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INTRODUCTION

Previous studies of the radiation of sound from vibrating cylindrical
beams have been concerned with radiation from resonant modes of these finite
beams, with specified end boundary conditions. These include studies by
Yousri and Fahy (ref. 1) and Kuhn and Morfey (ref. 2). The radiation efficien-
¢y or radiation loss factor determined in this manner represents the con-
tribution of a single mode to the radiation at a given frequency. More
recently, Yousri and Fahy have presented (ref. 3) a more general derivation
which shows that the radiation efficiency for a cylindrical beam is a sum-
mation of terms that represent contributions from various modes. This summing
over modes is necessary whenever more than one mode is excited in the fre-
quency band of interest.

The results of the present study are given in a form which depends only
on the frequency of the beam vibrations and the physical characteristics of
the beam and its surroundings. A statistical consideration of random beam
vibrations allows this result to be independent of the boundary conditioms at
the ends of the beam. The acoustic 'power radiated by the beam can be deter-
mined from a knowledge of the frequency band vibration data without a
knowledge of the individual modal vibration amplitudes.

A practical example of the usefulness of this technique is provided by
the application of the theoretical calculations to the prediction of the
octave band acoustic power output of the picking sticks of an automatic
textile loom. Calculations are made of the expected octave band sound pressure
levels based on measured acceleration data. These theoretical levels are
subsequently compared with actudl sound pressure level measurements of loom
noise .

THEORY

A beam of finite length is modelled as a cylinder of infinite length
situated on the 2z axis (see Fig. 1). The transverse velocity of the beam
vibrations is assumed to be zero except on the segment of the cylinder which
lies between the points z=4£/2 and 2z=-2/2 . On this vibrating segment
the transverse velocity consists of x and y components, v_and v_, which
are expanded in a Fourier series of arbitrary fundamental timexperiod W
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The individual components of the Fourler series are represented as the super-
position of two traveling waves moving in opposite directions on the beam

. L ik, z —i(kpz + % % |
T (2) = 7 (eTFrE 4 omilkez 0, A o
where 1s the wave number of the beam vibrations, and ¥ represents the

relative phase between the two traveling waves. TFurthermore, vn(z) can be
written as

?r"n(z) = S?(a) el%2 4 | (3)

and the radial or normal velocity is

o

v (8,2) = (cos8® T + sing H e {3(06) Lz g
x

(4)

The acoustic pressure due to these transverse vibrations is found by
applying the acoustic boundary condition at the surface of the cylinder to the
solution of the linear acoustic wave equation in cylindrical coordinates. The
partial differential equation and the appropriate boundary condition are

%r 1dp ., 1% P 1%
AT 5 3 5 v2 - 0 (5).
Qr T 39 32 c at

r"'ro

The solution to‘Eq. 5 can be written as a general linear combination of the
seperable solutions (see ref. 4). The solution for outgoing waves of fixed
frequency W o nW, can be written :
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where k =(k2— az) , k= /c and H(l) is the Hankel function of the first
kind and of order m . Applying themboundary condition of Eq. 6 to the above
expression, one finds that

x3
P(r,9,z) = (cos® & + sin@® ) - g.z( 0, 1)V (a )ei % 4 (8)
Hil)(krr)
where Z(d,r) =1iwp ) 9)
o H (k)
rl r o

The time average acoustic power radiated by the beam at a given frequency
is found by taking the time average -of the integral over the surface of the

cylinder of the product of the acoustic pressure at the surface of the cylinder
P(ro,Q,z) and the normal velocity vr(G,z)

L .
W o= -% Re%i/&x SiP(ro,G,z) v%(8,z) r_do dg} (10)

L

where Re denotes the real part, and #* indicates the complex conjugate. The
ensemble average acoustic power radiated in a given frequency band is found by
taking the ensemble average of a sum over the frequencies within the band of

the result of Eq. 10. The ensemble average is performed assuming all relative
phases to be equally probable.

The result of the 6 integration in Eq. 10 is 7 , and the 2z integra-
tion produces a dirac delta function 2m§(a-e&”) . This allows one of the o
integrations to be performed by inspection, yielding

. OO
W= 1t fié}ke {z (0} (lv @]* + ]vy(a)]z) do (11)
where Zo(a) = Z(a,ro) = iw p P (12)

erl (krro)

This expression for the acoustic power radiated by a finite cylinder can

be simplified by applying some of the properties of Hankel functions. For
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kz < uz the rgumgnt for the Hankel functions is imaginary and Re{Z (o)} is
zero. For k™ > o~ the argument is real and the Wronskiam relation for the
Hankel functions gives (ref. 5)

2wp 1
Re{z ()} = (13)
(o} mr 2 (l)) 2
o ki [Hy (krro)l ,
Referring back to Eqs. 2 and 3, one can write ?(a) as the inverse
transform of ¥(z) , which when evaluated gives
o [as 2 PN )
o) = ZE. Sln(kb+ “)2=e-iw N 31n(kb u)z (14)
D n (kb+ o) (kb— o) '
Fherefore
2 2 2 2
o2 + oo = T Pyl S Gt B
v (o + [v_(a = T
X y TT2 (kb+ o)
sin’ (i~ 0)% sin(k + )3 sin(ky- 0)5
- + 2 cosy (15)
(k-b" 0‘) (k'lz) - 0,2)

The cosy term goes to zero in taking the average assuming all © to be
equally probable. It can be shown, by taking the time average of ¥V , that
the mean square velocity in a given frequency band is equal to a sum over the

frequencies in the band of the magnitude squared of Vﬁ

2 - 2 2 — 2
<VX> = 2 lvnxl and <vy> = Z lvny] (16)

assuming x and y vibrations to be uncorrelated.
All these results are incorporated into Eq. 11 with the result that the
acoustic power radiated in a given frequency band is

A
L [sinz(kbm)—%

2..(1)- 2 2
K krIHl (krro)I L (kb+a)

sinz(kb—d)%

(1g,~0)°

_2wp . 2 2
W == (<vx>+<vy>) + do. (17)

where all frequency terms are evaluated at the center frequency of the band.

This result can be written in the form of a radiation effiéiency for the
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beam. For a cylinder the radiation efficiency is

G = LA (18)

2 2
pcﬂr02(<vx> + <vy>)

With the change of variables B = o/k and the above expression, one can write
the radiation efficiency for a cylindrical beam

-/ sin2(5+8)5& . :
o =3 2 (D) l/*"‘ 2 2 e a9)
L (1-8%) [H;7 1-8%kr ) | (e+B)

-/

where € = kb/k and a symmetry of the integral was used to simplify the
expression.

RESULTS

In the low frequency or small radius limit, kr 4is small. An approx-
imation may be used in place of the Hankel function in order to simplify the
integral in Eq. 19. The first term in the series expansion for the derivative
of the Hankel function gives ‘ '

D @)? = 45 L (20)
™ zZ

With this aﬁproximation and the change of variables u = (e+B)k%/2 , one gets

3 ’ (e:+1)--1254!g
(kr ) 9 9 sin?
¢ = —— - G-a713= a - (21)
k! L u2
(e-1)5—

Well below the coincidence frequency (k, =k), u2 in the denominator can
be approximated as u? = (kSL/Z)2 . The result of this approximation is

3cos It sin

a?

r . .
g=§(uazq%(%f[1— - cos kf}] (22)

This expression is directly comparable to the results of Kuhn and Morfey (ref.
2) in their low frequency approximation of the Yousri and Fahy (ref. 1) ex-
pression for the radiation efficiency of a simply supported beam. The radia-
tion efficiency for the simply supported case gives a result which is exactly
twice that given by Eq. 2 2when evaluated at the same resonance frequency. The
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reason for this difference lies in the fact that the simply supported boundary
condition implies a specific phase Y in Eq...2. This phase happens to be one
which maximizes the radiation efficiency. Other possible phase relationships

result in lower values for the radiation efficiency. It will be shown later -
that these differences disappear at higher frequencies.

At High frequencies the major contribution to the integral in Eq. 19
comes from the vicinity of f = -£ . Expanding the Hankel function term in a
Taylor series about that point and keeping only the first term one gets

2

1 (23)
mhr, (l—ez)lﬂil)’(Vl—eikxo)lz

0 =

This igs the radiation efficiency for a cylinder of infinite length. If
(1—82)l kr0>> 1 , then the derivative of the Hankel function may be expressed
in terms of its asymptotic limit and

/{:251(kr0)2

(1—52)(kr0)2+l

o (24)

For purposes of a numerical evaluation of Eq. 19, the radiation efficiency
is considered as a function of three independent variables only one of which is
frequency dependent. These are kr_ Sl,/r0 and

et )2 = &Y (er)

1/2 (25)

where m is the mass per unit length of the beam and B is the bending
stiffness. This last parameter is chosen so as to eliminate .the frequency
dependence of € = k, /k . Figs. 2 and 3 show the results of a numerical
calculation of the radiation efficiencz. Each graph shows O as a function
of kr0 for several values of e(kro) /2 and for one value of Q/ro. A .
valid comparison with the modal approach can be made by leaving the phase angle
in Eq. 15 and continuing the derivation of the radiation efficiency. The result
is

A ! L sin” (e+8):

2

—_— : +
LS ), (187 8D “er_v1-8% |2 | (e48)?

+ cosy

sin(€+6)§& sin(e—B)%&-}
dB (26)

e2-8%) ]

Fig. 4 gives thig comparison for the two extreme cases, where the cosy term
is either always positive or always negative at the modal resonance frequencies.
It is clear from the figure that the contribution from the second term to the
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integrand in Eq. 26 diminishes at higher frequencies, as the two extreme cases
converge towards the average.

APPLICATION TO TEXTILE LOOM PICKING STICKS

In order to apply these results to the picking sticks of an automatic
textile loom, it is necessary to generalize them to allow for different
radiation efficiencies and perhaps different effective radii for the =x and y
vibrations. This 1is necessary to account for the fact that the picking stick
is more nearly rectangular in cross section than circular. With this in mind
one can write the acoustic power as

2 2
W = pcrmd [rox<vx> O + roy<vy> Uy] (27)

Values for the parameters were chosen to correspond to the characteristics
of the picking sticks. The numerical technique used to evaluate ¢ and
measured vibration data were used to determine the octave band acoustic power
output for each of the two picking SthkS on a loom. Fig. 5 shows a graph of
the resulting power levels.

From these power levels, octave band sound pressure levels were calcula-
ted at a reference point one meter from the front of the loom, assuming
symmetric cylindrical spreading,

2 .
_ <p~> 2, _ _pc
SPL = 10 logy 2 P> = e Miere T Yright! (28)
ref
where R is the distance to the reference point and P 2 X 10 N/m is

the reference pressure. A comparison of this predlctedrsound pressure level
with sound pressure levels actually measured at this position is shown in

Fig. 6. This graph shows good agreement between theoretical and experimental
results for frequencies above 125 Hz. The agreement is particularly close

in the range of frequencies which have the highest sound pressure levels. Both
curves in the figure represent an overall A-weighted level of 94 dBA. It is
clear however that the low frequency predicted result falls short of the
measured values. It is thought that there may be other noise sources on the
loom which contribute to the higher levels at these low frequencies.
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Figure 1.- Beam location and coordinate system.
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Figure 2.- Radiation efficiency of a beam for &/r = 50.
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Figure 3.~ Radiation efficiency of a beam for JL/ro = 25,
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Figure 4.~ A comparison of radiation efficiencies, — averaging
technique, 52,/r0 = 50, SVErO = (0.7, x modal approach.
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Figure 6.- Theoretical and experimental sound pressure levels.
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