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Nomenclature

AV - cavity surface area

B	 - ratio of 'vapor volume to liquid volume involved in sustaining a
natural cavity

CA - area coefficient = Aw/D2

C 	 - specific heat of liquid

CQ - flow coefficient = Q/VwD2

D	 - model diameter

Dm - minimum cavity diameter

Fr - Froude number = V./ gD

g	 - acceleration of gravity

h	 - film coefficient =_ 4/AwAT

k	 - thermal conductivity of liquid

L	 - cavity length

Nu - Nusselt number =_ hD/k

Pc - cavity pressure

Pe - Peclet number - Vm /a

Pr - Prandtl number ° V/a

P 
	 - vapor pressure

Pm - free stream pressure

4	 - heat transfer rate

Q	 - volume flowrate of vapor in cavity

Re - Reynolds number = V.D /V

T 
	 - cavity temperature

T^. - free stream temperature

u -i
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P^

AT
	

temperature depression ? Tw- Tc

V^	 free stream velocity

We
	

Weber number ° V^3D/VT%p

a
	

thermal diffusivity of liquid

X
	

latent heat of vaporization

V
	

kinematic viscosity of liquid

PL
	 mass density of liquid

pv
	 mass density of vapor

a	 cavitation number

S
	

surface tension

All experimental values of AT are maximum values obtained from axial
',	 surveys of the cavity.
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I. Introduction

Cavitation is an important consideration in the design and analysis
of liquid handling pumps. Limited cavitation occurs whenever the local
pressure is reduced to some critical value. A further reduction in pressure
results in developed cavitation. In this flow regime, it is difficult to
predict the net positive suction head (NPSH) required for the satisfactory
performance of a pump. The NPSH requirements are determined by the
combined effects of cavitation, fluid properties, pump geometr y and pump
operating point.

The determination of the cavity pressure is of primary importance in
understanding the influence of developed cavitation on pump performance.
In most cases, the designer assumes that the cavity pressure is equal to
the vapor pressure at the bulk temperature of the liquid. This estimate
is quite good in the absence of noncondensable gases when Pv and dPv/dT
are both small. This occurs at states significantly below the critical
temperature, for example water at 'room temperature, but for many fluids
such as liquid metals and cryogens the operating temperature can be such
that Pv and dPv/dT are both large. In these cases, the assumption that
the cavity pressure is equal to the vapor pressure corresponding to the
bulk temperature of the liquid can lead tr very large errors.

A continuoub vaporization process which is dependent upon heat transfer
at the liquid-vapor interface is required to sustain a developed cavity in
a pump. As a result of vaporization, the cavity temperature is less than
the inlet bulk liquid temperature: so that the cavity vapor pressure is
less than the vapor pressure corresponding to the inlet bulk liquid tempera-
ture. This phenomenon is called the thermodynamic effect and is dependent
on fluid properties, velocity, size and geometry. The thermodynamic effect
is important because the NPSH required to produce a given cavity volume
will decrease as the temperature depression at the cavity increases.

Stahl and Stepanoff [1] * were the first to analyze the thermodynamic
effect for developed cavitation with particular emphasis on pump applica-
tions. They formulated the B factor method which is quasi-static in nature.
Fisher [2], Jacobs [3], and Acosta and Hollander [4] also considered the
B factor method and its application.

The equation for predicting the temperature depression (AT) from the
B factor method is

AT = B Qv . a	
(1)

PL Cp

,^	 x Numbers in brackets refer to documents in list of references.
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where the factor B is defined as the ratio of vapor volume to liquid
volume involved in the vaporization process. However, the primary practical
problem which a designer encounters in attempting to use Equatior. (1) is
the calculation of B.

In order to make the B factor method mere useful as a datF correla-
tion. method, Gelder et al. [5] and Moore and Ruggeri [6] extended it in
a semi-empirical manner. They expressed the B factor in terms of
dimensionless ratios

N1	 N2 
I	

N3	 4
V

IjwR	

D	 I L/D

	 IdN

B= 
BR	 DRj(L/D)R 	 (2)
 11

and then determined the exponents empirically. The subscript R employed
in Equation (2) indicates a reference value. Hord at al. [7, 8, 9] have
further extended this approach by including other factors such as kinematic
viscosity in Equation (2). Finally, Hord [10] has applied the correlation
to pumps.

The entrainment theory was developed as an alternate to the B fa,,tor
method for predicting the thermodynamic effect. It is a dynamical approach
based on an energy balance for the cavity. It is semi-empirical like the
B factor method but has the advantage of expressing the temperature
depression in terms of basic physical quantities. The principal theoreti-
cal and experimental aspects of this theory are presented in Holl et al.
[11] and Weir [12].

From the entrainment theory, the temperature depression (AT) is given
by

AT= Q.Pe. Pv. X
CA Nu PL C 

The PeclA. number and fluid property terms are known from the free stream
conditions (T„ and V,,,) and the characteristic model dimension (D). However,
CA , CQ and Nu are characteristic of the cavity flow and are to be determined
empirically.

Extensive temperature depression data correlated by means of the
entrainment theory have been reported for ogive nosed bodies [11] [12].
In addition, temperature depression data correlated by means of the B
factcr method have been reported for venturis j6] [7]. It was decided
that it would be desirable to compare the venturi and ogive data when

(3)

•i
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correlated by the entrainment theory. In order to accomplish this goal,
it was nee. - nary to experimentally determine the area coefficient (CA)
and flow coefficient ( CQ) for the venturis. These 4wre then amployed in
Equation (3) to determine the Nusselt number by using the temperature
depression data of Moore and Ruggeri (6) and Nord, et al. [7]. The AT
data for the venturis were obtained in Freon 114, hydrogen and nitrogen
whereas the ogive AT data were obtained in Freon 113 and water.

In addition to the aforemcutioned correlations of AT, cavitation
number data for both limited and developed cavitation in venturis are
also presented in this report.

1I. Empirical Equations for CA, CQ, No and AT

In order to determine cw, equati.a which correlates AT data by means of
the entrainment t;teory, i.e. Eq^. :ation (3), it is necessary to determine
empirical equations for CA, CQ and Nu in terms of pertinent physical para-
meters. An examination of the problem led to the following general forms
for CA, CQ and No

CA - C1 {L/D}a 	(4)

CQ = C Z Re Frc Wed {L/D}e	(5)

Nu = C3 Ref Frg We  Pr  {'L/D}j	(6)

As will be seen in subsequent sections, two combinations of terms were
tried for CQ and Nu. The first correlation refers to that correlation in
which Weber number was not considered i.e. d-h=C. Whereas, the second
correlation refers to that correlation in which Froude number was eliminated
i.e. c=g=0.

Employing Equations (4) - (6) in Equation (3) yields the general
empirical form for the temperature depression as

AT = C4 (L/D) k Ref' Fr  Wen Pr  Pe 
p

p` C
	 (7)

L P
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The unknown constants for all of the correlations were determined by
a modified least-squares approximation technique. Taking :he logarithm
reduces the equation to linear form. Then, as outlined by Becket and
Hunt [13], minimizing the sum of the squares of the difference between
the logarithm of the measured data and the correlative expression yields
a set of simultaneous equations which can be solved for the unknown
constants. Details concerning the application of this modified least
square approximation technique to the entrainment theory are given by
Weir [12).

III. Experimental Results for the Venturis

A. Description of the Experiments

The experiments were conducted in water near room temperature with
two venturis test sections in the 1.5 inch ultra-high speed cavitation
tunnel located in the Garfield Thomas Water Tunnel building of the Applied
Research Laboratory at The Pennsylvania State University. A photograph
of the facility is shown in Figure 1 and a detailed description of the
facility and supporting equipment is given in Reference (14). The facility
is designed to permit large variations in velocity, pressure, and temper-
ature for various liquids. The maximum operating conditions for these
parameters is 300 fps, 1200 psia, and 300 °F.

The internal contours of the two geometrically similar venturi test
sections are the same as those employed by NASA [6, 71. The minimum
internal diameter is 1.378 inches and 0.975 inches for the full scale
and 0.7 scale venturi, respectively. A photograph of the venturis is
shown in Figure 2 and a detailed sketch of the full scale venturi is
shown in Figure 3. (Details of the two venturis are given in ARIL Drawings
SKD 70533 and SKD 70534.)

The venturi test sections are 3 inches longer than the standard test
sections for the 1.5 inch cavitation tunnel. Therefore, it was necessary
to construct a 3 inch cylindrical section for the lower leg of the facility
and extensions for the four bars supporting the test section in the upper
leg. (Details concerning these additional parts for the facility are
given in ARL Drawing SKR 70532.)

The venturis were instrumented with a pressure port slightly up-
stream of the throat to measure the incoming velocity and four pressure
ports downstream of the throat to measure the cavity pressure. Gas
injection ports for forming ventilated cavities with nitrogen gas were
distributed tangentially around the test section, and a manifold which

-	 fit over the exterior of the test section distributed gas to the
injection ports. (This manifold is shown in the photograph of Figure 2.)
In addition, two probes were installed downstream of the throat to deter-
mine the cavity thickness for use in the determination of CA. The loca-
tions of the pressure ports, gas injection ports, and probes are shown in
Figure 3 for the full scale venturi.

.a	 ...:.
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The following tests were performed with the two venturis:

1. Determination of Cavitation Number
The cavitation number (a) for developed cavitation
was determined as a function of L/D for ventilated
and natural cavities. For limited cavitation, D
was determined as a function of velocity.

2. Determination of the Flow Coefficient
The flow coefficient (CQ) was determined as a
function of L/D, velocity and venturi diameter
for ventilated cavities.

3. Determination of Cavity Geometry
The area coefficient (CA) and dimensionless cavity
diameter (Dm/D) were determined as a function of
dimensionless cavity length (L/D) for natural
cavities.

The experimental data for the venturis are tabulated in Table 1.

B. io,7-e- urination of Cavitation Number

The cavitation number (a) is defined as

PW — P

o= 1/2pVW2

	
'B)

where PW, p, and VW are the pressure at infinity, liquid mass density and
velocity at infinity, respectively. The quantity P is an appropriate
measure of the cavity pressure. For developed cavitation, this pressure
is

	

P Pc	 (9)

where Pc is the measured cavity pressure whereas for limited cavitation
it is
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where P. is the vapor pressure corresponding to the bull: temperate —e of
the liquid.

For the venturis the reference pressure (P.) and velocity (V.) were
measured in the section shown in Figure 3. The various pressures were
measured by Pace variable reluctance transducers.

As is cu tomary at the Garfield Thomas Water :Gunnel, desinent cavi-
tation, was employed as the experimental definition of limited cavitation.
The desinent cavitation number for the venturis is shown as a function of
Reynolds number in Figure 4. It is seen that the desinent cavitation
number for water compares favorably with the minimum pressure coefficient.
However, the water results are consistantly higher than the experimental
results for Freon 114 (15) and liquid hydrogen [16]. Gas effects on water
and surface tension effects in liquid "hydrogen [16] may cause trends of
this type.

The cavitation number (a) for developed ventilated and natural
cavitation on the venturis is shown as a function of dimensionless cavity
length (L/D) In Figures 5 and 6. These graphs show that a is independent
of L/D and that a value of a equal to 2.32 can be utilized to represent
all of the data for natural and ventilated cavities. This compares to a
constant cavitation number of 2.47 from earlier tests by Moore and Ruggeri
[6] and Nord et al. [7].

Investigators of axisymmetric bodies, see for example References [12],
[17] and (18], have shown that the cavitation number is a single valued
function of dimensionless cavity length. However, the venturi data in

Figures 5 and 6 do not display this characteristic. As shown by Weir [19],
blockage effects on ogive nosed bodies are such that as the blockage
increases, the cavitation number tends to become independent of L/D.
Perhaps the constant cavitation number characteristic of the venturi is
due to a similar effect.

C. Determination of the Flow Coefficient

It is well known that there are many similarities between the char-
acteristics of natural and ventilated cavities for the same value of
dimensionless cavity length. (This applies only when the ventilated
cavity operates in the reentrant jet regime (20].) The German hydro-
dyracnicist H. Reichardt (18] was apparently the first to demonstrate
this characteristic by showing that the drag coefficient for an axially
symmetric body was the same for both natural and ventilated cavities
provided the cavitation number based on cavity pressure was the same for
both flow states. Billet (21] has shown that the geometric characteristics
of natural and ventilated cavities on ogives are the same when the cavi-
tation number is the same.

Early in the development of the entrainment theory for correlating
temperature depression data it was felt that the aforementioned similarity

i
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principle would be applicable to the volume flowrate of gas in the cavity.
Thus it was assumed that the characteristics of the flow coefficient for
the vapor flow in the cavity would be approximated by the flow coefficient
for a ventilated cavity having the same geometrical characteristics.
Furthermore, it was decidee to minimize the diffusion of gas at the cavity
wall and thereby produce a value ^)f C Q which was based on the entire
volume flowrate required to sustain a cavity of a given size. Billet [21]
was the first to apply the similarity concept to the entrainment theory.
Subsequently this work was improved and is reported in References [11],
[12], [20] and [22].

The diffusion of air across the cavity wall was minimized by main-
taining the air pressure in the cavity at the saturation pressure (PG-C)
of the dissolved gas in the free stream. This pressure is given by Henry's
law namely

PG-S as
	

(11)

where a is the dissolved air content and S is the Henry's law constant.
The dissolved air content was measured by a Van Slyke apparatus. Since
we must have P c = P -S to assure no diffusion, this implies that the
reference pressure G(P.) from Equation (8) is given by

Pro = 1/2 p V^2 a + P
G-S
	 (12)

It is apparent that diffusion cannot be entirely eliminated by this pro-
cedure since the cavity pressure is not precisely constant throughout the
cavity. Since air was continuously forced into the water during a test
the air content varied and so it was necessary to adjust the value of Pm
in order to satisfy Equation (12). Furthermore, frequent shut-downs of
the tunnel were required in order to reduce the air content.

Measurements of the volume flowrate of gas required to sustain venti-
lated cavities were made for velocities from 17 to 40 ft/sec and dimension-
less cavity lengths from 1.0 to 3.0 for the two venturis. Nitrogen was
used as the ventilation gas and the flowrate was measured by a Gilmont
float-type flowmeter.

Results of the tests are shown in Figures 7 and 8 where the volume
flowrate expressed as a dimensionless flow coefficient (C Q) is shown as
a function of dimensionless cavity length for several velocities. The
data for CQ were correlated by Equation (5) and the empirically determined
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a

f^

constants are shown in Tables II and III for the first and second correla-
tions together with the data for the ogives from Reference (11]. These
correlations will be discussed in subsequent sections.

D.	 Determination of Cavity Geometry
e

The geometric characteristics of developed natural cavities were
determined for both the full scale and 0.7 scale venturis.	 Cavity pro-
files were established for various operating conditions, and the surface
area of the cavity (Aw) was determined by a technique similar to that
employed in Reference [21]. 	 The position of the cavity wall relative
to the test section wall was determined by inserting a thin probe through
the cavity until it pierced the cavity interface. 	 This was done at two
positions along the cavity.	 These two points together with the locations
Of the leading and trailing edges of the cavity were used to fit an are
to the contour of the cavity wall. 	 The surface area was then determined
by integration.

The cavity surface area was nondimensionalized by tka square of the
venturi diameter to form the area coefficient (C A). The results are
shown as a function of dimensionless cavity length (L/D) in Figure 9 for
various velocities for the two venturis. It is seen that CA is solely
a func.i,on of L/D which is also characteristic of the ogives [17]. The
data for CA were approximated by Equation (4) and the empirically deter-
mined constants are shown in Table IV together with the ogive data from
Reference [11]. It is seen that the exponent for L/D varies over the
narrow range 1,09 - 1.19 for the three configurations.

In addition to the area coefficient, the ratio of minimum cavity
diameter to venturi diameter (Dm/D) was determined as a function of L/D
for the natural cavities on the full scale venturi. These results are
shown in Figure 10.

IV. ARRL ,ration of the Entrainment Theory

The initial correlation made by the entrainment theory whicn is
referred to as the first correlation did not include Weber number.
These results are mzown in Table II in which the data for the o;,ives
were obtained from Reference [11] and [12]. 	 The comparisons between
the actual ogive date and values calculated from the correlations are
given in References [11] and [12] for AT and References [20] and [22]

' for CQ.	 The results for the second correlation, namely the correlation
which did not include Froude number, are given in Table III.	 The com-
parisons between the experimental values of AT for the venturis and
hose calculated from the correlations are given in Table V. 	 (The second

'- correlation for the ogives was obtained after References [11] and [12]
were published and is presented in this report for the first time.)	 A

?t sketch of the ogives is shown in Figure 11 together with a description
of the test conditions employed in the ogive tests.

s
ra
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Referring to the ogive data for CQ, Nu, and AT for the first corre-
lation (Table I1), it is seen that the correlations are consistent i.e.
the exponents of like terms have the same sign in corresponding correla-
tions for the two ogives. Furthermore, the correlations for the ogive
AT data are nearly independent of Froude number. This is perhaps noL
surprising since the Froude r Ober was rather high in these tests. This
result suggested the possibility that Froude number could be eliminated
in the expressions for CQ, No and AT and other parameters considered.
Since the entrainment mechanism may depend upon surface tension effects
it seemed reasonable to consider Weber number as a scaling parameter.
Thus Froude number was replaced by Weber number and a second set of
correlations for CQ, No and AT were obtained as shown in Table III.

Referring to the ogive data for CQ, No and AT i • able III, it is
seen that the exponents of like terms have the same sign and thus corres-
ponding correlations for the two ogives are consistent. Furthermore, the
exponents on the Weber number terms in Table III are consistently higher
than the corresponding exponents on the Froude number terms in Table II.
Perhaps this indicates that in this instance the Weber number is better
than Froude number as a scaling parameter.

As indicated in the foregoing discussion, the data for the two
ogive families are consistent within the context of the entrainment
theory for both correlations i.e. exponents of like terms in the equa-
tions have the same sign. However, referring to Tables II and III it
is seen that the venturi correlations do not exhibit the same trends as
the corresponding ogive correlations in all cases. For example, in the
first correlation (Table II) the Froude number exponent for the venturis
is negative in the expressions for CQ and No whereas the same set of
exponents for the ogives is positive. Similarly, in the second corre-
lation (Table III) the Weber number exponent displays the same in con-
sistencies. Furthermore, the sign of the Reynolds number exponent in
the second correlation for CQ is positive for the venturis whereas the
same exponent for the ogives is negative. Comparing the venturi corre-
lation for AT with those for the ogives we see that the sign of the
exponents for the cavity length, Reynolds and Prandti number terms are
the same but the signs of the Froude and Weber number exponents are
opposite to the signs of the corresponding exponents for the ogives.

It is interesting to c -,ire the exponents on the Prandtl .number
for the various correlations given in Tables II and III. Referring to
the venturi correlations it is seen that Prandtl number exponent for
the AT equation is -0.04 and -0.46 for the first and second correla-
tions, respectively. Thus the exponent has increased by an order of
magnitude from the first to the second correlation. In contrast to this
result, the Prandtl number exponent for the ogive AT correlation
changes from -0.85 to -0.64 for the zero caliber ogive and from -0.41
to -0.31 for the quarter caliber ogive in going from the first to the
second correlation. The much larger change in the Prandtl numbee
exponent for the venturi is due to the introduction of surface tension

III
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into the ^ST correlation which has a large variation for the fluids used
in the correlation namely Freon 114, nitrogen, and hydrogen. The magni-
tude of the Prandtl number exponent for the second correlation, namely
0.46 Is more typical of heat transfer data. Perhaps this suggests that
the second correlation is better than the first correlation for the
venturis.	 'I

The various entrainment theory correlations for AT are compared in
Table VI for the case of constant fluid properties where AT has the
form

Cf.L%Ml I M2 M3bT 
max = %7W-	 'M D

in whinh the corstant C is different for each configuration. 	 In addition,
two of the B f-,ctor correlations are shown in Table VI. 	 (Apparently,
these are the Lnly B factor correlations available for the venturis and
ogives Vnich include size, i.e. D, directly as a parameter. 	 Weir IL12]
has summarized the various B factor correlations.) 	 Comparing the first
and second entrainment method correlations for a given configuration
with each other indicates that the two correlations give nearly the same
exponents for like terms.	 Both of the correlations for the venturis
show that the size effect is very small.	 The B factor correlations for
the venturis shows a larger effect v7ith AT varying as the 0.2 power of D.
The exponent on L/D varies between 0.26 and 0.36 for the venturis and
quarter caliber ogives whereas the zero caliber ogives display a much
larger effect for the average L/D exponent is 0.85.	 All of the config-
urations and correlations indicate that AT increases with velocity with
the exception of the zero caliber ogive. 	 In addition, all of the config-
urations and correlations indicate that AT increases with or is not
affected by size with the exception of the zero caliber ogive which shows
a decrease of AT with size. 	 Thus the zero caliber ogive tends to be the
exception when examined for the case of constant fluid properties. 	 How-
ever, as indicated by previous arguments the zero and quarter caliber
ogives are consistent within the context of entrainment theory i.e. the
signs of the 3xponents of like terms are the same in the equations for CQ,
No and AT expressed in dimensionless form.

V, Conclusions

The major conclusions from this investigation and pertinent conclu-
sion from the ogive investigation of Reference (111 are:

(1) The entrainment theory appears to be a reasonable alternative to
the B factor method.	 I

(13)
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(2) The temperature depression for the quarter caliber ogives increases
with I L/D, Vim , and D. This result is in general agreement with
other investigations of quarter caliber ogives, hydrofoils, and
venturis.

(3) The temperature depression for the zero caliber ogives increases
with T. and L/D but tends to decrease °pith V. and D.

(4) Both the first and second correlations show consistent results for
the ogives within the context of the entrainment theory in that
the exponents of like terms have the same sign in the expressions
for C., Nu and AT.

(5) The AT expressions for the ogives from the first correlation show
that the Froude number term is very small and can be neglected.
This result was the basis for obtaining the second correlation in
which the Froude number was replaced by Weber number.

(6) In general, within the conte. • t of the entrainment theory the venturi
expressions for AT C and Nu for both the first and second corre-
lations do not show t qe same trends as those for the ogives.

(7) The cavitation number is independent of L/D for the venturis
whereas it is a single valued function of L/D in the case of the
ogives.

(8) For the venturis, the magnitude of the Prandtl number exponent
for the second correlation appears to be more consistent with
other heat transfer data than does the Prandtl number exponent
for the first correlation. Perhaps this suggests that the second
correlation is better than the first for the venturi data.
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Table I Tabulation of Experimental Data for the Venturis
(Fluid: Water	 Temperature: 70 °F)

Par% A	 Tabulation of a Data for Developed Cavitation

MODEL
DIAMETER

IN.

CAVITY
LENGTH

IN.
VELOCITY
FT/SEC

CAVITATION (Q)
NUMBER

0.975 1.00 19.1 2.26
0.975 1.00 16.4 2.16
0.975 2.00 17.3 2.11
0.975 2.00 16.4 2.08
0.975 3.00 16.8 2.03
0.975 3.00 18.5 1.93
0.975 1.00 26.0 2.50
0.975 1.00 27.4 2.41
0.975 2.00 27.6 2.41
0.975 3.00 25.1 2.38
0.975 3.00 27.0 2.51
1.378 1.00 19.1 2.30
1.378 1.00 18.9 2.35
1.378 1.50 18.4 2.34
1.378 1.50 18.1. 2.33
1.378 1.00 29.0 2.56
1.378 1.00 27.9 2.58
1.378 1.50 28.5 2.27
1.378 1.50 29.4 2.28
1.378 2.00 17.7 2.38
1.378 2.00 17.7 2.27
1.378 1.00 40.0 2.41
1.378 1.00 39.3 2.54

s;
d^, h

u

IQ., d . .
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Table I

Part B	 Tabulation of a Dsta for Limited Cavitation

MODEL
DIAMETER REYNOLDS VELOCITY CAVITATION ^^)

IN. NUMBER FT/SEC NUMBER

1.378 2.5 x 105 23.1 3.50

1.378 3.5 x 105 32.3 3.05

1.378 3.5 x 105 32.3 3.40

1.378 4.5 x 10 5 41.5 3.10

1.378 4.5 x 105 41.5 3.55

1.378 5.9 x 105 54.5 3.20

1.378 5.9 x 105 54.5 3.25
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Table I	 Tabulation of Experimental Data for the Ven_turis_

(Fluid: Water	 Temperature:	 70 °F)

Part C	 Tabulation ofd Data

19 MODEL CAVITY
VELOCITY CQ GQ2 CQlDIAMETER LENGTH

i' IN. IN. FT/SEC	 (Measured)
rt;

» 1.378 1.378 19.2 .0151 .0166 .0167

1.378 1.378 18.9 .0147 .0166 .0167

1.378 2.067 18.4 .0262 .0257 .0256

1,378 2.067 18.11 .0268 .0256 .0254

1.378 2.756 17.7 .0374 .0349 .0344

1.:178 2.756 17.7 .0353 .0349 .0344

1.378 1.178 29.0 .0190 .0186 .0187

1.378 1.378 27.9 .0198 .0184 .0185

1.378 2.067 28.5 .0312 .0289 .0288

1.378 2.067 29.4 .0297 .0291 .0290

1.378 1.378 40.0 .0185 .0202 .0204

1.378 1.378 39.3 .0201 .0202 .0203

0.975 0.975 19.1 .0139 .0136 .0136

0.975 0.975 16.4 .0138 .0131 .0130

0.975 1.950 17.3 .0280 .0284 .0278

0.975 1.950 16.4 .0288 .0280 .0274

0.975 2.925 16.8 .0376 .0439 .0425

0.975 0.975 26,1 .0154 .0148 .0148

0.975 0.975 27.5 .0149 .0150 .0150

0.975 1.950 27.6 .0323 .0321 .0315

0.975 2.925 25.2 .0493 .0489 .0475

0.975 2.925 27.0 .0488 .0498 .0484

CQ1 = CQ calculated by first correlation.

CQ2 = CQ calculated by second correlation.

0

^r .I. 0.i J
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Table I Tabulation of Experimental Data for the Ven
(Fluid: Water	 Temperatureo	 70 °F)

Part D	 Tabulation of CA Data

MODEL CAVITY
DIAMETER LENGTH VELOCITY CA

IN. IN. FT/SEC

1.378 1.378 50.0 2.55

1.378 1.378 30.0 2.60

1.378 2.067 50.0 3.99

1.378 2.067 30.0 4.10

1.378 2.756 50.0 5.68

1.378 2.756 30.0 5.60

1.378 4.134 50.0 7.23

1.378 4.134 30.0 7.11

0.575 1.950 30.0 5.56
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Table I Tabulation of Experimental Data for the Venturia
(Fluid: Water	 Temperature: 70 OF

Part E

MODEL
DIAMETER

IN.

CAVITY
LENGTH

IN.
VELOCITY
FT/SEC

Dm/D L/D

1.378 1.378 18.7 .925 1.0

1.31.^, 1.378 18.3 .930 1.0

1.378 2.067 28.7 .894 1.5

1.378 2.067 18.3 .915 1.5

1.378 2.756 28.7 .930 2.0

1.378 2.756 18.3 .900 2.0

1.378 3.445 28.7 .885 2.5

1.378 3.445 18.3 .929 2.5

c

h

_23_

a
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Table II

Constants and Exponents for Entrainment Theory-First Correlation

Model	 Quantity Eq.	 Constant	 L/D	 Re	 Fr	 We	 Pr	 Pe

	

No. C2, C3 or C4 Exp. Exp. Exp. Exp. Exp	 Exp.

CQ	5	 0.676 x 10-4 1.06 0.48 -0.21 0	 ----

Venturi	 Nu	 6	 0.611 x 10-3 -0.39 1.36 -0.59	 0	 0.04 ----

©Tmax 7	 0.421 x 10-1 0.36 -0.88 0.38	
0 -0.04	 1.0

Zeno-Caliber*
CQ 5 0.424 x 10-2 0.69 0.16 0.13 0 ----	 ----

Nu 6 0.148 x 10 -3 -1.33 1.39 0.15 0 0.85	 ----
Ogive

AT 7 6.221 0.83 -1.23 -0.02 0 -0.85	 1.0
max

* CQ 5 0.320 x 10-4 0.74 0.46 0.26 0 ----	 ----
Quarter-Caliber

Nu 6 0.464 x 10-2 -0.70 1.03 0.30 0 0.41	 ----
Ogive

6T 7 0.335 x 10-2 0.26 -0.57 -0.04 0 -0.41	 1.0
max

a°	 w

vv e

These correlations are the same as those given in Reference 1113 except for
small adjustments in the constants due to the use of new fluid property data

,.	 :N,
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Table III

Constants and Expanents for Entrainment Theory-Second Correlation

Model Quantity Eq. Constant L/D V Re Pr We Pr Pe^
Na. C2, C 3 or C4 Exp. Exp. Exp. Exp. Exp. Exp.

C 
5 0.618 x 10-5 1.09 0.88 0 -0.62 ---- ----

Venturi, Nu 6 0.275 x 10-5 -C.32 2.33 0 -1.67 0.46 ----

ATmax 7 0.854 0.32 -1.45 0 1.05 -0.46 1.0

CQ 5 0.225 x 10-1 0.69 -0.10 0 0.40 ---- ----
Zero-Caliber

Nu 6 0.415 x ].0-2 -1.37 0.90 0 0.68 0.64 ----
Ogive

ATmax 7 1.183 0.87 -1.00 0 --0.28 -0.64 1.0

C 
5 0.836 x 10- 3 0.74 -0.06 0 0.79 ---- ----

Qaarter-Caliber
Nu 6 0.271 -0.70 0.41 0 0.93 0.31 ----

Ogive
ATmax 7 1.498 x 10-3 0.26 -0.47 0 -0.14 -0.31 1.0
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Table IV

Constants and Exponents for CA Correlations

•.s

Model	 Constant Cl	 L/ ll Exponent

Venturi	 2.63	 1.09

Zero-Caliber Ogive*	4.59	 1.19

Quarter-Caliber Ogive*	2.06	 1.18

CA ^ C1(L/D)a

Data from Reference 1111.

A

1.	 Si

I

.^qy,^



-27-	 December 11, 1975
MLB:JWH:DSW:jep

Table V

Comparison of Measured AT with Calculated AT for the Venturis

FLUID
MODEL

DIAMETER
IN.

I CAVITY
LENGTH

IN.

VELOCITY
FT/SEC

FLUID
TEMP.
( O R)

TrMPERATUPX DEPRESSION
MEASURED	 PREDICTED
AT (°F)	 AT2 ( °F)	 AT1 ( °F)

HYDROGEN .975 2.00 102.1 35.8 3.19 2.54 2.75
.975 2.50 98.8 35.7 2.61 2.67 2.93
.975 3.25 99.8 35.7 3.38 2.92 3.24
.975 3.25 143.3 37.2 4.27 4.29 4.54
.975 1.75 150.9 36.7 3.59 3.44 3.54
.975 2.75 149.6 36.6 4.94 3.91 4.11
.975 2.50 163.1 40.3 4.88 5.95 6.00
.975 3.25 166.8 40.2 5.42 6.50 6.61
.975 3.50 168.4 40.3 5.47 6.78 6.90
.975 1.75 172.6 37.1 4.64 3.90 3.95
.975 2.63 174.9 37.0 5.43 4.45 4.57
.975 3.25 173.0 36.1 6.05 4.65 4.83
.975 3.25 173.0 37.0 5.75 4.72 4.90
.975 1.25 187.6 40.4 4.05 5.24 5.06
.975 2.00 190.3 37.2 5.24 4.34 4.3
.975 2.00 192.7 37.2 5.32 4.39 4.41
.975 3.25 190.7 37.2 6.18 5.12 5.25
.975 3.50 194.0 37.1 5.69 5.24 5.39
.975 2.00 192.1 40.7 5.05 6.37 6.23
.975 3.25 189.8 40.4 6.18 7.21 7.21
.975 3.25 192.4 40.5 6.3. 7.35 7.34

FREON 114 .975 1.60 31.1 60.7 6.80 6.91 7.26
.975 1.60 32.5 79.9 8.90 9.30 9.64
.975 1.60 22.0 39.1 4.00 4.09 4.48
.975 1.60 22.7 60.0 5.40 5.65 6.14
.975 1.60 22.9 79.7 7.80 7.50 8.07
.975 1.60 44.3 60.3 8.80 8.51 8.62
975 1.60 44.5 80.1 10.50 11.28 11.31

.975 0.70 54.2 60.7 5.20 5.58 5.62

.975 3.00 26.9 60.7 7.20 7.77 8.51
HYDROGEN .975 1.25 151.4 36.9 °.58 3.13 3.18

975 2.00 15'..9 37.0 3.54 3.75 3.87
.975 3.25 152.8 37.1 4.17 4.41 f	 4.64
.975 1.25 328.7 38.6 3.43 3.44 3.51
.975 2.00 127.1 38.7 3.71 4.02

I1	
4.18

975 3.25 130.5 38.8 4.19 4.85 5.12
.975 1.25 139.7 40.5 4.28 4.44 4.41
.975 2.00 144.1 40.6 5.05 5.29 5.34
.975 3.25 144.8 41.0 5.74 6.49 6.65
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Table V Comparison of Measured AT with Calculated AT for the Venturis (Cont.)

FLUID
MODEL

DIAMETER
IN.

CAVITY
LENGTH

IN.

VELOCITY
/SEC

`FLUID
TOMP.
('R)

TEMPERATURE DEPRESSION
MEASURED	 PREDICTED
AT ('F) I AT2 (°F)	 AT1 (°F)

HYDROGEN .975 1.25 196.8 37.5 3.53 3.94 3.87
.975 2.00 199.4 37.6 4.50 4.70 4.69
.975 3.25 204.0 37.5 6.24 5.51 5.60
.975 1.25 195.6 38.6 4.47 4.42 4.31
.975 2.00 197.4 38.6 5.50 5.20 5.16
.975 3.25 195.8 38.4 6.44 5.93 6.02
.975 1.25 190.4 40.7 5.24 5.46 5.24
.975 2.00 189.4 40.7 5.69 6.29 6.17
.975 3.25 189.7 40.6 6.70 7.37 7.37
.975 1.25 196.2 37.6 4.98 3.98 3.91
.975 1.25 202.9 40.8 6.25 5.72 5.45
.975 2.00 202.8 40.7 6.52 6.56 6.38
.975 3.25 204.7 40.9 7.69 7.95 7.86
.975 1.25 197.6 38.5 5.11 4.41 4.30
.975 2.00 198.4 38.5 5.38 5.16 5.12
.975 3.25 201.1 38.9 6.26 6.36 6.41
.975 1.25 139.2 38.8 3.97 3.68 3.72
.975 2.00 141.2 38.7 4.77 4.31 4.43
.975 3.25 143.8 39.7 5.36 5.66 5.87
.975 1.25 155.4 37.1 3.53 3.25 3.28
.975 2.00 155.0 36.7 4.35 3.66 3.77
.975 3.25 153.9 37.2 5.45 4.70 4.96	 1
.975 2.00 151.6 40.8 4.45 5.60 5.61
.975 3.25 153.2 40.9 5.24 6.67 6.80
.975 1.25 111.0 36.5 2.79 2.48 2.60
.975 2.00 113.1 .5.5 2.95 2.92 3.12

NITROGEN .975 3.25 35.2 140.1 3.00 2.61 2.52
.975 3.2:': 50.5 139.8 3.10 3.18 2.96
.975 3.25 45.8 150.7 4.30 5.15 4.73
.975 3.25 65.4 160.4 8.70 10.11 8.68
.975 3.25 74.1 160.7 8.60 11.06 9.35
.975 3.25 73.1 150.5 6.50 6.77 5.92
.975 3.25 73.1 140.9 4.20 4.23 3.78
.975 3.25 72.8 3.40.7 4.30 4.18 3.73
.975 3.25 49.7 140.5 3.30 3.28 3.05
.975 3.25 48.2 140.5 3.60 3.22 3.01

FREON 114 1.378 2.75 31.4 27.5 5.40 4.67 4.68
".378 2.75 31.8 59.1 7.30 7.49 7.50
1 378 2.75 31.7 78.8 9.20 9.88 9.79
1.378 2.75 18.9 7.7 2.70 2.49 2.62
1.378 2.75 18.3 27.1 3.30 3.40 3.60
1.378 2.75 18.9 60.7 5.00 5.59 5.91
1.378 2.75 43.2 29.7 7.30 5.86 5.68
1.378 2.75 43.9 62.5 9.10 9.56 9.23
1.378 0.50 33.1 59.1 3.90 4.39 4.08
1.378 1.25 32.8 59.1 6.30 5.89 5.69
1.378 4.00	 I 30.2 59.1 8.00 8.21 8.39



B

-29-	 December 11, 1975
MLB:JWR:DSW:jep

Table V Comparison of Measurers AT with Calculated AT for the Venturis (Cont.)

MODEL CAVITY' FLUID TEMPERATURE DEPRESSION
FLUID DIAMETER LENGTH

VELOCITY
FT/SEC

TEMP. MEASURED	 PREDICTED
IN. IN. (°R) AT (°F)	 AT2 (°F)	 ATI (°F)

NITROGEN 1.378 1.00 20.4 140.0 1.10 1.16 1.06
1.378 2.00 20.7 140.0 1.30 1.44 1.35
1.378 4.00 19.2 140.0 1.80 1.76 1.71
1.378 4.00 25.1 140.4 2.30 2.12 1.99
1.378 4.00 31.5 141.0 2.70 2.51 2.30
1,378 4.00 42.0 142.6 3.00 3.23 2.87

ATI = AT predicted by first correlation.

AT2 = AT predicted by second correlation.
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D!4
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ZERO-CALIBERBER OGIVE QUARTER-CALIBER OGIVE

OGIVE TEST CONDITIONS FOR AT TESTS

MODEL DIAMETER (D): 0.125 AND 0.250 INCH

DIMENSIONLESS CAVITY LENGTH (L!D): 1.0 TO 7.0

VELOCITY RANGE: 64 ft/sec TO 120 ft!sec

TEMPL-RATURE RANGE: 85 0 F TO 203° F IN FREON 113
140° F TO 260° F IN WATER

Figure 11 — Sketch of the Ogives and Descriptinn of Test Conditions
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