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ABSTRACT

A model is suggested in which some of the important features of the

circulatingiflow inside the two-dimensional near wake are derived by
assuming a slow viscous flow. The theory considers the flow away from
the body base. It is found that there is a region of constaltt speed
merging, as we go downstream, into a region of stagnation-apex flow.

The velocity returning from the rear stagnation point along the center

stoeamline is shown to be a slowly varying function of the "wedge-angle"

of the wake and to be roughly one half the velocity at the edge of the
shear layers driving the wake-cavity flow. These results seem to be in
agreement with experimental data.
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Introduction

A complete description! of the structure of the two dimensional near wake

behind a body in motion depends on knowledge of the whole flow field. in

particular one has to know, or derive, the way the boundary layer separates

at the base and becomes d shear layer. This shear layer is driven by the

inviscid free stream and in turn drives the recirculating flow confined inside

the near-wake cavity.

Experiments at low to moderate (Re<200) Reynolds numbers [1] indicate

that the recirculating flow field in the cavity is composed of three parts:

The flow very near the base, the central region, and the flow field near the

rear stagnation point where the cavity closes on itself and where Cie flow,

driven by the shear layers, turns around towards the base. The data show

that in the central region the velocity on the stagnation streamline (connecting

the !ear stagnation point to the center of the base)	 is constant,

independent o f the Reynolds number and is about 1/5 the free stream value.

tluc:erical studies for supersonic wake and Re=500 [2] indicato that in the

near wake the viscous and pressure terms dominate while a short distance down-

st-eam of the ,ear stagnation point the two merged shear layers have boundary-

layer-like sl a t!re.

The abn • e observations suggest that one may be able to mudel the flow in

the :.ritral and rear stagnation regions of the recirculating flow field by

consirlering a slow viscous fluid bounded by converging streamlines which

"represent" the bounding shear layers. Away from the apex, i.e. the rear

stagnation point, the velocities along the outer and center streamlines are to

be constant. Mearer the dpex the velocities will depend linearly on the

distance from the stagnation point and very close to it the variation will be

parabolic - as suggestr_-d by Heimenz (See for example Batchlor [3]).
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In section 2 the Stokes' equation will be solved for the ventral region,

and it will be found that the returning velocity alcng the center stream line

cannot be assigned arbitrarily but chat it is dictated by the constraint that

on the center line the pressure gradient normal to it must vanish.

In section 3 the linear stagnation region is considered. It is found

that in it the pressure gradient must be radial. Therefore, the solution

in the constant velocity region found in section 2 and the ;elution for this

stagnation region can be matched without changing the wedge angle.

In section 4 we examine the final parabolic approach to stagnation. It

is found that,as in the central (constant velocity) region,there is a con-

straint on the returning velocity along the centerline. This condition,

however matches the one found in section 2 only for limiting small apex

angles. Thus in general this region will produce a discontinuity in the

slopes of the streamlines. However, because our model problem possesses no

natural reference length : this F inal stagnation region can be made as small

a , desired and will not affect the solution elsewhere. An interesting result

;n thi ,; in n•diatY W jhuorrood of the stagnation apex is that the boundary

1 • naWues cannot form an apex angl e of 260 = n radians Kt i i,e the returning

,,eiucinv d ung the t saerline (6 n D) is proportional to see 0
-U

	 it

:i Vt. 10, 
as:; o 

0, 0 .oachen	 n/e.

2, the constant (radial) velocity region

In this region the geometry is as follows;

I

i

t

i
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The boundary conditions are u  = - lip on the streamlines 	 h = 0, 0 = 2e 

and u6 = 0 on the same streamlines. Since we assumed the inertia forces

to be nugatory the equation to be solved ^s Stokes', which is bi-harmonic

for the streamfunction,

041P = 0.
	

(2.1)

Wi *.h the above, boundary conditions, hrwevrr, Gve shall get a sink- type flow.

We mutt stipulate that along the center ine the fluid is moving away from

the apex (which is not in cu r region of consideration now). Therefore we

c(,nsider the following ,))-obleii:

0
FiGUkF 2

8

i t is clee- that in polar cuordinates the solution to (2.1) .nth its attendant

;^o:. -!a y coi,di tions must ae of the form

0 = rfN)

fran -mh ich

I 	 = ,° , = f' (9),
r	 r 36

u0 _ _ 
4ar

 = -f (o)

IM
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and equation (2.1) for the stream function becomes

r3 
V 

4 
ip  = 

f 
(i v ) + 2f" + f = 0. 	

(2.2)

The boundary conditions for the half-wedge (see figure 2) are

f(0) = 0
	

f(a0) = 0

(2.3)

f 1 (0) = -U0	fI(a0) = V0

The solution of (2.2) subject to (2.3) is

f(a) = A0 (sine-ecose) + B0Bsine - U  cosh

where

A =	 U0
	

1(—%)E) sine -02 
1o	 62-sin260 + U

0 0	 0 0

I 1 CY,

(2.4)

(2.5)

and

g	 U0	 (V-2)(6 Cosa -sine ) + 6 - sine Cosa	 (2.6)
0	 02-sin26	

( U0	 0	 0	 0	 0	 0	 o f

0	 0

If we wish the center line a = 6 0 to be a true line of symmetry for the

complete wedge it is not sufficient to have u 6 ( a 0 ) = -f(eo ) = 0. We must

also require that the pressure gradient normal to that streamline vanish;

i.e. (ap/2e)
6=6

 = 0. Now

0

38	 r
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where u is the coefficient of viscosity. The symmetry requirement leads

therefore to

(Ao+U0 )sine 0 + B0cose, = 0
	

(2.8)

Since Ao and Bc depend on Bo , Uo and V
0 
/U

0 
we find that for a given

driving velocity U 	 and a given semi-apex angle 0o equation (2.8) yields

a value for Vo/Uo . The variation of go = Vo/Uo with 0o is shown in

figure 3. Note that for o<Bo^y/2, $o varies monotonically between 0.5

and 2/n = .637. Thus for most values of 0 o that one expects to encounter,

in experiments for example, the value of S o = Vo/U0 will be confined to

fairly narrow bounds. This seems to be in agreement with experiments [1]

where at different (low) Reynolds number the same constant value of ur/Um

was measured along the stagnation streamline. The measured value of

lu r/Um ( = 0.2 would give our results the right order of magnitude if Uo,

the velocity characteristic of the "bottom" edge of the driving shear-layer,

is taken to be about 1/3 the local free stream value.

3. Thelinear) stagnation region

We assume that from a certain distance, r o , the velocity along the

bout.Jir.g streamlines begins to decelerate linearly in r. This is not an

unreasonable assumption and is in line with Heimenz` results [3] for stagnation

point flow. Thus we set in this region (r < ro)

>U = r2f(6).

Consequently

u  = rf`(0),

U0 = -2rf(6),
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and the bi-harmonic equation reduces to

r204ip = f(iv) + 4f" = 0 	 (3.1)

The boundary conditions are:

f(0) = 0	 f(eo) = 0
(3.2)

1r ( 0 ) = -U 1	f'(eo) = VI .

Since r has not been scaled yet we shall say that this stagnation region

is defined by r < r o = 1. Then in order for the velocity along the bounding

streamline to be continuous in the two regions r > 1 and r < 1 we must

set U I = Uo and V I = Vo.

The solution to the system (3.1), (3.2) is

	

f = A I (sin2e-26) + B I (cos2e-1) - U o6	 (3.3)

where

U  (1+e,)taneo-260
AI

4	 . ao -tan6o
(3.4)

Uo (sineocosao)(1
+BI

+200tan6o)- (),+BI)aoB

1

_

4
(3.5 )

ao-taneo	 sineoceseo

,I VVooB 1 =
U

- Uo
(3.6)

It is easily established that for the present case 3p/;o = 0 everywhere

and hence there is no constraint on the value of B 1 • It follows that it was

legitimate to require continuity of the radial velocity on the bounding stream-

lines at r = 1 ; i.e., to set, as we did, BI = Bo.

kkisz



It is interesting to note that the choice of	 = r2f(6) is the only one

Ileading to ap/ae = 0 everywhere. This is seen by examining the expression

for the pressure gradient:

au	 u

v ae = °2 " +e 
r 
aor r2	

(3.;)

If 
U  

and u 	 are calculated from ^ = rmf(e) we find

1 ae 
= ,'n-3(2-m)(f"+m2f)	 (3.8)

ur a6

It is seen from (3.8) that ap/ae vanishes everywhere for m = 2. This

-`

	

	 is fortunate since otherwise we would have Sl # S° and would not have been

able to match the velocities on the center streamline of the regions at

r = r° = 1, or at any other station. We are now is a position to combine

the results of this section with the previous section to specify a flow-field

of a slow viscous recirculating fluid in a wedge-like region (with the possible

exception of the very near neighborhood of the apex):

'f

r>1

r[Ao (siO -ecose) + B°esine - Uoecosel
o<e<e

p =	 — °	 (3.9)

r2 [Al (sin2e-2e)	 B l (cosU-1) - Uo 1	
0<r<l

with A° , Bo , Al and B1 given by (215), (2.6), (3.4) and (3.5) respectively.

There remains the question of the continuity of * and its derivatives, at

r = 1, at all 8 . and not just along the bounding streamlines, 6 = 0 and

0 = eo , where the boundary conditions were chosen to assure us of continuity.

Clearly there is no analytic matching uniformly valid in 6 . Numerica:



calculations of f and f' as functions of a for various e o are shown

in figures 4 and 5.	 It is seen that the matching is quite good.

4. Final approach to the stagnation apex

For 0<r<r 2<<1 we might have a parabolic appraoch to stagnancy, i.e.,

i

0 = r•3 f( 6 )
	

(4.1)

This small r 2 is likely to be of the order of the diffusion length proper

to this problem, L  = o(u/Pu o ), where we assumed tacitly that L  << 1 and

hence	 U	 U L
1>>R = o » a d

From (4.1) we have

u  = r2f'(a)

u 9 = -3r2f(e)

and the bi-harmonic equation for this case becomes

r3V40 = f (iv) + lof'^ + 9f = 0
	

(4.2)

with boundary conditions

f(0) = 0
	

fNo) = 0
(4.3)

f°(0) = -U2
	 f '( 6 o ) = V2

where continuity of velocity along the bounding streamline (6=0) demands

that U1 = r 
2 
U 
2 

or U2 = Uo/r 
2. 

Solving (4.2) and (4.3) for f(e) we find

U

f = A2 (sine - 3 WO) + 82 (cose-cos3e) - 3 si06	 (4.4)



1
a 2 = 2cosB0

(4.9)

EMI

where

I]
2

A -
	 -3sin2e0+0 cose0-1

(4.5)2	 4 2	
sin2e0

U2	 2coseo-S2
62 - T	

sine
(4.6}

o

V
62 = ^?	 (4.7)

2

From (3.3) it follows that the symmetry requirement (ap /ae = 0 at 8 = e0)

takes the form

f"(e 0 ) + 9f(e o ) = 0
	

(4.8)

Using (4.4), (4.5) and (4.6) we find that 6 2 is constrained to take the

value

Evidently 52 ( 0 0 ) # 60 ( 00 ) ; in fact for the range of interest, 0<e0—< Tr /2

62 (00 ) > Bo (e o ) with equality taking place only at 6 0 = 0. Thus in the

present model there is rio continuous matching possible between the linear and

parabolic stagnation regions. Either, if we match the velocities, there is

a discontinuity in the slopes of the bounding and other streamlines, or --

if we leave the wedge shape undisturbed -- there is a discontinuity in the

velocity field. This was to be expected in a relatively crude model as the

one employed here. However, the extent of the parabolic region is very

small and its effect on the rest of the flow field should be small. The main

point is that the two major regions -- that of constant velocity and the linear

stagnation one -- do match well to yield a flow field with properties charac-

teristic of available low Reynolds numbers data.



It is interesting to note that the expression for 82(ao) effectively

excludes the possibility of a blunted wedge shaped cavity with closure by

streamlines perpendicular to the center line, i.e., e o = n/ 2 . In fact,

one would guess that at the apex the closure is cusped.
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