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SUMMARY

This paper is a survey of some recent theoretical and experimental
research on structural-acoustic interaction carried out at the M.I.T. Acoustics
and Vibration Laboratory. The emphasis is upon the radiation from and
acoustic loading of baffled rectangular plates and membranes. The topics
discussed include a criterion for strong radiation loading, the "mass law"
for a finite panel, numerical calculation of the radiation impedance of a
finite panel in the presence of a parallel mean flow, and experimental
determination of the effect of vibration amplitude and Mach number upon panel
radiation efficiency.

INTRODUCTION

The problem of sound radiation from a baffled finite panel is fundamental
to our understanding of problems of radiation from structures and of the
influences of the acoustic field upon the structural vibration itself. A
rectangular panel is a reasonable representation of a structural element of an
aircraft fuselage, a machine casing, or of a ship's hull or sonar dome. These
are all cases where the question of acoustic radiation is of engineering
significance. More generally, this structural element forms a basis for
the development of techniques for dealing withmulti-modal excitation of
complex structures.

In the 1940's Lothar Cremer recognized that acoustic radiation from
panels becomes important when the bending wave speed of the panel vibration
equals or exceeds the sound speed in the adjacent medium. For an infinite
plate, when the bending wave speed is less than the sound speed there is no
radiation whatsoever. Modal radiation from finite panels can be classified
according to the characteristics of the component traveling waves which make
up the standing wave pattern of the mode. Thus, if the speed of the traveling
waves is greater than the sound speed one speaks of an acoustically fast
mode. It is possible for a traveling wave to have a speed less than the
sound speed, but to have a trace of its wave front traveling along a panel
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edge at a speed exceeding the sound speed, see figure 1. Such a mode is called
an edge mode., Finally, we have the case where no traces on any edge have
speeds which exceed the sound speed. Such modes are called corner modes. One
might say whimsically that the trace becomes supersonic as it turns a.panel
corner.

The efficiency of radiation from a finite panel follows this classifica~-
tion. Essentially the entire surface area of the panel contributes to the
radiation for an acoustically fast mode. We say that such a mode has a
radiation efficiency Orap of unity. Strips along two parallel edges of a
panel, each one quarter of a bending wave length wide, contribute to the
radiation from an edge mode. Here the radiation efficiency is of the order
10-2, Lastly, for a corner mode, small rectangles in each panel corner about
a quarter of a bending wave length on edge contrlbute to the radiation w1th an
efficiency of approximately 10~ -,

Although the physical concepts of modal radiation resistance are
straightforward to grasp, the precise calculations of radiation impedance
including radiation resistance, added mass, and mode coupling terms presents
a non-~trivial problem in numerical analysis. The double integrals involved
are improper, have integrands that are highly oscillatory, and contain lines -
of indeterminacy. Wallace (ref. 1) has calculated modal radiation resistance;
Sandman (ref. 2) has calculated modal added mass as well. We have extended
these calculations to include the capability for computing modal coupling
terms for zero mean flow. In addition we can compute the effect upon modal
radiation resistance and added mass of a subsonic mean flow over a panel in a
direction parallel to one pair of edges. A slip flow boundary condition is
imposed. [Thus, the effect of the boundary layer over the panel is ignored as
are also any interaction effects with flow resulting from finite amplitude
displacements. A physical interpretation of the effect of mean flow upon
radiation resistance is given.

It is customary to analyze the problem of panel response and radiation
using i vacuo mode shapes. When this is done the back reaction of the
acoustic field upon the panel vibration results in an infinite set of linear
equations in an infinite number of unknown modal coefficients. The presence
of modal coupling precludes the diagonalization of this system. For light
fluid loading such as in air, the coupling terms are on one hand ignored but
on the other hand are treated as the mechanism by which one obtains
equipartition of vibratory energy among panel modes resonant in a narrow
frequency band. This concept is fundamental to the method of statistical
energy analysis of multi-modal systems as developed by Lyon and Maidanik
(ref. 3) and Smith and Lyon (ref. 4). When multi-modal responses are
important, statistical energy methods permit the use of average radiation
resistances. Such usage appears in some of the experiments to be discussed
later. )

Building acousticians have long utilized the so called "mass law" in

calculations of transmission losses through room partitions. This law states
that the acoustic power transmitted through a panel is reduced by 6 decibels
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per frequency doubling or per mass doubling. The law was originally derived
for the case of an infinite panel without stiffness, see London (ref. 5}).
Practically the mass law is found to apply for reasonably damped plates at
frequencies below that for coincidence of free bending wave speed with the
sound speed. A

For finite panels the mass law is demonstrated here to apply to those
panel modes which are driven at frequencies well above their resonant
frequencies. The responses of these modes are mass-like and eventually
becomes acoustically fast. These considerations have particular importance
in high frequency radiation for they set a limit on the effectiveness of panel
damping treatments in reducing radiated sound. One must keep in mind that the
mass law applies to radiated power levels, not to sound pressure levels. For
a finite panel we shall discuss the implications of the effect of directivity
upon the interpretation of the mass law.

If the fluid lcading is heavy it may so affect the panel vibration that
the in vacuo modes lose their physical significance. Intuitively one would
define heavy loading as that condition when a layer of fluid over a panel,
an acoustic wave length in thickness, has a mass of the same order as the
panel surface mass. Davies (ref. 6) has quantified this idea by analyzing
the problem of a free wave on a semi-infinite membrane normally incident on
a rigid baffle in the presence of an acoustic medium. He finds that there is
a sharp division between heavy and light fluid loading when the parameter
1 = wm/pc is equal to unity. )

We conclude this review by a brief discussion of some recent experimental
results of Chang (ref. 7) on the influence of mean flow Mach number and
vibration amplitude upon panel radiation efficiency.

SYMBOLS
A = 2112, panel area
c sound speed
g bending wave speed
Cn membrane wave speed
Cy trace wave speed
D plate flexural rigidity
k = w/c, acoustic wave number
kl,k2 longitudinal and transverse wave numbers
kmn = [0nn/21)2 + (nﬂ/%z)z]l/z, modal wave number
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k resonant wave number

P

21,22 rectangular panel longitudinal and transverse lengths

M = U/c, Mach number

m panel mass per area

N number of panel resonances in a frequency band

Pmn modal acoustic pressure at panel

Rmnpq modal coupling impedance

T membrane tension

u mean flow in e direction

U, friction velocity

<V(w)>PLATE vibration velocity spectral density, averaged over panel

qu modal vibration velocity of panél

xl,x2 longitudinal and transversé coordinates

vyt vibration amplitude in viscous lengths \)/uT

Ab bending wave speed

u = wm/pPc, ratio of membrane mass impedance to fluid
characteristic impedance

HPa micro-Pascal, 1 Pa = 1 newton/(meter)2

v fluid kinematic viscosity

HRAD radiated sound power spectral density

P fluid density

Gmn modal radiation efficiency

GRAD panel radiation efficiency

grad non~dimensional radiated power {(Davies)

an modal added mass coefficient

w frequency, radians/second
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MODAL RADIATION IMPEDANCE

A useful classification of panel modes in terms of their radiation
characteristics is given in figure 2. This graphical representation, due
originally to Maidanik, shows panel modes as a lattice of points in a wave
number plot. For a given frequency, wave numbers are inversely proportional
to wave speeds. Hence any mode whose wave number kp, is greater than the
acoustic wave number k is a slow mode. The slow modes are further subdivided
into edge and corner modes. The edge mode radiation shown in figure 1 is
typified by the kj3 mode in figure 2. '

We have tacitly assumed sinusoidal mode shapes. This assumption is quite
good, even for a fully clamped plate, beyond the lowest few mode number pairs.
For a plate, the resonantly responding modes are those for which ky, = kP
where kp satisfies the dispersion relation

k; = mw?/D (1)

Obviously, the greatest radiation response will occur when a mode is both
resonant and acoustically fast, i.e. when one also has kp.i k. The lowest
frequency for which this can occur is the acoustical critical frequency

w=c? (m/pD)}/? ; (2)

For a membrane, kP = w/cmp where cy = (T/m)‘l/2 is the fixed membrane wave speed.
Thus all resonant membrane modes are either fast (cy > ¢) or slow (¢ < c).

By performing frequency transforms and modal expansions of the governing
differential equations for the panel and the acoustic field, one obtains a

relation o

P (W) = 7 v (W) R mmn=1,2,3,... (3)
mn mn
p,g=1 P2 Pq

between the modal coefficients v q ©f normal panel velocity and the
corresponding modal coefficients Py, (W) of the acoustic pressure field at the
panel. The modal coupling impedance Rynpg is a function of the acoustic wave
number k and the panel geometry. The (self) radiation impedance may be written

R mn = pc(Omn - i an) (4)

where pc is the characteristic impedance of the field. Typical plots of the
modal radiation efficiency Opp and the modal added mass coefficient Xp, as
functions of the ratio of acoustic wave number to modal wave number are shown
in figures 3 and 4, respectively. Both peak in the neighborhood of k/kyn = 1.
At high wave numbers all modes become acoustically fast with efficiencies of
unity and disappearing added mass. It is further true that modal couplings
disappear at high wave numbers.
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EFFECT OF MEAN FLOW UPON RADIATION IMPEDANCE

An analytical treatment of the effect of mean flow U over a vibrating
plate has been given by Chang (ref. 7). The mean flow is in the positive xj
direction at a Mach number M = U/c less than one, A linearized solution is
obtained in which both the kinematic and dynamic boundary conditions are
satisfied at the mean position of the panel. Viscous effects and the presence
of a boundary layer are neglected. The transient version of this problem was

solved earlier by Dowell (ref. 8). P

-

The principal physical feature of the effect of mean flow upon radiation
efficiency is readily grasped by reference to figure 5. The circle of radius
k in figure 2 is replaced here by an ellipse centered con the negative Xy axis.
The upstream traveling longitudinal bending wave component of a mode need only
exceed ¢ - U in speed in order for that mode to become (half) fast. Except
for those modes that are converted from slow to fast by the mean flow, the

~influence of mean flow upon radiation efficiency is quite small at moderate
.Mach numbers as is evident in figure 3. Much more significant increases in
added mass are obtained as the Mach number is increased (see figure 4).

MASS LAW FOR A BAFFLED RECTANGULAR PANEL

Since the radiation impedances are computable, it is possible to express
the modal response coefficients as a linear system of equations driven by the
modal excitations. Once the modal response velocities are obtained, the
radiation field can then be predicted using Rayleigh's equation. We shall
not write these expressions here. It will suffice to say that the system is
one of an infinite number of equations in an infinite number of unknowns.
Customarily an approximate solution is obtained by truncating the system and
inverting the coefficient matrix. This method works well for frequencies
corresponding to the first few modal resonances. Variational technigues are
available, Morse and Ingard (ref. 9), but they appear to offer no significant
advantage in treating this case.

From earlier remarks, it is evident that the coefficient matrix becomes
diagonal in the high frequéncy limit. All terms of the radiation impedance
matrix vanish except for the radiation resistances, all of which represent
unity efficiencies. Moreover, these modes respond as masses for they are
being driven well above their resonant frequencies. Closed formed solutions
for panel vibration and acoustic radiation can be obtained because the series
involved may be summed explicitly.

The results Of one of a series of experiments by Sledjeski (ref. 10) are
shown in figure 6. A nearly plane acoustic wave was directed normally through
a baffled rectangular membrane. The membrane dlmen51ons were 2 = 0,305 m,

%2 = 0.203 m. Its surface density was 0.36 kg/m . and it was tens1oned
uniformly to produce an in vacuo wave speed cp of 100 m/sec. The measuring
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microphone was placed one meter away directly over the membrane center on the
side opposite the sound source. Measurements were taken of the sound
transmitted through the membrane while the input to the sound source was very
slowly swept in frequency with output controlled to provide an incident

sound pressure level of 84 dB at the membrane.

Figure 6 shows a Successive pattern of resonances and "anti-resonances".
The resonances occur at the loaded natural frequencies of each odd/odd mode.
Both the frequency of resonance and the transmitted level can be predicted
from a simple single degree of freedom analysis using the calculated radiation
impedance and the measured total loss factor for the mode and frequency in
question. The "anti-resonances" occur at approximately the im vacuo
resonant frequencies of modes such as (2,2), (3,2), (2,3) (i.e. modes
‘'with at least one even mode number). Such modes cannot be excited by a
normally incident plane wave. The response at these "anti-resonances" comes
from the non-resonant responses of adjacent odd/odd modes and is greatly
weakened by the fact that the contributions of those driven above resonance
are out of phase with those driven below resonance. Here the computed
contributions of only a few of these adjacent modes are required to achieve
a good correlation with experiment.

At high frequencies, the "anti-resonances" become less and less
pronounced and there is a tendency for the sound pressure level to asymptote
to a fixed value. This is the mass law regime where the level is maintained
almost entirely by the lower non-resonant acoustically fast modes.

Such behavior seems anomalous in terms of the classical mass law.
However, as remarked earlier, it is the sound power, not the on-axis sound
pressure, which must decrease by.6 dB per frequency doubling. In fact, our
closed form solution for the sum of all non-resonant modes yvields precisely
the vibration of a rigid rectangular piston. At high frequencies, the
directivity index for this case is well-known to be 20 log (kV/B) plus a
constant. The mass law is not violated, for although the on-axis pressure
level approaches a constant value, the directivity increases by this rule,
insuring that the radiated power decreases by 6 dB per frequency doubling.
This conclusion was verified experimentally by measuring the directivity
patterns of the membrane radiation.

\\\ ”\
Yo
EFFECT OF FLUID LOADING
'\‘

Davies (ref. 6) has solved éhe problem of an acoustically slow wave on
a semi-infinite membrane normally incident on the edge of a semi-infinite
rigid baffle in the presence of an acoustic medium. A Wiener-Hopf technique
was used to obtain the reflection coefficient at the edge and the acoustic
power per span radiated from a neighborhood of the edge, both as functions
of the parameter U = wm/pc, the ratio of the membrane mass impedance to the
characteristic impedance of the fluid. His results for a non-dimensional
radiated power Orad as a function of U and the ratio cp/c are shown in
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figure 7. His Orad is not directly a radiation efficiency, rather 0,39 B is
an effective radiation efficiency for a zone of the order of an acoustic
wavelength wide along the edge. Note, as figure 7 shows, that it is possible
for the im vacuo membrane wave speed cp = (T/m)l/2 to be supersonic. The
fluid loaded free membrane wave speed, however, must remain subsonic.

7

-

It is clear by comparison of the exact calculations with the asymptotic
limits for large and small U that there is a clear demarkation at U =1
between the heavy and light fluid loading regimes. Davies shows further that
for cp/c << 1 and H >> 1, the acoustic power is radi%ted by a line source of
a quarter membrane wave length volume velocity. The inference is strong that
fluid loading effects upon mode shapes are negligible for u > 1.

EFFECT OF VIBRATION AMPLITUDE

We concluded this survey with a brief mention of a few experimental
results of Chang (ref. 7) on the effects of vibration amplitude and Mach
number upon panel radiation efficiency. A rectangular steel plate, 0.33 m
by 0.28 m, 0.152 mm thick was mounted flush in one wall of our wind tunnel
test section. The back side of the plate was enclosed in a highly absorbent
and damped box which also housed a non-contact solenoid exciter and
non-contact Fotonic optical displacement sensors. The opposite wall of the
test section was removed in the neighborhood of the plate. When the plate
was excited essentially all of its radiation was directed through the
opening into a fairly large reverberant chamber enclosing the test section.
The plate was excited by various 50 Hz bands of white noise at mean flow
Mach numbers M = 0 and M = 0.23.

The results of these experiments are shown in figure 8. The radiation
efficiencies Orap for each of the bands were determined from the expression.

HRAD (w) = pchAc <V {w)> (5)

RAD PLATE

where llgap is the spectral density of radiated sound power and <V (w)>prapp 1S
the vibratory velocity spectral density, averaged over the plate surface.
This radiation efficiency can be related to the modal radiation efficiencies
O bY

mn

1 _
O‘AVG =3 I © (6)

where N is the number of resonant modes in the band and the summation extends
over these modes. -Equations (5) and (6) are for multi-modal resonance
dominated radiation. Their validity is based on the statistical energy
arguments referred to in the introduction. For this plate approximately

10 modes are resonant in a 50 Hz band. :
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At Mach number 0.23 we see a significant increase in radiation efficiency

with increasing vibration amplitude y* measured in viscous lengths Vv/ur.

boundary layer thickening and amplitude change were used to vary yt. The

computed values are from the linear "slip flow" theory for resonantly
responding modes. The no flow results corresponded closely with the y+

data and with the no flow computations. Some calculations were made which

Both

128

indicated that changes in non-resonant mode contributions with Mach number were
also too small to account for the increases in radiation efficiency. It thus

appears likely that a non-linear interaction with the boundary layer is

involved. Unfortunately, it was not possible to vary M independently of y+

over a sufficient range to determine whether or not there was an independent

Mach number effect.
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Figure 1.~ Edge mode radiation.
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Figure 2.~ Classification of panel modes in wavenumber space.
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