-a)P 1 - + + ( P a l p -  * I x+dx X x 7rL 

+ 

where P- represents  power propagating i n  the  negative x d i r ec t ion .  
equation exists f o r  P-. 

A similar 

The so lu t ion  of t h e  r e s u l t i n g  p a i r  of d i f f e r e n t i a l  equations f o r  P+ and 
P- gives 

+ P =  

where P,,, i s  the  known 

k x  exp(- a -) I N  TL 

power input a t  x = 0. The noise  l e v e l  decays l i n e a r l y  
wi th  dikvance. 
by Leehey and Davies. 

Attenuation such as t h i s  has  been measured i n  coa l  mine tunnels 

CELL MODEL FOR ESTIMATING BACKGROUND NOISE LEVELS 

The s t u d i e s  above have a l l  been concerned wi th  estimating no i se  l e v e l s  
due t o  i d e n t i f i a b l e  sources,  even though t h e  source may be  out  of s i g h t  around 
a corner. 
t h a t  heard when no s i n g l e  source can be i d e n t i f i e d  and when the  noise seems t o  
come from a l l  around. 
s p e c i f i c  events can cause annoyance. 
approximately t o  the L 

The r e s idua l  background l e v e l  t h a t  e x i s t s  i n  any environment is 

Noise i n t r u s i o n  above t h i s  l e v e l  due t o  i s o l a t e d  and 

A reasonable level is  acceptable,  and i n  fact  
This r e s idua l  background level corresponds 

l e v e l .  90 
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serves  t o  mask sounds t h a t  would otherwise be in t rus ive .  

Several f i e l d  s t u d i e s  have been made of t h e  background no i se  level. A 
p a r t i c u l a r l y  complete study is  the  Community Noise Survey of Medford, Mass- 
achuse t t s  (ref.16).  Theore t ica l  estimates have been made by Shaw and Olson 
(ref.17) and Davies and Lyon (ref.18).  

In t h e  Shaw and Olson model t h e  urban area is  t r e a t e d  as a uniform, 
c i r c u  ar, s p a t i a l l y  incoherent source of r ad ius  a t h a t  r a d i a t e s  power 
NW/na per u n i t  area. 
W. Extensions t o  t h e  r e s u l t s  can be made e a s i l y  t o  include source-free 
regions representing parks, f o r  example, wi th in  an  urban area. Since now 
cont r ibu t ing  sources may be l a r g e  d is tances  from t h e  receiver atmospheric 
absorption must be included i n  the  model. 
estimated values about 10  t o  15  dB higher than t h e  values they measured i n  
O t t a w a .  

3 N i s  the  t o t a l  number of sources each of power output 

The Shaw and Olson model l eads  t o  

The d i f f e rence  i s  a t t r i b u t e d  to  a sh ie ld ing  f a c t o r  due t o  bui ld ings .  

The Davies and Lyon c e l l  model includes b a r r i e r s  and may be used t o  
estimate t h i s  sh i e ld ing  f ac to r .  The urban area is modelled as a c i r c u l a r  
source region broken up i n t o  an a r r a y  of square cells of dimension L. The 
cells each conta in  n sources of power output W. The cel l  w a l l s  are s e m i -  
permeable and r e f l e c t ,  absorb, and transmit sound. Figure 4 shows the  cell- 
l i k e  s t r u c t u r e  i n  an urban area. The absorption i s  t h a t  due to  the  w a l l s  of 
t h e  buildings; the  average absorption c o e f f i c i e n t  of t he  w a l l s  of t he  cel l  
is denoted by a. The transmission c o e f f i c i e n t  T of t he  w a l l s  is  given 
approximately by the  r a t i o  of street width t o  d is tance  between streets. 
accura te  estimates would include d i f f r a c t i o n .  The r e f l e c t i o n  c o e f f i c i e n t  of 
t he  c e l l  w a l l s  is (1-a-T). 

More 

The e f f e c t i v e  absorption c o e f f i c i e n t  6 f o r  t h e  c e l l  accounts f o r  both 
absorbed and transmitted power: 

2 - 
a A  = L + 4Lh(a+~)  

2 where A = 2 L  + 4Lh 

2s t h e  t o t a l  sur face  area of a cel1,and t h e  room constant f o r  a cel l  i s  
R = (l-a)/(EA). 

The no i se  l e v e l  i n  each cel l  has both d i r e c t  and reverberant components. 
The d i r e c t  f i e l d  can be ca lcu la ted  from Shaw and Olson's r e s u l t s .  
assoc ia ted  with t h e  reverberant f i e l d  i n  a cel l  i s  p2/4pc where p i  is the 
mean square reverberant sound pressure i n  the  m h c e l f e ,  p i s  dens i ty ,  and 
is  t h e  speed of sound. 

The i n t e n s i t y  

c 

A power balance equation c2n-be w r i t t e n  as follows. The power removed 
from the  reverberant f i e l d  is p aA/4pc. The power inpu t  is t h e  cont r ibu t ion  m 
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nW(1-a) from t h e  contained sources a f t e r  t h e  sound has undergone one r e f l ec -  
t i on ,  p lus- the  contribut3ons 4nWLh-c/A from the  d i r e c t  f i e l d s ,  and four  con- 
t r i b u t i o n s  of the form p Lh-c/4pc from t h e  reverberant f i e l d s  of t h e  fou r  

adjoining cells. 
mt.1 

I f  t h e  number of cells i n  the  source region is  l a r g e  t h e  r e s u l t i n g  
power balance equation can b e  t r e a t e d  as a d i f f e r e n t i a l  equation f o r  t h e  
reverberant mean square sound pressure  p2 i n  the  cells d i s t a n t  rl cells  from 
the  cen t r e  of t h e  source: 

where 6' 

Well wi th in  t h e  source region 
4PcNw/ M 
constant 
Shaw and 

2 
1 L +4Lha = -nw * (1 - 

LhT A 

= (L -t 4Lha)/Lh-c . 
t h e  approximate so lu t ion  is p 

2 

2 = 4pcnW/R = 
R where M is  the  t o t a i  number of cells. 
f o r  t h e  whole urban area. When the  d i r e c t  f i e l d  as ca lcu la ted  from 
Olson is  included t h e  t o t a l  mean square pressure  i s  

MR represents  t h e  room 

2 Jw 4L2 p ( b a r r i e r )  = pc  (-2) (1 + %lnN + - - %lnM). R na 

The corresponding estimate from Shaw and Olson's work is 

2 NW 

na 
p (no b a r r i e r )  = pc (- )(1+ 41nJi). 2 

The numerical d i f f e rence  i n  these  estimates t y p i c a l l y  is not l a rge ,  suggesting 
as might be  expected t h a t  most of t h e  noise  is generated by nearby sources. 

The s i t u a t i o n  when the  rece iver  is ou t s ide  t h e  source region, f o r  
example i n  a park i n  an urban area is  q u i t e  d i f f e r e n t .  Davies and Lyon f ind  

2 -pr 2 TL e 
p ( b a r r i e r )  = pcNW(;;ii- ) 7 , 

r 

where r is  the  d i s t ance  from the  source cen t r e  and p r ep resen t s  t h e  atmospheric 
absorption constant.  Comparison with Shaw and Olson's work g ives  

- 
( b a r r i e r s )  - a A  2 

2 
- 

p (no b a r r i e r s )  z ~ L ~ ( 1 - z )  
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Numerical estimates of t h i s  r a t i o  f o r  t y p i c a l  values of a and T give a b a r r i e r  
a t t enua t ion  of 7 t o  15 dB which is cons is ten t  with t h e  values measured by 
Shaw and Olson. 

The no i se  f i e l d  i n  a t r a f f i c - f r e e  cell  can b e  estimated, modelling, f o r  
example, t he  no i se  a t  an i n t e r s e c t i o n  when t h e  t r a f f i c  a t  the  i n t e r s e c t i o n  is  

The Davies and Lyon model gives t h e  estimate 'halted temporarily. 

2 16  pcnWLhT p ( b a r r i e r s )  = 
R(L' + 4Lha) 

Comparison w i t h  t h e  corresponding Shaw and Olson r e s u l t  again suggests a 
bui ld ing  sh ie ld ing  f a c t o r  on the  order of 10  t o  15 dB. 

F ina l ly  i t  is  of i n t e r e s t  t o  estimate the  no i se  f i e l d  d i r e c t l y .  For a 
source dens i ty  N = 50 vehic les  pef2square kilometer and a power l e v e l  output 
from each source of 105 dB re  10- 
estimates of 67 dB and 51 dB when sources are and are not ,  respec t ive ly ,  
present i n  t h e  rece iver  cel l .  
tive of measured l eve l s .  

Watts, t he  Davies and Lyon model gives 

These levels are considered f a i r l y  representa- 

CONCLUSIONS 

L i t t l e  has been added t o  our knowledge of urban sound propagation s ince  
Lyon reviewed work i n  t h i s  area th ree  years ago. 
estimates and f i e l d  d a t a  i n  general  i s  q u i t e  poor. The discrepancies se rve  t o  
emphasize q u i t e  s t rongly  Lyon's conclusion t h a t  s c a t t e r i n g  plays a very 
important r o l e  i n  no i se  propagation. 
beginning. 
i n  urban areas. 

Agreement between t h e o r e t i c a l  

Work on t h i s  aspec t  of t h e  problem i s  
Work is  needed a l s o  on t h e  s t a t i s t i c a l  aspects of t r a f f i c  no ise  

Several groups are f ind ing  s c a l e  model s t u d i e s  of use ( see  f o r  example 
DeJong and o the r s ,  r e f .  10) .  However i n  view of the  comments of Delaney and 
o t h e r s  (ref.12) g r e a t  care must be taken t o  ensure t h a t  scale model r e s u l t s  
compare accura te ly  with f i e l d  data.  
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Figure 1.- Varia t ion  of no i se  level with d i s t a n c e  along s i d e  street 
due t o  n o i s e  sources  i n  main a r t e r y .  
t h e o r e t i c a l  estimates f r o m  re ference  6. 

F i e ld  da t a  from reference  4 ;  

I REGION I 
REGION 2 

Figure 2.- Typical  geometry of scale model street 
discussed i n  re ference  15. 

1007 



P+ 

x x + d x  x 

Figure 3. -  Geometry t o  estimate power inc iden t  on w a l l  
element dx from given d i r ec t ion .  
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Figure 4 . -  Geometry of c e l l - l i k e  s t r u c t u r e  i n  urban area ( r e f .  18). 
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