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NONAXISYMMETRIC INCOMPRESSIBLE HYDROSTATIC 

PRESSURE EFFECTS IN RADIAL FACE SEALS 

by lzhak Etsion* 

Lewis Research Center 

SUMMARY 

A flat seal having an angular misalinement is analyzed, taking into account the 
radial variations in seal clearance. 
ment, and leakage is presented that covers the whole range from zero to full angular 
misalinement (surfaces in contact). 
pressures due to the radial variations in the film thickness have a considerable effect 
on seal stability. 
the axial force and the tilting moment are  nonrestoring. 
to wear at the outer diameter. 
when angular misalinement is combined with radial distortions and the high pressure 
is on the inner periphery. 

The case of high-pressure seals where cavitation is eliminated is discussed, and 
the possibility of dynamic instability is pointed out. 

An analytical solution for axial force, tilting mo- 

It is shown that nonaxisymmetric hydrostatic 

When the high pressure is on the outer periphery of the seal, both 
This causes the seal surfaces 

Instability and wear at the inner diameter can occur 

INTRODUCTION 

Axial forces in excess of those theoretically predicted for alined flat seal faces 
a re  now well established by many experiments (e. g. , refs. 1 to 3). These axial forces 
are crucial in providing the mechanism that separates the seal faces and controls the 
gap between them. 

A considerable amount of fundamental research has been done in the last two 
decades in an attempt to understand the origin of these axial forces and how they relate 
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to the mechanism of seal operation. 
no generally accepted mechanism, 
theories a re  listed. It seems that most of them relate the separating axial force to 
hydrodynamic effects. 

To generate hydrodynamic pressures with relative circumferential motion, the 
geometry of the seal faces must deviate from being absolutely alined or perfectly flat. 
This deviation can be in the form of angular misalinement (ref. 5), microasperities 
(ref. 6), and various forms of waviness (refs. 2, 7, and 8). It was postulated (ref. 9) 
that cavitation must be associated with the production of net forces greater than the 
hydrostatic forces. In the absence of cavitation, a hydrodynamic pressure increase in 
the circumferentially converging portions of the seal clearance is counterbalanced by 
an equal pressure decrease in the diverging portions, with the result of zero net hydro- 
dynamic force. Although it explains the existence of hydrodynamic generated forces, 
cavitation is not likely to occur in high-pressure seals. In some experiments (refs, 
10 and 11) where regions void of fluid were observed, the applied pressure was usually 
less than 3 atmospheres. In reference 11, where temperatures in the seal clearance 
were measured, it was found that boiling rather than cavitation was the reason for the 
appearance of gas in the seal interface. 

Considering all these facts, it is not likely that hydrodynamic effects are  the only 
mechanism that is responsible for maintaining a lubricated gap in face seals. Some 
investigators (refs. 1, 12, and 13) studied the effects on seal behavior of hydrostatic 
pressures caused by radial variations in seal clearance. Such variations, which can 
be caused by thermal and mechanical distortions, generate a net force that is different 
from the hydrostatic one that is related to flat, alined seal faces. 

When the clearance decreases in the direction of flow, the pressures a re  greater 
than those for parallel surfaces. Also positive stiffness and hence a stable fluid film 
are  related to such configurations. 
flow the result is a decrease in pressure, negative stiffness, and a statically unstable 
fluid film. 

In all the literature dealing with hydrostatic effects, with the exception of refer- 
ence 14, the deviation from the flat, alined geometry is always axisymmetric. The 
inevitable result is axisymmetric pressure distribution in the seal clearance. Some 
experimenters report surface rubbing in a form that is most unlikely to occur when 
pressure symmetry prevails. In reference 1 it is shown that the seal surfaces rub on 
either the outer or the inner boundaries, depending on the direction of flow. The wear 
is always such that film convergence in the direction of flow is produced. 
such wear could be a result of an angular misalinement combined with nonrestoring 
moments . 

Many theories have been suggested, but there is 
In a recent report (ref. 4), the various models and 

When the clearance increases in the direction of 

Obviously, 
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In reference 14 a misalined hydrostatic seal with an orifice bypass is analyzed. 
For the case of zero orifice flow, which is no more than a conventional face seal, it is 
found that the seal always produces restoring tilt moments. This result contradicts 
the experimental evidence of surface wear (ref. l), which suggests nonrestoring tilt 
moments. 

ance converges in the radial direction over one-half of the circumference, over the 
other half it diverges. Hence, when the flow is outward, the hydrostatic pressure dis- 
tribution around the seal tends to reduce the tilt and restore alinement. On the other 
hand, when the flow is inward, the result is a nonrestoring moment, which tends to in- 
c Tease mis alinement . 

moment, but also the separating force and the leakage across the seal. Such effects 
have been overlooked in other investigations. The objective of this work is to study 
these effects, aiming at a better understanding of radial face seal operation. 

Considering the misalined face seal of figure 1, it is clear that, while the clear- 

Nonaxisymmetric hydrostatic pressure distribution may affect not only the tilting 

SYMBOLS 

C 

cl’ c2 
F 

Fd 

FS 

FS 

- 

H 

h 

I 

M 

M 
- 

P 

Q 

seal clearance along centerline 

constants of integration 

axial force 

hydrodynamic force 

axial force contributed by nonaxisymmetric hydrostatic pressure 

2 nondimensional force, F/n(pi - po) ro 

nondimensional film thickness, h/C 

film thiclmess 

given by eq. (15) 

tilting moment 
3 nondimensional tilting moment, M/n(pi - po)ro 

pres sure 

leakage 
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- 
Q 

R 

r 

P 

Y 
E 

E 
- 

e 
P 

w 

nondimensional leakage, Q kl - e 1 :)r(ro + ri) 

nondimensional radius, r/ro 

radial coordinate 

angle of distortion 

angle of tilt 

tilt parameter, y ro/c 

angular coordinate 

viscosity 

rotational angular velocity 

Subscripts: 

i at inner radius 

m at midradius 

o at outer radius 

ANALYSIS 

Figure 1 describes the geometry of the misalined seal. 
radius ratio ri/ro is very close to unity. Hence, the narrow-seal approximation re- 
sults in the one-dimensional incompressible Reynolds equation 

In most applications the 

The film thiclmess distribution for the misalined seal is given by 

where y is the angular tilt and 8 is measured from the point of maximum clearance. 
The boundary conditions for equation (1) a re  
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at r = r .  P = Pi 1 

P = Po at r = ro 

Because of its linear nature, equation (1) can be solved separately for the hydrostatic 
and hydrodynamic pressure components. Hence, the hydrostatic component is obtained 
from the solution of 

A common assumption for narrow seals is that curvature effects may be neglected. 
When applied to equation (3), this must be carefully examined. In some works this as- 
sumption results in a modified expression for the film thickness having the form 

h = C  +yr,cos 8 

This is, of course, an unrealistic, warped surface that if substituted into equation (3) 
will result in hydrostatic pressure distribution identical to that in the case of parallel 
seal surfaces. 

Hence, when neglecting curvature effects, equation (3) becomes 

but the film thickness h remains a function of both 8 and r, as given by equation (2). 
Integrating twice with respect to r gives for the pressure 

For the boundary conditions, the constants of integration become 

and 

c1 c2 = Po - - 
h: 
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Hence, the hydrostatic pressure in the seal clearance is 

ho 2 2  - hi 

Using the film thickness expression given by equation (2) yields 

h: - h2 ro - r ho + h 
- - 

Substituting this into equation (5) yields 

P = (Pi - Po) 
ro - ri ho +hi 

The first term in the braces of equation (6) represents the well-known alrisymmetric 
solution for parallel surfaces. The second term is the contribution of misalinement. 
This contribution is not axisymmetric and depends on the gap. 

The axial force, which tends to 

F = 2  

The nondimensional film thickness 

Axial Force 

separate the seal surfaces, is obtained from 

f ro l ' p r  dr de 
'i 

h 
C 

H = - =  1 + E R C O S  e 

is introduced where 

(7) 

6 



and the tilt parameter E is given by 

Equation (5) can be written in the form 

P = (Pi - Po) 2 2  H; ($- I) +PO 
Ho - Hi 

(9) 

A direct integration of equation (7) is very difficult. A perturbation technique (ref. 5) 
could be used where the pressure is expanded in powers of E. However, such a solu- 
tion is restricted to very small values of the tilt parameter E and is inadequate when 
nonrestoring moments exist since this situation may lead to surface contact. In that 
case the solution has to cover the whole range of misalinement through E = 1. 

With the assumption of negligible curvature effect, that is, r 3 rm, equation (7) 
becomes 

1 
F = 2rmr0 l'f p dR de 

Ri 

Integrating by parts we have 

JR. 
1 

From equations (9) and (8) we have 

aR 

Substituting equation (12) in equation 
P 

2 2  
2HiHo E cos 

HE- H: H3 
- Po) 

(11) and using the integral 

1 dR= 
E COS e 

we have 
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where 

1 I =  

Since 

m H, + Hi = 2H 

and 

1 + R i = 2 R m  

the expression for I becomes (by using eq. (8)) 

R~ + E ~ i  COS e 
1 +:cos e 

I =  

where 

- 
E = €Rm 

The axial force thus becomes 

From the journal bearing integrals (ref. 15), 

K 

- 7r - de 
1 +: COS e 

and 

8 
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T 

cas 6 de - T 

1 +E cos e E: 
- - -  - 

Hence, from equations (15) to (18) 

r 
- p.R. + <pi - PJ 

1 1  

F=2"ror0 

.[ ( - 2 y  -j 
1- E 

This can be further developed into 

+%I] Rm 

Noting that 

and that 

-%=l [(TT-R]= 1 + Ri (1 - Ri)' 
Rm 

Rm Rm 4Rm 

we finally have for the axial force 

The first term on the right side of equation (21) is the axial force for the case of 
parallel flat surfaces. The second term presents the contribution of the nonaxisym- 
metric hydrostatic pressure distribution due to seal misalinement. Denoting that con- 
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tribution by Fs, we have 

- 2 Fs = 7rr 0 (p. l -Po)Fs  

- 
where Fs is a nondimensional force given by 

From equation (22) it is clear that, for any angular misalinement, Fs is positive. 
Hence, the deviational force Fs depends on pi - po. For pi > p Fs is positive 
and thus yields axial forces in excess of the hydrostatic force for alined flat surfaces. 
Since E is given by yro/C, it can also be seen that a decrease in C increases E 

and hence increases Fs. 
clearance decreases, producing positive stiffness and a statically stable film. On the 
other hand, when pi e po, the axial force Fs and the axial stiffness become negative 
and thus result in unstable operation. 

0’ 

Thus, when pi > po, the axial force Fs increases when the 

Tilting Moment 

The tilting moment due to the nonaxisymmetric component of the hydrostatic pres- 
sure is 

The (-) sign is used in order to obtain restoring moments as  positive values. Again, 
when the curvature effect is neglected, the moment becomes 

The same procedure as for the axial force is repeated here, giving the tilting moment 
in a form similar to equation (17): 

M = -2r 2 lllo r (p. - p ) l l i I c o s 8 d 8  
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From reference 15 we have 

Substituting equation (15) into equation (24) and using equations (16), (18b), and (25) 
give the tilting moment as  

where the nondimensional tilting moment M is given by 

As in the case of the axial force, the nondimensional moment %i is always positive 
and vanishes only for E = 0, as expected. For pi > po the tilting moment as  given by 
equation (26) is positive and hence is a restoring moment. For pi < po the tilting mo- 
ment is a nonrestoring one, the angular stiffness is negative, and the seal is unstable. 

Leakage 

The leakage across the seal is obtained from 

If we use the nondimensional terms H and R, substitute equation (12) into equa- 
tion (28), noting that H: - Hi = (Ho + Hi)(l  - Ri)e cos 8, and neglect the curvature ef- 
fect, equation (28) becomes 

2 
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+ z ~ e + i  + R ~ ) E  9 3  COS e + R ~ ~  2 4  COS 4 e (30) 

Again, from reference 15 we have 

and 

(3 la) 

Using equations (18), (25), (311, and (30), we have from equation (29) 

After rearranging this becomes 

where the nondimensional leakage is given by 
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From equation (20b). can be written in the form 

From equation (33) it is clear that for the alined seal, where E . 0, a will equal 1, 
as  expected. As the misalinement increases, the leakage increases too. For very 
narrow seals, where 1 - Ri < 0. 1, it is seen from equation (33) that the increase is 
most affected by the term (3/2,t2Ri. The nondimensional leakage, given in the form 

is obtained when the radial variations in the film thickness h (eq. (2)) are  neglected. 
Hence, it can be seen that, with regard to leakage, the simpler expression 
h = C i - y r ,  cos 8 can be used in the analysis. 

RESULTS AND DISCUSSION 

Values of the nondimensional parameters Fs, E, and a are  presented in table I 
and figures 2 to 4 to cover the whole range of tilt parameters from E = 0 to E T. 1. 
An interesting result is the axial force at E = 1. 
this force adds to any unbalanced closing force and increases substantially the friction 
between the rubbing surfaces. A seal of 10-centimeter outer diametcr, 0.9 radius 

force of 86 newtons and a tilting moment of 430 newtons per centimeter. 

this ratio decreases, the axial force and tilting moment increase quitc rapidly. 

equation (33) and those calculated by equation (34) are ncgligiblc. 
expression (eq. (34)) can be used for any practical radius ratio. 

In the case of radially inward flow, 

* ratio, and 10-atmosphere seal pressure, will experience at E ~7 1 an unbalanced axial 

The radius ratio ri/ro affects very much the a.xial force and tilting moment. As 

As can be seen from table I the differenaes between thc values of a calculated by 

* 

Hencc. the simpler 
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The analysis presented in the previous section has indicated unstable seal opera- 
Such i~ is tab i I j t \~  is confirmed by the ex- 

The nonrestoring moiiient i n  t h c  case of radially inward 
How- 

tion under radially inward flow when pi < pO. 
periments of Denny (ref. 1). 
flow causes the surfaces to contact and wcar at the outer diamctcr of the seal. 
ever, Denny also found that with the flow radially outward the wear was greatest at the 
inner diameter. 
be a result of combined mislinciiient and coning due to thermal and mechanical distor- 
tions. 

Such a wear appearance is unlikely for a flat misalined seal but can 

In figure 5, a misalined distorted seal is shown. It is clear from the figure that, 
whenever the distortion angle p is larger than the  tilt angle y, the seal surfaces can 
come into contact at the inner diameter. Morem-cr, since an unstable film is related 
to divcrging clcm-ances in the direction of flow, it can be seen that, when p > y, an 
instability will rcsult f rom a radially outward flow. 

generated due to angular misalinement. 
force Fd for a misalined seal. 
metric about the line BB and thercfore produces moincwts only about the line A4, this 
is not the case with the hydrodynamic pressure. I.f the scaled pressure is high enough 
to eliminate any cavitation, the hydrodynamic press~iiw distribution becomes antisym- 
metric about the line BB. 
duces a couple that lags the hydrostatic tilt moment vector by 90°. 
prone to dynamic instability that can damage the seal. 

A word should bc added with reg8rd to the effect of the hydrodynamic pressure 
Figure 6 shows the resultant hydrodynamic 

While the hydrostatic pressure distribution is sym- 

This results in a net zero hydrodynamic axial force but pro- 
Such a system is 

CONCLUDING REMARKS 

Contrary to the common belief that hydrodynamic effects arc  mainly responsible 
for proper seal operation, i t  is  shown that hydrostatic effects play an important role 
in seal performance. 
variations in film thickness. Hence, these variations cannot be neglected even when 
dealing with radius ratios close to unity. 

shows that hydrostatic a,xial forces and tilting moments can be generated because of 
the misalinement. These forces and moments can be either restoring o r  nonrestoring, 
depending on the location of the high pressure with respect to the seal boundaries. 
When the high pressure is on the inside, the seal is stable. When the high pressure is 
on the outside, static instability occurs. 

The hydrostatic pressure distribution is very sensitive to radial 

The analytical solution for a flat radial face seal having an angular misalinement 

14 



Thc stability condition can be revcrsed whcn coning, due to thermal and nicchani:. 
cal distortions, is combined with angular misalinement. Finally, hydrodynamic pres- 
sures due to seal misalinement can well be the origin of dynamic instability. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, August 30, 1976, 
50 5- 04. 
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TABLE I. - MISALJNED-SEAL PERFORMANCE PARAMETERS 

c 

~ 

Ratio of 
inner to 

outer 
rzdi\ie, 

ri'ro 

0.X0 

- 

0.85  

0.90 

__ 
0.92 

~~~ ~ 

Tilt 
parameter, 

€ 

0.1000E 00  
0 .2000 
0.3000 
0.4n00 
0, snan 
a.6not-i 

r) . ioon 
i.onsn 

0.7000 
0.X000 

o . i o o n ~  no 

0,4000 

0.7n0n 

0.9000 
1, aeon 

0.?000 
0.3000 

0.5000 
0,5000 

0 .8000 

o . i n o n ~  no 
0.2000 

0.400n 

o.fioon 

0. soan 
o.9nm 

0. 3000 

0 .5000 

0 .7000 

1 .0090 

~~ ~~ 

Nondimensional 
force, 

r). 41143 ~ - n 4  
0.197RE-03 
0.4.599c-03 
o . n 5 9 4 ~ - n 3  
0,?.439E-0? 
0.2274E-09 
0.3.513E-02 
0.5476E-02 
0.10SfiE-011 
0.ln36e-01. 

1 .  

Nondimensional 
tilting moment, 

M 
- 

_ "  . .  . 

Non- 
dimensioaal 

leaKage, - 
Q 

i . n i z  
l.r)4R 
1.108 
1,lQt 
1.301 
1.434 
1 . 5 9 1  
1 . 7 7 1  
1 ; 9 7 6  
2 , 2 0 5  

1,014 
1 . 0 5 4  
1 .122  
1,216 
1.3311 
1,4116 
1.662 
1.1165 
2 .095  
2 . 3 5 1  

1.1114 
1.055 
1 , 1 2 4  
1.112'. 
1 . 3 4 5  
1 . 4 9 7  
1 , 6 7 7  
1,5184 
2 , 1 1 1  
2.3R1 

Simplified 
nondimensional 

leakage, 

1 + 2 c2Ri 
2 

1.n12 
1.043 
1 . 1 0 3  
1 , 1 9 2  
I.ZOO 
1 , 4 3 2  
1 .503  
1 , 7 6 3  
1 , 1 7 2  
2,200 

1 , 0 1 ?  
1 ,ns i .  
1,?.25 
1 , ? 0 4  
1 . 3 1 9  
1 , 4 5 9  
1 . 6 2 5  
i . n i t  
2.1135 
2 , 2 7 5  

1 . 0 1 3  
1 . n ~ :  
1 .12 ,  
1 , 2 1 G  
1 .737  
1 . 4 8 6  
1.661 
1 . R t 4  
2,1193 
2.750 

i , n i s  
1,055 
1,124 
I '2, 1:145 
1 , 4 9 7  
1 , 6 7 6  
1 , 8 8 3  
2.1.13 
2 , 7 8 0  
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TABLE I. - Concluded. 

Ratio of 
inner to 

outer 
radius, 
ri/ro 

0.94 

0 . 9 6  

0.98 

0.99 

18 

Tilt 
parameter, 

E 

0 . i n o o E  on 
o.2non 
0 . 3 0 0 0  
0 .4000 
0. so00 
o.finon 
0 . 7 0 0 0  
n.xnoo 
n.1noo 
1.0000 

0.1000E 00 
n .2000 

o . i n o n E  00 
0.2000 
0 . 3 0 0 0  
0 .4000 
0.51300 
o.soon 
0 . 7 0 0 n  
o.nnon 
o . m o n  
i . o n o n  

0.1000E 0 0  

0 . 3 0 0 0  

0 .5000  

0.7n00 

1.0000 

o . ? n o n  

o .soon 

o.6oon 

o . x m  
o.qnon 

Nondimensional 
force, - 

Fs 

0 .3860E-0S 

0 . 3  K 9 9 E-0 4 
0.r ,960E-04 
0 . 1 1 7 7 E - 0 3  
0.18 9 0 f-0 3 
0 .?91SE-03  
0 . 4 3 8 7 6 - 0 3  
O. f l97KE-03 

0 . 1 5 8 2 ~ 4 4  

0.3 2 2 n E-n 2 

0 .9872E-0K 
0.4 0 3 9  E-0s 
0. ! l 4  5 1 E- 0 5 
0.1.7 8 I E- 04  
I I . ~ ~ . I X E - ~ ~  
0 ,4861E-04  
0 . 7 7 4 2 ~ - n 4  
0 . 1 2 7 6 5 - 0 3  
0 . 2 4 0 5 E - 0 3  
n . 1 2 i x E - n z  

~ - - 

Nondimensional 
tilting moment, 

M 
- 

- 
Non- 

dimensional 
leakage, 

Q 
- 

1 . 0 1 4  
1 . 0 5 6  
1;127 
1 . 2 2 6  
1.353 
1 . 5 0 8  
1, K 1 1  
1 .903  
2 , 1 4 ?  
2 .410  

I, 0 1 4  

1 . 7 3 0  
i . 3 f i n  

1 , 0 5 8  
1 . 1 3 0  

l is18 
1,7116 
1 .922  
7 ,167  
2,440 

1 . 0 1 5  
1.059 
1 , 1 3 2  
1,235 
1 .36X 
1 . 5 2 9  

1,041. 
2.191 

1,720 

2.4711 
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Figure 1. -Face seal with angular misalinement. 
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F igu re  5. - Face seal w i t h  angular misal inement and  coning. 

Figure 6. - Hydrodynamic forces in face seal. 
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