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Abstreact:

A semi-empirical extrainment theory was employed to
correlate the measured temperature depression, AT, in a
developed cavity for a venturi. This theory correlates
AT din terms of the dimensionless numbers of Nusselt,
Reynolds, Froude, Weber and Péclat, and dimensionless
cavity length, L/D. These correlations are then compared
with gimilar correlations for zero and quarter caliber
ogives. In addition, cavitaetion number data for both
limited and developed cavitation in venturis are
presented.
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Nomenclature

cavity surface area

ratio of vapor volume to liquid volume involved in sustaining a
natural cavity

area coefficient = Awlnz
specific heat of liquid

flow coefficient  Q/V D’
model diameter

winimum cavity diameter

Froude number = Vw//gﬁ
acceleration of gravity

film coefficient = q/AwAT
thermal conductivity of liquid
cavity length

Nusselt number = hD/k

cavity pressure

Péclét number = V_D/o

Prandtl number = v/o

vapor pressure

free stream pressure

heat transfer rate

volume flowrate of vapor in cavity
Reynolds number = V_DB/v

cavity temperature

free stream temperature
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~ temperature depression* Tw-Tc
- free stream velocity

< Weber number = va57J§75

- thermal diffusivity of liquid
- latent heat of vaporization

- kinematic viscosity of liquid
-~ mass density of liquid

- mass density of vapor

- cavitation number

-~ gurface tension

*
All experimental values of AT are maximum values obtained from axial

surveys of the cavity.
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I. Introduction

Cavitation is an lmportant consideration in the design and analysis
of liquid handling pumps. Limited cavitation occurs whenever the local
pressure is reduced to some critical value, A further reduction in pressure
results in developed cavitation. In this flow regime, it is difficult to
predict the net positive suction head (NPSH) required for the satisfactory
performance of a pump. The NPSH requirements are determined by the
combined effects of cavitation, fluid properties, pump geometry and punp
operating point.

The determination of the cavity pressure is of primary importance in
understanding the influence of developed cavitation on pump performance.
In most ceses, the designer assumes that the cavity pressure is equal to
the vapor pressure at the bulk temperature of the liquid., This estimate
is quite good in the absence of noncondensable gases when Py and dPy/dT
are both small, This occurs at states significantly below the critical
temperature, for example water afr room temperature, but for many £luids
such as liquid metals and cryogens the operating temperature can be such
that P, and dP,/dT are both large. In these cases, the assumption that
the cavity pressure is equal to the vapor pressure corresponding to the
bulk temperzture of the liquid can lead tc very large errors.

A continucus vaporization procass which is dependent upon heat transfer
at the liquid-wapor interface is required to sustain a developed cavicy in
a pump. As a result of vaporization, the cavity temperature is less than
the inlet bulk liquid temperature so that the cavity vapor pressure is
less than the vapor pressure corresponding to the inlet bulk liquid tempera-
ture. This phenomenon is called the thermodynamic effect and is dependent
on fluid preperties, velocity, size and geometry. The thermodynamic effect
is important because the NPSH required to produce a given cavity volume
will decrease as the temperature depression at the cavity increases.

Stahl and Stepanoff [1]* were the first to analyze the thermodynamic
effect for developed cavitation with particular emphasis on pump applica-
tions. They formulated the B factor methed whieh is quasi-static in nature.
Fisher [2], Jacobs {[3], and Acosta and Hollandey [4] also considered the
B factor method and its application.

The equation for predicting the temperature depression (AT) from the
B factor method is

=p-Y A
AT = B v )]

*
Numbers in brackets refer to documents in list of references.
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where the factor B is defined as the ratio of vapor volume to liquid

volume invelved in the vaporization process. However, the primary practieal
- problem which a designer encounters in attempting to use Equation (1) is

the calculation of B.

In order to make the B factor method mcre useful as a dats correla-
tior method, Gelder et al. [5] and Moore and Ruggeri [6] extended it in
a seml-empirical manner. They expressed tnwe B factor in terms of
dimensionless ratios

v Ny Ny [ N3 Ng
B=B {n D LD a_ (2)
R VmR DR I(L/D)R e

and then determined the exponents empirically. The subscript R employed

in Equation (2) indicates a reference value. Hord et al. [7, 8, 9] have
further extended this approach by including other factors such as kinematic
viscosity in Equation (2). Finally, Hord [10] has applied the correlation
to pumps.

The entrainment theory was developed as an alternate to the B fa:tor
method for predicting the thermodynamic effect, It is a dynamical approach
based on an energy balance for the cavity. It is semi-empirical 1ike the
B factor method but has the advantage of expressing the terperature
depression in terms of basic physical quantities. The principal theoreti-
cal and experimental aspects of this theory are presented in Holl et al.
[11] and Weir [L2].

From the entrainment theory, the temperature depression (AT) is given
by

— " c . (3)

The Péclét number and fluid property terms are known from the free stream
conditions (Te and V) and the characteristic model dimension (D). However,
Cp» Cg and Hu are characteristic of the cavity flow and are to be determined
empir?cally,

Exrensive temperature depression data correlated by means of the
entrainment theory have been reported for ogive nosed bodies {11] [12].
In addition, temperature depression data correlated by means of the B
factcr method have been reported for venturis (6] [7]. It was decided
that it would be desirable to compare the venturi and ogive data when
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correlated by the entrainment theory. In order to accomplish this goal,
it was nec! ~sary to experimentally determine the area coefficient (Cp)
and flow coefficient (Cq) for the venturis. These ere then employed in
Equation (3) to determine the Nusselt number by using the temperature
depression data of Moore and Ruggeri [6] and Hord, et al. [7]. The AT
data for the venturis were obtained in Freen 114, hydrogen and nitrogen
whereas the ogive AT data were obtained in Freun 113 and water,

In addition to the aforemautioned correlations of AT, cavitation

number data for both limited and developed cavitation in venturis are
also presented in this report,

II. Empirical Equations for CA, ©Q, Nu and AT

In order to determine swu equatica which correlates AT data by means of
the entrainment tlieory, i.e. Equation (3), it is necessary to determine
empirical equations for Cp, Cg and Nu in terms of pertinent physical para-
meters, An examination of the problem led to the following general forms
for Cu, Cq and Nu

- a
C, = € {L/p} 4)
Gq = ©, Re? Fr® wed {L/p}° (5)
Nu = C Ref Fr8 Wel' prt {1./13}j (6)

3

As will be s=2en in subsequent sections, two combinations of terms were
tried for Cp and Nu. The first corrzlation refers to that correlation in
which Weber number was not considered i,e. d=h=0, Whereas, the second
correlation refers to that correlation in which Froude number was eliminated
l.e. ¢=g=0.

Employing Eguations (4) - (6) in Equation (3) yields the general
empirical form for the temperature depression as

P,
AT = cll(L/D)k re” Fr® we” PP pe -lx— ')}

P, Cp
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The unknown constants for all of the correlations were determined by
a modified least-squares approximation technique, Taking the logarichm
reduces the equation to linear form. Then, as outlined by Becket and
Hunt [13], minimizing the sum of the squares of the differcnce between
the logarithm of the measured data and the correlative expression yields
a set of simultaneous equations which can be solved for the unknown
constants. Details concerning the application of this modified least
square approximation technique to the entrainment theory are given by
Weir [12].

ITI. Experimental Results for the Venturis

A. Description of the Experiments

The experiments were conducted in water near room temperature with
two venturis test sections in the 1.5 inch ultra-high speed cavitation
tunnel located in the Garfield Thomas Water Tunnel building of the Applied
Research Laboratory at The Penusylvania State University. A photograph
of the facility is shown in Figure 1l and a detailed description of the
facility and supporting equipment is given in Reference [14]. The facility
is designed to permit large variations in velocity, pressure, and temper-
ature for various liquids. The maximum operating conditions for these
parameters is 300 fps, 1200 psia, and 300 °F.

The interunal contours of the two geometrically similar venturl test
sections are the same as those employed by NASA [6, 7]. The minimum
internal diameter is 1.378 inches and 0.975 inches for the full scale
and 0.7 scale venturi, respectively. A photograph of the venturis is
shown in Figure 2 and a detailed sketch of the full scale venturi is
shown in Figure 3. (Details of the two venturis are given in ARL Drawings
SKD 70533 and SKD 70534.)

The venturi test sections are 3 inches longer than the standard test
sections for the 1.5 inch cavitation tunnel. Therefore, it was necessary
to construct a 3 inch cylindrical section for the lower leg of the facility
and extensions for the four bars supporting the test section in the upper
leg., (Details concerning these additional parts for the facility are
glven in ARL Drawing SKR 70532.)

The venturis were instrumented wich a pressure port slightly up-
stream of the throat to measure the incoming velocity and four pressure
perts downstream of the throat to measure the cavity pressure., Gas
injection ports for forming ventilated cavities with nitrogen gas were
distributed tangentially around the test section, and a manifeld which
fit over the exterior of the test section distributed gas to the
injection ports. (This manifold is shown in the photograph of Figure 2.)
In addition, two probes were installed downstream of the throat to deter-
mine the cavity thickness for use in the determination of C4. The loca-
tions of the pressure ports, pas injection ports, and probes are shown in
Figure 3 for the full scale venturi.
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The following tests were performed with the two venturis:

1. Determination of Cavitation Number
The cavitation unumber (o) for developed cavitation
was determined as a function of L/D for ventilated
and natural cavities. For limited cavitation, ¢
was determined as a funetion of veloeity.

2. Detevrmination of the Flow Coefficient
The flow coefficient (Cp) was determined as a
function of L/D, velocity and wenturi diameter
for ventilated cavities.

3. Determination of Cavity Geometry
The area coefficient (Cp) and dimensionless cavity
diameter (D,/D) were determined as a function of
dimensionless cavity length (L/D) for natural
cuvities.

The experimental data for the venturis ere tabulated in Table I.

B. T exmination of Cavitation Number

The cavitation number (o) is defined as

P, - P
)

o«

o= 8)

1/2pv

where P, p, and V., are the pressure at infinity, liquid mass density and
velocity at infinity, respectively, The quantity P is an appropriate
measure of the cavity pressure. TFor developed cavitation, this pressure
is

P=P (9)

where P, is the measured cavity pressure whereas for limited cavitation
it is

P=P (10)
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where P, is the vapor pressure corregponding to the bull temperatv e of
the liquid.

For the venturis the reference pressure {Pw) and velocity (V,,) were
measuiced in the section shown in Figure 3. The various pressures were
measured by Pace variable reluctance transducers.

As is cu vomary at the Garfield Thomas Water Tunnel, desinent cavi-
tation was employed as the experimental definition of limited cavitation,
The desinent cavitation number for the venturis is shown as a function of
Reynolds number in Filgure 4. It is seen that the desinent cavitation
number for water compares faverably with the minimum pressure coefficient.
However, the water results are consistantly higher than the experimental
results for Freon 114 [15] and iiquid hydrogen [16]., Cas effects on water
and surface tension effects in liquid nydrogen [16] may cause trends of
this type.

The cavitation number (o) for developed ventilated and natural
cavitation on the venturis is shown as a function of dimensionless cavity
length (L/D} #n Figures 5 and 6. These graphs show that 0 is independent
of L/D and that a value of U equal to 2.32 can be utilized to represent
all of the data for natural and ventilated cavities. This compares to a
coustant cavitatiop number of 2.47 from earlier tests by Moore and Ruggeri
[6]) and Hord et al. [7].

Investigators of axisymmetric bodiles, see for example References [12],
[17] and [18], have shown that the cavitation numbcr is a single valued
function of dimensionless cavity length. However, che venturi data in
Figures 5 and 6 do not display this characteristic. As shown by Weir [19],
blockage effects on ogive nosed bodies are such that as the blockage
increasas, the cavitation number tends to become independent of L/D.
Perhaps the constant cavitation number characteristic of the venturi is
due to a similar effect.

C. Determination of the Flow Coefficient

It is well known that there are many similarities between the char-

acteriscics of natural and ventilated cavities for the same velue of

imensionless cavity length. (This applies only when the ventilated
cavity operates in the reentrant jet regime {20].) The German hydro-
dynamicist H, Reichardt [18] was apparently the first to demonstrate
this characteristic by showing that the drag coefficient for an axially
symmetric body was the same for both natural and ventilated cavities
provided the cavitation number based on cavity pressure was the same for
both flow states. Billet [21] has shown that the geometric characteristics
of natural and ventilated cavities on ogives are the same when the cavi-
tation number is the same.

Early in the development of the entrainment theory for correlating
temperature depression data it was felt that the aforementioned similarity
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principle would be applicable to the volume flowrate of gas in the cavity.
Thus it was assumed that the characteristics of the flow coefficient for
the vapor flow in the cavity would be approximated by the flow coefficient
for a ventilated cavity hoving the same geometrical characteristics.
Furthermore, it was decided to minimize the diffusion of gas at the cavity
wall and thereby produce a value of Cq which was based on the entire
volume flowrate required to sustain a cavity of a given size. Billet [21]
was the first to apply the similarity concept to the entrainment theory.
Subsequently this work was improved and is reported in References [11],
(123, [20) and [22].

The diffusion of air across the cavity wall was minimized by main-
taining the air pressure in the cavity at the saturation prezsure (Pg_g)
of the dissolved gas in the free stream, This pressure is given by Henry's
law namely

P = R {11)

where ¢ is the dissolved air content and B is the Henry's law constant.
The dissolved air content was measured by a Van Slyke apparatus. Since
we must have Po = T _g to assure no diffusion, this implies that the
reference pressure %Pm) from Equation (8) is given by

P =1/2p0V o+P (12)

G-S

It is apparent that diffusion cannot be entirely eliminated by this pro-
cedure since the cavity pressure is not precisely constant throughout the
cavity. Since air was continuously forced into the water during a test
the air content varied and so it was necessary to adjust the value of P
in order to satisfy Equation (12). Furthermore, frequent shut-downs of
the tunnel were required in order to reduce the air content.

Measurements of the volume flowrate of gas required to sustain venti-
lated cavities were made for velocities from 17 to 30 ft/sec and dimension~-
less cavity lengths from 1.0 to 3.0 for the two venturis. Nitrogen was
used as the ventilation gas and the flowrate was measured by a Gilmont
float-type flowmeter.

Results of the tests are shown in Figures 7 and 8 where the volume
flowrate expressed as a dimensionless flow coefficient (Cq) is shown as
a function of dimensionless cavity length for several velocities. The
data for CQ were correlated by Equation (5) and the empirically determined
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constants are shown in Tables IT and IIT for the first and second correla-
tions together with the data for the ogives from Reference [11]. These
correlations will be discussed in subsequent sections,

D. Determination nf Cavity Geometry
[

The geometric characteristics of developed natural cavities were
determined for both the full scale and 0.7 scale venturis. Cavity pro-
files were established for various operating conditions, and the surface
area of the cavity @) was determined by a technique similar to that
employed in Reference [21]. The position of the cavity wall relative
to the test section wall was determined by inserting a thin probe through
the cavity until it pierced the cavity interface., This was done at two
positions along the cavity, These two points together with the locations
¢f the leading and trailing edges of the cavity were used to fit an arc
to the contour of the cavity wall, The surface area was then determined
by fategration.

The cavity surface area was nondimensionalized by tke square of the
venturi diameter to form the arca coefficient (Ca). The results are
shown as a function of dimensionless cavity length (L/D) in Figure 9 for
various velocities for the two venturis. It is seen that Cj is solely
a funevion of L/D which is glso characteristic of the ogives [17]. The
data for Cp were approximoted by Equation (4) and the empirically deter-
mined constants are shown in Table IV together with the opgive data from
Reference [11], It is seen that the exponent for L/D varies over the
narrow range 1,09 - 1.19 for the three configurations.

In addition to the area coefficient, the ratic of minimum cavity
diameter to venturi diameter (D,,/D) was determined as a function of L/D
for the natural cavities on the full scale venturi. These results are
shown in Figure 10.

IV. Appl’cation of the Entrainment Theory

The initial correlatiou made by the entrainment theory whicn is
referred to as the first correlation did not include Weber number.
These results are siown in Table II in which the data for the ogives
were obtained from Reference [11) and [12]. The comparisons between
the actual ogive date and valves caleculated from the correlations are
given in References [11l] and [1l2] for AT and References [20] and [22]
for Co. The results for the second correlation, namely the correlation
which did not include Froude number, are given in Table III. The com—
parisons between the experimental values of AT for the venturis and
those calculated from the correlations are given in Table V. (The second
correlation for the ogives was obtained after References [11] and {12]
were published and is presented in this report for the first time.) A
sketeh of the ogives is shown in Figure 11 tegether with a2 description
of the test conditions employed in the ogive tests.
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Referring to the ogive data for Cq, Nu, and AT fer the first corre-
lation (Table I1), it is seen that the correlations are consistent i.e.
the exponents of like terms have the same sign in corresponding correla-
tions for the two ogives. Furthermore, the correlations for the ogive
AT data are nearly independent of Froude number. This is perhaps not
surprising since the Froude v+ aber was rather high in these tests. This
result suggested the possibility that Froude number could be eliminated
in the expressions for Cq, Nu and AT and other parameters considered.
Since the entrailnment mechanism may depend upon surface tension effects
it seemed reasonable to consider Weber number as a scaling parameter.
Thus Froude number was replaced by Weber number and a second set of
correlations for Cq, Nu and AT were obtained as shown in Table TII.

Referring to the ogive data for CQ, Nu and AT j- Jable III, it is
seen that the expenents of like terms have the same s:ign and thus corres-
ponding correlations for the two ogives are consistent. Furthermore, the
exponents on the Weber number terms in Table IIT are consistently higher
than the corresponding exponents on the Froude numuer terms in Table I1X.
Perhaps this indicates that in this’ instance the Weber number is better
than Froude number as a scaling paramete:.

As indicated in the foregoing discussion, the data for the two
ogive families are consistent within the context c¢f the entrainment
theory for both correlations i.e. exponents of like terms in the equa-
tions have the same sign. However, referring to Tables TI and IIT it
is seen that the venturi correlaticns do not exhibit the same trends as
the corresponding ogive correlasions in all cases. For example, in the
first correlation (Table II)} the Froude number exponent for the venturis
is negative in the expressions for Cg and Nu whereas the same set of
exponents for the ogives is positive., Similarly, in the second corre-
lation (Table III) the Weber nuwber exponent displays the same in con-
gistencies, Furthermore, the sign of the Reynolds number exponent in
the second correlation for Cqp is pesitive for the venturis whereas the
same exponent for the ogives is negacive, Comparing the venturi corre-
lation for AT with those for the ogives we see that the sign of the
exponents for the cavity length, Reynolds and Prandti number terms are
the same but the signs of the Froude and Weber number exponents arce
opposite to tha signs of the corresponding exponents for the ogives,

It 1s interesting to ¢ - ‘are the exponents on the Prandtl number
for the various correlations given in Tables II and ILI. Referring to
the venturi correlations it is seen that Prandtl number exponent for
the AT equation is -0.04 and -0.46 for the first and second correla-
tions, respectively. Thus the exponent has incroased by an order of
magnitude from the first to the second correlation, In contrast to this
result, the Prandtl number exponent for the ogive AT correlation
changes from -0.85 to ~0.64 for the zero caliber ogive and from -0,41
to ~0.31 for the quarter caliber ogive in going from the first to the
second correlation. The much larger change in the Frandtl numbe:r
exponent for the venturi is due te the introduction of surface tension



S R

~15-- December 11, 1975
MLB:JWH:DSH: jep

into the AT correlation which has a large variation for the fluids used
in the correlation namely Freon 114, nitrogen, and hydrogen. The magni-
tude of the Prandtl number exponent for the second correlation, namely
0.46 is more typical of heat transfer data. Perhaps this suggests that
the second correlation is better than the first correlation for the
venturis.

The various entrainment theory correlations for AT are compared in
Table VI for the case of constant fluid properties where AT has the
form

= oML, M2 M3
AT, = CE LY, 2D (13)

in which the corstant € is different for each configuration. In addition,
two of the B i«ctor correlations are shown in Table VI. (Apparently,
these are the uvnly B factor correlations available for the venturis and
ogives which inciude size, i.e. DD, directly as a parameter. Weir [12]
has summarized the various B factor correlations.) Comparing the first
and second entrainment method correlations for a given configuraticn

with each other indicates that the two correlations give nearly the same
exponents for like terms. Both nf the correlations for the venturis

show that the size effect is very small, The B factor correlations for
the venturis shows a larger effect with AT varying as the 0.2 power of D,
The exponent on L/D varies between 0,26 and 0.36 for the venturis and
quarter caliber ogives whereas the zero caliber ogives display a much
larger effect for the average L/D exponent is 0.85. All of the confip-
urations and correlations indicate that AT increases with velocity with
the exception of the zero caliber ogive. In addition, all of the config-
urations and correlations indicate that AT increases with or is not
affected by size with the exception of the zero caliber ogive which shows
a decrease of AT with size. Thus the zero caliber ogive itends to be the
exception when examined for the case of constant fluid properties. How-
ever, as indicated by previous arguments the zero and quarter caliber
ogives are consistent within the context of entrainment theory i.e. the
signs of the =xponents of like terms are the same in the equations for Cq,
Wu and AT expressed in dimensionless form.

V. Conclusions

The major conclusions from this investigation and pertinent conclu-
sion from the ogive investigation of Reference [11] are:

(1) The entrainment theory appears to be a reasonable alternative to
the B factor method.



(2)

(3)

(4)

(5)

(6)

)]

(8)
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The temperature depression for the quarter caliber ogives increases
with T_, L/D, V., and D. This result Is In general agreement with
other investigations of quarter caliber ogives, hydrofoils, and
venturis,

The temperature depression for the zero caliber ogives increases
with T and L/D but tends to decrease with V, and D.

Both the first and second correlations show consistent results for
the ogives within the context of the entrainment theory in that
the exponents of like terms have the same sign in the expressions
for CQ’ Nu and AT.

The AT expressions for the ogives from the first correlation show
that the Froude number term is very small and can be neglected.
This result was the basis for obtaining the second correlation in
which the Froude number was replaced by Weber number,

In general, within the conte -t of the entrainment theosry the venturi
expressions for AT, C. and Nu for both the first and second corre-
lations do not show tge same trends as those for the ogives.

The cavitation number is independent of L/D for the venturis
whereas it is a single valuad function of L/D in the case of the
ogives,

For the venturis, the magnitude of the Prandtl aumber exponent
for tlie second correlation appears to be more consistent with
other heat transfer data than does the Prandtl number exponent
for the first correlation. Perhaps this suggests that the second
correlation is better than the first for the venturi data.
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Table I Tabulation of Experimental Data for the Venturis
(Fluid: Water Temperature: 70 °F)

Par: A Tabulation of ¢ Data for Developed Cavitation

MODEL CAVITY
DIAMETER LENGTH VELOCITY CAYITATION
IN. IN. FT/SEC NUMBER ~ O)
0.975 1.00 19.1 2.26
0.975 1.00 16.4 2.16
0.975 2.00 17.3 2,11
0.975 2.00 16.4 2.08
0.975 3.00 16.8 2.03
0.975 3.00 18.5 1.93
0.975 1,00 26.0 2.50
0.975 1.00 27.4 2.41
0.975 2.00 27.6 2.41
0.975 3.00 25.1 2.38
0.975 3,00 27.0 2.51
1.378 1.00 19.1 2.30
1.378 1.00 18.9 2,35
1.378 1.50 18.4 2.34
1.378 1.50 18.1 2.33
1.378 1.00 29.0 2.56
1.378 1,00 27.9 2.58
1.378 1.50 28.5 2.27
1.378 1.50 29,4 2,28
1.378 2.00 17.7 2.38
1.378 2.00 17.7 2.27
1.378 1.00 40.0 2.41
1.378 1.00 39.3 2.54
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Table T Tabulation of Experimental Data for the Venturis
(Fluid: Water Temperature: 70 °F)

Part B Tabulation vi ¢ Dita for Limited Cavitation

MODEL
DIAMETER REYNOLDS VELOCITY CAVITATION

IN. NUMBER FT/SEC NUMBER

1.378 2.5 x 105 23.1 3.50

1.378 3.5 x 10 32.3 3,05

1,378 3.5 x 103 32.3 3.40

1.378 4.5 % 107 41,5 3.10

1,378 4.5 x 10° 41.5 3.55

1.378 5.9 x 107 54,5 3.20

1.378 5.9 x 10° 54.5 3.25
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Table I Tabulation of Experimental Data for the Venturis
(Fluid: Water Temperature: 70 °F)
Part C Tabulation of Cq Data
MODEL CAVITY c c c
DIAMETER LENGTH VELOCITY Q Q2 Ql
IN. IN. FT/SEC (Measured)
1.378 1.378 19.2 L0151 .0166 L0167
1.378 1.378 18.9 L0147 L0166 0167
1.378 2.067 18.4 .D262 L0257 0256
1.378 2.067 18.1 .0268 0256 L0254
1.378 2.756 17.7 .0374 .0349 0344
1,378 2.756 17.7 .0353 .0349 L0344
1.378 1.378 29.0 .0190 .0186 .0187
1,378 1.378 27.9 .0198 0184 .0185
1.378 2.067 28.5 .0312 .0289 .0288
1.378 2.067 29.4 .0297 .0291 .0290
1.378 1.378 40.0 .0185 .0202 .0204
1.378 1.378 39.3 L0201 .0202 .0203
0.975 0.975 19.1 .0139 .0136 .0136
0.975 0.975 16.4 .0138 0131 .0130
0.975 1.950 17.3 L0280 .0284 .0278
0.975 1.950 16.4 .0288 .0280 L0274
0.975 2.925 16.8 .0376 .0439 L0425
0.975 0.975 26.1 L0154 L0148 .0148
0.975 0.975 27.5 L0149 .0150 .0150
0.975 1.950 27.6 .0323 .0321 .0315
0.975 2.925 25.2 L0493 .0489 L0475
0.975 2,925 27.0 .0488 .0498 L0484
CQ; = Cq calculated by first correlation.
Cqy = Cq calculated by second correlation.
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Table I Tabulation of Experimental Data for the Venturis

(Fluid: Water Temperature: 70 °F)
Part D Tabulation of Cp Data

MODEL CAVITY

DIAMETER LENGTH VELOCTITY CA

IN. IN. ¥I/SEC

1.378 i;378 50.9 2,55
1.378 1,378 30.0 2,60
1.378 Z.067 50.0 3.99
1.378 2,067 30.0 4.10
1.378 2.756 50.0 5.68
1.378 2,756 30.0 5.60
1.378 4,134 50.0 7,23
1.378 4.134 30.0 7.11
0.975 1.950 5.56

30.0

-



] =23 December 11, 1975
ﬁ MLB: JWH: DSW: jep
‘ Table I Tabulation of Experimental Data for the Venturis

(Fluid: Water Tewmperature: 70 °F

Part E Tabuvlation of Minimum Dimensionless Cavity Diameter

Data
MODEL CAVITY
DIAMETER LENGTH VELOCITY Dp/D L/D
IN. IN. FT/SEC
1.378 1.378 8.7 .925 10
1.376 1.378 18.3 .930 1.0
1.378 2,067 - 28.7 894 1.5
1,378 2,067 18.3 .515 1.5
i 1.378 2.756 28.7 .930 2,0
1.378 2.756 18.3 .900 2,0
- 1.378 3.445 28.7 .885 2.5

1.378 3,445 18.3 .929 2.5
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Constants and Exponents for Entrainment Theory-First Correlation

HModel

Quantity

-

We

Eq. Constant L/D Re Fr Pr Te
NU' cz, 03 01" 04 E){p. Exp- Expo EXP- Expu Exp-
Cq 5 0.676 x 10°% 1.06 0.48 -0.21 O ———— ————
Venturi Nu 6 0.611 x 10-3 -0,39 1.36 -0.59 0 0.04 =—wm
-1 ne -
AT .. 7 0.421 % 10 0.36 -0.88 0.38 O 0.04 1.0
. Cq 5 0,424 x 1002 0.69 0.16 0.13 0  ~——- -
Zero~Caliber )
Nu 6 0,148 x 1073 -1.33 1.39 0.15 © 0.85  we—m
Ogive
AT 7 6.221 0.83 -1.23 -0.02 0 -0.85 1.0
max
«  ©q 5 0.320 x 107" 0.74 0.46 0.26 0  ———m -
Quarter-Caliber
Nu 6 0.464 x 102 -0.70 1.03 0.30 O 0,41 ———v
Dgive
AT 7 0.335x 102 0.26 ~0.57 -0.06 0 -0.41 1.0

These correlations are the same as those given in Reference [11] except for
small adjustments in the constants due to the use of new fluid property data,
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Correlation

Quantity

Constant L/D

Fr

Pe

Model Eq. Re We Pr
No. C2, C3 or C;5 Exp. Exp. Exp. Exp. Exp. Exp.

Cq 5 0.618 x 10”5 1.09 0.883 0 ~0.62 =—em= —ee-
Venturi, Nu 6 0.275 x 107 =C.32 2.33 0 =1.67 0.46 =——n~

AT, 7 0.854 0.32 -1.45 © 1.05 ~0.46 1.0

Cq 5 0,225 x 1071 0,69 -0.10 © 0,40 vmmm ————
Zero~Caliber -

Nu 6 0,415 x 1072 -1,37 0.90 © 0.68 0.64 ———-
Ogive

ATpax 7 1.183 0.87 ~1.00 0 «0.28 -0.64 1.0

Cq 5 0,836 x 103 0.74 -0.06 O 0.79 ——= ——-
Gaerter-Caliber

Nu & 0.271 -0.70 0.41 0O 0.93 0.31 ——--
Ogive

ATpae 7 1.498 % 1073 0.26 <0.47 ©0 -0.14 -0.31 1.0
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Table IV

Constants and Exponents for cA Correlations

Model Constant Cj L/D_Exponent
Venturi 2.63 1.09
Zero~Caliber Ogive* 4.59 1.19
Quarter-Caliber Ogive” 2,06 1,18
. a
C, = Cl(L/D)

*
Data from Reference {[11].
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Table V

Comparison of Measured AT with Calculated AT for the Venturis

MODEL CAVITY VELOCTITY FLUID TEMPERATURE DEPRESSTON
FLUID DIAMETER | LENGTH Fi/SEC TEMP. | MEASURED PREDICTED
IN, IN. (°R) | AT (°F){ ATy (°F) | ATy (°F)
HYDROGEN .975 2.00 | 102.1 | 35.8 3.19 2.54 2,75
.975 2,50 98,8 | 35.7 2.61 2.67 2.93
.975 3,25 99.8 | 35.7 3.38 2.92 3,24
.975 3.25 | 143.3 | 37.2 4.27 4.29 4,54
.975 1.75 | 150.9 | 36.7 3.59 3.44 3,54
.975 2.75 | 149.6 | 36.6 4.94 3.9 4.11
.975 2.50 | 163.1 | 40.3 4.88 5.95 6.00
975 3.25 | 166.8 | 40.2 5.42 6.50 6.61
.975 3,50 | 168.4 | 40.3 5.47 6.78 6.90
.975 1.75 | 172.6 | 37.1 4.64 3,90 3.95
.975 2,63 | 174.9 | 37.0 5.43 4.45 4.57
.975 3.25 | 173.0 | 36.1 6.05 4,65 4.83
.975 3,25 | 173.0 | 37.0 5.75 4.72 /.90
.975 1.25 | 187.6 | 40.4 4.05 5.24 5.06
.975 2,00 | 190.3 | 37.2 5,24 4.34 4.3
.975 2.00 | 192.7 | 37.2 5.32 4,39 4.h1
.975 3.25 | 190.7 | 37.2 6.18 5.12 5,25
.975 3.50 | 134.0 | 37.1 5.69 5.24 5.39
.975 2.00 | 192.1 | 40.7 5.05 6.37 6.23
.975 3.25 | 189.8 | 40.4 6.18 7.21 7.21
.975 3.25 1 192.4 | 49.5 6.35 7.35 7.34
FREON 114]  .975 1.60 31.1 | 60.7 6.80 6.91 7.26
.975 1.60 32.5 | 79.9 8.90 9.30 9.64
.975 1.60 22,0 | 39.1 4.90 4.09 4,48
.975 1.60 22.7 | 60.0 5.40 5,63 6.14
975 1.60 22.9 | 79.7 7.80 7.50 8.07
.975 1,60 44.3 | 60.3 8.80 8.51 8.62
.975 1.60 44,5 | 80.1| 10.50 11.28 11.31
.975 0.70 54.2 | 60.7 5,20 5.58 5,62
.975 3.00 26.9 | 60.7 7.20 7.77 8.51
HYDROGEN .975 1.25 | 151.4 | 36.9 %.58 3.13 3.18
.975 2,00 | 15°.9 [ 37.0 3,54 3.75 3.87
.975 3,25 | 152.8 | 37.1 4.17 4,41 4.6k
.975 1.25 | 128.7 | 38.6 3.43 3.44 3.51
.975 2.00 | 127.1 | 38.7 3.71 4.02 4,18
.975 3,25 | 130.5 | 38.8 4.19 4,85 5.12
.975 1.25 | 139.7 | 40.5 4.28 bbb 4,41
.975 2.00 | 144.1 | 40.6 5.05 5.29 5.34
.975 3.25 | 144.8 { 41.0 5.74 6.49 6.65




. qc

Table V Comparison of Measured AT with Calculaced AT for the Venturis (Cont.)

28—

December 11, 1975
MLB:JWH:DSW: jep

MODEL | CAVITY |y oorny |FLUID | TEMPERATURE DEPRESSION
FLUID | DIAMETER | LENGTH [ "pporc’ | TEMP. [MEASURED PREDICTED
IN. N, (°R) AT {*F) | 4T2 (°F) } 4Ty (°F)
HYDROGEN .975 1.25 196.8 37.5 3.53 3.94 3,87
.975 2.00 199.4 37.6 4,50 4,70 4,69
.975 3.15 204, 0 37.5 6,24 5,51 5,60
975 1.25 195.6 38.6 4.47 4,42 £.31
.975 2.00 197.4 38.6 5.50 5.20 5.16
.975 3.25 195.8 38,4 6,44 5.93 6.62
,975 1.25 190.4 { 40.7 5,24 5.46 5.24
.975 2.00 189.4 } 40.7 5.69 6.29 6.17
.975 3.25 189.7 40,6 6.70 7.37 7.37
975 1.25 196.2 17.6 4,98 3.98 3.91
.975 1.25 202.9 | 40.8 6.25 5.72 5.45
.975 2.00 202.8 | 40.7 6.52 6.56 £.38
.975 3.25 204.,7 40.9 7.69 7.95 7.86
.975 1.25 197.6 38.5 5,11 4.41 4.30
.975 2.00 198.4 38.5 ( 5.38 5.16 5.12
975 3,25 201.1 38.9 6.26 6.36 6.41
975 1,25 139.2 18,8 3,97 3.68 3.72
.975 2.00 141.2 38.7 4.77 4.31 4.43
.975 3.25 143.8 30,7 5,36 5,66 5.87
.975 1,25 155, 4 37.1 3.53 3.25 3.28
975 2.00 155.0 36.7 4.35 3,66 3.77
.975 3.25 153.9 37.2 5.45 4.70 4.96
.975 2,00 151.6 | 40.8 4,45 5.60 5.61
.975 3,25 153.2 40.9 5,24 6.67 6.80
.975 1.25 111.0 36.5 2,79 2.43 2.60
.975 2.00 113.1 3%5.5 2.95 2.92 3.12
NITROGEN .975 3.25 35.2 | 140.1 3.00 2.61 2.52
.975 3.25 50.5 | 139.8 3.10 3.18 2.96
.975 3.25 45.8 | 150.7 4.30 5.15 4.73
.975 3.25 65.4 | 160.4 8.70 10.11 8.68
.975 3.25 74.1 | 160.7 8.60 11.06 9,35
.975 3.25 73.1 | 150.5 6.50 6.77 5.92
.975 3.25 73.1 | 140.9 4.20 4.23 3,78
.975 3.25 72.8 | 140.7 4,30 4,18 3.73
.975 3.25 49.7 | 140.5 3.30 3,28 3.05
.975 3.25 48.2 | 140.5 3,60 3.22 3.01
FREON 114 | 1.378 2.75 31.4 27.5 5.40 4,67 4,68
1,378 2,75 31.8 59.1] 7.30 7.49 7.50
1 378 2.75 31.7 78.8 9.20 9.88 9.79
1.378 2.75 18.9 7.7 2.70 2.49 2,62
1.378 2.75 18.3 27.1 3.30 3,40 3,69
1.378 2.75 18.9 60.7 5.00 5.59 5.91
1.378 2.75 43.2 29.7 7.30 5,86 5.68
1.378 9.75 43,9 62.5 9.10 9.56 9.23
1.378 0.50 33.1 59.1 3.90 4.39 4,08
1.378 1.25 32.8 59.1 6.30 5.89 5.69
1.378 4.00 30.2 59.11 8.00 8.21 8.39
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MCDEL CAVITY VELOCLTY FLULID TEMPERATURE DEPRESSION
YLUID DIAMETER | LENGTH FT/SEC TEMP. | MEASURED PREDICTED
IN, IN. (°R) AT (°F) ATy (°F) | ATy (°F)

NITROGEY 1.578 1,00 20,4 140.,0 1.10 1.16 1.06

1.378 2.00 20.1 140.0 1.30 1.44 1.35

1.378 4.0u 19.2 140.0 1.80 1.76 1.71

1.378 4,00 25.1 140.4 2.30 2,12 i.,99

1.378 4,00 31.5 141.,0 2.70 2.51 2.30

1.378 4,00 I 42,0 142.6 3.00 3.23 2,87
ATl = AT predicted by first correlaticn.

i

AT,

AT predicted by second correlation,
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OGIVE TEST CONDITIONS FOR AT TESTS
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140°F TO 260°F IN WATER

Figure 11 - Sketch of the Ogives and Description of Test Conditions
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