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General Notation 1_vstem Parameters an_ Variables

x(i) n-dimenslonal state vector of discrete linear stochastic

process

z(i) m-dim_sional observation vector
_w(i) k-dimedslonal zero mean white Gaussian process noise

v(i) m-dimensional zero mean white Gaussian data noise, indepen- _
dent of w(i)-

4

@(i) nxn state transition matrix

B(i) nxk noise transition matrix

A(i) mxn d_ta coefficient matrix

aT(i) n-dimensional vector of data coefficienls .!

p(i) k-dimensional colored process noise vector !

M(i) kxk diagonal colored noise transition matrix

y b-dimensional vector of bias parameters i

_(i) mxm diagonal covariance of data errors, _(i) '!

r(i) covariance of scalar data error

Q(1) kxk dlagonal covar_nce of white process noise

Statistical and Filter_elated _ _ !

_(i) minimum variance estimate of x(i) given data {z(J)}, J _ i

_(i) s priori estimate of x(i), based upon data {z(J)}, J < i !':
K(i) nxm filter gain matrix

_(i) nxn error oovarlance matrix for _(1)

_(i) nxn error coverlance matrix for l(I) -::

a innovstlons error covariance ?i

S n_n square root of estimate error covariance metrlx

2 •

'I xi
J _
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_1 and Filter-P_latedOuantltles (contd)

_i- U nxn unit upper triangular factor of error covartance matrix
C

_'_ D nxn diagonal matrix, re_ated to error covariance matrix
by the identity P = UDU_ where U is defined abov_ _:

.) Ux, Dx those portions of the U-D covsrlsnce factors which correspond :to the x parameters ::

_. ox standard deviation oi'tn_ -arameter x :_

_ E{'} e_pectation operator _-

x - N(O,P) x is a normally distributed random variable with zero mean :_
and covariance P

?
Mathematical Symbols

_ ¢ is an eleaent of

Rn the set consisting of n-tuples whose components are real
numbers [

Z summation

r _
,> = rounded to

not equal to z

, ll'll Euclidian vector norm i

• II'II D norm with metric D, i.e., llvll D = TDv ;12 _:
!,

n
{ }i=I sequence of n quantities

:= replace in computer storage _.

>> much greater than

$

WGS weighted Gram-Schmidt

MWGS modified weighted _ram-Schmldt .:

,_ _SS root sum of squares

GS Oram-Schmldt

: xii '
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_ Abbreviations (contd) ..

MOS modified Gram-Schmidt
- i

sgn sign

diag diagonal

- pseo microsecond

km kilometer )

,_ km/sec kilometer per second _. -

•! mlsec meter per second

mmlsec millimeter per second

i GM gravitationalmass

Superscripts

- T matrix transpose

-I matrix inverse .;

: I/2 upper triangular Cholesky square root

_- -I/2 inver_ of upper triangular Cholesky square root ;

^ after incorporatingmeasurement

, - before incorporatingmeasurement

_" (J) after jth iteration (section 3.3)

.. (j) after (n-j)th iteration (sections 3.4 and 3.5)

: xiii

1977005172-014



Abstract

In thls report an improved computational form of the discrete

Kalman filter is derived using an upper triangular faetorlzation of

the error covarlance matrix. The covariance P is factored such that

P = UDUT where U is unit upper triangular and D is diagonal. Recursions

are developed for propagating the U-D covarlance factors together with

the corresponding state estimate. The resulting algorithm, referred

.... _ to as the U-D filter, combines the superior numerical precision of

square root filtering techniques with an efficiency comparable to that

of Kalman's original formula. Moreover, this method is easily implemented _ .

J_
and involves no more computer storage than the Kalman algorithm. These

characteristics make the U-D method an attractive real-time filtering _

: technique. _.

A new covariance error analysis technique is obtained from an

?
extension of the U-D filter equations. This evaluation method is flex-

ible and efficient and may provide significantly improved numerical

results. Cost comparlsons show that for a large class of' problems

the U-D evaluation algorithm is noticeably less expensive .hen conventional _ !

error analysis methods. The U-D me_:.od is shown to be especially attrac- _

tire for problems involving large numbers of bias parameters since

it yields accurate and efficient techniques for performing sensitivity

analysis and reduced-order filtering.

r I_ k

• xiv
t
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+_--| Chapter I. Introduction

_+ 1.1 Background

The optimal estimation of stochastic linear dynamic processes from !

imperfect linear measurements is a key problem in the fields of communica-

5

tion and control. Usually estimators are linear functions of the data, ._

and optimal solutions are those which minimize the mean square error, i
L

When estimates are based solely upon past and present measurements,

this problem is termed a linear filtering problem.

This report addresses the discrete.tlme linear filtering problem.

A solution to this problem, for general nonstationary processes, was

• first derived by Kalman [1960]. The discrete Kalman filter is a recursive

i algorithm consisting of two parts: a time update and a measurement

update. Each part contains difference equations for propagation of

a state estimate and its error covariance matrix. The efficiency and

simplicity of Kalman's algorithm make it particularly attractive for

use in real-time estimation problems involving small digital computers.

These features are among the reasons that Kah.._n filtering techniques

have been widely used in a variety of engineering applications such

as spacecraft navigation, aircraft guidance and control, marine navigation

and power systems control (cf Battin and Levine [1970], Huddle [1969], +_

! Holdsworth and Stolz [1970] or Miller and Lewis [1971]).

Although the discrete Kalman algorithm has been successfully

employed in a number of filtering situations, o:,actical applications

of the method :_aveoften been pJ_ued with numerical difficulties.

1977005172-016
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Instances of serious accuracy loss in the Kalman filter have been reported

by Bellantoni and Dodge [19673,Schmidt et al. [1968], and Dyer and

McReynoids [1969]. Computational problems with Kalman's method are '.
> _.

often evident in the form of indefinite computed covarianee matrices.

Loss of covariance positivity is usually the result of computer round- _ -

off and cancellation _ errors, aggravated by numerical ill-conditioning.

_ Numerical problems may occur, for example, when very accurate measurements __

- are processed in conjunction with large initial error covariances, ._

or when a linear combination of parameters can be precisely estimated

{ while others are relatively unobservable. In these cases computations

involving the error covarlance matrix are particularly susceptible

to round-of and cancellation errors.

i F

i_ A number of schemes have been devised to prevent loss of covariance
%

_ posltivlty with the hope that algorithm performance would thereby improve.

For example, Schmidt [1967 and 1968] has used artificially large process

noise and measurement noise covariances, while Kaminski [1971a] suggests

'' coordinate rotation. Such problem-dependent techniques are nonoptimal, .

' largely empirical, and often cumbersome. Moreover, they are usually

inappropriate when precise parameter estimation is required.

The computational shortcomings of Kalman's formula have motivated

researchers to derive alternative formulations of his solutlon. While

?,
<

ignificant cancellation errors can occur when two nearly equal numbers "_'.
are differenced. Suppose, fcr example, that two numbers agree to

six digits, and each number is accurate to eight digits. Then the i

_% _' difference would have only two-diglt accuracy. _,,

! .
z'
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these methods are algebraically equiva.ent to the Kalman algorithm,

they represent different computational techniques designed for i_proved

numerical accuracy. The alternative algorithms usually require more

computation than Kalman's original formula, and some methods involve

additional computer storage. Hence, many of these methods are not

suitable for applications where computer time and storage are limited.

This situation is common to many real-time applications, e.g., on-board

navigation of aircraft or spacecraft. In the following paragraphs

several Kalman filtering techniques are discussed with this kind of ?

application in mind.

Alternative formulationsof the Kalman algorithm generally fall

into two categories: the information filters and the covarlance filters.

Information filters recursively compute either the information matrix

or one of its square roots,t Covarlance-relatedalgorithms, like Kalman's

original formula, deal directly with the error covariance or factoriza-

tlons of this matrix. Square root formulations in each category are

acknowledgedto be numerically superior to their conventional counterparts.

Kamlnski [1971b] points out that square _oot factorlzation of a filter

algorithm improves numerical condltionln6 and provides greater effective

precision.

The square root information filter was introduced by _olub [1965]

and Businge, and Golub [1965] as a tellable solution to the linear

tThe factorization A ffiS$ T is not unique. See Appendix A.

3
Rn_RODU_I3_ITYO?_ 5
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least squares problem. This method, based upon Householder transforma- , -

• tion techniques (cf Householder [1964]), was later extended by Dyer 1

and McReynolds [I_9] to include process noise. Their filter algorithm I !

has been applied extensively in soacecraft navigation and has demon- ! i

strated superior numerical characteristics (cf Christensen [1976]). _ _ i

I'
Analysis by Bierman [1973] and Kaminski [1971a] has shown that !

square root information filters are particularly efficient for problems i

involving large batches of data and infrequent estimate calculations, i _

_ However, they show that covariance-type filters are more appropriate j

for real-time applications or when measurements are sparse. I_ these 1

situations measurements are most efficiently processed one at a time I

(cf Bierman [1973]), in which case the covariance filter is referred I _;

! to as a point processing algorithm. !

_" Recent research in covariance filtering methods has been stimulated i '

by the need for fast, reliable point processing algorithms A number

of square root covariance methods have been investigated. The

Chandrasekhar-type algorithms developed by Kailath [1974], Morf and ,:

Kailath [1975], and Lindquist [1974] appear to be efficient square _

, root estimation schemes for stationary processes. These algorithms

are not directly applicable, however, to the general nonstationary fil-

_ tering problem considered in this report. For this reason Chandrasekhar

methods are omitted from further discu_ion.

Several covariance factorization algorithms have been derived

: to solve the nonstationary filtering problem. Notable among these

F

1977005172-019
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is the square root covariance filter, originally introduced by Potter

[1963] and later extended by Schmidt [1970]. The Potter-Schmidt algorithm

relies on Householder techniques which are known for their numerical

stability and accuracy. Although the Potter-$chmidt filter has produced

reliable results, Bierman [1973] has shown that this method requires

considerablymore storage and computation than does the original Kalman

algorithm. This inefficiency is related to the fact that Potter's

square root is a general nxn matrix, while the Kalman formula involves I _

la symmetric matrix.

Motivated by the need for a more efficient square root covariance

filter, Carlson [1973] derived an algorithm which retains the square

root in triangular form. Although sometimes less expensive than Pottor's

method, the n-dimensional Carlson filter requires n square root calcula-

tions each time a scalar measurement is processed. Square root calcula-

tions are usually time consuming compared to other arithmetic operations.

Hence, for many applications Carlson*s method is still noticeably more

expensive than the Kalman formula.

A promising new approach to Kalman filtering involves a triangular

covariance factorlzationwhich requires no square roots. The covariance

P is factored such that P = UDUT, where U is unit upper triangular

and D is diagonal. Bierman [1976a] suggested this factorizationand

derived a U-D measurement update algorithm. The numerical integrity

of this algorlthm has been established by the work of Gentleman [1973]

I

and [1975] which relates the U-D measurement update to the numerically

stable Givens transformationmethods. Moreover, the computational

1977005172-020
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requirements of the U-D algorithm are equivalent to those of Kalman's

method. Because of these attributes _he U-D factorization algorithm

is ideally suited for real-time applications.

Bierman's results provided the starting point for this research.

Attention was directed to the following problem areas: _

(I) Extensior of the U-D estimation method to allow for time ._

propagation.

_ (2) Demonstration, by analysis and experimentation, that the

U-D factorlzation filter is a reliable and efficient point-

processing algorithm.

(3) Application of U-D filtering techniques to other areas

of linear estimation theory.

1.2 Outllne of th_ Cont_pts

Chapters II and IIl contain a description of the various discrete-

_I" time covariance filter algorithms. In Chapter II attention is restrictedto recursive data processing methods. The conventional Kalman measurement

.-_'_ update formula is presented, and several alternatives to this method

are described. These discussions address the computational aspects

of each algorithm and conclude with a derivation of Blerman's U-D measure-

i ment update formula. Finally, a simple example problem is solved to

_',_ lllustrate_he improved performance obtained with the U-D and square

root covarlance factorlzatlon methods.

1977005172-021
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Chapter III is devoted to time propagation. After the filtering

problem is stated and the conventional Kalman solution is presented, ,_

several covariance propagation algorithms are described. These algorithms :.

are designed to prop£gate covariance factors and generally involve

orthogonal transformations. Modifications of the familiar Gram-Schmidt

and Givens triangularization techniques are used to derive reliable

U-D propagation algorithms. The general propagation methods are then

adapted to problems involving oias parameters and colored process noise.

Exploitation of system structure yields a particularly efficient U-D ,

colored noise time update algorithm. Finally, an example problem is _,
._z

included to illustrate the superior numerical characteristics of the -_

orthogonal transformation methods for covariance propagation.

_ Chapter IV contains analytical cost comparisons of the various

algorithms studied in Chapters II and IIl. Comparisons are based upon

! arithmetic operation counts which are weighted to reflect the different

_, execution times required for each calculation. The measurement update _

_ algorithms are compared first, followed by the time update cost compari- _'

_ sons Based upon this analysis the most efficient U-D and square root 5

{ covariance propagation algorithms are selected. Measurement and time

_ update costs for each method are then combined to yleld filter algorithm _

''i cost comparisons. _ _:

In Chapter V the U-D filtering method is extended to obtain flexible ,.

and concise algorithms for performing covarlance error analysls. An

efficient gain evaluation method, suitable for analyzing the effects

of incorrect a priori statistics, is first derived. Analysis is then '

O_
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extended to allow for evaluation of mismodeled data and state transition

matrices. The general error analysis algorithm enjoys certain simplifica-

tions when mismodeled bias and process noise parameters are evaluated,

and these effects are described. The analysis of neglected bias parame-

ters is also given special attention. In this case the U-D evaluation

j
_ method allows for efficient sensitivity analysis and variable dimension

filtering.

In Chapter VI the various filter algorithms are applied to a

realistic planetary navigation problem. Numerical accuracies of the

different methods are compared by computing in both double and single

precision arithmetic. Double precision results from all algorithms

are in close agreement and are used as a reference for comparing the

single precision results. Variations are introduced into the system

model in order to evaluate algorithm sensitivity to a priori statistics i

and state dimenslonality. Error analysis for this study is performed _ _*

by applying the U-D gain evaluation method developed in Chapter V.

Chapter VII gives a summary of results and recommendations for

_ further research. _

r' _ ,. k,

8
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33-798 iChapter II. Recursive Data Processing Algorithms

+
2.1 Problem Statement gnd Conventional Kalman Solution

In this chapter attention is restricted to the data processing

aspects of discrete linear estimation. That is, given the finite sequence

of observations, {z(i)}, we seek the minimum variance estimate of the _i

parameter vector, x, where +

z(i) = ACi)x +vCi) i = 0,I,2,... (2.1) 1

and x ¢ Rn z(i) ¢ Rm

The random variables x and ,(i) are distributed such that ;{
i

x - N(_,_) (2 2)
4_

T

\ I v(i) - N(O,R(i)) R(i) : diag(r1,...,r m) (2,3) ++t

t +

i +
+ E{xv(1) T} : 0 (2.4)

: + E{v(i)v(J) T} = 0 i # J (2.5) +

+_ + .,+

+ : The notation x - N(x,P) describes x as normally distributed with mean _,

' + and covarlance P. Without loss of generality we assume the m components +

of v(i) to be uncorrelated. Correlated observations may be uncoupled by +
i

the "whltening H process suggested by Andrews [1968]. See Appendix 4.

'+++ 9
-+

+
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This thesis is primarily concerned with problems where m<<n and ' :

where estimates are required frequently during the data processing.

Bterman [1973] and gamtnski [1971a] have shown that this kind of estima-

tion problem is most efficiently solved by recursive covariance-type

i
algorithms such as the following Kalman formula.d

1

_ Let the variable _(I-I) denote the minimum variance estimate of x , _

given data Zi_ 1 = {z(O), z(1),...,z(i-1)}. It has been proven t that !
/

_" _(i-I) = E{x/Zi_I}, where E is the expectation operator and "/" denotes

the conditioning. Kalman [1960] derlved the following formula for :

_ computing _(i) given _(i-I) and z(i).

J_ _(i) = Q(i-1) + K(i)(zCi) A(i)_ (i-1)) (2.6)

; K(i) ffi_(i-llA(i)T(A(i)_(i-1)A(i) T + R(i)) -I (2.7)

• #(t) : _(i-1) - K(i)A(i)_(i-1) (2.8)

This recursion has the following initial values.

AX('I)--_ (2.9)

_(-1) = P (2.10)

!

tcf Sage and Melsa _1971].

,!

10
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The vector K(i) is referred to as the Kalman gain and P(i) is the error

covariance matrix. Thus i

,4
-°

= . _ x)T} (2.11)
?

Proof of this algorithm is given in numerous texts (cf Astrom [1970],

or Sage and Helsa [1971]). We will not repeat these well-known proofs

here but will, instead, consider the computational aspects of Kalman's :n_

_; algorithm. Bierman [1973] has shown that the Kalman formula is more

efficient when the m components of z(i) are processed one at a time. _

• In this case the mxm matrix inversion in Eq_ (2.7) reduces to a trivial _

r_

calculation, and the cost of uDdating is a linear function of m. Since _'

-_ the measurement errors in each batch are uncorrelated, the data vector :

z(i) may be included one component at a time by cycling through Eqs. ;

(2.6)-(2.8) m times. This approach is emphasized and clarified by

_, rewriting the Kalman formula as a scalar measurement update algorithm.

For convenience we adopt the notation

= _(i-1) _ x_(i) ;,.= (2.12) :

The Kalman measurement update may then be written as follows.

_ r
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_ Conventional Kalman Scalar Measueement Update
+

; A
,,. x = R + K(z - aTR) (2.14)

K = _a/(aT?a + r) (2.15) ;

+

Henceforth time dependence is suppressed for notational convenience +

; unless required to avoid confusion. Where recursions are involved we
'\

) will rely on the superscripts "~" and "^" to denote a priori and a

posteriori quantities, respectively+, •

?.

! +

2.2 Stabillzed Kalman A_ggrithm i

:• Numerical difficulties with the conventional Kalman algorithm

_ prompted Joseph to reformulate the covariance update (of Buoy and Joseph +;

[1968]). His method, referred to as the stabilized Kalman algorithm,

computes _ in the following way.

J

= (I-KaT) P (I-RaT)T * KrKT (2.17)

: i
+_ This formula can be mechanized as follows.

F

i WI = I-Ka T (_.1_)
i :

N2 = WI _ (2.19) ;

m,PRODUCIBILI_ OF _
_)RI(_NALPAGE • ]POOl ..,_:

]977005]72-027



33-798 _

^ W2WITP = + KrKT (2.20) _

A second method, due to Bierman [1973], computes P using vector outer

products in the following way. : :

v 1 = Pa (2.21) '

_-KvIT
_ PI : (2.22) __

c

v 2 = P1a (2.23)

^
: _ P : (PI-v2KT) + KrKT (2.24) ._ .

r The first method is not necessarily more reliable than the second

^

one even though P in Eq. (2 20) appears to be a positive definite matrix.

i Furthermore, the original Joseph arrangement requires nearly an order of

magnitude more computation than does the Bierman method. _ 5ecause of

this inefficiency and because there is no proof of improved stability,

the first mechanization is omitted from further discussion. Even when

the stabilized Kalmsn formula is implemented by Eqs. (2.21)-(2.2_), it

involves more than double ths arithmetic operations required by the ,

conventional Kalman method.
%

i

+For tl_emost part, these mechanizations involve addition and multipli-
_ cation operations. The first method requires 1.SnJ+2n°+n multipllca-
• tions, while the second involves only _n_+_n such calculations.

L _
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_ Although generally more reliabl_than the conventional Kalman

.=.-- algorithm, the stabilized Kalman formula is susceptible to numerical

errors. This little publicized fact is demonstrated in Chapter VI.
Ig "

•, 2.3 Potter Souare Root Covariance Al_orithm

Potter [19631 obssrved that numerical problems associated with the i

Kalman algorithms were often evident in the form of indefinite computed _

error covarianoes. In order to avoid such degradation he factored the

" covariance _ so that

o;

^ (2.25)--, p ;

_L

and derived an algorithm for recursively computing _ instead of _._ _

Potter riotedthat the covariance update for scalar measurements can be

o_' written as follo_m
f

_ = _T = __KaT_ = S[I- -1 ffTlgT (2.26) ,
a

where

f ffiSTa (2.27)

a ffi r+fTf (2.28)

#

tThe initial factor, S^, may be uniquely defined by applying a Cholesky

square root decomposition to Po (see Appendix A).

• 111 _
_" _

<, •
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By proper algebraic manipulation Potter found that if a constant ¥ is

chosen such that _

: X : I/a (2.29) ,,.
_- -,

I
then

[l-XffT] = [l-¥XffT] [l-¥xffT]T (2.30) k

Equations (2.26) and (2.30) imply that _ may be computed as follows.

S = S-yKfT (2.31) <

j K = XSf (Kalman gain) (2.32) :

The following efficient mechanization of the Potter algorithm

was suggesged by Bierman [1976a]. :

2

,?

<

_ _i_

15
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Potter Scuare Root Measurement Update

f = S'_a (2.33)

x = 1/(r+fTf) (2.34)

= _I(I �(2.35)

= _f (2.36) ' '

J

~ 3= x + _[X(z-a (2.37)
!
|

: g_()fz (2.38)

Thls square root method guarantees posltivity of the computed error

covariance. It is also numerically better-conditloned than the Kalman

algorithms. Bierman [1973] has shown that the Potter algorithm is i
!

equivalent to a particular Householder update (of Appendix B). House-

holder methods are known for their accuracy and stability, and so this i

equivalence establishes the numerical integrity of the Potter formula.

, ;

Kaminski [1971a] suggests that when problems are ill-conditloned

square root filters can provide twice the effective precision of covari- i•

ante methods. In the case of the Potter algorithm, however, numerical i

stability is coupled with greater computational expense. Since the Potter i

_ update computes a general nxn matrix, _, his method requires nearly twice I

as much storage and calculation as the conventional Kalman update. I
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Because of this inefficiency the Potter algocithm is not attractive

for use in many real-time applications.

2.4 Carlson Triangular Sqqare Root Algorithm

Motivated by the sbability and accuracy characteristics of square

root estimation techniques and by the need for a fast, reliable point i

processing algorithm, Carlson [1973] derived an alternative square root

formula. His method recursively computes an upper triangular covariance 1

square root as follows.' I

Carlsqn Square Root Measurement UDdate Al_orithm -i

t-

f = STa f T = (fl,f2,...fn) (2.39)

qO = r KO = 0 (2.40) i

For J = 1,2,...,n cycle through Eqs. (2.41)-(2.45). i

mj = aj_ I + fj2 (2.41) I
i

. i=| i i

+The algorithm given here Is a modest rearrangement of Carlson's formula.

Bierman [ __ _1976b] has observed that the calculation of a i/a in

E._2."__..2)may be more accurate than the corresponding oSmput_tion,
_=j.1=j, recommended by Carlson.

_ 17
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_j = BjSj + vj_'j_I (2.44)

where

_1 S = [S 1 $2...Sn]. and Sj = (Sj(1),...,Sj(J),0,.._._0) T ::The Kalman gain is given by

K - En/_n (2.46) I_

Thus, the estimate update may be written as follows. !_

A Kn aTx)/o_rl ] ' _x = _ + [(g. - (2.47) i_

t!I
_.,

Derivation of this algorithm is deferred until the next section -,
./

where it is shown to be an easy consequence of the U-D measurement _.

update.

J

The Carlson algorithm has a good computational form and enJeTs the _.

traits of stability and accuracy generally attrlbuted to square root _!

filters. Although the Carlson formula requires considerably less storage

and computation than the Potter square root method, it is still noticeably

less efficient than the conventional Kalman algorithm. Unlike the conven-

tional method, the Carlson algorithm requires n square root calculations

for each scalar measurement update, and squar- roots are usually

tlme-consumlngoperations. This is particularly true for small on-board

computers such as the I,itton_516. This computer has 32 bit double
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g precision arithmetic and requires approximately 1000 _sec to calculate ,_

- a square root. By contrast it performs an addition in only q _sec.

A careful comparison of measurement update costs is included in Chapter

IV where the Carlson method is shown to be unreasonably expensive for _
P

a significant class of problems. ,_

I

2.5 U_D Covarianee Factorization Al_orithm

: Bierman [1976a] recognized that square root calculations required

bY the Carlson algorithm are often costly and proposed a square-root-free i

measurement update scheme. His method employs the covariance

factorization

;

P = UDUT (2.48)

where U is unit.upper triangular t and D is a positive diagonal. It is
?

well known that for symmetric positive definite matrices thi_ factoriza- -_

tion exists and is unique (cf Martin et al. [1965]). An algorithm

_ for computing the U-D factors of P is described in Appendix A.

Measurement updating using the U-D factorizationpreserves the

non-negative definite structure of P and is equivalent to the Carlson

:i method without square root computations. _.

,k

_The factor U could also be taken as lower triangular. However, upper _
triangular factorizationsallow for variable dimensioned filtering _
as described in Chapter V. ,

• t 19 ,;:
,?
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The U-D data processing _Igorithm may be derived by factoring the

Kalman update, Eq. (2.16). If P and _ are both factored according to :

Eq. (2.48), then
A •

B _T : _[B _ ! vvT]_T (2."9) _+

° j
2

where

v : Df vi =difi (2.50)

f : uTa (2.51)

a = r + fTgf : r + i:I_ vifi ! _

The bracketed term in Eq. (2.49) is positive definite and hence may _" g

. be factored as U D UT. Since the product of two unit upper triangular i

matrices is again unit upper triangular it follows that i _

i '
^ -_ _ _ __, u : u u = _ (2.53) _

z l _
Hence the U-D update rests on the [actorization _ .

:, U _ UT ffiD - (I/.) vvT (2.5_) I "}

: Bierman has observed that the Agee-Turner matrix factorizatlon in ! 'I;_

Appendix C may be applied to this problem and results in the following i

recursion for computing U and _. i

L

,; 20

#J
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%With cn = -I/_, cycle through Eqs. (2.55)-(2.57) for J = n,...,2.

_j = Bj + oivj2 (2.55)

_kJ = °jVkVj/_J k = l,...,J-I (2.56) i

cj_ i = cjdj/_j (2.57)

_1 = dl + ClVl (2.58) _ ;

Equation (2.55) is subject to cancellation errors since it

involves the differencing of two positive quantities. Bowever this _

expression for _j-and, hence the entire recursion, can be rewritten

as a numerically stable formula. :_

Let the partial sums_ aj, be defined as

aj = r + _ifi2 = aj.l + _ljfj2 (2.5g)

Then since vj = djfj, Eqs. (2.55) and (2.57) imply that !

cj =-I/=j (2.60) ;;_

^ _

This value for cj yields the following expression for dj.

^ /=J"/ 1
oj = d'j k aj / J = 1,2,...,n (2.61)

1977005172-036
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Eqs. (2.56)-(2.61) Imply that

= I �[OIx2v(1)IX3v(2)l...l _v (n-l) ] (2.62)

where ._,

)_j---fj/@mj_l (2.63) )_..

(v(J))T = (Vl,V2,...,vj,O,O,O) (2.64) "!:_

The desired factor U = U _ may now be constructed from Eq. (2.62).

Let j and Uj denote the Jth columns of U and U respectively.
%

Then _

Oj = Oj + kfij_l (2.65) -Yl

),

"_ gJ = Uv(J) = KJ-I + vjUj (2.66) :)

!
J

l_O = 0 (2.67) T

and _

_ _ _nlan = K (Zalman gain) (2.68)

, The U-D update is summarized as follows. Given a priori covarlance '.

_ factors U and B and the scalar measurement z = aT x + v (E{v 2} = r), the

updated covarlance factors 0 and _ and the Kalman gain, K, are obtained

• by evaluating the following sequence of equations.

L 22
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• B;L_rmanU-D Measurement Update Aigorithm _;,

f = UTa fT = (f1'f2"'"fn) (2.69)

=1 v = Df vj : dj fj (2.70) _'
k t I ;_

t
i

KIT = (v 1,0,...,0) (2.71)

_ =1 : r + vlf 1 (2.72)

,Y

"* 1 : (:il "

! For J : 2,...,n cycle through Eqs. (2.74)-(2.78). :,

, _j = _j-1 + vjfj (2.74) -,

-', _ = _ (2.75)
i J
i

:" i' )'J = "fjlmj-1 (2.76)

_j = Uj �;_J-1(2.77)

f

Kj = gJ-1 + vj_]j (2.78)

where

i] = [01,i]2,...U n] and 0 = [01,02,..._J n]

i
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The Kalman gain is given by

K '-_n/an (2.79)

The salient feature of Bierman's algorithm is the way in which the

updated diagonal _ is computed. Since the quantities, aj, are calculated

as positive sums (cf Eq. 2.74), cancellation-typeerrors are avoided and

^

the positivit_ of _, and hence, P, is assured. Furthermore, the elements

of _ may diminish to near-zero without affecting the _tab_lity of the i

algorithm. The numerical integrity of this method is further established

by the analysis of Gentleman [1973] and Fletcher and Powell [1974].

Their work relates the U-D algorithm to a numerically stable Givens i

orthogonal transformation. An efficient Fortran implementation of

the U-D measurement update algorithm is included in Appendix D.

Proof of the Carlson algorithm (Section 2.4) is immediate from the

_ U-D formula when the square roots S and _ are identified as

- ,, _ - U_'/2 _ =O_'/2 (2.80)

Equation (2.80) suggests that the U-D method shares the attributes

of accuracy and stability generally associated with square root filtering

| techniques. This fact is demonstrated by the case study In Chapter Vl.

2.6 Example Problem

• i iThe following example provided by B_erman [1976b], illustrates the

!numerical characteri_tlcsof the various data processing tec_:niques

]977005 ] 72-039
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described in this chapter. In particular it demonstrates how the conven-

tional Kalman method can produce nonpositive error oovariances while the _

factorization methods yield accurate results.

Consider the problem of estimating xI an_ x2 from scalar measure-

ments zI and z2 where

z 1 = x 1 + cx2 + v1

(2.81) _ 7

z2 = Xl �x2+_2 _ _

i Data errors, _I and v2 are uncorrelated, zero mean random variables with _ •

unit variances. The a priori error covariance is assumed to be

where o=I/¢ and 0<¢<<I. The quantity ¢ is assumed to be small enoush

such that computer round-off produces

I+ =2 I (2.82) 1

This estimation problem is certainly well posed. The observation

z; provides an accurate measurement of x; which, when coupled with the

observation z2, should accurately determine x2. However, when the

various data processing algorithms are applied to this problem several

diverse results are obtained.

1977005172-040
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Let the gain and error covariance associated with the _easuremen_ "_
/

zI be denoted as KI and PI respectively. Similarly the measurement z2 is

associated with K2 and P2" Table 2.1 gives the exact solutions for g and "_
,o

P at each step and shows the rounded solutions computed by the various

filter mechanizations. Notice how computer round-off errors are evident _ _:

after the first measurement is processed. The first covariance matrix _o

computed by the conventional Kalman formula has a zero variance. One

might expect this result if the exact variance were on the order of ¢2 or _

even ¢. However, in this case the correct value is approximately F11 = 2, (

and so the Kalman error is appreciable. Subsequent processing of data "_

by the conventional formula results in even larger errors. The second +

computed covariance, for example, has one negative diagonal element

and one that is zero. It is also int_restlng to note that this covariance

matrix has off-diagonal elements equal to -I if the P12 element is

computed and set equal to P21" On the other hand, _,f P2_ is computed

directly it has a value of +I. Yet computer implementations of this

algorithm typically include calculation of only the upper (oP lower) S

triangular elements.

Although the stabilized Kalman formula performs better than the _

conventional method, it too computes different values eor PI_ and P21 :'

after _he second update. The quantities P+2 = -I - 3¢ and P21 = -I - 2¢ +?

, cculd be averaged to give PIE = P2; = -I - (512) ¢. However, note that _:_,_

the exact answer rounds to P12 " P21 " -1 - 3¢. _ +_.

ommlNALPAo|m ,:,

1 _'+;
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All the factorization algorithms discussed here produce accurate _

I

results. The U-D and Carlson methods yield nearly identical resultsI •
i and compute rounCed covariances equal to the rounded exact answer.
i

This sample problem illustrates how the Kalman covariance algorithms ii

a_e prone to numerical errors which can significantly affect filtering

" accurscy. The factorization methods, on the other hand, avoid critical

round-off and cancellation errors and yield reliable results.

,, 27
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Chapter III. Filtering for Discrete Linear Processes

3.1 Problem S_at_men_ and qonventional Solution

The discrete linear filterii_g problem is an extension of the
1

3

parameter estimation problem discussed in Chapter II. Instead of being
l

constant, the parameter x is described as the state of the following

linear multistage process.

x(i+1) : oCi)x(i) + 3(i)w(i) i = 0,I,2,... (3.1)

The array _(i) is a known nxn transition matrix, B(i) is a known

nxk matrix and

x(O)- N(_,_) (3.2)

!-,

w(i) - N(O,Q(i)) Q(i) : diag (q1,..,qk) (3.3)*

, E{w(i)wT(j)} : 0 i w j (3.4)

: _ E{x(o)wT(i)} = 0 for all ! (3.5)

At stage i scalar measurements are available and are linearly related to

x(i) by the e-.uation

• i tThere is no loss of generality in assuming that Q(i) is diagonal.

( K
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z(i) = aT(i)x(i) �_(i)(3.6)

where

v(i) - N ,r(i) ,_ (3.7)

E{v(i)d(j)] : 0 i _ J (3.8)

S{v(i)xT(j)} : 0 for all i,j (3.9)

S{v(i)wTtj)} = 0 for all i%j (3.10)

The optimum solution to this filtering problem is the minimum

variance estimate of x(i) given the observations Zi : {z(O_,z(1),...,z(i)}.

Kalman [1960] derived a recursive solution to this problem by combining

the data processing formula of Chapter II with an optimal time update

algorithm. The complete Kalman filter is summarized as follows.

Conven$ional Kalman Filter

Time Update I_(i+1) : $(i) _(i) (3.11)
P(i+1) : @(i) _(i) oT(i) + B(i) Q(i) BT(i) (3.12)

{ 30

.I
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_(i) = _(i) + K(i)(z(i) - aT(i) _(i_ (3.13)

Measurement
Update _(i) : P(i) - K(i)aT(1)P(i) (3.14)

• This recursioa is initializedby the following quantities. ?

}

_(0) = _ P(O) = P (3.16)

In Chapter II several alternative formulations of Kalman's measure-

ment update algorithm were presented. These data processing algorithms

)
may be combined with appropriate time update schemes to provide alterna-

_ tive mechanizations of the Kalman filter. For example, the stabilized

Kalman measurement update, Eq. (2.17), may be substituted for the conven-

tional Kalman formula, Eq. (3.14), to yield the stabilized Kalman filter. =

Measurement update algorithms involving covariance factorizations,

such as the Potter square root or the Bierman U-D methods, require alter-

native formulations of the covariance propagation formula, Eq. (3.12). :_

i' Several techniques for propagating covariance factors are described

in the remainder of this chapter.

:-_

'_
_ ''.
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3.2 RSS Method for Prova_at£n_ Covariance Factors

Suppose that at each stage of the filtering process the a posteriori .:Y

ccvarlance, P, is factored such that

AA _;
^ _T or _ UD_T (3.17) _ _P= =

i '
1

The RSS method for computing the a priori factors g (or U-D) at the next t

stage involves "squaring up" _ (or _-_) to obtain _• The conventional

propagation formula Eq• (3.12) is then applied to compote _, followed by i _-

an appropriate Cholesky decomposition to obtain g (or U-D) _• _ _

Carlson [1973] recommends the RSS method as an efficient square }

T

root propagation scheme• However the analysis in Chapter IV demon-,

strates that this formula enjoys only a minimal savings in computation.

Of greater significance is the potential loss of accuracy associated :

with this method. A major motivation for factoring the Kalman algorithm : _;

: is to gain increased accuracy due to better numerical conditioning. _

This advantage can be eliminated by applying the RSS propagation scheme.

The example problem in Section 3.7 illustrates why the RSS method is

i numerically hazardous.

3.3 Gram-$chmidt Propagation Al_orithms

AA
Suppose _ is factored as _ : _DU T and let ._

k n

w = Is } n ,

/

32
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k n _

= diag (Q, D) (3.19)

The propagation equation P = #_#T + BQBT may then be written as

i

: WDWT (3.20)

The U-_ factors of P may be obtained by applying a particular Gram

Schmidt orthogonalization to the row vectors of W. This procedure _

involves the following inner product space.

Let Vn denote the vector space of n-tuples over the reals with _

inner product, <'">D where

D _ _

<vi,vj>D = viTDvj, for.all v in Vn (3.21) _

I IvliD : <v,v>D (3.22) _ :

!

i Thus, the vectors v and w are "D-orthogonal" if <v,w>D : O. _ e

Suppose {wi}_= I is an independent set of vectors in V_ where n _ m. < _

- A D-orthogonal set {vi} may be obtained from {wi} by applying the follow- ,_

Ing weighted Gram-Schmldt (WGS) algorithm.

33
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I Weighted Gr_m-$ehmidt Orthogonallzatlon

Vn - W n

2_

<Wn_ I, Vn> D }
.... V n

vn-1 - wn-1 I IVnlI_ , _

. (3.k3) _

<Wl ,vi>D _

_. ' Vl = w 1 - • ,,_ vi _

""DIIvill" ° :"
i=2

This WGS algorithm may be used to compute the I_-D factors of -?:

= P in the following way. Consider the n independent row vectors of

W in Eq. (3.18) as vectors,i_n__<_ where m : n + k. If the D-orthogonaln -,

_" set {vi}i=I is computed via _S applied to {wi}, then Eqs. (3.23) imply

_ _ _ £I

WlT vlT !-

w2T v 2

W = . - U _ (3.24) "

WnT VnT iI

' where U is unit upper triangular• Since ., ,ectors {vi} are D-ortho_onal

it follows that !,

ii [_
,{

_EPRODUCmR/TY OF THE _
' 3_ _)_QENALPAGE ISPOOR _ _,,,

q97700572-049
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Ilvlll G o
2

= WDWT = U IIv21I'_ _T (3.25)
2

o • llvnll_
i--, m

Thus, the elements of U and D are given by

2

"_j= IIvjlI_ ,I= 1,...,n (3.26)

1

_ij = i- <wi,vj>D i = I,...,J-I (3.27)
dj

The orthogonalizationused to compute U and 5 is a modest generali-

zation of the familiar Gram-Schmidt (GS) procedure (cf Noble [1969]) i"
!

in that inner products are weighted by the D matrix and the vectors
i

{vi} are not normalize_. The required orthogonalizationmay also be !

attained by applying a Modified Gram-Schmidt (MGS) procedure, (cf Lawson {

and Hanson [1974]). SJorck [1967], Jordan [1968] and Rice [1966] have 1

investigated the numerical characteristicsof GS and MGS. Their studies

establish that MGS is more accurate, takes no more arithmetic operations i

and requires less storage than does GS. Moreover, the works of BJorck i

and Jordan show that triangularizationusing MGS has accuracy that

is comparable with the reliable Givens and Householder methods to be

described in this chapter. For these reasons the following Modified

Weighted Gram-Schmidt (MWGS) algorithm is recommended for U-D time i

' updating.

] 977005 ] 72-050
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Modified Weighted Oram-Schmidt Factorization

Given the full rank nxm matrix W with row vectors {wi} and an

m-dimensional positive diagonal matrix, _. The U-D factors of

ffiW_WT are computed as follows• _

T i

Evaluate Eqs. (3.28)-(3.30) recursively for J = n, n - 1,...,1 _

2 ) _

_j= I lwj(n-J)ll5 (3.28) ) ;6:
) -:L

1 t

uij = -'-dj< wi(n'J)' wj(n'J) > D i = 1,...,J-I (3.29) _i

wi(n'J+l) wi(n-J) wj(n-j) (S.30) I
= - _lJ i s

This recursion begins with the vectors wi(O) where

i_
wi(O) = wi i ffi1,...,n i

3

This algorithm may be obtained from the WGS results with the _ '

easily proven identity _ :.

j(vj = w n--J) J = 1,...,n (3.31)

Although the inclusion of superscriptsmakes the MWGS algorithm appear

rather complicated, this method is easily mechanized. Compactness, 1

Y

o j •
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efficiency and simplicity can be achieved by arranging the FORTRAN +4

implementation so that successive w's in Eq. (3.30) are written over one i

another (see Appendix D).

Gram-Schmidt orthogonalization may also be used to propagate i ;
covariance square roots. Let P be given by Eq. (3.12) where _ = _T.

A triangular factorization P = SS-T may be obtained by the following !MGS algorithm.

Modified Gram-Schmldt Souare Root Factorizatlon

Let

k n

W : [BQI/2 I _]) n (3.32) ;

-\

J

with row vectors denoted as {wi}_:I. An upper _riangular factor, ?

S, such that

_T = WWT (3.33)

may be obtained from the following recursion with inner products

defined by

<wi,wj> : wiTw j (3.34)

For J : n,...,1 cycle through Eqs. (3.35)-(3.39).

• 37 ._,
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4 Bj= llwj(n'j)112 (3.35)

_. gjj= _ (3.36)
).
)'

wj(n-J)/gjj_ vj = (3.37) _

_:_ - Nij = <wi(n-J), vj> I (3.38)

:{ i = 1,2,...,J-I

_ wi(n-J+l) = wi(n'J) - siJ vj (3.39)
/

This algorithm is an easy consequence of the MWGSfactorization,

, Eqs. (3_28)-(3.30),and the identities

.£"

: D : I g : 0D I/2 (3.40)

The MGS formula may be used in conjunctionwith both the Potter and the

Carlson measurement updating method_.

• The recursions Eqs. (3.35)-(3.39)may be used to compute a lower

triangular S if the indices, i and J, are reordered so that J - l,...,n

and i --J,...,n. Since the Potter algorithm does not require S to

be upper triangular, this rearrangement of the MGS formula is also

appropriate for propagating the Potter square root.

• 38 i
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3.4 Givens Transfo_ation Methods for Covarianoe PrQ_a_tio_

Consider the problem of constructing an mm orthogonal transform- i
tion T such that _

m-n n

[w]_, n 1[ 0 I w'] (3.41) i _'

_ere W to upper trt_l_. If W is defined to be ! _

{ "W = n [BQ 1/2 I-_] (3.42) 1 :_

then the transformation in Eq. (3._1) represents a oovariance square root I _

q
time update with W" = S. i _'

Givens [1959] showed that T could b,_ constructed as a product of n _

orthogonal transformations, Tj, where i "

T ffi Tn Tn.I...T 1 (3.43)

{_ Each Tj is deslgned to zero out the subdiagonal elements of row J.

_ Thus, Tn is constructed such that for W(n) = W we have _
j -

i i'

39 _
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. -{__.-' n {[w(n)]Tn = W(n'1) = n-1 " (3.44)* _

,tLoooor ! "- _ :!

_ ,;

This transformation consists of a sequence of two-dimensional column

rotations called Givens tranrsfol_attons. These rotaticns pivot in _ _.

succession the last column of the array W with each of the preceding i "-_
(n)

columns. The rotation involving column $ Is designet to set Wnt = O. i !i'

In a similar manner Tn. 1 Is constT:uoted to zero out the subdiagonal )

elements of row n-1 by successively pivoting column m-1 of W(n'l) with 1

each of the preceding oolu_s. Notice that this transformation do_s _. :

not alter the last row and oolumn of W(n'1). This process is oontinued, i

and after T j+ 1 is applied the array has the form

m-n*J n-J

I t

j w-(J) , m _ ii:
,,G

• m (3."5_

' W(Tn...Tj, I) =

. n-J 0 \'

o

}

_ t

+An asterisk is used to denote nonzero, unnHed elements. _

i
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! +
Thus, the process is concluded with the transformation T l, _ ._

This triangularizationtechniqueinvolvesa sequenceof elementary _ )

.+ Givens rotations of the following form. :+

' "++!

j . : j : : z|+_
• • +_

: + " T- x__,yj'__ (3.,,6> _ ixj yj 0 y_;+ _ .?

0 0 0 0 +;

"+ n-J • • n-j . . _ ',
• . . _

I o 0 o o

The vector y is the pivotal column and ;'

t

y_ = /xj2 + yj2 (3.47) :_'

.+ ,_"

/-
c = yj yj (3.48) .::

- :_ -:.

k : :

X " / ; "
s = j/Tj (3,49) ::

x[= cx_- syli i=_...,j-1 (3.501 _i_*'•Y[ = sxi + cYi (3.51) :

" _I -'+
REPRODUCIBILITY OF THai _ +
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i.
The Givens covariance square root propagation algorithm Is su.Marized

below. Superscripts have been suppressed to simplify the notation and
_Q

to facilitate compu}er implementation. The symbol ":=" is used instead

and denotes replacement in computer storage.

_r

I

Givens Souare Root Factorizatlon Al_orithm

Let W be a full rank nx(n+k) matri" with column vectors

,n+k
Will: I. An upper triangular factor S such that _T :wNT may be computed

as follows.

_L

For j : n,...,1 cycle through Eqs. t3.52)-(3.58).

_ m :: k+j (3.52)

For i = m-1,...,1 evaluate recursively Eqs. (3.53)-(3.58).

c := Wm(J)/wm(.1) (3.5")

"" s = wi(J ": )/Wm(J) (3.55)

v := wi (3.56)<

* wi :=cwi - swm (3.57)

42
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wm := sv + cwm (3.58)

k n

When this recursion is completed the W array has the form W : [0 I S] j n

where S is upper triangular.

A lower triangular factor S_y be obtained from the recursion

" Eqs. (3.52)-(3.58) if the indice_and J, are reordered so that ;:

J : 1,...n and i : j+l,...,m. At the conclusion of these calculations

the W array has the form

, n k

: W : [S I O] In (3.59)

where g is lower triangular.

) The Givens trianzularization method is well known for its superior

numerical characteristics (cf Wilkinson [1965]). Thus, the Givens

.. square root factorization algorithm provides t reliable method for

propagating Potter and Carlson covariance factors. However, this method

is usually bypassed in favor of the more efficient Gram-Schmidt and

Householder time update algorithms. The reader is referred to Chapter

IV for detailed cost comparisons.

A modest generalization of the Givens triangularization technique

' yields a reliable and efficient U-D time update scheme. Recall that U-D

factorizations involve the propagation equation P = WDW T where

_3
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L
k n kn

._ W = [S I *_]} n and 5 = diag

:

Let {wi} denote the column vectors of W and let {di} represent the
o_

diagonals of D. Note that P can be written as

P = W-T (3.60)
7

. where i _

, W = wI I w2 I ... I w m=n+k (3.61) _

,}

, The Givens triangularization method may be applied to the array W in a

i way which explicitly accounts for column scaling. That is, an orthogonal

f

transformation T may be constructed such that

m m-n n m-n n

• n [[WIT = [ 0 i d_ I _I I ... I d_nn_n ] = [ 0 : UG I/2] (3.62}

where U is unit upper triangular. Gentleman [1973] showed that an

elementary Givens rotation, adapted for such column scaling, takes

the following form.

I?
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_ _ _
-/_ xI /_ y /_a'xI

• -I Y -I ;
C

vqxj _yj T = 0 /BY (3.63) ":;

0 0 0 0 I , ":

n-J . . n-j . c

o o o o

where "-

2 2 _

8" = axj + 8 yj (3.64) f

a" = B_Y" (3.65)

= _j/B" (3.66)

= o_j/B" (3.67)

x[ = yjxi - xjy i (3.68)

i:1,...,J-1

i Yi : cYi �sxi(3.69)

These expressions for a', B', x" and y" are easily obtained by applying

Eqs. (3.47)-(3.51) with x and y replaced by vqx and vr_y respectively. _

Note that when the quantities a', B', x" and y" are desired, _ ,_

rather than the vectors (v_a_x") and (_v_Ty") this method involves no -_ _

1

2
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_ square root calculations. Gentleman [1973] noted that when yj = 1,

Eqs. (3.6q)-(3.69)can be rewritten to avoid a multiplication. Thus

• 2
B" = B + axj (3.70)

I
a" = _/B" (3.71)

• g = axjIB" (3.72)
r-

_: x_ = xi - xjyi (3.73)

Y£= zl+ (3.74)

'_ This algorithm is referred to as Method B while the formula described by
v

Eqs. (3.64)-(3.69) is denoted as Method A. Both of these methods may be

: used to solve the U-D time update problem.

The U-D factorizationof P = WDWT is initiated by denoting as

; pivotal elements the pair (dm,wm) where wm represents the last column

of W. The square-root-free Givens transformation defined as Method

: A is then applied to the pairs (dm-1' Wm-1) and (dm, Wm)' As a result

_ of this initial pivot Wm.1(n) = 0 and w_(n) = I. Thus subsequent

transformations involving the mth column may be accomplished by applying

Method B. The pair (dm,Wm) is then pivoted in turn with each of the

remaining pairs (di,Wl_, i < m-1. Implicit in this sequence of calcula- 1

tions is the transformationTn where !

L

I
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!

::, _ %,Uln j.

Tn = . (3.75) _

i ,, i
a 1 O0 O0 v_"

Explicitly, the procedure yields W(n-l) and _(n-1) where

m-1 I

Uln

n-1 W" _2n

W(n'1) = . (3.76) ::_

1 0000 1

• _(n-1) = diag (d_, d_,...,d__l, dn ) (3.77)
!

,i

; This technique is repeated, with the pair (dm_1,w__1 _ as the pivotal

elements, to yl_id W(n-2) and _(n-2). The process is thus eontlnued

until finally W (0) and 6(0) are obtained where
k

• m-n n

w(°)= [ o I _]}n (3.78)

?

1_7 I'

:| ,J
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m-n n
.,._,_ _

5(0) = dlag (* * * *, dl,d2,... , ) (3.79) i,

The modified Givens algorithm for propagating U-D covariance factors i
]

is summarized below. I

Modified Given_.Factorization 1 '
i
i

Suppose we are given the full rank nx(n+k) matrix W with column

vectors {wi} and an (n menslonalpositive diagonal matrix, D.

The U-D factors of P = WDWT may be computed as follows. !

!
For J = n,...,1 cycle through Eqs. (3.80)-(3.89). !.

m := J+k (3.80) :

For i ffi m-1,...,1 evaluate Eqs. (3.81)-(3.89) as indicated.
!

2 2 _

g := di wi(J)/d_ (3.82) _

_l := ai_m/d_ (3.83) _,I
3

•When i < m-l, Wm(j) _ 1.

T_ : :3
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W •

:= am m(J)/dm omit if i < m-1 (3.84)

v ::wi (3.85) _'_

.4
.g

w__:: wm(j) wi - wi(J)wm (3.86) _

Method A: wm := _wm + _v if i = m-1 (3.87)

Method B: wm := wm + _wi if i < m-1 (3.88)

- (3.89)
Upon completion of this recurslon the W array oontains U. That is _

b'

}

k n

w = [o i _] }n
(3.90)

The diagonal elements of D are given by

di - dk |-- 1,...,n (3.91) !
/

Analysis by Gentleman [1973] has established that when Method A, !

Eq. (3.87), is used exclusively in this recursion the algorithm is always
I

numerically stable. However, use of Method B, as indicated in Eq. (3.88),

saves approximately I/3 n3 multiplications (33_). Hence this formula is _

preferred when it can be relied upon. Gentleman [1973] has shown that }
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errors associated with Method B can be related to the ratio d_/dm. _

He recommends control of error growth by testing this ratio against some i

limiting value, c. Thus, Method B is applied only when d_/dm < c.

_, , Fletcher and Powell [1974]have experimented with this technique on a

large number of problems using c = 4. t Their experience suggests that

for most applications of this algorithm Method A is required so rarely

that efficiency is near optimum. A numerically reliable computer i;_ple-

mentation of the modified Givens update is included in Appendix D.

3.5 Householder Methods for Covariance Propagation

Recall that propagation of covari_nce square roots involves the

triangularization problem,

m m-n n

nl[W] T = n![ O I SI

where S is upper triangular and T is an mxm orthogonal transformation.

This problem may be solved by applying a sequence of Householder trans-

formations, Tj, such that T = TnTn_I...T I (cf Householder [1964]). Each

elementary transformation is a reflection operator and may be written as

Tj = I - 8j u(J)u (j)T (3.92)

where

Bj= 2/llu(J)ll 2 (3.93)

SGentleman suggests c = 10 as a reasonable limit.

• _ 50
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Note that for any vector y

)
L

_ with y given by

i_ Y = Bj(YTu(j)) (3.95)

_ Thus, explicit formation of the matrix Tj is not required if only the

: product.W(j) Tj is desired.

_ The triangularizationof W is begun by designing the transformation

Tn to zero out the subdiagonal elements of row n. Thus,

<

m-1 I

_ V 1

;_ n-1 W" v2
"' [W]Tn = w(n-1) " • (3.96)

vr- 1

1 { .......
( 1 0000 -on

i

[ Equations (3.92)-(3.96)imply that Tn can be constructed from the vector _'

I u(n) = x(n) + Onem (3.97) !'

i ,
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where x(n) is the nth row of the array W and

m-1

e m = (0,0,0,0,1) (3.98) +.

Since Tn is orthogonal,on is constrained such that On2 - llx(n)l12. J
Thus Eqs. (3.93) and (3.97) imply that

(n) _+_
1/COn2Bn = + OnXm ) (3.99)

In order to avoid cancellation errors when Bn is calculated we may

define

(n)_i x(n) Io n ffi _'gn (x m ,,I I (3.100)
/

A

i+ ' Once Tn has been applied _o the array W via Eq. (3.94), the trans- _ !i

formation Tn_I is similarly chosen to pack the (n-1)st row of the array _ i_

+ W(n-l). Constructionof u (n-l) is identical to the construct4.onof u (n) i i

_' with one exception. The mth component of u(n'1) is free to be chosen i

_ since there ere only m-2 subdiagondl elements to be zeroed out. If the i _i

mth component of u(n'1) is set to zero then (00...O,-o n) u(n'1) ._0. i _

_ Thus, Eqs. _3.94)-(3.95)imply that Tn.I will nut disturb the nth row _+ _i

i ++or the mth column of the array. Hence,
+ i

R_RODUCIBILrrYOF THI !+, OP+t(RNALPA(3]_R POOB 3

52

l+ +++I+
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m-1 1 m-2 2

vl I Vl

• i Tn-1 = (3•1oi)

Vn-1 "On I Vn 1
-- 2

, toooo-o,, (L°°°° i o -an_
This process is continued so that u (j) at step J is constructed

according to Eq. (3.97) with n replaced by J and m replaced by (m-n+J).

The m-dimensional vector x (j) Is defined as follows. For J = n,...,1 i

wjl i = I,...
(J)
xI = (3.1o2) ,

0 I > J+m-n

where w_j) is the Jth row vector of W(j).

The following algorithm, due ori$inally to $chmidt [1970], applies

I the Householder triangularization method to propagate covarianoe square

roots•

3ohmidt Covart&poe Scuare Root Time Update

^ _T and define W to be the nx(n+k) arrayLet P =

k n

w • leo_/2 ) _1 }n

)"__L 53
|
i
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7

_' with elements {wij} An upper triangular factorization,ggT = WWT

_"- I may be obtained as follows.

5

_ For j = n, n-I,...,I compute recursively Eqs. (3.103)-_3.111). )'

._ 112 '
oj = (wJi sen (wj,j+k) (3.103)

t r .C_

_!" ; wJi i = I,.. ,J+k-1 (3.104) a

ui := wj,j+k + oj i = J+k (3.105)

_ 0 i = J+k+1,...,n+k (3.106) _,

_*" _j = 1/(o 3 Uj+k) (3.107) ,_?

For i=1,2,...,J-1 cycle throug_ Eqs. (3.108)-(3.109).

J+k
>

Yi := _J _u£ wi£ (3.108) ,.

_ t=l

_ - ,J+_ (3.109)wit := wit _i ut t=_,...

_ wj,3+k := -oj (3.110) ;

wit := 0 t = _.,...J+k-1 (3.111)

f
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At the conclusion of this recurslon the array W has the form _

k n _

--NIW=[O_ n

where S is upper triangular. ;

The Householder triangularlzatlonmethod can be modified to yield
d

a U-D propagation algorithm by applying the identity S = UD_''2 to

Eqs. (3.103)-(3.111). However, this method is not pursued sin'e it
J

appears to have little advantage over the MWGS and modified Givens _

i algorithms.

3.6 Prova_atlon ALzorithm_ _gr Systems with Colored Prgc_ss Noise
!

Time propagation represents a major filtering expense, particularly ,

in applicationswhere measurements are sparse (cf Chapter IV). Hence,

time updating methods warrant further consideration in terms of efficient

computer implementation. It is often pousible to significantly reduce

propagationcosts by exvloiting special system structure. For example,

one may trim computationsconsiderably by taking advantage of sparse

state transition matrices or triangular system equations. This section !

illustrateshow trianeular covariance factorizations)end themselves

to efficient propagation schemes for systems with bias parameters

and colored process noise. Suppose _..estate transition is given by

[:I:II:lI:l+ i=0,I,... (3.112) .

)

i+I [ i i

,i

55 ,i

t 2
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where

M = diag (ml,...,m k) (3.113) _ ._

E{wi wiT} = O O = diag (ql,...,qk) i

(3.114) _

E{xoWiT} = 0 E{PowiT} = 0 _

: j

This system model closely approximates a l_rge class of second- :

order processes and hence has wide application (cf Christensen [1976] _ _

or Maughmer and Byrd [1969]). The structure of Eq. (3.112) permits

time propagation to be performed in two phases. Thus,

[:]"[o: (3.115) : ,

i+1 i

• _

[:][:°]I:]i:]i _ = + (3.116) •

_." F M , =
i+1 i+1 i

Equation (3,115) defines a deterministic pha_e of the mapping.

i The error covartance associated with this phase is denoted as P, while _

the final map, Eq. (3.116) yields the a priori error covariance, _. !

i

i tFor notational brevity we use subscripts in Eqs. (3.112) - (3.116)
to denote time dependence of system parameters. Notice further that

_ the matrices #x' _xp, M _nd Q may also be time-varying.

g _
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The original problem is decomposcd in this manner because each subproblem

enjoys certain computational advantages, particularly when upper triangular

covariance factorizatlons are involved.

3.6.1 U-D Colored Noi$_ Time Update
8

Consider the covarianee factorization P = UDUT. The simplifica-

tions associated with a deterministic map of U and D via Eq. (3.];5)

are illustrated in the following algorithm.

Bias PartitiQned U-D Factorisation

Let P = UDUT where U and D are given by

n k
i,

_ --- --- n k

U x Uxp }n -'- -'-
= D = diag (Dx, Dp) (3.117)

upj}k

!.
Assume P is given by

= 0P0 T (3.118)

" i" where• n k

A

L
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Then the U-D factors of P, with similar partitionZng assumed, are deter- _

mined as follows. _ ._

[Up, Dp] = [Up, Dp] (3.120) :_

" Uxp= ®xUxp �*xpUp (3.121) _
i

UxDxUxT = (OxUx) Dx (OxUx)T (3.122) "_
b

Equations (3.120)-(3.122) may be obtained by substituting the ;;

partitioned U-D and 0 factors into Eq. (3.118) and expandl_g the result.

Note that Ux and Dx moy be computed by applying either the MWGS algorithm,

Eqs. (3.28)-(3.30), or the modified Givens algorithm, Eqs. (3.80)-(3.89),

to the arrays W : 0xUx and D = Dx.

An easy generalization of tnis partition algorithm invol_-- replace-

ment of the identity matrix in Eq. (3.119) with a nonsingular, r

triangular matrix, Cp. The modifications required for Eqs. (3.120)_

and (3.121) are apparent.

The following features of the bias partition algorithm are notable.

I) The U-D factors corresponding to the bias portion of the

state vector remain constant. This property is contingent

upon having the bias parameters in the lower portion of

the state vector.

! 58 EEPRODUC_DXrYOF TH_
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2) The cross coupling Uxp is updated by a simple linear relation. _

• 3) The updated factors Ux and Dx are obtained by considering

only that portion of the problem which is independent of p.

_ 4) All of the above comments also apply to problems where

x is a stochastic process. In this case the right hand

side of Eq. (3.122) would have an additional term correspond-

': ing to the process noise disturbance.

Once the deterministic time update, Eq. (3.115), is accomplished
l

with updated covariance factors, U and D, computed from Eqs. (3.120)-

(3.122), the second phase of the mapping, Eq. (3.116), is performed.
(

The diagonal structure of M and Q may be exploited by mapping the process

_ noise, p, one component-at-a-time. The following algorithm indicates
Y

• how the intermediate factors, U and D, are updated as each component

of p is mapped.

Single Component U-D Time Update

Let P : U D _T with U and D given by

na 1 nc

= I Ubc }I D : Diag (Da, d, Dc) (3.123)

o uoj

f
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Let # = Diag (I, m, I) and Q = dlag (0, q, O) be dimensioned compatibly

with (3.123) and assume P is given by the following expression.

= i P I T + Q (3.124) :

Then the U-D factors of P, assumed to be partitioned consistently with _

(3.123), are determined as follows.

[Uac, Uc, 30] = [Uac, Uc, Do] (3.125)

= m2 d + q (3.126)

• Ubo = m Ubc (3.127)
2

~ d

Uab = m _ Uab (3.128)

The matrices Us and Da satisfy the following relation.

; _a _a _aT = Ua Va HaT +(dqlUab UabT (3.129)

Equations (3.125)-(3.128)are obtained by direct substitution of the
i

_i_ partitioned U-D factors into (3.124) and by equating this expression with

_ _ _T. Equation (3.129) is then easily derived with the aid of (3 126)

i and (3.128). The factorlzatlonrequired in Eq. (3.129) may be obtained by

applying the Agee-Turner triangular factorizatlon algorithm (Appendix C).

,_ 60
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-i This single component update algorithm is the cornerstone of _H

the U-D colored noise updating procedure.

U-D Colored Noise UDda_in_ Al_orlthm _

i

Let P = U D _T where U and g are determined by equations (3.120)- _ i _

(3.122) for the deterministic time update, (3.115). The U-D covariance _ e

factors after the final propagation (3.116) can be computed as follows.

Let n and k denote the dimensions of x and p respectively. For _
!

= 1,2,...,k, compute recursively equations (_.130)-(3.133). _

dn+L = m_2 dn+_ + q_ (3.130) _

Vi = Ui,n+_ _!

i = 1,2,...,n @�h�œ�(3.131)

Hn+L i_i,n+_ = mL-- vi
• dn+L I .

_n "Dm_ Un �p"@= n+_+l,...,n + k (3.132)

Use the Agee-Turner triangular factorizatlon (Appendix C) to compute

the U-D factors of (3.133). _

U(I) G(I) U(_)T :ffi U(I) _(I) G(I)T + c_ v vT (3.133) _!

¢
;

61 _ _
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where _(L) and 5 (_) denote the upper left (n+_-1) rows and columns

of the U, D matrices and

dn+_
- cL - -- qL

dn+_ i

_ This result is an immediate consequence of the single component

__' time update, equations (3.125)-(3.129). Notice that (3.130)-(3.133)

: correspond to (3.126)-(3.129) respectively.

i: This one-at-a-time procedure also applies to the general class

of problems involving bias parameters. If the state vector is parti-

t tioned as

[il• X =

- \

. l' \with bias parameters in the owest portion, then the algorithms of this

_ section may be applied mutatis-mutandis. If y has dimension b then

: Eq. (3.132) must be dimensioned so that all b columns corresponding

to y are properly scaled; i.e., Eq. (3.132) would be replaced by

° _n+L,J ffim L Un+L,J J = n+L+1,...,n+k+b

3.6.2 Souare Root Covariance Colored Noise Time Uvdate

Suppose the state error covariance for the system defined by

i_ Eq. (3.112) is factored as P = SST. If S is upper triangular it may

!;

{ iJ 62
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be propagated by applying a simple modification of the mapping procedure

developed in the previous section. The triangular square root colored

noise update is summarized in the following algorithm.

Triangular Sauare _99_ _919red Noise UDdatin_ Al_orithm
I

_ . Let P = SST where S is partitioned such that

n k

S = x (3.134)

. The propagation of S via Eq. (3.112) may be performed in two phases

as follows. A deterministicmap, Eq. (3.115), yields the intermediate

" covariance factor S, assumed to be partitioned consistently with (3.134),
t

_ where

:" ' Sp = Sp (3.135)

i

gxp = #x Sxp + #xp Sp (_.136)

gxSxT • (#xSx) (OxSx)T (3.137)

: i

t

I

I

• !

r 2
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The upper triangular factor Sx may be computed by applying the .:

" Schmidt time update algorithmt, Eqs. (3.103)-(3.111),to the array

W= OxSx.

The final map, Eq. (3.116), yields the covariance square root,

S, as follows.

!_ For _ = 1,2,...,k compute recursively Eqs. (3.138)-(3.144).
_J

L

J = n+_ (3.138) "

< _jj : ,(/m_jj) 2 + q_ (3.1391

_ vl : _ij 1 (3.140)

giJ : -- NiJ (3.141)
gJJ ]

"" gJi : m_§jl i : J+1,...,n+k (3.142)

c_ : qL/(_jj)2 (3.143)

?

3

• +The MGS algorithm, Section 3.3, or the Givens square .'octfactorization,

Section 3.4, could also be u_ed to compute Sx' However, the Schmidt _"
formula is preferred because it is more efficient t._n the other methods

(of Chapter IV).

• 64
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Apply the Agee-Turner square root factorization (Appendix C) to _ '_,

Eq. (3.1114) where S(IL) denotes the upper left (n X�p�`and co2.umns _.

of the array S.

g(_) g(_)T :__g(_) g(_)T + c_ vvT (3.144) _;

f

This algorithm follows directly from the U-D colored noise time _

update formula by applying the identity S = UDI/2• <_

Consider the factorization P : SST where S is the general matrix

n k

i sp,s0jlk

• Covariance factorizationsof this type are computed, for example, by

the Potter measurement update algorithm, Eqs. (2.33)-(2.38). Note

:' that the presence of Spx _ 0 introduces considerably more computation _

into the propagation of S via Eq, (3.112). In order to apply the one-

at-a-time mapping procedure, l_qs. (3.138)-(3.144), it is first necessary

i to triangularize the full (n+k) x (n+k) array

a

n k j._'..,

g

l

'iL.
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i' corresponding to the deterministic map in Eq. (3.115). $ For this reason, j!

: the one-at-a-time procedure is not an efficient method for propagating

general covariance factors.

3.7 _mole PrQblem _,
t

Let the two-dimensional state transition be defined by _

# = I B = and O = 1 (3.147)

: If the a posteriori covarlance _ is propagated according to Eqs. (3.12)

and (3.147) then

J

_ _ = P + (3.148) _
; 0 _-

A
: Suppose P is factored such that

A A A A '_A
= S oT or P = U D uT (3.1}49)

. where :"

[:I[JA o ^ I 1 ^
, S = or U = D = diag (I,o2)

o 0 1

4, As3ume o >> 1 and _ + 1 = _.

: _hls observation implles that propagation of the Potter square root

for noisy systems with large numbers of bias parameters is considerably _-more costly than the corresponding U-D and triangular square root bias- _ i_,

partitioned updates (cf Eqs. (3.120)-(3.122) and (3.135)-(3.137)). i

: 66
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Table 3.1 show_ how the various prcpsgation algorithms compute the

a priori covariance factor g (or _-_). Notice that all methods except _ ,i

the RSS formula yield an S (or U-D) equivalent to t_,erounded exact

answer. The RSS formula, however, suffers a loss of accuracy

_ by applying Eq. (3.;48) directly and computes a singular g with g_1 = O.•

Sl_ilarlv the U-D update yields dl = O.

This simple example illustrates how use of the RSS propagation }
_'_ _cbeme can result in significant loss of filtering accuracy and possib±e

failure of the algorithm. The other propagation algorithms, however, are -,

_ known to be numerically reliable (cf sections 3.3-3.6) and thus are

preferred over the RSS method.

"2.
t

i

2

3

?
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Table 3.1. Comparison of Solutions to Examole Propagation Problem

3

(Rounded) S = U = , D =

_, 0 o 0 1 ,

[oo] [1:] .._ Rss g= 0 = ,5-- (o,_ 2)
_; 0 o 0

MGS g = 0 = , D = (2,o21

0 o 0 1 ";

Givens g = 0 = D = (2,0 2 )

0 , Lo 1]' :_

°](Householder) g = -- ,;
-0

i

_ J

:

2
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Chapter IV. Cost Comparisons of Filter Algorithms

_ 4.I Basis for_Comparison _

In this chapter the various algorithms described in Chapters _:

2 II and III are compared in terms of computer costs. Comparisons are

based uoon the arithmetic operations required by each method. Computer-

related costs, such as indexing, storage transfers and input-output _

"_ operations, are difficult t. r_nttfy and are neglected However, _

these costs are crm_n to a'" the algorithms being considered. _ i

_!arious arithmetic operations require different execuuion times,
?

2

and _hese differences are computer dependent. The cost comparisons i

considered here are based primarily upon the approximate execution

times of th_ l_ew2 t PacKard HP21MX-20 comouter. T,.[s computer is

to be _._ the NAVSTAR Global Positioning System (GPS) where it

will be employed for on-board aircraft navigation (of General Dynamlcs-

t
Electronics [1975]), The HP co._puter, using single precision, floating

point arithmetic, has the followirg approximate operation times.

. ' a

T. : 34 usec Tx : 57 _sec

4

T_ = 60 _sec _f: 2400 _sec ;_

J

tSlngle precision arithmetic on the HP computer !nvolves a 32 blt char- i
acteristic, or appreximately 9 decimal d_glts.

•_ 6_ RF_RODUC_B_Y OF TI_
'- .q¢;G[NALPAGE ISPOON

#

977005 72-084



A_!

7

4
' 33-798

Cost comparisons are simplified if these times are normalized by the

> add time to obtain Tx = 1.7 T+ , T. = 1.8 _+ , and _f = 70 T+. These
,!. T _7

• factors are used to weight the operation counts of each algorithm being ,

compared, t Thus, comparisons are based upon the relative execution ;

times of the various algorithms. _

C

_: Other computers may assign somewhat different weights to the

arithmetic operations. In most cases, however the algorithms will

have the same efficiency ratings, although cost differentials may vary

from one computer to another. This point is illustrated by including
J

! additional cost comparisons based upon the approximate execution times .-

of the UNIVAC 1108 and Litton 4516 computers. The UNIVAC model is

used in large, ground-based systems; while the Litton 4516 is a small,

fixed-point computer, typical of those found on board many commercial

) and military aircraft. Hence, this cost analysis corresponds tu a

variety of computing situations. TDe weights associated with each <

computer involved in the study are compared in Table 4.1.

Optimum efficiency and accuracy were the main criteria for selecting

the computer implementationof each algorithm to be compared. Itemized

costs for most of the mechanizations are available in Bierman [1973]

and [1976b] and are not repeated here. However, detailed operatiol.

counts for the U-D algorithmsmay be found in Appendix E, along with

a discussion of the colored noise propagation schemes.

" tThis weighting scheme was originally suggested by Bterman [1976a].

' 70
!
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' Table 4.1. Comparison of Cemputer Aritnmetic Operation Times

Computer T+ (_ec) Xx/T+ m �l	(�Ì�Tf/T+

HP2 IMX-20 34 I.7 I.8 70

(32 bit}

Litton 4516 4 2.2 3.4 250

(32 bit)

UNIVAC 1108 1.9 1.4 4.5 21.4
(27 bit)

}

Measurement and time updating costs are considered separately in

i order to carefully evaluate the efficiency of each individual algnrithm.

Several filter algorithms are then compared in terms of total costs at

each stage of the filtering process.

4.2 Measurement Update Cost Comparisons

_ne arithmetic operations required by each of the measurement

update algorithm_ studied in Chapter II are indicated in Table 4.2.

In bhls table n uenotes the filter dimension, while m represents the

number of measurements included prior to variance calculations.

The relative execution times for the HP compute: (cC Table 4.1)

were used to weight the operations in Table 4.2. These weighted counts

are included in Table 4.3 and indicate the relative execution times

of each algorithm as a function of n and m.

.: 7!
(
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Table 4.2. Operation Counts to Process m Scalar Measurements

Algorithm Adds Multiplies Divides Square Roots

Conventional Kalrnan

(1.5_2 + 3.5n)rn (1.5n2 +4. Sr,)rn rn 0

(1.5n2 + I. 5n)m (1.5n2 + 5.Sn)m

U-D Covariance
Factorization + + nm 0

(0. Sn z - 0.5n)* (n 2 - n)*

(l.5n 2 + Z. Sn)m (2n z + 5n)m
Carlson Triangular

Covariance + + (2n • l)m nm
Square Root

(0.5n 2 + 0. 5n)_ (0.5n z + 0. 5n)'_

(3n 2 4 3n)rn (3n z + 4_)m

Potter Covariance

Square Root + + Zrn rn

n2_" n2_

Stabilized Kalman

= (l-Ka T) P(I-KaT) T (4n2 4 4n)m (4n 2 + 6n)m rn 0

+ KrK T

_'These operations involve computing estimate error variances.

l 72
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_ Measurement update costs are further compared in Figure 4.1.

_ Execution times have been normalized by the corresponding conventional

t Kalman times and are displa_d as a function of n for m : I and m : 5.

I Hence, figure gives algorithm as a percentagethis the various costs

_ t increase over the conventional updating costs. Notice that the U-D
I

algorithm is considerablymore efficient than any other alternative

to the conventional Kalman method. Moreover, when variances are required

infrequently, the U-D and conventional Kalman costs are nearly identical.
z

Table 4.3. Measurement Update Costs Weighted for the HP Computer

Algorithm Execution Tiraelx+

Conventional Kalman (4.1n2 + 11.2n)m

U-D (4.1n2 + 12.7n)m + (2.2n2 - 2.2n)*

Carlson (4.9n2 + 84.6n + 1.8)m + (1.4n2 + 1.4n)*

Potter (8.1n2 + a.8n + 73.6)m + (2.7n2)*

Stabilized Kalman (I0.8n2 + 14.2n)m

*Variances computed

/

In sharp contrast to this ef[iciency, the other algorithms generall:/

require at least 100% more computation time than the conventional method.

Note that the Carlson normalized costs increase as the state dimension

73
<
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: Figure 4.1. Measurement Update Cost Comparison

decreases. This trend is related to the n scalar square root calculations

in the Carlson formula; these operations are relatively more expensive

when n is small.

4.3 Time Update Cost CQmparlsqns

4.3.1 Cgmparl_on of Guneral Propagation Algorithms

Several algorithms for propagating covariance factors have

: been describpd in Chapter III. W_h the exception of the RSS methods,

all of the algorithms are numerically reliable. Therefore, the most

appropriate time update algorithm for each cevarlance factorizatlon

may be selected on the basis of efficiency.

' 74
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Consider the covarianee square root propagation schemes .

listed in Table 4.4. The operation counts given for each algorithm

_ include only the calculations required to compute the updated square _!

root _ from the n X (n+k) array W = [BQI12 i $_]. Notice from Table

4.4 that the Schmidt aridRSS methods require less computation than

the other methods. Note, also, that these two algorithms involve equiv-

alent amounts of computation. Therefore, no loss of efficiency is _

encountered when the more reliable Schmidt algorithm is selected for

covarlance square root propagation. The Schmidt time update may be

coupled with the Carlson or the Potter square root data processing

algorithms. The result._ngfilters are referred to as the Carlson-Schmidt

_ Table 4.4. Arithmetic Operations Required by Square Root
,,,o: TriangularizationAlgorithms

_ Algorithm Adds Mul_iplies Divides Square Roots

0.7n3 + 1,5nZ + 0.2n 1.3n +4n2 - 2.7n

Givens

,, (Eqs. (3.52)-(3.59)) + �0.gn 2 - ¢ _ nk 0.5n 2 - 0. Sn + nk

i n2k _(n 2 + n)k

n 3 + 0 5n _ - 0. 5n

"_ MGS n3 + n2"k + n - ] n
_ (l_qs, (3.35)-(3,39))

n2k

0.7n 3 + n 2 + 0.3n

Schmidt I, , (Eqs. (3 ]03)-(_ I11)) 0.7n3 + 1.3n + n2k + n- 1 n

n"k

q.7n 3 + n2 + 0.3n 0.7n 3 + n 2 - 0,7n I

RSS l

(Section 3.2) _ + n - 1 n

(0.5n" + 0, Sn)k (0.Sn_ + l._n)k

Note; n and k deplete system and process noise di_._ensiona, respectively,

' 75
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and Potter-Schmidt algorithms. These two square roc_ covariance filters

will be considered in the cost comparisons to follow.

: A similar comparison of U-D propagation methods is given

; in Table 4.5. The calculations listea for each algorithm involve only "_

the computation of _ and _ from the arrays W = [B I ¢_] and '

_ D = diag (Q, _). The modified Givens operation counts in Table 4.5

represent the minimum attainable with this method; i.e., the more effi-

cient formula, Method B in Eq. (3.87), is applied a maximum number of
• %

times. This assumption is Justified by the final diJcus=ion in Section ?

3.4. The reader may wish to refer to Appendix E for a more detailed

description of the U-D propagation costs.

It is not immediately apparent from Table 4.5 which U-D i

algorithm is the most efficient. However, it is clear that the RSS
J

method has very little cost advantage over the modified Givens algorithm.

Of the two reliable U-D methods, the Givens method is more efficient

when n is large. However, when n is small dnd k is ].argethe extra

divide operations required by the Givens method are more apparent,

and consequently the MWGS algorithm may be the more efficient method.

Hence, in the cost c_mparisons to follow both of these U-D props_ation

schemes are considered.

2

' REPRODUCIBILITYOF THE
, _)RIflKNALPAGE 18 POOR
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Table 4.5. Arithmetic Operations Required By U-D ._
Factorization Algorithms !_ _i

_+_ Algorithm i Adds Multiplies Divides Square Roots +_ _++

0.?n3 - 0.5n2 +0,8n 0.?n3 + 2.5n2- 0.2n _ :

Modified Givens
_ (Eqs. 13.80)-13.89)) + + 0. Sn z- 0. Sn +nk _

nZk (nZ + 4n)k i

e n3 + l. SnZ- 0. Sn _;_

MWGS 3 _ i

(n?"+ n)k _+ +:

0. Tn 3 +n 7 * 0.3n 0.7n 3 + 2.5n 2 -l. Zn "_-

RSS :_
(Section 3.21 + + n - 1 -- -: _+-

10.5nZ + 0.5nlk 10.5nZ + |.5,)k _ "_

¢.

}, The arithmetic operations involved in a general time update °

via Eq. (3. I) are listed in Table _.6 for each of the filter algorithms !

'- _ to be considered. These counts include the calculatlons required to ::

compute estimates and the necessary updated covariance factors. The _-

differences between the Potter-Schmldt and Carlson-Schmidt propagation _:

. ' costs are due entirely to the different structures of the covariar,ce ,

_, i_ square roots involved. For example, computation of the product ,S

with a Potter square root requires 0.Sn3 more adds and multiplies than i

: the same calculation involving a Carlson triangular square root. _ :

Table _.7 contains the weighted propagation costs for ._.

each filter. These co_ts represent the relative execution tim_,sof •

the various time update schemes when the HP computer is used. Costs :

_, 77 :
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are further compared in Figures 4.2 and 4.3 as a function of k/n where
}

_ k denotes the number of process noise parameters Execution times

have been normalized by the corresponding execution time for the con-

ventional method• Hence these figures show the percentage of conventional

mapping costs which are required by the different algorithms. The costs

3
associated with variance computations in the factorization filters i

c

are omitted from Figures 4.2, 4.3 and those to follow. However, the (

relative algorithm costs are not altered appreciably by including these

• 2

computations (of Table 4.7). In fact, when variance calculations are

, included, the cost curves in Figures 4.2 and g.3 experience an upward

shift of at most three percent. )

Notice in Figures 4.2 and 4.3 that normalized propagation

costs increase as a function of k/n. However, even when k/n = 2 all of

_, the algorithms require less than 50% more computation than the conven-

tional propagation formula. The Potter..Schmidt update is the most

expensive time update algorithm while the other methods are generally

_ competitive with one another. The modified Givens method is typically :

the more efficient U-D propagation scheme although for small dimensioned

systems with many process noise parameters (i.e., k/n > I), the MWGS

_ algorithm may be less expensive (cf Figure 4.2). In either figure the
L

: cost differentials between the MWGS and the Givens methods are modest,

and both schemes are generally competitive with the conventional propa-

gation algorithm. Subsequent discussions of U-D propagation methods

are therefore limited to the modified Givens algorithm.

!,
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'_ Table 4.6. Operation Count for a General Time Update

Algorithm Adds Multiplies Divides Square Rooto

l. Sn3 + Zn 2 + 0. Sn 1.Sr, 3 + 1.Sn Z

Conventioz_al
_" Kalman + +

(0. Sn Z + 0.5nlk (0.5n Z + 1.5n)k

l. Sn 3 + 0.5n Z 1.5n 3 + ZnZ - 0.5n

i + + i

_-_ U-D (MWGS) nZk (n 2 _ ",)k n - I

(0.5n 2 - 0.5n}* (n 2 - n)* i

i:

"_ 1.:n3+0.8, I.Zn3 +3,,z - O.Z, I 'i
+ + 3 _:_ = O. 5n

'= U-D (Givens) nZk (n Z + 4nlk + I
' + + nk

_ (o._Z. o._,)* (2..1, i :"
\" ',, !

);" i ].Zn3 + 1.5nZ _ I. TM I.Zn3 + 2.SnZ + 0. 3n i :_

t + + "/

Carlson-
nZk (n Z + n)k n - l nSchmidt

+ +

,_ I (0.... z + 0.5n)* (O.5n_ + 0.5n)* -,

l. Tn 3 + n2 + 1.3n 1.7n 3 + Zn Z + 0.3n
1

Pott • r =
Schmidt n2k (n_ ')" n)I," n - I _ ..

+ +

_, (nZ)* (nZ)*

• Variances computed.

i

' t
t

i v9 ,
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_ Table 4.7. General Tima Update Costs ';el_hted for the HP Computer /_

Algorithm Execut ion Time /_+

Conventional Kalman 4.1n3 + 4.6n2 + 0.5n + (1.4n 2 + 3.1n)k

4.1n 3 + 4.8n 2 + 0.1n + (2.7n 2 + 1.Tn)k i

_ U-D (MWG$) +

:_ (2.2n2 - 2.2n)*

C

_ 3.2n 3 + 6n 2 - .4n + (2.7n 2 + 8.6n)k

':_ U-D (Givens) + ,:

(2 2n2 - 2 2n)* 1 _'

3.2n 3 + 5.8n 2 + 73.6n + (2.7n 2 + 1.7n)k

" Carlson-Schmldt + i

(1°4n 2 �1.4n)*

_' 4.6n3 2 �73.6n+ (2.7n2 + 1.7n)k

! Potter-Schmidt +

(2.7n2 + 2.7n)*

*Variances computed

_o
I

t
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i Figure 4.2. General Time Update Cost Comparison, n = 10
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Figure 4.3. Gener_.lTime Update Cost Comparison, , = 30
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4.3.2 Comoarison cf Colored Noise Prooa_ation _l_orithms ,_

The operation counts associated with a colored noise time

up,ate of the various covarianc_ factors are compared in Table 4.8.t _'

The U-D algorithm to be considered propagates proces_ noise one component _:

&t a time and employs a modified Givens factorization for the determin-
J

istic phase of the update (cf Eqs. (3.120)-(3.122) and (3,130)-(3.133)).

• A similar algorithm based upo. _l,_MWGS factorization requires approxi-

< •

: mately the same computation time as the one ccnsJdered here (see Appen-

dlx E)

: Colored noise time updating of the Potter and Carlson

_ covariance square r_t_ is mor= efficiently accomplished by mapping

• the process noise in on_ step. Her_ce, the Potter..Schmidt and Carlson-

Schmidt operation counts in TabLe 4.8 represent the cost of a Schmidt _-

time update which exploits system structure. The reader is referred

to Appenlix E for further details of th_se mochanizations.

The weigOted operation ocunts in Table 4.9 repreqe:_t the

relative costs of a colored noise update on the HP computer. Thes,_.

costs, normalized by the conventional propagation costs, are il]u__,_ced

in Figures 4.4 and 4.5 as a function of k/n. Filter dimension _n these

flgurea is n+k where k represents the numb' of colored ._oiseparameters.

_ For all va]ue_ of k and n the Uotter-Schmidt colored ncise update is ,:

considerably les_ efficient thur the Carlson-Schmid_ and U-D algorlchms.

_The colored noise system is defin_._ by F_. ,_.112).

82

) ,,:

]977005]72-097



33-798 i

Table _.8. Operation Counts Cot Colored Noise Time Update I !

, 2 Squa'_'e
Algorlthr ' Adds Multiplies Divides Roots

1
1.5n 3 +l. Sn 2 +nk 2 1.5n 3 +l. 5n 2 + In+ Ilk 2

Conventional ,_
Kalman r

+ (2.5n 2 + I 5n+ l)k + (2.5n 2 + 2.5n + :ik :

_ _ 1.2n 3 +0.8n +0.3k 3 1.2n 3 + 3n 2 - 0,2n 0.5n 2 - 0. Sn- 1

: +(1.,Sn_ 0. Slk 2 +0.3k3+ll.5n+2)k 2 +0.5k 2

U-D + 12n 2 - 0.5n + 1.2)k + 12n 2 + 3n + 0.71k = + (n + 0.51k _

!

+ 10.51n + k}21 * + (In + k) 2 - (n + kl)*

- O. 5(n + k))*

1.2n 3 + l. Sn2 + 1.3n 1.2n 3 +2.5n 2 +0.3n

+ O. 3k 3 + O. 3k 3 !

+ (1.Sn + l._)k 2 + (l. Sn + 2.5)k 2

Carlson- n +k - l n + k
Schmtdt '_

+(2n 2 +4.5n+ 1.2)k + (2n 2 + 5.5n+ 2.2)k

+ (0.5(a + k)2)* + (0.5(n + k)2) *

'.i:': + 0.5(n + k))* + 0.._(n + k))*

;_ l. Tn 3 +n 2 + 1.3n +k 3 l. Tn 3 D+ O. 3n +k 3 ';

+ (n + 2.5)k 2 + (n + 41k 2 _'
Potter-

_ Schn_dt n +k- I n +k :_

{ + 13n 2 + 3n+ 2.5)k + 13n 2 +4n+ 31k

k)2* k) 2.+ (n + + (n + , !

*Variances computed

83
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Table 4.9. Colored Noise Time Update Costs

_- Weighted for the HP Computer

Algorithm Execution Time/T+

i

;, Conventional 4.1n 3 + 4.1n 2 + (2.7n + 1.7)k 2 + (6.8n 2 + 5.8n + 4.4)k i
Kalman

: 3.2n3 + 6n2 - .4n + 0.8k3 + (4.1n + 3.8)k 2 ,

<_. U-D _ +

L

_i (5-4n2 + 6.4n + 3.3)k + (2.2(n + k) 2 - 2.2(n + k))*

3.2n3 + 5.8n2 + 73.7n + 0.Sk 3 + (4.1n + 5.8)k2

Carlson- + i
Schmidt

(5.4n 2 + 13.9n + 76.7)k + (1.4(n + k) 2 + 1.4(n + k))*

i_, 4.6n3 + 4.4n + 73.7n + 2.7k 3 + (2.7n + 9.3)k 2

Potter- +
Schmidt

(8.1n 2 + 8.1n + 79.4)k + (2.7(n + k) 2 + 2.7(n + k))*

*Variances computed

Unlike these triangular factorization methods, the Potter square root

does not allow for full exploitation of the special system structure

in Eq. (3.112). The Carlson-Schmidt and U-D colored noise algorithms

are generally competitive with one another, although the U-D method

is somewhat more efficient when n = I0.

Note that cost differentials of all the methods increase

/ as a function of k/n. owever, even when k/n ffi2 the U-D costs are

84
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0

Moreover, when k/n < I the U-D method is the least expensive colored

noise algorithm.

Of the two figures being discussed, Figure 4.4 is more repre-

sentative of the costs usually incurred with small, on-board computers

of the type considered here. For example, the GPS project expects to

employ the RP compute_ for airborne filtering of a colored noise system

- which has dimensions n = k = 8 (cf General Dynamics-Electronics [1975]).

Higher dimension filters, such as those represented by Figure 4.5,

are generally designed for ground-based analysis on large computers i

such as the UNIVAC 1108 or IBM 36d_ Thus, further comparisons of colored

noise costs will be restricted to the case n = 10.

4.4 Comparison of Total Filterin_ Costs

The measurement and time update costs given in the two previous

sections may be combined to yield a rough comparison of total filtering

costs. Most of these comparisons are based upon the assumption that

a single scalar measurement is included at each step of the filtering

process. Note that measurement updating is generally an order of magni-

tude less expensive than time updating (cf Tables 4.3 and 4.7). Hence,

filtering costs primarily reflect time update expenses, especially when

n is large. For small systems, however, meas,,rement update costs are

more visible, and the addition of several observations may noticeably

alter the filter cost differentials. To illustrate these effects,

additional comparisons involving multiple measurements are included

for the case n = 10.

I
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Filter cost comparisons do not include the expenses related to

_--- variance calculations. As previously noted, these computations have

_, a modest effect on relative time update costst and, hence, on t,e n_raal-

_: ized filter costs to be compared.

Filtering costs associated with the general system model, Eq. (3.1),

are compared in Figures 4.6 and _.7. These figures represent the relative

_ computation times required by each filter algorithmtt and were obtained

-_ by combining the weighted execution times _n Tables 4.3 and _.7. The

_ costs of each algorithm have been normalized by the corresponding conven-

tlonal Kalman costs and are displayed as a function of kin for n = 10

_ and n = 30. In a similar manner, the colored noise filter algorithms

i are compared in Figure 4.8. Each colored noise filter has dimension
, n+k where n = 10. •

Notice first that cost differentials associated wlththe covarlance

factorizatlon methods increase as a function of k/n, whlle those related

to the stabilized Kalman algorithm remain relatively constant. InZ

each case the stabilized Kalman costs are within 20_ of those related

_ to the conventional Kalman formula. Of all the algorithms compared,

the Potter-Schmldt method is the most expensive. The Potter-Schmldt

_i_ colored noise alsorithm iS partlcularly inefficient when there are

tSee the discussion of Figures 4.2 and _.3.

•_ t_The U-D filter algorithm included in these comparisons employs the :

modified Givens time update method. Costs associated with this filter
algorithm may be easily adjusted to obtain comparisons for a U-D filter
based upon the NNGS time update algorithm (of Figures _.2 and _.3).

_ 87
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_ large numbers of colored noise parameters. For example, when k/n : 2

_" this algorithm is tw'ce as expensive as the conventional Kalman method.

By comparison, the Carlson-Schmidt and U-D colored noise algorithms :

_: are significantly more efficient and require less than 50_ additional

_ computation relative to the conventional Kalman formula.

. Notice that the U-D method is the least expensive covariance

_ factorization algorithm. When system dimension is small, this method i_!

•: has a noticeable cost advantage (of Figures _.6 and 4.8). Moreover,

'_ U-D costs are generally within 20_ of those related to the conventional

;? Kalman method, and when k/n < 0.4 the U-O algorithm is the least expensive

_, method considered.

i<. For large scale systems there is less diversity in filter algorithm

costs than that observed in Figures 4.6 and 4.8 where n = 10. Consider i;

the comparison in Figure 4.7 for the case n = 30. Notice that filter

' algorithm costs differ less in this comparison than they do in the corre- :

_ sponding lower dimension case in Figure _.6. Cost differences are less i "

apparent in Figure q.7because time updating expenses dominate the compari- _

sons whon n _ 30. Compare Figures g.3 and g.7 and note that relative

filtering costs are nearly identical to relative propagation costs.

: ' Although filtering costs primarily reflect the expenses related to\

_ time updating, the cost effects of a single measurement update are apparent

when n • 10. Compare, for example, Figures _.2'and _.6. Notice that

the U-D results in each figure are nearly identical, but the Potter-

Schmldt and Carlson-Schmidt cost curves are noticeably different. These

88
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I differences reflect the measurement cost differentials in Figure 4.1

_i:- where only the U-D algorithm has costs comparable to the conventional

_" Kalman method. Thus, we would expect additional measurement updates

to increase all of the normalized filter costs in Figure 4.6 except

those eorresponoing to the U-D algorithm.

_ Consider the case where three measurements are incorporated

_- after each time update. Relative filtering costs for this case are

j compared in Figures 4.9 and 4.10. The results in Figu-e _1.9correspond

I to the general system model, while Figure4.10 illustrates the colored

noise filter costs. By comparing these figures with the corresponding

results in Figures 4.6 and 4.8 we find that, except for the U-D method,

each filter algorithm'becomes relatively more expensive as additional

measurements are incorporated. Figures 4.9 and 4.10 indicate that

the Carlson-Schmidt and Potter-Schmidt lower-dimensioned filters can

have equivalent costs when multiple measurements are involved. Further

note from Figure 4.10 that whenever k/n < I the U-D method is the least

- _ expensive colored noise filter algorithm and requires at least 40_

_, less computation than the other covar_ance factorization methods.

i

The cost comparisons discussed in this chapter have all been related

to the HP computer. The relative costs of the various algorithms may

vary considerably, depending upon which computer is used. Consider

the different weights that the Litton and UNIVAC computers assign to

the various arithmetic operations (see Table q.1). Note that square

root calculations ar_ ten times more expensive on the Litton computer

than on the UNIVAC model. Hence, we would expect the Carlson-Schmidt

' IL
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-., and Potter-Schmidtoovarianoe square-root methods to be noticeably

_ less efficient on the Litton computer.

_ Cost comparisons related to the Litton and UFIVAC computers are

i illustrated in Figures 4.11-4.14 for the case where n _ 10. These

...._ .... _ comparisonswere _btalned in the same manner used to generate the costs

_i in _Igures 4_ and_;8; -onl_ the weighting faotors_differ.

_' - Notioe _fromFtgures _.12 and 4.i4_that when the UNIVAC computer

_ is used, algorithm oost dlf_erenoes are generally modest. However,

....... filterlngoosts related to the Litton model dffferconsidera_ly. On

the_Li_ton computer theCarlson-Schmldt and Potter-$chmidt colored

noise algorithms have nearly equivalent costs and are generally 60-80_

more expensive than the corresponding U-D method. By comparing Figures

q.11-q.1q with the correspondingHP costs in Figures _.6 and q.8 _e

find that the relative costs of the U-D method are approximately the

same on each computer involved in this analysis. In each case U-D costs

are typically within 20_ of those related to the conventional Kalman

method, and when k/n < 0._ the U-D algorithm is the most efficient

method studied.

Cost analysis has demonstrated the relative efficiency of the U-D

filtering technique. This method, employing either the modified Givens

or _NGS propagation algorithms, is generally competitive with the conven-

tional _alman formula. The U-D _tlter algorithm based upon the modified

Givens time update is particularly efficient and 1'or problems lnvolvin8
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modest numbers of process noise parameters, this U-D algorithm is the -:

least expensive of all the methods considered. By comparison, the

Potter-Schmidtand Carlson-Schmidtsquare root algorithms are signifi-

cantly more costly, particularly in real-time applications involving

small computers. In these situations the Carlson-Schmidtmethod is -_

generally no more efficient than the Potter-Schmidt algorithm and can _:

be more expensive. Moreover, both _ethods can involve in excess of

60_ more computation than the correspondingU-D algorithm.
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Chapter V. Covariance Error Analysis Techniques

5.1 Introduction ,_

Several difficulties are frequently encountered when filtering _

algorithms are applied to an actual estimation problem. For example, _ _

precise know_dge of the system model and complete a priori statistics _ !

are often unavailable. In addition, computational constraints may

limit the dimensionality of the filter. Because of these problems :4 _

suboptimal filtering is often inevitable. As ad important aid in filter

design, one may perform a sensitivity analysis of the estimate error _

covariance. Techniques for evaluating filtering sensitivity to incorrect

a priori statistics have been derived for the discrete case by Fagin _

[1964], Nishimura [1966 and 1967] and Heffes [1966]. Their results _ _

were extended by Griffin and Sage [1968] to include the effects of :,

incorrect data and state transition matrices. These error analysis !

methods all propagate an actual, or true, error covariance. The algo-

rithms are often cumbersome _nd computationally expensive. Furthermore

their reliability is questionable since they employ the numerically

unstable Kalman formulas.

In this chapter a new approach to covariance error analysis is _

presented which is based upon the U-D covariance factorization. This
,f

method facilitates an accurate evaluation of general modeling errors,
%

including a) incorrect a priori statistics, b) mismodeled system dynamics

and data equations, and c) incomplete parameter sets. A general error i

i 97 i
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analysis algorithm which incorporates all of these effects is derived

in two stages.

The case of incorrect a priori statistics is considered first.

This case includes a large class of modeling errors which are _asily

analyzed. The basic evaluation algorithm developed for this important J

_ subproblem is then extended to include the effects of incorrect data 2

and state transition matrices. The extended analysis provides a general

_ evaluation algorithm capable of considering the effects of unmodeled

: or neglected parameters. He#ever, the analysis of unmodeled bias param-

eters is included as a separate topic in order to highlight the simplicity

and flexlbi)ity of the resulting algorithm.

5.2 Evaluation of Incorrect A Priori Statistics

Suppose a discrete linear filter is designed according to the

following model

xCi+1) = @(i)x(i) + BCi)wCi)} (5.1)
> i:0,I,2,""

z(1)= A(i)x(1)+ ) (5.2)t

where

" x e Rn ; w ¢ Rk ; z e RI

t
Scalar measurement coefficient matrices are denoted as A instead of

N Tt!
the a used in Chapter II. For the error analysis discussed in this
chapter the symbol: :is mere appropriate, particularly in section 5.2

where the notation Aa is required.

98
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x(O) ~ N(0,P) ; w(i) - N(0,Q(i)); v(i) - N(O,r(i)) (5.3) _i

and

E(xC0)w(i)T}-o; E(xC0)v(i)}--0; E{wCi)vCJ)}-O; i,J_>O (5.4)

Let the correct process and data model be the following _

2

Xa(i �D�=l(l)Xa(l) } (5.5)

i=0,I,2,... :_

z(1) = A(1)Xa(i) + Va(i) (5.6)
_,

where

Xa(i) Wa(i) and Va(1) satisfy (5._) and

Xa(O) - N(O,Pa(OI) ; Wa(i) - N(O,Qa(i)) ; Va(i) ~ N(O,ra(i)) (5.7)t !

Let G(i) denote the computed (suboptimal) gain at stage i. ;

S Then the actual estimate errors associated with the model (5.5)-(5.7)

satisfy the following recursions

b_(t) = _(t)-Xa(t) = (I-G(t)A(t))A_(I) + G(t)_a(t) (5.8)

A_(I+I) = _(l+1)-Xa(i+1) = O(i)A_(1)-Ba(1)wa(i) (5.9)

_2

where

At(o) = -Xa(O) (5.10)

_ Equations (5.8)-(5.10) may be verified by applying (3.11), (3.13) and

(3.16) together with (5.5)-(5.7).

tThere is no loss of generality in assuming a zero mean process. This
assumption is made in order to free the error analysis of superfluous

algebra.
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++ Thus, the actual a priori and a posterlorl error oovarianee for +,,

this problem may be computed from the following recursions

A
Pa = (I-GA)Pa(I-GA)T + GraGT (5.11) _,

^ T
_a ffi @Pa# + BaQaBaT (5.12)

where initially

Pa = Pa(0) (5.13)

Equations (5.11)-(5.13) represent the conventional error analysis _+

algorithm for mismodeled a priori statistics (of Nishimura [1966] ++

and Heffes [ 1966]). This evaluation method is simply an application y!_
_j

of the stabilized Kalman covariance equations and for this reason it +'-++++
. _+'++

+"I"
is numerically unreliable

}+ A more reliable error analysis method may be obtained by employing ;
>

• the U-D factorization techniques studied in Chapters II and IIl. Time _+

S
propagation of the actual U-D covariance factors, via (5.12), may be _

achieved by a direct application of the MWGS algorithm (or the modified

2 Givens update) in Chapter III. The U-D suboptimal measurement update, _ ++

corresponding to (5.11), is based upon the following covariance decomposi- : +_+

tlon. _.

) ++ -i.+,

+ +
fThe numerical deficiencies of the stabilized Kalman formula are demon- +:i :_

"+ strated in Chapter Vl where, in sharp contrast, the U-D and Potter ++

+ I+_ methods are shown to possess superior numerical characteristics.
"u

\
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The-a postertori error-eovartanoe _, where

= (I-GA)PCI-GA) T + GraGT (,5.14)

Imay be written as follows

P : P + a)'),T (5.15)
C --

where

: _-KvT (5.16) ii

X = K-G (5.17) _

v : gAT (5.1s) _
,?

and .g

K = via a : Av + ra (5.19)

^ -i_
Consider the quadratlo P(G) in Eq. (5.14). Note that the quantity :_ .

K defined by (5.19) minimizes _(G) and that this minimum is _(K) P _- . !!

Slnoe the difference _(G)-P is non-negative definite and symmetric,
we would expect _(G) to have the form (5.15), This decomposition is _

readily verified by substituting (K-X) for G in Eq. (5.14), regrouping _

terms and applying the identities (5.18) and (5,19). The covariance ii
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thus corresponds to the minimum quadratic, i.e., the optimum updated _
r_

covariance associated wlth the Kalman gain K. t

Suppose the covarlance P in (5.14) is factored such that

= U-_T. Equation (5.16) then implies that the U-D factors of P may

be computed from the Bierman optimum measurement update, Eqs. (2.69)-

(2.79). Given the U--=Dfactors of P, Eq. (5.15) suggests using the Agee-

Turner triangular matrix factorlzation (Appendix C). Thus, the U-D

suboptimal measurement update may be performed in two stages; an optimal

update to a modifxed problem,_followed by an Agee-Turner rank one

matrix update. This method is summarized in the following algorithm..

U-.D Arb_trar _ Gain UDdaSe Algorithm

Given: U,D - factors of a priori covariance P ,,

A,ra - observation coefficients and

scalar measurement error covariance

O - arbitrary gain

A A
The a posteriori covariance factors U and D can be obtained as follows:

• Compute via the U-D optimum measurement update algorithm,

Eqs. (2.89)-(2.79),the quantities:

tThe gain K is optimum given a priori covariance _. However, P does
not represent the optimum (or minimum) covarlance attainable unless
is also optimum.

102 i
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?
_- K - Kalman gain

_ a - innovations covarianoe

,_- U,D - the factors of g = (I-KA)P

_ • Set X = K-G

+_+_'" e+ Apply the Agee-Turner algorithm, Appendix C, to compute

_:_- and _ where

+J;._, _Z = NOT + ,,_T (5.20)

This evaluation may be represented symbolically asK

+°

+!,_ [U,D,A,r a] + [O',D, ),, =] . [ , ]

}i The U-D arbitrary gain update inherits the efficiency and reli- .

ability of the two algorithms it employs. The optimal U-D update was

•" shown in Chapter IV to require I.5n2 + O(n) multiplications while the

Agee-Turner factorlzation requires n2 such operations (of Appendix C).

+, Hence the entire update is performed with 2.5n2 + O(n) muitiplication3.

_+ When variances are computed, total multiplications reach 3n2 + O(n)

_, •+ as compared to the _n2 + O(n) such calculations required by the conven-

tional evaluation formula, Eq. (5.11). I detailed cost comparison!,
of galn evaluation algorlthms is included in Appendix F.

This arbitrary gain update is the cornerstone of the U-D error

analysis technique. Note that evaluation of incorrect a priori s_atlstics

103 '
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requires only a minor addendum to the optimal U-D filtering algorithm.
!

Thus, both the gain computations and the subsequent error analysis _ _

can be performed by one program. The gains may be computed during

a first pass through the filter, operating in what it believes to be

an optimum mode. The same filter, tuned to account for suboptimal

gains and given the correct system model, may then perform the gain

evaluation.

A similar error analysis algorithm could also be developed for

the factorization P = SST where S is upper triangular. The suboptimal

measurement update for this factorization clesely parallels the U-D

formula. First, S, the square root of P in Eq. (5.15), is computed

via Carlson's optimal update, Eqs. (2.39)-(2.46). Then an Agee-Turner

square-root factorization (Appendix C) yields _ where _T = _gT + axtT.

This update may be coupled with a Schmidt (Householder) propaga ion

scheme to obtain a complete square root error analysis algorithm.

The square root method is not pursued further, however, because it

i" lacks the efficiency of the U-D evaluation algorithm (see Appendix F).

: 5.3 Evaluation of Mismg_eled Dang and Sta_ Tra_sltion Matrices

._ 5.3. I General Error Analvsls Technicue

In this section the U-D error analysis method, is extended

', to account for mlsmodeled data and state transition matrices. Suppose

;_ the correct process and data equations are the following

_ :

  RODUCBPJTYOFTRB
• I0_ .,,_nI"_A.L PAGE I8 POOI_

z,
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The a priori error, _, is related to previous errors as follows

Due to the errors AA and At, oovarlanoe expressions for _ and

Z_ oontaln ths aotual s_ate oovarlanoe, Pa " E{XaXaT)' and the oross-

oovarlanos, P_ = E{_xxaT). Thus, oovarlanoe error analysis tot this

problem _ves propagation of the 2n-dlmenslonal covarlanos

, le i

_ote that mlsmodelsd data and state transition matrices produos biased

estimates unless E{x a} = O.

105

19770o5172-19n



_ 33-798 __.

::,_!i,. The reoursions required to propagate _ by conventional methods were

:_:_._{ derived by Griffin and Sage [1968] However, their algorithm appears ;_

unwieldy and, Judging from the experimental results in Chapter V1, _:_

_,_i_'l,_._ it is numerically unsound. The problem may be solved more accurately :_

_._5_:i and efficiently by applying U-D covariance factortzation methods, _ ,.

_._-,_:_ _ ._ .FOr this error' analysis we will find It convenient to avoid covariance

_ .... " eqUations altogether and study, instead, the associated, "weighted error" , _i:i_

_ _ ':_' propagation p_oblem. + To this end, we' interpret the U-D oovarianoe l :?

i:_' faotorization as a par_loula_ "whitening" of the esttma_e errors. :_.

That is, in terms of seoond-orde2 statistics the e_rors may be described _-

as , _¢

}
Ax ffiUvx (5.27) _

where the zero mean noise, Vx, has diagonal oova_ianoe D.

• Suppose the U-D factors of the a priori covariance

.- xa

g_,_ are partitioned as follows. I

!._ _r= g = d_.ag (D_,D x) (5.28)
ux

/_ _Thts approach _s analogous to the error analysis technique associated
{ with square-root information filtering (of Bterman [1976b]).
,?

yL

% .
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_ Then the "whitening. interpretation of Eq. (5.27) implies that a priori

_:_ estimate errors may be written as

= -- ' (5.29)

where vE and vx are zero mean, uncorrelated and have diagonal covarlanoes

D_ and Dx _espeotlvely. Equations (5.23) and (5.29) 71eld the followlng

a posteriori error equation

1 n n

[_-!1f°1"'°"u'i q "

I U-_x= (I-GA)URx �GAAUx (5.31)

The noise vector, v, has zero mean and diagonal oovarlance

1 n n

D-- ira, D_, Dx) (5.3_)

Olven the expressions (5.30)-(5.32), we desire the representation

" .... (5.33)

LX'J L" / ";J "

. [10"/
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[ux,Dx]- [Ux, Dx] ¢5.35) f

U_x = Uix = UEx " G(AU_x " &AUx) (5.36)

U_D_U_T = (I-GA)URD_U:(I-GA)T + GraGT (5.37)

I

Thus, Utx, U_ and Dx ape obtained directly; The factors UR and DR

may be computed by applying the U-D arbitrary gain algorithm (section

5.2) to Eq. (5.37).

!
Similarly, a U-D algorithm may be derived for the time update, 1

Eq. (5.25). When the expression (5.33) is applied to (5.25), the a priori

, error equation takes the for=

108

1977005172-123



.............................-----. - , _ ___L__--j-_'I'

33-798 ;:

N "i
L'..IL".Io I*.%1b'_.J}" :_

where i!_

"_;"_ The noise veotor v tnEq. (5._}8). has zero sea, and ooyi_rtanoe _ where ,,o

• !
k 11 I1 ,

g : drag (_, D_, Vx) (5.110) _

Note that one of the U-D time update algorithms in Chapter III may _

be used to trlanEularlze (5.38). In this ease the W and D arravs involved _!_

ia the time update are given by Eqs. (5.110) and (5.111). _ .!.

k n n i
W z .......... (5.111)

. L;:J; / '.",j)° -
Computer storage and oomputatlon required for this update may be reduoed

by taking adventage of the nxn b3ook of zeroes in the W array. ' _ ;!

The general U-D error analys' 1 method is summarized as follows, i

1
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_ Gener_l _-D Covariance. Error Analysis AiEorithm

_ Given: {O(i)} and _A(i)} - the incorrect state transition and

data matrices assumed by the filter

{_(iJj - suboptimal gain profile computed by the filter

-'_ {Oa(i)] - correct state transition matrices -;
.J

2

g {Ba(i)} - actual process noise coefficients

{Aa} - actual data coefficients

_ i {ra(i)} - _ctua] data noise covariances

F

{Qa(i)} - actual process noise eovariances

_ U

_, anu U = diag (D_, DX) - factors of the -_

'_ UxJ true initial covariance Of _ and Xa .t '

:_ The true error covariance for this model is propagated according to

" the following recursions.

_ tTypicslly, the initial factors _re such that i

[U_, D_] = [Ux, Dx] and U_X = 0, where UxDxUxT = Pa(O).

110 ,
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_: = U_cx - G(AUyx - AAUx); AA - Aa - A (5.42)

Apply the Bterman algorithm, Eqs. (2.69)-(2.79) to obtain ,:

+ [u_, _, A,ra] �[_,_, o, K] (5.431 ;
Covariance ""

Measurement Let
_+ Update _

Compute the updated factors lug, Dg] by applying the

Agee-Turner triangular factorlzation (Appendix C) to ?

the identity

+

4'

+

I . +_

U_x: = # UEx _ Ai Ux; At = i a - ¢ (5._6) "

Let ?+

+ r+,L.o+!O+x-1 "
TtmeC°Variance W= L-B;i ..... 0 [-;;u;J (5._7) "'_+Update +.

= dlag (Oa, D_x, Dx) (5._8) _;

_ Apply MWGSalgorithm, _ Eqs, (3.28)-(3.30), to the .,
7

W and D arrays to obtain +
•

: [W, D] U_x, Ux, D_, Dx] (5.119) +:+'++,

At any stage, the true estimate error covartance is given by }

_ T T

i+ i P_" = Ux'D'£xU_+ U_xDxU_x ( 5.50 )

I _.

, +

";.i +%The modAfied Givens update, Eqs. (3.80)-(3.89), could also be used I

here. ,:+

+

111 _ ;
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This general error analysis technique inherits the computational -

efficiency of the U-D filtering algorithms upon which it is based.

The evaluation schem_ is easily implemented, requirzng only minor modifi-

cations in the U-D filtering equations. The following sections illustrate

how this method is easily adapted to handle some important reductions

of the general error analysis problem. _ ,

5.3.2 Evalua_oq of Mismode_ed Biasgs and Process Nois_Parameters

Consider the following application of the U-D error analysis :!

technique. Suppose the parameter vector, X, is partitioned such that _
?

X = (5.51)

}n2

and let AA , AO , and Oa have the form

n 1 n2

AA= [0 ! AA21 11 (5.52)

n 1 n2

AO = [0 I A42] }nl+n 2 (5.53)

n 1 n2

ia - - (5.54) ! ;

L° ! o2j}.2

;:4
¢ .;
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For this problem the error equations corresponding to (5 23) and (5.25)

reduce to the following. <

A

AX = (I-GA)_ + GAA2x 2 + Gva (5.55)

A

= OAX -A@2x 2 - BaWa (5.56)

Hence, estimate errors contain only the x2 portion of the actual

state. Notice also that x2 is uncoupled from xI by Eq. (5.54). Thus

the e£ror analysis corresponding to Eqs. (5.29)-(5.40) simplifies and

involves only the vectors AX and x2. Let Ba be partitioned compatibly

with *a" In this case the error equations (5.30) and (5.38) take the

form

n1+n2{ -_A_= O__ ,.(I-OA)U_._ ..--UXx vX )n1+n2 (5.57)

n2{LX21L° / -o ! u_j }n2

knn2n2T];21 I'-_a i "U_'_ i ixJ wa-" }k

n1+n2( AX : U x }n1+n2 (5.58)

where

UXx = (I-GA)U_x + GAA2U x (5.59)

i U_x : ®U_x- A®2ux (5.60)

: i 113
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Thus, in Eqs. (5.42)-(5.47), the matrices Ca' b# and AA reduce to #2'

b#2 and &A2, respectively. The array Ba in the lower portion of N,

Eq. (5.q7), reduces to B2 (of 5.58).

Suppose that x2 represents biases or colored noise parameters,

so that #2 is diagonal. In this case, each mismodeled component of

x2 introduces only one additional "true" state into the error analysis;

i.e., one additional row and column onto the augmented U and D arrays

in Eqs. (5.42)-(5.49). Thus, filter sensitivity to mismodeled biases

and colored noise parameters may be easily and efficiently evaluated.

5.3.3 Sensitivity Analysis of Unestlmated Prccess Noise Parameters

Another important reduction of the genera] error analysis

problem involves the evaluation of unmodeled colored noise parameters.

In this case the estimate error recursions (5.29)-(5.40) are written

in terms of Ax and p, where x represents the parameters estimated by

the filter and p denotes the unmodeled parameters to be evaluated. !
i

The #a,&A and _0 arrays in Eqs. (5.42)-(5.q7) for this case reduce

to OafOp, AAfAp and &OfOxp. Further modificatzons may be required •

in the W and D arrays (Eqs. 5.q7 and 5.q8), depending _ the white

process noise model used in the evaluation.

The effects of unmodeled bias parameters could also be evaluated

by this reduction of the general error analysis al_orithm. However,

bias effects are more efficiently evaluated by the sensitivity analysis

technique described in the next section.
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5._ Variable Dimension Filterin_ and Sen_Itlvlty Analysls :
"E

5.4.1 _onsiderin_ the Effects cf Uqestlmated Bias Papameters

" When dealing with higher dimensioned systems involving

large numbers of hl_-type parameters, it is often necessary or desirable
¢

_ to neglect certain parameters in the filter model. Reasons for studying :,

• a reduced order problem include practical considerations of computer

? time and storage and concern that hlgh-order filters can be overly
L

sensitive to numeric effects. The following error analysis technique

is of prime importance in the design and evaluation of reduced-order

_ filters.

Suppose the parameter estimation problem involves the vector .

[:],nX =

._ The parameters x are to be estimated and suppose y are either a) estl-

mated, b) neglected in the filter model, or c) neglected in the filter I_

model but considered when the true covarlance of x is computed. Let t_

: the optimum estimate of the complete problem be X with error covarlance

: _ = _T where 0 and _ are partitioned consistently with _.

+_ Thus

n b
__ n b

• 0 }n ----
- - and _ --dlag (Dx, Dy) (5.61)

!., L° !% }b
:L
/

J
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In terms of second-order statistics the U-D factorization of _ implies

that estimate errors can be written as
A

n b

• =Ill= (5.62)

_ b{[AgJ Uyj Vy }b i-

The uncorrelated random vectors vx and Vy have covarlances Dx and Dy _

respectively. Equation (5.62) implies that

A_ = UxVx + UxyUy'IA _ (5.63)

Let _c represent the estimate of x that corresponds to a n-dlmenslonal i

_ _ c denotes the errorfilter, i.e., A = O with probability one. If x

covariance of _c then Eq. (5.63) implies that _

_xe UxDxUxT (5.64) _

Note further from Eq. (5.63) that the "sensitivity" matrix, E, which _ S

relates the x estimates to errors in the y parameters is given by _

E = UxyUy"I (5.65)

' Let _ and _ represent the optimal parameter estimates based on the 1

complete model and let and _y denote their respective covariances, o

Denote _x(c°n) as the "con_ider" covariance of _c, i.e., the error

covariance based on the complete model. Then Eqs. (5.63)-(5.65) yield

,, 116
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Ac

_z- Px �z_yzT (_.66_ 1
_x(COn) = _c + r. Py(O)r.T (5.67)X

where

_y = UyDyUyT (5.68)

and Py(O) is the a priori covariance of the y parameters. The covarlance

relations in Eqs. (5.64)-(5.68) were first recognize_ by Bierman [1976a].

He showed that _ and _c are related as follows. I

_o = _. _ (5.69)

The reader may w_sh to verify from Eqs. (2.69)-(2.79) that

Ux and Dx are computed independently and are not affected by the last

m columns in the U and D arrays.

This "consider" error analysis is easily extended to the

discrete linear filtering problem studied in Chapter Ill if the transi-

tion equation has the form

n b k

ffi + wi (5.70)

b{ i+1 #y J Y i

where E{w 1} = 0 and E{wiwi T} =dtag (ql' "'"qk )"

:!
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The results of Chapter III imply that the U-D time update for this _ z

system may be accomplished by a square-root-free Givens triangularization

_-" - of the arra:r .',_

; k n b ._

, Wxy }n
< W : (5.71)

o WyJ}b

• _ a

k n b -_

involving the diagonal D = (Q, Dx, Dy). The elements of W in Eq. (5.71) <

are given by Nx = 0xUx, Wy = OyUy, and Wxy = OxUxy + OxyUy. From
";" 7_

Zqs (3.75)-(3.77)it is clear that after the last b columns of W and D.

are packed by the modified Givens algorithm we are left with

k n b •

_" _x }n :; w(n)= (5.721
o J)b

, knb ,_

'; g(n) = (Q, DX ' ) (5.73)

_" The Ux _d _x _ctors are then obtained by applying the modified Givens

algorithm further to the arrays W' = [B Wx] and D" = (O, Dx). Thus,

Ux _d Dx _e computed in a _y _ioh is independent of the y parameters.

_ For this reason the "consider error analysis, Eqs. (5-6g)-(5.69),

applies directly to systems of the form (5.70). A separate analysis

> is required to evaluate the effects of neglected stochastic parameters

such as colored process noise (cf section 5.2.3).
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Bierman [1976a] has noted the followlng features of the =

"consider" analysis technique. I

1) F_m the results of a single large filter which includes

all of the relevant parameters it is possible to i _

evaluate a variety of filter models. _us, beginning /
c

with the complete solution one can recursively compute ;_

estimates for models with ni parameters from estimates ?:

corresponding to the ni ensionalmodel where !_

ni < ni+I _

,i

2) Parameters may be rearranged for additional flexibility. "_
,.

That is, one may decide to estimate the last b param-

eters and consider the first n. In that case the

I error equation (5.62) must be rearranged and has ;
i

I the form _
{_ -

b n -

[:1{ "Uy 0 Vy _
= (5.74) ,_.

Uxy Ux vx _

_,, This expression may be triangalarized by applying ,

'_:'I" one of the U-D factorizatlon algorithms in Chapter

llI. For example, a MWGS factorization may be applied

to the arrays '_

[0]W = and _ = diag (Dy, Dx)
Uxy Ux
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to yield
_ 5"

o_;-- xl _!I

: ulJL ,j :

where v_ and v_ are uncorrelated and have covarianees

D_ and D_ respectively. I

:- 3) When the a priori oovariance Py(O) in Eq. (5.67)

is diagonal, the columns of Z P,(o) 1/2 represent la

pe. _urbations in the estimate errors due to the corre-

sponding y parameter. This associatio_ ls useful

in determining filter sensitivity to various parameters

which may be omitted from the final filter model.

4) The matrix inversion in Eq. (5.65) involves a triangular

matrix and, th.s, can be easily accomplished by back

substituton methods.

5) The U-D varlable-dlmenslon filterln_ method is more

flexible, more reliable and considerably more efficient

than corresponding techniques employing partitioning

L of the covarlance matrices (of Frtedland [1969]).

5.4.2 Consider Filte_

The consider filter to be discussed here is a generalization

of the method described by Soh=idt [1968]. The filter model includes

,_. 120
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' parameters x and y where only the x variables are estimated. The y

:!iI parameters and their associated error covariance are retained at the

,,_', a priori values. This method differs from the consider error analysis i!°

: studied in the previous section since the gain, Gx, used to update

the x parameters is computed from the full etrue n covariance on x and y. _,

This type of suboptimal filter might be used, for example,

in situations w_ere the y parameters cannot be accurately estimated

-; or when estimating them might lead to an overly optlmistlo y covariance.

In the latter situation the filter is, in effect, reduced to an x filter.

When it is believed that a reduced-order filter cannot accurately estimate !

x, the consider filter is sometimes proposed (of Bierman [1976b]).

Error propagation for the c,_nsiderfilter takes the form

LJ" " "bl .t L"yJ _.

n b k

"['-:]. ,,._'L"JL° / ',_:-,
where

Z • AxX �Ayya (5.?8)

• m{y}• 0 (5.19)
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_: If the U-D factorlzationis .ssumed for the true oovarlanoes _ and

_ P assooiated _tth these errors, then Eq. (5.76) may be interpreted

-L. as follows

_ n _ n b

___;, n{ [A_] -" I'GxAx I-G:A--Y- [Ux _ _Xy'][Vx] + _:_ va (5,80) I_,- b{ o L° Iuyj _y ,

),, where Vx, Vy and va are unoorPelated with diagonal oovarianees Dx, Dy ¢

_; and ra, respectively. Equattor, (5.80) may be rearr_nEed to yield

; o L;,j)_
_ where

Uxy = Uxy - Gx[AxUxy + AyUy] (5.82)

';, The oovarianoe update oorrespondin_ to (5.76) may be interpreted as

_; a trlangularlzatlono£ the e,_rorexpression (5.81) suoh that

i/
i"

_' n b !

,-,, r:Ol ro,,1,,,_;_,,_ _,_.l"[;[VJ t_.J,. ("""

om_ PA_sm _ 1
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i'

be unchanged by the transformation from (5.81) to (5.831 yields _)
• ¢

Uxy= Uxy (5.85) :i

AAA T
" UxDxUx = (I-GxAx)OxgxOxT(I-GxAx)T �Gxrae,x"_ (5.86) i

>,

If Ox were the Kalman gain associated with the rrduee_- i

/ order problem having a priori covariance factors Ux and D_i' then the

%_ factors and could be obtaln_d by applying the _Ierman U-5 measure- _:

5 meritupdate elgorlthm to Eq. (5._6). Note, how:ver, that for the general- _'

ized Schmidt consider filter, the _ain 0x is computed from the full ,,:-

consider covarlance. Thus, Gx is obtained from the identity
5

,>

where i _

', _ • ra * vTf (5.G8) : :;

_23
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n b

' { ] -0 gy

}
n b _

I

vT = (fxDx , fyDy) (5.90)

's

For this reason, we compute _x and _x by applying the U-D arbitrary

gain update algorithm (section 5.2) to Eq. (5.36). The first phase !

of this update applies the Bierman algorithm, Eqs. (2.69)-(2.79), to

obtain thp gain K = Kn/an_ corresponding to the reduced-order problem

with a priori factors Ux and Dx" Note that the full-dimension gain

in Eq. (5.87) is given by G = Kn+b/an t�whereKn+b and an+ b may be

obtained by cycling further through Eqs. (2.74) and (2.78) for

j : n+1,...,n+b. In this recursion only the first n elements of the

vector K'o need be computed since the gain Gy is not required.

Time propagation via (5.77) of the full consider covariance

! U-D array is easily accomplished by a MWGS or modified Givens factoriza-

tion applied to

k n b

II^l-]: Ba _xUx Uxy }n
W = ............. X" (5.91)

LoI0 l,,o,J_
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and

A A

= dia8 (Oa' Dx' Dy) (5.92)

where
A A

0_y = #xU_y + #xyUy (5.93)

E 12s

i
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_ Chapter VI. Numerical Comparison of Discrete _

c Kalman F_erin_ Al_orithms

6.1

The numerical stability and accuracy of various discrete lalman

filtering algorithms have been carefully studied by applying these

g methods to a realistic interplanetarynavigation problem. Included

in the study were the conventional and stabilized Kalman algorithms,

the Potter-Schmidtsquare root filter, and the U-D factorizationfilter.

The Carlson-Schmidtalgorithm was omitted from the comparison since

this method clearly shares the numerical characteristicsof the U-D

filter (cf Chapters II and IIl).
S,

/

_: Each of the algorithms was implemented on the UNIVAC 1108 computer!

! which has a 60 bit characteristic (18 decimal digits) in double precision

and 27 bit characteristic (8-9 decimal digits) in single precision.

_ The complexity of the study problem prohibits closed form solutions.

_" However, numerical solutions from all the algorithms, using double
f

precision arithmetic, agreed to 8 digits or more. These double precision

results were used as a reference for evaluating the accuracl_s of the

same algorithms computing in single precision.
2/

6.2 Problem Description

A portion of the 1977 Mariner Jupiter-Saturn (MJS) deep space i

mission was chosen for the filter comparison study. The problem involves _

: spacecraft navigation for the 30 day period immediately preceding

Saturn encounter (point of closest approach). For the initial 20 days !

126
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the spacecraft trajectory is nearly rectilinear, a characteristicwhich

is typical of a major portion of most deep space missions. The last

segment of the trajectory has a hyperbolic bend dus to the gravltatlonal

effects of Saturn. Hence, tracking data from this phase of the mission

is particularly useful for an accurate determination of the planetary

• mass and the spacecraft position and velocity. This trajectory is thus '

_k characteristic of a significant class oR orbit determination problems. :
I

The nominal trajectory and state transition matrices were obtained

by inteEratin& the equations of motion and variational equations (of

Moyer [1971]). Earth-based measurements of the spacecraft include

both doppler and ranging data. Partial derivatives of the data with

respect to the system parameters were evaluated analytically about

the nominal trajectory using the orbit determination software described
t

by _oyer. AI! of these calculationswere performed in an earth-centered,

cartesian coordinate system.

Perturbations from the nominal trajectory and simulated data

were constructed from a discrete linear model. The complete model

includes differential corrections in 19 parameters; the spacecraft

position, velocity and acceleration components (3 each); the gravitatlonal

• constant of Saturn (GM); and tracking station locations (3 cartesian

components for each of 3 stations). The state transition for these
[

perturbations is described by the following equation.

I
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= 0 M 0 + (6.1)

g

The vector x denotes the 6 components of position and velocity, p repre-

sents the 3 acceleration components, and y represents the 10 bias parame-

ters. Accelerations are modeled as piece-wise constant colored noise

with time constants of 12 hours and standard deviations of 10-11 km/sec2;
?

- and these define the variances of the white notse, wi, in Eq. (6.1). :

The discrete times {ti} are assumed to be equally spaced with 4

_ tl - ti = At taken as 2 hours. Thus wI has oovarlance Q = qI3 where _

q = (1 - m2) Op2 = (1 - e"1/3) 10-22 (km/sec2) _ (6.2) _ i!

¢

Let X represent the complete state vector in (6.1). T_te Initial _ s.

vector Xo has zero mean and diagonal covariance Po" The nontrivial

elements of Pc are defined by the standard deviations in Table 6.1. _

i
These a priori statistics are typical assumptions for the kind of orbit

determination problem considered here (cf O'Nell, et al. [1973]).

i

The simulated state lo is obtained from a Gaussian random variable _ i

generator wlth zero mean and covariance Pc .t The actual state is then _

propagatedaccordingto Eq. (6.1)wherethe componentsof wi are obtained _

from the Gausslan random variable generator with covariance Q. ]

i

teachcomponentof Xo Is obtainedby usinga N(0,1)rancomnumbergen- _I
erator followed by an app_oprlate scaling of the sampled value.

t gEPRODUCIBIL1TYOF TH_ ,:_ ,,

, O_IGqNALPAGE N POOR ,,
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Table 6.1. A Priori Statistics Used to Generate Sample Path

Variable Standard Deviation

Position 1000 k=

Velocity 100 m/s

Acceleration 10"11 k=/seo 2 (T = 12 hrs)

spin _xls - 1 meter

-_1 Station location _erors bLongttude - 2 meter
_6

Latitude - 5 meter

GH (Saturn) .1_

Data for the linear simulation are generated from the equation

i'z I = AIX t + vt (6.3)

where the elements of Ai are partial derivative coefficients evaluated _ f

along the nominal trajectory, and vi is white data noise obtained from

a Gaussian random number generator using the appropriate measurement

error covariance. The simulation includes two or three doppler measure-

ments every two hours with I mm/sec accuracy (for I minute averaging

time) and occasional range points with an accuracy of 3 meters. There

were a total of 535 doppler and 72 range measurements in the 30 day

tracking period.
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Thi_ simulation is representative of a large number of interplan-
t

etary navigation problems. The a priori statistics are in no way

7o contrived to produce poor results in the conventional algorithms. On

._ the contrary, a priori state covariances were chosen on the small side

for problems of this type in order to avoid initialization errors asso-

ciated with the Kalman algorithms. Similarly, process noise uncer-

_ tainties were assumed to be an order of magnitude higher than usual

for this kind of missionS because the Kalman algorithms generally expe-

_- rience less numerical difficulties in high process noise environments.

t

This estimation problem is well posed in an engineering sense.

The problem is observable; the transition matrix is not ill-conditioned;

< and the measurement coefficients and a priori error variances are not

$ unusually large. Thus, the results of this study should be of interest

to the entire estimation and control community.

6.3 _!ter Imolement%tions

_ The five covariance-type filter algorithms compared in this study

are the conventional Kalman filter, Joseph's stabilized Kalman filter,

a conventional Kalman filter with lower bounding, the Potter-Schmidt

square root filter, and the U-D factorization filter with MWGS time

propagation. A limited evaluation of the U-D filter using the modifLed

Givens update is also included. Details of the various filter algorithms

are given in Chapters II and III.

i

*See Chrlstensen [1976] or O'Neil, et al. [1973].
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Each algorithm involved in the study was mechanized for maximum

accuracy and efficiency. Thus, the U-D filter employs the efficient

one-at-a-time colored noise update, Eqs. (3.130)-(3.133); while the

Potter-Schmidt filter performs time updating in one stage, taking ad-

vantage of special system structure and blocks of zeroes.

! Computations are also reduced by using vector outer products

whenever possible. In the Kalman algorithms, symmetry of the covariance

matrix is preserved by computing only the upper triangular elements.

The stabilized Kalman filter contains a single exception to this rule.

Significantly improved results were obtained with the stabilized

Kalman filter when off-diagonal covariance elements were computed and

averaged during a portion of the measurement updating. This averaging t

takes place during the computation of the first term in Eq. (2.24).

Thus all n2 elements of the array P = P1 - v2 KT are computed, and

the off-dlagonal elements of _ are obtained as follows.

_iJ : "5(Pij + P ,_ + rKiKj i # j (6.4)

The fact that numerical re_ _re uensitive to such mechanization

details is indicative of the algol .6nm's instability. Even with the

averaging of off-diagonal elements, the stabilized Kalman algorithm

performed poorly.

The conventional Kalman filter with lower bounding is designed

i to perform a covariance measurement update in the following way. The
i,
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_ conventional update formula is first applied to obtain an intermediate

array P. Thus,

= _ - KA_ (6.5)

I

A

The updated covariance P is then computed from Eqs. (6.6)-(6.8).

_jj = max(Pjj, Omln(J)) J = l,...,n (6.6) |

(
t

PIJ if PiJ < MIj

_iJ = (6.7)

sgn(gij) Mij otherwise

where

2 A A

Mij = Pmln Pii PJJ i = 1,2,...,J-I (6.8)

The n components of amin and the correlation 0min are chosen

a priori. This mechanization is typical of the techniques that are

frequently used to prevent the computed covariance from becoming indefi-

nite (cf Schmidt et al. [1968]). The mechanization is no optimal

_', and the computed _ is generally not the actual error covariance. Choosing :

the bounds amin and Pmin is something of an art, and appropriate values

are usuall_ determined from lengthy simulation studies. This lower _

I bound filter algorithm is included in the comparison study in order !

to illustrate that ad hoc "patching" techniques can compensate to some

. extent for the numerical inadequacies of the conventional algorithm.

;, 132
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However, the results of the remaining sections demonstrate that such

measures are not necessary when factorization algorithms are used.

All of the filter algorithms were coded and carefully checked

using double precision arithmetic. These programs were then ccnverted

to single precision by removing the FORTRAN IV "implicit double precisio_" i

"!statement. However, in the single precision programs, inner products

are accumulated in double precisio_l and then rounded to single precision. iIn addition, estimates are retained in double precision because a signifl-

cant accuracy loss is incurred when single precision arithmetic is iused in the estimate propagation, Eqs. (3.11) and (3.13). This accuracy

loss would not be attributable to a particular filtering method but _ t

would mask the desired comparison. _ :

Since all of the filter programs compute estimates in double '_

precision and use the same (single precision) inputs,t only the gain i

computations differ. Thus, filtering accuracies may be analyzed by

applying the gain evaluation algorithm described in Section 5.2. This

I evaluation program, implemented in double precision and operating wlth -_
the same inputs used by the filter, computes the actual, or true, error

i 'covariance associated with each gain profile; i.e., each filter algorithm.

Hence, two complimentary methods are used to compare filter accuracies. :{

Thc error analysis program provides a statistical means of co_parlng +_

tThe state transition and data matrices used in the simulation are -+

computed in double precision and rounded to single precision.

133 '_,+
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.. i filter performance, while the single simulation results yield an illustra-

_ :I tlon of these statistical predictions.

_ 6.4 Numerical Results

_ A comparison of filtering accuracies was first obtained for the

_ full 19-state model described in section 6.2. The filter model was i

then varied in order to evaluate sensitivities to a priori statistics.

Reduced-dimension problems were also studied as a means of assessing

_ how numerical stability is affected by model dimensionality. In every

case studied, the double precision programs computed estimates and

standard deviations that agreed to 8 digits or more. In fact, the

factorization algorithms agreed to at least 10 digits. The single

precision programs, however, produced widely varying estimates and

covariances. The results to be described indicat_ that, while the

_ single precision Kalman algorithms experience serious numerical deteriora-

tion as computer word length decreases, the factorizatlon methods have

excellent precision and stability.

6.4.1 The Comolete State Model

For this portion of the study, all of the filters assumed

the 19-state model described in section 6.2. Thus, the actual and

assumed models coincide. For this case and the others to follow, the

single precision factorization algorithms computed gains and variances

which agreed with the double precision reference results to about 5-6

, J
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digits, t The single precision Kalman algorithms, however, produced

markedly different gain profiles and variances. Numerical deterioration

of these algorithms was evident in the form of negative computed variances

which appeared at inexplicable times. Although this numerical instabilty

is related to the choice of a priori statistics (of section 6.4.2)

" I negative variances do not appear until after four days cf filtering

with the conventional algorithm, and after ten days when the stabilized

formula is used. This behavior is particularly interesting when we

note that in the first four days there are 48 time and 80 measurement

updates.

f Both the conventional and the stabilized algorithms compute intermit-

tent negative variances. Even the bias parameter variances are intermit- i

tently negative. Furthermore, these negative elem,mts are not related :

to filter variances which are approaching zero. The erratic behavior

of the stabilized algorithm illustrates this point. For example, at

9.75 days the stabilized formula computes aGM2 _ -1.8 x
109 (km3/sec2) 2

: and at ten days adjusts this to 1.7 x 104. The correct (double precision)

value, however, is _M 2 = 5 x 103 (km3/sec2) 2.

The extent of the numerical deterioration in the Kalman algorithms

is apparent in Figures 6.1 and 6.2. These figures compare the actualI

'!
i tThe U-D filtering results reported in this section were obtained with

bo,_.htime update methods; the MWGS and the modlfied Givens algorithms
(of sections 3.3 and 3._). The latter propagation scheme employed

Method B exclusively (of Eqa. (3.80)-(3.89)) and experienced no numerical

i degradation; i.e., both filter implementations produced results which
; agreed to about 5-6 digits with the double precision standard. '
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_:_, position and velocity uncertainties' associated with each filter and "i

were obtained by applying the gain evaluation program.

In Figures 6.1 and 6.2 the U-D and Potter single precision filtering i_

accuracies are shown to agree with the de_bl_ vreoision references, i+'+
Notice_ however, the excursions of the conventional and stabilized 1

| -+

Kalman single precision accuracy curves. The conventional Kalman results I!
are seen to be particularly inaccurate at # days, while the stabilized

algorithm deteriorates rapidly at 10 days. !

Simulated data, generated using the same model assumed in the i;

error analysis, was filtered by each of the algorithms. Actual eetlm_,__ _ _.

errors for this single slmulatio,_are compared in Figures 6.3 and 6.4.

Notice how closely the gain evaluation results in Figures 6.1 and 6.2 +

predict the error curves of the sampls path. As anticipated, the conven- '3

tlonal algorithm in single precision produces large errors at # days.
• £°

The single precision stabilized algorithm also performs poorly, especially i •

after 10 days. However, the estimates and computed standard deviations _ (

obtained from the stabilized filter, when monitored at one day intervals, ; 2}

show few signs of numeric deterioration. Except for the times (3)

that negative variances ere printed, these estimates and etatlstics +

appear reasonable and consistent. Only when the results are compared _

fThe root-sum-square of position and velocity errors are chosen as
+ a measure of estimation accuracy beoaw_e these parameters are of prl-
' mary interest in navigation and are rep_,esentatlveof the general

filtering results obtained in this study.

_36 _]_RO_UG_BI]._TY OF THE L_ _
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with the double precision references is it apparent that the stabilized

Kalman estimates are far from optimum. 4

Recall that the stabilized formula was introduced as a computational

improvement to the conventional method. It is, therefore, surprising _

to note that _fter 10 days the conventional algorithm yields significantly ' _f

more accurate results than the stabilized formula. This phenomenon _"

,_ was not observed in all of the cases studied, however. The point to _

be made here is that, although the stabilized algorlthm does generally

give improved performance over the conventional formula, neither method

_ can b_ considered reliable.

By comparison, estimates computed using the factorization algorithms

agree to about 4 or 5 digits with the double precision values. This

agreement corresponds to better than I km in position and 50 mm/sec in

_ velocity. These single precision accuracies are particularly impressive

when it is noted that estimation uncertainties are two orders of magnitude

greater than these differences (cf Figures 6.1 and 6.2). In other _

words, the differences in the single and double precision results are

in the "noise" level.

In every case studied, the relative position and velocity accuracies

_ displayed the same general agreement illustrated in Figures 6.1-6._. •

In view of this, subsequent discussions are restricted to the comparison

of position errors and uncertainties. Thus, unnecessary discussions ,_

of velocity results are omitted. For similar reasons, the conventional

Kalman algorithm is also omitted from subsequent discussions. The

,) 138 REPRODUCIBILITY OF THE
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numerical instability of the conventional algorithm is already well

documented (cf Bellantoni and Dodge [1967] or Schmidt [1968]). This

method is dismissed from further comparisons with the observation that

in nearly every case studied the single precision conventional formula

suffered numerical degradations similar to those displayed in Figures

6.1-6.4.

; Numerical divergence of the Kalman filter is generally associated

_ i with indefinite computed covariance matrices. Hence, it is common

_ practice to attempt to preserve positivity by bounding the diagonal

_ _lements from below and to limit the correlations between pairs of
%

t variables (cf Eqs. (6.6)-(6.8)). Any such attempt to stabilize the

conventional Kalman algorithm introduces a myriad of filtering alterna-

&
_ tires. For example, should the lower bound on the velocity uncertainties

be 1.0 m/sec or 0.1 m/sec, and should the maximum correlation be .99

_ or .98? The choice of such patch factors is often problem dependent

• and may require lengthy simulations.

In this study filtering results are indeed sensitive to the choice

of bounds as Figure 6.5 illustrates. This figure displays the RSS

position error profiles produced by the single precision patched algorithm

i

! for various bounding schemes. By comparing Figures 6.3 and 6.5 one
i

can conclude that patching yields a marked improvement over the stabilized

1

i Kalman results. However, all of the error curves associated with the

f

i patched algorithm are far above the optimal double precision results

_ in Figure 6.3. Actual filtering uncertainties a,e compared in
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Figure6.6,and the patched algorithm is shown to be significantly

• less accurate than the factorization filters.

'_ In all of the cases studied, the patched Kalman filter displayed '

=_ the same poor performance observed in Figures 6.5 and 6.6. This study

demonstrates that the practice of introducing ad hoc patch factors i

to combat Kalman filter numerical divergence results in algorithms

: that are significantly less efficient and accurate than the factorization _ '

_ methods. Patching techniques are thus omitted from further consideration.

?

6.q.2 Effects of Incorrect A Priori Statistics :

Numerical difficulties with the Kalman algorithm can often

be attributed to initial ill-conditlonlng caused by large a priori _

_- state uncertainties and relatively small data covariances. These problems _" •

_ can be reduced by scaling the a priori statistics. However, any improve-

ment in numerical conditioning is offset somewhat by the effects of

suboptimal modeling. Consider, for example, the case where initi_l

_. velocity uncertainties are reduced by an order of magnitude to 10 mlsec,

_ and range uncertainty is increased to 10 meters (from 3 meters). This

combination of a priori statistics, selected by numerical experimentation,

i allows the stabilized Kalman algorithm to appear "stable." In fact,

for this choice of filter statistics neither the conventional nor the

stabilized algorithm computes negative variances. Moreover, for this

example simulation estimate errors are consistent with the filter formal

statistics. This consistency creates the false impression that the

Kalman algorithms are performing well when, in fact, they are grossly

inaccurate. Actual Kalman accuracies, computed by the gain evaluation

' 1_0
i

<,
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1

program using the correct statistics, are displayed in Figure 6.7.

This figure shows that for most of the filtering period the stabilized
p

Kalman uncertainties (using scaled a priori statistics) are an order _

of magnitude greater than achievable filter accuracies.

The results in Figure 6.7 also show that the Kalman filter is _

_ more accurate when suboptima! (ov = 10 m/see, oR = 10 meters) rather

than optimal (ov = 100 m/see, oR = 3 meters) statistics are assumed.

This theoretical impossibility is, of course, due to numerical errors ,
j

_; which can cause unpredictable results.

i,

When only one of the a priori uncertainties (ov or oR) is scaled,

: the single precision Kalman filters continue to produce negative computed :-

_ variances and unreliable gain profiles. Act_nl filtering accuracies ":

corresponding to scaled a priori velocity variances are illustrated in

• Figure 6.8. In thls case, ov Is scaled down by an order of magnitude _

in the filter model, and gain profiles Rre evaluated using the correct

.r

statistical model. Note that, for this example, initial velocity varI- _ _
' !

ances are scaled down by two orders of magnitude. However, instead _'_

of improving Kalman filter accuracies, this scaling produced greater

/

errors. Figure 6.8 demonstrates that the stabilized filter (with _

ov = 10 m/see) yields large uncertainties at 5 days which peak again

at 22 days. By comparing Figures 6.1 and 6.8 we can conclude that

numerical errors _n the Kalman results occur at completely arbitrary

'_ times and are unrelated to any physical phenomena peculiar to the "

problem. :

2
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In a filtering problem with observability and significant amounts ;_
i

of process noise, one would expect estimates to depend primarily on

\ data in the recent past. Thus, estimate error profiles corresponding

to different a priori covariance assumptions should, except for initial

" :7

transient effects, look quite similar. The factorization filters illus- I

trate this effect in the bottom two curves of Figure 6-8. In every :

case involving scaled a priori statistics, the factorization filters _ '

demonstrate the same stability evident in Figure 6.8. The Kalman algo- _

rithm, on the other hand, is quite sensitive to the choice of a priori _ a

statistics as the topmost curves in Figures 6.7 and 6.8 illustrate. _

The single simulation results for this case yield estimate -rot ;

profiles close to those predicted by the error analysis. Position errors _

i '
are compared in Figure 6.9. Notice the striking resemblance between

5 _
the factorization filter error curves in Figures 6.3 and 6.9, particularly

) after I0 days. As expected from the error analysis, the Kalman results

_ in these two figures appear totally unrelated. :,

"' )

This analysis illustrates how numerical instability can cause

unpredictable results which violate established estimation principles.

• 6._.3 _d_c_d-Dlmension Problems

The discussions in the previous sections were based upon

: the complete 19-state model. In this section models of sma]ler dimension

are examined. This study shows, among other things, that the numerical

instability of the Kalman algorithms is not caused by the dimenslonallty !

_ of the model; and that the inclusion of process noise improves the

* <

?

/
1
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appearance of the computed covariances but not the accuracy of the ,-_

estimates.

_ :

The smallest, physically meaningful model corresponding to the

planetary approach problem involves the six position and velocity vari- _

ables. This six-state system represents a parameter estimation problem :_

since there is no process noise. The Kalman algorithms are known to

be numerically unstable for parameter estimation problems. Hence, :_

it is not surprising that the single precision Kalman filters compute

intermittent negative variances when the six dimensional model is assumed.

However, these 6-state filters, when applied _o the simulated data,

manage to at least partially track the spacecraft. Actual filtering

accuracies for this case are displayed in Figure 6.10. The top two

curves in this figure represent the accuracies obtained with the six

dimensional filters operating in the complete 19-state environment.

No_ice that the stabilized Kalman algorithm suf_'ers a severe accuracy

degradation in this case. Position uncertainties are two orders of

magnitude greater than those obtained with the correct model (cf Figure

6.1). By comparing the factorization results in Figure 6.10 (bottom

two curves) one can see that the accuracy loss due to mismodeling is

considerable The stabilized Kalman results in this figure suggest _ !
A

that either this algorithm compounds the effects of mismodeling or _

numerics represent the dominant error source. .- _

Numerical effects may be further separated from model :_gerrors , 'i i
by evaluating filtering accuracies for an actual six-dim_ _ >hal model .1.

Hence, no effects due to mismodeling are present in the ,urecy

I_5
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.0 comparisons of Figure 6.11. Notice that position unoertalntles corre-

sponding to the stabilized algorithm are nearly identical in Figures

6.10 and 6.11. These figures demonstrate that numerical errors asso-

clated with the stabilized algorithm are so large that they completely

obscure the effects of mismodeling. By contrast, the factorization

': curves in Figures 6.10 and 6.11 clearly indicate how 6-state filtering

_ accuracies are degraded by the presence of unmodeled parameters.

The second model selected for careful study included the three

colored noise accelerations in addition to the six position and velocity

parameters. This 9..state system was chosen because it includes a signifi-

cant amount of process noise, and it is generally assumed that high

levels of process noise will stabilize the Ka_an filter computations.

The stabilized Kalman results appeared to support this theory.

_ That is, the stabilized algorithm computed covariances, gains, and

estimates (based on the simulation sample) which looked reasonable.
!.

N_ hint of numerical difficulty was evident. The results, however,

differed from those obtained with the U-D and Potter-Schmidt filters.

As usual the factori_atlon algorithms agreed closely with the double

precision reference results.

Error analysis for this case produced results similar to those

observed in the six-dlmensional problem. That is, numerical errors

in the Kalman calculations were again substantial and completely obscured

any effects due to unmodeled parameters. Figure 6.12 shows how severely

the Kalman results are degraded by numerical errors. This figure displays

146
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actual position accuracies associated with the g-state filters operating i "_,

_ in an actual 9-s_ate environment. These results demonstrate that numer- '

i
ical deterioration in the Kalman filter translates into position errors

which are an order of magnitude higher than they need be.

This example illustrates that, while the inclusion of process _

noise _proves the performance of the Kalman algorithms (cf Figures _

6.11 _d 6.12), they still lack the accuracy achievable with the factori- i_

zation methods. _ '_

6.5 _9_usions i
V

This study demonstrates the excellent numerical stability and _

precision of the U-D and Potter-Schmidt factorization algorithms _ i

3
Both methods, implemented in single precision, produced results which

were close to the double precision references. The numerical stability

of these algorithms was further demonstrated by their lack of sensitivity

to the choice of a priori variances and process noise levels.

) i

The Kalman filters, on the other hand, were acutely affected

i
by the use of single precision arithmetic and scaled a priori statistics, i

W_pler [1970] observes that these are sufficient reasons to declare

an algorithm numerically unstable and to abandon it. The results of i

this study support his conclusion. Both ti_econventional and the stabi-

lized algorithms experienced severe numerical deterioration in nearly

_ every case examined. Covariance matrices with negative diagonal elements ,

were a common occurrence, _nd gain profiles were often erratic and

inaccurate.

r 14 8
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Even when the assumed statistics _,eremodified to stabilize the _

calculations, the single precision Kalman algorithms performed poorly.

Accuracy degradation was often not apparent but had to be detected

with a double precision gain evaluation program.

In every case studied the U-D and Potter-Schmidt algorithms out-

performed the Kalman methods. Accuracy improvements were generally

substantial, often reaching orders of magnitude. Error analysis showed

numerical degradation to be the dominant source _f error in the Kalman

algorithms. In fact, numerical errors completely obscured the effects

of mismodeling. Thia result is of special interest because numeric !

effects are rarely considered when mission design requirements are :

constructed. These effects appear to be inconsequentia!, however, i.

when the factorization algorithms are employed, i!

J

The cost comparisons of Chapter IV show that for most filtering

problems the factorization algorithms are not unreasonably costly.

The Potter-Schmidt costs are generally within 80% of the conventional

Kal_an costs. The U-D algorithm, however, is competitive with the F

conventional method, and for some applications is somewhat more efficient.

For problems involving a few cclored noise parameters and a large number

, of bias parameters, the U-D algorithm is particularly eff_elent relative

to the otl,ermethods. The complete 19-state model studied in section

6.4.1 is an illustrative example. The CgU times for this case are

compared in Table 6.2. These times include the costs associated with

indexing, logic and other overhead costs not included in the analytic

comparisons of Chapter IV. Table 6.2 shows the Potter-Schmldt algorithm

i ! ,4,
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_ to be the most expensive filtering scheme, requiring considerably more ;_

:_ time than the other methods. In sharp contrast, the U-D algorithm

a is seen to be the most efficient method, faster than even the conventional

; galman algorithm.

i

This analysis of a meaningful engineering problem has demonstrated

5,
how the U-D and Potter-Schmidt factorizationalgorithms can dramatically _'

i reduce the effects of numerical errors. Moreover, the U-D method combines

ii numerical stability with an efficiency comparable to that of the oriEin _

_ galman algorithm.

/ J

}

_ Table 6.2. Comparison of Filter Execution TimesI :
for the Complete 19-State Model ._

PC

Filter Single Precision Double Precision

Conventional Kalman 39 49

Stabilized Kalman 45 59
_r _

U-D (HWGS) 38 46

_ Potter-Schmldt 63 80

_' ICPU tlme in seconds.

, These times do not include the costs ot variance calculations In the
factorlzatlon filters. However, even If variances were computed at
every stage, the total CPU time would be InoreasPd by no more than
ten percent.

150
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Chapter VII. Summary of Contributions _nd Areas

for Future Research

) 7.1 Summary of Contributions _ _

?, A new computational form of the discrete Kalman filter has been _4

; developed. This method is based upon the U-D factori'ation of the error

_ covarlance matrix and has the characteristics of improved accuracy and i __ stability generally associated with square root filters. The U-D filter _

was obtained by extending the Bierman [1976a] data processing method to ! :_

allow for time propagation. Two nume_ically reliable propagation algo-

rithms were derived in Chapter III. These algorithms were obtained from _ :_

_ modifications of the Givens and Gral,.-Schmidtmatrix triangularization :i '_

methods which are known for their numerical stability. Th _ general U-D _ _/

_ _ propagation results were then extended to derive an efficient U-D time

i update algorithm for systems with bias parameters and colored process 2

noise. _

_ Cost comparisons in Chapter IV have demonstrated that both of the _;,

? basic U-D propagation methods are efficient and usually require equi-

valent amounts of computation. These comparisons further show that the :_ :!

_. U-D filter algorithm, using either the MWGS or the _dified Givens
% T

i propagation scheme, has efficiency nearly equal to that of Kalman*s °' t

original formula. Moreover, for problems involving modest r_mbers of

process noise parameters, the U-D methnd is somewhat faster than the :!

: Xalman algorithm. By comparison, the square root covariance filters

: were sho_m to be significantly less efficient. In typical real.tlme i_

_:_ applications Involvlng small compute_'.sand low-order systems, the square I '

151 ,_ J_
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i root algorithms are at least 40% mor_ time _onsuming than the conven-
tional Kalman method and may require in excess of 100% more computation

time.

An extension of the U-D filtering results has produced a new co-

variance error analysis technique. This method was _erived in Chapter

V as a means of evaluating general modeling errors, sucl as incorrect

a priori statistics, incomplete parameter sets, and mismodeled system

dynamics and data equations. The general error analysis algorithm re-

quires only a modest alteration to the U-D filter equations. Efficiency

is competitive with that of conventional error analysis methods, and

numerical accuracy of the results is believed to be improved. The U-D

?

evaluation method is easily adapted to analyze a variety of important

special problems, such as the mismodeling of colored process noise and
V

bias parameners. In addition, this method has produced a new consider

f Iter algorithm which shares the simplicity and efficiency of the opti-

mal U-D filter equations.

The orbJt determination case study in Chapter Vl provides a thorough
[

and extensive examination of the numerical characteristics of the various

_ Kalman filtering methods. Ti,_J study demonstrates with a meaningful engi-

neering problem the improved precision of the U-D and square root eovari-

ance methods. _' -e methods consistently outperformed the conventional
|

and stabilized K_ _m algorithms. Accuracy improvements were usually

substartial and often involved orders of magnitude. While the Kalman al-

gorithms consistently experienced severe accuracy degradations and were

generally unreliabld, the covarlance factorization methods exhibited

152
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excellent numerical stability and precision throughout the study. A

comparison of actual CPU times for this analysis has demonstrated that

the U-D and conventional Kalman filters require equivalent amounts of

computation. Thus, this study illustrates how the U-D filter cc3bines

superior numerical precision with exceptional computational efficie_cy.

7

7.2 Areas for Future Research

The modified Givens algorithm which applies the efficient formula,Method B, has been recommended for U-D propagation. This algorithm is

_ known to be numerically stable if the ratio d_/dm is tested at each step

and if the more stable formula, Method A, is used whenever dn/dm is

sufficiently large (cf section 3.4). However, for most time updating

applications of this algorithm, such testing is probably not necessary.

Further analysis is needed to determine which problems, if any, are

ac_'ally suzceptible to error growt! when Method B is used exclusively.

Another reliable method for propagating U-D covariance factors can

be obtained by appropriately modifying the Householder triangularlzation

technique. Preliminary analysis indicates tnat square root calculations

are inherent to Householder techniques, and so this method may have

little advantsge over the MWGS or modified Givens propagation algorithms.

However, a square-root-free Householder triangularization method could

yield a U-D time update algorithm which requires fewer multiplications

and divisions th_,n the modified Givens formula. Hence this Householder

i method might be noticeably more efficient than either of the currently

available U-D propagation techniques, particularly on computers where

divide operations are relatively time consuming (el section 4.3.1).

( 153
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The U-D ccvariance error analysis method is based upon a number of

2 algorithms which have been established as numerically reliable formulas.
b

While the error analysis technique appears to in_.erit the stability of
t

/ these individual algorithms, the integrity of this method should be con-

firmed by further research.

There is another area of covariance error analysis where research

might prove fruitful. Although much effort has been expended to develop

_. various gain evaluation techniques, very little attention has been given
Y

_• to the analysis of innovatlon computations. The case study in Chapter VI i

of this thesis has shown that parameter e_Limates are particularly sensl-

rive to innovation errors. Recall that in the single precision U-D

. filter it was necessary to compute estimates and i=novations in double

precision arithmetic, a_though gain calculations were reasonably accurate

j in single precision. Further evaluation of innovation errors could pro-

duce some interesting and useful results.

Another extension of the U-D filtering method which would be

useful, and might prove to be challenging, is the development of algo-

rithms to allow for cross-correlations between measurement errors and

process noise parameters. At first glance this cross-coupling appears

to make the U-D time update unreasonably complicated. However, the

"weighted error" propagation technique used in Chapter V could be applied

to this problem and should make it apparent which orthogonal transforma-

tions are required to accomplish the update.

, 154
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The covariance factorizationtechniques presented in this report

might e beneficially applied to problems involving continuous parameter

systems and continuous data. These methods could also prove valuable in

: distributed parameter problems and in the areas of identificationand

control.

' '_ 155
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Appendix A i

_holeSkY Decomvosition and Data Whitenin_ !
E

!

A.I Suuare-,Root-FreeCholesky Decomposition i

It has been shown (cf Martin et al. [1965]) that any positive 1

definite symmetric matrix R can be uniquely factored as ! i

i
• I

R = UDUT (A.I) i
]
)

l
i

where U is unit upper triangulart and D is a positive diagonal. The U-D 1
I

factors of R may be computed as follows. !

i
I

For J = n,...,1 evaluate recursively Eqs. (A.2)-(A.5). }
i

n 2 _

dj = rjj - _ dkUjk (A.2) [
k=J+1

ujj= 1 (A.3) i

n _

. uij = I/dj (rij - k=J 8�dkUikUjk)I (A.4) _

i = I,...J-I

uji = 0 (A.5) i

! ,
4

tThe factorlzation give_ he_e is actually a modification of the algorithm
by Martin et al. [1965] _ince their for_ul_ computes a lower triangular
lector.

' 156
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i• The arithmetic operations required by this algorithm are summarized _
in Table A.1.

Table A.I. Arithmetic Operations Required
for a U-D Decomposition

Computation Adds Multiplies Divides

= n,...,1

vk = Ujkdk; k = J+l,...,n .5n 2 - .Sn

n

dj = rjj- _ UjkVk .5n2 + .Sn .5n2 - .Sn
k=J+l

_.j= 11dj n-1

i -: 1,...,J-1

n

ulj = _j(rij- _ UikVk ) .2n3-1.5n2+1.5n .2n3-1.5n2+1.Sn
kfJ+1

_ _ ,_Totals .2n3 n2 + 2n .2n3 n2 + n n-.1

_: 157
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:_ A.2 Cholesky Souare Root Decomposi_iqn

_. Let an upper triangular matrix S be defined as ,:

_ S = UD1/2 CA.6) _,

< where D1/2 is the positive square root of D in Eq. (A.1). Equations

_ I (A.I) and (A.6) then imply that any positive definite symmetric matrix :

;. R may be uniquely factored as _

R = 33T (A.7) j

:_ where S is upper triangular. Historically, this decomposition preceded

_. the U-D algorithm and was derived by Cholesky. The followin_ algorithm :

_ is a modest rearrangemelltof the Cholesky square root factorization

:_ given in Fox [1954]. _::

For J = n,...,1 compute recurslvely Eqs. (A.8)-(A.IO). i
!

n 2 1/2

"," sjj : (rjj - _ Stk) (A.8)

, sij = 1/sjj rij - _ Sik sj (A.91 '
k--J+1

,_ i = 1,...J-1

• ; : ;4

s = 0 (A.10)

Table A.2 contains a summary of the arithmetic operations required

_ by this algorithm. :_.

t

: i
i
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Table A.2. Arithmetic Operations Required

for a Square Root Decomposition

Square •

Computation Adds Multiplies Divides Roots

J = n,...,2 i

= .5n2+.5n .5n2-.5n n
sjj JJ'k

Xj = I/sjj n-1 +.

i = 1,2,.o.,J-1 !

+; sij = Xj SikSj .2n3-.2n .2n3-.2n
I

Totals .2n3 n2n3+.5n2-.7n n-1 n i

*This computation is also required for J=1.
+

+

A.3 D_ta Whitening)

Suppose m measurements, z = (Zl, z2, ..., Zm )T, are made where%

• z = AX �v(A.IO)

and xcRn, E(v) = O, E{v vT} = R, E{x vT} = O. The data noise covariance,

R, is a symmetric, positive definite matrix and, hence, can be factored

by the square-root-free Cholesky algorithm, Eqs. (A.2)-(A.5). Thus,

j' 159 ,
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a.

R = U R" UT (A.11) " _

where U is unit upper triangular and R° is diagonal. A new set of }

unoorrelated measurements, z*, may then be generated by computing _-
-4

z" = U-Iz (A.12)_

The data equation for z" is given by i

z = A'X + v (A.13) "_

where i

_ A" : U-1 A (A.14) } !_k

v*T - r2- rm- _,E{v" } = R" = diag(r I , , ..., ) (A.15) i

This process of uncoupling observations is referred to as "data : _

whitening." A precursor of this method generates uncoupled data, z',

with an identity noise covariance (cf Andrews [1968]). In that case

R is factored by the square root Cholesky decomposition, Eqs. (A.8)-

(A. '0), to obtain

R = SST (A.16)

The data z" = S-Iz is then represented by Eq. (A.13) where A" and v* are

given by

A" = S'IA (A.17)

E{v" v "T} = Im (A.18)
,#

tThe inversion of U is easily accomplished by back substitution. '

; 160 ,_
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Appendix B _#

The Potter Update Using Hous,eholder Transformations

The relationship between the Potter algorithm (Chapter II) and i_

Householder transformation techniques was first noted by Bierman _

[1973]. He observed that _

where a : aT_a + r. If this array is equated with the product :i

: (B.2)

T cGT e2

i

then the following identities are obtained.

o : (B.3) ,

2

m, : I/--+ Pa : +_r_-K (K : Kalman cain) (B.4) .;

WWT : _ - GGT (B.5)

Note that .i

- GoT = P (B.d) i

161
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Equations (B.5)-(B.6) imply that ._

w - (B.7)

: where S is the updated covariance square root. Since the matrix products

in Eqs. (5.1) and (B.2) are equal, the factors must be related by an orth- _ ;:
< ..

? ogonal transformation. Thus, a Householder transformation, T, may be _

_ ",• chosen such that ,'

:_ - T : (B.8)

L _ _'
I{ fT ::

- where fT : aTe. If the transformation T is chosen to zero out only the _

subdiagonal elements in row n+1, then i?

?

T = I - 118 uuT (B.9)t :

where _
i

: uT " (fT, /r-+ _'_) (B.IO) _

8 - 2/uTu - 11(a + /_F) (B.11)

_:. When this T is substituted into Eq. (B.8) and terms are equated, th-: t'ol-

, lowing results are obtained. _

_Elementary Householder transformations are discussed in Chapter Ill.

C

!
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A

_._ S --g - y_fT (B.121 _

c y = X = I/a = I/(r + fTf) (B.,3)

/

?

,_ K = Sf (B.14)

_##

_!: The Kalman gain is computed as follows.

:* I.(= )-K (B.15)

Equations (B.12)-(B.15) correspond to the Potter measurement update.

163
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Appendix C

Agee-Turner Matrix Factorizations

_ The two algorithms presented in this Appendix yield triangular

factorlzations of the matrix P = P + eRR T. The matrix P is assumed (

to be positive definite symmetric and _ represents a vector. The first

algorithm requires that P be factored such that P = UDU T (U is unit

upper triangular and D is diagonal) and computes the U-D factors of _. _,

Similarly, the second algorithm yields the upper triangular matrix +_

square root S where P = _T. Cholesky has shown that when _ is positive _

; definite symmetric such factorizations exist and are unique (see Appen- ' _

dix A).

The matrix decompos%tions described below seem to have been first

'- derived by Agee and Turner [1972a]. T_eir algorithms have been appropri-

ately rearranged to compute the upper triangular factors used in this

report. These a!_orithms are efficient and easy to mechanize, and

when the scalar, c, is positiv_ _hey are also numerically reliable.

However, Agee _nd Turner have noted that when c is negative these methods

are subject to large cancellation errors and can yield erroneous results.

For this reason the following algorithms are recommended only for

, problems involving positive scalars.

C.I U-D Triangular Factorlzation Al_orlth_

Suppose that the symmetric matrix P is factored such that

P = UDUT (C.1)

' 16_

:: _)KIgNALPAGE I8 POOR i<

, _ + <+ ........ ++, •._, ++_ • + ,
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where the matrix U i_ upper _rlangularwith ones on the diagonal and b is

a positive diagonal. The correspondingU-D factors of P where

_ P + c_kT c ",0 (C.2)

may be obtained in the following way.

Evaluate Eqs. (C.3)-(C.7)recursively for J --n, n-l, ..., 2.

d'j " dj + cj )k,) (cn = c) (C.3) _

vj = cj ,kj/d'j (C.4) 1

)i = I, 2, ..., j-1 ii '_.,

ulJ = uij + _i,vj (C.6) .i '_

._ ,._-

cj.1 = oj (dj/ ) (_.7) '_ ;'

!. ._

dl = dl + 01 Ikl (C.8) :_ ,',

Table C.I eontalns a summary of the arithmetic operations required , :t

by this algorithm. _

replacement In computer storage, j_ymbol N:aN _enotes

165 i
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. Table C.I. Arithmetic Operation Counts For
Tciangular Factorization

_ Computation Adds Multiplies Divides Square Roots

J

J = n, ..._ 2

I

Bj = cj/d'j n - I

'- vj = B_.j n - 1

t_

4 j-1- • .°.p

i := ^i - ;'juij .Sn_-.-5n .Sn2-.
5n

uij := uij + vj_i .5a2-.5n .Sn2-.
5n

._"

cj_I : Bjdj n - I

; Totals n2 n2 + 3n - 2 n - I 0

*This calculation i: also required for J = I.

i

, 166
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C.2 .Triangular Square Roo,t Factorization,. ,Algorithm .t.

Let the positive definite symmetric matrix P be factored such that _i

P = SST (C.9) ._

I ,

where S is upper triangular. Consider the problem of computing a similar

: matrix S where :_

,_ _gT = SST + cxxT c > 0 (C.10) _

The following algorithm yields the nontrivial elements of S.

i

• _ Evaluate recursively Eqs. (C.11)-(C.17) for j : n, n-l, ..., 2.

gjj : (s_j + c j), 2 1/2'_ _ j) , cn : c (C.ll) s
J

i

_ i bj : _j/sjj (C.12)
f

aj : sjj/gjj (C.13) ,

i vj : cj).j/_'jj (C.14)

I _i :: Xl - bJ_'iJ i (C.15) ;'_.

i = 1, 2, ..., J-1 ;

sij ajsij + VjXl (C.16) :_

< 167
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: ej_I = eja_ (C.17) : ":

Sll = (S_l + ClX_) 1/2 (C.18)

.

The matrix S obtained from this reeursion has positive diagonals. "

'! Table C.2 lists the ar_;hmetie operations required by this algorithm ,

i when _ is arranged for maximum efficiency.

z

-/
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Table C.2. Arithmetic Operation Counts For .,

.-- t Square Root Factorization _

L
}

Square

Computation Adds Multiplies Divides Roots

J

J :n, ..., 2

2 2 I/2

gjj : (Sjj + CjXj) n 2n n

aj : I/sjj n- I

- i bj : Xj/sjj n- I

• _ vj : ajcjXj 2(n-I) _

" i aj :: ajsjj n - I :_.

!' !
i : I, 2, ..., j-1

Xi :: Xi -bjsij .Sn2-.5n .5n2-.5n

sij :: ajsij + vjXi .5n2-.5n n2-n

_- 2 _

cj_ I : c_aj 2(n-I) /_._ .

:_ Total n2 1.5n2 + 5.5n -5 2n - 2 ni

} *This calculation is also recuired for j:l

!
"2

i

1 %
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Appendix D

"_ F_.ORTRAN_mplementation of the U-D Algorithm s

The computer implementations included In thls Appendix are

designed to minimize storage and computation. Storage could be conserved

further, however, by mechanizing the algorithms to store the U and

D arrays as vectors. Instead, the mechanizations described below assume

the nontrivlal elements of U to be stored in the upper triangular portion

of an nxn array which contains D along the diagonal.

These computer mechanizations are described in a semi-FORTRAN

style in the sense that Greek characters are used and DO loops are

defined with algebreie functions. This style is adopted so that each

L portion of the code may be easily identified with the corresponding

algebraic equation in Chapters II and III. The symbol "@@" is used

to denote operations which can be omitted when estimates are not computed.

D.1 U-D Qptimal Me_,surement Up_ate

• The following mechanization was suggested by Bierman [1976a].

Inputs: U - upper triangular matrix containing U-D factors of

, a priori oovarlancet with U(I,I) = D(I)

Z,A,r - observation, observation coefficients and error

covariance, respectively

X - _ priori _stlmates (N-vector)

' 170
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i Outputs: U - updated array containing a posteriori U-D factors with _

updated D(1) located in U(I,I) position

!
"_ a - innovation covariance -

°

__ y - I/a ,i

G - the unweighted Kalman galn (K = GT).

X - updated estimates

DO 10 J = N, 2, -1
Z = Z - A(J)*X(J) @_

DO 5 K = I, J-1
5 A(J) = A(J) + A(K)*U(K,J) @ Eq. (2.69)

v G(J) = U(J,J)*A(J) @ Eq. (2.70)

Z = Z - ACI)*X(1) 0@

G(1) = A(1)*U(1,1)

Cqmment: The quantities Z := Z - ATx, G = DuTA and A := uTA have been

_ computed.

= r + A(1)*V(1) @ Eq. (2.72)

7 = 1./0
U(1,1) : U(1,1)*r*y @ Eq. (2.73)

DO 20 J = 2,N

a = a + V(J)*A(J) @ Eq. (2.74)
i _ : -A(J)*y @ Eq. (2.76)

! y : 1./a
' U(J,J) : U(J,J)*B*y @ Eq. (_.75)

, _ 171
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DO 20 I = I,J-I
B = U(I,J)

_: U(I,J) = 8 + O(I)'t @Eq. (2.77)
20 G(1) = G(Z) + G(J)*B @Eq. (2.78)

_" Z = Z*_ @@ "

DO 30 J = 1,N
: 30 X(J) = X(J) + G(J)*Z @@

D.2 _-D Time Update Al_orlthms '_

_ Each of the time update methods involves the following arrays and

_ calculations. _•

C _ J

_ Xnn.n.n.n.n.n.n._..:-O - NxN state transition matrix _ _;

)
B - NxK matrix of process noise coefficients :

U - upper triangular matrix containing U-D factors of er-or

covarlance with D stored along the diagonal

[ X - N-vector of estimates

V - N+K-vector with process noise variances stored in

first K locations

OUtDUtS: U - updated array containing a priori U-D factors with

updated D(1) stored in the U(I,I) location

X - updated estimates

:

REPRODUCIBILITYOF _

_ rr2 ORZem,_ PAGEI_ 1_ _
J
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Comment: Define the Nx(N+K) working array W by an EQUIVALENCE statement

_ so that the first K columns of W are identified with the matrix B and the )_ '

last N columns contain the m_rix 0. i!_

DO 40 I = I,N
_ F(1) = O.

DO 40 J = I,N

40 F(I) = F(I) + O(I,J)*X(J) @@

DO 50 J = N, I, -I
X(J) = F(J)

_" V(J+K) = U(J,J)

J DO 50 I = I,N

DO 50 L = I,J-IA

50 O(I,J) = O(I,J) + O(I,L)*U(L,J)

/ _omment: The array W now contains the matrix B in the first K columns and

:_ the product OU in the last N columns. The (N+K) array D : diag(Q,D)

is in V, and X contains the updated estimates. At this point the updated

U-D factors may be computed by either of the following algorithms.

Modified Weighted GL_m-Schmidt Triangularlzation

M = N+K

DO 90 J = N, I, -I
D=O.

DO 60 I = I,M
F(I) = W(J,I)'V(I)

60 D : D + F(1)*W(J,I) @ Eq. (3.28)

I U(J,J) = D .,

i IF(J = I) GO TO 90
_* IF(D : 0.) GO TO 80

_,

• _ _= 1./b
V

i i' 173
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_: DO75 I: 1, J-1 ._

DO 65 L : 1,M -_
:<

-_ 65 B : B + W(I,L)*F(L)
_, 6 = X*6

: U(I,J) : _ @ Eq. (3.29) .
-_. DO 75 L : 1,M

75 W(I,L) : W(I,L) - BmW(J,L) @ Eq. (3.30)
f

: - GO TO 90
&
b

80 DO 85 I : I,J-I

! 85 U(I,J) : O. _
b

_' 90 CONTINUE

% Modified Givens Trlangularization

< DO 80 J:N,2,-I
M : J+K ,:

_ YJ : W(J,M) "
:. H : V(M) '_

D : RmYJ**2 ..

"' DO 60 I : M-1,1,-I _:
w(J I) "-

:,, S : XI*V(I) ';•
;' D : D + S*XI @ Eq (3.81), <

i R : R*_ ?

S : S*_. @ Eq. (.3.82) _.
: V(I) : R*V(I) @ Eq. (3.83)

IF(I < M-l) GO TO 30
C = YJIH @ EQ. (3.84) :

DO 40 L : I, J-1 ';
, F : W(L,I) @ Eo. (3.85) '

W(L,I) : YJ*W(L,I) - XI*W(L,M) @ Eq. (3.86) .

"40 W(L,M) : C*W(L,M) + S*F @ EW. (3.87) ,
_ GO TO 60

30 IF(R >.25) GO TO _5 L

DO 25 L : I, J-1

F : W(L,I)

W(L,:) : W(L,I) - XI*W(L,M) @ Eq. (3.86)

25 W(L,M) : R*W(L,M) + S*F @ Eq. (3.87)
GO TO 50

': 45 DO 50 L : 1, J-1
W(L,I) : W(L,I) - XI*W(L,M) _ EQ. (3.86) '

• _,

17_
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50 W(L,M) : W(L,M) �S*W(L,I)@ EQ. (3.88)
60 R=D

DO 75 I = I,J-I
_ 75 u(I,J) : W(I,M)

-_,, 80 U(J,J) - D
D=0.

l

DO 85 I : I,K+I
_. 85 D : D + V(I)IW(1,I)mm2

U(1,1) = D

,. Comment: The updated U-D factors are now in U.

?

J

: ,?5
t
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Appendix E

Arithmetic Operation Counts

E.I Itemized Costs of U-D Al_orithms

The arithmetic operations required for a U-D optimal m_asurement

upuate are listed in Table E.I. This list includes the operations needed a

to compute updated estimates and the U-D covariance factors via Eqs.

(2.69-2.78). _

The costs associated with the MWGSand modified Givens matrix

factorizations (cf Chapter III) are itemized in Tables E.2 and E.3.

:; Note that these costs do not include the operations required to compute

_J A

_i the products 0U and OxA. Hence the total U-D time update costs for _

each method may be obtained by including an additional .Sn3 �.Sn2 i

adds and mult4olies to the totals in Tables E.2 and E.3.

E.2 Propagation Costs for Systems w_h Colored Process Noise

i!' Propagation schemes for systems with colored process noise are

i_ discussed in the last section of Chapter III. The U-D covariance factor-

i ization is shown to be particularly well-suited for one-at-a-time propa-

gation of colored noise parameters. This propagation method is derived

oy exploiting special system structure and permits savings in both com-

putatlon and computer storage. The arithmetic operations involved in

the U-D c_lored noise update are given _n Table E.4. These counts repre-

sent the costs sdstained when a modified Givens factorization is used

for the determinlstJc phase of the mapping. The calculations required

176
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;i 1for a MWGS colored noise update may be obtained by replacing the modi-

fled Givens counts in Tabl_ E.4 with the appropriate totals in Table E.2.

' The costs associated with a similar one-at-a-time propagation

of triangular covariance square root_ _re listed in Table E.5. Note i i

that when k is large this square root algorithm is less efficient than

a carefully structuPed Schmidt time _pdate (cf Table E.6). The extra

calculations involved in the one-at-a-time algorithm are related to

the Agee-Turner matrix factorization, t Although the one-at-a-time

algorithm is alower than the Schmidt update, it does reduce computer

storage requirements and, thus, may be preferred in situations where

storage is limited.

A colored noise time update of the Potter covarlance square root

is also most efficiently accomplished by applying a carefully constructed

Schmidt algorithm. Notice, bowevar, that the Potter-Schmidt update does

i not allow for full exploitation of spec2al system structure. Since the

_,, A A

square root S is a general nxn matrix, the product S = _S contains no

'i' large block or"zeroes to simplify the update. However', some computational

savings are possible if or_e is careful to order the parameter vector

, appropriately. Note that when an upper triangular a oriori square

root S is desired, propagation costs are minimized if the state vector

I is defined as follows.
v

i

i

! _The Agee-Turner squer_,,_o_ algorithm is considerably more expensive

I thsn its U-D counterpai%. The reader m_y refer tc Aopendix C for
_ details of these methods.

{ 177
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[pl }k
X : (E.I)

ixl}n
b d

In this case a Sohmidt time update may be performed in two stages as

indicated in Eqs. (E.2) and E.3). :_*

k k n k k n

[ I •
_*_: k . x . ,S x :_

T_,_ _k T : 0 '/'qk (E.2) _LJ;

o{ o o !o• I _t

o

?

.; "N1 o
J_

', k . Sp Spx 0 S'p gpx

v_k _= _z.3)

o{ o o _-_ o o _
Notice that the Householder transformation7 zeroes out the subdiagonal /

' elements of the last n rows without disturbing the first k column.'_'
#

of the arrsy. Similarly the second transformation_ triangularizes

_, the first _ rows of the array without altering the last n rows and

: ' COIU_s.

If the state vector were reordered with the colored noise parame-

; tars last, the r_k block of zeroes i, the _.cfthand side of Eq. (E.2)

I'8 "'

)
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33-798could no longer be fully exploited. In this case an initial t_nsforma-

tton T" would be required to operate on all (n+2k) oohmns of the aeray +,

in the following way. _

k n k k n k :_

1
f

n 1, 0 S: Sxp B Sx SxP !_"_i

_1 o T- ..'_.,) ++_• _px _p o o _p _ +

J ' _:+0 +_k ' ' '

Hence, the complete update for this parameter arrangement involves _+_._

m-re computation than _n update _sso_lated with the state vector in +_

Eq. (E. 1). ++

By similar arguments one can show tha" when a lower trls,lgular .+_+

a priori squ_re roct Is desired, the Schmidt update is less _.xpen_ive _

if the colored noise parameters are positioned in the lower portion &
?

of the state vector. The operation,_ ,equiredfor a Potter-Schmldt _+_

| "_colored noise update a,_ listed in Table E.7. ,_}
i!

+

)

- +i
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Table E I. Operation Count for U-D Measurement Update

Computz._o_s Adds Multiplies Divides !

i

} f = '_Ta .5n2 - .5n .5n2 - .5n

"7 - n :_

¢. )

> % =_"

For J=1,...,n

_. oj --"J-I + vjfj n n c
't-

_j = I/a.1 n_f

. }

_ Omit the following when J--I
21 ;

Xj =-fjOj. 1 n-I ;

:: For t=l,...,J-1

) ^ .
uij = %'i_+ _JKI .Sn2 .Sn .Sn2 - .Sn

_" KI :: K'i + vJ_iJ "5n2 " "5n .Sn 2 - .5n

_j - vj

; _"= (Z - aTT)8n n n

x - _" + _" n n

,,, Total_ 1.5n 2 + 1.5n 1.5n 2 + 5.5n n

V"

,.,.," 180 .
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!

Table E.2. Operation Count for MWGS Factorization

Computations Adds Multiplies Divides

For J:n, n-I,...,2

dLwjL; L:1,...,n+k n2 �nkf_:=

n+k

_j = D_I= flwjL" n2 n2 + nk

_j = 11dj n - I

I = 1,2,...,J-I

n+k

_iJ : _J _ WiLfL .5(n2 - n)(n + k) .5(n2 - n)(n + k + I)L:I

_=1,...,n+k

WiL :: wit - _ijwjt .5(n2 - n)(n + k) .5(n2 - n)(n + k)

Totals n3 + n2k n3 +_1.5n 2 - .5n n - I

+ (n2 + n)k

tThis eomuutation also p_wformed when J:1.

' RFPRODUOIBII/TY OF THa
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Appendix F ,2

Cost Comoarison of Gain Evaluation Al_orithms _ .:_

Triangular covariance _ctorizations are _ployed in Chapter V

to develop new algorit_s for evaluating suboptimal measurement updates.

:J
These algorithms consist of two _rts: _ "optimal" update _llowed

?
by _ Agee-Turner matrix factorization (see section 5.1). }

k

The arithmetic operations required to _rform a gain evaluation

usi_ the UDUT and SST triangular factorizations are su_arized in Table _

F.I. Notice that the operation counts _iven here _r the Bierman and ' :_

Carlson optimal updates are different from those listed in Chapter IV.

The differences are related to the costs of estimate calculations _ich _

• , j"are omitted from the error analysis counts _

From _,he total counts in Table F. I it is apparent that the

U-D factorization yields the more efficient evaluation algorithm.

The significance of this difference in efficiency is illustrated by

applying the UNIVAC 1108 weights _ to the total counts in Table F.I. _ _o
c

The weighted counts for each fe.ctorization method m_d the conventional

method are included in Table F.2. _

i

_Error analysis is usually performed on large, ground-based computers. _

i Hence the UNIVAC weights (of Chapter IV) are appropriate for this '

cost comparlson.

1977005172-202
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Table F.I Arithmetic Operations Required By Gain Ev luation Algorithms i

.. |

Square

Computation Adds Multiplies Divides Roots "

Bierman U-D

measurement 1.5n2 - .5n 1.5n2 + 4.5n n 0

update

Agee-Turner U-D

Factorization n2 n2 + 3n - 2 n - I 0

(Appendix C) !

TOTALS
for U-D + + 2n - I 0
Algorithm ( 5n2 + .Sn)° (n2 n)w• --

Carlson

Square Root 1.5n 2 + .5n 2n2 + 4n 2n + 1 n
Update

Agee-Turner SST

Factorization n2 1.5n2 + 5.5n - 5 2n - 2 n

(Appendix C)

TOTALS

for + + 4n - 1 2n
S Algorithm (.5n 2 + .5n)* (.5n 2 + .5n)*

Table F.2 Gain Evaluation Operation Counts Weighted For UNIVAC 1108

, . ,ll , , . i |,

Algorithm Execution Time/T+
, i , .. llll , i|i llm

U-D 6n 2 + 19n - 7.3 + (1.9n 2 - 1.9n) I

S 'f.4n 2 + 7_.6n - 11.5 + (1.2n 2 + 1.2n) _ 1

Conventional i(Stabilized Kalman) 9.6n2 + 7.6n + _.5

*variance3cg pu ed ................ i
188
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Figure F.I displays the weighted counts from Table F.2 as a function _

of n and m where m represents the number of measurements included before

variances are computed. Each cost has been normalized by the correspond-

ing conventional evaluation cost. Hence the curves for S and U-D repre-

sent the percentage cost increase (or decrease) relative to the conven-

tlonal evaluation method.

)

100 I I I l I I I i /

8o- m • 1 - /,
'_\ m • 5

°° \\
PERCENTAGE \

INCREASE 40 __

OVER i
CONVENTIONAL ' ._

COSTS 20

0 _ _" '_ "" "" _'_'¢ -

"20 _'_.-U-D-

.40 i I I I I I I 1 1 i
0 5 10 15 20 25 30 35 40 45 50

n

Fig. F.1. Cost Comparison of Arbitrary Gain Update Algorithms

Notice that for all values of n and m the U-D algorithm is more _

efficient than either of the other methods. Nots also that the relative

expense of the square root algorithm increases as n decreases. This

increase is related to the costs of square root calculations which are

more apparent when n is small. Even when n is large, however, the

;
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U-D method is noticeably less costly than the square root scheme. When
?

variances are required infrequently, the U-D evaluation is approximately

35_ less expensive than the conventional method.
?

g

From the cost comparisons in Chapter IV we know that time propa- _

gation usually requires an order of magnitude more computation than does :

i measurement updating. Hence Figures F.2 - F.5 give a more realistic _
I

' comparison of error analysis costs. These figures display the UNIVAC

costs associated with a U-D time update using the modified Givens algo-
l

i rithm, followed by m suboptimal measurement updates. The U-D costs

i '
i have been normalized by the conventional error analysis costs and are

i given as a function of k/n for n = 10 or n = 30. Notice that for general

systems the U-D algorithm usually requires less than 40% more computation

p

than the conventional error analysis method, and when m = 5, less than

25_ additional computation is required. For systems with colored process

noise the U-D algorithm is particularly efficient, and when k/n < 1.2

this U-D method is faster than the conventional algorithm. In fact,

when m = 5 the U-D method may require half as much calculation as the

conven tonal error analysis formula.

190
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/

_'. i 100 I ; I I i I _ I i
': t k -NUMBEROFPROCESS

NOISEPARAMETERS
t:, _. m"NUMBEROFOBSERVATIONS
I ATEACH STAGE

i
PERCENTAGE
INCREASE

- OVER

CONVENTIONAL
;-' COSTS _ m_..

C 0 _ t

L

-50 I I I 1 I I I I I
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.82 0

kin _

Flg. F.2. U-D Error Analysis Costs for General System, n = 10 •

100 -- I t I t l t l t I

k •NUMBER OF PROCESS ;,
' NOISEPARAMETERS "

m • NUMBEROFOBSERVATIONS
AT EACH STAGE ._

50 _:

' PERCENTAGE ._
INCREASE _.

OVER ",
CONVENTIONAL

COSTS o ._

": ; -50 I t l t i __ :,
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1,P?.O

k/r,

Fig. F.3. U-D Error Analysls Costs for General System, n = 30

i"• _ 191 :
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100 _ I I I I I l I I I

k " NUMBEROFCOLORED
NOISEPARAMETERS i

m -_NUMBEROFOBSERVATIONS
ATEACHSTAGE

PERCENTAGE50 - :
INCREASE

OVER
CONVENTIONAL

COSTS

0 0.2 0.4 0.6 0,8 1.0 1.2 1.4 1.6 1.8 2.0

kin

Fig. F.4. U-D Error Analysls Costs for Colored Nolse System, n = 10

100 _-I----I _ l I----1--'- l- --'-T--'-T-"-_
/

k • NUMBEROFCOLORED I
NOISEPARAMETERS Im • NUMBEROFOBSERVATIONS
ATEACHSTAGE

PERCENTAGE50 - -J
INCREASE

OVER

CONVENTIONAL / /COSTS m • ]

-50
0 0.2 0.4 0,6 O.B 1.0 1.2 1.4 1.6 1,82.0 "*

kin

Flg. F.5. U-D ErPor Anslysts Costs t'or CoZored golse System, n : 30
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