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P‘( N ! ABSTRACT

A model is suggested in which some of the important features of the
circulating flow inside the two-dimensional near wake are derived by
assuming a slow viscous flow. The theory considers the flow away from
the body base. It is found that there is a region of constant speed
merging, as we go downstream, into a region of stagnation-apex flow.

The velocity returning from the rear stagnation point along the center
streamline is shown to be a stowly varying function of the "wedge-angle”
of the wake and to be roughly one half the velocity at the edge of the
shear layers driving the wake-cavity flow. These results seem to be in
agreement with experimental data.
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1. Introduction

A complete description of the structure of the two dimensional near wake
behind a body in motion depends on knowledge of the whole flow field. In
particular one has to know, or derive, the way the boundary layer separates
at the base and becomes a shear layer. This shear layer is driven by the
inviscid free stream and in turn drives the recirculating flow confined inside
the near-wake cavity.

Experiments at low to moderate {Re<200) Reynolds numbers [1] indicate
that the recirculating flow field in the cavity is composed of three parts:
The flow very near the base, the central region, and the flow field near the
rear stagnation point where the cavity closes on itself and where tie flow,
driven by the shear layers, turns around towards the base. The data show
that in the central region the velocily on the stagnation streamline {connecting
the 1 ear stagnation point to the center of the base) s constant,
independeni of the Reynoids number and is about 1/5 the free stream value.

Huuzrical studies for supersonic wake and Rex500 [2] indicate that in the
near wake the viscous and pressure tzrms dominate while 2 short distance down-
stream of the rear stagnation point the twou merged shear iayers have boundary-
layer-like st nitmre,

The abnve observations suggest that one niay be able to wodel the flow in
the =:intral and rear stagnation regions of the recirculating flow field by
considering a slow viscous fluid bounded by converging streamlines which
“represent” the bounding shear lavers. Away from éhe apex, i.e. the rear
stagnation point, the velocities along the outer and center streamlines are to
be constant. Mearer the-apex the velocities will depend linearly on the
distatice from the stagnation point and very close to it the variation will be

paraholic - as suggested by Heimenz (See for example Batchlor [3]).



In section 2 the Stokes' equation will be solved for the central region,
and it will be found that the returning velocity alcng the center stream line
cannot be assigned arbitrarily but uhat it is dictated by the constraint that
on the center line the pressure gradient normal fo it must vanish.

In section 3 the linear slagnation cegion is considered. it is found
that in it the pressure gradient must be radral. Therefore, the solution
in the constant velocity region found in section 2 and the nlution for this
stagnation region can be matched without changing the wedye anyle.

In section 4 we examine the final parabolic approach to stagnetion. [&
is found that,as in the central (constant velocity) region, there is a con-
straint on the returning velocity along the centerline. This cendition,
howevet matches the ane found in section Z only for Timifting small apex
angles. Thas in general this region will produce a discontinuity in the
sltopes of the slreamiines. However, because ovur model probiem possesses no
natural reference length, Lhis Finat stagnation region can be made as small
ac desired and wil! not affect tre solution elsewhere., An interesting result
v thiy fam sdiale asigiwovhond of che stagnation apex 15 that Lhe boundary
“t ~aam| fnas cannot Form an apex anqgle of 250 = ¢ radian: hicaie the returning
welocity aleng the contevline (8 - 0) iy propovtionel to sed R ---i.e. it

Tive.ye, 85w wo.evaches n/e.

i r

2. lhe constant (radial) veiocity regtan

In this region the geometry is as follows:

FIGURE 1
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The boundary conditions are u. = ~U° on the streamlines 6 =0, 8 = 280

and ug = 0 on the same streamlines. Since we assumed the inertia forces
to be nugatory the equation to be solved s Stokes', which 1s bi-harmonic

for the streamfunction,
vy = 0. (2.1)

With the above boundary conditions, hcwever, we shall get a sink-type flow.
We must stipulate that along the center .ine the fluid is moving away from
the apex (which is not in cur region of consideration now). Therefore we

consider the fellowing problem:

Vo

‘\\~-.

it is clea- that o polar coordinates the solution to (2.1) with its attendant

bou. oy conditions must pe of the form
v = rf(e)

from which



and equation (2.1) for the stream function becomes

oty = £ 4 aen s g <o,

(2.2)
The boundary conditions for the half-wedge (see figure 2) are
f(0) =0 f(BO) = 0
(2.3)
' = ' =
fr{C) = -U, f (eo) Y,
The solution of (2.2) subject to (2.3) is
f(8) = Ao(sine—erose) + B Bsing - ancose {2.4)
where
] ¥
2
A = —2L 1(—-9—)9 sind -8 (2.5)
0 a2 gin% U, 0T 0 o
0 0
and
B = . %o — (%) (s coss -sind ) + 8 - sind cosd ! (2.6)
0 W2 cins u,” o 0 0 0 0 o )
‘0 ¢

If we wish the center line & = 8_. to be a true line of symmetry for the

0
complete wedge it is nct sufficient to have ue(eo) = 'f(eo) = 0. We must

also require that the pressure gradient normal to that streamline vanish;

i.e. (8p/38)8=e = 0. Now
0
QE = ..1.'!. "
2p < B(fuaf) (2.7)



whei2 u is the coefficient of viscosity. The symmetry requirement leads

therefore to

(AO+UO)s1n80 + Bcose, = 0 (2.8)

Since Ao and BG depend on By U0 and VOIUO we find that for a given
driving velocity U0 and a given semi-apex angle 60 equation (2.8) yields
a value for VOIUO. The variation of 50 = VD/UO with eo is shown in

figure 3. Note that for ogﬁogylz, B varies monotonically between 0.5

0
and 2/m £ .637. Thus for most values of ;8 that one expects to encounter,
in experiments for example, the value of By = Vo/Uo will be confined to
fairly narrow bounds. This seems to be in agreement with experiments [1]

where at different (low) Reynolds number the same constant value of ur/Um

was measured along the stagnation streamline. The measured value of
|ur/Uml 2 0.2 would give our results the right order of magnitude if Uo’
the velocity characteristic of the "bottom" edge of the driving shear-layer,

it taken to be about 1/3 the local free stream value.

3. The (linear) stagnation region

We assume that from a certain distance, To? the velocity along the
bouinding streamlines begins to decelerate linearly in r. This is not an
unreasonable assumption and is in line with Heimenz' results [3] for stagnation

point flow. Thus we set in this region (r <r )

-

v = rPE(s).
Consequently

u, = rfe(e),

ug = -2rf(a),

5

e e b by U e A

T e R S




and the bi-harmonic equation reduces to

r2V4

v =) Lap - g (3.1)

The boundary conditions are:

f(o}y =0 f(Bo) 0

(3.2)
f'{0} = -U1 f‘(GD) Vl .

Since r has not been scaled yet we shall say that this stagnation region

is defined by r < r = 1. Then in order for the velocity along the bounding

streamline to be continuous ir the two regions r > 1 and r <1 we must
set U1 = U0 and Vl = Vo'
The solution to the system (3.1), (3.2) is

f = Al(sinZB—Ze) + Bl(cosze-l) - er {3.3)

where

Uy (1+Bl)tan90-280

A, = —=— - (3.4)
1 4 Bo-tanao

U (sineocoseo)(1+81+260tan60)»(1+31)60

0
B = —_— 5 (3'5)
18 (so-taneo)(s1neoccseo)
¥y v
1 0
s = = 3 s (3'6)
1 U1 UD

It is easily estabiished that for the present case 3p/30 = Q everywhere
and hence there is no constraint on the value of Bl' It follows that it was
legitimate to require continuity of the radial velocity on the bounding stream-

lines at r=13; 1i.e., to set, as we did, Bl = 30,

- - . . e
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It is interesting to note that the choice of ¥ = rzf(e) is the only one
leading to 3p/30 = 0 everywhera. This is seen by examining the expression
for the pressure gradient:
ou

u
g 2 _r__6 -
9 T2 5% 2 (3.7)

ar

|

1
o

o

If ug and u_  are calculated from ¢ = rf{8) we find

3 2

1 3p . - -3 "
oF 36 (2-m){f"+m"f

2 (3.8)

It is seen from (3.8) that 3p/3® vanishes everywhere for m = 2. This

is fortunate since otherwise we would have By 7 Bo and would not have been
able to match the velocities on the center streamline of the regions at
r=r, = 1, or at any other station. We are now is a position to combine
the results of this section with the previous section to specify a flow-field

of a slow viscous recirculating fluid in a wadge-like region (with the possible

exception of the very near neighborhood of the apex):

r>l
r[Ao(sine-ecose) + B 8sing - U 6cose] -
0<6<8
b= {3.9)
rz[Al(sin23~26) * Bl(cosze-l) - er] O<r<l
0<6<8,

with A , B, A; and B, given by (2.5), {2.6), (3.4) and (3.5) respectively.
There remains the questien of the continuity of Y and its derivatives, at
r =1, at a11 8. and not just along the bounding streamlines, 6 =0 and
9= 80, where the boundary conditions were chosen to assure us of continuity.
Clearly there is no analytic matching uniformly valid in © . Numerica®

L
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calculatiuns of ¥ and f' as functions of © for yarious BO are shown

in figures 4 and 5. It is seen that the matching is quite good.

4, Final approach to the stagnation apex

For Ogr§r2<<1 we might have a parabolic appraoch to stagnancy, i.e.,
b = rof(e) {4.1)

This small ro is Tikely to be ot the order of the diffusion length proper
to this problem, Ld Z o(u/pUO), where we assumed tacitiy that Ld << 1 and

hence U UL
1>>R_ = ?} ] c:)d

From (4.1) we have

=
I

= r’¢' ()

u

2
g -3r“f(6)

and the bi-harmonic equation for this case becomes

oty = £V L aor 4 0r = 0 - (4.2)

with boundary conditions

1t
<

1]
[wn]

£(0) #(e,)

(4.3)

1
-l

f*(0)

-u‘2 ! (eo) 0

vhere continuvity of velocity along the bounding streamline (8=0) demands
that U1 = r202 or U, = UO/PZ. Solving (4.2) and (4.3) for f(8) we find
Y

= 5ing - Lo - _ £
f = Az(a.ne §s1n3e) + Bz(cose co0s38) 3 sin3s (4.4)
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where

3 %sinzeo+82coseo-1
Ay = Uy 7 (4.5)
sin~o
)
U 2cost -f
B, = 1% . __uuiEL.g. (4.6)
sing
)
v
=2
By = ﬁ; (4.7)

From (3.3) it follows that the symmetry requirement (3p/39 = 0 at 6 =0 )

takes the form

f"(eo) + 9f(eo) =0 (4.8)

Using (4.4}, (4.5) and (4.6) we find that g, is constrained to take the

value
B, = i (4.9)
2 2coso )
0
. e e . T
Evidently BZ(BO) ;4 Bo(eo) ; in fact for the range of interest, 05965/2 ,

82(80) > B (eo) with equality taking place only at 8, = 0. Thus in the

)
present model there is no continucus matching possible between the 1inear and

parabolic stagnation regions. Either, if we match the velocities, there is

a discontinuity in the slopes of the bounding and other streamlines, or --

if we Jeave the wedge shape undisturbed -- there i§ a discontinuity in the

velocity field. This was to be expected in a relatively crude model as the

one empioyed here. Howgyer, the extent of the parabolic region is5 very 1
small and its effect on the rest of the flow field shouid be small. The main
'point is that the two major regions -- that of constant velocity and the linear

stagnation one -- do match well to yield a flow field with properties charac- 1
teristic of available low Reynolds numbers date. i
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It is interesting to note that the expression for 82(60) effectively
excludes the possibility of a blunted wedge shaped cavity with closure by
streamlines perpendicular to the center line, i.e., 60 =172 . In fact,

one would guess that at the apex the closure is cusped.
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