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FOREWORD

This report describes work performed by the Pratt & Whitney Aircraft
Division of the United Technologies Corporation for the Lewis Research
Center of the National. Aeronautics and Space Administration under Con-
tract NAS3-19714 and NAS3--19732. The program was administered for Pratt
& Whitney Aircraft by Dr. K.D. Sheffler, Program Manager, with assistance
provided by Mr. J.J. Jackson and Mrs. D.A. Doychuck. Airfoil Stress
Analysis was performed by Mr. J.V. Ruberto under the supervision of
Mr. M. Sette. Root Stress Analysis was performed by Mr. W.H. Ask under
the direction of Mr. J. Rieder. Mr. A.E. Gemma acted as a consultant
for both of these analytical programs. Dr. M.L. Ge.U. and Dr. G.R.
Leverant acted as technical consultants to the program.. The NASA Pro-
ject Manager was Mr. F.H. Harf, with Dr. H.R. Gray acting as consultant.
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The objective of this program was to evaluate the capability of the direc-
tionally solidified y/y' - S,lamellar.eutectic alloy to sustain the air-
roil thermal fatigue and root attachment loads expected in advanced, hollow,
high work turbine blades. To accomplish this objective, finite element } elastic
stress analyses were performed on typical advanced turbine blade and root
designs. Results of these analyses were used to establish test parameters
for thermomechanical fatigue,and root subcomponent tensile, creep, and low
cycle fatigue tests on eutectic specimens, and to evaluate the test results
in terms of predicted blade life. Results of these studies are summarized
in the following paragraphs.

1.1 STRESS ANALYSIS

Three dimensional finite element elastic stress analyses which reflect the aniso-
tropic physical and elastic properties of the directionally solidified. (D.S.)
eutectic were -performed in the airfoil_ and root-platform areas of typical
advanced, hollow, high work D.S. eutectic turbine blades. The primary objective
of the airfoil stress analysis was to determine the maximum spanwise (parallel
to the blade axis) and chordwise (transverse to the blade axis) thermomechanical_
strain ranges and the strain-temperature phase relationships in an advanced,
film cooled hollow eutectic airfoil. Results indicated maximum strain ranges
on the airfoil are comparable to those that would be obtained for the same airfoil
made from D.S. Mar-M200+Hf, an advanced D.S. nickel base superalloy. In the span-
wise direction, a maximum strain range of 0.0016m/m eras calculated in the eutectic
airfoil, as compared to a D.S. Mar-M200+Hf strain range of 0.0020m/m. The
spanwise strain-temperature phase relationship tended toward Cycle I (maxi-
mum tension applied at minimum temperature, maximum compression applied at
maximum temperature). A maximum chordwise strain range of 0.0018m/m was
calculated for the eutectic blade, as compared to 0.0014m/m for D.S. Mar-
M200+Hf, with the chordwise strain-temperature phase relationship tending
toward a symmetrical cycle shape (i.e., maximum tensile and compressive
strains both occurring at an intermediate temperature).

Based on results of an earlier program (Contract NAS3-17811), which indi-
cated that the design-limiting property of y/y' - 8 might be intermediate
temperature strength in shear parallel to the solidification direction,
attention in the root-platform analysis was focused on determination of
maximum radial shear stresses in an advanced eutectic attachment design.
Analytical results indicated local (concentrated) shear stresses approxi-
mately double the ultimate shear strength of y/y' - 6 at the maximum blade
pull. As indicated in later paragraphs, where results of root subcomponent
tests are discussed, the load carrying capability of the eutectic attachment
was found to be significantly above that predicted from the stress analysis,
primarily because of local inelastic relaxation of concentrated stresses,
which was not reflected in the linear elastic stress analysis.

1



1.2 THCRMOMECHANICAL FATIGUE TESTING

Results of thermomechanical fatigue tests conducted on coated* longitudinal
and transverse y/y 1 - 6 D.S. eutectic specimens using strain-temperature
cycles calculated for the advanced eutectic airfoil indicated that the eutec-
tic thermal fatigue properties should be adequate for advanced hollow blade
applications, provided large transverse Cyclee-I strains do not occur, barge
strains of this type were not found in the blade analyzed. The life-limiting
thermal fatigue properties were measured on a transverse specimen containing
a simulated cooling hole. Predicted THE life for this mode of failure was
on the order of 14,000 between 471 and 910°C (880 and 1670°F) for the part-
icular advanced blade studied.. Specific test results leading to this life-
time prediction are summarized in the following paragraphs.

Results obtained on smooth longitude 	 fatigue specimens tested with the
calculated spanwise advanced blade strain-temperature cycle indicated a
strain range on the order of 0.0050m/m for 10 cycles to failure. This
strain range is more than 3 times the maximum calculated blade strain range
of 0.0016m/m. increasing the cycle temperature from the 504-938C (940-1720°F)
calculated range to a range of 427-10380 (800-1}00°F) caused a slight reduction
of properties, to an estimated 104 cycle strain range of about 0,0044m/m. The
application of 427-10380 (800-1900 ^F) Cycle I loading caused a larger reduction
of smooth longitudinal fatigue properties, witA an extrapolated 10 4 cycle strain
range of 0.0025m/m being obtained with this type of loading. The significant
smooth longitudinal property reduction found with Cycle I loading was attri-
buted to the influence of cycle shape on coating crack initiation, with the
occurrence of high tensile strain at low temperatures being the driving force
for early coating failure.

Testing of longitudinal. "showerhead" specimens which contained an array of
simulated leading edge coaling holes essentially eliminated the influence oF.
cycle shape and temperature range on TM[! life, with the strain range for 10
cycles to failure being on the same order as that estimated for smooth
Cycle I loading (r=0.0025m/m). Apparently the stress concentration caused
by the presence of cooling holes provides a sufficient driving force for
crack initiation to eliminate large differences caused by the influence of
cycle shape on smooth specimen coating crack initiation. The longitudinal
thermal fatigue properties of the eutectic showerhead specimens were comparable
to those exhibited by B1900+Hf, a typical conventionally cast nickel base superall

As with smooth longitudinal specimens, cycle shape and temperature range
were found to have a significant in'f'luence on smooth transverse TMF pro-
perties. Smooth transverse tests conducted with the calculated chordwise
blade cycle indicated a strain range on the order of 0.0030m/m for a 104
cycle blade life. Increasing cycle temperature and changing the cycle
shape to Cycle I reduced the 104 cycle strain range to respective values
on the order of .0021 and .0015m/m. While the Cycle I result is below

* ;^:s 641'm(2.5 mils) NiCrAlY + s,-, 6µm (0.25 mil) Pt.
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the maximum calculated chordwise strain range, it is above the maximum
chordwise strain range of 0.0012m/m calculated for Cycle T type loading,
and does not represent the life-limiting thermal fatigue mode for the
blade analyzed. The life limiting thermal fatigue mode was found on a
specimen which contained a simulated cooling hole and was tested with
the calculated chordwise engine cycle. Results of this test indicated
a thermal fatigue life on the order of 14,000 cycles for the particular
advanced hollow blade analyzed. It should be noted that this prediction,
as well as the transverse Cycle I projection, are based on extrapolation
of short time data obtained at relatively high strain ranges, and that
additional testing would be desirable to confirm these predictions.

1.3 ROOT SUBCOMPONENT TESTS

Results of tensile, creep, and low cycle fatigue pull-out tests conducted
on coated eutectic subcomponent attachment specimens indicate that sus-
tained load (creep) shear pun-out of the eutectic root will likely be
the design limiting property of y /y T - 6 for advanced blade applications.
As mentioned previously, results of tensile pull-out tests conducted at
7600 (1400°F) indicate the short-term load carrying capability of a eutec-
tic attachment to be significantly above that predicted by the linear
elastic stress analysis. Triplicate pull tests indicated a failure load
on the order of 356kN (80,000 1b.) for the blade analyzed, with failure
occurring by tooth shear. When analyzed in terms of fully distributed
tooth shear stress, this failure load corresponds to a shear stress very
close to the 386MPa (56 ksi) ultimate shear strength of the eutectic com-
position tested, indicating that local plastic deformation fully relaxes
the high concentrated stresses calculated in the . linear elastic stress
analysis.

While some difficulty was encountered in root LCF testing of the eutectic,
test results indicate the LCF life of the advanced eutectic attachment
to be at least 3000 cycles at the 222kN (50,000 1b.) sa ximum blade pull.
This result is considered marginal in terms of advanced hollow blade appli-
cations.

As mentioned above, the design limiting property of the eutectic appears
to be the sustained load carrying capability of the attachment. Sustained
load pull-out tests conducted in the anticipated operating temperature
range of 760-700C (1400-1300°F) resulted in puU-out lives in the range
of 4 to 20 hours, which is not adequate for an advanced blade application.
The concept of a fabricated blade having a D.S. eutectic airfoil bonded to
a superalloy root therefore is proposed as the best approach for the success-
ful application of y/Y' - 6 as a hollow blade material in advanced turbine
engines. Implementation of this concept is considered to be within reach
of current bonding technology.

Y
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2.0 INTRODUCTION

Advanced gas turbine engines which will operate with increased turbine
inlet temperatures and/or increased rotor speeds (higher blade stresses)
will require turbine materials with strength and temperature capabilities
beyond those of current generation nickel base superalloys. Directionally
solidified eutectic superalloys containing Ni Cb (6 phase) reinforcing
platelets in an Ni3Al (^y') strengthened nickel-chrome matrix have a potential
temperature advantage of 56 to 83C ° (100 to 15oor) at a given stress (or
40 to 60% increase in load carrying capability at a given temperature)
over the best directionally solidified nickel base superalloy and thus are
prime candidates to meet the challenge of advanced turbine material require-
ments.

Advanced high work turbine blades will be hollow to reduce weight and to
permit internal cooling, and will contain arrays of cooling holes to pro-
vide film cooling of the outer airfoil surface. Demonstration of the 6-
strengthened D.S. eutectic (y/y' - 6) as a viable advanced turbine material
requires additional characterization of mechanical behavior to evaluate the
capability of thiQ alloy to sustain the airfoil thermal fatigue and root
attachment loads imposed in this type of advanced design. To meet these
requirements, this program was conducted to generate the appropriate stress
analysis for these advanced turbine blades and to initiate the required
laboratory testing for evaluation of key mechanical properties.

The analytical effort involved calculation of anticipated thermal fatigue
strain-temperature cycles, as well. as root stress distribution, in advanced
high work eutectic turbine blades, using a three dimensional finite element
analysis technique which accounts for the anisotropic elastic properties of
the D.S. eutectic. The experimental effort included thermomechanical
fatigue testing of longitudinal and transverse Y/Y' - 6 D.S. eutectic speci-
mens with and without simulated cooling holes using the strain-temperature
cycles determined from the stress analysis. Root subcomponent tensile,
creep, and fatigue tests also were conducted to evaluate the advanced blade
attachment capability of Y/Y' - 6. Based on results of these tests, life-
time predictions were made for advanced, hollow, high work D.S. eutectic
turbine blades.
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3.0 STRESS ANALYSIS

The objective of this task was to determine the distribution of stress and
strain in the airfoil and root-platform areas of advanced, hollow, high
work D.S. eutectic turbine blades, using analytical methods which reflect
the anisotropic physical properties of the D.S. YIY'-S eutectic alloy (see
Appendix). The general approach to achievement of this objective involved
the use of a three dimensional linear elastic finite element computer pro-
gram, ASKA (Automated System for Kinematic Analysis). Application of this
technique involves 'break-up of the root-airfoil structure into a discrete
number of three dimensional elements having directional characteristics
representative of the anisotropic elastic properties of the eutectic alloy.
These elements are connected at a discrete number of nodes to determine the
response of the structure to applied loads or displacements. Definition of
the finite element break-up is accomplished through use of an ASKA preprocessor
which generates, labels, and assembles the nodes and elements into a
mathematical model of the structure. Equilibrium equations are written for
each node in terms of elements connected to that node and any external forces
and boundary conditions that may be applied. The resulting system of simul-
taneous equations representing all nodes used to define the structure is
solved to determine mechanical and/or thermal displacements associated with
the applied loads. Stresses in each element are calculated from displacements
using the known anisotropic elastic constants. Specific application of this
technique to the eutectic airfoil and root-platform structures is discussed
in the following sections.

3.1 AIRFOIL ANALYSIS

The objective of the airfoil analysis was to identify the location and magni-
tude of the most severe temperature-strain (thermal fatigue) cycles in a
typical advanced, high work turbine blade, using the ASKA three dimensional analysis
described above. The blade geometry selected for this analysis is an
advanced design incorporating a large airfoil curvaCive (high camber) to-
gether with a high degree of film cooling provided vie, a large number of
small cooling holes distributed over the entire airfoil surface (Figure 1).
The approach to calculation of the strain and temperature distribution in
this blade involved an ASKA finite element heat transfer analysis at a number
of transient and steady state operating conditions to determine the temperature
cycle and thermal expansion strains experienced at various locations in the
airfoil. This information, coupled with variations of centrifugal load
through each operating point, provided the desired information concerning
the variations of strain and temperature through a typical engine operating
cycle.

External boundary conditions for the heat transfer analysis were established
by engine performance requirements analysis, which defines the temperature,
pressure, and velocity distribution of the combustion gas envelope surrounding
the airfoil. Internal boundary conditions were based on the amount of heat
extracted from the interior by the cooling air, which is established on the
basis of previous experience with similar blade designs.

*Additional information concerning this technique may be found in the
ASKA Users Reference Manual, ISD Report No. 73, available from the

t	 University of Stuttgart, Stuttgart, Germany, 1971.
5



3

The three dimensional finite element analysis performed on the airfoil utilized
the Hexc 20 element of the ASKA program. This element is a 20 noded isopara-
metric three dimensional element as shown in Figure 2. The structural model_
was built from 56 element groups consisting of nine elements per group assembled
in a spanwise (radial) airfoil. orientation. The airfoil was completely defined
with 5206 nodal points resulting in 8012 unknoians and 208 suppressed degrees of
freedom. Figure 3 shows the resulting modeling of the concave and convex walls.

Input at each node included the temperature dependence and anisotropy of the
material properties (see Appendix). The three dimensional thermal loads were
applied using thermal strain components at the nodal locations. Centrifugal
loads were applied at the nodal location on an elemental basis. Each of rive
steady state and transient cases analyzed consisted of a unique set of thermal
and centrifugal loads and reflected the required changes in material properties
resulting from changes in the three dimensional temperature distribution.

Results of the airfoil strain-temperature analysis indicate that the maximum
normal strain ranges calculated in the x, y, and z direction occur at different
locations on the airfoil.' Magnitudes of these strain ranges (see Figure I) are
Lax-0.0018m/m, Asy=0.0012m/m, and Aez=0.0016m,/m, respectively (Table 1). The
complete strain.-temperature cycle (peanut curves) corresponding to each of the
above strain ranges is shown in Figure 4. In the case of Ae and Aez, the maximum
tensile strain occurs at or near the minimum temperature in ^he cycle and the maximum
compressive strain at or near the maximum temperature in the cycle (i.e., UT
cycle 1). For Aex, or_ the other hand, the maximum tensile and compressive strains
occur at an intermediate temperature (i.e., a "baseball" TMF cycle). For comparative
purposes, results of a parallel analysis for D.S. Mar-M200+Hf, an anisotropic nickel
base superalloy that is bill-of-material in advanced P8NTA engines, are included in
Table 1. While Aez is larger for D.S. Mar-M200aHf (0.0020m/m vs. 0.0016m/m) and
Asx for Y/Y'-6 0.0018m/m vs. o xoi4m/m), these calculated values indicate similar
thermally-induced strain ranges for the two anisotropic alloys. Results of thermo-
mechanical,fatigue tests conducted on the D.S. Y/Y'- b eutectic alloy with temperaturE
strain cycles of the types identified above are discussed in section 4.

3.2 ROOT-PIA.TFOF_'Ui ANA.iMIS

The objective of the root platform analysis was to determine the magnitude and dis-
tribution of stress in the root and platform areas of the advanced, hollow
eutectic turbine blade attachment illustrated in Figure 5, using a finite
element method which accounts for the anisotrois elastic properties of the
eutectic. In a separate section (Section 5.03 experimental root subcomponent
tests are presented for comparison with the analytical results.

Because large lo'Ad and stress gradients ncrmally exist in turbine blade attach-
ments, the accuracy of a finite element root stress analysis depends on the
fineness of the elements used to represent the structure. The available core
capacity of current generation computers limits the degree of refinement which
can be achieved with a three dimensional analysis such as the previously des-
cribed ASKA. A two-step approach, therefore, was used for the eutectic blade
analysis. A three dimensional ASKA. analysis of a coarse break-up was first
performed to define the overall load distribution in the blade. Based on these

`The specific positions on the airfoil at which these cycles are found are
classified information, obtainable on request by persons having a confidential
security 3learance and a need to known.

6
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results, a refined two dimensional analysis was performed to accurately ca.L-

culate local stresses in critical, areas of the root.

To insure correct simulation of attachment stresses in the separate experimental
program, two root stress analyses were performed; one on the actual root -airfoil
configuration (Figure 5), and the other on the root configuration machined in
the end of the test block used for subcomponent testing (Figure 6). Load distri-
butions from the root-airfoil analyses were compared with the root subcomponent
analysis to determine the degree to which the experimental test simulated the
stresses developed in the blade root.

Sho, ^m in Figure 7b is a perspective view of the root model used for both the
blade and the test specimen 3D analyses. Included in this illustration are the
twenty nodes associated with a typical ASKA Hexe 20 element used to construct 	 ...,
the model. The mating disk-lug model is shown in Figure 7a. The elastic constants
for Waspaloy, a typical nickel base disk material, were used in calculation of
the lug displacements. Boundary conditions imposed on the mated root and disk-
lug are illustrated in Figure 8. The disk lug is fixed (no displacements permitted)
at the bottom, with only radial and axial displacements being permitted along the
centerplane of the lug.

For evaluation of stresses in the root subcomponent test specimen, a uniform
displac. ;gent was applied to the top surface shown in Figure 8. Stresses in
the actual blade attachment were calculated by application of calculated sub-
platform blade displacements to this same model. Calculating the subplatform
displacements was accomplished by the application of body forces (centrifugal
loads) to each element of the blade and platform model shown in Figure 9.

Based on results of an earlier study, r which indicated that the design limiting
properties of V/V 1 _6 may be intermediate temperature strength in shear applied
parallel to the solidification direction, primary attention in the analytical
study was focused on determination of radial (parallel to the blade axis) shear
stresses in the teeth. Shown in Figure 10 are local (concentrated) shear stress
levels determined from the ASKA (3D) analysis at various locations near the
top surface of each tooth. Comparison of results from the blade with results
from the test specimen indicates significant differences between local values
of shear stress. While some of this difference results from centrifugal loads
developed within the root, and not simulated by the application of a uniform
load to the neck of the test specimen, the major part of the difference
results from the fact that the centrifugal load is not distributed uniformly
in the blade neck. Shown in Figure 11 is a plot of displacement in the neck
of the blade at the location where a uniform displacement was assumed for cal-
culation of test specimen stresses. These data show a significant variation
of displacement (and hence stress) between the convex and concave sides of the
blade as well as along each side. This non-uniform distribution results from
the complex stress pattern which exists at the interface between the root and
the airfoil (Figure 12). Despite the substantial variation of localized stresses
along and among individual teeth seen in Figure 10, resultant average tooth
loads determined in the centrifugally loaded blade are relatively uniformly
distributed from side to side and among the teeth on each side (Figure 13).

As indicated above, a refined two dimensional finite element analysis was per-
formed on the blade root to more accurately define local stresses in critical
areas of the attachment. As shown in Figure 14, execution of the 2D analysis
involved application of boundary displacem„nts calculated from the 3D analysis
to a refined two dimensional model of a mated root-half/disk lug pair. Unde-

7
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fleeted and deflected 2D break-ups of this mated pair are shown in figure 14,
while tooth shear and tooth bending stresses determined in the deflected model
are shown in Figure 15.

Examination of the results in Figure 15b indicates shear stresses significantly
in excess of 386mPa (56 ksi) ultimate shear strength of the optimized Y/rY` -8 D.S.
eutectic alloy at 760C (1400 0P). This result must be interpreted in light of the fac
that the two dimensional section analyzed was taken at the most highly stressed
location of the root as defined by the 3D analysis; and that the effects of
localized plastic deformation, which would tend to "seat" the attachment in the
disk lug and spread the loading more uniformly across each tooth, are not
accounted for in the ideally-elastic analysis. As discussed in Qection 5,

experimental results indicate that the effects of localized inelastic stress
relaxation are significant, so that measured failure loads were considerably 	 ..
in excess of those which would be predicted on the basis of results from the
linear elastic analysis shown in Figures 10 and 15.



4.0 THERMOMECHANICAL FATIGUE EVALUATION

The objective of this evaluation was to determine the longitudinal and
transverse thermomechanical fatigue (TMF) capability of y/y'-6 subjected
to the types of strain-temperature cycles calculated for an advanced
eutectic turbine blade (See Section 3.1). To achieve this objective, tests
were conducted which involved the application of synchronized, indepen-
dently programmed temperature and uniaxial mechanical strain cycles to
D.S. eutectic fatigue test specimens. Details of the experimental, program
and test results are discussed in the following paragraphs.

4.1 EXPERIMENTAL DETAILS

The test specimen used for experimental evaluation of TMF properties was
a tubular design incorporating internal, ridges for direct measurement and
programmed closed-loop feedback servocontrol of uniaxial longitudinal strain
(Figure 16). While this specimen does not simulate possible multiaxial
strains in the actual, airfoil, previous experience has shown reasonably
good correlation between test specimen and airfoil behavior. Synchronized
temperature cycling was accomplished by infra--red temperature feedback control
of an induction coupled heating apparatus. Temperature feedback also was
used to electronically compensate the strain feedback signal for thermal
expansion, which permitted direct measurement and servocontrol of true
mechanical strain at all temperatures in the TIMF cycle. All tests were
conducted at a frequency of 0.017 Hz ( 1 minute per cycle) which provides
strain rates on the same order as these experienced during transient engine
operation. Additional details concerning the experimental technique may be
foand in Reference 2.

The Ni-20.1Cb-2.5A1-6Cr-0.06C* eutectic test material was processed in two
forms for respective evaluation of TMF properties parallel and perpendicular
to the solidification direction. Based on results reported from an earlier
NASA sponsored alloy and structural optimization program, 11 processing conditions
for both forms were selected to produce a fully lamellar (plane front solidified)
microstructure.

Castings for longitudinal test specimens (stress axis parallel to the soli-
dification direction) were processed in a previously described" Water
quench Bridgman furnace using a 1.9 cm (0.75 inch)di.ameter by X15 cm (6 inches)
long recrystallized alumina crucible withdrawn parallel to the cylinder axis.
Based on previous experience, a solidification rate of .64 cm(0.25inch) per hour
was used to produce the desired fully lamellar microstructure shown in Figure
17a. To minimize casting cycle time, only the central 5 c-n (2 inches) of each
bar was solidified at this rate, with the bottom and top ends being processed
at rates between 1.2 cm (0.5 inch) and 2.5 cm ( 1 inch) per hour. Metallographic
examination of longitudinal. flats polished on the outside surface of each
casting and on the cylindrical core machined from the center of each hollow
W specimen blank was performed to verify the desired microstructural quality.

*Weight percent
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Material for transverse TNT' specimens (stress axis perpendicular to the
solidification direction) was produced in a previously described 1 modi-
fied Bridgman furnace using conventional alumina shell molds having the
hourglass shape shown in Figure 18a. The mid-section thickness of this
casting was reduced to promote a higher thermal gradient for achievement
of the desired fully lamellar microstructure with the applied freezing
rate of 0.64cm (0.25 inch) per hour. As indicated in Figure 18b, a rela-
tively large pour cup was attached to the top of this casting to add
"thermal mass", which promotes higher gradients. As with the longitudinal
castings, surface examination and sectioning of the specimen core were used
to screen specimen blanks for microstructural quality. A typical micro-
structure produced by this process is shown in Figure 17b.

As shown in Figure 1, advanced hollow blade designs typically incorporate
elaborate cooling schemes, involving numerous small cooling holes distri-
buted over the blade surface, to reduce metal operating temperatures. To
simulate the stress concentration caused by the presence of closely spaced
holes on the leading edge of an advanced hollow eutectic blade, selected
longitudinal tests were conducted on "showerhead" specimens which contained
a simulated leading edge cooling hole pattern (Figure 19).

Results of a prior NASA sponsored coating program indicated that y/y I - 8
will require total surface protection. for application in a gas turbine
environment. a To simulate engir.: application, all specimens were coated
on the O.D. with a 6411m ( 2 .5 ro-U s ) of a vapor deposited NiArAIY overlay
coating* plusses 69m (0.25 mil) Ft,which was identified as the optimum
coating system for y/y I - 8 on the previous NASA program. 

3 
A typical

photomicrograph of this coating in the thermally exposed condition is shown
in Figure 20.

The experimental program involved a total of eighteen TNT' tests. Welve
of these tests were conducted on longitudinal specimens and six on trans-
verse specimens. Of the twelve longitudinal specimens, six were smooth
and six contained the showerhead hole pattern shown in Figure 19. While
the primary objective of the testing was to determine cycles to failure
(defined as 50%o load drop) as a function of applied mechanical strain
range, crack initiation data also were obtained for most tests by micro-
scopic examination of surface replicas taken periodically during testing.
As discussed in subsequent paragraphs, emphasis was placed on evaluation
of TNF behavior with the engine strain-temperature relationships shown in
Figure 4. However, a limited number of Cycle 1 tests (maximum tension
applied at minimum temperature, maximum compression applied at maximum
temperature, see Figure 21) also were conducted to determine the influence
of cycle shape on longitudinal and transverse fib' properties.

*PWA 267 specification, nominal composition Ni-18Cr-12A1-0.8Y
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4.2 TEST RESULTS

4.2.1 Smooth Longitudinal

Five of the six smooth longitudinal tests conducted in this part of the
program involved testing with the spanwise temperature-strain phase re-
lationship shown in Figure 4c. Two of these five tests were conducted
with the calculated strain-temperature curve expanded symmetrically about 	 j

the mean strain to obtain data for an S N curve, as illustrated in Figure 	 I	 ^'
22. Results of these tests (Table TI), plotted as open circles in Figur 	 j
23a, indicate that smooth TMF life will be substartially in excess of 10 	 1
cycles at the maximum spanwise strain range of O.0016m/m calculated for
the advanced blade.

Because the trend for some advanced engines is toward higher operating
temperatures, a second set of three smooth longitudinal tests was con-
ducted to determine the influence of increased peak cycle temperature on
smooth longitudinal DW behavior. For this series of tests, both the
strain and temperature ranges of the spanwise engine cycle were expanded,
again in such a way as to maintain the cycle shape shown in Figure 4c.
Results of these tests, plotted as half-shaded circles in Figure 23a,
indicate about a 75°f reduction of fatigue life as a result of the increased
temperature range. Despite this lire debit, the higher cycle temperature
smooth specimen results continue to be well above the requirements for the
advanced blade analyzed.

To investigate the influence of cycle shape on smooth TMF life, a single
test was conducted with Cycle I loading (Figure 21). Results of this
test, plotted as a shaded circle in Figure 23a, indicate a substantial
influence of cycle shape on life. However, extrapolation of the Cycle
I data parallel to the S-N curves developed for the engine cycle indi-
cates that the smooth longitudinal Cycle I TMF capability of the eutec-
tic continues to be in excess of advanced hollow blade requirements.

1.2.2 Longitudinal Showerhead

Longitudinal showerhead TMF behavior was evaluated with the same three
types of cycles used for evaluation of smooth longitudinal behavior. As
shown in Table III and in Figure 23b, the life differences resulting from 	 j

variations of cycle shape and temperature range were smaller than life
differences found on smooth specimens. In particular, the large life debit 	 f
found with Cycle T loading of smooth specimens was not found with Cycle S
loading of showerhead specimens. While the showerhead results generally
tended to be lower than results obtained on smooth specimens, extrapolation
of the showerhead data indicates a cyclic life well beyond lo b' cycles at
the calculated maximum engine spanwise strairi range of mol.6m/m.

11
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Because of differences observed in load drop behavior for the smooth and
showerhead specimens, the showerhead data were examined in terms of 5°f
load drop (a more conservative failure criterion) as well as the more
commonly used 50% load drop failure criterion. Comparison of the typical,
showerhead load drop curve (Figure 24b) with the smooth load range curve
shown in Figure 24a reveals that, whereas the smooth specimen load range
typically fell off abruptly very near the termination of testing, the
showerhead load range curves typically tended to drop much more gradually.
Thus, while the 50% and the more conservative 5% load drop failure criterion
are virtually identical for the smooth specimens, a significant difference
exists between the two criteria for the showerhead specimens. Despite
this difference, the 5% load drop showerhead results plotted in Figure
25 continue to indicate that longitudinal showerhead fatigue properties
are in excess of design requirements for the advanced blade analyzed.

4,2,3 Transverse

Transverse thermomechanical fatigue tests were conducted primarily with the
maximum chordwise engine cycle shown in Figure 4a, As with longitudinal tests,
three sets of transverse test conditions were investigated. As illustrated in
Figure 26, smooth transverse load drop behavior with all of these cycles was
similar to smooth longitudinal behavior, so that transverse test results were
anatYzed only in terms of the 50af load drop failure criterion.
The first of the three sets of transverse test conditions involved testing
with the cycle shown in Figure 4a expanded about the mean strain to develop
an S N curve. Results of three tests conducted with these conditions (Table
IV), plotted as open diamonds in Figure 23c, indicate that the smooth trans-
verse TMF properties of the eutectic are well above requirements for the
particular advanced hollow blade analyzed.

The second set of transverse test conditions involved expansion of the chord-
wise engine cycle about the mean temperature. The result of a single test
conducted with an expanded temperature range of 343-10380 (650-1900°F) is
plotted as a hall'- shaded diamond in Figure 23c. While increasing the engine
cycle temperature range reduces the transverse W capability, an extra-
polation of the available data parallel to the lower temperature engine
cycle curve indicates a lire well above 10,000 cycles at the maximum - calcu-
lated chordwise strain range of 0.0018m/m.

The result of a single transverse test conducted with Cycle I loading, which
is similar to the engine cycle shown in Figure 4b, is plotted as n. shaded
diamond in Figure 23c. As with smooth longitudinal tests, Cycle I ,loading
causes a very large debit of smooth transverse TMF properties. Based on the
previously discussed stress analysis, which indicates a chordwise Cycle I
strain range in the order of 0.0012m/.m (Figure 4b), and assuming that the
Cycle I result can be extrapolated parallel to t e engine cycle data,
chordwise thermal fatigue life should be above 10 cycles in areas of the
blade which experience Cycle I loading (see Figure 23c). It is suggested
that additional data should be generated to confirm this prediction.

12
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Because of the relatively large size of the elements used for the advan-
ced hollow blade stress analysis (Figure 3), it was not possible to accu-
rately determine whether or not the location of the maximum chordwise
strain range might be coincident with one of the cooling holes which
are distributed over the surface of the advanced blade analyzed (Figure
1). A single transverse test therefore was conducted using the 471-9100
(880-167ooflchordwrise engine cycle on a specimen containing two isolated
cooling holes which were perpendicular to the load axis and were centered
in diametrically opposite Locations along the gage section. This speci-
men was cycled to 1059 cycles at the maximum calculated chordwise engine
strain range of 0.0018m/m, with no cracks being detected. It was then
uploaded and cycled to failure at a strain range of 0.0037m/m. Results
of this test, shown as open diamonds with flags in Figure 23c, indicate
about an order of magnitude life debit with respect to a smooth test con-
ducted with identical test conditions. Assuming that this data can be
extrapolated parallel to the smooth data extrapolation, a life above 104
cycles is predicted for tki possible case where the maximum chordwise
strain range occurs at a '.,oling hole location.

Thus, depending on whether or not this situation occurs, either cooling
hole associated transverse failure or chordwise Cycle I loading appear to
represent the life limiting types of TMF cycling for the advanced hollow
eutectic blade analyzed, with the more conservative of these two pre-
dictions (i.e., hole associated failure) indicating a blade life on the
order of 14,000 cycles. As with the Cycle I lifetime prediction, addi-
tional transverse TMF data on specimens containing simulated cooling
holes should be generated to confirm this prediction.

4.3 DISCUSSION

4.3.1 Smooth Longitudinal Behavior

Two separate and distinct failure modes were observed with the different
test conditions applied to smooth longitudinal TMF specimens. The first
of these was coating-initiated fatigue cracking, which was the dominant
failure mode associated with the 504-938C (940-1720°F) engine cycle and
427-1038C (800-1900°F) Cycle I test conditions. Examples of this crack
initiation mode are illustrated in Figure 27. The second mode involved
failure from thermal fatigue cracks initiated at internal extens.ometer
ridges. This failure mode, which was dominant with the 427-1o38C (80o-
1900°F) engine cycle, is illustrated in Figure 28a. As shown in Figure
28b, ridge associated crack initiation also was found in the 504-938C
(940-1720°F) engine cycle specimens which failed from coating cracks.

Comparison of the 504-9380 (*940- 1720°F) and 427-1038C (800 - 1900°F)
engine cycle crack initiation data (Table II) indicates that increasing
the temperature range does not have a deleterious influence on coating
crack initiation life at the O.00%m/m strain range*. While the com-
parison is not as clear at the 0.0070m/m strain range, it appears that
the change in failure mode from coating to ridge initiated failure must
result from the influence of temperature on substrate crack initiation
and/or propagation rate. Thus, it appears that ridge associated cracks

*It must be emphasized that this statement relates specifically to experi-
mental observations for the engine cycle shown in Figure 4c, and cannot be
extended by implication to other cycle shapes.
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initiated in all of the smooth longitudinal engine cycle specimens, but
that ridge associated initation and/or propagation was sufficiently
slower at the lower temperature to allow time for initiation and pro-
pagation of coating cracks. The reason for the occurrence of ridge
initiation, which is not frequently found in conventional and D.S.
superalloy specimens of the same design, is not clear at the present tame.

The large life debit resulting from Cycle I loading is attributed to the
influence of cycle shape on coating crack initiation. As indicated in
Table I , the smooth longitudinal Cycle I specimen failed from coating
initiated cracks at a life well. beloe the number of cycles required to
initiate coating cracks with either of the engine cycles studied. The
specific factors thought to be responsible for accelerated Cycle I
coating crack initiation are discussed below.

Major factors which influence coating crack initiation are the magnitude
of the maximuu tensile strain in the coating and the temperature at which
the maximum tensile strain. occurs.` These factors are particularly
important if the coating tensile strain peaks at low temperatures where
coating ductility can be relatively lo rry . Thus, as shoran in Figure 29,
Cycle I loading can be more damaging to the coating than either of the
two engine cycles because of the loiter temperature at which the maximum
tensile strain occurs.

The magnitude of the maximum tensile strain experienced by the coating
during T.MF cycling is influenced by high temperature stress relaxation
of both the coating and the substrate, as well as by thermal expansion
mismatch strains between the coating and the substrate. An example of
substrate stress relaxation, or "shakedown",is illustrated in Figure 30
for specimen A76-103. Shown in Figure 30a is the measured change of
length which occurred during Tiff cycling of this specimen. The
corresponding shift for mean strain and stress are shoves in Figure 30b
and 30c, while the upward shift of the effecti.=•e strain temperature
cycle is shown in Figure 30d. The load shakedown measured for each of
the three cycles investigated on smooth longitudinal specimens is compared
in Figure 31. It is apparent that Cycle I loading causes a significantly
greater increase of tensile strain than either of the engine cycles. As
was the case with all of the tests conducted on. the program, the magnitude
of the applied strains was such that no cyclic plastic strain was experi-
enced by the specimen.

Compounding the influence of Cycle I substrate shakedown on coating crack
initiation are differential coating relaxation and thermal expansion mis-
match strains. As discussed in more detail in Reference 4, differential
high temperature relaxation of compressive stresses in the coating can
significantly increase the ma-icimum coating tensile strain, as Illustated
schematically in Figure 32. Also illustrated in this figure is the poten-
tial influence of thermal expansion mismatch strain, which can add as
much as 0.0019m/m to tkie 427-10380 (800-1900°F) coating strain range for
the y/y s - b - NiCrAJ.Y/Pt system.* Thus, through the combined influences
of basic cycle shape, substrate and coating stress relaxation, and thermal
expansion mismatch strain, the peak tensile strain experienced by the
coating could have achieved levels as high as 0.0075m/m at 4270 {800°F}

*T.E.Strangman , unpublished research, Pratt & Whitney Aircraft Group,
Commerical Products Division, United Technologies Corporation.
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on the 427-10380 (800-1900°F) Cycle I specimen tested at a 0.0056m/m strain
range. As shown in Figure 32, this level of tensile strain could approach
the coating fracture strain at 427C (800 0F), although additional coating
ductility data are required to confirm this possibility. The high level
of low temperature coating tensile strain experienced in Cycle I loading
also could cause significant cyclic coating plasticity, which also would
tend to reduce coating fatigue life and contribute to the early coating
crack initiation observed in the Cycle I test.

Thus it is concluded that the relatively low smooth longitudinal
fatigue lire experienced with Cycle I thermomechanical fatigue results
from high peak tensile strain experienced by the coating at low temper-
atures, which causes early initiation and enhanced propagation of coating
cracks. While additional Cycle I data would be desirable to confirm the
extrapolation shown in Figure 23a, it should be reiterated that the longi-
tudinal smooth thermomechanical fatigue behavior of the eutectic does not
appear to be life limiting for the particular advanced blade analyzed.

4.3.2 Longitudinal Showerhead Behavior

As expected, examination of tested showerhead specimens showed crack ini-
tiation occurring exclusively at the simulated cooling holes ( Figure 33).
While initiation occurred at all locations along the hole barrel (Figure
34), a general trend was observed for preferential initiation at the
entry and exit ends of the hole where the hole-specimen surface inter-
face geometry forms an acute angle in a plane normr4l to the stress axis
(Figure 34a & b). By coincidence, this location on the hole barrel was
approximately co-planar for successive holes on the inner diameter (I.D.)
and outer diameter (O.D.) surface, as illustrated in Figure 35.

The reduced TMF properties of showerhead specimens as compared to smooth
specimens and the smaller influence of cycle shape on life are attributed
to accelerated crack initiation at cooling holes,Tables II and III.'This
observation is consistent with the observations made in an earlier sec-
tion concerning the role of c%ack initiation as a causal factor for
variations of life seen with different cycle shapes applied to smooth
specimens. Apparently the stress concentration provided by the presence
of cooling holes provides a sufficient driving force for crack initiation
to eliminate large differences caused by the influence of cycle shape on
coating crack initiation. It is interesting to note in this connection
that the smooth longitudinal Cycle I data point-, where early crack ini-
tiation was thought to occur as a result of high peak coating tensile
strains occurring at low temperatuxes,falls within the scatter band for
the showerhead 5% load drop results (Figure 25).

4.3.3 Transverse Behavior

Transverse TO specimen behavior was more difficult to analyze than
longitudinal specimen behavior, primarily because it was difficult to iden-
tif'y the crack initiation site(s) on transverse fracture
importance of initiation as a major component of transverse
indicated by comparison of results obtained with identical
on the smooth and simulated cooling hole specimens (compare
and E600 ^L, Table N), where life is reduced about an order

surfaces. The
'.L'1W life is

test conditions
specimen E576A
of magnitude
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by hole-associated crack initiation. Even on the cooling hole specimen,
where initiation was known, based on visual observations made through a
travelling telescope, to occur at the hole, no clear evidence of initiation
was visible on the fracture surface (Figure 36) .

Based on relatively subtle differences of oxide coloration observed on
transverse TMF fracture surfaces, it is hypothesized that initiation
generally tended to occur on the uncoated T.B. surface in locations where
the aligned structure was tangent to the inside wall (Figure 37). Corrollary
evidence for initiation in this area was found in the form of secondary
cracks found on the T.D. of most transverse specimens (Figure 38). It
appears that preferential oxidation of grain boundaries and Ni3Cb lamellae
(Figure 39) may be involved with the transverse initiation process. It
is probable that the reduced life found with increased cycle temperature
is associated with oxidation ef'f'ects. The depth of selective Ni3Cb oxidation
on specimen E582C (Figure 40), on the order of 20C4m (8 mils) ., w as much greater
than was found on any of the other transverse specimens (reference Figure 38 and
39 as a typical range). 'This observation reinforces previous conclusions con-
cerning the need for total surface protection in turbine blade application of
y/y I - 6. No secondary coating cracks were found on any of the trans-
verse TMF specimens, which also tends to support the T.D. initiation hypothesis.

Concerning the large transverse life debit seen with Cycle T loading, two con-
tributory factors can be proposed. First, this specimen was found to be
slightly 8 (Ni3Cb) dendritic, with failure occurring at a 8dendrite (Figure
41). Evidence for preferential oxidation of other similarly located 8 den-
drites was found on the T.D. surface of the Cycle T specimen (Figure 42).

The second factor thought to be associated with accelerated failure of the
Cycle I specimen was the significant shakedown which occurred very ear_,V in
testing (Figure 43). Large shakedown was not found on the chordwise engine
cycle transverse specimens because both peak tensile and compressive strains
occurred in a lower temperature range (Figure 4a). The large tensile stresses
experienced by the Cycle T specimen after shakedown were close to the yield
stress at the minimum cycle temperature, meaning that this specimen probably
experienced significant cyclic plasticity. For a material with limited in-
trinsic ductility, cyclic plasticity would tend to severely reduce cyclic
life.

Thus, it is concluded that the low transverse TMF life of the Cycle T speci-
men resulted from the combined effects of slightly deviant microstructure and
excessive shakedown which caused cyclic plasticity associated with high peak
tensile strains applied at low temperatures. it should be reiterated that
this test was conducted at three times the maximum calculated chordwise Cycle
I strain range, and that, based on the extrapolation shown in Figure 23c, the
chordwise Cycle I thermal fatigue properties of the eutectic should be ade-
quate for the particular advanced hollow blade analyzed. However, additional
M7 tests to confirm these findings should be conducted.
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5.0 ROOT SUBCOMPONENT TESTING

The objective of this study was to experimentally determine the capability
of Y/Y' - 6 to meet advanced hollow blade root attachment requirements.
As described below, the approach taken to achieve this objective involved
creep, fatigue, and tensile pull.-out tests conducted on an advanced hollow
root attachment configuration machined into the end of a directionally
solidified eutectic test block (Figure 6).

5.1 EXPERIMENTAL DETAILS

The Ni»20.1Cb-2.5A1-6.0Cr_O.06C eutectic test material evaluated in
this program was produced using conventional alumina shell molds which
provided castings having the configuration shown in Figure. Direc-
tional solidification parallel to the root axis was accomplished in the
previously mentioned radiation cooled modified Bridgman furnace at a
rate of o.64 cm (0.25 inch) per hour. Metallographic examination of the
casting surface and cf tested specimens indicated a fully lamellar macro-
structure in the lower part of the castings from which the fir-tree con-
figuration was machined (Figure 44).

Prior to fabrication of test specimens, machining trials were conducted
to determine the optirqum parameters for machining of the fir tree con-
figuration in D.S. V y t - 6. Results of these trials indicated the pro-
cedure specified in Table V as suitable for the root machining process.

To simulate application of Y/Y t - 6 with full surface protection root
subcomponent specimens were overlay coated with ^ 64 fm (2.5 mils of
NiCrAIY. To obtain a uniform coating thickness and assure good fit-up
between the root and broach block, the uncoated .root form was ground
64Pm (2.5 mils ) undersize and A' 128wm (5 mils) of coating was applied
to the as-ground root. The coated root was then finish machined to print,
leaving a ;ts 64Pm (2.5 mils) NiCxAIY coating envelope on the eutectic sub-
strate.

5.2 ROOT PUM-OUT TESTS

Based on the previously discussed root stress analysis (Section 3.2),
which indicated maximum concentrated shear stresses as high as 923 MPa

(134 ksi) in the root (Figure 15), as compared to a 760C (1400°r) ulti-
mate shear strength of 386 MPa (56 ksi.) for carbon modified y/Y' - 8, 1 '
it was expected that the root subcomponent specimens might fail at loads
significantly below the maximum blade pull of 224kN (50 5 386 lb.). Results
of triplicate 76OC (1400°F) pull-out tests (Table VI) indicate that the
subcomponent pull-out load is more on the order of 356kN ($0,000 lb.), with
failure occurring in a tooth shear mode (Figure 45), The fully distributed
shear stresses indicated in Table VI, which were calculated using the measured
tooth shear area, are very close to the 386Mpa (56 ksi) ultimate shear strength
at the 76OC (i400D F) test temperature, indicating that localized plastic de-
formation of the teeth fully relaxes the high concentrated stresses calcu-
lated in the linear elastic stress analysis. Based on the above results,
it is concluded that the short term load carrying capabilities of the eutec-
tic is,adequate for advanced blade attachment requirements.
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5.3 ROOT SUBCa++LPONENT LOW CYCLE FATIGUE

Some difficulty was encountered in efforts to conduct low cycle fatigue
tests on the root subcomponent specimen shown in Figure 6. This specimen
consisted of a fir-tree root configuration machined at one end of the
test block and a threaded hole for load-train attachments tapped at the
other end. The first two attempts to conduct 760C (1400°F) LCF tests with
a load range of o-178w (o- 4o,o00 lb ) (Table VII) resulted in splitting of the
eutectic grip block at the load-train attachment hole, (Figure 46a). The
poor transverse properties of the eutectic which resulted an this failure
were attributed to the highly degenerate structure in the massive block
which contained the load-train attachment hole (Figure 46b). To prevent
these failures in the remaining specimens, the thick grip sections con-
taining the attachment hole were turned dcrrm to accept a shrink-fit super-
alloy collar (Figure 47). This approach prevented splitting of the eutectic
grips during subsequent fatigue tests.

Using the shrink-fit collar collar approach, a specimen was fatigue tested for
11,140 cycles at 760C (1400 0F), 0-178kN (0-40,000 lb.), at which point a
crack was detected in the eutectic specimen at the root of the bottom tooth
serration (Figure 48). Attempts to conduct a test at 0-222kN (0-50,000 1b.)
load (nominal blade pull) were not successful because of failure of the
B-1900 + Hf superaIlcy broach block (simulated disk slot) after 471 cycles
(Figure 49). The first attempt to conduct the 0-222kN (0-50,000 lb.) test
was made using a broach block that had accunulated approximately 12,000
cycles during the 0-1781di (0-40,000 lb.) test. The second attempt, made
with a broach block that had not previously been used for fatigue testing,
ran 2964 cycles before failure of the broach block. in both cases of broach
block failure, the bottom tooth of the eutectic specimen was damaged when
the block failed (Figure 50) so that further testing of the specimen was
not possible. Since the eutectic specimen did not fail prior to the super-
alloy broach block failure, the LCF life of the Y/Y1- S root configuration
tested must be greater than 2964 cycles at 760C (1.400°F) and the maximum
blade pull. of 222kN (50,000 lb.).

Based on the eutectic root fatigue results, at is concluded that the root
LCF properties of 'Y/W- 8 may be marginal for the advanced hollow blade
analyzed, with 760C (1400°F) root fatigue life being above 3000 cycles
at the nominal maximum blade pull. Hwwever, additional testing would be
required to define the actual root LCF life. A desired goal for LCF
capability is usually 5000 to 10,000 cycles at maximum conditions. Based
on the crack found in the 0-178kN (o-40,000 ib.) specimen, it appears that
the root failure mode may involve transverse cracking at the base of the
first serration rather than tooth shear failure as in direct pull-out.

5.4 ROOT CREEP TESTS

Results of sustained load (creep) pull.-out tests on the D.S. eutectic root
subcomponent specimens are presented in Table VIII. As with the previously
discussed short-team pull-out tests, failure occurred in a tooth shear mode
identical to that shown in Figure 45. When analyzed on a Larson-Miller
diagram in terms of fully distributed shear stresses, Figure 51, the root
subcomponent creep test results are consistent with lab?ratory shear creep
data generated in a previous alloy development program.
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The creep results presented in Table VIII indicate that the 760C (1404°F)
creep life of the attachment analyzed is less than 5 hours at the nominal
maximun blade pull of 222kN (50,000 lb.). A 60C (100°F) decrease of
attachment temperature increases the attachment life, but not sufficiently
for an advanced blade application. Based on the Larson-Miller curve shown
in Figure 51, it would be necessary to decrease the attachment temperature
to Fs b00C ( R3 1700°F), or the shear stress level to N 117MPa (17 ksi)
(approximately 50% stress reduction) to increase attachment creep life
beyond 10,000 hours, not accounting for possible safety factors. While the
lower attachment temperature is not unreasonable in terms of some current
generation designs, it is significantly below the anticipated operating
temperature of advanced attachments. Stress reductions of the required
magnitude also are considered to be beyond the scope of available attach-
ment design techniques. It, therefore, must be concluded that the sustained
load attachment capability of Y/Y'..B is not adequate for advanced hollow turbine
blade applications. A possible approach to solution.of this problem would
involve the development of a fabricated blade incorporating a D.S. eutectic
airfoil bonded to a superalloy root. Such a development is within reach
of current bonding technology.
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6.0 CONCLUSIONS

The objective of this program was to evaluate the capability of y/y t - 6
to sustain the airfoil thermal fatigue and root attachment loads imposed
in advanced, hollow, high work eutectic turbine blades. Simulated air-
foil thermal fatigue and root subcomponent tensile, creep, and low cycle
fatigue tests were conducted to achieve this objective. Airfoil and root
platform stress a►aalyses were conducted to determine appropriate test con-
ditions for the experimental program.,.

Based on results of longitudinal TME' tests conducted on smooth hollow speci-
mens and on hollow specimens containing a simulated leading edge cooling
hole pattern, it is concluded that the longitudinal TO capability ofthe
eutectic is adequate for advanced hollow airfoil applications. The minimum
longitudinal properties, which were obtained,on the simulated cooling hole
specimens, indicated the strain range for 1 cycle life to be greater than
0.0025m/m, which is more than 5 above the calculated maximum spanwise aix-
foil strain range of 0.0016m/m. Transverse UW properties, while somewhat
lower than longitudinal properties, still appear to be adequate for the
particular advanced blade analyzed. The life limiting transverse results
were obtained on a transverse specimen containing simulated cooling holes.
Based on these rather limited extrapolated results a thermal fatigue life
of 14,000 cycles is predicted for the particular advanced hollaa blade analyzed.

Based on results of root subcomponent tests, it is concluded that the sus-
tained load (creep) properties of the eutectic an shear parallel to
the solidification direction represent the life-limiting design property
of Y/Y' - 6. Short time root subcomponent pull-out tests indicated an
ultimate load carrying capability 60? above the maxirmim pull for the parti-
cular attachment analyzed. Foot LCF properties may be marginal, while root
creep lives are not adequate for an advanced blade application. At the maxi-
mum blade pull of 222kU (50,000 lb.), root subcomponent puu. -out lives on
the order of 4-20 hours were measured in the anticipated operating temper-
ature range of 760 to 700C (1400 to 1300 0F), with failure occurring by a
tooth shear mode. Based on the observation that neither reduced root
operating temperature nor lower stress root designs could provide a large
enough root creep life improvement, it is concluded that application of

6 as an advanced turbine blade material win require the develop-
!	 ment of a fabxicated blade incorporating a D.S. eutectic airfoil bonded to

a superalloy root. The development of such a blade is considered to be
within the reach of current bonding technology.
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TABLE T

Maximum Thermal Fatigue Strains Determined
From 3D Finite Element Analysis

Direction (Reference Figure 1)

x	 y z

Maximum D.S.
Strain Range Eutectic 0.001$	 0.0012 0.0016
(m/m)

D.S. Mar- 0.00i4	 - 0.0020
M200+Hf
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Results of Longitudinal Thermomechanical Fatigue Tests Conducted on Smooth Y/Y' - 6 D.S. Eutectic
TO Suecimens Coated on the O.D. with - 61} im (2.5	 mils) NiCrAiy + - Olin ( 0-25 mil) Pt

(2)
Strain Minimum Maximum Cycles to First Cycles to

Specimen Range Temperature Temperature Cyclekl) Surface 50a Lead
Number m m C F aC	 °F ShMDe Indication Drop Comments

A76-103 0.0056 504	 94o 938	 3720 S.E.C. 1527 < i < 2555 5224 Failed from coating arack^secondary
cracks found at extensometer ridges

A76-216 0.0070 504	 940 938	 1720 S.E.C. 300 < i < 1260 1820 Failed from coating crack secondary cracks
found at extensometer ridges and on inside
diameter of gage section

w	 A75-833 0 .0056 427	 800 1038	 1900 S.E,C. Not detected 1938 Failed at extensometer ridge , no coating cracks
detected

A76--120 0 . 0056 427	 800 10:38	 1900 S .E.C. Not detected 2220 Failed from extensometer ridgc,no coating
cracks detected

A76-ira 0.0070 1127	 800 1038	 1900 S.E.C. 261 < i < 562 562 Failed from extensometer ridgeoecondary
costing cracks observed

A76-211 0.0056 427	 800 1038	 1900 Cycle I i < 239 239 Failed from coating crack

(1)S.E. C. = Spanwise Engine Cycle (See Figure 4c)

Cycle 3: -- See Figure 21

(2) As-determined by microscopic examination of surface replicas
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TABLE III

Results of Longitudinal Thermomechanical Fatigue Tests Conducted on Showerhead y/Y' - 6 D.S.
Eutectic W Specimens Coated on the O.D. with ;u 644m (2 .5	 mils) NiCrAiy+F4 6.,m ( 0.25 mi1) Pt

Strain minimum Maxir.tun
(1)

Cycles to Cycles to Cycles to
Specimen Range Temperature Temperature Cycle First(2) Sur- 5% Load 500 Load
Number m m C 7 C	 F Shane face Indication Drop Drop

A76-13o 0.0056 5o4 94o 938	 1720 S.E.C. i < log 250 351

A76-122 0.0040 5o4 94o 938	 1720 S.E.C. i < 200 320 795

A76-207 0.0034 504 94o 938	 1720 S.E.C. i < 1329 4600 5175

A76-124 0.0028 504 940 938	 1720 S.E.C. i < 2565 4200 85+5

A76-214 0.0040 427 800 1038	 1900 S.E.C. 576 < i < 876 1000 2520

A76-128 0.00€0 427 800 1038	 1900 Cycle I i < 101 450 592

(1)S.E.C. = Spanwise Engine Cycle - See Figure 4a

Cycle I - See Figure 21

(2)As-determined by microscopic examination of surface replicas
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TABLE 1V

i
Results of Transverse Thermomechanical Fatigue Tests Conducted on Y/Y = -

`^' D. S. Eutectic 51F Specimens Coated on the O.D. with a 64µm (2 .5 mils	 ) IIiCrAIY + Ps 611m ( 0.25 mil) A

^d Strain 3dinilllm T4%ximu Cycles to Cycles to
Specimen Range Temperature Temperature cle (1) First Surface 54, Load
Number m m °C OF °C OF Slope. Indication Drag Comments

E582B (2) 0.0045 471 880 910 1670 C.E.C. Done detected 720 Failed In threadsi no coating cracks found
on unfailed gage section

E576A(2) 0.0037 471 880 910 1670 c.E.c. 821 <i< 1075 1857

E579B(2) 0.0027 471 880 910 1670 C.E.C. 15,400 < i >15,000 Test discontinued, no indications

R3 E582C(2) 0.0037 343 650 1038 1900 C.E.C. - 36o Not replicated prior to failure

E58OC(2) 0.0037 127 80o 1038 1900 Cycle I - 37 Not replicated prior to failure

E6oO A-1(3) 0.0018 471 880 910 1670 C.E.C. None detected >1059 Cycling terminated-specimen uploaded Isee
test E600 A=II

E60o A-II(3) 0.0037 471 880 910 1670 C.E.C. - 188 Uploaded from 0.0018m/m - see specimen
E600 A-I for prior cycling history,, no't re-
plicated prior to failure

(1) C.E.C.= Chordwise Engine Cycle - see Figure 4a

Cycle I - See Figure 23.

(2) Smooth Specimen

(3) Simulated Cooling Hole Teat

1
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.l.l],BLE V

General Specification fox Grinding Procedures for
Machining of y/Y l - 8 Eutectic Turbine Blade Roots

1. Rough grind root section to a machining envelope of +0.010" over
finished print dimensions tangent to the root tip serrations. Use:
38A-(46 to 60)-i or J-8V7 or equivalent 7" diameter x 1" wide wheel.
Remove 0,001"-0.002" per pass at wheel speed of 3600 rpm, flood
coolant - soluble oil and water.

2. Rough grand end faces of root to +0.010" over finish per as above
(see No. 1). Finish grind root end faces removing a maximum of
0.0005" per pass with 2 to 3 spark-out passes,

3. Single point form grind a root grinding wheel to finished print
dimensions using a diaform type dresser. Use: 38A-(60 to 70)-I
or J8V7 or equivalent 7" diameter X 1" wide wheel.

4. dough grind root serrations to +0.010" over finished print dimensions
with wheel from No. 3 above, redress as required. Use a plunge cut
and hand feed to remove 0.001" to 0.002" per cut. Wheel speed: 3600
rpm, flood coolant, soluble oil and water.

5. Finish grind root serrations to finished print dimensions removing
a maximum of 0.0005" per cut using same parameters as No. 4 above.
Complete operation with 2 to 3 spark-out passes using newly-dressed
wheel.
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TABLE VI

Results of 760C (1400°P) Root Subcomponent Pall-Out Tests

Pull Out Load Fully Distributed
Specimen Tooth Shear Stress
Number kN Pounds MPa	 ks:L

E596 368 82,750 4o1	 58.2

E588 375 842250 391	 56.7	 j

E597 935 80,750 400	 58.0

1

i

i

i
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TABLE VIZ

Results of 760C (14o0°F) Root Subeiamponent

i

LCF Tests

(Cycled from Zero Load to Indicated Maximum Load)

1

Cycles !	 "'
Specimen Maximum Load To
Number ku Lb Failure Comments

E584 178 4o,000 487 Failure of eutectic at load-
train attachment hole.	 I

E583 178 40,000 593 Failure of eutectic at load-
train attachment hole.

E577 178 40,000 11,140 Crack detected, test terminated.

E578 222 50,000 471 Failure of superalloy simulated
disk slot.

E592 222 50,000 2,964 Failure of superalloy simulated
disk slot.

i
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TABLE VIII

Results of Sustained Load Root Subcomponent Full-Out Tests
Fully Distri-

Applie d Test buted Tooth
Specimen 'Goad Temperature

-

Shear Stress

Number 10 Lb "C 7 MPa	 ks:. Life, Hr

E545 2^q 6o,000 76o 1400 291	 42.2 0.17

E589 222 50,000 76o 1400 232	 33.7 4.4

E586 178 4o, 000 760 1400 192	 27.8 39.5

E585 222. 500 000 700 1300 247	 35.9 20.5
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Figure 1 Advanced turbine blade being modeled for evaluation of

Vy-1 thermal fatigue performance capabilities. Axes
indicate co-ordinate system employed for finite element
analysis
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Figure 2 Typical ASKA (Automated System for Kinematic Analysis)
Hexc twenty element
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e] Convex side

Figure 3 ASIA three-dimensional airfoil model
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Figure 4 Temperature-strain relationships exhibiting the maximum
strain range in the indicated directions (reference Figure 1)
as determined by three-dimensional finite element analysis
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PLANT

All dimensions are inches (1.0 inch = 2.54 cm)

Figure 5 Schematic representation of advanced turbine blade
modeled to evaluate	 root attachment
capabilities
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b) Mated root-pull block assemblya) Root subcomponent specimen

(Root dimensions as per Figure 5)

Figure 6 Specimen used for experimental evaluation of'r/Y—SD.S. eutectic

root attachment capability



W

i

Figure 7 ASKA rout and left disc lag models, showing nodes defined
for a typical Hexc twenty element
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fixed to allow sliding

along bearing surface

fixed to groi

[t applied to upper surface of model

radial and axial motion only

radial

axial

tangential

W
m

Figure 8 Boundary conditions used for analysis of roof stresses
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Figure 9 Airfoil — platform model used for ASKA three - dimensional stress analysis
Oa. ers separated to permit presentation of element detail)
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Figure 10 Concentrated shear stresses, MPa (KSO determined at tooth bearing
surfaces using ASKA three-dimensional finite element analysis
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Figure 11 Radial deflections at top of attachment model due to Made pull



4o

P-

.w m



E

^i

I

f

1

u = nominal ( fully distributed)

Concave i, de,	tooth shear stress	 Convexey ex aside

.:L,.	 I

46,050H (10,353 Ib)
	

33,169H (7457 (b)

(20.5%)	
Itn = 280 MPa
	 n = 206 MPa

	 (14.8%)

_.A-	(40.0 KSI)
	 129.8 K'S11

35,09911 (7091 lb)	
n = 229 MPa

115.7%) 	) Tn = 217 MPa	 (33.3 KSl) i
(31.6 KSI)	 "'^^

33,120 N 17446 lb) 	
n = 24fi >K S 	

39 ,676 H (8920 lb)(35.7 KS[) ;	 ,
(14.8%) 205 1131'a	

^	 (17.7%)

`'f— (29.8 KSI)
F

Concave side Ioad distribution = 51%	 Convex side load distribution = 49%

Total resolved tooth load = 224,117H (50,386 IN

Figure 13 Resolved tooth loads
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analysis appl
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no deflections permitted

a) Undeflected model and applied 	 b) Deflected model
boundary conditions

Figure 14 Model used for two-dimensional root stress analysis — section analyzed
is located at the trailing edge on the convex side
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Figure 15 local (concentrated) stresses calculated from two-dimensonal
analysis
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1.382 in. (.544 in.) Dia.
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10.58 cm (4.165 in.)
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( 16.563 in.)
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I

Figure 16 Thermomechanical fatigue test specimen



a) Longitudinal TMF Specimen A76-130

n
4

L^

b) Transverse TMF Specimen E5828

Figu.e 17 Typical transverse microstructures found in longitudinal

and transverse TMF castings

i
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* Solidification direction normal to paper

1.27 cm	 1.27 cm

(.5 in.)	 (.5 in.)

2.86 cm	 2.54 cm	 2.86 cm
(1.125 in.)	 0 in.)	 (1.125 in.)

2.22 cm
—	 —1.43 cm (.562 in.)	 (.-1875 in.)

0.4 cm
(.156 in.)

10.8 cm (4.25 in.)

a) Casting cross section



SECTION A•A
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.20Ct

.IOcm (.040 in)
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.r

SECTION &6

Thew en&s typical both sides of specimen

SPEC

1-2k. (.080 in)

.1 trocm (.040 in)

.60cm (.240 In)

VIEW C

Figure 19 "Showerhead" thermomechanical fatigue test specimen used to evaluate
the influence of leading edge cooling holes on thermal fatigue behavior

47



strain

• ^•	 y )	 /

0 710

JL

	

ti	 '10

ki t4

`,,

t!""ia="	 -.Tee - .^ ^<.L 3. •. w. ^r.•ww4^^:r.^r+R^ 	 u

Figure 20 Coating microstructure found in specimen A76-122
cycled 865 times from 504 to 938°C (940 to 1720 °F)

i

66. 9

Figure 21 Schematic illustration of Cycle I thermomechanical
fatigue cycle

j	 48



.003

.002

	

.001	 Temperature, T

C
500 \ 600	 700	 800	 900	 1000

E	 0

E	 900	 1000	 1100	 1200	 1300	 1400	 1500	 1600	 1700	 1800

	

W —.001	 \

Mean strain \	 Temperature, OF

—.002 Engine cycle--/

	

—.003	 Test cycle	 \ /

—.004

Figure 22 Scaling of maximum spanwise engine cycle to increase strain range
for generation of S-N curve
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b) Showerhead specimen load drop

Figure 24 Typical load-drop curve for smooth and shcwerhead
longitudinal fhermomechanical fatigue specimens
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FIGURE25 Longitudinal thermomechanival .fatigue results characterized in terns of

5% load drop failure criterion
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Figure 26 Typical load drop carve for transverse thermomechanical fatigue specimen



a) Coating cracks found an surface replica of specimen A76-103 at 3782 cycles

b) Fracture surface of specimen A76-103 showing
coating-initiated fatigue crack farrow)

cl Secondary coating cracks found in specimen A76.216

Figure 27 Typical coating cracks found in smooth longitudinal
fharmnmarh2nieal fativiiP %nPrimens
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a) Extensometer ridge failure found in smooth longitudinal
specimen A76-171 tested with 427-1038C (800-1900F)
spanwise engine cycle

100""

b) Incipient extensometer ridge cracks found in smooth
longitudinal specimen A76-103 tested with 504-938C
(940-1720F) spanwise engine cycle

Figure 28 Cracks found at internal extensometer ridges
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Figure 29 Comparison of three strain -temperature relationships investigated an Pmoath
longitudinal specimens (0.0056 m/m strain range shown)
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measured on smooth longitudinal specimen A76.103
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Figure 32 Potential influence of differential coating shake down and differential
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a) Specimen A76-125 surface view

(stress axis) ♦-^

/

b) Specimen A76-130 polished just through coating

Figure 33 Typical cooling hole crack pattern observed on showerhead
thermomechanical fatigue specimens
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coating
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a) Crack initiation at the O.D. e qd of simulated cooling hole

p} CraA initiation at the I.D. end of a cooling hole 	
0 Crack initiation in hole barrel coating

Figure 34 Typical crack initiation sites (arrows) found on showerhead
longitudinal thermomecanical fatigue specimen A76-128
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Figure 35 Cross-section through the wall of a shovierhead thermomachanic.al
fatigue specimen showing approximately coplanar location of

preferred I.D. and C.D. fatigue crack initiation sites (arrows) on

successive holes along specmen axis
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Figure 36 Fracture surface of transverse specimen E600A containing simulated
cooling hole. Tested with 471-9100 (880-1670F) chordvrise engine
cycle (Figure 4a). Cycled 1059 cycles at 0.0018 m/m engine strain
range with no indications. Uploaded and cycled for 188 cycles to failure at

0.0037 m/m. Stress axis normal to plane of photograph

Figure 37 Fracture surface of smooth transverse specimen E576A tested 1857
cycles to failure with the 471-9100 (880-1670F) chorOwise engine
cycle (Figure 4a) expanded to a 0.0037 m/m strain range. Arrow
indicates suspected initiation site. Stress axis normal to plane of

photograph
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Figure 38 Secondary crack found on uncoated I.D. surface of transverse specimen E576A

tested 1851 cycles to failure with the 471-910C (080-1670F) chardwise
engine cycle expanded to a strain range of 0.0037 m/m. Stress axis horizontal

Figure 39 Selective oxidation of fii 3 Ch lamellae found on uncoated I.D. surface of transverse
specimen E600A tested with 47 1-910C (880 — 1670F) chordwise engine cycle.
Total exposure time a:22 hours
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Depth of selectively

oxidized zone

200 P m (=0.008 in.)

a

b) Detail of selective oxidation

Figure 40 Selective oxidation of Ni 3 Cb lamellae found on the uncoated
I.D. of specimen E582C tested 360 cycles to failure with the g
chordwise engine cycle (Figure 4a) expanded to a temperature
range of 343 - 1038C (650 . 1900F). Total exposure time

^1 hours. Stress axis horizontal
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Figure 41 Fracture profile of smooth transverse specimen E580C
tested 37 cycles to failure with 427-1038C (800-1900F)
Cycle I loading. Stress axis horizontal

Figure 42 Selective oxidation of Ni 3 Cb dendrite found in smooth

transverse specimen E580C. Total exposure time
-1 hour. Stress axis horizontal
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Figure 44 Casting used for fabrication of root subcomponent test specimen



sectioned for
metallographic

observation

Figure 45 Failed root subcomponent tensile pull-out
specimen E588
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b? Microstructure in grip area

Figure 46 Longitudinal splitting of eutectic grip on root

subcomponent LCF test E583
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_	 sectioned for

metallographic observation

Figure 47 Shrink fit B1900 + Hf collar used to prevent
splitting grip on eutectic root subcomponent
LCF specimen

0

71



Figure 48 Crack found at root of bottom fir-tree serration
on specimen E577 tested 11,140 	 cycles at
760C (1400F), 0-178 kN (0-40,000 lb)

Figure 49 Failed broach block used for root subcomponent

LCF test
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figure 50 fir-tree damage caused by fatigue failure
of superalloy broach block
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A. MATERIAL PROPERTIES USED FOR STRESS ANALYSIS

The stress analyses performed on this program .required knowledge of the
thermal and elastic properties of the DS eutectic alloy. Specific pro-
perties required were heat capacity, thermal conductivity, thermal ex-
pansion coefficient, and elastic modulus. To fulfill this requirement,
results obtained from tests conducted on other programs were assembled
and are presented in this appendix.

Because of the unique crystallographic alignment of each phase with the
direction of solidification, the physical properties of the DS eutectic
are anisotropic. Since the typical transverse grain structure of fully
lamellar material is essentially equiaxed and of relatively fine size
t^25 to 1O01^m), the bulk material behaves in an axi-symetric fashion;
that is, the properties differ in the longitudinal and transverse direc-
tions, but do not vary in any direction lying in the transverse plane.

While the thermal properties of the y/y' phase are isotropic by virtue
of the cubic crystal symmetry*, thermal conductivity and thermal ex-
pansion coefficients, being second order tensor quantities, are direc-
tional in the lower symmetry orthorhombic Ni Cb reinforcing phase. By
virtue of the previously mentioned microstQtural symmetry about the
freezing direction, these two quantities can be specified for the poly-
crystalline DS eutectic composite by, at most, two constants measured in
the longitudinal and transverse directions. As shown in Figure A -1, the
thermal conductivity of the eutectic is slightly different in these two
directions, while thermal expansion is, by coincidence, essentially in-
dependent of direction (Figure A»2). Heat capacity, being a scalar
quantity, is independent of orientation and depends only on temperature,
as shown in Figure A »3.

As shown in Figure A-4. seven elastic constants are required to fully
characterize the elastic behavior of the directionally solidified lamellar
eutectic. Room temperature values of these sever. cons ants are given in
Table A-I. Four of these values (LL„ ET, VLT, and GL'li) were measured
experimentally. The remaining three were calculated from the four
measured values using the following relations

"TL =	 ALTEL

G TT =X
2l:+:9:LT)

TT = ET —12GTT

*J.F. Nye, Physical Properties of Crystals Oxford University Press,
London, 1957•
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The temperature dependence of EL, shown in Figure A-5, was measured
experimentally. The assumed temperature dependence of the remaining
constants shown in this figure was scaled from the measured longitudinal
modulus data.
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TABLE A,I

Room Temperatuxe Elastic Constants of D.O.y/y' Eutectic Alloy

Value
Constant GPa PSI x 10-

EL 248 36

ET 207 30

GLT 78 11.3

GiT 86 3.2.5

VLT 0.30 (Dimensionless)

VTD 0.25 (Dimensionless)
i

VTT

i

0.20 (Dimensionless)
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i	 Figure A-4 Definition of clastic constants required to characterize
a transversely isotrop ic D.S. eutectic material
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