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INTRODUCTION

We consider internal sound fields. Specifically the interaction between
the (acoustic) sound pressure field and the (elastic) flexible wall of an
enclosure will be discussed, A good introducticn to this subject is given in
"Sound, Structures and their Interaction" by Junger and Feit (ref. 1). Also
the author has briefly discussed this subject in his book, "Aercelasticity of
Plates and Shells" (ref, 2). This paper is a highly condensed version of
reference 3,

Such problems frequently arise when the vibrating walls of a transporta-
tion vehicle induce a significant internal sound field. The walls themselves
may be excited by external fluid flows. Cabin noise in various flight vehicles
and the internal gound field in an automobile are representative examples.,

Briefly considered are mathematical model, simplified solutions,
and numerical results and compdrisons with representative experimental
data. An overall conclusion is that reasonable grounds for optimism exist with
respect to available theoretical models and their predictive capability.

MATHEMATICAL MODEL

Here the essentlals of the mathematical noise transmission model will be
summarized, No mathematical derivations are included, however, A complete
description of the analysis is contained in reference 3. A modal represente-
tion of the structural wall(s) and acoustic cavity(ies) is used. TFor the
structural wall

wix,y,t) = L g (t) wm(x,y) (1)
m

w ~ physical wall deflection
qp - modal coordinate; function of time

Y - natural mode shape (in vacuum); defined over an appropriate area with
m .
coordinates x, y

Associated with the wm are natural mode frequencies, W and generalized
masses, Mn'

M, = JJ m(x,y) wm? dxdy m - structural mass per unit area (2)
*¥This work was performed under NASA Grant NSG 1253, Langley Research Center,
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For the acoustic cavity

> P (%)
p(x,¥,2,t) = pc” I ——5~F (x,7,2) (3)
n M
n
p - physical acoustlc pressure Pn - acoustic modal coordinate
p - alr density - acoustic natural mode (for rigid walls)

¢ - alr speed of sound absorbent wall impedance

a

Associlated with the Fn are acoustic natural frequencies, wnA, and generalized
masses

2
ffan
L E dxdydz V = total cavity volume (W)

The external pressure field, pE, is represented in terms of its genéral—
ized forces

QmF = —fpr(x,y,t) b (x,y) dxdy Apy = (external) structural wall area (5)
on area, AEW

The minus sign arises from the sign convention that w is positive outward and

pE is positive inward with respect to the cavity. See Figure 1.

The data given are:

pE for the external sound field Q, is determined from (5)

A, . .
m, Y , w for the structural wall Py ¢, F, w, B, for the cavity(ies)
M is determined from (2) Mﬁ is determined from (L)

Ay Pn are then determined from the modal equations of motion, i.e.

N » 2 2 % nan E
My Loy + 2ty + iy ] - per Agy T = A (6)
n
- 2 P C A -
A : 2 r nr-_
Pyt Byo¥ Agper 2 A v A Y% m (7)
r
where
FnFr dA
I
fanwmdxdy Z,
over AEW over AA
an = A ’ Cnr = "7§;~4— s AA = absorbent cavity wall area, Ly - modal

damping

These are two coupled systems of épring-mass-damper—oscillators and (6) and (7)
are familiar and computationally efficient descriptions of their dynamics.
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Moreover multiple walls or cavities may be readily included in a similar
fashion., TFor two connected cavities, see Figure 1, the common wall between the
two cavities may be treated as a (common) structural wall and in an obvious
notation (where we have cavities a and b) (6) and (7) are replaced by

- . 2 2 PanLanm 2 PnbLbnm
M Lo +20may +w a ] - peAy, & —===+ pc"Ay, I —z—=0 ()
n M n M
n n
a
. 2 C Y .
a As~_ & a s a _nr _—CW a
F n + wn Pn * A Apc 2 Pr MAa Ty L qu nm (9)
r . a m
b
. 2 C A -
b Ab b b b ar _ CW b
Pt Wy P~ + A ,0c L P, o =+ 3 z a L (10)
r - P m
a,
a n wm
where L nm = [f 3 dxdy, etec.. and the subscript CW denotes common wall.
CW

For simplicity we have considered the external walls rigid, However, clearly
(6), (1), (8), (9), (10) can be combined to allow for both external and
(internal) common wall motion with multiple cavities.

Once and Pn are determined, the physical deflection, w, and sound pres-
sure, p, are known from (1) and (3). The flexibility in the model is in
treating wm, wm and w n® Fn as given. TFor simple shapes, these are known

analytically. In some cases 1t will be possible to approximate the structural

wall and cavity by a simple shape or several component simple shapes. In other
cases it will be necessary to determine the natural modes by numerical methods

(finite element analysis) or experiment (scale models).

Before leaving the mathematical model, two of its widely applicable con-
sequences should be noted., Firstly, the coupling of the acoustic cavity-
structural wall is gyroscopic. This can be seen directly by replacing the
acoustic pressure, p, by the corresponding velocity potential. These are
related through Bernoulli's equation (ref. 2 and 3). The importance of
recognizing that the coupling is gyroscopic is that one can then invoke
Meirovitech's algorithm for determining the eigenvalues of the acoustic-structural
system using standard numerical techniques (ref. 4). This is preferable to
alternative formulations which lead to trial and error solutions to transcen-
dental equations, e.g. ref. 5. TFor additional detail, see reference 3., For-
tunately the coupled acoustic-structural wall natural frequencies are normally
little changed from their rigid wall acoustic mode and in vacuum structural
wall mode counterparts. This simplifieg matters considerably, of course, and
will often permit one to avolid a completely coupled analysis altogether. More
will be said of this in the next section.

The second theoretical consequence and one of more practical importance is
the direct way in which two interacting cavities can be treated. (Recall

1059



Fig.l.) If there is a pure opening between two cavities, i.e, one of zero mass,
damping, and stiffness, then (8) becomes

Pa La Pb Lb
nm 5 n- nm _

o )
n n

To determine the natural frequanciesaof this two cavity system, one assumes
simple harmonic motion, solves for P Pb from (9), (10) in terms of q, and

( ’
substitutes the result into (11) to obtain™(for Z - )
a

a a Lb tb
-1 nr 1 nr- nm
I Q. =0 vwhere Q =21 Lo 4+ == T - (12)
. U “rm rm -V, MZ[_wzwﬁa 1 %a Mz[-wzwﬁb ]

The natural frequencies are determined by the condition that the determinant of
Q.. must vanish. This is a non-standard eigenvalue problem because of the form
tﬁgt w? takes in Q , see (12). However it has one overwhelming advantage:

The size of the ma%%ix is determined by the number of two-dimensional pure
ogening modes, Y , rather than the number of three-dimensional cavity modes, F:,
F°, The former will be much smaller in number than the latter for a given
desired accuracy. This advantage will persist even when the opening is a
?tructural member of finite stiffness, etc., or there are more than two cavities

ref. 3).

Once the natural frequencles of the multiple cavities have been determined,
they may be treated as an equivalent single cavity so far as determination of
interior -sound levels is concerned.

SIMPLIFIED SOLUTIONS FOR INTERNAL SOUND LEVELS

The mathematical model may be solved numerically without further approxi-
mation. Indeed one of its advantages is that the calculation would be no more
(nor less!) tedious than is frequently performed today for structural vibration
response. However 1t 1s of interest to make further simplifications if little
accuracy is Jost and/or substantial computational reduction is possible. Here
a summary of highlights from analytical and numerical studlies is provided.

It is usually true that complete coupling between the structural wall and
acoustic cavity can be neglected. Hence it is normally permissible to first
calculate the external wall motion due to an external pressure loading (neglect-
ing the acoustic cavity) and then determine the internal acoustic cavity pres-
sure due to the now known wall motion,

There are two known circumstances where the complete coupling must be
taken into account (see ref., 3 for details):

(1) If the fundamental wall resonant frequency is well below the funda~
mental acoustic resonant frequency (in the direction perpendicular to the wall),
the Helmholtz mode of the cavity will provide a spring stiffness which may
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substantially raise the panel wall mode frequency above its in vacuum value,
But then only the single Helmholtz mode of the cavity need be cconsidered., An
example is discussed in the. following section.

(2) If a structural wall mode and acoustic cavity resonant frequency are
in close proximity, then again a fully coupled analysis may be required. But
then only the two closely coupled modes need be examined.

Assuming that the more usual situation applies, one may make further pro-
gress analytically 1f one considers simple harmonic external excitation at
either a structural wall or cavity resonant frequency. Also for broad band
random excitation, similar results may be obtained by invoking power spectral
analysis since for small damping the internal cavity response will be dominated
by the wall and/or cavity resonances, However if the external field has its
own dominant harmonics then the following simple results will not hold and one
must return to the full analysis (but hopefully still being able to neglect
full wall-cavity coupling). There is one advantage in such a situation, how-
ever, and that is & precise knowledge of damping will not be so important in
these off resonant conditions and hence the basic mathematical model should be
a more accurate representation of the physical system. Here only the simplest
type of external excitation will be considered,

External Exciting Frequency, wE, = Btructural Resonant Frequency, W,

The response will be dominated by the sth structural mede and the cavity pres-
sure 1s given by

2 B

|p°| = il N S
e M, o Mt [-w 2+ ]
n S n

(13)

If Wy < wnA for all wnA # 0, then typically ]pcl > pE and conversely.
External Exciting Frequency, wE, = Cavity Resonant Freqguency, wcA
The cavity response will be dominated by the cth cavity mode, and if in addi-

tion there is a dominant structural mode (say s ), the cavity pressure is
given by

E
F, I p wsdA
c_ A (11)
P TTTF § aa

c's

on AF

e E E ¢ B . .
From (14), at most p- = p . Forp W Fc on AF’ P =p « In particular if

Fc and pc are approximately uniform over AF, then pc =va.

It is interesting to note that neither (13) nor (14) involve the impedance
or damping of the cavity. This is true under even broader circumstances, i.e.
the wall absorbtion is not important in determining internal sound levels due
to external sources (ref. 3). ‘
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NUMERICAL RESULTS AND COMPARISONS WITH EXPERIMENTS

For a single cavity with a flexible wall and an external sound source,
the theoretical model has been verified experimentally by several authors
(refs. 6-11). Hence we first assess the capability of the model to describe
accurately the acoustic natural modes in multiply connected cavities. : Once the
combined natural modes of the multiply connected cavities are determined and
verified experimentally, they may be treated as one single cavity. Then the
earlier work for a single cavity may be taken as experimental verification for
the forced excitation of multiply connected cavities as well.

Acoustic Natural Modes in Multiply Connected Cavities

The experimental studies discussed here were conducted by Smith (ref. 12).
A representative configuration consists of two acoustic cavities, one twice the
dimensions of the other, with rigid walls and a partial opening between them,
In Figure 2, the longitudinal pressure distributions (along with their resonant
frequencies) are shown for the first six (symmetric with respect to height)
acoustical modes with a full opening between cavities. The agreement between
theory and experiment is very good.

In these experiments, ¢ = 343.5 m/sec, a = 4 = 25.4 cm and the width
dimension was 10.16 cm to prgvide two-dimensional conditions in the frequency
range of interest. The thickness of the partition (assumed zero in the theo-
retical calculations) is 1.27 em as is the thickness of all external walls.
The cavity is constructed from plexiglass.

Forced Response of a Single Cavity with a Flexible Wall

Experimental Arrangement:

For this discussion, Gorman's work (refs. 8, 9) is used; however, also see
references 6, 7, 10 and especially 11l. The flexible wall panel was 25.4 cm x
50.8 em x .127 cm aluminum alloy plate that was bonded onto a stiff rectangular
frame., By bonding the plate in this way, a clamped edge boundary condition was
approximated. A sealed cavity, also 25.4 cm x 50.8 cm, was constructed beneath
the panel so that the cavity depth could be varied., The cavity enclosure was
made of 1,27 cm thick plexiglass.

The panel was excited acoustically by a Wolverine LS15, 20 watt loud-
speaker driven by a B & K Beat Frequency Oscillator, type 1022, By using a
single speaker, an external field distribution that was modestly variable in
space was cbtained. Measurements were made of panel deflections and cavity
pressures due to a pure tone. Only the latter are considered here,

Cavity Pressure Measurement:

The sound pressure level within the cavity was measured using a B&K 1/4"
microphone, type 4136 with a type 2615 cathode follower with type UAOO35 connector
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In Figure 3 the cavity pressure is plotted against frequency. This pres-
sure is the difference between the dB level inside the cavity and that outside
the cavity on the upper surface of the panel., The dominant features are the
three primary resonant peaks occurring at 113 cps, 210 cps, and 518 cps. The
first two resonances correspond to the first and third panel modes, and ‘thus
indicate that the panel is driving the cavity at these frequencies. The reso-
nance at 518 cps is the fundamental cavity depth mode., Theoretically, if the
external pressure were wmiform over the flexible panel, it should be motionless,
and the presgure level difference between the external and internal measurements
should be zero when the external frequency equals the cavity resonant frequency.
This is nearly the case, see Figure 3.

Results:
Panel Resonant Frequency Changed by Cavity

In Figure 4, a comparison between theory and experiment is made. The ratio
of panel frequency (modified by coupling with the cavity) to "in-vacuo" panel
frequency is plotted against panel length to cavity depth ratio, a/d. The "in-
vacuo' panel frequencies were computed from Warburton's theory, (ref. 13) and
the panel frequencies' variation with cavity depth were computed from Dowell
and Voss' theory (ref. 10) which is an earlier version of the present analysis,
There is excellent agreement between theory and experiment at the large cavity
depths, with some variation from theory occurring at shallow cavity depths.
Again it should be emphasized that this interesting change in panel frequency
occurs only for flexible panels and stiff (shallow) cavities.

Panel Damping

Three types of damping will be referred to in this discussion: constant
damping, frequency damping, and experimental damping. Constant damping is the
value measured for a 30.48 cm cavity depth and assumes that there is no varia-
tion of panel modal damping ratio with cavity depth. Frequency damping allows
for variation of damping ratio with frequency and employs the data measured at
a 30.48 cm cavity depth for various panel resonances. Thus, the only effect
changing this type of damping is the variation of panel modal frequency with
cavity depth (Fig. 4 and ref. 8). Experimental damping is that measured for
the exact conditions under study.

Cavity Pressure and Damping Effects

Figure 5 plots the variation of cavity pressure with cavity depth for the
three different theoretical damping models, i.e. constant damping, frequency
damping, and experimental damping. The exciting external frequency is equal to
the fundamental panel resonant frequency. Recall that the damping ratios used
in these calculations are those of the panel and not of the cavity; the latter
were neglected. Even though cavity damping has not been considered, there is
excellent agreement between experiment and the theoretical model using experi-
mental damping. ‘

Similar results have been obtained for random external pressure excitation
(ref. 9). Pretlove (ref. 7) has made measurements of panel natural frequency
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variation with cavity depth; Guy and Bhattacharya (ref, 11) have measured
cavity pressures and panel natural frequencies., Generally good agreement with
theory has also been shown in references T, 9 and 11,

CONCLUDING REMARKS

A comprehensive theoretical model has been developed for interior sound
fields which are created by flexible wall motion resulting from exterior sound
fields. Included in the model are the mass, stiffness and damping character-
istics of the flexible wall and of the acoustic cavity. Full coupling between
the wall and cavity is permitted slthough detailed analysis, numerical results
and experiment suggest that it is the exceptional case when the structural wall
dynemic characteristics are significantly modified by the cavity.

Based upon the general theory, an efficient computational method is pro-
posed and used to determine acoustic natural frequencies of multiply connected
cavities, Simplified formulae are developed for interior sound levels in terms
of in-vacuuo structural wall and (rigid wall) acoustic cavity natural modes.

Comparisons of theory with experiment show geherally good agreement, The
principal uncertainty remains the structural and/or cavity damping mechanisms.
For external sound excitation, cavity damping is demonstrated to be generally
uinmportants however it may be of importance for interior sound sources., The
results of Wolf, Nefske and Howell (ref. 14) and Petyt, Lea and Koopman (ref.
15) using finite element techniques and Howlett and Morales (ref. 16) using
modal analysis also suggest that effective analytical models are available,
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Figure 1.- Acoustic cavity-structural wall geometry.
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Figure 2.- Comparison of theoretical and
experimental cavity acoustic modes.
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Figure 3.- Cavity response to sinusoidal external field.
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Figure 4.- Cavity effect on panel natural frequencies.
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Figure 5.- Cavity pressure versus cavity depth.
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