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SUMMARY

Previous attempts to predict the transient acoustic pressure pulse at long
horizontal distances from large explosions in the atmosphere have adopted a
model atmosphere bounded above by a halfspace of finite sound speed and have
represented the waveform as a superposition of contributions from dispersively
propagating guided modes. Certain modes at low frequencies decay exponentially
(leaking modes) with increasing propagation distance. The practice up to now
has been to neglect the contributions from such modes in such frequency ranges.
The lower frequency cutoffs for such modes are extremely sensitive to the
nature of the upper halfspace in contradiction to the reasonable supposition
that energy ducted in the lower atmosphere should be insensitive to the
assumed form of the upper halfspace. In the present paper the overall problem
is reexamined with account taken of poles off the real axis and of branch line
integrals in the general integral governing the transient waveform. Perturba-
tion techniques are described for the computation of the imaginary ordinate of
the poles and numerical studies are described for a model atmosphere terminated
by a halfspace with ¢ = 478 m/sec above 125 km. For frequencies less than
0.0125 rad/sec, the GR; mode, for example, is found to have a frequency
dependent amplitude decay of the order of 10-4 nepers/km. Examples of
numerically synthesized transient waveforms are exhibited with and without the
inclusion .of leaking modes. The inclusion of leaking modes results in wave-
forms with a more marked beginning rather than a low-frequency oscillating
precursor of gradually increasing amplitude. Also, the revised computations
indicate that waveforms invariably begin with a pressure rise, a result
supported by other theoretical considerations and by experimental data.

INTRODUCTION

One of the standard mathematical problems in acoustic wave propagation is
that of predicting the acoustic field at large horizontal distances from a
localized source in a medium whose properties vary with height only. This
problem, as well as its counterpart in electromagnetic theory, has received
considerable attention in the literature (ref. 1), is reviewed extensively in
various texts (refs. 2-7), and, for the most part, may be considered to be
well understood.

A typical formulation of the transient propagation problem (refs. 8,9)
leads (at sufficiently large horizontal distance r) to an intermediate result
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which expresses the acoustic pressure as a double Foﬁrier.integral over angular
frequency w and horizontal wave number k so that
[ee]
i . ik
W /(K 1t Tdkdu} )

= S(r) Re {S %(w)e—
o]

Here S(r) is a geometrical spreadlng factor, which is 1/v/r for horizontally
stratified media and 1/{a sin(r/a )] 2 if the earth's curvatyre (a_, = radius
of earth) is approx1mate1y taken into account. The quantity f(w) is the
Fourier transform of a time-dependent function that characterizes the source.

Q is a function of receiver and source heights z,. and z g» respectively, as well
as of w and k, and possibly of the horizontal dlrectlon of propagation if winds
are included in the formulation. In any case, given z, and zg, Q should have
no poles in the complex k-plane when w is real and positive. The denominator
D(w,k) (which is termed the eigenmode dispersion function) may be zero for
certain values kn(w) of k.

The k integration contour for Eq. (1) is chosen to lie along the real
k-axis except where it skirts below or above poles which lie on the real axis
(see Fig. la, where branch lines are identified by slash marks, poles are
indicated by dots, and the k integration contour is marked by arrowheads that:
show the direction of integration). Let it suffice here to say that the placing
of branch cuts and the selection of the contour must be such that the expression
for the acoustic pressure dies out at long distance as long as a small amount
of damping is included in the formulation. The guided-mode description in the
formulation arises when the contour is deformed [permissible because of Cauchy's
theorem and of Jordan's lemma (ref. 10)] to one such as is sketched in Fig. 1b.
The poles indicated there above the initial contour are encircled in the
counterclockwise sense, and there are contour segments which encircle (also in
the counterclockwise sense) each branch cut that lies above the real axis.

The integrals around each pole are evaluated by Cauchy's residue theorem so
that what remains is a sum of residue terms plus branch line integrals. Each
residue term is considered to correspond to a particular guided mode of
propagation.

One approximation that was previously made in the guided-mode formulation
was to neglect contributions from poles [i.e., the k_(w)] which were located
above the real k-axis (refs. 8,9). The thought behind this omission was that
most of the contributions in the synthesis of waveforms for long propagation
distances would come from poles which were on the real k-axis. Another
approximation was that, for long distances, the contribution from branch line
integrals could be neglected as well. Given these two approximations, the
expression for the acoustic pressure in Eq. (1) can be approximated as follows:

Wyn
=% S(r) J An(w) cos [wt - kn(w}r + ¢n(m)] dw, (2)
n w
In

where A, (w) and ¢, (w) are defined in terms of the magnitude and phase of the
residues of the integrand in Eq. (1) and the k,(w) are the real roots for
D(w,k) (which are numbered in some order with n = 1,2,3, etc.). It is under-
stood that in Eq. (2), for any given n, kj(w) should be a continuous function
of w between the limits wyn (lower) and wy, (upper). With this understanding,
it should be possible to evaluate the resultant integral over w approximately
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by the method of stationary phase or by some numerical method.

In spite of the sceming plausibility of the above two approximations,
there is a set of circumstances intrinsic to low-frequency infrasonic propa-
gation for which they are not valid, even for distances of propagation of

more than 10,000 km.

It is these circumstances and their relation to the

analytic synthesis of guided-mode atmospheric infrasonic waveforms that are
of central interest in this discussion.
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SYMBOLS FREQUENCY USED

defined in Eqs. (6)

sound speed for upper halfspace

sound speed as a function of height

eigenmode dispersion function defined in Eq. (5)

defined in Eq. (3)

gravitational modes

horizontal wave number and its imaginary and real parts,
respectively

ordered roots of D(w,k)

acoustic pressure

horizontal distance of propagation

[1,1] and [1,2] elements of the transmission matrix [R],
respectively

time

phase velocity (w,k)

complex phase velocity obtained by first iteration with Eq. (8a)
roots of Ryy(w,v) and Rip(w,v), respectively

roots of D(w,v)

height

height of bottom of upper halfspace

derivatives of Ry; and Ryy with respect to v, respectively, and
evaluated at v, and Vi respectively

ambient density

angular frequency

characteristic frequencies used in Eq. (3)

cutoff point in the (w,v)-plane for a non-leaking mode.

INFRASONIC MODES

An atmospheric model that is frequently adopted in studies of infrasound
is one in which the sound speed c(z) varies continuously with height z in some
reasonably realistic manner up to a specified height zy and is constant (value

cp) for all heights exceeding z; (see Fig. 2).

Should winds be included in

the formulation, the wind velocities are also assumed to be constant in the

upper halfspace z > z..

It would seem reasonable to say that there is some

choice in specifying the values for both zy and ¢y, even though the computa-
tions of such factors as Q and D(w,k) in Eq. (1) become more Jlengthy with

increasing zg.

Whatever the choice of z., it would seem reasonable to choose

cy to be c(zgp) so that the sound-speed profile would then be continuous with

height.

Intuitively, it would also seem that if the source and receiver are

both near the ground and if the energy actually reaching the receiver travels
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via modes of propagation channeled primarily in the lower atmosphere, then the
actual value of the integral in Eq. (1) would be somewhat insensitive to the
choices of zr and cy. This idea, however, remains to be justified in any
rigorous sense. In typical calculations performed in the past, zp was taken
as 225 km, and cp was taken as the sound speed (» 800 m/sec) at that altitude
(ref. 8).

The formulation leading to that version of Eq. (1) which is appropriate
to infrasound for frequencies at which gravitational effects are important
(corresponding to periods greater than one to five minutes) is based on the
equations of fluid dynamics with the inclusion of gravitational body forces,
the associated nearly exponential decrease of ambient density and pressure with
height, and a localized energy source. When ¢ is taken to be finite, the
incorporation of gravitational effects in this formulation leads to a disper-
sion relation for plane waves propagating in the upper halfspace which is
(winds neglected) (refs. 8,9)

2 2

kz = -G~ = [w

walley - - wgli/u?, (3)

2_
where the solution of the linearized equations of fluid dynamics for z > zp
is of the form

— et ikx Kp7

p//bo = (Constant) e e e 4)
In these equations p is again the acoustlc pressure, p, is ambient density, x
is the horizontal space dimension, and k, is the vertlcal wave number (alter-
natively written as iG for 1nhomogeneous plane waves). wp and w, are two
characteristic frequencies (wp > wp) for wave propagatlon in an isothermal
atmosphere where wp = (Y/Z)g/c 5 = (y - 1) 172 g/cT (g = 9.8 m/sec? is

the acceleration due to grav1ty and Y 1.4 is the spec1f1c heat ratio for air).
The values of k (positive and negative) at which G2 is zero turn out to be the
branch points in the k integration in Eq. (1). The branch lines extend upwards
and downwards from the positive and negative branch points, respectively

(recall Fig. 1).

The eigenmode dispersion function D(w,k) in the case of atmospheric
infrasound can be written in the general form (ref. 8)

D(w,k) = ARy - AR, - Ry,G. (5)
In this expression, R;, and R,, are the elements of a transmission matrix [R].
They depend on the atmospheriC properties only in the altitude range zero to

z, and are independent of what is assumed for the upper halfspace. In general,
tgeir determination requires numerical integration over height of two simul-
taneous ordinary differential equations [termed the residual equations (refs.
8,9,11)]. They do depend on w and k (or, alternately, on w and phase velocity
v = w/k), but are free from branch cuts. The other parameters Aj, and A 1
depend on the properties of the upper halfspace, and on w and k. Ap; ané P
are given (winds excluded) as

2,2 2
A = gk /w™ - yg/[2e]s (6a)
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A, =1 - S - (6b)

It may be noted that, since every quantity in Eq. (5) (with the possible
exception of G) is real when w and k are real, the poles that lie on the real -
k-axis (recall that they are the real roots of D) must be 1n those regions of
the (w,k)-plane [or, alternatively, the (w,v)-plane] where G2 > 0. Since at
helghEs above 27, the integrand of Eq. (1) divided by /Eg'should vary with z
as e T there is no leakage of energy into the upper halfspace for those
modes that correspond to the above poles. Such modes are termed fully ducted
modes. ‘Modes for which there is leakage of energy are termed leaking. If D
is considered as a function of w and phase velocity v, the locus of its real
roots v(w) (dispersion curves) has [as has been found by numerical computation
with the program INFRASONIC WAVEFORMS (ref. 8)] the general form sketched in
Fig. 3. The nomenclature for labeling the modes (GR for gravity, S for sound)
is due to Press and Harkrider (ref. 12). It may be noted from Eq. (3) that
there -are two '"forbidden regions' (slashed in the figure) in the (w.v)-plane.
Within these regions there are no real roots of the function D(w,v) because G
is imaginary. The existence of the high-frequency upper '"forbidden region"
implies that the phase velocities for propagating modes are always less than
the sound speed chosen for the upper halfspace. The low-frequency lower-phase-
velocity "forbidden region' appears to be due to the incorporation of gravita-
tional effects into the formulation. However, if cy is allowed to approach
infinity, the lower "forbidden region" disappears. Thus, it can be seen that
the fully ducted GRy and GR; modes both have a low-frequency cutoff [wg, in Eq.
(2)] which depends on ¢p. In fact, the larger cp becomes, the smaller this
cutoff frequency becomes.

- At this point, there should appear to be the following paradoxes. Given
that frequencies below wp may be important for the synthesis of a waveform, an -
apparently plausible computational scheme based on the reasoning leading to
Eq. (2) will omit much of the information conveyed by such frequencies. Also,
in spite of the plausible premise that energy ducted primarily in the lower
atmosphere should be insensitive to the choice for cp, it can be seen that
this choice governs the cutoff frequencies for certain modes and that certain
important frequency ranges could conceivably be omitted by .a seemingly logical
choice for cp. - The resolution of these paradoxes seems to lie in the nature
of the approximations made in going from Eq. (1) to Eq. (2). The latter
equation may not be as nearly correct as earlier presumed, and it may be
necessary to include contributions from poles off the real axis as well as from
the branch line integrals. Even for the case when the propagation distance r
is very long, it may be that the imaginary parts of the complex horizontal wave
numbers are so small that the magnitude of elKT in Eq. (1) is still not small
compared to unity. In addition, a branch line integral may be appreciable in
magnitude at large r if there is a pole relatively close to the associated
branch cut.

ROOTS OF THE DISPERSION FUNCTION
In light of the paradoxes mentioned, it would be desirable to modify the
solution represented by Eq. (2) so as to remove the apparent artificial low-

frequency cutoffs of the GR; and GR; modes. As a first step, the nature of
the eigenmode dispersion function D in the vicinity of the dispersion curve for
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a particular mode is examined. The curve of values v, (w) of phase velocity v
versus W for a given (n-th) mode is known for frequen01es greater than the low
cutoff frequency wy. Given this curve, analogous curves va(uD and v, (w) can
be found for values of the phase velocity w/k at which the functions Ry (w,V)
and Ry, (w,v) in Eq. (5), respectively, vanish. One characteristic of the
curves Vn(w), Va(w), and Vi (w) which has been checked numerically for w > wy
(see Fig. 4) is that for a given mode of interest, these curves all lie
substantially closer to one another than to the corresponding curves for a
different mode.

Given the definitions above of v,(W) and Vp, (W), the dispersion relation
= 0 for a single mode may be approximately expressed through a simple expan-
51on, as

DE (A - v - [y + GIE W - w) =0, @)

where o = dR /dv and B dR12/dv, evaluated at v = v, and Vi, s respectivély
(for 51mp11c1ty, D is considered here as a function of p and v = w/k rather
than of w and k). The above equation may also be written in the form

v = v, * (v, - v )X/[1-X], | (8a)
“where

Eq. (8a) may be considered as a starting point for an iterative solution which
develops v in a power series in v, - vp. With v = v, as the zeroth iteration,
the right hand side of Eq. (8a) can be evaluated for the value of v required
for the next iteration, etc. This iterative procedure should converge provided
that v, or v, is not near a point at which G vanishes and provided that G in
the vicinity of v, or v, is not such that the variable X is close to unity.
Among other limitations, the iterative scheme is inappropriate-for those

values of w in the immediate vicinity of Wy, »

As an illustration of the perturbation technlque, detailed plots (for the
GRg and GR; modes) versus angular frequency are given in Fig. 5 of w/kp (top
portion of the figure) which is the reciprocal of the real Fart of 1/v% and
of k7 (bottom portion) which is the imaginary part of w{ (kp and kg are the
real and imaginary parts of k, respectively), where v(1) is the result of first
iteration for the phase velocity using Eqs. (8). Note that k; is zero above
the corresponding cutoff frequencies. The values shown in F1g 5 are appropri-
ate to the case of a U. S. Standard Atmosphere (ref. 8; see also Fig. 2)
without winds which is terminated at a height of 125 km by an upper halfspace
possessing a sound speed of 478 m/sec. For frequencies at which v, is computed,
the agreement between v(1) and vy has proven to be excellent. The m/k serve
as approximate extensions of the dispersion curves down to frequenC1es near
zero, thus enabling the computation of waveforms with leaking modes included.

TRANSITION OF MODES FROM NON-LEAKING TO LEAKING

A more precise approximation to D(w,v) in the vicinity of cutoff [i.e.,
near the point (wp,vy)] reveals that a dispersion curve becomes tangential to
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the line G2 = 0 at (w ,VL). For w < wy there is a very narrow gap in the
frequency range in which there are no poles in the k- (or v-) plane correspond-
ing to a given n-th mode.” This gap is of the order 10-13 rad/sec for the GRg
mode and 10-9 rad/sec for the GRy mode.

Since there is a gap in the range of frequencies for which a pole
(corresponding to a mode) may exist, it is evident that evaluation of the
integral over k in Eq. (1) by merely including residues may be insufficient for
certain frequencies. Thus it would seem appropriate to include a contribution
from branch line integrals. However, there is a line of reasoning which
demonstrates that all contributions from branch line integrals are insignifi-
cant as previously assumed. Further details on this matter are provided in
reference 13.

EXAMPLE (HOUSATONIC)

Values of w/kp and ky calculated by the perturbation techniques outlined
above were used [with a revised version of INFRASONIC WAVEFORMS (ref. 14)] to
compute waveforms for the case of signals observed at Berkeley, California,
following the Housatonic detonation at Johnson Island on October 30, 1962.

A comparison of theoretical and observed waveforms for this case is given by
Pierce, Posey, and Iliff (ref. 9). This case also serves as the main example in
the 1970 AFCRL report by Pierce and Posey (ref. 8), and is discussed by Posey
(ref. 15) within the context of the theory of the Lamb edge mode. The model
atmosphere assumed here (winds included) is the same as in Fig. 3-12 of refer-
ence 8, except that in the present model the upper halfspace begins at 125 km
rather than at 225 km. To avoid repeating tedious calculations of the ky for
the GRy and GR; modes for this model atmosphere, it was assumed that the kj
would be close in value to those shown in Fig. 5.

In Fig. 6, sets of plots for the Housatonic case are shown with and without
leaking modes. The waveform that includes leaking modes is regarded as an
improvement.in that among other things, the spurious initial pressure drop shown
in the original waveform is not present here. In Fig. 7 of reference 9
observed and theoretical waveforms are shown for the Housatonic case. On the
basis of the calculations described above, this figure was redrawn and is
given here as Fig. 7. The only difference between the two figures lies in the
central waveform. The false precursor is absent in the waveform shown in Fig.
7, and the first peak to trough amplitude has been changed from 157 bar to
170 bar (less than a 10% increase)}. The remainder of the central waveform is
virtually unchanged. The discrepancy with the edge-mode synthesis has not been
diminished and remains a topic for future study.

CONCLUDING REMARKS

It was shown in this paper that, for a model atmosphere in which the sound
speed is constant above some arbitrarily large height, the GRy and GR; modes
have low cutoff frequencies and are leaking below that height. Given these
facts, perturbation techniques were provided for the computation of the imagi-
nary and real parts kj and kg, respectively, of the horizontal wave numbers for
these modes. Knowledge of the kj and kg then made it possible to include, in
a synthesis of waveforms, contributions from the GR, and GR,; modes at frequen-
cies where these modes were leaking. Finally it was demonstrated that this
inclusion yielded waveforms that were more realistic than before. )

: 1025



10.

11.

12.

13.

14.

15.

1026

REFERENCES

Thomas, J. E.; Pierce, A. D.; Flinn, E. A.; and Craine, L. B.: '"Bibli-
ography on Infrasonic Waves,'" Geophys. J. R. Astr. Soc. 26, 299-426
(1971).

Officer, C. G.: Introduction to the Theory of Sound Transmission with
Application to the Ocean (McGraw-Hill, New-York, 1958).

Wait, J. R.: Electromagnetic Waves in Stratified Media (Pergamon Pfess,
Inc., New York, 1962).

Brekhovskikh, L. M.: Waves in Layered Media (Academic Press, New York,
1960).

Budden, K. G. The Wave-Guide Mode Theory  of Wave Propagation (Prentlce—
Hall, Inc., Englewood Cliffs, N. J., 1961).

Tolstoy, I. and Clay, C. S.: Ocean Acoustics (McGraw- H111 New'York,
1966} .

Ewing, M.; Jardetzky, W.; and Press, F.: Elastic Waves in Layered Media
(McGraw-Hill, New York, 1957).

Pierce, A. D. and Posey, J. W.: Theoretical Prediction of Acoustic-
Gravity Pressure Waveforms generated by Large Explosions in the
Atmosphere, Report AFCRL 70-0134, A1r Force Cambridge Research Labora—
tories, 1970.

Pierce, A. D.; Posey, J. W.; and Iiiff, E. F.: '"Variation of Nuclear
Explosion generated Acoustic-Gravity Waveforms with Burst Height and
with Energy Yield," J. Geophys. Res. 76, 5025-5042 (1971).

Copson, E. T.: An Introduction to the Theory of Functions of a Complex
Variable (Clarendon Press, Oxford, 1935) p. 137.

Pierce, A. D. "The Multilayer Approximation for Infrasonic Wave Propaga-
tion in a Temperature and Wind-Stratified Atmosphere," J. Comp Phys. 1,
343-366 (1967).

Press, F. and Harkrider, D.: '"Propagation of Acoustic-Gravity Waves in
the Atmosphere," J. Geophys. Res. 67, 3889-3908 (1962).

Pierce, A. D.; Kinney, W. A.; and Kapper, C. Y.: "Atmosphere Acoustic-
Gravity Modes at Frequecies near and below Low Frequency Cutoff
Imposed by Upper Boundary Conditions," Report No. AFCRL-TR-75-0639,
Air Force Cambridge Research Laboratories, Hanscom AFB, Mass. 01731
(1 March 1976).

Pierce, A. D. and Kinney, W. A.: "Computational Techniques for the Study
of Infrasound Propagation in the Atmosphere,'" Report No. AFCL-TR-76-0056,
Air Force Geophysics Laboratory, Hanscomb AFB, Mass. 01731 (13 March 1976)

Posey, J. W.: M"Application of Lamb Edge Mode Theory in the Analysis of
Explosively Generated Infrasound," Ph.D. Thesis, Dept. of Mech. Engrg.,
Mass. Inst. of Tech. (August, 1971).



A5 A A 0 A 2 S N RO A

y

(a) Original.

(b) Deformed.

Figure 1.- k-integration contours.
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