General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TECHNICAL MEMORANDUM

```
NASA TM X-73348
    (NASA-TM-X-73348) NEAKEST NEIGHBOR, N7?-10609
BILINEAR INTEREOLATION AND BICUBIC
INTERPOLATION GEOGRAPHIC CORRECTION EPFECTS
ON LANDSAT IMAGERY (NASA) 28 p HC AO3/MF Unclas
AO1 CSCL O5E G3/43 07990
NEAREST NEIGHBOR, BILINEAR INTER POLATION AND BICUBIC INTERPOLATION GEOGRAPHIC CORRECTION EFFECTS ON LANDSAT IMAGERY
```

By Robert N. Jayroe, Jr.
Data Systems Laboratory

September 1976

NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

TECHNICAL REPORT ST ANDARD TITLE PAGE

$\begin{aligned} & \text { DEPORT NO. } \\ & \text { NASA TM X- } 73348 \end{aligned}$	2. Govermment Accession mo.	3. RECIPIENT'S CATALOG NO.
4 title ano subtitle Nearest Neighbor, Bilinear Interpolation and Bicubic Interpolation Geographic Correction Effects on Landsat Imagery		$\begin{aligned} & \text { 5. REPORT DATE } \\ & \text { September } 1976 \\ & \text { 5. PERFORMING ORGANIZATION CODE } \end{aligned}$
\%. Alfthor(s) Robert R. Jayroe, Jr.		8. PERFORMING ORGANTEATION REPMAT
9 pepforming organization name and address George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812		10. WORK UNIT NO.
12 SPONSORING AGENCY NAME GNII ADDRESS National Aeronautics and Space Administration Washington, D. C. 20546		Technical Memcrancüum 14. SPONSORINI AGFNCY CODE
is. SUPPLEMENTARY NOTES This work was sponsored by the Office of Applications' Data Management Program. Prepared by Data Systems Laboratory, Science and Engineering		
i6. ABSTÃACT The objectives of this work are to identify effects that are observed in Landsat image data when the image data are geographically corrected using the nearest neighbor, bilinear interpolation and bicubic interpolation registration techniques, and to identify potential impacts of registration on image compression and classification.		
17. KEy WORDS 18. DISTRIGUTION STATEMEM Classification Remote Sensing Classification Technique Evaluation		
19. SECURITY CLASSIF. (of that reperin Lnclassified	20. SECURITY CLASSIF. (of this pngo) Unclassified	$\|$21. NO. OF PAGE.S 29 22. PRICE NTIS

ACKNOWLEDGMENTS

The author wishes to acknowledge Mr. W. P. Gibson and Mr. .D. Underwood of MSFC for providing the products for this report. The autior also wishes to acknowledge Dr. R. Atkinson, Dr. H. Ramapriyan, Dr. B. Dasarathy, and Mr. M. Lybanon of the Computer Science Corporation, Huntsville, Alabama, for their assistance in utilizing the software programs that they developed for this work, and Mr. B. Pierce and Mr. B. Lee of Science Applications Incorporated, Huntsville, Alabama, for their assistance in utilizing display routines that they developed for the data technology testbed.

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. BRIEF DESCRIPTION OF THE IMAGE DATA 2
II. RESULTS 3
IV. SUMMARY OF OBSERVATIONS 20

LIST OF ILLUSTRATIONS

Figure Title Page

1. Grey scale determination for $N N, B L$, and $B C$ at location X 2
2. Joint histogram of chamels 2 and 3 for the original data 11
3. Joint histogram of channels 2 and 3 lor NN corrected data 12
4. Joint histogram of chamels 2 and 3 for BL corrected data. 13
5. Joint histogram of chamels 2 and 3 for BC corrected data 14
6. Density slice image of channel 1 for the original data 15
7. Density slice image of channel 1 lor the BC corrected data 16
8. Absolute value image difference of BL and BC for channcl 3 19

LIST OF TABLES

Table Title Page

1. Channel 1 Histograms and Deviations for TSPO Data Set. 4
2. Channel 2 Histograms and Deviations for TSPO Data Set. 5
3. Channe1 3 Llistograms and Deviations for TSPO Data Set. u
4. Chamel 4 Histomrams and Deviations Eor TSPO Data Set. 7
5. Histogram Statisties for TSPO Data Set 8
G. Histogram Deviation Statistics for TSPO Data Set 9
6. Absolute Value Dilference Ilistogram for NN, BL, and BC Overlays 17
7. Accumulative Percentages for Absolute Value Differences of NN, BL, and BC Overlays 18

NEAREST NEIGHBOR, BILINEAR INTERPOLATION AND BICUBIC INTER POLATION GEOGRAPHIC CORRECTION EFFECTS ON LANDSAT IMAGERY

I. INTRODUCTION

There are basically two steps involved in geographically correcting image clata. The first step is utilization of a transformation, which tells where to obtain grey scale information from the original data for a particular pixel location on a geographically correct coordinate system imas, e. In a majority of cases, the location for obtaining grey scale information irom the original image occurs in between pixcls, and this requires that the grey scale value be estimated. The second step, therefore, involves deciding how to assign or estimate the grey scale value. There are three techmiques commonly used for determining the proper grey scale valuc: Nearest Neighbor (NN), Bilincar Interpolation (BL), and Bicubic Interpolation (BC). Figure 1 illustrates how the grey scale values are determined for a location (X) in between pixels (represented by a dot) for the three techniques. For NN there is a direct assignment (indicated by an arrow) of a grey scale value of the pixel that is closest to the location X . For the interpolation techniques, the lines connceting pixels show the pixels used in interpolating to determine a grey scale value at the location represented by deltas. The lines connecting the deltas show arother interpolation process required to determine the grey scale value at the desired location X. The $B L$ requires a pair of pixel grey scale values, while the $B C$ requires a set of four pixcl grey scale values.

The objectives of the effort are to determine what effects are observed when image data are geographically corrected using the three techniques and to be aware of potential impacts these effects may have on image compression and classification. Effects imply that there will be a deviation between what is observed and what is expected or at least a change will be noticed as a result of the registration (geographic correction) process. In this case, there are only three basic questions that can be asked: what has changed, how much change is there, and where co these changes occur?

Figure i. Grey scale determination for NN, BL, and $B C$ at location X.

II. BRIEF DESCRIPTION OF THE IMAGE DATA

The data set consisted of Landsat digital imagery, April 4, 1973, ID Number 1265~15444. The test site extracted from that imarory was 255 pixels wide and 200 scans long, and corresponded to the Bald Knols, Tonossee Guadrangle. The data were geographically corrected to correspond to a digital ground truth map (GTM), supplied by the Temessee State Plaming Orlice (TSPO) of Nashville, Tennessee, that was 565 pixels wide and 500 scans long. This particular data set has been extensively described, literally and pictorially, as well as extensively classified with various classification techniques that are discussed in a NASA Report. ${ }^{1}$ According to the ground truth information, the test site is 0.83 percent urban, 2.53 percent transportation/ communication, 28.68 percent agriculture, 65.93 percent forest, and 2.03 percent water.

[^0]
1II. RESULTS

To determine what had changed and how much change was observed, histograms were computed for the original four bands of data and for the four bands of data that were geographically corrected using NN, BL, and BC. The histograms of the original image had to be normalized so that all of the histograms contain the same number of pixels, because the original image was approximately four times smaller than the geographically correct image. Tables 1 through 4 show this information for the four bands as well as histogram deviations between the original data and the geographically corrected data. Maxima and minima of the histograms are indicated by X and N , respectively, and the mode of the histogram is indicated by XX. The lines scparating grey scale values show where each band was density sliced to produce grey scale imares. In the columns of deviations, a plua siem indieates that more pixels of a particular grey scale value wore requeseed to be transferred from the original image to the corrected image than wore present in the original image. A minus sign indicates that not all of the pixels of a particular grey scale value were requested to be transfored from the original to the corrected image.

One possible interpretation is that the number of pixels with grey scale values that were left over on the original image (indieated by a minus sign) had their grey scale values changed to accommodate a request for more pixels of another grey scale value (indicated by a plus sign). In this sense, the number of grey scale value changes that occurred is shown as absolute value sums under the deviation columns. This number divided by two is the number of pixels which had their grey scale values changed. The numbers under the four columns to the left of the deviation columns show that all of the histograms for the test site contain $2110: 5$ pixels.

Examination of the maxima and minima of the histograms shows that NN most nearly preserves the histogram structure of the original data, while the interpolation methods act as a filter smoothing away most of the structure. This tends to make the procedure of choosing density slices more difficult because all of the natural indications in the data are no longer there. Also, the least amount of grey scale charges occur for NN. Table 5 shows the statistics calculated from the histograms, and indicates that, although the mode of the histogram may change, the moan value appears to be changed very little. However, the variance is reduced quite considerably in some cases. Table 6 is a summary of the number of pixels that had their grey scale values changed and the resulting percent changes in the histograms.

TABLE 1. CHANNEL 1 HISTOGRAMS AND DEVIATIONS FOR TSPO DATA SET

Grey Scale Value	Oripinal Data	NN	LBL	LC	Devintuots					
					NN-O	BL-O	S3C-O	IUL-NN	me-nN	10C-13L
21	12 X	11 X	0	10	- 1	- 12	- 2	- 11	- 1	+ 10
22	4 N	3 N	8	41	- 1	+ 4	+ ${ }^{3}$	+ 6	+ ${ }^{4}$	+ 析
23	2048	25:3	72	280	- 11	- 102	± 16	- 161	+ 27	+ 208
24	2380	1842	598	1.440	-38	-762	- 06	- 744	$+109$	+ 848
25	1562	4 54za	4111	5.400	- 20	-1451	+ 848	-1 431	+ 565	+2885
26	1343	12345	11338	13 278	+ 7	-2004	- 62	-2018	- 69	+1944
27	25486	252822	201 189	225728	-184	-2 257	-1748	-2103	-1 064	+ 5029
28	343858	35394 X	$0450 \pm \mathrm{xX}$	41.1528	-564	+ 145	-2 670	+ \% ${ }^{\text {¢ }}$ -	-2 312	-2 824
29	18566 N	18413 N	27859	250604 N	-15is	+9 43\%	+7008	+5) 580	+7 ${ }^{2} 51$	-2 295
30	344678 XX	91470 XX	${ }^{27} 2009$	2 t 0.44 X	-207	-7259	-4 468	-690	-8999	-1 104
31	129206 N	12367 N	18006	17803	+101	+5843	*5497	+5880	+5 356	- 2138
32	15469 X	15712 X	10002	15932	+244	+ 595	- 1.47	+ 360	- 80	- 740
33	14654	14752	15043	14.222	+168	+ 439	- 308	+ 291	- 530	- 821
84	14256	14876	12606	1255	+120	-1 490	-1401	-1 7110	-2081	- 311
35	7880	7965	8085	8146	+139	+ 239	+ 5	+ 100	+ 1121	+ 81
36	2860 N	2908 N	4854	5193	+58	+20134	4243	+1976	+2 265	+ 309
37	5350 X	54858	3465	5385	+83	-1836	-1 511	-1 068	-1594	+ 8774
35	1843	1876	1814	2885	+39	- 29	+ 540	- 61	+ 514	+ 575
39	1583	1622	1082	1488	$+29$	- 501	- 95	- 540	- 184	+ 400
40	G.10 N	0655	630	916	+ 16	- 10	+ 269	- 45	$+253$	+ 286
41	9368 X	350 X	313	817	$+1$	- 550	- 329	- 515	- 303	+ 224
42	± 70	1 CL	229	51.4	$+10$	- ${ }^{\text {¢ }}$	+ 171	+ 42	+ 161	+ 110
4	130 ${ }^{3}$	134 N	157	2088	+ 4	+ 27	+ 33	+ 24	$+91$	+ 71
44	20\% X	205 X	111	169	+ 2	- 92	- 34	- 9 9	- 36	+ 59
45	170	168	87	136	- \quad -	- 83	- 34	- 76	- 27	+ 49
40	81	77	66	89	- 4	- 15	+ 8	- 11	$+12$	+ 25
47	208	19 N	48	76	- 1	+ 28	± 50	+ 29	+ 57	+ 28
48	110 X	102 X	34	51	-8	- 76	- 59	- 08	- E1	+ 17
49	23	27	3	48	- 1	+ 6	$+20$	+ 7	$+21$	+ 14
50	20 N	18 N	48	356	- 2	+ 8	+ 15	+ 10	+ 17	+ 7
b1	45 X	41	24	37 X	- 4	- 21	- 8	- 17	- 4	-13
52	41	448	0	28	$+3$	- 32	- 14	- $\quad 35$	- 16	+ 19
54	88	30	9 N	20	+ 2	- 40	- y	- 81	- 10	+ 11
5.1	0	0	10 X	14	0	+ 10	$+14$	+ 10	+ 1-4	+ 4
55	0 N	0 N	5	9	0	+ 5	$+\quad 4$	* 5	+ 0	+ 4
50	248	26 x	5	7	+ 2	- 19	- 17	- 21	- 19	+ 2
57	4	4	$\stackrel{A}{4}$	5	0	0	+ 1	0	+ 1	+ 1
58	0 N	0	1	4 N	0	+ 1	$+4$	+ 1	+ 4	+ 3
59	12 X	$15 \times$	1	9 X	+3	- 11	- 3	- 14	\cdots	+ 8
60	0	0	0	4	0	0	+ 4	0	$+4$	+ 4
61	0	0	0	2	0	0	+ 2	0	+ 2	+ 2
	211075	211075	211075	211075	121921	141 8891	1248641	1375461	144 486\|	1171761

TABLE 2. CHANNEL 2 HISTOGRAMS AND DEVIATIONS FOR TSPO DATA SET

Orey scale Value	Orighoal Datn	NN	BL.	13C	Desfuts:\%						
					NNO	HL-O	nc-0	HLINNN	LSC-NN		
12	0	0	0	4	0	0	+ 8	0	$+3$	+ ${ }^{4}$	
13	0	0	0	10	0	0	+ 16	4	$+16$	- 16	
1.4	4.4	28	4	H1	$+4$	- 20	+ 57	+ 24	+ 5	+ 77	
10	204	271	45	274	$+7$	- 215	+ 10	- 2283	+ 3	+ 2293	
15	025	315	240	556	- 10	- 376	- 09	- 2080	- 83	+ 307	
17	718	720)	677	930	+ 11	- 141	+ 268	158	+ 2551	+ 604	
${ }^{4}$	2488 X	2 290 8	1184	1787	+ 6	-1 104	- 751	-1	- 766	+ 585	
15	609 N	G6a N	1855	2805	+ 15	+1210	+1014	+1 195	+1 499	$+704$	
20	4997	501%	5469	4870	+ 16	-1 5	- 127	-1 544	- 14, ${ }^{2}$	+1 4101	
21	7875	7415	0685	8061	+ 41	- 6852	+ 7400	- 704	+ 665	+18385	
22	$14 \% 808$	14898	1156	125404	+154	- 2000	-2 260	- 5 \% 3 \%	-4	+ 440	
23	15308	15488	15985	15.514	+136	+ 682	+ 211	+ 547	+ 75	- 571	
24	20528 X	205100 X	13898	18105	+ 28	- 050	-242a	- $00{ }^{\text {cter }}$	-2 4E5	-1 4033	
8	1.4849 N	14251 N	81178	191878	-8	+6 033	$+5440$	+6 447	+5 448	-1 499	
20	21644	21005	84820	21810	- 11	+2 585	+ 10	+2546	+ 177	-2 415	
24	27059 xX	$27015 \times \mathrm{x}$	20.2988	\% - 74 XX	- 44	- 887	-29 485	-783	-22 4.12	-28 458	
28	224887	23517	22797		-170	- 690	-1498	- 520	-1 3 24	- 802	
29	18973	18 B39	$15 \mathrm{cg6}$	45080	- ${ }^{5}$	-4878	-3003	-2 44.4	-2 720	+ 184	
30	\% 424	3400 N	100052	9082	- 24	+64 630	+62560	+6652	+6\%	- 70	
31	11605 x	11) 505	83410	8177	- 68	-3865	-5 4ins	- ${ }^{-157}$	-3 360	- 16\%	
36	503	5407	5407	$6 \mathrm{B4}{ }^{\text {c }}$	+ 69	+ 69	$+504$	0	+ 435	+ 455	
980	2 ctan N	${ }^{41198}$	5 \%\%	3389	+ 80	+ 605	+ 922	+ 613	+ Sto	+ 257	
\%	$3759 \times$	\% 702 x	2960	3047	+ 4	- 733	- 712	- ys	- 7.45	+ ${ }^{+1}$	
36	2426	2427	1898	2258	+ 4	- 5	- 170	- 5 505	- 17\%	+ 304	
40	13.50 N	1094 N	1483	1574	+ 14	+ ${ }^{\text {difig }}$	+ 4304	+ 3\$3	+460	+ 14:	
37	1 670 2	1691 X	1104	1540	$+15$	-. 572	- 306	- 367	- 10.1	+ 204	
\%	710	738	820	1011	+ 23	+110	+ 201	+ 980	+ 278	+ 182	
313	013 N	$622{ }^{2}$	718	806	+ 3	+ 164	+ 298	+ 90	+ 184	+ 88	
40	B. 44 X	450 X	559	68\%	+ 12	~ 285	- 150	- 2897	- 168	+ 123	
41	301 N	3809 N	4 CF	587	+ 2	$+\quad 98$	+ 2206	+ 56	+ 204	+ 128	
42	601 X	611 X	314	447	+10	- 267	- 158	- 267	- 16d	$+105$	
43	2515	2365	423	38\%	+ 5	+ 92	+ 152	+ 87	$+117$	+ 60	
4	204	25.	276	312	- 20	+ 12	+ 48\%	+ 22	+	+ 26	
40	44: X	455 X	250	258	+ 12	- 107	- 189	- 208	- 200	+ ${ }^{\text {y }}$	
40	363	335	165	258	$+0$	- 164	-71	- 170	- 77	+ 93	
47	101 N	107 N	133 N	181	+ 0	+ 2	+ 80	+ 26	+ 74	+ 48	
48	207 \%	210゙5 X	138 X	175	+ ${ }^{\text {c }}$	- 615	- 72	- 76	-	+	
45	77	80	TE N	111	$+3$	+ 1	+ 24	- 2	+ 61	+ 23	
54	69 N	68 N	87 X	15	- 1	4 18	+ 60	+ 19	+ 64	+ 45	
51	106 X	109 X	79	90	+ 3	- 27	- 16	- 30	- 19	+ 11	
5	77	$72 . \mathrm{N}$	57 N	84	- 5	- 20	+ 0	- 15	+ 14.	+ 29	
\%	77	B1 X	58 X	B. 1	+ 4	- 19	+ 7	- 20	+ 3	+ 26	
$5:$	17 N	35 N	28 N	5	- 2	- 9	$+17$	- 7	+ 13	+ 26	
55	101 X	100 X	28	5	- 1	- 76	- 51	- 72	- 30	+ 24	
54	28 N	25	26 X	47	- 3	+ B	+ 19	+ 11	+ 22	+ 11	
57	3 d	3	2%	41	- 1	- 5	+ 9	- 4	+ 10	+ 1.4	
58	32	ata	28	\% 5	- 1	- 10	+ 7	- 11	+ 0	+ 17	
59	88	31	18	31	-1	- 14	- 1	- 13	0	+ 18	
60	24 N	27 N	16 N	- 2	+ 8	- 8	- 1	- 11	- 4	+ 7	
61	42	11	27 X	47	- 1	- 5	- 5	- 4	- 4	0	
02	49 X	48 x	10	23	- 1	- 54	- 208	- 32	- 25	+ 7	
6.5	16 N	27 N	12	19	+ 1	- 4	+ 3	- 5	+ 2	+ 7	
6.9	41 X	$42 \times$	11	20	+ 1	- 30	- 21	- 31	- 22	+ 9	
B_{5}	0	0	1 N	15	0	+ 1	+ 18	+ 1	+ 15	+ 17	
66	0 N	0 N	4	${ }^{5}$	0	+ 4	+ 9	$+\quad 4$	+ 9	- 5	
67	16 X	17 X	4 x	14	+ 1	- 12	- 2	- 15	- 3	+ 10	
68	4	4	0	4	0	- 4	0	- 4	0	4	
69	4	4 N	1	7	0	- 8	+	- 3	+	$+0$	
70	4	5 X	0	2	$+1$	- 4	- 2	- 5	4	+ 2	
71	0	0	0	7	0	0	- 7	0	+ 7	+ 7	
72	0	0	0	1	4	0	$\cdots \quad 1$	0	+ 1	+ 1	
7	0	0	0	3	0	0	+ 3	13	+ 3	+ ${ }^{\text {j }}$	
74	0	0	0	0	0	0	0	0	0	(1)	
75	0	0	0	0	0	0	0	0	0	0	
76	0	0	0	4	0	0	0	0	0	0	
7	0	0	0	1	0	0	+ 1	1	+	+	
	211085	211075	211075	211475	113561	130 24al	1265461		1262321	$117950 \\|$	

TABLE 3．CHANNEL 3 HISTOGRAMS AND DEVIATIONS FOR TSPO DATA SET

Guw stimles Valla	$\begin{aligned} & \text { Ordganal } \\ & \text { Lheta } \end{aligned}$	W＊	13.	IE	Devtaticar					
					SiN－O	131，0	10－0	21，－8N	11CMN	HEW HL_{4}
7	\checkmark	0	$\stackrel{1}{ }$	\pm	0	${ }^{3}$	± 8	4	$+2$	＋ 2
自	0	0	4	4	0	0	43	0	＋ 6	＋
3	4 x	4 x	0	15	0	－ 1	＊18	－ 4	$+11$	＋ 18
16	0 N	0 \％	0	92	0	9	－ 4	is	＋ 32	－ 92
11	13	47	1	74	42	－ 44	＋	－ 46	＋ 27	＋74
12	64i	E4t	8	43	－1	－ 3	－30	－ 60	－${ }^{2}$	－姓
15	2243 \times	$221 \times$	29	183	－ 2	－ 191	－กี้	－198	－68	－181
14	176	174	76	171	－ 1	－ 04	$\cdots \quad 4$	－in	－ 3	＋ 92
14	160	1783 X	108	169	－ 10	－ 88	＋ 9	－ 08	－	－ 011
16	$6_{65} 8$	44 N	146	2st	＋8	＋ 51	＋ 92	＋ 46	＋ 4	＋ 0
17	2078	2015	1608	157	－心	－ 27	－ 70	－ 51	－ 48	－ 40
15	145	19\％	154	156	$\cdots 1$	－ 15	－ 53	－ 14	\cdots－ 3	－ 24
10	174	185\％	162 N	160	$+0$	－ 27	－ 4	－	－ 20	＋ 4
8	170	10n $\%$	172	2	＋ 86	＋${ }^{2}$	－ 13	－ 14	－ 2	＋ 10
21	142 Ev	146\％	218	1994	$+5$	－ 56	＋ 81	＋ 73	＋ 78	＋ 8
22	2040	24.4	224	254	－ 2	06	－ 8	－54	＋17	＋©
＊${ }_{\text {d }}$	402	ใ d 3	twi	44	－1	－ 802	－ 48	－ 108	＋ 00	＋ 104
它 9	6is	067	453	759	＋ 24	－ 88	－ 245	－${ }^{-9}$	＋ 240	－2\％4
25	1514	1835	913	1 1	$+10$	－\＄39	－ 111	－ 818	－ 20	＋ 118
㕱	1806	1 13：	1 149	2148	$+34$	－ 172	＋505	－ $20 \pm$	＋ 808	－ 700
4	4 4 4	＋111	28980	3 CLS	＋28	－1 155	－465	－1 221	－453	－ 2 2ts
128	4251	＋155	4 465		－ 26	－ 609	$+1454$	＋ 47π	＋1．4E0	＋803
2	4265	4845y	4043	¢ 770	－ 8	－ 4.5	＋ 414	－2e6	$+80^{7}$	＋ 700
150		14.615	12 cose		－ 84	－1 ¢ $_{\text {¢ }}$	－1 \％${ }^{2}$	－1 6315	－1907	＋ 208
31	14， 800	1.40 ded	14 ${ }^{\text {ma }}$	14 35	－19\％	4 ㄴ4	－大ud	＋	－8834	－Etr
超	17170 x	170003 x	185748		－ 71	－1．815	－2847\％	－1 3 \％${ }^{\text {¢ }}$	－5408	－1 06
3	853	日 O_{5}		1364\％${ }^{\text {¢ }}$	－的	＋6．610	＋6．905	＋6 6 W0	＋6： 294	－1 182
W	20785 x	202548	14 \＄15\％	120 60 x	－376	－61 174	－7036	－4，6id	－4	－צ゙上1
䢕	4 SE 5 5	4 7 7 枵	11978	11.485	－1205	＋71120	＋15 548	47\％95	4675	－5xt
： 4	17 15\％ x	17 5¢5	118	1002\％	－	－6 615	－15 4043	－6 1489		－ 4 － 4
T	40808	40418	5485	816	－ 18	＋ 1514	4 dotil	＋1723	＋1415	155
5	0963 X	9590 X	6950		－ 14		－3 198	－34		＋ 224
（19）	1400 N	1415 y	4077	4601	$+1$	＋2160	＋+1 18＊	＋13164	＋3 ${ }^{\text {1 }}$	＊14
49		（6） 3.1 x	395		＋ 61	－ tho	－2040	－2\％	－2 59\％	－${ }^{4}$
41	40925	465		せ150	＋Iu	＋25cy		＋28 5EM $^{\text {a }}$	＋2 ciul	＋ 77
4	4.458	4 20x X	$2 \mathrm{LS4} \mathrm{X}$	a 920	＋ 42	－1 478	－8 801	－1．49	－1 ट－5	－\％
4in	2904	2 ctc	3 Wosk	2 CH	$+68$	＋ 209	＋244	＋\＄32	$+181$	－ 155
4.	20\％	2055		2607 N	$+1$	－日16	－${ }^{\text {a }}$	＋ 618	＋ 758	－603
45	＋ 8518	488	Stase	2 s 973	＋ 2	－1 669	－1051	－1 641	－1976	－565
46	1242 N	12 ta	3088	28045	＋ 21	418.56	41 638	41812	＋1614	－119
． 84	3 smbx	\％ 4 dis \mathbf{x}	38	4091%	＋77	－ 504	－${ }^{\text {a }}$	－如 6	－864	－162
$4{ }^{4}$	2164	aty	9309	30475 N	＋ 57	－1 245	＋ 211	＋1 04s	＋ 504	－234
415	4 tan \％	4 \％81 X		3 msi	＋ 55	－ 1874	－1 025	－ 742	－1 u5－4	－ 2154
col	＊\％\％0\％${ }^{\text {N }}$	2 yata	$3{ }^{3}$	41404	＋ 20	＋ 757	＋ 539	＋727	＋ 5 त̈ld	－ 108
51	3053	－\％ay	a 6 6tic	5 顽	＋ 43	＋ 518	－ 79	＋ 158	－134	－ 2882
8	4 3 \％x	44778	3）${ }^{\text {\％}}$	a 8 tri	4195	－403	－ExS	－ 407	－${ }^{2} 376$	－10\％
54	a Fate N	4 BET	4004	3 yc	＋ 01	4 3 3 相	－121	＋ 413	4	－2\％iz
\％		38568	410 L E	3 EcI X	＋\＃3	－ 172	－ 6	－115	－1บธ	－ 585
5	26500 N	21010 dit	3 yc	37514	＋ 69	＋1 14	＋ 4104	410	＋ 1356	－ 2.48
56	＋¢ba X	$4{ }^{4}$	ts bist	4605	＋ 40	－ 988	－1 080	－1040	－1 068	－ 40
57	2 at	¢ \％8		5 21235	$+46$	＋tides	＋654	＋ 6.87	＋	－ 4
53	1265 y	2 HIP	2 ± 22	5	＋ 62	＋ 21.5	＋1 685	＋811	＋1 482	＋ 141
5	4． 128 \％	$4 \mathrm{tac} x$	2080	515	＋ 48	－1888	－1 1314	－1 546	－1 408	＋176
68		4 min N	2 tal	2\％304	－ 82	－ 20%	＋\＄989	＋ 1.8	－ 217	＋105
41	$2246 \times$	2995	1905	2107	＋ 30	－ 687	－	－\＄0\％	－${ }^{2} 8$	＋34y
920	120	18150	1 บธ	15	4 c	－185	＋ 2 2tit	－\％ 47	＋ 173	＋4226
9.3	E4，M	Eat N	750	1 1－40	＋ 6	＋ 211	＋4ibis	＋ 2043	＋Evo	+ tivt
6	1 bite X	1040 X	69	तᄌty	＋	－ 8.47	－－	－4te	－ 268	＋105
45	535	191	36\％	578	＋ 6	－ 208	－ 7	－ 209	－ 12	$+105$
04	200 N	290 ＊		S3x	＋ 10	－ 26	－ 103	－	＋${ }^{\text {a }}$	＋ 134
57	บブロ	37\％ 8	854	56．	＋ 1	－ 215	－ 70	－2\％9	－ 71	$+145$
6	H1 N	75	40	158	－ 0	＋	＋ 107	＋ 11	$+113$	＋102
839	13） X	14 H	\％	118	－	－！ 0	－ 10	－ 98	－ 14	$+50$
76	67	${ }^{12}$	31	76	＋ 5	$\cdots 26$	＋131	－ 31	$+8$	＋98
71	20 N	21 N	24	$5{ }_{5}$	＋ 1	＋ 4	4	＋${ }^{4}$	＋ 87	＋${ }^{4}$
72	888	318	11	84	＋${ }^{1}$	－ 17	＋B	－ 20	＋ 5	＋ 65
7	发	28	6	15	0	－ 28	－401	－ 22	－ 10	＋1ta
74	0	${ }^{6}$	4	16	4	＋है	$+16$	＋ 6	$+16$	＋ 10
76	0	\checkmark	2 N	7	v	＋	$+7$	＋ 2	4	± 5
\％${ }^{\text {a }}$	2118	\％ 18	6 X	0	＋ 1	－ 11	－ 17	－ 16	－ 18	－ 3
74	0	0	T	4	\checkmark	＋ 3	＋ 2	＋${ }^{3}$	＋ 2	－ 1
78	4	0	0	3	18	0	$+3$	0	＋${ }^{+}$	4×8
78	4	4	1	6%	0	－${ }^{2}$	＋ 2	－ 3	$4{ }^{4}$	＊ 5
So	0	0	2	${ }_{2}$	0	＋ 2	＋ 2	＋ 2	42	U
81	41	${ }^{3}$	0	2	0	0	$+2$	0	\pm \＃	＋ 2
\＄t	4	5	0	1	＋ 1	－ 4	－䊽	－ 5	4	＋ 1
	211076	211075	211075	2011475	123661	1960．301	11640 besel	4458741	［ 455000	1158401

TABLE 4. CHANNEL 4 HISTOGRAMS AND DEVIATIONS FOR TSPO DATA SET

Gray Scalo Value	Orfabial Dals	NN	11.	5 C	Deviations							
					NNOO	H2L-O	BC-O	HSL-NN	$\mathrm{BC}-\mathrm{NN}$	BC-BL		
1	0	0	0	8	1	0	* $\quad y$	0	+ 6	+ $\quad \mathrm{y}$		
2	4	\checkmark	9	58	+1	- 4	+ ${ }^{1}$	- \quad B	+ 6:	* \$5		
\$	76	\% 2	4	115	- 1	- 95	+ 42	- 64	+ 28	+ 108		
4	82	203t	3	207	+ 2	- 145	- 24	- 197	-26	+ 171		
5	204.4	207 X	125	202	+ ${ }^{\text {d }}$	- 104	- 10	- 142	- 68	+ 77		
0	222:	2926	177	184	+ 3	- 40	- 34	- ${ }^{-14}$	- $4 \pm$	+ ${ }^{\text {a }}$		
7	207 N	209 N	219	210	+ 2	+ 12	+	+ 19	+ 1	-		
8	248 :	2400 X	240	200	$+12$	- 8	+ 12	- 20	0	+ 3 29		
0	211 N	$218 \times$	840	267	+ 7	+ 19	+ 56	+ 12	44 y	+ ${ }^{+}$		
10	420	320	291	270	-13	- 42	- 54	- 280	- 41	- 12		
11	3781	836	241	400	$+10$	- 2	+ 20\%	- $12^{\text {ch}}$	$+17$	+ ${ }^{\text {div }}$		
12	407	482	455	6 6.2	+15	- 12	$+105$	- 27	+150	+ 177		
13	1031	1447	$80 \pm$	1188	$+15$	- 28.80	+ 104	- 242	$4 *-91$	+ 384		
14	2529		1900	2797	+ $\mathrm{bib}^{\text {d }}$	- ${ }^{3}$	+ 466	- 286	+612	+ 7989		
10	¢ Oab	5 0.91	4572	5064	-17	- 186	+ 900	- 169	45323	+1 092		
16	12574	12620	11 W3	12246	$+47$	-1 244	+ ${ }^{4} \mathrm{H}$	-1 296	- 980	+ 010		
17	14***	18205	18.548	18920	- 51	+ $\quad 2$	- 104	+ Ba^{3}	- 5	- 1 ats		
13	9n 70\%	" " -	2030407	22025	- 48	+ 653\%	- 705	+ 878	- 400	-1 3 36		
13	942012 X	" \quad " 0	245085	228774	-	+ 884	- 127	+1 189	-12\%	-1 311		
20	24126	二a	21854	21024	-490	- 2.29	-1102	+ 185	-676	- 800		
21	17808	1 C 710	16 Urc	16275	-296	- 402	- Gat	- 104	-x\%	- 2031		
22	10 dye	10674	10)30̆9	\$0 \%it	- 13	- 32	+ ${ }^{\circ} \mathrm{i}$	- \% \%1d	* 6	- 378		
23	5991	0 015	6600	6748	+229	+ 609	+ 757	+ 587	+735	+ 148		
24	5853	5055	5402	5388	+102	- 3ti	- 471	- $40 \pm$	-574	- 110		
25	d 470 N	4540 N	5129	4875	+ 68	+ 05	+ 208	+ 5Gy	+35	- 24d		
20	4598 X	4654 X	5205	4785	+ ${ }^{\text {a }}$	$\because 606$	+ 284	+ 5 ¢81	4149	- 422		
27	$4{ }^{4} 780$	4) 6546 N	-130	4813	+ 67	+ 551	$+240$	+ 484	+173	- 311		
4 4	5115	52.15	5295	5050	+128	+ 140	- 6 C	+ 52	-190	- 245		
29	5261	5348	5008	5200	$+87$	$+40^{\prime \prime}$	- 61	+320	-148	- 108		
291	$5380 \times$	5489 X	5561	5148	+ 95	+ 2015	-182	+ 152	-281	- 415		
\% 1	4611 is	- "He N	5393	515	+ 00	$+786$	+ 518	+080	+408	- 268		
H2	$5 \$ 06$	\% 451 X	5324	4991	+85	- 42	- 375	- 127	-460	- - \%		
a	4 44.5	4505	4512	4565	$+64$	+ 67	+ 140	+ 3	$+70$	+ 78		
34	3 357	3708	3 3 5\%	5888	$+51$	- 94	+ 231	- 145	$\checkmark 290$	1 -		
3ts	2971	d01\%	2804	3095	+ 48	- 103	4. 124	- 1\%1	$+76$	+ 22%		
± 6	2565	2642	2296	2484	47	- 275	- 81	- 302	-1c8	+ 198		
37	1957	2027	1 8440	1968	+701	- 117	+ 11	- 187	- 59	+ 128		
㾂	1310	158 Cd	1350	$16{ }^{161}$	$+14$	- 160	+121	- 174	+107	+ 281		
10	1165	1103	10.84	1206	+	- 1211	+101	- 145	+ 76	+ 28x		
40	1015	1050	738	965	+ 41	- 277	- 54	- 313	- 91	+ 22π		
41	67\%	593	49.1	071	+21	- 76	+ 99	- 99	-76	+ 177		
12	406	397	291	421	-9	- 115	+ 15	- 100	+21	$+150$		
48	244	. 34	217	279	$+20$	- 27	+ 35	- 7	+ 15	+ 62		
44	22:	22.	136	215	$+6$	- gr^{7}	- 7	- 43	- 15	+ 80		
45	150	127	68	140	- 3	- 68	$+10$	- 50	+ 13	+ ${ }^{\text {a }}$		
. 6	45	48	12	81	- i	- 87	+ 32	- 33	+ 3 \%	+ 69		
47	12	12	4	40	${ }_{0}$	- 8	+ 24	- 8	+ 28	+ 32		
48	4	4	0	18	0	- 4	+ 14	- 4	$+14$	+ 18		
49	0	0	0	5	0	4	+ 5	0	+ 5	- 0		
	212075	2211075	211075	211075	\|2824		111 ${ }^{\text {\% }} 78$ \%	106141	1115401	460561	\|13446	

TABLE 5. HISTOGRAM STATISTICS FOR TSPO DATA SET

	Channel 1				Channel 2			
	Original	NN	BL	BC	Original	NN	BL	BC
Mode	30.00	30.00	28.00	28.00	27.00	27.00	27.00	27.00
Mean	30.24	30.27	30.27	30.27	26.80	26.80	26.80	26.79
Mean Square	926.15	924.33	922.4?	924.38	738.67	737.25	733.53	737.68
Variance	11.70	8.21	6.46	8.31	20.49	19.24	15.52	19.82
rms	3.42	2.86	2.54	2.88	4.53	4.37	3.94	4.45
	Channel 3					Chan	14	
	Original	NN	BL	BC	Original	NN	BL	BC
Mode	34.00	34.00	32.00	32.00	19.00	19.00	19.00	19.00
Mean	39.14	39.24	39.24	39.24	22.37	22.43	22.43	22.42
Mean Square	1637.11	1611.92	1603.90	1612.01	541.83	541.89	538.47	542.27
Variance	105.49	72.08	63.99	72.50	41.54	38.84	35.52	39.53
rms	10.27	8.49	8.00	8.52	6.44	6.24	5.96	6.29

TABLE 6. HISTOGRAM DEVIATION STATSTICS FOR TSPO DATA SET

Channel 1	\# Changes $\%$ Change	NN-O	BL-O	BC-O	BL-NN	$\mathrm{BC}-\mathrm{NN}$	BC-BL
		1096	18940	17432	18673	17243	8585
		0.52	8.97	8.26	8.85	8.17	4.07
Channel 2	\# Changes	693	19621	18473	19347	18136	8975
	\% Change	0.33	9.30	8.75	9.17	8.59	4.25
Channel 3	\# Changes	1393	33243	33004	32937	32780	7740
	Cot Change	0.66	15.75	15.64	15.60	15.53	3.67
Channel 4	\# Changes	1412	5639	4807	5770	4178	6723
	\% Chang	0.67	2.67	2.28	2.73	1.98	3.19

[^1]Figures 2 through 5 present black and white representations of color coded joint histograms between channels 2 and 3 for the original data and for the three geugraphically corrected sets of data. In the figures white represents ro simultaneous occurrence of pixel values in channels 2 and 3 except for the por... . that appears in all the figures near the bottom of the joint histograms. In this case, white shows where a majority of the data occur and these data belong mostly to the forest category. Again, NN preserves most of the structure of the original joint histogram and the filtering or smoothing effect of the interpolation techniques is visible in Figures 4 and 5.

Figures 6 and 7 show the result of density slicing the original data and the BC corrected data, respectively, for channel 1 using the slices indicated in Table 1. In Tigures 6 and 7, the lighter areas represent forest and the darker areas represent agrisulture. The curvilinear feature at the left (west) center edge of the image is a portion of a river, which continues across the center of the image. The curvilinear feature starting at the middle of the bottom (suruth) edge of the image and continuing towards the top left corner is a highway. If Figure 6 is viewed from an east-west direction, the linear pattern of banding is evident. Howəver, if Figure 7 is viewed from an east-west direction the banding is considerably less evident. BL and BC tend to reduce the banding problem, whereas NN does not.

To determine where the deviations occur, absolute value difference histograms and innges were computed for the three geographic correction techniques. The images obtained from using NN, bL, and BC can only be compared with themselves and not with the original image, which has a different coordinate system. The first column in Table 7 is the absolute value grey scale differences that can occur when the geographically corrected images are absolute value differenced. The next four columns are the number of pixels in each channel that have a particular absolute value grey scale difference for comparing NN and BL . The remaining eight columns are interpreted in a similar manner. Table 8 shows the accumulative percentages for the absolute value differences. For example, when NN is being compared with BL using chennel $1,55.02$ percent of both images are identical, 89.3 percent differ by ± 1 or less, and 96.28 percent of both images differ by ± 2 or less. Figure 8 shows an absolute value image difference of $B L$ and $B C$ for channel 3. The areas where the is no disagreement occur where there is no symbol, and the larger and darker symbols indicate larger absolute value differences. The largest differences appear to occur at transitions between features, such as agriculture and forest, because these features are rather clearly outlined.

ORIGINAL PAGE IS
OF POOR QUALITY
Figure 3. Joint histogram of channels 2 and 3 for NN corrected data.

Figure 5. Joint histogram of channels 2 and 3 for BC corrected data.

Figure 6. Density slice image of channel 1 for the original data.

Figure 7. Density slice image of channel 1
for the BC corrected data.
TABLE 7．ABSOLUTE VALUE DIFFERENCE HISTOGRAM FOR NN，BL，AND BC OVERZAYS

	范	惑记利 ${ }^{\circ}$
$\begin{gathered} \text { 品 } \\ p \end{gathered}$	\％	
	管	
	병	
${ }_{\mid c}^{0}$	管	
	505	
	영	
	픙	
$\begin{aligned} & 9 \\ & \frac{2}{2} \\ & \vdots \end{aligned}$	式	了忍品 0 水
	\％	
	器	
	풉	

TABLE 8．ACCUMULATTYE PERCENTAGES FOR ABSOLUTE VALUE DIFTERENCES

	宮	管	笭		
	\％	\％	\％	号	
	N゙ㄲ	$\begin{aligned} & 3 \\ & \text { Wi } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { ザ } \\ & \text { ஷí } \end{aligned}$		
	동		$\begin{aligned} & \stackrel{\bullet 0}{-1} \\ & \stackrel{6}{6} \end{aligned}$		
$\begin{gathered} \text { u} \\ \underset{\sim}{4} \\ \underset{y}{2} \end{gathered}$	志	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \dot{f} \end{aligned}$	$\begin{aligned} & \stackrel{9}{i} \\ & -i \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{8} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \dot{8} \end{aligned}$
	垫	$\begin{aligned} & \text { E. } \\ & \text { M } \end{aligned}$		$\begin{array}{r} \dot{+} \\ \text { - } \end{array}$	No
	逆	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \dot{ஜ} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 잉 } \\ & \dot{8} \end{aligned}$	8
	$\sqrt[6]{0}$	$\begin{aligned} & \text { ஸi } \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{9}{\stackrel{1}{7}} \\ & \stackrel{\rightharpoonup}{\infty} \end{aligned}$	$\begin{aligned} & \text { H } \\ & \dot{8} \\ & \dot{8} \end{aligned}$	
$\begin{aligned} & \text { H } \\ & \text { 分 } \\ & \text { 臬 } \end{aligned}$	荌		$\begin{aligned} & \mathbb{Z} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { 以 } \\ & \text { ì } \\ & \text { in } \end{aligned}$	
	\％	$\begin{aligned} & \text { 品 } \\ & \text { + } \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{8} \end{aligned}$	$\stackrel{セ}{5}$	\％ \％ －
	묄			$\begin{aligned} & \text { 중 } \\ & \text { © } \end{aligned}$	
	둥	$\begin{aligned} & \text { 잉 } \\ & \text { is } \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \text { か } \\ & \stackrel{\circ}{\circ} \end{aligned}$	
\bigcirc			\rightarrow	～	∞

A linear pattern of agreements and disagreements can be seen in the direction from the lower left corner to the upper right cormer of Figure 8. The light linear pattems correspond to data talken from locations very close to pixels on the original image, and the dark linear patterns correspond to data taken from locations in between pixels on the original image. This linear pattern occurs in all the image differences with each pair of geographic correction techniques and, therefore, must be present to some degree in all of the geographically corrected data.

IV. SUMMARY OF OBSERVATIONS

Based upon the results obtained from comparing the original image data and the geographically corrected image clata and from comparing the corrected data using $N N, B L$, and $B C$, the following observations were made:
a) The histograms provided information on whether or not the same number of pixels were selected from each grey scale category and transferred from the original to the geographically correct image. The histograms provide no information on where the pixel grey scale values are placed in the geographically correct image.
b) The absolute value image differences provide information on where the disagreement occurs between the correction techniques and on the consistency of the techniques, but do not indicate which technique is best.
c) In all channels, the NN histogram is most like the original data histogram in that it preserves the maxima/minima structure of the original histogram and does not create any new grey scale values.
d) The interpolation methods act as a filter smoothing out most of the original histogram maxima/minima structure and may create new great scale values that were not present in the original histogram data.
e) The following is a ranking for channels 1,2 , and 3 according to histogram similarities:

1) NN is most like O
2) BC is most like BL
3) BC is most like NN
4) BC is most like O
5) $B L$ is most like $N N$
6) BL is most like O .

There was very little difference observed between categories 4) and 5) in channels 1 and 2, but were switched in channel 3 .
f) The ranking for channel 4 was:

1) NN is most like O
2) BC is most like NN
3) BC is most like O
4) BL is most like O
5) BL is most like NN
6) BC is most like BL .

Comparing with the original histogram only, NN, BC, and BL, respectively, were most like O for all channels.
g) The correction techniques appear to have little effect on the image mean value, although the mode may change, but the variance of the image was reduced. In all chamels, BC reduced the variance the least, then NN and BL, respectively.
h) Very little difference could be seen between the original and the geographically corrected images when density slicing was used. However, the interpolation methods appeared to partially remove some of the banding.
i) Comparisons of the geographically corrected images indicate that 30 to 65 percent of the pixels were in exact agreement, and that 65 to $9^{\prime \prime} 7$ prent of the pixels differed by ± 1 or less.
j) In comparing the registration methods, the most agreements occurred in channel 1, then 4 , 2 and .
k) The greatest disagreements appeared it transitions between two or more features, and the majority oi disagreements the image difference. The greatest disagreements appeared to show up more readily in the infrared channels than in the visible channels.

1) A regular linear pattern of agreement and disagreement appears in all of the geographically corrected image differences, which is a direct result of the geographic transformation.
n) The CPU time for the NN, BL, and BC was $34.8,59.6$, and 135.5 s , respectively.

As a result of these observations, there are some potential problems that are worth exploration and commentary. First, if the image contained a few large homogeneous areas, then it prow hbly would not matter which geographic correction technique was used to correct the image, at least in the large homogeneous areas. The problem areas aje the transitions between two or more features. The results presented in the reference (footnote) also show that the majority of misclassifications occur at transitions between two or more features. Thus, there is a question of whether the image data should be registered (geographically corrected) and then classified or classified and then registered. If the image data are classified first, then the choice of registration techniques is limited : ' he NN. This procedure needs to be explored to determine the order and combination of registration and classification techniques that minimize classification errors.

Secondly, preliminary results using transform compression techniques indicate that the greatest deviations between the compressed/reconstructed image and the original image also occur at transition regions. Hence, the order of importance of compression and registration need to be explored as well as their combined impact on various classification techniques.

Thirdy, the transform compression techniques and the interpolation geographic correction methods act as filters on the image data, smoothing out most of the natural cliscrimination presint in the uriginal image data. These two effects, plus the fact that the transformation injects linear patterns into the image data, need to be explored for impact on change detection and multitemporal classizication.

APPROVAL

NEAREST NEIGHBOR, BILINEAR INTER POLATION AND BICUBIC INTER POLATION GEOGRAPHIC CORRECTION EFFECTS ON LANDSAT IMAGERY

By Robert R. Jayroe, Jr.

The information in this report has been reviewed for security classifiction. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

[^0]: 1. Jayroe, R., Atkinson, R., Dasarathv, B., Lybanon, M., Ramrapriyan, H.: Classification Software Technique Assessment. NASA Technical Note, NASA TN D-8240, May 1976.
[^1]: \#Changes is the number of pixels that had to have their grey scale values reassigned. The transformation/
 registration algorithm either:

 1. Did not select all the pixels from a particular grey scale, some were left over; or
 2. Selected more pixils than were available from a particular grey, hence the pixels that were left over had to be relabeled.
