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¥t .
. . k]
% e 2 © 22
g syaten Parameters apd Variables i
E a
5 x(1) n-dimensional state vector of discrete linear stochastic £ -
¥ process § 7
i z(1) m~dimgnsional observation vector 1/,
= “w(i) k-dimer.sional zero mean white Gaussian process noise I
%: v(1) m-dimensional zero mean white Gaussian data noise, indepen- ; ¥
g dent of w(i)- i -
55 . . | L]
& -e(d) nxn state transition matrix % ;
£ B(1) nxk noise transition matrix j é
| A(1) mxn data coefficient matrix 1
; § 0
aT(i) n-dimensional vector of data coefficients % i
g , ?
% p(i) k-dimensional colored process noise vector % 5
4 [
f M(1) kxk diagonal colcred noise transition matrix % E
- y b-dimensional vector of bias parameters é }
5 R(1) mxm diagonal covariance of data errors, v(i) é N
3 :gk N
i r{i) covariance of scalar data error O
i ¢
“ Q(1) kxk diagonal covarfiance of white process noise ¥
‘i ’t
f Statistical and Filter-Related Quantities % ’f
; %(1) minimum variance estimate of x(i) given cata {z(j)}, j < i % :
% (1) a priori estimate of x(i), based upon data {z(j)}, j < i % i
- K(1) nxm filter gain matrix E :

: B(1) nxn error ccvariance matrix for R(i) !

B(1) nxn error coveriance matrix for R(i) i

a innovations error covariance %

S nxn square root of estimate errcor covariance mestrix 2
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Statistical and Filter-Pelated Quantities (contd)
U nxn unit upper triangular factor of error covariance matrix
~ D ﬁxn diagonal matrix, related to error covariance matrix

by the identity P = UDU" where U is defined above

Uyy Dy those portions of the U-~D covariance factors which correspond
to the x parameters

O standard deviation ot 4“n¢ rarameter x

E{} erpectation operator

x ~ N(0,P) x is a normally distributed random variable with zero wmean
and covariance P

matic

€ is an element of

R, the set consisting of n~tuples whose components are real
numbers ’

z summation

: rounded to

# not equal to

AR Euclidian vector norm

Help norm with metric D, i.e., ||vl|p :(YTDV)1/2

{ }231 t2quence of n quantities

iz replace in computer storage

» much greater than

Abbreviations
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Abbreviations (contd)

MGS
sgn
diag
usec
km

km/ sec
m/sec
mm/ sec

GM

modified Gram-Schmidt
sign
diagonal

microsecond

!

kilometer

kilometer per second
meter per second
millimeter per second

gravitational mass

Superscripts

T
-1
1/2

-1/2

(3
(3)

matrix transpose

matrix inverse

upper triangular Cholesky square root

inversc of upper triangular Cholesky square root
after incorporating measurement

before incorporating measurement

after jth iteration (seciion 3.3)

after (n-j)th iteration (sections 3.4 and 3.5)
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Abstract

In this report an improved computational form of the discrete -
Kalman filter is derived using an upper triangular factorization of
the error covariance matrix. The covariance P is factored such that
P= UDUT where U is unit upper triangular and D is diagonal. Recursions
are developed for propagating the U-D covariance factors together with
the corresponding state estimate. The resulting algorithm, referred
to as the U-D filter, combines the superior numerical precision of

square root filtering techniques with an efficiency comparable to that

of Kalman’s original formula. Moreover, this methcd is easily implemented

and involves no more computer storage than the Kalman algorithm. These

characteristics make the U-D method an attractive real-tirme filtering

technique.

A new covariance error analysis technique is obtained from an
extension of the U-D filter equations. This evaluation method is flex-
ible and efficient and may provide significantly improved numerical
results. Cost comparf;ons show that for a large class of problems
the U-D evaluation algoirithm is noticeably less expensive .han conventional
error analysis methods, The U-D me..od is shown to be especially attrac-
t;ye for problems involving large numbers of bias parameters since

it yields accurate and efficient techniques for performing sensitivity

analysis and reduced-order filtering.
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Chapter I. Introduction

1;1 Background

The optimal estimation of stochastic linear dynamic processes from
imperfect linear measurements is a key problem in the fields of communica-
tion and control. Usually estimators are linear functions of the data,
and optimal solutions are those which minimize the mean square errcr.
When estimates are based solely upon past and present measurements,

this problem is termed a linear filtering problem.

This report addreéses the discrete-time linear filtering problem.
A solution to this problem, for general nonstationary processes, was
first derived by Kalman [1960]. The discrete Kalman filter is a recursive
algorithm consisting of two parts: a time update and a measurement
update. Each part contains difference equations for propagation of
a state estimate and its error covariance matrix. The efficiency and
simplicity of Kalman’s algorithm make it particularly attractive for
use in real-time estimation problems involving small digital computers.
These features are among the reasons that Kali.in filtering techniques
have been widely used in a variety of engineering applications such
as spacecraft navigation, aircraft guidance and control, marine navigation
and power systems control (cf Battin and Levine [1970], Huddle [1969],

Holdsworth and Stolz (1970] or Miller and Lewis [1971]).

Although the discrete Kalman algorithm has been successfully
employed in a number of riltering situations, n:iractical applications

of the method i:ave often been p)agued with numerical difficulties.
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Instances of serious accuracy loss in the Kalman filter have been reported

by Bellantoni and Dodge [1967], Schmidt et al. [1968], and Dyer and
McReynolds [1969]. Computational problems with Kalman’s method are
often evident in the form of ind;finite computed covariance matrices.
Loss of covariance positivity is usually the result of computer round-

off and cancellationT errors, aggravated by numerical ill-conditioning.

Numerical problems may occur, for example, when very accurate measurements

are processed in conjunction with large initial error covariances,

or when a linear combination of parameters can be precisely estimated
while others are relatively unobservable. In these cases computations
involving the error covariance matrix are particularly susceptible

to round-of and cancellation errors.

A number of schemes have been devised to prevent loss of covariance

positivity with the hope that algorithm performance would thereby improve.

For example, Schmidt [1967 and 1968] has used artificially large process
noise and measurement noise covariances, while Kaminski [1971a] suggests
coordinate rotation; Such problem-deperdent techniques are nonoptimal,
largely empirical, and often cumbersome. Moreover, they are usually

inappropriate when precise parameter estimation is required.

The computational shortcomings of Kalman’s formula have motivated

researchers to derive alternative formulations of his solution. While

tSignificant cancellation errcrs can occur when two nearly equal numbers
are differenced. Suppose, fcr example, that two numbers agree to

six digits, and each number is accurate to eight digits. Then the
difference would have only two-digit accuracy.
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these methods are algebraically equivalent to the Kalman algorithm,
thev represent different computational techniques designed for improved
numerical accuracy. The alternative algorithms usually require more
computation than Kalman’s original formula, ard some methods involve
additional computer storage. Hence, many of these methods are not
suitable for applications where computer time and storage are limited.
This situation is common to many real-time applications, e.g., on-board
navigation of aircraft or spacecraft. In the following paragiaphs
several Kalman filtering techniques are discussed with this kind of

application in mind.

Alternative forrulations of the Kalman algorithm generally fall
into two categories: the information filters and the covariance filters.
Information filters recursively compute either the information matrix
or one of its square roots.t Covariance-reiated algorithms, like Kalman’s
original formula, deal directly with the error covariance cor factoriza-
tions of this matrix.' Square root formanulations in each category are
acknowledged to be numerically superior to their conventional counterparts.
Kaminski [1971b] points out that square root factorization of a filter
algorithm improves numerical conditioning and provides greater effective

precision.

The square root information filter was introduced by uyolub [1965]

and Businger and Golub [1965] as a reliable solution to the linear

1"I‘hea factorization A = SST is not unique. See Appendix A.
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least squares problem. This method, based upon Househnlder transforma-
tion techniques (cf Householder [1964]), was later extended by Dyer
and McReynolds [1.59) to include process noise. Their filter algorithm
has been applied extensively in snacecraft navigation and has demon-

strated superior numerical characteristics (ef Christensen [1976]).

Analysis by Bierman [1973) and Kaminski [1971a] has shown that
square root information filters are particularly efficient for problems
involving large batches of data and infrequent estimate calculations.
However, they show that covariance-type filters are more appropriate
for real-time applications or when measurements are sparse. In these
situations measurements are most efficiently processed one at a time
(ef Bierman [1973]), in which case the covariance filter is referred

to as a point processing algorithm.

Recent research in covariance filtering methods has been stimulated
by the need for fast, reliable point processing algorithms. A number
of square root covariance methods have been investigated. The
Chandrasekhar-type algorithms developed by Kailath [1974], Morf and
Kailath [1975], and Lindquist [1974] appear to be efficiept square
root estimation schemes for stationary processes. These algorithms
are not directly applicable, however, to the general nonstationary fil-
tering problem considered in this report. For this reason Chandrasekhar

methods are omitted from further discussion.

Several covariance factorization algorithms have been derived

to solve the nonstationary filtering problem. Notable among these
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is the square root covariance filter, originally introduced by Potter
[1963] and later extended by Schmidt [1970). The Potter-Schmidt algorithm
relies on Householder techniques which are known for their numerical
stability and accuracy. Although the Potter-Schmidt filter has produced
reliable results, Bierman [1973] has shown that this method requires
considerably more storage and computation than does the original Kalman
algorithm. This inefficiency is related to the fact that Potter’s

square root is a general nxn matrix, while the Kalman formula involves

a symetric watrix.

Motivated by the need for a more efficient square root covariance
filter, Carlson [1973] defived an aigorithm which retains the square
root in triangular form. Although sometimes less expensive than Potter’s
method, the n-dimensional Carlson filter requires n square root calcula-

tions each time a scalar measurement is processed. Square root calcula-

‘tions are usually time consuming compared to other arithmetic operations.

Hence, for many applications Carlson’s method is still noticeably more

expensive than the Kalman formula.

A promising new approach to Kalman filtering involves a triaigular
covariance factorization which requires no square roots. The covariance
P is factored such that P = UDUT, where U is unit upper triangular
and D is diagonal. Bierman [1976a] suggested this factorization and
derived a U-D measurement update algoiithm. The numerical integrity
of this algorithm has been established by the work of Gentleman [1973)
and [1975] which relates the U-D measurement update to the numerically

stable Givens transformation methods. Moreover, the computational
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requirements of the U-D algorithm are equivalent to those of Kalman’s
method. Because of these attributes the U-D factorization algorithm

i

is ideally suited for real-time applications.

Bierman’s results provided the starting point for this research.
Attention was directed to the following problem areas:

(1) Extensior of the U-D estimation method to allow for time
propagation.

(2) Demonstration, by analysis and experimentation, that the
U-D factorization filter is a reliable and efficient point-
processing algorithm.

(3) Application of U-D filtering techniques to other areas

of linear estimation theory.

1.2 Qutline of the Contents

Chapters II and III contain a description of the various discrete-
time covariance filter algorithms. In Chapter II attention is restricted
to recursive data processing methcds. The conventional Kalman measﬁrement
update formula is presented, and several alternatives to this method
are described. These discussions address the computational aspects
of each algorithm and conclude with a derivation of Bierman’s U-D measure-
ment update formula. Finally, a simple example problem isvsolved to
illustrgpeaiﬁe improved performance obtained with the U-~D and square

root covariance factorization methods.
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Chapter III is devoted to time propagation. After the filtering
problem is stated and the conventional Kalman solution is presented,
several covariance propagation algorithms are described. These algorithms
are designed to propééate covariance factors and generally involve
orthogonal transformations. Modifications of the familiar Gram-Schmidt
and Givens triangularization techniques are used to derive reliable
U=D propagation algorithms. The general propagation methods are then
adapted to problems involving oias parameters and colorgu process noise.
Exploitation of system structure yields a particularly ;fficient U-D
colored noise time update algorithm. Finally, an qxamﬁle problem is
include¢ to illustrate the superior numerical characteristics of the

orthogonal transformation methods for covariance propagation.

Chapter IV contains analytical cost comparisons of the various
algorithms studied in Chapters II and III., Comparisons are based upon
arithmetic operation counts which are weighted to reflect the different
execution timga required for each calculation. The measurement update
algorithms are compared first, followed by the time update cost compari-
sons, Based upon this analysis the most efficient U-D and square root
covariance propagation algorithms are selected. Measurement and time

update costs for each method are then combined to yield filter algorithm

cost ocomparisons,

In Chapter V the U-D filtering method is extended to obtain fléxible

and concise algorithms for performing covariance error analysis. An
efficient gain evaluation method, suitable for analyzing the effects

of incorrect a priori statistios, is first derived. Analysis is then
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extended to allow for evaluation of mismodeled data and state transition
matrices. The general error analysis algorithm eajoys certain simplific
tions when mismodeled bias and process noise parameters are evaluated,
and these effects are described. The analysis of neglected bias parame-
ters is also givén special attention. In this case the U-D evaluation
method allows for efficient sensitivity analysis and variable dimension

filtering.

In Chapter VI the various filter algorithms are applied to a
realistic'planetary naVigation problem. Numerical accuracies of the
different methods are compared by computing in both double and single
precision arithmetic. Double precision results from‘all algorithms
are in close agreement and are used as a reference for comparing the
single precision results. Variations are introduced into the system
mocel in order to evaluate algorithm sensitivity to a priori statistiecs
and state dimensionality. Error analysis for this study is performed
by applying the U-D gain evaluation method~heveloped in Chapter V.

Chapter VII gives a summary of results and recommendations for

further research.
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Chapter II. Recursive Data Processing Algorithms
2.1 oblem ment and C nal Kalman Solution
In this chapter attention is restricted to the data processing
aspects of discrete linear estimation. That is, given the finite sequence
of observations, {z(1)}, we seck the minimum variance estimate of the
parameter vector, x, where
2(1) = A(i)x +v(1) i=0,1,2,... (2.1)
and x ¢ Ry z(1) ¢ Ry
The random variables x and v(i) are distributed such that
x ~ N(x,P) (2.2)
(1) ~ N(O,R(1))  R(1) = diag(ry,...,ry) (2.3)
E{xv(1)T} = 0 (2.1)
EVDVNTI =0 1= (2.5)
The notation x -~ N(X,P) describes x as normally distributed with mean X,
and covariance F. Without loss of generality we assume the m components

of v(i) to be uncorrelated. Correlated observations may be uncoupled by

the "whitening" process suggested by Andrews [1968]. See Appendix A.
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This thesis 1is primarily concerned with problems where m<<n and
where estimates are required frequently during the data processing.
Bierman [1973] and Kaminski [1971a] have shown that this kind of estima-
tion vroblem is most efficiently solved by recursive covariance-type

algorithms such as the following Kalman formula.

Let the variable §(1'1) derote the minimum variance estimate of x
given data 2,_; = {2(0), z(1),...,2(i-1)}. It has been proven® that
Q(i'1) = E{x/21_1}, where E is the expectation operator and "/" denotes
the conditioning. Kalman [1960] derived the following formula for

computing Q(i), given Q(1‘1) and z(i).

{0 2 261 k) (012 - aREY) (2.6)
K(1) = 9(1-1)A(1)T(A(1)'1§(1-1)A(i)T . R(i))" (2.7)
1) = Pra-1) - k(DAWP-D) (2.8)

This recursion has the following initial values.

Q('” = ¥ (2.9)

"
<

1) (2.10)

tor Sage and Melsa [ 1971].

10
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A
The vector K(i) is referred to as the Kalman gain and P(i) is the error

covariance matrix. Thus

B(1) = E((RW) - )8 _ Ty (2.11)

Proof of this algorithm is given in numerous texts (ef Astrom [1970],
or Sage and Melsa [1971]). We will not repeat these well-known proofs
here but will, instead, consider the computational aspects of Kalman’s
algorithm. Bierman {[1973] has shown that the Kalman formula is more
efficient when the m components of z(1i) are processed one at a time.

In this case the mxm matrix inversion in Eq. (2.7) reduces to a trivial
calculation, and the cost of updating is a linear function of m, Since
the measurement errors in each batch are uncorrelated, the data vector
z(1) may be included one component at a time by cycling through Egs.
(2.6)-(2.8) m times. This approach is emphasized and clarified by

rewriting the Kalman formula as a scalar measurement update algorithm.

For convenience we adopt the notation

= Q“"” 2= Q(i) (2.12)

»!

= - B =B (2.13)

!

The Kalman measurement update may then be written as follows.
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c ntional Kalman S sucement Update
%=%+Kz-a'x) (2.14)
K = Pa/(aTPa + r) (2.15)
P=F-Kap (2.16)

Henceforth time dependence is suppressed for notational convenience
unless required to avoid confusion. Where recursions are involved we
will rely on the superscripts "~" and "A" to denote a priori and a

posteriori quantities, respectively.

2.2 Kalman A thm

Numerical difficulties with the conventional Kalman algorithm
prompted Joseph to reformulate the covariance update (cf Bucy and Joseph
[1968]). His method, referred to as the stabilized Kalman algorithm,

computes ? in the following way.

A ~
P = (I-Kal) ¥ (I-Ka?)T + KrkT (2.17)

This formula can be mechanized as follows.

Wy = I-Ka' (2.1°)
Wy 2 Wy P (2.19)
12
% "PRODUCIBILITY OF THR
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A
P = W T + KrKT (2.20)

A
A second method, due to Bierman [1973], computes P using vector outer

products in the following way.

vy = Pa (2.21)
Py = P-Kv,T (2.22)
v, = Pja (2.23)
P = (py-vkT) + krkT “ (2.24)

The first mechod is not necessarily more reliable than the second
one even though 3 in Eq. (2.20) appears to be a positive definite matrix.
Furthermore, the original Joseph arrangement requires nezrly an order of
magnitude more computation than does the Bierman method.* because of
this inefficiency and because there is no proof of improved stability,
the first mech-nization is omitted from furtner discussion. Even when
the stabilized Kalman formula is implemented by Eqs. (2.21)-{(2.24), it
involves more than double the arithmetic operations required by the

conventional Kalman method.

*For the most part, these mechanizations involve adgitign and multipli-
cation operations. The first method rquires 1.5n”+2n“+n multiplica-
tions, while the second involves only 4n+in such calculations,
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~ Although generally more reliabi:ﬁthan the conventional Kalman
=
algorithm, the stabilized Kalman formula is susceptible to numerical

errors. This little publicized fact is demonstrated in Chapter VI.

2.3 Potter V. A hm
Potter [1963] observed that numerical problems associated with the
Kalman algorithms were often evident in the form of indefinite computed

error covariances. In order to avoid such degradation he factored the

covariance e so that

o>

(2.25)

A
and derived an aigoritim for recursively compu“ing S instead of $.+

Potter noted that the covariance update for scalar measurements can be

written as follous

e a1 -
P = 58T - p-kaTP = 8[I- - 13T (2.26)
where
f = §Ta (2.27)
@ = r+flf (2.28)

*The initial factor, So, may be uniquely defined by applying a Cholesky
square root decomposition to P, (see Appendix A).
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By proper algebraic manipulation Potter found that if a constant y is

chosen such that

Y = e—— A= 1/a (2.29)

then

[I-AfFT] = [I-yAffT) [I-yareT)T (2.30)

A
Equations (2.26) and (2.30) imply that S may te computed as follows.

>
1]

= Seyke? (2.31)
K = ASf (Kalman gain) (2.32)

The following efficient mechanization of the Potter algorithm

was suggested by Bierman [1976a].

15
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Potter Square Root Measurement Update

¢ = 3a (2.33)

A = 1/(r+£T1F) (2.34)
Y = A/(1+\r) (2.35)
K=53r ' (2.36) -
2=% + K\ (z-aT®)] ° (2.37)
8 = 5-(eT (2.38)

This square root method guarantees positivity of ﬁhe computed error
covariance. It is also numerically better-conditioned than the Kalman
algorithms. Bierman [1973] has shown that the Potter algorithm is
equivalent to a particular Householder update (cf Appendix B). House-
holder methods are known for their accuracy and stability, and so this

equivalence establishes the numerical integrity of the Potter formula.

Kaminski [1971a] suggests that when problems are ill-conditioned
square root filters can provide twice the effective precision of covari-
ance methods. In the case of the Potter algorithm, however, numerical
stability is coupled with greater computational expense. Since the Potter
update computes a general nxn matrix, §, his method requires nearly twice

as much storage and calculation as the conventional Kalman update.
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¥
Because of this inefficiency the Potter algorithm is not attractive

for use in many real-time applications.

2.4 Carlson Triangular Square Root Algorithm

Motivated by the sbability and accuracy characteristics of square
root estimation techniques and by the need for a fast, reliable point
processing algorithm, Carlson [1973] derived an alternative square root
formula. His method recursively computes an upper triangular covariance

square root as follows.*

SEuﬁBﬂ2lJﬁnE!ELJExﬂLJﬁEgﬂHE%EEHLJBEE&ELJ&ME&:HQB!
£=5% 1= (f,8p,...0,)  (2.39)
@ = r Ky =0 (2.40)
For j = 1,2,...,n cycle through Eqs. (2.41)=(2.45).
aj T agq+ fje (2.41)
Bj = Vayo1/ay (2.42)
vy = =fy/Bjyay 2. 43)

1'The algorithm given here is a modest rearrangement of Carlson’s formula.

Bierman [1976b] has observed that the calculation of 4o, ,/a, in

Eq. (2.42) may be more accurate than the corresponding cgmput tion,
°J-1°J' recommended by Carlson.
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sj = ngj + VJR'J-'l (2.“")

where

S = [8) Sp...8,] aad S5 = (845(1),...,5;(3),0,...,07T

.

The Kalman gain is given by
K =Ky/a, (2.46)

Thus, the estimate update may be written as follows.

A o =rm  Te
X =X+ K[(Z - a’%X)/ap,] (2.47)
Derivation of this algorithm is deferred until the next section

where it is shown to be an easy consequence of the U-D measurement

update.

The Carlson algorithm has a gooQ computational form and enjcrs the
traits of stability and accuracy generally attributed to square root
filters. Although the Carlson formula requires considerably less storage
and computation than the Potter square root method, it is still noticeably
less efficient than the conventional Kalman algorithm. Unlike the conven-
tional method, the Carlson algorithm requires n square root calculations
for each scalar measurement update, and square roots are usually
time-consuming operations. This ls particularly true for small on-board

computers such as the Litton 4516. This computer has 32 bit double
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precision arithmetic and requires approximately 1000 usec to calculate
a square root. By contrast it performs an addition in only 4 usec.

A careful comparison of measurement update costs is included in Chapter
IV where the Carlson method is shown to be unreasonably expensive for

a significant class of problems. N

. 2.5 U=D Covariance Factorization Algorithm

Bierman [1976a] recognized that square root calculations required
by thé Carlson algorithm are often costly and proposed a square-root-free
-
measurement update scheme. His method employs the covariance

factorization
P = upyT (2.148)
where U is unit. upper t.r:langular"r and D is a positive diagonal. It is

well known that for symmetric positive definite matrices this factoriza-

tion exists and is unique (ef Martin et al. [1965]). An algorithm

for computing the U-D factors of P is described in Appendix A.

Measurement updating using the U-D factorization preserves the
non-negative definite structure of P and is equivalent to the Carlson

method without square root computations.

*The factor U could also be taken as lower triangular. However, upper
triangular factorizations allow for variable dimensioned filtering
as described in Chapter V.,
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The U-D data processing algorithm may be derived by factoring the
= A -
Kalman update, Eq. (2.16). If P and P are both factored according to

Eq. (2.48), then

66 0T = 9p - % e i (2.49)
where

v=Dfr v = aifi (2.50)

£ =0UTa (2.51)

a=r+ fIDf =

n
r + Z Vifi
i=1
The bracketed term in Eq. (2.49) is positive definite and hence may
be factored as U D UT. Since the product of two unit upper triangular
matrices is again unit upper triangular it follows that
A - _ "
y 0=00 D=0 (2.53)
Hence the U-D update rests on the ractorization
0607 =5 - (1/a) wT (2.54)
Bierman has observed that the Agee-Turner matrix factorization in

Appendix C may be applied to this problem and results in the following

recursion for computing U and S.
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With ¢, = -1/a, cycle through Egs. (2.55)=(2.57) for § = n,...,2.

i - AN _x o2
- A
3 Ukj = chka/dJ k = 1,--.,:]—1 (2.56)

. Cq_q = cqd,/8 (2.57)

_ , 3-1 = ¢3d5/9;
8, =d 8
: d1 = d1 + 01V1 (2.5 )
¥ Equation (2.55) is subject to cancellation errors since it
¢ " involves the differencing of two positive quantities. However this

A
expression for dJ-and, hence the entire recursion, can be rewritten

as a numerically stable formula.

Let the partial sums, uj, be defined as

T e 2 2
a.j =P + é‘ difi = aj“l + anJ (2-59)

Then since vy = EJrJ, Eqs. (2.55) and (2.57) imply that
yt‘ OJ = -1/GJ (2-60)

A
This value for cj ylelds the following expression for dJ.

[+ 3
Sjaaj(“) J21,2,000,n (2.61)
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Eqs. (2.56)-(2.61) imply that j
}, H
k3 ‘
£ : :
s T=1a [0l agv@ i, 1y(n-13 (2.62) %
H where |7
,3 o

(V(J))T = (v1,v2,...,vj,0,0,0) (2.64) 2 E
. A e 5 2y
A The desired factor U = U U may now be constructed from Eq. (2.62). P

EN - - A - :
o Let ﬁj and UJ denote the jth columns of U and U respectively. i 3
: N
§ Then ; i
S X ¥ s

Yj = Uv = KJ-1 + VJUJ ) (2-66) :
! :
and ; §

} i ?h/°n = K (Kalman gain) (2.68) § ;

ks f ' ;

A The U~D update is summarized as follows. Given a priorl covariance é {
" factors U and D and the scalar measurement z = a® x + v (E{v’} = r), the b

‘ npdated covariance factors G and ﬁ and the Kalman gain, K, are obtained %
3

by evaluating the following sequence of equations.
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Bierman U-D Measurement Update Aigorithm

la ]
"
<
=3
[

T
T = (£1,05,00051,)

<
"
o
s ]

VJ = aJ fJ

Q
-—
n
3
+
<
——d
-y
e

a>
—
"
———
2 lﬁ
N
Q
p—y

For j = 2,...,n cycle through Egs. (2.74)-(2.78).

where

= %a1 + V4l

a
A J=1\ ~
d

3

e
!

[=D
(=
"

>
[}

.fj/aj_1

>
LA
[

ﬁJ + xjij'1
?j = Kj‘1 + VJUJ

ﬁ =2 [ﬁ1.ﬂ2,.-.ﬁn] aﬂd 6 3 [01,02,...6n]
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The Kalman gain 1is given by
K=K/a (2.79)

The salient feature of Bierman’s algorithm is the way in which the
updated diagonal 6 is computed. Since the quantities, a4 are calculated
as positive sums (ef Eq. 2.74), cancellation-type errors are avoided and
the positivity of 3, and hence, 9, is assured. Furthermore, the elements
of 3 may diminish to near-zero without affecting the stab:lity of the
algorithm. The numerical integrity of this method is further established
by the analysis of Gentlesman [1973)] and Fletcher and Powell [1974].

Their work relates the U-D algorithm to a numerically stable Givens
orthogonal transformation. An efficient Fortran implementation of

the U-D measurement update algorithm is included in Appendix D.

Proof of the Carlson algorithm (Section 2.4) is immediate from the

U-D formula when the square roots S and g are ldentified as
S Pt A
3.05172 8- (2.80)

Equation (2.80) suggests that the U-D method shares the attributes
of accuracy and stability generally assoclated with square root filtering

techniques. This fact is demonstrated by the case study in Chapter VI.

2,6 Example Problem
The following example provided by Bierman {1376b], illustrates the

numerical characteristics of the various data processing techniques
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described in this chapter. In particular it demonstrates how the conven=
tional Kalman method can produce nonpositive error covariances while the

factorization methods yield accurate results.

Consider the problem of estimating X4 and X5 from scalar measure~

ments Z4 and 2 where

21 X1 <+ ex2 + V1

(2.81)

1]

22 X1 + x2 +,“2
Data errors, vy and v, are uncorrelated, zero mean random variables with

unit variances. The a priori error covariance is assumed to be

P = 021
where o=1/¢ and 0<e¢<<i. The quantity ¢ is assumed to be small enough

such that computer round-off produces

1+e221 (2.82)

This estimation problem is certainly well posed. The observation
z4 provides an accurate measurement of x4, which, when coupled with the
observation %21 should acourately determine Xa. However, when the
various data processing algorithms are appiied to this problem several

diverse results are obtained.
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Let the gain and error covariance associated with the ueasurement
z4 be denoted as K1 and P1 respéétively. Similarly the measurement z, is
associated with K, and P,. Table 2.1 gives the exact solutions for K and
P at each step and shows thé rounded solutions computed by the various
filter mechanizations. Notice how computer round-off errors are evident
after the first measurement is processed. The first covariance matrix
computed by the conventional Kalman formula has a zero variance. One
might expeet this result if the exact variance were on the order of e2 or
even ¢. However, in this case the correct value is approximately ?11 s 2,
and so the Kalman error is appreciable. Subsequent processing of data
by the conventional formula results in even larger errors. The second
computed covariance, for example, has one negative diagonal element
and one that is zero. It is also interesting to note that this covariance
matrix has off-diagonal elements equal to -1 if the P12 element is
computed and set equal to P21. On the other hand, *‘f P21 is computed
directly it has a value of +1, Yet computer implementations of this
algorithm typically include calculation of only the upper (or lower)

triangular elements.

Although the stabilized Kalman formula performs better than the
conventional method, it tvo computes different values for P,, and P,
after the second update. The quantities Py, = =1 - 3¢ and Pyy = -1 - 2¢
cculd be averaged to give Py, = P,. = -1 - (5/2) ¢. However, note that

the exact answer rounds to P12 2 Pyy = =1 = 3¢,
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All the factorization algorithms discussed here produce accurate

results. The U-D and Carlson methods yield nearly identical results

3on st e o sk S T i a k
e T .

and compute rounced covariances equal to the rounded exact answer.

WAL N ¢

-

This sample problem illustrates how the Kalman covariance algorithms
are prone to numerical errors which can significantly affect filtering
accuracy. The factorization methods, on the other hand, avoid critical

round-off and cancellation errors and yield reliable results.
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Chapter III. Filtering for Discrete_ Ljinear Processes

3.1 Problem tement an nv 1 i
The discrete linear filteriug problem is an extension of the
parameter estimation problem discussed in Chapter II. Instead of being

constant, the parameter x is described as the state of the following

linear multistage process.

x(i+1) = #(i)x(i) + 3(i)w(i) i=0,1,2,... (3.1)

The array ¢(i) is a known nxn transition matrix, B(i) is a known

nxk matrix and

x(0) - N{x,P) (3.2)
w(i) - N(O,Q(i)) Q(1) = diag (qq,..,q;) (3.3)7
E{w(1)wI()} = 0 1= (3.4)
E{x(0)wI(1)} = 0 for all i (3.5)

At stage i1 scalar measurements are available and are linearly related to

x(1i) by the e~uation

1'Ther'e is no loss of generality in assuming that Q{i) is diagonal.
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z(1) = al(i)x(1) + v(i)

where

(i) - N(O,r(i))

s{v(1)vI(j)} = 0 12
E{v(1)x1(3)} = 0 for all i,j
E(v(i)wItj)} = 0  for all i3J

(3.6) s

(3.7) é
(3.8) ; ;
(3.9
(3.10) :

The optimum solution to this filtering problem is the minimum

varjance estimate of x(i) given the observations Z; = {z(07,2z(1),...,z(1)}.

Kalman [1960] derived a recursive solution to this problem by combining

the data processing formula of Chapter II with an optimal time update

algorithm. The complete Kalman filter is summarized as follows.

Conventional Kalman Filter

%(1+1) = o(1) (1)

Time Update

B(ie1) = o(1) P(1) oT(1) + B(1) Q1) BT(1)

30
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A1) = R + k(W (2(1) - aT(1) i(i» (3.13)

Measurement -

Update Bi) = B(4) - k(1)aT(1)B(1) (3.14)
K(1) = F(i)a(i;/(aT(i)ﬁ(i)a(i) R r(i)) (3.15)

This recursion is initialized by the following quantities.

x(0) = x P(0) = P (3.16)

In Chapter II several alternative formulations of Kalman’s measure-
ment update algorithm were presented. These data processing algorithms
may be combined with appropriate time update schemes to provide alterna-
tive mechanizations of the Kalman filter. For example, the stabilized
Kalman measurement update, Eq. (2.17), may be substituted for the conven-

tional Kalman formula, Eq. (3.14), to yield the stabilized Kalman filter.

Measurement update algorithms involving covariance factorizations,
such as the Potter square roov or the Bierman U-D methods, require alter-
native formulations of the covariance propagation formula, Eq. (3.12).
Several techniques for propagating covariance factors are described

in the remainder of this chapter.
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3.2 RSS Method for Propagating Covariance Factors

Suppose that at each stage of the filtering process the a posteriori

A
ccvariance, P, is factored such that
A AA .
B=-88T o B -0DOT (3.17)

The RSS method for computing the a priori factors S (or U-D) at the next
A

stage involves "squaring up" S (or 6-6) to obtain 9. The conventinnal

propagation formula Eq. (3.12) is then applied to compute P, followed by

an appropriate Cholesky decomposition to obtain S (or ﬁ-ﬁ).

Carlson [1973] recommends the RSS method as an efficient square
root propagation scheme. However, the analysis in Chapter IV demon-
strates that this formula enjoys only a minimal savings in computation.
Of greater significance is the potential loss of accuracy associated
with this method. A major motivation for factoring the Kalman algorithm
is to gain increased accuracy due to better numerical conditioning.

This advantage can be eliminated by applying the RSS propagation scheme.
The example problem in Section 3.7 illustrates why the RSS method is

numerically hazardous.

3.3 Gram-Schmidt Propagation Algorithms

A A
Suppose 6 is factored as P = GDGT and let

kK n
——— i

W= iel1}n (3.18)
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k n

i, sngtea

D = diag (Q, D) (3.19)
The propagation equation P = OSOT + BQBT may then be written as

P = wbwT (3.20)
The U-D factors of P may be obtained by applying a particular Gram
Schmidt orthogdnalization to the row vectors of W. This procedure

involves the following inner product space.

D
Let Vn denote the vector space of n-tuples over the reals with

inner product, <"'>D where
< >y = v; 1D for.all v in V> (3.21)
Vi,VJ D = Vi VJ, or, a n n o
2
Thus, the vectors v and w are "D-orthogonal" if <v,w>D = 0.
n D
Suppose {w;};_q is an independent set of vectors in V, where n < m.

A D-orthogonal set {v;} may be obtained from {w;} by applying the follow-

ing weighted Gram-Schmidt (WGS) algorithm.
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¥eighted Gram-Schmidt Orthogonalization

V= Wy
<Hn-1, Vn>D
Yn-1 = ¥p-y - > 'n
JEATES
. (3.23)
n
. <w1,vi>D .
1% =) i
lvyl12 :
i=2

This WGS algorithm may be used to compute the {l-D factors of

P in the following way. Consider the n independent row vectors of

D -
W in Eq. (3.18) as vectors,éE%%%p where m = n + k. If the D-orthogonal

et Ot

n 5
set {vy};.1 is computed via WGS applied to {w;}, then Egs. (3.23) imply

FWAlT V1TT
W2T V2
Ww=| . =0 | . ¢ (3.24)
T T
Wn Vn
e - - =

where U is unit upper triangular. Since .. rectors {vi} are D-orthogonal

it follows that
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_ , |
P-whwl = @ v, I i (3.25)

. 2
0 . ||vn||5

e <

Thus, the elements of U and D are given by

2

EJ = Ilvjlrﬁ J=1,...,n (3.26)
1

Ugy = = <y, vp i=1,...,31 (3.27)

dj

The orthogonalization used to compute U and D is a modest generali-
zation of the familiar Gram-Schmidt (GS) procedure (cf Noble [19691])
in that inner products are weighted by thelﬁ matrix and the vectors
{vi} are not normalize.. The required orthogonalization may also be
attained by applying a Modified Gram-Schmidt (MGS) procedure, (cf Lawson
and Hanson [1974]). Bjorck [1967], Jordan [1968] and Rice [1966] have
investigated the numerical characteristics of GS and MGS. Their studies
establish that MGS is more accurate, takes no more arithmetic operations
and requires less storage than does GS. Moreover, the works of Bjorck
and Jordan show that triangularization using MGS has accuracy that
is comparable with the reliable Givens and Householder methods to be
described in this chapter. For these reasons the following Modified
Weighted Gram-Schmidt (MWGS) algorithm is recommended for U-D time

updataing.
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M Gram- r

Given the full rank nxm matrix W with row vectors {wi} and an
m-dimensional positive diagonal matrix, D. The U-D factors of

P = WOW! are computed as follows.

Evaluate Eqs. (3.28)-(3.30) recursively for j=n, n - 1,...,1.

2
g = 1wy (3.28)
3 1 (n-3) (n-3)
uiJ = a-:; < Wi ’ WJ > 5 (3.29)

i = 1,...,J-1

(n=3+1) _ , (n=3) ~ . (n=3)
wi ‘j = wi j - uij ﬂd ‘1 (3-30)
This recursion begins with the vectcrs wi(O) where
L wi i = 1"."“

This algorithm may be obtained from the WGS results with the

easily proven identity
= w.(n=3} -
VJ - HJ J - 1,.0-,n (3031)

Although the inclusion of superscripts makes the MWGS algorithm appear

rather complicated, this method is easily mechanized. Compactness,
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efficiency and simplicity can be achieved by arranging the FORTRAN
implementation so that successive w's in Eq. (3.30) are written over one

another (see Appendix D).

Gram=-Schmidt orthogonalization may also be used to propagate
covariance square roots. Let P be given by Eg. (3.12) where 6 = éQT.
A triangular factorization P = S37 may be obtained by the following

MGS algorithm.

Modified Gram-Schmidt Square Root Factorization
Let
k n
W= [BQ'/2 | oél} n (3.32)

n
with row vectors denoted as {w;};_,. An upper triangular factor,

S, such that

85T = wwT (3.33)
may be obtained froum the following recursion with inner products
defined by

Wy Wy> = ”iij (3.34)

Fer J = n,...,1 cycle through Eqs. (3.35)=(3.39).
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By = [Iwy(n=3))2 (3.35)
8y = /55 (3.36)
vy = uy (0875, (3.37) ’;
55 = w0 vy (3.38) |

12 1,2,...,31

wi(n-J+1) = wi(n-j) - ‘51:] VJ (3.39)

This algorithm is an easy consequence of the MWGS factorization,

Eqs. (3.28)-(3.30), and the identities

ol
n
=

The MGS formula may be used in conjunction with both the Potter and the

Carlson measurement updating methods.

The recursions Eqs. (3.35)-(3.39) may be used to compute a lower

triangular S if the indices, i and j, are reordered so that j

1,004

wm

and { = j,...,n. Since the Potter algorithm does not require S to
be upper triangular, this rearrangement of the MGS formula is also

appropriate for propagating the Potter square root.
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3.4 Givens [ransformation Methods for Covariance Propagation
Consider the problem of constructing an mxm orthogonal transforma-

tion T such that

Me-n n
[WIT = n {L 0! W) (3.41)

rd

where W 1is upper triangular. If W is defined to be

k n

e, p—an—

w=nhm”zrél (3.42)

then the transformation in Eq. (3.41) represents a covariance square root

time update with W” = §,

Givens [1959] showed that T could bs constructed as a product of n

orthogonal transformations, Tj, where
T = Tn Tﬂ-1"'T1 (3-“3‘

Each TJ is designed to zero out the subdiagonal elements of row j.

Thus, T, is constructed such that for W) < 4 ve have
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m-1 1

I e P ar B, g,

m - —
v, ’ *

n (W™, = W=D 2 o v (3.44) 1

#
%
1{[9 (00 of*

This transformation consists of a sequence of two-dimensional column
rotations called Givens transformations. These rotaticns pivot in
succession the last column of the array W with each of the preceding

: n
columns. The rotation involving column i is designei to set w;i)z 0.

In a similar manner T, , i$ constrructed to zero out the subdiagonal
elements of row n-1 by successively pivoting column m-1 of W("=1) witn
each of the preceding columns. Notlce that this transformation doas
not alter the last row and column of w("“”. This process is continued,

and after TJ*1 is applied the array has the form

m-n+j n-j

< e
3 w Dl »e
> (3.45)
W(Tje. Ty,q) = -~
n-j 0 *
L 0

*An asterisk is used to denote nonzero, unnamed elements.
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Thus, the process is conecluded with the transformation T,.

Givens rotations of the following form.

The vector y is the pivotal column and

) This triangularization technique involves a sequence of elementary

vj=/xg? ey

Q
]

= ¥4/Y5

Y]
|

= X477}

= cxy - syi‘

%
[
]

<
[N
[

s Sxi + cyi

b1

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)
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The Givens covariance square root propagation algorithm is summarized
below. Supersecripts have been suppressed to simplify the notation ang
to facilitate computer implementation. The symbol ":=" is used instead

and denotes replacement in computer storage.

Let W be a full rank nx(n+k) matri-- with column vectors
n+k ~
{w1}1=1. An upper triangular factor S such that §§T =HHT may be computed

as follows.

For j = n,...,1 cycle through Eqs. (3.52)-(3.58).
m := k+j (3.52)
For i = m-1,...,1 evaluate recursively Eqs. (3.53)-(3.58).

wp(3) =-\/Qwi(j))2 + (wm(:]))2 (3.53)

¢ = wy(J)/wg(d) (3.54)

s 1= wy(J)/wg(d) (3.55)

Voizowy (3.56)

Wy iz oWy = SWp (3.57)
L2
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W iz SV + CW (3.38)
k n
When this recursion is completed the W array has the form W = [0 | 5]} n

where S is upper triangular.

A lower triangular factor S may be obtained from the recursion

Egs. (3.52)-(3.58) if the indieiﬁf\}‘and j, are reordered 30 that

J=1...nand i = j+1,...,m. At the conclusion of these calculations

the W array has the form

n k

w=1[(§!0l}n (3.59)

where S is lower triangular.

The Givens triangularization method is well known for its superior
numerical characteristics (cf Wilkinscon [1965]1). Thus, the Givens
square root factorization algorithm provides : reliable method for
propagating Potter and Carlson covariance factors. FHowever, this method
is usually bypassed in favor of the more efficient Gram-Schmidt and
Householder time update algorithms. The reader is referred to Chapter

IV for detailed cost comparisons.

A modest generalization of the Givens triangularization technique
ylelds a reliable and efficient U-D time update scheme. Recall that U-D

factorizations involve the propagation equation P = wﬁwT where
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A - AT

% W=1[B! OU]}n and D = diag (Q,D)
Let {w;} denote the column vectors of W and let {Ei} represent the
’ diagonals of D. Note that P can be written as

B

é

!
B = Wil (3.60)
i -l
; | where
W= [/5; wy 1o Y, Wy i H /il me , m=n+k (3.61)
i
: E
=§ | _
: ! The Givens triangularization method may be applied to the array W in a
t !
b ! way which explicitly accounts for column scaling. That is, an orthogonal
: §
transformation T may be constructed such that

m m-n n m-n n
pr—— p—hm— A 2} ey A —

n {((MT=00 /@G ... +17%G1=00 170" (3.62)
where U is unit upper triangular. Gentleman [1973] showed that an
elementary Givens rotation, adapted for such column sceling, takes
the following form.
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N
=

7a x

. 2 2
8" = a X5 + B Yj

a’ = Ba/B”

”

Ql

= Byj/B

[}

= Mj/a

= iji - xjyi

»
e\

yj = 8yy + 3xy

_/G:xi

/o’

/Gjy{—

/B-’y 5_ 1

g

i=1,...

vJ'1

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

These expressions for a“, B“, x” and y” are easily obtained by applying

Eqs. (3.47)-(3.51) with x and y replaced by /@ x and /B y respectively.

Note that when the quantities a“, 87, x“ and y” are desired,

rather than the vectors (7/a’x’) and (lgjy') this method involves no
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square root calculations. Gentleman [1973] noted that when yJ =1,

Egs. (3.64)-(3.69) can be rewritten to avoid a multiplication. Thus

B =8 4+ t_xxi (3.70)
o’ = Ba/B” (3.71)
§ = axJ/B' (3.72)
X{ = Xg - X5¥4 (3.73)
¥{ = vq + 5¢§ (3.74)

This algorithm is referred to as Method B while the formula described by
Eqs. (3.64)-(3.69) is denoted as Method A. Both of these methods may be

used to solve the U-D time update problem.

The §-D factorization of P = WDW! is initiated by denoting as
pivotal elements the pair (am,wm) where w, represents the last column
of W. The square-root-free Givens transformation defined as Method
A is then applied to the pairs (am_1, wy_q1) and (am, ¥p). As a result
of this initial pivot wy 4(n) = 0 and wi(n) = 1. Thus subsequent
transformations involving the mth column may be accomplished by applying
Method B. The pair (dj,w,) is then pivoted in turn with each of the

remaining pairs (di,wi‘, i {m=1. Implicit in this sequence of calcula-

tions is the transformation Tn where

L6

R AT g b T 5 e T A Brens s

~y A GEME Bt MR bR ooy

O T s

-
e

g



S e
FUCI

L3 I

e 5

Te = p v 0
H

I T N
N

[ —

33-798

Al ,__,1_\_1
. '/.._ ~
dn Y
W Tn = . (3.75)
1{ 0000 | /A
L -

n-1 1
a1n
n"1 wl ﬁan
w(n=1) _ ) (3.76)

1 {L? 000 1-

5(7=1) = qiag (4], a3,...,47_q, ) (3.77)

This technique is repeated, with the pair (dﬁ-1’”ﬁ-1‘ as the pivotal

elements, to yicld H(“'Z) and 5(“'2). The process is thus continued

until finally W(®) and 507 ape obtained where

m=-n n
b b,

w10 | G1}n (3.78)
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m-n n
Y

-~

5(0) - qiag (v @ e w dy,dp,...,dp) (3.79)

The modified Givens algorithm for propagating U-D covariance factors

is summarized below.
Modified Giveng Factorigatjion
Suppose we are given the full rank nx(n+k) matrix W with column
vectors {w;} and an (n+k)-dimensional positive diagonal matrix, D.

The -5 factors of ¥ = WDW' may be computed as follows.

For j§

1]

n,...,1 eyele through Eqs. (3.80)-(3.89).

m := j+k (3.80)

For {

m-1,...,1 evaluate Eqs. (3.81)-(3.89) as indicated.

- 2 - 2
dr 1= 3y wp(d) + dy wi(d) (3.81)*t
8 = 31 "1(3)/dﬁ: (3-82)
ai HE aia'm/dﬁ (3083)

YWhen i < m-1, wp(d) = 1.
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8 := dy wp(j)/dg  omit if 1 < m-1 (3.84)
Voiz oWy (3.85)
Wi t= owp(d) wy o= wy(Iwy (3.86)
Method A: wy := &w + 8v if 1 = m=1 (3.87)
Method B:  wy := wy + 3wy if 1 < m-1 ) (3.88)
dy =dg (3.89)

Upon completion of this recursion the W array contains u. That is

k n 3
W=[01]U]lln N (3.90)
The diagonal elements of D are given by
ai s ak+i i=1...,n (3.91)

Analysis by Gentleman [1973] has established that when Method A,
Eq. (3.87), is used exclusively in this recursion the algorithm is always
numerically stable. However, use of Method B, as indicated in Eq. (3.88),
saves approximately 1/3 n3 multiplications (33%). Hence this formula is

preferred when it can be relied upon. Gentleman [1973] has shown that
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errors associated with Method B can be related to the ratio dé/&h.

He recommends control of error growth by testing this ratio against some
limiting value, ¢. Thus, Method B is applied only when dé/&h < e.
Fletcher and Powell [1974] have experimented with this technique on a
large number of problems using ¢ = U.f Their experience suggests that
for most applications of this algorithm Method A is required so rarely
that efficiency is near optimum. A numerically reliable computer iuple-~

mentation of the modified Givens update is included in Appendix D.

3.5 or Covariance Pr
Recall that propagation of covarisnce square roots involves the
triangularization problem,
m m-n
n {f;3 T=n {['?7
where S 1is upper triangular and T is an mxm orthogonal transformation.
This problem may be solved by applying a sequence of Householder trans-
formations, Ty, such that T = T;T, 4...Ty (cf Householder [1964]). Each

elementary transformation is a reflection operator and may be written as

Ty=I- 8, u( (T (3.92)

where

2/ 1u{d)) 2 (3.93)

w
Ca
L]

tGentleman suggests ¢ = 10 as & reasonable limit.
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Note that for any vector y
yry = 7 - Y(u(d))T (3.94)
with y given by
y = Bj(yTu(J» . (3.95)

Thus, explicit formation of the matrix Tj is not required if only the

product. w(J) Tj is desired.

The triangularization of W is begun by designing the transformation

T, to zero out the subdiagonal elements of row n. Thus,

m=1 1
’_‘v\‘ ,-—-J\-m_\|
Vi
n-1 w v
2
[wit, = w(n=1) . . (3.96)
Vrat
14{0000 | ~q

Equations (3.92)-(3.96) imply that T, can be constructed from the vector

uln) o x(n) | nem (3.97)
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where x(™) 1s the nth row of the array W and
m=-1

T P S N
e, = (0,0,0,0,1) (3.98)

Since T, is orthogonal, o, is constrained such that °n2 = [1x{m)))2,
Thus Eqs. (3.93) and (3.97) imply that

8, = 17(0,2 + ax'™) (3.99)

In order to avoid cancellation errors when Bn is calculated we may

define
\ (n) (n) -
G, = S8D Xy Y x| (3.100)

Once T, has been applied ‘o the array W via Eq. (3.94), the trans-
formation T, , is similarly chosen to pack the (n-1)st row of the array
w(n=1) | construction of u{P=1) is fdentical to the construction of u(m)
with one exception. The mth component of u(n‘1) is free to be chosen
since there are only m-2 subdiagonal elements to be zeroced out. If the
mth component of u{P=1) is set to zero then (0 0...0,-0,) u(n=1 . o,
Thus, Eqs. {3.94)-(3.95) imply that T,_. will not disturb the nth row

or the mth column of the array. Hence,

REPRODUCIBILITY OF THE
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¥ m-1 1 m-2 2
q Va # v1 e
L '
: W Vs n-2 W s vy 2
"E_‘ n-1 . . ;%
% . The = * . (3.101) {
& Vn-1 0000 f-opq vy
p 2 .
1 {{oo00 | -q, 0c00 0 -0,
This process is continued so that u(J) at step j is constructed g,
¥ according to Eq. (3.97) with n replaced by j and m replaced by (m-n+j). :
5 The m-~dimensional vector x(J) is defined as follows. For j = Nyeeeyl L
Z w;i) i=1,...,j+m=-n é
;5 xij) = (3.102)
; 0 i > jemen %
¢ where ng) is the jth row vector of H(J). .
v The following algorithm, due originally to Schmidt [1970], applies :
l the Householder triangularization method to propagate covariance square é
i roots. {
~ sSchmidt Covariance Scuare Root Time Update ‘f
A A ’
Let P = §sT and define W to be the nx(n+k) array
k n
. palem—

,, W82 o]}

23 ;
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v with elements {w;4}. An upper triangular factorizatior, 537

_ may be obtained as follows.

J+k
_ 2 1/2
OJ = Z (wji) sgn (wj,Jd-k)
i=1

[
[l

M = 1,00, d+k=1

J+k

» Ui HE- wJ,J+k + UJ i
F 0 1

Jek+l,...,n+k
BJ s 1/(°J uj+k)

For 1=1,2,...,J=1 cycle through Eqs. (3.1C8)-(3.109).

J-O-k

e

:fz

| L=1

i

f "il b "il - Yi Uz Lzl 4k

i ' Wi,k i= -OJ

"
-

“Jl 1z 0 ) .,...J+k-1

5k

USRS S

For jJ = n, n-1,...,1 compute recursively Eqs. (3.103)-(3.111).

(3.103)

(3.104)
(3.105)
(3.106)

(3.107)

(3.108)

(3.109)

(3.110)

(3.111)
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At the conclusion of this recursion the array W has the form

k

M(‘S
—

w=1[0!

where S is upper triangular.

The Householder triangularization method can be modified to yield
a U-D propagation algorithm by applying the identity S = UD"’.2 to
Eos. (3.103)-(3.111). Howaver, this method is not pursued sin-e it

appears to have little advantage over the MWGS and modified Givens

algorithms.
3.6 Propagation Algorithms for Systems with Colored Process Noise

Time propagation represents a major filtering expense, particularly
in applications where measurements are sparse (cf Chapter IV). Hence,
time updating methods warrant further consideration in terms of efficient
computer implementation. It is often possible to significantly reduce
propagation costs by exploiting special system structure. For example,
one may trim computations considerably by taking advantage of sparse
scate transition matrices or triangular system equations. This section
illustrates how trianzular covariance factorizations lend themselves
to efficient propagation schemes for systems with bias parameters

and colored process noise. Suppose ... state transition is given by

X re [ ] X 0
X xp + 120,1,...  (3.112)
P J M P wi-
i+1 L i i
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where

M = diag (m1,...,mk) (3-113)

Elw; w7} = Q Q= diag (qy,...,q)
+
(3.114)

E{xgw;T} = 0 E{pgw;'} = 0

This system model closely approximates a large class of second-
order processes and hence has wide application (cf Christensen [1976]
or Maughmer and Byrd [1969]). The structure of Eq. (3.112) permits

time propagation to be performed in two phases. Thus,

X ¢ ® x
= | * * (3.115)
P 0 I p
i+ i
X I 0 bd 1Y)
= + (3.116)
P 0 M P w]
i+ 1+1 i

Equation (3.115) defines a deterministic phase of the mapping.
The error covariance associated with this phase is denoted as P, while

the final map, Eq. (3.116) yields the a priori error covariance, P.

*For notational brevity we use subscripts in Egs. (3.112) - (3.116)
to denote time dependenze of system parameters. Notice further that
the matrices °x’ °xp' M 2ud Q may also be time-varying.
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The original problem is decomposed in this manner because each subproblem
enjoys certain computational advantages, particularly when upper triangular

covariance factorizations are involved.

3.6.1 U- .ore ise Time Update
Consider the covariance factorization P = UDUT. The simplifica-
tions associated with a deterministic map of U and D via Eq. (3.115)

are illustrated in the following algorithm.

Bias Partitioned U-D Factorization

Let P = UDUT where U and D are given by

n k
U U n o~ p———
v=| * *P } D = diag (D,, D.) (3.117)
o u X' P
P
Assume P is given by
P = ¢Pol (3.118)
where
n k
o )
L[ i (3.119)
0 I k

o7
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Then the U-D factors of ?, with similar partitioning assumed, are deter-

mined as follows.

D_] (3.120)
U,.=9o U _+ ¢ U (3.121)
U,5,0," = (&U,) D, (80,7 (3.122)

Equations (3.120)-(3.122) may be obtained by substituting the
partitioned U-D and ¢ factors into Eq. (3.118) and expandirg the result.
Note that Ux and Dx moy be computed by applying either the MwGS algorithm,
Eqs. (3.28)-(3.30), or the modified Givens algorithm, Egqs. (3.80)-(3.89),
to the arrays W = .U and D = D,.

An easy generalization of this partition algorithm involv-~ replace-
ment of the identity matrix in Eq. (3.119) with a nonsingular, T
triangular matrix, ¢ . The modifications required for Egs. (3.1205

P

and (3.121) are apparent.
The following features of the bias partition algorithm are notable.

1 The U-D factors corresponding to the bias portion of the
state vector remain constant. This property is contingent
upon having the bias parameters in the lower portion of

the state vector.
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The cross coupling ﬁxp is updated by a simple linear relation.
The updated factors ﬁx and ﬁx are obtained by considering
only that portion of the problem which is independent of p.
All of the above comments also apply to problems where

X 1s a stochastic process. In this case the right hand

side of Eq. (3.122) would have an additional term correspond-

ing to the process noise disturbance.

Once the deterministic time update, Eq. (3.115), is accomplished

with updated covariance factors, U and D, computed from Eqs. (3.120)-

(3.122),

the second phase of the mapping, Eq. (3.116), is performed.

The diagonal structure of M and Q may be exploited by mapping the process

noise, p, one component-at-a~time. The following algorithm indicates

how the intermediate factors, U and D, are updated as each compcnent

of p is mapped.

Single Component U-D Time Update

Let P = U D UF with U and D given by

Dy 1 n,
~—A b, o~
Us Uap Ugel|}na ng 1 ng
G=1]0 1 Upe!l }1 D = piag (D,, d, D) (3.123)
0 0 Uy | }ng
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Let ¢ = Diag (I, m, I) and Q = diag (0, q, 0) be dimensioned compatibly

with (3.123) and assume P is given by the following expression.

BP=oP ol +Q (3.124)

Then the U-D factors of 5, assumed to be partitioned consistently with

(3.123), are determined as follows.

(0,0, Ugs D1 = [U,,, Ug, D, (3.125)
d=mds+q (3.126)
Upo = m Uy (3.127)
Up=m § Uap (3.128)

The matrices U, and D, satisfy the following relation.

~ ey

5T T, (¢ T
Ug Dy U," = Uy Dy U™ + (é q)uab Uap (3.129)

Equations (3.125)-(3.128) are obtained by direct substitution of the
partitioned U-D factors into (3.124) and by equating this expressicn with
U b T, Equation (3.129) is then easily derived with the aid of (3.126)
and (3.128). The factorization required in Eq. (3.129) may be obtained by

applying the Agee-Turner triangular factorization algorithm (Appendix C).
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This single component update algorithm is the cornerstone of
the U-D cclored noise updating procedure.

- olored Noise atin 1 m

Let P = U D UT where U and D are determined by equations (3.120)-
(3.122) for the deterministic time update, (3.115). The U-D covariance

factors after the final propagation (3.116) can be computed as follows.

Let n and k denote the dimensions of x and p respectively. For

£ =1,2,...,k, compute recursively equations (2.130)-(3.133).

aﬁ+t = mzz an+z + qy (3.130)

Vi = Uy one )
_ i=1,2,...,n+2-1 (3.131)
~ dn+z
Ui net = 0y T V4
dn+l ]
ﬁn+!,j = my En+£,j J = nedet,..oyn + k (3.132)

Use the Agee-Turner triangular factorization (Appendix C) to compute

the U-D factors of (3.133).

ule) () 5T . ) §@) gl)T | ¢, v vI o (3.133)

61

s
¥
3
%
i
e
b
%
R
3
%
#
]
3
g
2

o 3

o B TR LY

© o A ADETR st

S et g e St T R

wyu - —
5 .
e

N
P TN

g e



L R IR LT

b

¥

~ - T te e o

-

b v pemioe v

R T

m,ﬁk".‘-‘ﬂi A %A £ Sy gy vt < o

er e — e e

33-798

where ﬁ(‘) and 5(‘) denote the upper left (n+t-1) rows and columns

of the ﬁ, 5 matrices and

Thiz result is an imm=diate consequence of the single component
time update, equaticns (3.125)-(3.129). Notice that (3.130)-(3.133)

correspond to (3.126)-(3.129) respectively.

This one-at-a-time procedure also applies to the general class
of prcblems involving bias parameters. If the state vector is parti-

tioned as

>
n
< T M

N
with bias parameters in the lowest portion, then the algorithms of this
section may be applied mutatis-mutandis., If y has dimension b then
Eq. (3.132) must be dimensioned so that all b columns corresponding

to y are properly scaled; i.e., Eq. (3.132) would be replaced by

Unes,g = Do Unes, § = netel,. .., nekeb

3.6.2 Square Root Covariance Colored Noise Time Update

Suppose the state error covariance for the system defined by

Eq. (3.112) is factored as P = SST. If S is upper triangular it may
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be propagated by applying a simple modification of the mapping procedure
developed in the previous section. The triangular square root colored

noise update is summarized in the following algorithm.

n k
S S n

s=| * * , (3.134)
0 S, |k

The propagation of S via Eq. (3.112) may be performed in two phases
as follows. A deterministic map, Eq. (3.115), yields the intermediate

covariance factor S, assumed to be partitioned consistently with (3.134),

§ =38 (3.135)
S,. = 0o S, .+ & S (2.136)

s T T .
5,5, = (#S,) (¢5,) (3.137)
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The upper triangular factor §x may be computed by applying the
Schmidt time update algorithm?, Eqs. (3.103)-(3.111), to the array

&
W= & Sx‘

The final map, Eq. (3.116), yields the covariance square root,

§, as follows.
For & = 1,2,...,k compute recursively Eqs. (3.138)-(3.144),

Jj = nes (3.

138)

§44 = J{;lgjj)z +q, (3.139)

Vi = 8y (3.140)
m,s 1=1,2,...,3=i

5, _( :. JJ) 54,4 (3.141)
%33

§Ji = ngji i-= J+1,..-,n+k (3.1’"2)

¢, = /(842 (3.143)

*The MGS algorithm, Section 3.3, or the Givens square oot factorizat
Section 3.4, could also be used to compute S,. However, the Schmidt

formula is preferred because it is more efficient t.an the other methods

(ef Chapter IV).
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Apply the Agee-Turner square root factorization (Appendix C) to
Eq. (3.144) where 5(2) denotes the upper left (n+#-1) rows and co.umns
of the array S.

5(8) (0T ._ 5() (T c, vl (3.144)

This algorithm follows directly from the U=D colored noise time

update formula by applying the identity S = UD'/2,

Consider the factorization ¥ SST where S is the general matrix

n K
R | n (3.145)
Spx Sp | ]k

Covariance factorizations of this type are computed, for example, by

the Potter measurement update algorithm, Eqs. (2.33)-(2.38). Note

that the presence of pr # 0 introduces considerably more computation
into the propagation of S via Eq. (3.112). 1In order to apply the one-
at-a-time mapping procedure, Eqs. (3.138)-(2.144), it is first necessary

to triangularize the full (n+k) x (n+k) array

n k
S aag— P p—
s . Oxsx*oxpspx I oxsxp*oxpsp } n (3.146)
Spx ' Sp } ok
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corresponding to the deterministic map in Eq. (3.115). 1 For this reason,

the one-at-a-time procedure is not an efficient method for propagating

general covariance factors.

R R LR F LNV

-z

; 3.7 Example Problem

Let the two-dimensional state transition be defined by

p=1 B

and Q

"
—

(3.147)

If the a posteriori covariance ﬁ is propagated according to Zqs. (3.12)

and (3.147) then

a1}
"

. [0 0
P+ (3.148)
0 1

A
Suppose P is factored such that

A A A A A A A
P=SS' o P=UDUT (3.149)
where
1 o 11
A A A
S = or U = D = diag (1,02
0 o 0 1
' r
P As3ume ¢ >> 1 and 02 + 1= 02

Mhis observation implies that propagation of the Potter square root

for noisy systems with large numbers of bias parameters is consiierably
more costly than the corresponding U-D and triangular square root bias-
partitioned updates (cf Eqs. (3.120)-{3.122) and (3.135)-(3.137)).
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Table 3.1 shows how the various prcpagation algorithms compute the
a priori covariance factor S (or U-D). Notice that all methods except
the RSS formula yield an S (or U-D) equivalent to t'e rcunde¢ exact
answer. The RS3S for.ula, however, suffers a loss of accuracy
by applying Eq. (3.148) directly and computes a singular S with 511 = 0.

Similarlv the U-D update yields d, = 0.

This simple example illustrates how use of the RSS propagation
scheme can result in significant loss of filtering accuracy and possibie
failure of the algorithm. The other propagation algorithms, however, are
known to be numerically reliable (cf sections 3.3-3.6) and thus are

preferred over the RSS method.
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Table 3.1. Comparison of Solutions to Example Propagation Protlem

(71}
n

Exact Answer 2 o] N R
(Rounded ) U= , D= (2,09
0 g 0 1

u (] 1 1 -
i , D= (0,0%)
0 o 0 1

1 1)
[ J, (2,02)

RSS S =

MGS

i
]
ot
u

o
(=]

)

1 1
] =[ -| B = (2,09)

i
"

Givens

w
U]
— ————— r—
Nl
Q

(=]

2

U e
r~—

o

f—

7]

Schmidt /2 =0
(Householder) = -—
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Chapter IV. Cost Comparisons of Filter Algorithms

4.1 Basis for Comparison

In this cnapter the various algorithms described in Chapters
: IT and III are compared in terms of computer costs. Comparisons are
based upon the arit“metic operations required by each method. Computer-
related costs, such as indexing, storage transfers and input-output
operations, are difficult t_. - 4antify and are neglected. However,

- these costs are crm~a to a’". the algorithms being considered.

Various arithmetic operations require different execu.ion times,
and chese dilferences are computer dependent. The cost comparisons
considered here are based primarily upon the approximate execution
times of thr hew®! t Packard HP21MX-20 computer. T.is computer is
to be _-:i the NAVSTAR Global Positioning System /GPS) where it
will be employed for on-board aircraft navigation (cf General Dynamics-
Electronies [1975]). The HP co.puter, using siagle precision.* floating

point arithmetic, has the followirg approximate operation times.

R 34 usec T ° 57 usSec

60 ysec 1= 2400 ysec

1'Single precision arithmetic on the HP computer involves a 32 bit char-
acteristiz, or appreximately 9 decimal digits.
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Cost comparisons are simplified if these times are normalized by the
add time to obtain t, = 1.7 v, , t. = 1.8 7, , and 1= 70 1,. These
factors are used to weight the operation counts of each algorithm being

compared.* Thus, comparisons are based upon the relative execution

times of the various algorithms.

Other computers may assign somewhat different weights to the
arithmetic operations. 1In most cases, however K the algorithms will
have the same efficiency ratings, although cost differentials may vary
from one computer to another. This point is illustrated by including
additional cost comparisons based upon the approximate execution times
of the UNIVAC 1108 and Litton 4516 computers. The UNIVAC model is
used in large, ground-based systems; while the Litton 4516 is a small,
fixed-point computer, typical of those found on board many commercial
and military aircraft. Hence, this cost analysis corresponds to a
variety of computing situations. The weights associated with each

computer involved in the study are compared in Table 4.1.

Optimum efficiency and accuracy were the main criteria for selecting
the computer implementation of each algorithm to be compared. Itemized
costs for most of the mechanizations are available in Bierman t1973}
and [1976b] and are not repeated here. However, detailed operatior
counts for the ﬁ-D algorithms may be found in Appendix E, along with

a discussion of the c¢olored noise propagation schemes.

Yhis weighting scheme was originally suggested by Bierman [1976a].
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Table 4.1. Comparison of Ccmputer Arithmetic Operation Times

Computer 14 (usec) o/ 1 /1, LA
HP2 1MX-20 34 1.7 1.8 70
(32 bit)

Litton 4516 h 2.2 3.4 250

(32 bit)

UNIVAC 1108 1.9 T.4 4.5 21.4

(27 bit)

Measurement and time updating costs are considered separately in
order to carefully evaluate the efficiency of each individual algorithm.
Several filter algorithms are then compared in terms of total costs at

each stage of the filtering process.

4.2 Measurement Update Cost Comparisons

ine arithmetic operations required by each of the measurement
update algorithms studied in Chapter II are indicated in Table 4.2,
In this table n uenotes the filter dimension, while m represents the

nuiber of measurements included prior to variance calculations.

The relative execution times for the HP compute: (cf Table 4.1)
were used to weight the operations in Table U4.2. These weighted counts
are included in Table 4.3 and indicate the relative execution times

of each algorithm as a function of n and m.
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Table 4.2. Operation Counts to Process m Scalar Measurements

Algorithm Adds Multiplies Divides Square Roots
Conventional Kalman

(1.512 + 3.5n)m (l.5n2+4.5r.)m m 0

A ~ ~

P = B.K:TP

2 2
(1.5n" ¢+ 1,5n)m (1.5n" +5.5n)m
U-D Covariance

Factorization + + nm 0
(O.Sra2 - 0.5n)* (nZ - n)*
(1.50% + 2.50)m (2a% + 5a)m

Carlson Triangular

Covariance + + (2n 4+ 1)m nm

Square Root 2 2
{0.5n° + 0, 5n)* (0.5a° + 0. 5n)*

(3nZ 1 3n)mn (E}n2 + 42)m
Potter Covariance N N 2
Square Root m m
n2" n2*
Stabilized Kalman
A ~
P = (1-kaT) B1-kaT)T (4n% 4 4n)m (4n 4 6nym m 0
+ KrKT

*These operations involve computing estimate error variances.
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Measurement update costs are further compared in Figure 4.1.
Execution times have been normalized by the corresponding conventional
Kalman times and are display:d as a function of n for m = 1 and m = 5.
Hence, this figure gives the various algorithm costs as a percentzge
increase over the conventional updating costs. Notice that the U-D
algorithm is considerably more efficient than any other alternative
to the conventional Kalman method. Moreover, when variances are required

infrequently, the U-D and conventional Kalman costs are nearly Identical.

Table 4.3. Measurement Update Costs Weighted for the HP Computer

Algorithm Execution Time/t,
Conventional Kalman (4.102 + 11.20)m
U-D (4.12 + 12.70)m + (2.20° - 2.2n)*
Carlson (4.9n2 + 84.6n + 1.8)m + (1.4n° + 1.4n)*
) Potter (8.10% + 9.8n + 73.6)m + (2.7n°)*
Stabilized Kalman (10.8n% + 14.2n)m

#Variances computed

In sharp contrast to this efticiency, the other zlgorithms generally

require at least 100% more computation time than the conventional method.

Note that the Carlson normalized costs increase as the state dimension

13

::—-:;-4*4; [



— T

32-798
200 \ T T T
180
160
140
120
PERCENTAGE
iNCREASE g
OVER 801~ STABILIZED =~ ZCARLSON 4
CONVENTIONAL 60 |-KALMAN ——
KALMAN a0} / U-D -
COSTS -
o _ .gﬁ:::___._.;i
M .
20k VARIANCES COMPUTED
me=1 AFTER m SCALAR
('] l—— Y MEASUREMENTS -
-60 1 1 1 |
0 10 20 30 40 50
n

Figure 4.1. Measurement Update Cost Comparison

decreases. This trend is related to the n scalar square root calculations
in the Carlson formula; these operations are relatively more expensive

when n is small.

4.3 Time Update Cost Comparisons

4.3.1 Comparison of General Propazation Algorithms

Several algorithms for propagating covariance factors have
been described in Chapter III. W..h the exception of thc RSS methods,
all of the algorithms are numerically reliable. Therefore, the most
appropriate time update algorithm for each ccvariance factorization

may be selected on the basis of efficiency.
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Consider the covariance square root propagation schemes
listed in Table 4.4. The operation counts given for each algorithm
include only the calculations required to compute the updated square
root S fror the n X (n+k) array W = (BQV/? ; ¢§]. Notice from Table
4.4 that the Schmidt and RSS methods require less computation than
the other methods. Note, also, that these two algorithms involve equiv-~
alent amounts of computation. Therefore, no loss of efficiency is
encountered when the more reliable Schmidt algorithm is selected for
covariance square root propagation. The Schmidt time update may be
coupled with the Carlson or the Potter square root data processing

algorithms. The resulting filters are referred to as the Carlson-Schmidt

Table 4.4, Arithmetic Operations Required by Square Root
Triangularization Algorithms

Algorithm Adds Multiplies Divides Square Roots

0.70> + 1,502 + 0.2 [1.3n + 4n% . 2.7n

Givens
(Eqs. (3.52)-(3.59)

+

+ 0.5n% - ¢tk |0.50% - 0.5n 4 nk

o

nk .z(nz + n)k

n® 40, 50° - 0.5n

MGS

32
(Eqs. (3.35)-(3.39)) n+nk * n- n

nzk

0.7n3 + n2 +0.3n
Schmidt 3 2
(Eqs. (3.103)-(3.111)) 0,707 4+ 1.3n4 nk + n-1 n

-

n“k

0.7n3 + n2 +0,3n 0.7n3 i r'lz -0, 7n

RSS

(Section 3, 2) t ! n-l n

)
(0.5n“ 4 0.5n)k (0.5n% + 1, 5n)k

- . 1

Note: n and k denote system and process noise dir.ensions, respectively,
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and Potter~Schmidt algorithms. These two square ro.. covariance filters

will be considered in the cost comparisons to follow.

A similar comparison of U-D propagation methods is given
in Table 4.5. The calculations listea for each algorithm involve only
the computation of U and D from the arrays W = [B | ¢ﬁ] and
= diag (Q, 3). The modified Givens operation counts in Table #.5
represent the minimum attainable with this method; i.e., the more effi-
cient formula, Method B in Eq. (3.87), is applied a maximum number of
times. This assumption is justified by the final discuscion in Section
3.4, The reader may wish to refer to Appendix E for a more detailed

description of the U-D propagation costs.

It is not immediately apparent from Table U.5 which U-D
algorithm is the most efficient. However, it is clear that the RSS
method has very little cost advantage over the modified Givens algorithm.
Of the two reliable U-D methods, the Givens method is more efficient
when n is large. However, when n is small and k is large the extra
divide operations required by the Givens method are more apparent,
and consequently the MWGS algorithm may be the more efficient method.
Hence, in the cost cnrmparisons to follow both of these U-D propagation

schemes are considered.

REPRODUCIBILITY OF THE
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Table 4.5. Arithmetic Operations Required By U-D
Factorization Algorithms

Algorithm Adds Multiplies Divides Square Roots
0.78% - 0.50% +0.8n | 0.70% + 2.50% - 0,20
Modified Givens 2 _
(Eqs. (3.80)-(3.89)) |- + + 0.5n" - 0.‘5n + nk
nZk (n® + 4n)k
> +1.50% . 0.5n
MWGS 3. 2
(Eqs. (3.28)-(3.30)) n” 4n%k * n-1
(n® + n)ic
0.7 +n?+0.3n [ 0.7n0+2.50% -1.2n
RSS
(Section 3.2) + + n-1 -
(0.5n% + 0. 5n)k (0.50% + 1.5n)k

The arithmetic operations involved in a general time update
via Eq. (3.1) are listed in Table 4.6 for each of the filter algorithms
to be considered. These counts include the calculations required to
compute estimates and the necessary updated covariance factors. The
differences between the Potter-Schmidt and Carlson-Schmidt propagation
costs are due entirely to the different structures of the covariance
square roots involved. For example, computation of the product ¢§
with a Potter square root requires 0.5n3 more adds and multiplies than

the same calculation involving a Carlson triangular square root.

Table 4.7 contains the weighted propagation costs for
each filter. These costs represent the relative execution times of

the various time update schemes when the HP computer is used. Costs
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are further compared in Figures 4.2 and 4.3 as a function of k/n where

k denotes the number of process noise parameters. Execution times

have been normalized by the corresponding execution time for the con-

ventional method. Hence these figures show the percentage of conventional

mapping costs which are required by the different algorithms. The costs

associated with variance computations in the factorization filters i
are omitted from Figures 4.2, 4.3 and those to follow. However, the

relative algorithm costs are not altered appreciably by including these -
computations (ef Table 4.7). In fact, when variance calculations are :
included, the cost curves in Figures 4.2 and 4.3 experience an upward

shift of at most three percent. E

Notice in Figures 4.2 and 4.3 that normalized propagation
cos.s increase as a function of k/n. However, even when k/n = 2 all of
the algorithms require less than 50% more computation than the conven-
tional propagation formula. The Potter--Schmidt update is the most
expensive time update algorithm while the other methods are generally
competitive with one another. The modified Givens method is typically
the more efficient U-D propagation scheme although for small dimensioned
systems with many process noise parameters (i.e., k/n > 1), the MWGS
algorithm may he less expensive (cf Figure 4.2). In either figure the
cost differentials between the MWGS and the Givens methods are modest,
and both schemes are generally cbmpctitive with the conventicnal propa-
gation algorithm. Subsequent discussions of U-D propagation methods

are therefore limited to the modified Givens algorithm.
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Operation Count for a General Time Update

SRS ol o s

e TR R RS L H

Algorithm Adds Multiplies Divides Square Roots
).5n3 +2n2 + 0.5n l.5n3 + l.Sn:
Conventional
Kalman + +
, 2 2
{0.5n" + 0,5n)k (0.5n" + 1,5n)k
l.5n3 + 0, Snz l.5n3 + an - 0.5n
+ +
2 2
U-D (MWGS) n“k (n” 2 )k n-1

(0.5n% - 0, 5n)*

+

(nz - n)*

-

T .
BRI it o = e i s oee e e s

U-D (Givens)

1.?.!\3 + 0.8n

(0.50% - 0.5n)*

3

1.20> + 3% - 0.2n

+

(n2 + 4n)k

+

(n% - n)*

>
5. « 0.5n

nk

L.2n° 4+ 1,502 + 1.3n

+

l.2n° +2,50% + 0.3n

+

Carlson- 2 2
Schmidt n"k {n” + n)k n-l n
+ +
(0.. .~ +0,50)* (0. 50% + 0, 5n)*
l.7n3+nz+l.3n l.7n3+2n2+0.3n
¢ +
Potter- nlk (nz + n)k n-1 n

Schmidt

+

(n2)*

(n2)*

*Variances computed,
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Table 4.7. General Timaz Update Costs 'eizhted for the HP Computer 1 é
Algorithm Execution Time/T4 :
Conventional Kalman 4,103 + 4.6n2 + 0.5n + (1.1Jn2 + 3.1n}k ;
%

4,103 + 4.80% + 0.1n + (2.70% + 1.7n)k i

U-D (MWGS) + .
(2.2n2 - 2.2n)® L

3.2n3 + 602 - Un + (2.7n2 + 8.6n)k ;

U-D (Givens) + :
(2.2n° - 2.2n)* b

E

3.2n3 + 5.8n2 + 73.6n + (2.7n° + 1.Tn)k

Carlson=-Schmidt +
(1.4n2 + 1.4n)%
4.6n3 + 4.4n2 + 73.6n + (2.70% + 1.7n)k
Potter-Schmidt +

(2.702 + 2.7n)*

#Variances computed
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Figure 4.2. General Time Update Cost Comparison, n = 10
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Figure U4.3. Gener~l Time Update Cost Comparison, n = 30
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4,3.2 Comparison cf Colored Noise Propagation Algorithms

<. i The operation counts associated with a colored noise time

P i upuate of the various covariancez factors are compared in Table u.s.*

The U-D algorithm to be considered propagates process noise one component
at a time and employs a modified Givens factorization for the determin-
istic phase of the update (cf Eqs. (3.120)-(3.122) and (3.150)=-(3.133)).
A similar algorithm based upo. .Le MWGS factorization requires approxi- 3
- mately the same computation time as the one ccnsidered here (see Appen- ¥

dix E). :

Colored noise time updating of the Potter and Carlson v

covariance square r~:t: is more efficiently accomplished by mapping %

% the process noise in one step. Hence, the fotter--Schmidt and Carlson-
; % Schmidt operation counts in Tabie 4.8 represent the cost of a Schmidt .
- time update which exploits system structure. The reader is referred

to Apperniix E for further det-ils of these mochanizations., H

The weighted operation eccunts in Table 4.9 represeut the
relative costs of a colored noise update or. the HP computer. Thes= ?
costs, normalized by the conventional propagation costs, are illus: ~ated
in Figures 4.4 and 4.5 as a function of k/n. Filter dimension in these
figures is n+k wherc k represents the numb: of colored noise parameters.

For all values of k and n the Potter-Schmidt colored ncise update is

P

considerably less efficient thur the Carlson-Schmidt and U-D algoricthms, '

"The colored noise system is definac by Fs. 3,112},
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“ Table 4.8. Operation Counts for Colored Noise Time Update ; .
ol ! -
| Algorithr Adds Multiplies Divides Squaze '
i ! 1502 +L5n% +mkZ | 150 + L.5n% + (n + 12 [
& Conventional . I
i Kalman 2 2 i H
& +(2.,5n" +1 Sn + 1)k +(2.5n" +2.5n + _ )k ’
3 ] ) i _
B 5y 1.2n° +0.8n +0.3k> |1.20% +30% - 0.2n 0.5n% - 0.5n - 1
oo ; :
5 ' 2 3 2 2 .
4 +(1.5n - 0, 5)k +0.3k> +(1.50 + 2)k% |+ 0.5k 3
- U-D +(20% - 0.5n + 1.2k |+ (20 +304 0.7k . |+(n+0.5)k
¥ 2. 2 * :
: + (0.5(n + k)*) +{(n+k) - (n+k))
: - 0.5(n + k)* :
L2023 +1.5n° +1.3n | 1.20% + 2.50% + 0.3n !
" +0.3%° + 0,3k Lo
2 2 i
: +(1.50 + 1, )k +(1.50 + 2.5)k |
5 Carlson- - !
; Schmidt 2 2 ntk-1 n+k P
B +(2n° +4.50n+1,2)k |+(2n° +5.5n+ 2.2)k 5
}_ i
N i
i + (0. 5(n + K)2)* +(0.5(n + k)2)* e
i '@
+0.5(n + k))* +0.5(n + k))*
T ¢
<, ¢
. i
1.70° + 0% + 130 + k3| 1.72% + 202 4 0,3n + ¥°
‘. +(n+ 2,5k +(n+4nd !
£ Potter- |
% +(3n" +3n + 2,5)k +(3n” +4n + 3)k !
’ P
A . * * b
s , +(n+ W2 + (il | L
AN . o
{ - o
*Variances computed |
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Table 4.9. Colored Noise Time Update Costs
Weighted for the HP Computer

Algorithm Execution Time/t,
Conventional 4.1n3 + 4.10° + (2.7n + 1.7)k2 + (6.8n2 + 5.8n + 4.U)k
Kalman

3.2n3 + 6n2 - .4n + 0.8k3 + (4.1n + 3.8)k°

U-D = +

(S.Rn2 + 6.4n + 3.3)k + (2.2(n + k)2 - 2.2(n + k))*

3.2n3 +5.8n2 + 73.7n + 0.8r3 &+ (4.1n + 5.8)k2

Carlson- +
Schmidt

(5.4n°% + 13.9n + 76.7)k + (1.4(n + k)% + 1.4(n + k))*

3 z 3 2
§,6n" + U.4n + 73.Tn + 2.7k° + (2.7n + 9.3)k
Potter- , +
Schmidt

(8.10% + 8.1n + T9.1W)k + (2.7(n + k)2 + 2.7(n + k))*

#Variances computed

Unlike these triangular factorization methods, the Potter square root
does not allow for full exploitation of the special system structure
in Eq. (3.112). The“Carlson-Sehmidt and U=D colored noise algorithms
are generally competitive with one another, altﬁbugh the U~D method

is somewhat more efficient when n = 10,

Note that cost differentials of all the methods increase

as a function of k/n. oJwever, even when k/n = 2 the U-D costs are
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within 30% of those related to the conventional propagation method.
Moreover, when k/n < 1 the U=D method is the least expensive colored

noise algorithm.

Of the two figures being discussed, Figure 4.4 is more repre-
sentative of the costs usually incurred with small, on-board computers_
of the type considered here. For example, the GPS project expects to

employ the HP computer for airborne filtering of a colored noise system

-~. _ which has dimensions n = k = & (ef General Dynamics-Electronics [1975]).

Higher dimension filters, such as those represented by Figure 4.5,
are generally designed for ground-based analysis on large computers
such as the UNIVAC 1108 or IBM 360. Thus, further comparisons of colored

noise costs will be restricted to the case n = 10,

4.4 Comparison of Total Filterins Costs

The measurement and time update costs given in the two previous
sections may be combined to yield a rough comparison of total filtering
costs. Most of these comparisons are based upon the assumption that
a single scalar measurement is included at each step of the filtering
process. ﬁote that measurement updating is generally an order of magni—l
tude less expensive than time updating (cf Tables 4.3 and 4.7). Hence,
filtering costs primarily reflect time update éxpenses, especially when
n is large. For small systems, however, measurement update costs are
more visible, and the addition of several observations may noticeably
alter the filter cost differentials. To illustrate these effect-,
additional comparisons involving multiple measurements are included

for the case n = 10,
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Filter cost comparisons do not include the expenses related to
variance calculations. As previously noted, these computations have
a modest effect on relative time update costst and, hence, on tuc norgal-

ized filter costs to be compared.

Filtering costs associated with the general system model, Eq. (3.1),
are compared in Figures 4.6 and 4.7. These figures represent the relative
computation times required by eaéh filter algorithm** and were obtained
by combining the weighted execution times in Tables 4.3 and 4.7. The
cosﬁs of eacﬁ algorithm have been normalized by the corresponding conven-
tional Kalman costs and are displayed as a function of k/n for n = 10
and n = 30. In a similar manner, the colored noise filter algorithms
are compared in Figure 4.8. Each colored noise filter has dimension

n+k where n = 10,

Notice first that cost differentials associated with the covariance
factorization methods increase as a function of k/n, while those related
to the stabilized Kﬁlman algorithm remain relatively constant. In
each case the stabilized Kalman costs are within 20% of those related
to the conventional Kalman formula. Of all the algorithms compared,
the Potter-Schmidt method is the most expensive. The Potter-Schmidt

colored noise algorithm is particularly inefficient when there are

tSee the discussion of Figures 4.2 and 4.3.

ttThe U-D filter algorithm inocluded in these comparisons employs the
modified Givens time update method. Costs associated with this filter
algorithm may be easily adjusted to obtain qomparisons for a U-D filter
based upon the MWGS time update algorithm (of Figures 4.2 and 4.3).
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large numders of colored noise parameters. For example, when k/n = 2

this algorithm is tw’ce as expensive as the conventional Kalman method.
By comparison, the Carlson-Schmidt and U-D colored noise algorithms
are significantly more efficient and require less than 50% additional

computation relative to the conventional Kalman formuia.

Notice that the U-D method is the least expensive covariance
factorizﬁtion 2lgorithm. When system dimension is small; this method
has a noticeable cost advantage (cf Figures 4.6 and 4.8). Moreover,
U~D costs are generally within 20% of those related to the conventional

Kalman method, and when k/n < 0.4 the U-D algorithm is the least expensive

method considered.

For large scale systems there is less diversity in filter algorithm
costs than that observed in Figures 4.6 and 4.8 where n = 10. Consider
the comparison in Figure 4.7 for the case n = 30. Notice that filter
algorithm costs differ less in this comparison than they do in the corre-
sponding lower dimension case in Figure 4.6. Cost differences are less
apparent in Figure 4.7 because time updating expenses dominate the compari-
sons when n = 30. Compare Figures 4.3 and 4.7 and note that relative

filtering costs are nearly identical to relative propagation costs.

Although filtering costs primarily reflect the expenses related to
time updating, the cost effects of a single measurement update are apparent
when n = 10, Compare, for example, Figures 4.2 and 4.6. Notice that
the U-D results in each figure are nearly identical, but the Potter~

Schmidt and Carlson-Schmidt cost curves are noticeably different. These
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differences reflect the measurement cost differentials in Figure 4.1
where only the U-D algorithm has costs comparable to the conventional
Kalman wethod. Thus, we would expect additional measurement updates
to increase all of the normalized filter costs in Figure 4.6 except

those corresponding to the U=D algorithm.

Qon§ider the case whefe three measurements are incorporated
after each time update. ﬁelative filtering costs for this case are
compared in Figures 4.9 and 4.10. The resultslin Figure 1.9 eorrespond
to the general system model, while Figure 4,10 illustrates the colored
noise filter costs. By comparing these figures with the corresponding
results in Figﬁres 4.6 and 4.8 we find'that, except for the U=D method,
each filter algorithm becomes relatively more expensive as additional
measurements are incorporated. Figures 4.9 and U4.10 indicate that
the Carlson-Schimidt and Potter-Schmidt lower-dimensioned filters can
have equivalent costs when multiple measurements are involved. Further
note from Figure 4.10 that whenever k/n < 1 the U-D method is the least
expensive colored noise filter algorithm and requires at least 40%

less computation than the other covariance factorization methods.

The cost comparisons discussed in this chapter have all been related

to the HP computer, The relative ooats‘of the various algorithms may
vary considerably, depending upon which computer is used, Consider
the diffarent weightsvthat the Litton and UNIVAC computers asaign td
the various arithmetic operations (see Table 4.1). Note that square
root calculations aru ten times more expensive on the Litton computer

than on the UNIVAC model. Hence, we would expsct the Carlson-Schmidt

9
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and Potter-Schmidt covariance square-root methods to be noticeably

less efficient on the Litton computer.

Cost comparisors related to the Lition and UMIVAC computers are

. ;111ustrated in Figures 4.11-4.14 ror the case where n = 10. These

1;¢omparisons were;obtained in the same’ manner used to generate the costs

in Figures 4 ﬁyand M 8 only the weighting factora differ. o

A
-

_'-4

Notice from Figures §, 12 and u 14- that when the UNIV&C computer

EaE 13 used, algqrithm cost- differences are- generally modest. However,

W

filtering costs related to the Litton model differ_considerébly. On

the‘Litton computer the Carlson-Schmidt and Potter-Schmidt colored

noise algorithms have nearly equivalent costs and are generally 60-80%
more expensive than the corresponding U-D method. By conpéring Figures
4.11-4,14 with the corresponding HP costs in Figures 4.6 and 4.8 we
find that the relative»costs of the U-D method are approximately the
same on each computer involved in this analysis. In each case U-D costs
are typically within 20% of those related to the conventional Kalman
method, and when k/n < 0.4 the U-D algorithm is the most efficient

method studied.
4.5 Conclusions
Cost analysis has demonstrated the relative efficiency of the U«D

filtering technique. This method, employing either the modified Givens

or MWNGS propagation algorithms, is generally competitive with the oconven-

tiohtl Kalman formula. The U«D filter algorithm based upon the modified

Givens time update is partiocularly efficient and for problems involving
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modest numbers of process noise parameters, this U-~D algoritbhm is the
least expensive of all the methods considered. B8y comparison, the
Potter-Schmidt and Carlson-Schmidt square root algorithms are signifi-
santly more costly, particularly in real-time applications involving
small computers. In these situations the Carlson-Schmidt method is
generally no more efficient than the Potter-Schmidt algdbithm aﬁa can
be more expensive. Moreover, both methods can involve in excess of

60% more computation than the corresponding U-D algorithm.
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Chapter V. Covariance Error Analysis Techniques

5.1 Introduction

Several difficulties are frequently encountered when filtering
algorithms are applied to an actual estimation problem. For example,
precise knowledge of the system model and complete a priori statistics
are often unavailable. In addition, compﬁtational constraints may
limit the dimensionality of the filter. Because of these problems
suboptimal filtering is often inevitable. As aa important aid in filter
design, one may perform a sensitivity analysis of the estimate error
covariance. Techniques for evaluating filtering sensitivity to incorrect
a priori statistics have been derived for the discrete case by Fagin
[1964], Nishimura [1966 and 1967] and Heffes [1966]. Their results
were extended by Griffin and Sage [1968] to include the effects of
incorrect data and state transition matrices. These error analysis
methods all propagate an actuzl, or true, error covariance. The algo-
rithms are éften cumbersome and computationally expensive. Furthermore
their reliability is quesvionable since they empl.oy the numerically

unstable Kalman formulas.

In this chapter a new approach to covariance error analysis is
presented which is based upon the U=-D covariance factorization. This
method facilitates an accurate evaluation of general modeling errors,
including a) incorrect a priori statisties, b) mismodeled system dynamiecs

and data equations, and c¢) incomplete parameter sets. A general error
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analysis algorithm which incorporates all of these effects is derived

in two stages.

The case of incorrect a priori statistics is considered first.
This case includes a large class of modeling errors which are easilyﬁg
analyzed. The basic evaluation algorithm developed for this important
subproblem is thén extended to include the effects of incorrect data
and state transition matrices. The extended analysis provides a general
evaluation algorithm capable of considering the effects of unmodeled

or neglected parameters. However, the analysis of unmodeled bias param-

eters is included as a separate topic in order to highlight the simplicity’
and flexibility of the resulting algorithm.

5.2 luation of rrect A Pri ti

Suppose a discrete lincar filter is designed according to the

following model

x(i+1) = o(i)x(i) + B(i)w(:l.)l (5.1)

i=0,1,2,°°"

2(1) = A(1)x(1) + v(1) ) (5.2)*

where

X € Rn H W e Rk H Z € R1

Scalar_measurement coefficient matrices are denoted as A instead of
the "a"" used in Chapter II. For the error analysis discussed in this

chapter the svmbol: ~“is more appropriate, particularly in section 5.2
where the notation Aa is required.

98

o £ T i s 4 Ar

R S

TR B, o ] BEBAAR



et h,

i

Gt T e

IR wgeeia T

#

P et gt

RS AT e T (VST Y TS ST W00
33-798
x(0) ~ N(O,P) ; w(i) - N(0,Q(1)); v(i) - N(0,r(1)) (5.3)

and

E(x(0)w(1)T}=03 E{x(0)v(1)}=0; E{w(1)v(§)}=0; 1,320 (5.4)

Let the correct process and data model be the following
x,(141) = 0(1)x,(1) + B,(1)wy(1) (5.5)
i=0,1,2,...
z(1) = A(1)x, (1) + v, (1)
where
xa(i), wa(i) and va(i) satisfy (5.4) and

x,(0) - N(0,B,(0)) ; wo(d) - N(0,Q,(1)) 5 vg(1) - N(O,ra(1)) (5.1

Let G(1i) denote the computed (suboptimal) gain at stage i.

Then the actual estimate errors associzted with the model (5.5)-(5.7)

satisfy the following recursions

aR(1) = R(1)-x (1) = (I-G(1A(1))AX(1) + G(1)vy(1)  (5.8)
AR(141) = R(1+1)-x (141) = #(1)8R(1)-B, (1w, (1) (5.9)

where

8%(0) = -x,(0) (5.10)

Equations (5.8)-(5.10) may be verified by applying (3.11), (3.13) and

(3.16) together with (5.5)=(5.7).

*There is no loss of generality in assuming a zero mean process. This
assumption is made in order to free the error analysis of superfluous

algebra.
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Thus, the actual a priori and a posteriori error covariance for

this problem may be computed from the following recursions

P = (1-GA)P, (1-6M)T + or_oT (5.11)
a = 1= a‘\l- + Ury .
A LT . T
P, = eP,¢" + BQ B, (5.12)
where initially )
P, = P,(0) (5.13)

Equations (5.11)=(5.13) represent the conventional error analysis
algorithm for mismodeled a priori statistics (ef Nishimura [1966]
and Heffes [1966]). This evaluation method is simply an app.ication
of the stabilized Kalman covariance equations and for this reason it

is numerically unreliable.*

A more reliable error analysis method may be obtained by employing
the U-D factorization techniques studied in Chapters II and III. Time
propagation of the actual U-D covariance factors, via (5.12), may be
achieved by a direct application of the MWGS algorithm (or the modified

Givens update) in Chapter III. The U-D suboptimal measurement update,

corresponding to (5.11), is based upon the following covariance decomposi-

tion.

t+The numerical deficlencies of the stabilized Kalman formula are demon=-
strated in Chapter VI where, in sharp contrast, the U-D and Potter
methods are shown to possess superior numerical characteristies.
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0 al Error Covarianec omposition
Given: F -~ a priori error covariance

A,ra - observation coefficients and scalar measurement
error covariance

G - arbitrary gain

The a posteriori error covariance 6, where
A L
P = (I-6A)F(1-68)T + Gr T (5.14)

may be written as follows

P=haand (5.15) 3
wh;re % :
P = ?—KVT (5.16) 2;
A =z K-G (5.17) g
v =BT : (5.18) :
and
K = v/a @ =z AV +r, (5.19)
H Consider the quadratic Q(G) in Eq. (5.14)., Note that the quantity

A A =
K defined by (5.19) minimizes P(G) and that this minimum is P(X) = P.

A -
Since the difference P(G)-P is non-negative definite and symmetric,

. A
. we would expect P(G) to have the form (5.15). This decomposition is
readily verified by substituting (K-A) for G in Eq. (5.14), regrouping

terms and applying the identities (5.18) and (5.19), The covariance
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P thus corresponds to the minimum quadratic, i.e., the optimum updated

covariance associated with the Kalman gain K.f

Suppose the covariance P in (5.14) is factored such that
P = UDU’. Equation (5.16) then implies that the U-D factors of P may
be computed from the Bierman optimum measurement update, Eqs. (2.69)-
(2.79). Given the U-D factors of P, Eq. (5.15) suggests using the Agee-
Turner triangular matrix factorization (Appendix C). Thus, the U-D
suboptimal measurement update may be performed in two stages; an optimal

+

update to a modified problem, followed by an Agee-Turner rank one

matrix hpdate. This method is summarized in the following algorithm.,

U-D Arbitrary Gain Update Algorithm
Given: §,D - factors of a priori covariance P
A,r, - observation coefficients and

scalar measurement error covariance

G = arbitrary gain
The a posteriori covariance factors 6 and 6 can be obtained as follows:

° Compute via the U~D optimum measurement update algorithm,

Eqs. (2.69)«~(2.79), the quantities:

1"l'he gain K is optimum given a priori covariance F. However, P does
not represent the optimum (or minimum) covariance attainable unless
P is also optimum,
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K = Kalman gain
a = innovations covariance

U,D - the factors of F = (I-KA)P
'™ Set A = K=G

o Apply the Agee-Turner algorithm, Appendix C, to cnuwpute

6 and 6 where
%ﬁT = ﬁﬁﬁT + auT (5.20)

This evaluation may be represented symbolically as
~ R G A
[U,D,A,ra] hd [UyD,X9 Q] > [ ’D]

The U=D arbitrary gain update inherits the efficiency and reli-
ability of the two algorithms it employs. The optimal U-D update was
shown in Chapter IV to require 1.5n2 + 0(n) multiplications while the

2

Agee-Turner factorization requires n“ such operations (cf Appendix C).

Hence the entire update is performed with 2‘5n2 + 0(n) muitiplications.

When variances are computed, total multiplications reach 3n2 + 0(n)

-

”as compared to the hnz + 0(n) such calculations required by the conven-

tional evaluation formula, Eq. (5.11). A detailed cost comparison

of gain evaluation algorithms is included in Appendix F.

This arbitrary gain update is the cornerstone of the U=-D error

analysis technique. Note that evaluation of incorrect a priori s:atistics
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requires oﬁly a minor addendum to the optimal U-D filtering algorithm.
Thus, both the gain computations and the subsequent error analysis
can be performed by one program. The gains may be computed during

a first pass through the filter, operating in what it believes to be
an optimum mode. The same filter, tuned to account for suboptimal
gains and given the correct system model, may then perform the gain

evaluation.

A similar error analysis algorithm could also be developed for
the factorization P = SST where S is upper triangular. The suboptimal
measurement update for this factorization clcsely parallels the U=D
formula. First, §, the square root of P in Eq. (5.15), is computed
via Carlson’s optimal update, Eqs. (2.39)-(2.46). Then an Agee-Turner
square-root factorization (Appendix C) yields 8 where 88T - 58T & amT.
This update may be coupled with a Schmidt (Householder) propaga .ion
scheme to obtain a complete square root error analysis algorithm.

The square root method is not pursued further, however, because it

lacks the efficiency of the U-D evaluation algorithm (see Arpendix F).

5.3

5.3.1 General Error Analysis Technique

In this section the U~D error analysis method. is extended
to account for mismodeled data and state transition matrices. Suppose

the correct process and data equations are the following

RFPRODUCIBILITY OF THH
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x (141) = 8,(1)xg(1) + B (Lwy(1) (5.21)

z(i) = Aa(i)xa(i) + vy (i) : (5.22) -

¥
; .
sdi 2 et o
YA STN TS JUUI W

- where "a’ vy and X, (0) satisfy Eq. (5 7)
‘ . Suppose the filter applied to this problemwislbesedrubon;thé' N
’gi f' N assumptions (5 2)«(5 L) and generates the,sain séquenee G(i)}._ Theh ‘ivﬁ‘ 0 B
iﬁg]the aetual a. posteriori error equation at each stage has the form 2 &

IR SE R

AQ»-Q-xa-(IeGA)Ax*Gan+Gva sapt o ok

yhere. §

M = A=A (5.24) :
g

& -
T ¥
§ , The a priori error, X, is related to previous errcrs as follows »
- I
o AX = Xex, = OAQ - an - Bawa (5.25)
i where ' 7
& Ab = o, - @ - (5.26)
3 ‘
§ Due to the errors AA and 44, covariance expressions for AQ and
é A% contain the actual state covariance, P, = E{xaxaT}, and the oross-
e covariance, Pa;x" E{AxxaT}. Thus, covariance error analysis for this
$x problem Iﬁvelves propagation of the 2n-dimensional covariance
o
I Ax ‘
’f P=E [MT xaT] ) . -
Xa |
H fNote that mismodeled data and state transition matrices produce biased
; estimates unless E{x,} = 0.
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The recursions required to propagate SPby'convéntional methods were

derived by Griffin and Sage [1968]. However, their algorithm appears

unwieldy and, judging from the experimental results in Chapter V1,
4t is numerically unsound. The problem may be solved more accurately

and efficiently by applying U-D covariance factorization methods.

. I ;
s ‘For this enror ‘analysis we uill find ‘it convenient to avoid covariance Pt
”equations altogether and study, 1nstead the associated "weighted error",
propagation problem.* To this end, we' 1nterpret th= U-D covarlance
taetorization as a partieular "whitening" of the estimate errors. ";ﬂ
P
That is, in terms of second-order statistics the errors may be described | i
as ;g
¥
Ax = U\)x (5.27) 1 f
fooa
3 i
|
where the zero mean noise, Vo has diagonal covariance D. f ?
; Suppose the U-D factor; of the a priori covariance %
: AX i
P =E [A)“:’T xar] - ;
g :
£ are partitioned as follows. :
‘?' H
5 n n :
A - - n n .
‘3N X x ~ P
A i b = diag (Dg,D,) (5.28) ;
4 0 Ux ;
;
% *Thia approach is analogous to the error analysis technique associated
: with square-root information filtering (of Bierman [1976b]).
f {
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Then the "whitening" interpretation of Eq. (5.27) implies that a priori

estimate errors may be written as

A% s U~ Va

X xx X
-] = - o o o am e - (5 . 29 )
Xa 0 Uy Vx

where Vg and Vyx are zero mean, uncorrelated and have diagonal covariances

~ Dy and D, respectively. Equations (5.23) and (5.29) yield the following

a posteriori error equation

1 n n
—— -t ~ Ty 3]
W8] To | (I-GA)Uy ; T || -2
Xy 0 I 0 I Ux - -
vy | In .
where i
Uge = (I-GA)Ug, + GAAU, (5.31)

1 n n 3
L I S

Given the expressions (5.30)-(5.32), we desire the representation

AQ Ug ng Vg

B .. (5.33)
Xg o Jugl vy
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n n

Va gt
| * [:iT v;]}: b = diag (Dg, D) (5.34)

4

The constraint that

P- a2 [AQT xT]

a
Xa

t=

be unchanged during the transformat on from (5.30) to (5.33; yields

the identities

(Ug, Dgl = [U,, D,] (5.35)
U, = Uz, = Ug, - G(AUg, - AAU,) (5.36)
UgDgUgT = (I-GA)UsDU5T (1-G)T + Gr 6T (5.37)

Thus, Ug,, Uy and D, are obtaired directly. The factors Ugq and Dg
may be computed by applying the U-D arbitrary gain algorithm (section
5.2) to Eq. (5.37).

Siwilarly, a U-D algorithm may be derived for the time update,

BEq. (5.25). When the expression (5.33) is applied to (5.25), the a priori

error equation takes the form
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- Wy |3k
&5 -B L] U -
-~ = |--2 { 2 { 2| 5 |1 (5.38)
X, B 0 1 eg -
a a a“x v, Jin
where
-ﬁgx = .ng 7- A'Ux (5.39)

¥

7 the nqiseliector Giin;Eq. (5.38)ihas'zerd mean and coveriance D where

Kk n n
Py SV T

D = diag (Q,, Dg, D) , (5.40)

Note that one of the U-D time update algorithms in Chapter III may
be used to triangularize (5.38). In this case the W and D arrays invoived

i: the time update are given by Eqs. (5.40) and (5.41).

LI S
-By I Cﬂglffh -l}n
Bal 0 | 'a“x_]}“

" -4 (50“1)

Computer storage and computation required for this update may be reduced

by taking advantage of the nxn block of zeroes in the W array.

L e AR oo DA, R TATI GRS, SR, B . SRR, | PSR-

The general U-D error analys’y method is summarized as fellows.,

Euh

e
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General U-D Covariance Error Analysis Algorithm

Given:

{#(1)} and {A(i)} - the incorrect state transition and

’

data matrices assumed by the filter
{G{1); - suboptimal gain profile computed by the filter
{#,(1)} - correct state transition matrices
{Ba(i)} - actual process noise coefficients
{a,} - actual data coefficients

{ra(i)} - actual data noise covariances

{Qa(i)} - actual process noise covariances

anu L = diag (Dg, D,) - factors of the

0 Ux o +
true initial covariance of X and Xg+

The true error covariance for this model is propagated according to

the following recursions.

f

Typically, the initial factors .re such that

[Ugz, Dgl = (U,, D,] and Ug, = 0, where U.D,U,T = P_(0).
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U‘i‘x: = U'i'x - G(AUi-x - AAUx);

AA = A

TR 8

a - A (5.42)

Apply the Bierman algorithm, Eqs. (2.69)-(2.79) to obtain

[Ug, Dg, A, r ] + [Ty, Dy, a, K]
Let

A = K-G

(5.43)

(5.44)

Compute the updated factors [Uf, DEJ by applying the

Agee-Turner triangular factorization (Appendix C) to

the identity

T _ _nmr7T T
UgDils™ = UgDglz™ + ald

U~:=°U¥X-A’Ux; A¢ =

=Ba “ QU;(-!L U‘i'x

=
L

Ba; 0 %’a“x

D

diag (Qa' Dg D)

(5.45)

(5.46)

(5.47)

(5.48)

Apply MWGS algorithm, ¥ Eqs. (3.28)-(3.30), to the

W and D arrays to obtain

[wg B] + [UY’ Um, Ux, Df’ Dx]

(5.49)

At any stage, the true estimate error covariance is given by

T T
Pz = UzDgly + UnxDxUzx

(5.50)

YThe modified Givens update, Eqs. (3.80)-(3.89), covld also be used

here.
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This general error analysis technique inherits the computational

Ly e

e efficiency of the U-D filtering algorithms upon which it is based.

The evaluation scheme ls= easily implemented, requiring only minor modifi-
cations in the U-D filtering equations. The following sections illustrate
g, how this method is easily adapted to handle some important reductions

of the general error analysis problem.

% 5.3.2 Evaluation of Mismodeled Biases and Process Noise Parametiers

Consider the following application of the U~D error analysis

technique. Suppose the parameter vector, X, is partitioned such that

Yot o

§ xq| In
A 1 1
: o (5.51)

and let AA , A% , and ¢, have the form

g e,

e
[

ny np
8A = [0 | 24,1 11 (5.52)
¥ ny mp
i 8¢ = [0 | ae,] Jngen, (5.53)
. By M2
R ¢ | ¢ | in
. 1 1 1
; b oa 2 | coamgaaae (505"‘)
) 0 ¢ | In,

2
&
L
&
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For this problem the error equations corresponding to (5.23) and (5.25)

reduce to the following.

A -

AX = (I-GA)AX + GAA2x2 + Gva (5.55)
-~ A

AX = ®AX — AdyX, - Byw, (5.56)

Hence, estimate errors contain only the Xy portion of the actual

state. Notice also that X, is uncoupled from X4 by Eq. (5.54). Thus
the eiror analysis corresponding to Eqs. (5.29)-(5.40) simplifies and
involves only the vectors AX and x,. Let Ba be partitioned compatibly

with ¢,. Ir this case the error equations (5.30) and (5.38) take the

form
1 ny+n, n,
A g — [val 1
n1+n2{ aX G i (I-GA)UX I Ugyl |-
[ - vi }n1*n2 (5~57)
{ |1 x 0 I 0 i U -
na 2 X
\‘x }na
k n,+n n
1
i 2 - 2 . "
nyenal [ aX] [-B, | evg | 3 | |-
- | = t X vg }n1+n2 (5.58)
nz{ x2 B2 l 0 l ?;Px -: }
Vx na
vwhere
Ug, = (I-GA)Ug, + GaAoU, (5.59)
Ug, = oUg, - 45U, (5.60)
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Thus, in Egs. (5.42)-(5.47), the matrices ¢, A¢ and AA reduce to ¢,,
A02 and AAZ, respectively. The array B, in the lower portion of W,

Eq. (5.47), reduces to B, (cf 5.58).

Suppose that x, represents biases or colored noise parameters,
so that ¢, is diagonal. In this case, each mismodeled component of
X5 introduces only one additional "true" state into the error analysis;
1.@., one additional row and column onto the augmented U and D arrays
in Eqs. (5.42)-(5.49). Thus, filter sensitivity to mismodeled biases

and colored noise parameters may be easily and efficiently evaluated.

5.3.3 Sensitivity Analysis of Unestimated Prccess Noise Parameters

Another important reduction of the general error analysis
problem involves the evaluation of unmodeled colored noise parameters.
In this case the estimate error recursions (5.29)-(5.40) are written
in terms of Ax and p, where X represents the parameters estimated by
the filter and p denotes the unmodeled parameters to be evaluated.

The ¢,,8A and A¢ arrays in Egs. (5.42)-(5.47) for this case reduce
to 'a"p’ AA:A

and 49=0, Further modifications may be required

p p-
in the W and D arrays (Eqs. 5.47 and 5.48), depending - the white

process noise model used in the evaluation.

The effects of unmodeled bias parameters could also be evaluated
by this reduction of the general error analysis algorithm. However,
bias effects are more efficiently evaluated by the sensitivity analysis

technique described in the next section.
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5.4 Variable Dimension Filtering and Sengitivity Analysis
5.4.1 Considering the Effects of Unestimated Bias Parameters

When dealing with higher dimensioned systems involving
large numbers of biss-type parameters, it is often necessary or desirable

to neglect certain parameters in the filter model. Reasons for studying

a reduced order problem include practical considerations of computer

time and storage and concern that high-order filters can be overly

sensitive to numeric effects. The following error analysis technique

1s of prime importance in the design and evaluation of reduced-order
filters.

Suppose the parameter estimation problem involves the vector

x| In

7] Ib

The parameters x are to be estimated and suppose y are either a) esti-
mated, b) neglected in the filter model, or c¢) neglected in the filter

model but considered when the true covariance of x is computed. Let

A
the optimum estimate of the complete problem be X with error covariance

9 s ﬁﬁﬁT where G and 6 are partitioned consistently with Q.

Thus .
n b
T n b
u i} In ~— -
9 S R and S = diag (D, Dy) (5.61)
0 Uy 1b
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A
In terms of second-order statistics the U~D factorization of P implies

that estimate errors can be written as

n b
A -
n{ | Ax 1] U v, {In -
X X
NE x y (5.62)
b{ | Ay 0 Uy vy 1b

The uncorrelated random vectors vy and vy have covariances Dx and Dy

respectively. Equation (5.62) implies that

. 7

R = Uy + U U1 (5.63)

Let Qc represent the estimate of x that corresponds to a n-dimensional
filter, 1.e., 69 = 0 with probability one. If Qxc denotes the error

covariance of % then Eq. (5.63) implies that
c’; T
B¢ = upu, | (5.64)

Note further from Eq. (5.63) that the "sensitivity" matrix, I, which

relates the x estimates to errors in the y parameters is given by

_ -1 '
Z = Uy Uy (5.65)
Let Q and 9 represent the optimal parameter estimates based on the
complete model and let Qx and ﬁy denote their respective covariances.
Denote Qx(°°“) as the "coneider" covariance of Qc' i.e., the error

covariance based on the complete model. Then Eqs. (5.63)~(5.65) yield
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Ac T
eszx«f zeyz

Qx(con) - Q: ez Py(o)ﬁT

where

- T
Qy = UyDyUy

and'Py(o) is the a priori covariance of the y parameters. The covariance

relations in Eqs. (5.64)-(5.68) were first recognized by Bierman [1976a].

He showed that Q and Qc are related as follows.

fe-Q.5

The reader may wish to verify from Eqs. (2.69)-(2.79) that

Ux and Dx are computed independently and are not affected by the last

m columns in the U and D arrays.

This "consider"™ error analysis is easily extended to the

discrete linear filtering problem studied in Chapter III if the transi-

tion equation has the form

n b k

n{ |x o oxy x B
s + Wy

b{ Yiis1 0 Qy Yii 0

where E{w;} = 0 and E{wiwiT} = diag (q,, Tty qy).

17

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)
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The results of Chapter III imply that the U-D time update for this

system may be accomplished by a square-root-free Givens triangularization

of the array

k n b
B W W__Iin
W= * x (5.71)
0 0 Wy }b
k n b

involving the diagonal D = (Q, D, Dy). The elements of W in Eq. (5.71)
are given by W, = ¢, U, Hy = OyUy, and “ky = OXny + Onyy. From
Eqa. (3.75)=(3.77) it is clear that after the last b columns of W and D

are packed by the modified Givens algorithm we are left with

k n b
B W, 0 _lin
win) - oy (5.72)
0o o Uy b
k n b
(") = (q, 1,, B (5.73)

The ﬁ* and ﬁx factors are then obtained by applying the modified Givens
algorithm further to the arrays W' = [B W,] and D’ = (Q, D). Thus,
ﬁx and 5x are computed in a way which is independent of the y parameters.
For this reason the "consider" error analysis, Eqs. (5-64)-(5.69),
applies directly to systems of the form (5.70). A separate analysis

is required to evaluate the effects of neglected stochastic parameters

such as colored process noise (cf section 5.2.3).
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Bierman [1976a] has noted the following features of the

"consider" analysis technique.

1)

2)

From the results of a single large filter which includes
all of the relevant parameters it is possible to
evaluate a variety of filter models. Thus, beginning
with the complete solution one can recursively compute
estimates for models with ny parameters from estimates

corresponding to the ni+1-d1mensional model where

ny < ny.q-

Parameters may be rearranged for additional flexibility.
That is, one may decide to estimate the last b param-
eters and consider the first n. In that case the

error equation (5.62) must be rearranged and has

the form

(5.74)

This expression may be triangularized by applying
one of the U-~D factorization algorithms in Chapter
III. For example, a MWGS factorization may be applied

to the arrays

Uy 0
W= and D = diag (Dy, D)
U U
xy °x
119
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to yieild
1 [v2 ui ||
NE y -‘f" (5.75)
AX 0 Uy vo

where g§ and g; are uncorrelated and have covariances

D; and Dy respectively.

= 3) When the a priori covariance Py(o) in Eq. (5.67)
is diagonal, the columns of ¢ P,,(o)”2 represent 1¢
pe. .urbations in the estimate errors due to the corre-
sponding y parameter. This associatio: 1is useful
in determining filter sensitivity to various parameters

which may be omitted from the final filter model.

4) The matrix inversion in Eq. (5.65) involves a triangular
matrix and, thus, can be easily accomplished by back

substitut. on methods.

5) The U-D variable-dimension filterine method is more
flexible, more reliable and considerably more efficient
than corresponding techniques employing partitioning

of the covariance matrices (of Friedland [1969]).
5.4.2 Consider Filter

The consider filter to be discussed here is a generalization

of the method described by Schmidt [1968). The filter model includes

120

',,;,I.; RN

m
M o e

Bt oy 44

P ‘
1 ey g

eow et el

W e

ey

Skl

g

FUTETSEINLI




33-798

parameters x and y where only the x variables are estimated. The y

g, TR SRR L

parameters and their associated error covariance are retained at the

a priori values. This method differs from the consider error analysis

U
.

studied in the previous section since the gain, G,, used to update

the x parameters is computed from the full "true" covariance on x and y. EE

This typé'of suboptimal filter might be used, for example,

»in situations where the y parameters cannot be accurately estimated

S

or when estimating them might lead to an overly optimistic y covariance.
In the latter situation the filter is, in effect, reduced to an x filter.
When it is believed that a reduced-order filter cannot accurately estimate

x, the consider filter is sometimes proposed (cf Bierman [1976b]).

Error propagation for the consider filter takes the form

n{ | a8 A% G

X
x| 2 |==] +|==] [z - A, ¥] (5.76)
vi|ad] [agl o x
B
n b k l
ot [ax] [o. | o281 |2 :
- 2 -en s ""fz - - "3 N. ( 5 . 77 )
o{ | &y 0 " A§ 0
where
Z 5 Ay + Ayy + vy (5.78)
¥z Blyl =0 (5.79)
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and Pa» respectively.

Ax

where

Xy

1

n b

v, N pm——

0

Gy J (1-G,A, )T,

Tyy

]

I

If the U~D factorization is assumed for the true covariances 9 and

P associated with these errors, then Eg. (5.76) may be irterpreted

as follows
n r - n b
Pt va—,  —————— e —  pr——
nf [of] [1-g,n, | -cery| [T, l Teel [vx] [
-R l - + ‘?a (5080)
A
b | af 1o | o, | |y o
where 6;, vy and v, are uncorrelated with diagonal covariances ﬁx, Dy

Equation (5.80) may be rearranged to yield

- (5.81)

(5.82)

The covariance update corresponding to (5.76) may be interpreted as

a triangularization of the error expression (5.81) such that

n b

6 ny Vy In

0 Uy v Ib
122
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where Qx and 0; are uncorrelated with diagonal covariances Sx and Sy

respectively. The constraint that

R
#=E ] (a7 a9T)
4]

~ be unchanged by the transformation from (5.81) to (5.83) yields

by, 8,1 = 13,, 5,1 (5.84)
z’}x,',; Ty (5.85)

A A A < = i
U,D, U, = (I-G,A 0,5, 0, T(1-6 AT + Gor 0t (5.86)

If Gx were the Kalman gain associated with the rriuveci-
order problem having a priori covariance factors ﬁx and ﬁx' then the
factors Gx and Bx could be obtained by applying the Bierman U-" measure-
ment update algorithm to Eq. (£.86). Note, howsver, that for the general-
ized Schmidt consider filter, the gain Gx is conputed from the full

conslder covariance. Thus, Gy is obtained from the identity

n{ 6] [T, Upy][B © i o A: ;
bfa, | Jo Ty ljo B||T, O,|A
whers
axr, + vit (5.68)
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n b
—m
T o~ T T
fo= iy ATy Upy| = (fy, £)) (5.89)
o T,
n b
T. T,
Iz (5,5, £5) (5.90)

. A
- For this reason, we compute Uy and Sx by applying the U-D arbitrary

gain update algorithm (section 5.2) to Eq. (5.36). The first phase
of this update applies the Bierman algorithm, Eqs. (2.69)-(2.79), to
obtain the gain K = En’“n' corresponding to the reduced-order problem
with a priori factors U, and Dy,. Note that the full-dimension gain
in Eq. (5.87) is given by G = _n+b/°n+b where Kn+b and e, may be
obtained by cycling further through Eqs. (2.74) and (2.78) for

J = n+l,...,n+b. In this recursion only the first n elements of the

vector RJ need be computed since the gain G, is not required.

y

Time propagation via (5.77) of the full consider covariance
U-D array is easily accomplished by a MWGS or modified Givens factoriza-

tion applied to

Wz |emeopaconadaae z= (5.91)
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diag (Q, Dy, Dy)

D=

and
where

(5.93)

y

<SS

<

y = ’xu,(y + .xy
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Chapter VI. N Compari D
Kalman Filtering Algorithms

6.1 Introduction

The numerical stability and accuracy of various discrete Kalman
filtering algorithms have been carefully studied by applying these
methods to a realistic interplanetary navigation problem. Included
in the study were the conventional and stabilized Kalman algorithms,
the Potter-Schmidt square root filter, and the U-D factorization filter.
The Carlson-Schmidt algorithm was omittedafrom the comparison since'
this method clearly shares the numerical characteristics of the U-D

filter (cf Chapters II and III),

Each of the algorithms was implemented on the UNIVAC 1108 computer
which has a 60 bit characteristic (18 decimal digits) in double precision
and 27 bit characteristic (8-9 decimal digits) in single precision.

The complexity of the study problem prohibits closed form solutions.
However, numerical solutions from all the algorithms, using double
precision arithmetic, agreed to 8 digits or more. These double precision
results were used as a reference for evaluating the accuracizs of the

same algorithms computing in single precision.

6.2 Problem Description .
A portion of the 1977 Mariner Jupiter-Saturn (MJS) deep space
mission was chosen for the filter comparison study. The problem involves

spacecraft navigation for the 30 day period immediately preceding

Saturn encounter (point of closest approach). For the initial 20 days
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the spacecraft trajectory is nearly rectilinear, a characteristic which
is typical of a major portion of most deep space missions. The last
segment of the trajectory haé a hyperbolic bend due to the gravitational
effects of Saturn. Hence, tracking data from this phase of the mission
is particularly useful for an accurate determination of the planetary
mass and the spacecraft position and velocity. This trajectory is thus
characteristic of a significant class of: crbit determination problems.
The nominal trajectory and state transition matrices were obtained
by integrating the equations of motion and variational equations (ef
Moyer [1971]). Earth-based measurements of the spacecraft include
both doppler and ranging data. Partial derivatives of the data with
respect to the system parameters were evaluated analytically about
the nominal trajectory using the orbit determination software described
by Moyer. Al of these calculations were performed in an earth-centered,

cartesian coordinate system.

Perturbations from the nominal trajectory and simulated data
were constructed from a discrete linear model., The complete model
includes differential corrections in 19 parameters; the spacecraft
position, velocity and acceleration components (3 each); the gravitational
constant of Saturn (GM); and tracking station locations (3 cartesian
components for each of 3 stations). The state transition for these

perturbations is described by the following equation.
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x o txp byl |* o
p = lo M 0 p| +|w (6.1)
Y141 o 0 Ili|vja °J1

The vector x denotes the 6 components of position and velocity, p repre-
sents the 3 acceleration components, and y represents the 10 bias parame-

ters. Accelerations are modeled as piece-~wise constant colored noise

with time constants 6t 12 hours and standard deviations of 10'11 km/sec2;

and these define the variances of the white noise,‘wi, in Eq. (6.1).
The discrete times {ti} are assumed to be equally spaced with

ti+1 -t = At taken as 2 hours. Thus Wy has covariance Q = qI3 where
a=(1-12)0.2=(1-e"3) 1072 (mssec?)’ (6.2)

Let X represent the complete state vector in (6.1). The initial
vector xo has zero mean and diagonal covariance P,. The nontrivial
elements of Po are defined by the standard deviations in Table 6.1.
These a priori statistics are typical assumptions for the kind of orbit

determination problem considered here (cf O°Neil, et al. [1973]).

The simulated state x° is obtained from a Gaussian random variable

Vgenerator with zero mean and covariance Po.* The actual state is then

propagated according to Eq. (6.1) where the components of w; are obtained

from the Gaussian random variable generator with covariance Q.

fEach component of Xo is obtained by using a N(0,1) ranaom number gen-
erator followed by an appropriate scaling of the sampled value,
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;A Table 6.1. A Priori Statistics Used to Generate Sample Path o
;:_ P
; i Variable Standard Deviation

%

Position " 1000 km

Velocity 100 m/s

g ) Acceleration 10~1" km/sec? (1 = 12 hrs)

é : j;pin 2xis - 1 meter

'Egéf! Station location errors Longitude - 2 meter

I Latitude - 5 meter

- GM (Saturn) .18

s

wape T ooy G
P

Data for the linear simulation are generated from the equation
Zi = AiXi + vi (6-3)

where the elements of A; are partial derivative coefficients evaluated

i along the nominal trajectory, and v; is white data noise obtained from

a Gaussian random number generator using the appropriate measurement
error covariance. The simulation includes two or three doppler measure-
ments every two hours with 1 mm/sec accuracy (for 1 minute averaging
time) and occasional range points with an accuracy of 3 meters. There
were a total of 535 doppler and 72 range measurements in the 30 day

tracking period.
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This simulation 1is representative of a large number of interplan-
etary navigation problems, The a priori statisties are in no way
contrived to produce poor results in the conventional algorithms. On
the contrary, a priori state covariances were chosen on the small side
for problems of this type in order to avoid initialization errors asso-
clated with the Kalman algorithms. Similarly, process noise uncer- !
tainties were assumed to be an order of magnitude higher than usual
for this kind of mission* because the Kalman algorithms generally expe-

rience less numerical difficulties in high process noise environments.

This estimation problem is well posed in an engineering sense.
The problem is observable; the transition matrix is not ill-conditioned;
and the measurement coefficients and a priori error variances are not
unusually large. Thus, the results of this study should be of interest

to the entire estimation and control community.

6.3 Filter Implementations

The five covariance-type filter algorithms compared in this study
are the conventional Kalman filter, Joseph’s stabilized Kalman filter,
a conventional Kalman filter with lower bounding, the Potter-Schmidt
square root filter, and the U-D factorization filter with MWGS time
propagation. A limited evaluation of the U-D filter using the modified
Givens update is also included. Details of the various filtcr algorithms

are given in Chapters II and III.

See Christensen [1976] or O°Neil, et al. [1973].
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Each algorithm involved in the study was mechanized for maximum
accuracy and efficiency. Thus, the U-D filter employs the efficient
one-at-a-time colored noise update, Eqs. (3.130)-(3.133); while the
Potter-Schmidt filter performs time updating in one stage, taking ad-

vantage of special system structure and blocks of zeroes.

Computations are also reduced by using vector outer products
whenever possible. In the Kalman algorithms, symmetry of the covariance
matrix is preserved by computing only the upper triangular elements.

The stabilized Kalman filter contains a single exception to this rule.

Significantly improved results were obtained with the stabilized
Kalman filter when off-diagonal covariance elements were ccmputed and
averaged during a portion of the measurement updating. This averaging
takes place during the computation of the first term in Eq. (2.24).

2 kT

are computed, and

Thus all n© elements of the array P = P1 -V

the off-diagonal elements of ﬁ are obtained as follows.
Bz .5(P;y + P O + rk.K i (6.4)
ij s . i,j + o +r i J #J .

The fact that numerical re: are vensitive to such mechanization
details is indicative of the algoi ..am’s instability. Even with the
averaging of off-diagonal elements, the stabilized Kalman algorithm

performed poorly.

The conventional Kalman filter with lower bounding is designed

to perform a covariance measurement update in the following way. The
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conventional update formula is first applied to obtain an intermediate

array P. Thus,

P =P - kAP (6.5)
The updated covariance ? is then computed from Eqs. (6.6)-(6.8).
- 2
B,y = max(Fy, opgy(3) 3= 1,.000m (6.6)
- =2
By, = (6.7)
sgn(?ij) My otherwise
where
2 A A
Mij s pmin Pii PJJ i-= 1,2,.-.,:’"1 (6.8)

The n components of ¢,  and the correlation Pmin are chosen
a priori. This mechanization is typical of the techniques that are
frequently used to prevent the computed covariance from becoming indefi-
nite (of Schmidt et al. [1968]). The mechanization is no optimal
and the computed 9 1s generally not the actual error covariance. Choosing
the bounds Omin and ppip is something of an art, and appropriate values
are usually determined from lengthy simulation studies. This lower
bound filter algorithm is included in the comparison study in order
to illustrate that ad hoc "patching" techniques can compensate to some

extent for the numerical inadequacies of the conventional algorithm.
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However, the results of the remaining sections demonstrate that such

measures are not necessary when factorization algorithms are used.

All of the filter algorithms were coded and carefully checked
using double precision arithmetic. These programs were then ccnverted
to single precision by reméving the FORTPAN IV "implicit double precisioa"
statement. However, in the single precision programs, inner products
are accumulated in double precision and then rounded to single precision.
In addition, estimates are retained in double precision because a signifi-
cant accuracy loss is incurred when single precision arithmetic is
used in the estimate propagation, Egs. (3.11) and (3.13). This accuracy
loss would not be attributable to a particular filtering method but

would mask the desired comparison.

Since all of the filter programs compute estimates in double
precision and use the same (single precision) 1nputs,* only the gain
computations differ. Thus, filtering accuracies may be analyzed by
applying the gain evaluation algorithm described in Section 5.2. This
evaluation program, implemented in double precision and operating with
the same inputs used by the filter, computes the actual, or true, error
covariance assoclated with each gain profile; 1.e., each filter algorithm.
Hence, two complimentary methods are used to compare filter accuraciles,

The error analysis program provides a statistical means of ccaparing

*The state transition and data matrices used in the simulation are
computed in double precision and rounded to single precision.
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filter performance, while the single simulation results yield an illustra-

tion of these statistical predictions.

6.4 Numerical Results

A comparison of filtering accuracies was first obtained for the
full 19-state model described in section 6.2. The filter model was
then varied in order to evaluate sensitivities to a priori statistics.
Reduced~dimension problems were also studied as a means of assessing
how numerical stability is affected by model dimensionality. In every
case studied, the double precision programs computed estimates and
standard deviations that agreed to 8 digits or more. In fact, the
factorization algorithms agreed to at least 10 digits. The single
precision programs, however, produced widely varying estimates and
covariances. The results to be described indicatz that, while the
single precision Kalman algorithms experience serious numerical deteriora-
tion as computer word length decreases, the factorization methods have

excellent precision and stability.

6.4.1 The Complete State Model
For this portion of the study, all of the filters assumed

the 19-state model described in section 6.2. Thus, the actual and
assumed models coincide. For this case and the others to follow, the
single precision factorization aigorithms computed gains and variances

which agreed with the double precision reference results to about 5-6
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digits.* The single precision Kalman algorithms, however, produced
markedly different gain profiles and variances. Numerical deterioration
of these algorithms was evident in the form of negative computed variances
which appeared at inexplicable times. Although this numerical instabilty
is related to the choice of a priori statistics (ef section 6.4.2)
negative variances do not appear until after four days c¢f filtering

with the conventional algorithm, and after ten days when the stabilized
formula 1s used. This behavior is particularly interesting when we

note that in the first four days there are U8 time and 80 measurement

updates.

Both the conventional and the stabilized algorithms compute intermit-
tent negative variances. Even the bias parameter varlances are intermit-
tently negative. Furthermore, these negative elem:nts are not related
to filter variances which are approaching zero. The erratic behavior
of the stabilized algorithm illustrates this point. For example, at
9.75 days the stabilized formula computes ‘UMZ =~ -1.8 x 109 (km3/sec2)2
and at ten days adjusts this to 1.7 « 10“. The correct (double precision)
value, however, is °GM2 = 5 x 103 (km3/sec?)?,

The extent of the numerical deterioration in the Kalman algorithms

is apparent in Figures 6.1 and 6.2. These figures compare the actual

*The U-D filtering results reported in this section were obtained with
both time update methods; the MWGS and the modified Givens algorithms

(cf sections 3.3 and 3.4). The latter propagation scheme employed
Method B exclusively (cf Eqs. (3.80)~(3.89)) and experienced no numerical
degradation; 1.e., both filter implementations produced results which
agreed to about 5-6 digits with the double precision standard.
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position and velocity uncertainties* assoclated with each filter and

were obtained by applying the gain evaluation program.

In Figures 6.1 and 6.2 the U~D and Potter single precision filtering
accuracies are shown to agree with the dcuhle precision references.
Notice, however, the excursions of the conventional and stabilized
Kalman single precision accuracy curves. The conventional Kalman results

are seen to be particularly inaccurate at 4 days, while the stabilized

algorithm deteriorates rapidly at 10 days.

Simulated data, generated using the same model assumed in the
error analysis, was filtered by each of the algorithms. Actual estimsi:
errors for this single simulatioa are compared in Figures 6.3 and 6.4.
Notice how closely the gain evaluation results in Figures 6.1 and 6.2
predict the error curves of the sampla path. As anticipated, the conven-
tional algorithm in single precision produces large errors at 4 days.

The single precision stabilized algorithm also performs poorly, especially
after 10 days. Hcwever, the estimates and computed standard deviations
obtained from the stabilized filter, when monitored at one day intervals,
show few signs of numeric deterioration. Except for the times (3)

that negative variances are printed, these estimates and statistics

appear reasonable and oconsistent. Only when the results are compared

*The root-sum-square of position and velocity errors are chosen as

a measure of estimation accuracy becau:ie these parameters are of pri-
mary interest in navigation and are repiresentative of the general
filtering results obtained in this study.
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with the double precision refereaces is it apparent that the stabilized

Kalman estimates are far from optimum.

Recall that the stabilized formula was introduced as a computational
improvement to the conventional method. It is, therefore, surprising
to note that after 10 days the conventional algorithm yields significantly
more accurate results than the stabilized formula. This phenomenon
was not observed in all of the cases studied, however. The point to
be made here is that, although the stabilized algorithm does generally
give improved performance over the conventional formula, neither method

W
can b: considered reliable. '

By comparison, estimates computed using the factorization algorithms
agree to about 4 or 5 digits with the double precision values. This
agreement corresponds to better than 1 km in position and 50 mm/sec in
velocity. These single precision accuracies are particularly impressive
when it is noted that estimation uncertainties are two orders of magnitude
greater than these differences (cf Figures 6.1 and 6.2). In other

words, the differences in the single and double precision results are

in the ™noise" level.

Tn every case studied, the relative position and velocity accuracies
displayed the same general agreement illustrated in Figures 6.1-6.4,
In view of this, subsequent discussions are restricted to the comparison
of position errors and uncertainties. Thus, unnecessary discussions
of velocity results are omitted. For similar reasons, the conventional

Kalman algorithm is also omitted from subsequent discussions. The
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numerical instability of the conventional algorithm is already well
documented (cf Bellantoni and Dodge [1967] or Schmidt [1968]). This
method is dismissed from further comparisons with the observation that
in nearly every case studied the single precision conventional formula
suffered numerical degradations similar to those displayed in Figures

6.1-6.4.

Numeriecal divefgence of the Kalman filter is generally associated
with indefinite computed covariance matrices. Hence, it is common '
practice to attempt to preserve positivity by bounding the diagonal
eclements from below and to limit the correlations between pairs of
variables (cf Egs. (6.6)-(6.8)). Any such attempt to stabilize the
conventional Kalman algorithm introduces a myriad of filtering alterna-
tives. For example, should the lower bound on the velocity uncertainties
be 1.0 m/sec or 0.1 m/sec, and should the maximum correlation be .99
or .98? The choice of such patch factors is often problem dependent

and may require lengthy simulations.

In this study filtering results are indeed sensitive to the choice
of bounds as Figure 6.5 illustrates. This figure displays the RSS
position error profiles produced by the single precision patched algorithm
for various bounding schemes. By comparing Figures 6.3 and 6.5 one
can conclude that patching yields a marked improvement over the stabilized
Kalman results. However, all of the error curves associated with the
patched algorithm are far above the optimal double precisi~n results

in Figure 6.3. Actual filtering uncertainties a.e compared in
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Figure 6.6, and the patched algorithm is shown to be significantly

less accurate than the factorization filters.

In all of the cases studied, the patched Kalman filter displayed
the same poor performance observed in Figures 6.5 and 6.6. This study
demonstrates that the practice of introducing ad hoc patch factors
to combat Kalman filter numerical divergence results in algorithms
that are significantly less efficient and accurate than the factorization

methods. Patching techniques are thus omitted from further consideration.

6.4.2 Effects of Incorrect A Priori Statistics

Numerical difficulties with the Kalman algorithm can often
be attributed to initial ill-conditioning caused by large a priori
state uncertainties and relatively small data covariances. These problems
can be reduced by scaling the a priori statistics. However, any improve-
ment in numerical conditioning is offset somewhat by the effects of
suboptimal modeling. Consider, for example, the case where initizl
velocity uncertainties are reduced by an order of magnitude to 10 m/sec,
and range uncertainty is increased to 10 meters (from 3 meters). This
combination of a priori statistics, selected by numerical experimentation,
allows the stabilized Kalman algorithm to appear "stahle." In fact,
for this choice of filter statistics neither the conventional nor the
stabilized algorithm computes negative variances. Moreover, for this
example simulation estimate errors are consistent with the filter formal
statistics. This consistency creates the false impression that the
Kalman algorithms are performing well when, in fact, they are grossly

inaccurate. Actual Kalman accuracies, computed by the gain evaluation
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program using the correct statistics, are displryed in Figure 6.7.
This figure shows that for most of the filtering period the stabilized

Kalman uncertainties (using scaled a priori statistics) are an order

of magnitude greater than achievable filter accuracies.

The results in Figure 6.7 also show that the Kalman filter is
more accurate when suboptimal (“v = 10 m/sec, og = 10 meters) rather
than optimal (ov = 100 m/sec, op = 3 meters) statistics are assumed.
This theoretical impossibility is, of course, due to numerical efrors

which can cause unpredictable results.

When only one of the a priori uncertainties (av or °R) is scaled,
the single precision Kalman filters continue to produce negative computed
variances and unreliable gain profiles. Actial filtering accuracies
corresponding to scaled a priori velocity variances are illustrated in
Figure 6.8. In this case, o, 1s scaled down by an order of magnitude
in the filter model, and gain profiles are evaluated using the correct
statistical model. Note that, for this example, initial velocity vari-
ances are scaled down by two orders of magnitude. However, instead
of improving Kalman filter accuracies, this scaling produced greater
errors. Figure 6.8 demonstrates that the stabilized filter (with
o, = 10 m/sec) yields large uncertainties at 5 days which peak again
at 22 days. By comparing Figures 6.1 and 6.8 we can conclude that

numerical errors in the Kalman results occur at completely arbitrary

times and are unrelated to any physical phenomena peculiar to the

problem.
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In a filtering problem with observability and significant amounts
of process noise, one would expect estimates to depend primarily on
data in the recent past. Thus, estimate error profiles corresponding
to different a priori covariance assumptions should, except for initial
transient effects, look quite similar. The factorization filters illus- E
trate this effect in the bottom two curves of Figure 6-8. In every

case involving scaled a priori statistics, the factorization filters

s SR a7 W

demonstrate the same stability evident in Figure 6.8. The Kalman algo-
rithm, o the other hand, is quite sensitive to the choice of a priori

statistics as the topmost curves in Figures 6.7 and 6.8 illustrate.

S X T UL 2 BCRFPRT N

FRERcRy

The single simulation results for this case yield estimate -ror
profiles close to those predicted by the error analysis. Position errors
are compared in Figure 6.9. Notice the striking resemblance between !
the factorization filter error curves in Figures 6.3 and 6.9, particularly
after 10 days. As expected from the error analysis, the Kalman results

in these two figures appear totally unrelated.

This analysis illustrates how numerical instability can cause

unpredictable results which violate established estimation principles.

6.4.3 Reduced-Dimension Problems
The discussions in the previous sections were based upon
the complete 19-state model. In this section models of smaller dimension
are examined. This study shows, among other things, that the numeriecal

instability of the Kalman algorithms is not caused by the dimensionality
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appearance of the computed covariances but not the accuracy of the

estimates.

The smallest, physically meaningful model corresponding to the
planetary approach problem involves the six position and velocity vari-
ables. This six-state system represents a parameter estimation problem
since there is no process noise. The Kalman algorithms are known to
be numerically unstable for pa;ameter egtimation problems. Hence,

it is not surprising that the single precision Kalman filters compute

intermittent negative variances when the six dimensional model is assumed.

However, these 6-state filters, when applied to the simulated data,
manage to at least partially track the spacecraft. Actual filtering
accuracies for this case are displayed in Figure 6.10. The top two
curves in this figure represent the accuracies obtained with the six
dimensional filters operating in the complete 19-state environment.
Notice that the stabilized Kalman algorithm suft'ers a severe accuracy
degradation in this case. Position uncertainties are two orders of
magnitude greater than those obtained with the correct model (ef Figure
6.1). By comparing the factorization results in Figure 6.10 (bottom
two curves) one can see that the aceurary loss due to mismodeling is
considerable. The stabilized Kalman results in this figure suggest
that elther this algorithm compounds the effects of mismodeling or

numerics represent the dominant error source.

Numerical effects may be further separated from mode. .g errors
by evaluating filtering accuracies for an actual six-dime- )pal,modeL,j

Hencwe. no effects due to mismodeling are present in the ureaey
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comparisons of Figure 6.11. Notice that position uncertainties corre-
sponding to the stabilized algorithm are nearly identical in Figures
6.10 and 6.11. These figures demonstrate that numerical errors asso-
ciated with the stabilized algorithm are so large that they completely
obscure the effects of mismodeling. By contrast, the factorization
curves in Figures 6.10 and 6.11 clearly indicate how 6-state filtering

accuracies are degraded by the presence of unmodeled parameters.

The second model selected for careful Sﬁudy included the three
colored noise accelerations in addition to the six position and velocity
parameters. This 9..state system was chosen because it includes a signifi-
cant amount of process noise, and it is generally assumed that high

levels of process noise will stabilize the Ka}man filter computations.

~

The stabilized Kalman results appeared to support this theory.
That 1s, the stabilized algorithm computed covariances, gains, and
estimates (based on the simulation sample) which looked reasonable.
Nn hint of numerical difficulty wés evident. The results, however,
differed from those obtained with the U-D and Potter-Schmidt filters.
As usual the factorisation algorithms agreed closely with the double

precision reference results.

Error analysis for this case produced results similar to those
observed in the six-dimensional problem. That is, numerical errors
in the Kalman calculations were again substantial and completely obscured
any effects due to unmodeled pﬁrameters. Figure 6.12 shows how severely

the Kalman results are degraded by numerical errors. This figure displays
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actual position accuracies associated with the 9-state filters operating
in an actual 9-state environment. These results demonstrate that numer-
ical deterioration in the Kalman filter translates into position errors

which are an order of magnitude higher than they need be.

This example illustrates that, while the inclusion of process
noise improves the performance of the Kalman algorithms (cf Figures

6.11 and 6.12), they still lack the accuracy achievable with the factori-

zation methods.

6.5 Conclusions

This study demonstrates the excellent numerical stability and
precision of the U=D and Potter-Schmidt factorization algorithms.
Both methods, implemented in single precision, produced results which
were close to the double precision references. The numerical stability
of these algorithms was further demonstrated by their lack of sensitivity

to the choice of a priori variances and process noise levels.

The Kalman filters, on the other hand, were acutely affected
by the use of single precision arithmetic and scaled a priori statisties.
Wampler [1970] observes that these are sufficient reasons to declare
an algorithm numerically unstable and to abandon it. The results of
this study support his conclusion. Both the conventional and the stabi~
lized algorithms experienced severe numerical deterioration in nearly
every case examined, Covariance matrices with negative diagonal elements

were a common occurrence, and gain profiles were often erratic and

inaccurate,
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Even when the assumed statistics were modified to stabilize the
calculations, the single precision Kalman algorithms performed poorly.
Accuracy degradation was often not apparent but had to be detected

with a double precision gz2in evaluation program.

In every case studied the U-D and Potter-Schmidt algorithms out-
performed the Kalman methods. Accuracy improvements were generally
substantial, often reaching orders of magnitude. Error analysis showed
numerical degradation to be the dominant source of error in the Kalman
algorithms. In fact, numerical errors completely obscured the effects
of mismodeling. This result is of special interest because numeric
effects are rarely considered when mission design requirements are
constructed. These effects appear to be inconsequential, however,

when the factorization algorithms are employed.

The cost comparisons of Chapter IV show that for most filtering
problems the factorization algorithms are not unreasonably costly.
The Potter-Schmidt costs are generally within 80% of the conventional
Kalman costs. The U-D algorithm, however, is competitive with the
conventional method, and for some applications is somewhat more efficient.
For problems involving a few cclored noise parameters and a large number
of bias parameters, the U-D algorithm is particularly efficient relative
to the otl.er methods. The complete 19-state model studied in section
6.4.1 is an illustrative example. The C®U times for this case are
compared in Table 6.2. These times include the costs assoclated with
indexing, loglc and other overhead costs not inecluded in the analytic

comparisons of Chapter IV, Table 6.2 shows the Potter-Schmidt algorithm
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to be the most expensive filtering scheme, requiring considerably more

time than the other methods. In sharp contrast, the U-D algorithm

is seen to be the most efficient method, faster than even the conventional

+
Kalman algorithm.

This analysis of a meaningful engineering problem has demonstrated

how the U-D and Potter-Schmidt factorization algorithms can dramatically

reduce the effects of numerical errors. Moreover, the U=D method combines

numerical stability with an efficiency comparable to that of the origin.
Kalman algorithm.

Table 6.2. Comparison of Filter Execution Times?®
for the Complete 19-State Model

Filter Single Precision Double Precision
Conventional Kalman 39 49
Stabilized Kalman hs 59
U-D (MWGS ) 38 b6
Potter-Schmidt 63 80

$CPU time in seconds.

+
These times do not innlude the costs of variance calculations in the
factorization filters. However, even if variances were computed at

every stage, the total CPU time would be inoreased by no more than
ten percent.
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basic U=D propagation methods are efficient and usually require equi-

; : valent amounts of computation. These comparisons further show that the 5
; ' U-D filter algorithm, using either the MWGS or the m.dified Givens . ;
¢ . i propagation scheme, has efficiency nearly equal to that of Kalman’s % ‘é
? { original formula. Moreover, for problems involving modest rumbers of ; :
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process noise parameters, the U-D method is somewhat faster than the

Kalman algorithm. By comrarison, the square root covariance filters P
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root algorithms are at least U0% morc time .cnsuming than the conven-
tional Kalman method and may require in excess of 100% more computation

time.

An extension of the U-D filtering results has produced a new co-
variance error analysis technique. This method was derived in Chapter
V as a means of evaluating general modeling errors, suci as incorrect
a priori statistics, incomplete parameter sets, and mismodeled system
dynamics and data equations. The general error analysis algbrithm re-
quires only a modest alteration to the U-D filter equations. Efficiency
is competitive with that of conventional error analysis methods, and
numerical accur-cy of the results is believed to be improved. The U-D
evaluation method is easily adapted to analyze a variety of important
special problems, such as the mismodeling of colored process noise and
bias parameters. 1In addition, this method has produced a new consider
f iter algorithm which shares the simplicity and efficiency of the opti-

mal U-D filter equations.

The orbjt deterrination case study in Chapter VI provides a thorough
and extensive examination of the numerical characteristics of the various
Kalmar. filtering methods. Ti..s study demonstrates with a meaningful engi-
neering problem the improved precision of the U-D and square root covari-
ance methods. ™ -e methods consistently outperformed the conventional
and stabilized Ki¢ .un algorithms. Accuracy improvements were usually
substantiil and often involved orders of magnitude. While the Kalman al-
gorithms consistently experienced severe accuracy degradations and were

generally unreliablé, the covariance factorization methods exhih.ted

152

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR



—— o~ "

YO TN O N RTINS IOP T O A RAIT PYNNFRIYE Y, MVEWLY IS AT (R

XY,

X g ¢ e A

L T ]

33-798

excellent numerical stability and precision throughout the study. A

comparison of actual CPU times for this analysis has demonstrated that
tne U-D and conventional Kalman filters require equivalent amounts of
computation. Thus, this study illustrates how the U-D filter ccnbines

superior numerical precision with exceptional computational efficieacy.

7.2 Areas for Future Research
The modified Givens algorithm which applies the efficient formula,

Method B, has been recommended for U-D propagation. This algorithm is
known to be numerically stable if the ratio d;l/dm is tested at each step
and if ﬁhe more stable formula, Method A, is used whenever d;/dm is
sufficiently large (cf section 3.4). Howevef, for most time updating
applications of this algorithm, such testing is probably not necessary.
Further analysis is needed to determine which problems, if any, are

ac* 'ally susceptible to error growtt wher Method B is used exclusively.

Another reliable method for propagating U-D covariance factors can
be obtained by appropriately modifying the Householder triangularization
technique. Preliminary analysis indicates tnat square root calculations
are inherent to Householder techniques, and so this method may have
little advantage over the MWGS or modified Givens propagation algorithms.
However, a square-root-free Householder triangularization method could
yield a U~D time update algorithm which requires fewer multiplications
and divisions thuen the modified Givens formula. Hence this Householder
method might be noticeably more efficient than either of the currently
available U~D propagation techniques, particularly on computers where

divide operations are relatively time consuming (ef section 4.3.1).
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The U-D ccvariance error analysis method is based upon a number of
algorithms which have been established as numerically reliable formulas.
While the error analysis technique appears to inl.erit the stability of
these individual algorithms, the integrity of this method should be con-

firmed by further research.

There is another area of covariance error analysis where research
might prove fruitful. Although much effort has been expended to develop
various gain evaluation techniques, very little attention has been given
to the analysis of innovation computations. The case study in Chapter VI
of this thesis has shown that parameter esi.imates are particularly sensi-
tive to innovation errors. Recall that in the single precision U-D
filter it was necessary to compute estimates and imnovations in double
precision arithmetic, a.though gain calculations were reasonably accurate
in single precision. Further evaluation of innovation errors could pro-

duce some interesting and useful results.

Another extension of the U-D filtering method which would be
useful, and might prove to be challenging, is the development of algo-
rithms to allow for cross-correlations between measurement errors and
process noise parameters. At first glance this c¢ross-coupling appears
to make the U-D time update unreasonably complicated. However, the
"weighted error" propagation technique used in Chap.er V could be applied
to this problem and should make it apparent which orthogonal transforma-

tions are required to accomplish the update.
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The covariance factorization techniques presented in this report

control.
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Appendix A

Cholesky Decomposition and Data Whitening
A1 Square-Root-Free Cholesky Decomposition
It has been shown (cf Martin et al. [1965]) that any positive
definite symmetric matrix R can be uniquely factored as

R = UDUT (A.1)

where U is unit upber triangulaﬁ* and D is a positive diagonal. The U-D

factors of R may be computed as follows.

For j = n,...,1 evaluate recursively Egqs. (A.2)-(A.5).

dj =ryy - k§+1 dkuik (4.2)
uyy = 1 (5.3)
n
ugy = 1/dy (ryy - k§+1 d) g3t g30) (A.4)
1=1,...3-1
uyy =0 (A.5)

trhe factorization giveir here is actually a modification of the algoriihm

?y Martin et al, [1965] vince their formuls computes a lower triangular
actor,
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The arithmetic operations required by this algorithm are summarized

in Table A.1.

Table A.1. Arithmetic Operations Required
for a U-D Decomposition

Computation Adds Multiplies Divides

MRy i S I AR L T R
K .

Jesnyeea,

Vk ujkdk; k = j+1,...,n -5n2 - .5n

L R N IRV

3 n

i L 2 2

% dJ = rJJ E UJka 5nc + .Sn .5n .5n
N k=j+1

)

1/dJ n-1

[l SV

i a 1’0'1"1-1

n :
uyy = Aj(rij- 2 UipVi) .2n3-1.5024+1.5n .2n3-1.5n41.5n
k= j+1

Totals 2n3 -n? + 2n 2nd-n?4+n net

:
2
§

E 157
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A.2 esk uare Ro Decomposition

Let an upper triangular matrix S be defined as
S = UD1/2 ' (A.6)

where D1/2 is the positive square root of D in Eq. (A.1). Equations
(A.1) and (A.6) then impiy that any positive definite symmetric matrix

R may be uniquely factored as

R = ssT (A.T)

»

where S is upper triangular. Historically, this decomposition preceded
the U-D algorithm and was derived by Cholesky. The following algorithm
is a modest rearrangement of the Cholesky square root factorization

given in Fox [1954].

For j = n,...,1 compute recursively Eqs. (A4.8)-(A.10).

1/2

pro2
SJJ s (I‘JJ - ksi«‘sjk) (A.a)
n
SiJ s 1/sJJ (Pij - kg’.’sik sjk) (A-g)
i=1,...3=1
Syy *® 0 (A.10)

Table A.2 contains a summary of the arithmetic operations required

by this algorithm,
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Table A.2. Arithmetic Operations Required
for a Square Root Decomposition

Square
Computation Adds Multiplies Divides Roots
J=n,...,2
f& )1/2* 2 2
855 = [Pys= S 5 .5nc+.5n .5n“-.5n n
3 (_JJ kG
Xj = 1/sjj n-1
i = 1,2,00.,:”1
. 3 3
sij = xj(rij- E siksjk) .2n"=.2n .2n°-.2n
k=j+1
Totals .2n3+.5n%+.3n 2n3+.5n2-.Tn n-1 n

#This computation is also required for j=1.

A.3 Data Whitening

Suppose m measurements, z = (zq, 25, ..., zm)T, are made where
z = Ax + v (A.10)

and xeR,, E(v) = 0, E{v vI} = R, E{x vT} = 0. The data noise covariance,
R, is a symmetric, positive definite matrix and, hence, can be factored

by the square-root-free Cholesky algorithm, Eqs. (A.2)-(A.5). Thus,
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R=3YR UT (2. 11)
where U is unit upper triangular and R’ is diagonal. A new set of

uncorrelated measurements, z°, may then be generated by computing
z° = U1z (a.12)t

The data equation for z° is given by

2" = A'xX + v (4.13)

where
A =uta (A.14)

4

E(v’ v"T} = R" = diag(r,", ry", ..., ry”) (A.15)

This process of uncoupling observations is referred to as "data
whitening." A precursor of this method generates uncoupled data, z°,
with an identity noise covariance (cf Andrews [1968]). In that case
R is factored by the square root Cholesky decomposition, Eqs. (A.8)-
(2.'0), to obtain

R = SST (A, 16)

The data z° = S='7 is then represented by Eq. (A.13) where A° and v’ are
given by
A° = s~a (A.17)

E{v' vT} =1 (4.18)

tThe inversion of U is easily accomplished by back substitution.
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Appendix B

The Potter Update Using Householder Transformations

The relationship between the Potter algorithm (Chapter II) and

Householder transformation techniques was first noted by Bierman

[1973]. He observed that

un
o

Pa
P «

where a = aTﬁa + r. If this array is equated with the product

w ol |wT o] |wwT + g6t
0 ¢ 6l ¢ : eGT ¢
then the following identities are obtained.
e = v/
fi = (1/iﬁ)§a = /% K
WW T = F - g6t
Note that
F-alT =P
161
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(K = Kalman gain)

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)
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Equations (B.5)-(B.6) imply that

Ww=8 (B.7)

A
where S is the updated covariance square root. Since the matrix products

in Eqs. (B.1) and (B.2) are equal, the factors must be related by an orth-

ogonal transformation., Thus, a Householder transformation, T, may be

chosen such that

n{{ S 0 Q G
- == =|T= - —-- - (B.8)
1T 0 /%

where f1 = aT§Z If the transformation T is chosen to zero out only the

subdiagcnal elements in row n+1, then

T=1-1/8 uul (8.5)"
where

ul = (£7, /F+ /@) (B.10)

8 = 2/ulu = 1/(a + /aF) (B.11)

When this T is substituted into Eq. (B.8) and terms are equated, th~ tol-

lowing results are obtained.

*Elementary Householder transformations are discussed in Chapter III,
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0>
"
wn
]
<
=1
ry
3

(B.12)

- - - T
Y e e A= 1/a = 1/(r + £'f) (B..3)

=i
]
W
]

(B.14)

The Kalman gain is computed as follows.

K=»X2K (B.15)

Equations (B.12)=(B.15) correspond to the Potter measurement update.
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Appendix C

Agee-Turner Matrix Factorizations

The two algorithms presented in this Appendix yield triangular
factorizations of the matrix P = P + cAAL., The matrix P is assumed
to be positive definite symmetric and A represents a vector. The first
algorithu requires that P be factored such that P = UDUT (U is unit
upper triangular and D is diagonal) and computes the U-D factors of P.
Similarly, the second algorithm yields the upper “riangular matrix
square root $ where P = 357, Cholesky has shown that when P is positive
definite symmetric such factorizations exist and are unique (see Appen-

dix A4).

The matrix decompositions described below seem to have been first‘
derived by Agee and Turner [1972a). Their algorithms have been appropri-
ately rearranged to compute the upper triangular factors used in this
report., These alzorithms are efficient and easy to mechanize, and
when the scalar, ¢, is positive they are also numerically reliable.
However, Agee 2nd Turner have noted that when ¢ is negative these metliods
are subject to large cancellation errors and can yield erroneous results.
For this reason the following algorithms are recommended only for

problems involving positive scalara.

C.1 U=D Traangular Factorization Alorithm
Suppose that the symmetric matrix P is factored such that

P = upyT (C.1)
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where the matrix U is upper :riangular with ones on the diagonal and U is

a positive diagonal. The corresponding U-D factors of P where

E-P+enal e >0 (c.2)

o,

may be cbtained in the following way.

[ EWEN iﬁﬁa gﬁi"y“wi'*z@wwi e

Evaluate Egs. (C.3)-(C.7) recursively for j = n, n-1, ..., 2.

e gedr R M

2
dj = dj + ey Ay (e, = c) (c.3)

VJ - OJ- -‘.J/dJ (C.ll)

¢ +
Xi - AJ uij \C.S)

e B R AR A A R R B Bt W A ot gt rE e
- RICIESND: I AL ek e e el

A
: i
;‘ ‘ - 131, 2’ o0y 3-1

L1}
. 3 [ s 0 Py
R A ,,MIA:* B RN TR

ujy + *1,"3 (c.6)

TR
[
C

it ate - St
-

k|

o

sy

CJ_1 = OJ (dJ/d-j) , {"‘-7)

T R R

ST L]

5w

[= 5%
b

"

%N

y e
e n R W

by this algorithm.

B3,

AT

*The symbol ":s" Jenotes replacement in computer storage.

[ R

§

’ a ; 2 8)
dt' + 01 X1 (c‘
i\ Table C.1 contains a summary of the arithmetic operations required
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Table C.1. Arithmetic Operation Counts For
Triangular Factorization

Computation Adds . Multiplies Divides Square Roots

dj =z dd ! ejxj* n 2n
By = cjlaj . -1
vj = B,Aj n -1
L , 3-1
Ay =4y = ljuij .5n%-.5n .5n2-.5n
' uij 2 ugy o+ iji .5u2-.5n .5n2-.5n
.cj_1 = Bjdj n-1
Totals ' n2 n +3n - 2 n -1 0

#This calculation ic also required for j = 1.
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c.2 Triangular Square Root Factorization Algorithm

Let the positive definite symmetric matrix P be factored such that

P = ssT

(c.9)

where S is upper triangular. Consider the problem of computing a similar

matrix S where

58T = ssT + ena? e>0

The following algorithm yields the nontrivial elements of S.

Evaluate recursively Egs. (C.11)=(C.17) for j = n, n-1, ...

Ejj = (s?J + ejx§)1/2 , e, = ¢
bj = XJ/SJJ
a5 = 333/8yy
v‘j = cjxj/§3j
\i '= Ai f bJLiJ
1=1,2, «e., 3=

Sij = aJSiJ + VJXi
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(c.12)

(C.13)

(C.14)

(C.15)
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¢3-1 7 °5%

2 2.1/2
= (599 + cq}y)

<]
-
-—

]

(c.17)

(C.18)

The matrix S cbtained from this recursion has positive diagonals.

Table C.2 lists the ar: :Lhmetic operations required by this algorithm

when ° i3 arranged for maximum efficiency.
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Table C.2. Arithmetic Operation Counts For
Square Root Factorization
Square
Computation Adds Multiplies Divides Roots
J=n, .., 2
2 2 1,2*
SJJ = (sjj + ijj) n 2n n
aj = 1/sjj n-1
bJ = Aj/st n-1
dj = ajst n-1
i = 1, 2, ey j-1
Ay i= xi - bjsij .Snz-.Sn .5n2-.5n
. A 2 2
8ij :* ajsij + vJ i .5n“~-.5n n“-n
2 (n-1)
CJ_1 = Cjaj 2(n-
Total n? 1.5n2 +5.5n -5 2n - 2 n

#This calculiation is also required for j=1.
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Appendix D

FORTRAN Implementation of the U-D Algorithms

‘tne computer implementations included in this Appendix are
designed to minimize storage and computation. Storage could be conserved
further, however, by mechanizing the algorithms to store the U and
D arrays as vectors. Instead, the mechanizations described below assume
the nontrivial elements of U to be stored in the upper triangular portion

of an nxn array which contains D along the diagonal.

These computer mechanizations are described in a semi-FORTRAN
style in the sense that Greek characters are used and DO loops are
defined with algebr:ic functions. This style is adopted so that each
portion of the code may be easily identified with the corresponding
algebraic equation in Chapters II and III. The symbol "@6" is used

to denote operations which can be omitted when estimates are not computed.

D.1 U-D Optimal Measurement Urdate

The following mechanization was suggested by Bierman [1976al.

Inputs: U - upper triangular matrix containing U-D factors of

. a priori covariance, with U(I,I) = D(I)

Z,A,r - observation, observation coefficients and error

covariance, respectively

X - 32 priori estimates (N-vector)
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Outputs: U - updated array containing a posteriori U-D factors with

updated D(I) located in U(I,I) position

Q
L}

innovation covariance

Y- 1/a

(2]
]

the unweighted Kalman gain (K = Gy).

>4
]

updated estimates

| DO 10 J =N, 2, =1

Z =2 - A(J)¥X(J) (13
: D05 K=1, J=1
5 A(J) = A(J) + A(K)*U(K,J) € Eq. (2.69)
v G(J) = U(J,J)*A(J) @ Eq. (2.70)
Z =12~ A(1)%X(1) ee

G(1) = A(1)*U(1,1)

Comment: The quantities Z := Z - ATX, G = DUTA and A := UTA have been
computed.
a=r + A(1)%V(1) € Eq. (2.72)
Y = 10/0
U(1,1) = U(1,1)%pty € Eq. (2.73)
DO 20 J = 2,N
B =«
a = a+ V(J)®A(J) @ Eq. (2.74)
i Az =A(J)%y 8 Eq. (2.76)
i y=1./¢a
j U(J,d) = U(J,d)%6wy € Eq. (7.75)
|
%
|
7
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DO 20 I = 1,J=-1

8 = U(I,Jd)

U(I,d) = 8 + G(I)¥a @Eq. (2.77)
20 G(I) = G(I) + G(J)#g 6Eq. (2.78)

Z = 7% ee

DO 30 J = 1,N
30 X(J) = X(J) + G(J)*z ée

D.2 U-D Time Update Algorithms

Each of the time update methods involves the following arrays and

calculations.

NxN state transition matrix

Input-- ¢

o
'

NxK matrix of process noise coefficients

[~
1

upper triangular matrix containing U-D factors of error

covariance with D stored along the diagonal

>
]

N-vectcr of estimates

<3
L}

N+K-vector with process noise variances stored in

first K locations

Qutputs: U - updated array containing a priori U-D factors with

updated D(I) stored in the U(I,I) location

X = updated estimates
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Comment: Define the Nx(N+K) working array W by an EQUIVALENCE statement

80 that the first K columns of W are identified with the matrix B and the

last N columns contain the m_tirix ¢.

DO W I = 1,N
F(I) = 0.
DO 40 J = 1,N
40 F(I) = F(I) + ¢(1I,J)%X(J) ee

DO 50
X(J) =
V(J+K)
DO 50
DJ 50
50 6(1,J)

N, 1, -1

~~
- T | T = S 11
N
H o -

- w w -

'

Wt
oy

oy & =
~ 9

( + ¢(I,L)*U(L,J)

Comment: The array W now contains the matrix B in the first K columns and
the product U in the last N columns. The (N+K) array D = diag(Q,D)

is in V, and X contains the updated estimates. At this point the updated

U-D factors may be computed by either of the following algorithms.

Modified Weighted G.3im-Schmidt Triangularization

M = N+K
DO 90 J =N, 1, =1
D= 0.

DO60 I = 1,M
F(I) = W(J,I)*V(I)
60 D = D+ F(I)"W(J,I) € Eq. (3.28)

U(J,d) =D

IF(J = 1) GO TO 90
IF(D = 0.) GO TO 80
= 1./D
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D075 I=1, J=1

g =0,

DO 65 L = 1,M

B + W(I,L)®*F(L)

B
B g
U

-~

[}
wtu
u

A
(1,d
DO 75
Ww(I,L)

w

1,M
W(I,L) - B*W(J,L)

GO TO 90

D085 I = 1,J-1
u(1,d) = 0.

CONTINUE

Modified Givens Triangularization

DO 80 J=N,2,-1

58
n o
o

<> W
oo ounn
=
»
>

(

IF(I < M=1) GO TO 30
C = YJ*R

DO 40 L = 1, J-1
= W(L,I)
W(L,I) = YI®W(L,I) - XI*W(L,M)
W(L,M) = C*W(L,M) + S*F
GO TO 60

IF(R >.25) GO TU 45
5 - , J““

W’L ) = W{L,I) - XI*W(L,M)
W(L,4) = R*W (L M) + S*F

GO TO 60
D050 L= 1, Jot
W(L,I) = W(L,I) = XI#W(L,M)
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@ Eq. (3.29)

é Eq. (3.30)

D oD

® D

Eq.

Eq.
Eq.

Eq.

Ea.
Eq.
Eq.

Eq.
Ea.

Eq.

(3.81)

(3.82)
(3.83)

(3.84)

(3.85)
(3.86)
(3.87)

(3.86)
(3.87)

(3.86)
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50

75
80

85

Comment :

= W(L,M) + S*(L,I)

E >
—~
c
=
A
]

D075 I=1,d-1
= W(I )M)

[~

—~
-
-

s
]

D

=
—
[
[
~
"

DO 85 I = 1,K+1
D =D+ V(I)W(1,I)%2
U(1,1) =D
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The updated U-D factors are now in U.

15

@ Eq. (3.88)
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Appendix E

Arithmetic Operation Counts

E.1 temized of U=~ rithm

The arithmetic operations required for a U-D optimal m.asurement
update are listed in Table E.1. This list includes the operations needed
to compute updated estimates and the U=D covariance factors via Egqs.

(2.69-2.78).

The costs associated with the MWGS and modified Givens matrix
factorizations (cf Chapter III) are itemized in Tables E.2 and E.3,
Note that these costs do not include the operations required to compute
the products oﬁ and 0?. Hence the total U-D time update costs for
each method may be obtained by including an additional .5n3 + .5n2

adds and multinlies to the totals in Tables E.2 and E.3.

E.2 Propagation Costs for Systems with Colored Process Noise
Propagation schemes for sy<tems with colored process noise are
discussed in the last section of Chapter III. The U=D covariance factor-
ization is shown to be particularly well-suited for one-at-a-time propa-

gation of colored noise parameters. This propagation method is derived
oy exploiting spacial system structure and permits savings in both com-
putation and computer storage. The arithmetic operations involved in

the U-D edlored noise update are given in Table E.4., These counts repre-
sent the costs sustained when a modified Givens factorization is used

for the deterministic phase of the mapping. The calculations required
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for a MWGS colored noise update may be obtained by replacing the modi-

fied Givens counts in Tablz 4.4 with the appropriate totals in Table E.2.

The costs associated with a simila: one-at-a-time propagation
of triungular covariance square rootrs are listed in Table E.5. Note
that when k is large this square root algorithm s less efficient than
a carefully structured Schmidt time update (ef Table E.6). The extra
calculations involved in the one-at-a-time algorithm are related to
the Agee-Turner matrix factorization.* Although the one-at-a-time
algorithm is czlower than the Schmidt update, it does reduce computer
storage requirements and, thus, may be preferred in situations where

storage is limited.

A colored noise time update of the Potter covariance square root
is also most efficiently accomplished by applying a carefully constructed
Schmidt algorithm. Notice, however, that the Potter-Schmidt update does
not allow for full exploitation of spec.al system structure. Since the
square root g is a general nxn matrix, the product S = @g contains no
large block ot zeroes to simplify the update. Howeve.,, some computational
savings are possible if one is careful to order the parameter vector
appropriately. Note that when an upper triangular a priori square
root S is desired, propagation costs are minimized if the state vector

is defined as follows.

1'Ti’xe Agea-Turner squere.raat algorithm is considerably more expensive
than its U-D counterpac.. The reader mey refer tc Aopendix C for
details of these methods,
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pl }k
X = (E.1)
x| In

In this case a Schmidt time update may be performed in two stages as

indicated in Eqs. (E.2) and E.3).

k k n k k n
,_.4\—-\ ey m—— ,—-—--_-\ pr—t— —r,
r r 7 ™ -
a4 TR
k . Sp pr . S pr
S Sep | 5x 0 o |8
|
i r - -
| &, 0 |
] SP SPX 0 Sp pr
) t ﬁk -f = (E-3)
n{ 0 bo {5, 0 o | §
L e d

Netice that the Householder transformation T zeroes out the subdiagonal
alements of the last n rows without disturbing the first X columns
of the arrey. Similarly the second transformation T triangularizes

the first x rows of the array without altering the last n rows and

columns.

If the state vector were reordered with the colored noise parame-

ters last, the nxk block of zerces in the left hand side of Eq. (E.2)

198
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could no longeér be fully exploited. 1In this case an initial transforma-
tion T would be required to cperate on all (n+2k) colitmns of the array

in the following way.

k n k k n k
m—, ” prtiren, o, p—— p—t———
- - - t 1
n { 0 8 S B S
| Yt Xp X ~Xp
[ q, O T = ‘e.h)
3 . pr Sp 0 0 Sp
l 0 T |

Hencé, the complete update for this parameter arrangement involves
m-re computation than »n update =ssociated with the state vector in

Eq. (E.1).

By similar arguments one can thow tha* when a lower triangvlar
a priori square roct is desired, the Schmidt update is less 2xpensive
if the colored noise parameters are positioned in the lower portiocn
of the state vector. The operation: ‘equired for a Potter-Schmidt

culored noise update ar=2 listed in Table E.7.
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Table E. 1. Operation Count for U-D Measurement Update

Computez.ro0as

Adds

Multiplies Divides

-

f = jTa

For j=1,...,n

GJ = Gj_1 + Vij
s 1/0‘1

™
(9
]

= ayq 8y g

o
[

Omit the following when j=1
I LA
For i=1,...,J=1

A o~ 4
uij = uir'i' AJKi

el

i = Ki + vjﬁij

EJ=VJ

- T
Zz=(z-a Q)Gn
Q =¥ + K%

-5!12 - .5“

.5n2 - .5n

.5n2 - .5n

n

2n

Totals

1.5n2 + 1.5n

1.5n2 + 5.5n n
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Table E.2. Operation Count for MWGS Factorization

121,2,.0.,3=1

I

.S(n2 - n)(n + k)
£=z1,...,n+k

Hil o= "i!. - TiiJ"Jl -5(!12 - n)(n + k)

Computations Adds Multiplies Divides
For j=n, n-1,...,2
fl:= dlel; £=1,...,0n4k n? + nk
- n+k .
; dy = 3 L n? + nk n? + nk
2=1

.S(n2 -n)(n + k + 1)

.5(n2 = n)(n + k)

Totals n3 + n%

n3 + 1.5n2 - .5n n-1
+ (n? + n)k

%#This comoutation also performed when j=1.
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Appendix F
Cost Comparison of Gain Evaluation Algorithms

Triangular covariance factorizations are employed in Chapter V
to develop new algorithms for evaluating suboptimal measurement updates.
These algorithms consist of two parts: an "optimal" update followed

by an Agee-Turner matrix factorization (see section 5.1).

The arithmetic operations required to perform a gain evaluation
using the ubuT and ssT triangular factorizations are summarized in Table
F.1. Notice that the operation counts given here for the Bierman and
Carlson optimal updates are different from those listed in Chapter IV,
The differences are related to the costs of estimate calculations which

are omitted from the error analysis counts.

From the total counts in Table F.1 it is apperent that the
U-D factorization yields the more efficient evaluation algorithm.
The significance of this difference in efficiency is illustrated by
applying the UNIVAC 1108 weights* to the total counts in Table F.1.
The weighted counts for each fectorization method sud the conventional

method are included in Table F.2,.

*Error analysis is usually performed on large, ground-based computers.
Hence the UNIVAC weights (of Chapter IV) are appropriate for this
cost comparison,
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Table F.1 Arithmetic Operations Required By Gain Ev-luation Algorithms

Square

Computation Adds Multiplies Divides Roots
Bierman U-D .

measurement 1.5n - .5n 1.Sn2 + 4.5n n 0
update
Agee=Turner U=-D

Factorization n2 n2 + 3n -2 n 1 0
(Appendix C)
TOTALS 2.5n2 - .5n 2.5n% 4 7.5n = 2

for U-D + + 2n - 1 0
Algorithm (.5n2 + .5n)* (n2 - n)*
Carlson

Square Root 1.5n2 + .5n 2n2 + Un 2n + 1 n
Update
Agee=-Turner SST

Factorization n? 1.Sn2 + 5.5n = 5§ 2n -~ 2 n
(Appendix C)
TOTALS 2.5n2 + ,5n 3.5n% + 9.5n ~ 5

for + + 4n ~ 1 2n
S Algo: ithm (.5n2 + .5n)* (.5n2 + .5n)%

Table F.2 Gain Evaluation Operation Counts Weighted For UNIVAC 1108

Algorithm Execution Time/r
U-D 6n° + 19n = 7.3 + (1.9n% - 1.9n)*
S 7.4n2 + TH.6n - 11.5 + (1,202 + 1.2n)*
Conventional

(Stabilized Kalman)

906“2 + 706“ + 3.5

®variances computed
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Figure F.1 displays the weighted counts from Table F.2 as a function
of n and m where m represents the number of measurements included before
variances are computed. Each cost has been normalized by the correspond-
ing conventional evaluation cost. Hence the curves for S and U-D repre-
sent the percentage cost increase (or decrease) relative to the conven-

tional evaluation method.

100
BOL-
60}-
PERCENTAGE
INCREASE aol-
OVER
CONVENTIONAL
CosTS 20
T
\;
20 N AN .
\\\ U'D
-------- i S
B0V, Y I U NN W A N W S N
0 5 10 15 20 25 30 35 40 45 50
n

Fig. F.1. Cost Comparison of Arbitrary Gain Update Algorithms

] Notice that for all values of n and m the U-D algorithm is more
efficient than either of the other methods., Note also that the relative
expense of the square root algorithm increases as n decreases. This

increase is related to the costs of square root calculations which are

i more apparent when n is small. Even when n is large, however, the
i 189
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U-D method is noticeably less costly than the square root scheme, When
variances are reguired infrequently, the U-D evaluation is approximately

35% less expensive than the conventional method.

From the cost comparisons in Chapter IV we know that time propa-
gation usually requires an order of magnitude more computation than does
measurement updating. Hence Figures F.2 - F.5 give a more realistic
comparison of error analysis costs, These figures display the UNIVAC
costs associated with a U-D time update using the modified Givens algo-
rithm, followed by m suboptimal measurement updates. The U-D costs
have been normalized by the conventional error analysis costs and are
given as a function of k/n for n = 10 or n = 30. Notice that for general
systems the U-D algorithm usually requires less than 40% more computation
than the conventional error analysis method, and when m = 5, less than
25% additional computation is required. For systems with colored process
noise the U-D algorithm is particularly efficient, and when k/n < 1.2
this U-D method is faster than the conventional algorithm. In fact,

when m = 5 the U-D method may require half as much calculation as the

conven ional error analysis formula,
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