General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

```
(NASA-CR-151130) FHATUEE COMBINATIONS AND
N77-13759
THE EHATTACHAEYYA CEITEEION (Houston Univ.)
11 p HC AO2/MF AO1
    CSCL 12&
Unclas
G3/65 56937
```

FEATURE CCMBINATIONS AND THE EHATTACHARYYA CRITERION

BY H.P. DECELL AND S.K. MARANI REPORT \#55 JUNE 1976

PREPARED FOR
EARTH OBSERVATION DIVISION, JSC
UNDER
CONTRACT NAS-9-15000

FEATURE COMBINATIONS AND THE BHATTACHARYYA CRITERION

by

Henry P. Decell, Ir. and Salma K. Marani Department of Mathematics University of Houston Houston, Texas

FEATURE COMBINATIONS AND THE BHATTACHIARYYA CRITERION

Henry P. Decell, ir. and Salma K. Marani

Department of Mathematics University of Houston

Abstract

AilStiRACT

We develop a procedure fur calculating a kxn rank k matrix B for data compression using the Bhattacharyya bound on the probability of error and an iterative construction using Householder transformations. Two sets of remotely sensed agricultural data are used to demonstrate the application of the procedure. The results of the applications give some indiaation of. the extent to which the Bhattacharyya bound on the probability of error is affected by such transformations. for multivariate normal populations.

1. IISTRODUCTION

: For n-dimensional normal classes $N\left(\mu_{1} \Sigma_{i}\right) 1=1, \ldots, m$, the Bhattacharyya coefficient (Andrews, 1972) for class i and j is
given by:

$$
\rho(i, j)=\left(q_{i} q_{i}\right)^{\frac{1}{2}} \int_{R} n^{n}\left[p_{i}(x) p_{j}(x)\right\}^{\frac{1}{2}} d x
$$

and the Bayes probability of error (Anderson, 1958) (Andrews, 1972) by

$$
P_{e}=1-\int_{R^{n}} \max _{1 \leqslant i \leqslant m}\left\{q_{i} p_{i}(x)\right\} d x
$$

where $p_{f}(x)$ denotes the conditional density of the random variable X given that $X \sim N\left(\mu_{i}: \Sigma_{i}\right)$ and q_{1}, \ldots, q_{m}, respectively, denote the (known) a priori probabilities of the classes $N\left(\mu_{i} \Sigma_{i}\right)$ $1=1, \ldots, m$.

It has been shown (Andrews, 1972) (Kaileth, 1967) that

$$
P_{e} \leq \sum_{i=1}^{m-1} \sum_{j=i+1}^{m}\left\{q_{i} q_{j}\right\}^{1 / 2} \int_{R}\left\{p_{i}(x) p_{j}(x)\right\}^{1 / 2} d x
$$

If one considers a kn rank k linear transformation B of the random variable X (i.e., Y $¥ B X$), then the Bhattacharyya coefficient for class 1 and j for the classes $N\left(B \mu_{i}, B \sum_{i} B^{T}\right), i=1, \ldots, m$ is:

$$
\left.\rho_{B}(i, j) \equiv\left\{q_{i} q_{j}\right\}^{\frac{1}{2}} \int_{R} k^{\left\{p_{i}\right.}(y, B) p_{i}(y, B)\right\}^{\frac{1}{2}} d y
$$

and the Bayes probability of error for the classes $N\left(B \mu_{i}, B \Sigma_{i} B^{T}\right)$, $i=1, \ldots, m$ is:

$$
\quad P_{e}(B)=1-\int_{R^{k}} \max _{1 \leqslant i \leqslant m}\left\{p_{i}(y, B)\right\} d y
$$

where $p_{i}(y, B), 1=1, \ldots, m$ denotes the conditional density of the random variable $Y=B X$ given that $Y \sim N\left(B \mu_{i}, B \sum_{i} B^{T}\right)$. It follows,
since $p_{e} \leq \rho \equiv \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \rho(i, j)$, that

$$
P_{e}(B) \leqslant \rho(B) \equiv \sum_{i=1}^{m-1} \sum_{j=i \neq 1}^{m} \rho_{B}(i, j)
$$

and moreover, (Decell and Quirein, 1913) (Kaileth, 1967), that
(1) $\mathrm{P}_{\mathrm{e}} \leqslant \mathrm{P}_{\mathrm{e}}(\mathrm{B}) \leqslant \rho(B)$.
(2) $\mathrm{P}_{\mathrm{e}}=\mathrm{P}_{\mathrm{e}}$ (B) if and only if $\rho=\rho(B)$.

2. THEORETICAL PRBLIMINARIES

Let k be an integer $(0<k<n)$, and $N\left(\mu_{i}, \Sigma_{i}\right) i=1, \ldots, m$ be n-variate normal populations with a priori probabilities q_{1}, \ldots, q_{m}. We would like to construct a kxn rank k matrix B that will minimize $\rho(B)$. The theoretical extent to which this is possible and the basis for the construction (Decell and Smiley, to appear) is summarized in the followin; theorem. Let $C=\left\{u \varepsilon R^{n}:\|u\|=1\right\}$ and $T(H)=\left\{H=I-2 u u^{T}: u \varepsilon C\right\}$ denote the set of Householder transformations on R^{n} (Householder, 1958). Theorem. For each positive i, let $H_{i} \varepsilon T(H)$ be chosen such that

$$
\rho\left(\left(I_{k} \mid Z\right) H_{1}\right)=\underset{H \varepsilon T(H)}{g .1 \cdot b} \rho\left(\left(I_{k} \mid Z\right) H\right)
$$

and

$$
\rho\left(\left(\mathrm{L}_{k} \mid Z\right) \mathrm{H}_{i+1} \mathrm{H}_{i} \cdots \mathrm{H}_{1}\right)=\underset{\mathrm{H} \mathrm{\varepsilon T}(\mathrm{H})}{\mathrm{g} \cdot 1 . \mathrm{b}}, \rho\left(\left(\mathrm{I}_{k} \mid Z\right) \mathrm{HH}_{i} \cdots \mathrm{H}_{1}\right)
$$

then,
(1) $\rho\left(\left(I_{k} \mid z\right) H_{i+1} H_{i} \cdots H_{1}\right) \leq \rho\left(\left(I_{k} \mid Z\right) H_{i} \cdots H_{1}\right)$.
(2) $\rho\left(\left(I_{k} \mid Z\right) H_{i+1} \cdots H_{1}\right) \leq \rho\left(\left(I_{k} \mid Z\right) H_{i} \cdots H_{2} H\right.$, н $\left.\varepsilon T(H)\right)$.
(3) $\rho\left(\left(I_{k} \mid Z\right) H_{i+1} H_{i} \cdots H_{i}\right) \leq \rho\left(\left(I_{k} \mid Z\right) H_{i} \cdots H_{1}, H \in T(H)\right)$.
(4) $\rho\left(\left(I_{k} \mid z\right) H \cdot \cdots H_{i-(p-1)} H_{i-(p+1)} H_{1}\right) \leq o\left(\left(I_{k} \mid z\right) H_{i+1} H_{i} \cdots H_{1}\right)$, H $\varepsilon T(H)$
and $p=0, \ldots, i-2$.
(5) The monotone sequence of real numbers $\left\{\rho\left(B_{i}\right)\right\}_{i=1}^{\infty}$ where
$B_{i}=\left(I_{k} \mid Z\right) H_{i} \cdot H_{1}$ is bounded below by P_{e} and hence

$$
\lim _{1 \rightarrow \infty} \rho\left(B_{i}\right)=g \cdot 1 \cdot b \cdot\left\{\rho\left(B_{i}\right)\right\}
$$

We know (Decell and Quirein, 1973) that there is some kxn rank k matrix, say \hat{B}, that minimizes $\rho(B)$. If $\left.\rho(B)<\frac{g .1 . b}{1} \cdot \rho\left(B_{i}\right)\right\}$ we will call the sequence $\left\{B_{i}\right\}_{i=1}^{\infty}$ sub optimal (uptimal in the case of equality). There are several results (Decell and Smiley, to appear) that lend credibility to the conjecture that the sequence is optimal and cofinally constant beyond the index $i=\min \{k, n-k\}$. We will proceed with the develupment of an iterative procedure for constructing the subject sequence and, finally, tabulate results of applications to remotely sensed agricultural data with equal a priori class probabilities. The approach (and its merit) will depend upon tie bound provided by the inequality $P_{e} \leq \rho\left(B_{i}\right) i=1,2, \ldots$, the $n \cdot n$-increasing nature of the sequence $\left\{\rho\left(B_{i}\right)\right\}_{i=1}^{\infty}$, and the ability to manipulate the expressions for $\rho\left(B_{i}\right), i=1,2, \ldots$ in the case of normal populations.
3. THE GRADENT OF $\rho\left(\left(I_{k} \mid Z\right) H\right)$

We will develop an expression (for the case of normal n-variate populations $\left.N\left(\mu_{i}, \Sigma_{i}\right), i=1, \ldots, m\right)$ for the gradient of $\rho\left(\left(I_{k} \mid Z\right) H\right)$ where $H \in T(H)$ has the form $H=I-2 \frac{x x^{T}}{x_{x}}, x \neq \theta$. This expression will be used in a steepest descent procedure to calculate each Householder transformation $H_{1}, H_{2}, H_{3}, \ldots$ described in the preceding theorm. For m populations $N\left(\mu_{i} \Sigma_{i}\right)$, $1=1, \ldots, m$ it is easy to est:ablish that in order to calculate H_{i+1}. one need shly apply the steepest descent procedure to the Bhattacharyya coefficient determined by the populations $N\left(H_{i} \cdots H_{1} \mu_{j}, H_{i} \cdots H_{1} \sum_{j} H_{1} \cdots H_{i}\right) j=1, \ldots$, m.

The expression for $\rho_{\left(I_{k} \mid z\right) H}(i, j)$ is given by (Andrews, 1972) (Kalleth, 1967) (for the case of equal a priori probabilities $\left.q_{i}=1 / m, i=1, \ldots, m\right):$

$$
\rho_{\left(I_{k} \mid Z\right) H}(i, j)=\frac{1}{m} \exp -\frac{1}{4} \delta_{i j}^{T}\left(\Sigma_{i}+\Sigma_{j}\right)^{-1} \delta_{i j}-\frac{1}{2} \ln \left(\frac{\left|\hat{\Sigma}_{i}+\hat{\Sigma}_{j}\right|}{2^{k}\left|\hat{\Sigma}_{i}\right|^{\frac{1}{2}}\left|\hat{\Sigma}_{j}\right|^{1 / 2}}\right)
$$

where $\hat{\delta}_{i j}=\left(I_{k} \mid Z\right) H\left(\mu_{i}-\mu_{j}\right)$ and $\hat{\Sigma}_{i}=\left(I_{k} \mid Z\right) \sum_{\Sigma_{i}} H\left(I_{k} \mid Z\right)^{T}$, in which case,

$$
\rho\left(\left(I_{k} \mid Z\right) H\right)=\sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \rho_{\left(I_{k} \mid Z\right) H}(i, j)
$$

If we define

$$
F_{i j}=-\frac{1}{4} \delta_{i j}^{T}\left(\hat{\Sigma}_{i}+\hat{\Sigma}_{j}^{-1}\right)^{\delta_{i j}} \quad \text { a.dd } \quad G_{i j}=-\frac{1}{2} \ln \left(\frac{\left|\hat{\Sigma}_{i}+\hat{\Sigma}_{j}\right|}{2^{k}\left|\hat{\Sigma}_{i}\right|^{\frac{T}{2}}\left|\hat{\Sigma}_{j}\right|^{\frac{1}{2}}}\right)
$$

we have that the differential of $\rho_{\left(I_{k} \mid Z\right) H}(i, j)$ is

$$
d\left(\rho_{\left(I_{k} \mid Z\right) H}(i, j)\right)=\frac{1}{m} \exp \left(F_{i j}+G_{i j}\right)\left(d\left(F_{i j}\right)+d\left(G_{i j}\right)\right)
$$

from whence it follows that

$$
d\left(\rho\left(\left(I_{k} \mid z\right) H\right)=\frac{1}{m} \sum_{i=1}^{m-1} \sum_{j=1 \neq 1}^{m} \exp \left(F_{i j}+G_{i j}\right)\left(d\left(F_{i j}\right)+d\left(G_{i j}\right)\right)\right.
$$

In order to simplify the notation, define $\Sigma_{i j}=\Sigma_{i}+\Sigma_{j}$ and $\Delta_{i j}=\left(\mu_{i}-\mu_{j}\right)\left(\mu_{i}-\mu_{j}\right)^{T}$.

Let $\operatorname{tr}(\cdot)$ denote the trace of (\cdot) and $|\cdot|=\operatorname{det}(\cdot)$. With a bit of matrix algebra it follows that

$$
\left.F_{i j}=-\frac{1}{4} \operatorname{tr}\left\{\left(I_{k} \mid z\right) H \Sigma_{i j} H\left(I_{k} \mid z\right)^{T}\right)^{-1}\left(I_{k} \mid z\right) H \Delta_{i j} H\left(I_{k} \mid z\right)^{T}\right\}
$$

and

$$
\begin{aligned}
G_{i j}= & \frac{1}{2} \ln \left|\left(I_{k} \mid Z\right) H \Sigma_{i j} H\left(I_{k} \mid Z\right)^{T}\right|+\frac{1}{4} \ln \left|\left(I_{k} \mid Z\right) H \Sigma_{i} H\left(I_{k} \mid Z\right)^{T}\right| \\
& +\frac{1}{4} \ln \left|\left(I_{k} \mid Z\right) H \Sigma_{j} H\left(I_{k} \mid Z\right)^{T}\right|+\frac{k}{2} \ln 2 .
\end{aligned}
$$

We will now develop expressions for $d\left(F_{i j}\right)$ and $d\left(G_{i j}\right), i, j=1, \ldots, m$. According to Decell and Quirein (1973)

$$
d\left(F_{i j}\right)=-\frac{1}{2} \operatorname{tr}\left\{d\left(\left(I_{k} \mid z\right) H\right) Q_{i j}\right\}
$$

where $B=\left(I_{k} \mid Z\right) H$, and

$$
Q_{i j}=\left[\Delta_{i j} B^{T}-\Sigma_{i j} B^{T}\left(B \Sigma_{i j} B^{T}\right)^{-1} B \nabla_{i j} B^{T}\right]\left(B \Sigma_{i j} B^{T}\right)^{-1}
$$

Since $K=I-2 \frac{x x^{T}}{x^{T} x}$ it follows that

$$
\begin{aligned}
d\left(\left(I_{k} \mid z\right) H\right) & =d\left(\left(I_{k} \mid z\right)\left(I-2 \frac{x x^{T}}{x^{T}}\right)\right)=-2\left(I_{k} \mid z\right) d\left(\frac{x x^{T}}{x^{T}}\right) \\
& =-2\left(I_{k} \mid z\right)\left\{\frac{x^{T} x d\left(x s^{T}\right)-x x^{T} d\left(x^{T} x\right)}{\left(x^{T} x\right)^{2}}\right\} \\
& =\frac{-2\left(I_{k} \mid z\right)}{\left(x^{T} x\right)^{2}}\left\{x^{T} x\left(d(x) x^{T}+x d(x)^{T}\right)-x x^{T}\left(d(x)^{T} x+x^{T} d(x)\right)\right\} \\
& =\frac{-2\left(I_{k} \mid z\right)}{\left(x^{T} x\right)^{2}}\left\{\left(d(x) x^{T} x x^{T}+x x^{T} x d(x)^{T}-x x^{T} d(x)^{T}-x d(x)^{T} x x^{T}\right\}\right. \\
& =\frac{-2\left(I_{k} \mid z\right)}{\left(x^{T} x\right)^{2}}\left\{\left(d(x) x^{T}-x d(x)^{T}\right) x x^{T}-x x^{T}\left(d(x) x^{T}-x d(x)^{T}\right)\right\} .
\end{aligned}
$$

Substituting the latter in the expression

$$
d\left(F_{i j}\right)=-\frac{1}{2} \operatorname{tr}\left\{d\left(\left(\tau_{k} \mid Z\right) H\right) Q_{i j}\right\}
$$

and using the fact that $\operatorname{tr}(A B)=\operatorname{tr}(3 A)$, we have

$$
\begin{aligned}
d\left(F_{i j}\right)= & \frac{1}{2} \operatorname{tr}\left\{\frac{-2\left(I_{k} \mid Z\right)}{\left(x^{T} x\right)^{2}}\left[\left(d(x) x^{T}-x d(x)^{T}\right) x x^{T}-x x^{T}\left(d(x) x^{T}-x d(x)^{T}\right)\right] Q_{i j}\right\} \\
= & \frac{1}{\left(x^{T} x\right)^{2}} \operatorname{tr}\left\{Q_{i j}\left(I_{k} \mid z\right)\left[\left(d(x) x^{T}-x d(x)^{T}\right) x x^{T}-x x^{T}\left(d(x)^{T} x^{T}-x d(x)^{T}\right)\right]\right\} \\
= & \frac{1}{\left(x^{T} x\right)^{2}} \operatorname{tr}\left\{x x^{T^{T}} Q_{i j}\left(I_{k} \mid z\right)\left(d(x) x^{m}-x d(x)^{T}\right)-Q_{i j}\left(I_{k} \mid z\right) x x^{T}\left(d(x) x^{T}\right.\right. \\
& \left.\left.-x d(x)^{T}\right)\right\} .
\end{aligned}
$$

With a, little matrix algebra (and some patience) it follows that

$$
\begin{aligned}
d\left(F_{i j}\right)= & \frac{1}{\left(x^{T} x\right)^{2}} \operatorname{tr}\left[\left[\left(x x^{T} Q_{i j}\left(I_{k} \mid Z\right)-Q_{i j}\left(I_{k} \mid Z\right) x x^{T}\right)^{T}\right.\right. \\
& \left.\left.-\left(x x^{T} Q_{i j}\left(I_{k} \mid Z\right)-Q_{i j}\left(I_{k} \mid Z\right) x x^{T}\right)\right] x d(x)^{T}\right\}
\end{aligned}
$$

We now find an expression for $d\left(G_{i j}\right)$. First, recall (Kullback, 1968) that

$$
d\left(\ln \left|B \Sigma B^{T}\right|\right)=2 \operatorname{tr}\left\{d(B) \sum B^{T}\left(B C B^{T}\right)^{-1}\right\}
$$

so that

$$
\begin{aligned}
\mathrm{d}\left(G_{i j}\right)= & -\operatorname{tr}\left(d\left(\left(I_{k} \mid Z\right) H\right) \Sigma_{i j} H\left(I_{k} \mid Z\right)^{T}\left(\left(I_{k} \mid Z\right) H \sum_{i j} H\left(I_{k} \mid Z\right)^{T}\right)^{-1}\right\} \\
& -\frac{1}{2} \operatorname{tr}\left(d\left(\left(I_{k} \mid Z\right) H\right) \Sigma_{i} H\left(I_{k} \mid Z\right)^{T}\left(\left(I_{k} \mid Z\right) H_{i} H\left(I_{k} \mid Z\right)^{T}\right)^{-1}\right. \\
& +\frac{1}{2} \operatorname{tr}\left(\alpha\left(\left(I_{k} \mid Z\right) H\right) \Sigma_{j} H\left(I_{k} \mid Z\right)^{T}\left(\left(I_{k} \mid Z\right) H \Sigma_{j} H\left(I_{k} \mid Z\right)^{T}\right)^{-1}\right\} .
\end{aligned}
$$

Obviously, the summand in the expression for $d\left(G_{i j}\right)$ differ from the expression

$$
d\left(F_{i j}\right)=-\frac{1}{2} \operatorname{tr}\left\{d\left(\left(I_{k} \mid Z\right) H\right) Q_{i j}\right\}
$$

only by multiplicative constants and the matrix $Q_{i j}$. Hence, we may use the final expression for $d\left(F_{i j}\right)$ to obtain the expression for $d\left(G_{i j}\right)$ by simply adjusting the multiplicative constants and replacing $Q_{i j}$ (in each summand in $d\left(G_{i j}\right)$) with the expressions

$$
\begin{aligned}
& J_{i j}=\Sigma_{i j} H\left(I_{k} \mid Z\right)^{T}\left[\left(I_{k} \mid Z\right) H \Sigma_{i j} H\left(I_{k} \mid Z\right)^{T}\right]^{-1} \\
& K_{i j}=\dot{\Sigma}_{i} H\left(I_{k} \mid Z\right)^{T}\left[\left(I_{k} \mid Z\right) H \Sigma_{i} H\left(I_{k} \mid Z\right)^{T}\right]^{-1} \\
& \vdots \\
& L_{i j}=\check{\Sigma}_{j} H\left(I_{k} \mid Z\right)^{T}\left[\left(I_{k} \mid Z\right) H \Sigma_{j} H\left(I_{k} \mid Z\right)^{T}\right]^{-1}
\end{aligned}
$$

At this point we will simplify the notation. Let

$$
\hat{Q}_{i j}=\left(x x^{T} Q_{i j}\left(I_{k} \mid Z\right)-Q_{i j}\left(I_{k} \mid Z\right) x x^{T}\right)^{T}-\left(x x^{T} Q_{i j}\left(I_{k} \mid Z\right)-Q_{i j}\left(I_{k} \mid Z\right) x x^{T}\right)
$$

and let $\hat{J}_{i j}, \hat{K}_{i j}$, and $\hat{L}_{i j}$ be similarly defined by substituting, respectively, $J_{i j}, K_{i j}$, and $L_{i j}$ for $Q_{i j}$ in the expression for $\hat{Q}_{i j}$, $i, j=1, \ldots, m$. It' follows that:

$$
\begin{aligned}
& d\left(F_{i j}\right)=\frac{1}{\left(x^{T} x\right)^{2}} \operatorname{tr}\left(\hat{Q}_{i j} x d(x)^{T}\right) \\
& d(G i j)= \\
& \frac{2}{\left(x^{T} x\right)^{2}} \operatorname{tr}\left(\hat{J}_{i j} x d(x)^{T}\right)-\frac{1}{\left(x^{T} x\right)^{2}} \operatorname{tr}\left(\hat{K}_{i j} x d(x)^{T}\right) \\
& -\frac{1}{\left(x^{T} x\right)^{2}} \operatorname{tr}\left(\hat{L}_{i j} x d(x)^{T}\right) .
\end{aligned}
$$

In order that x be extremal, it is sufficient that x satisfy

$$
G(x) \equiv \frac{1}{m} \sum_{i=1}^{m=1} \sum_{j=i+1}^{m} \frac{\exp \left(F_{1 j}+G_{i, j}\right)}{\left(x^{T} x\right)^{2}}\left(\hat{Q}_{i j}+2 \hat{J}_{1 j}-\hat{k}_{i j}-\hat{L}_{i j}\right) x=0 .
$$

Of course, the function $G(x)$ is the gradient of
$\rho\left(\left(I_{k} \mid z\right)\left(I-2 \frac{x x^{T}}{T^{T} x}\right)\right)$ with respect to x.

With $G(x)$, we use a steepest descent technique to construct H_{1}. The process is repeated for the construction of H_{2} since, given H_{1}, the problem of constructing H_{2} is identical to that of constructing H_{1} provided the populations are taken to be $N\left(H_{1} \mu_{i}, H_{1} \Sigma_{1} H_{1}\right) 1=1, \ldots, m$.

Test results are presented in the following tables for nine twelve channel, c-1 flight line agricultural classes: soybeans, corn, oats, red-clover, alfalfa, rye, bare soil, and two types of wheat. . The Hill County data is sixteen channel data for five agricultural classes: winter wheat, fallow crop, barley, grass, and stubble.

C-1 FLIGHT LINE DATA

$$
\mathrm{n}=12, \mathrm{~m}=9, \mathrm{k}=6, \rho=.024
$$

Iteration	${ }^{H_{B_{1}}}$	${ }^{H} B_{2}$	${ }^{H_{B}}$
0	.327	.109	.134
1	.223	.060	.034
2	.171	.062	.033
3	.135	.068	.032
4	.116	.058	.031
5	.1157	.055	.0309
6	.1150	.054	.0303

HILL COUNTY DATA
$\mathrm{n}=16, \mathrm{~m}=5, \mathrm{k}=6 . \rho=.107$

Iteration	$\mathrm{H}_{\mathrm{B}_{1}}$	$\mathrm{H}_{\mathrm{B}_{2}}$	$\mathrm{H}_{\mathrm{B}_{3}}$
0	.872	.336	.299
1	.785	.310	.287
2	.525	.286	.232
3	.439	.273	.227
4	.576	.267	.226
5	.386	.265	.294
6	.363	.264	.223

BIBLIOGRAPHY

Anderson, T.W. (1958). An Introduction to Multivariate Statistical Analysis. New York: John Wiley and Sons, Inc.

Andrews, H.C. (1972). Introduction to Mathematical Techniques in Pattern Recognition. New York: Wiley-Interscience.

Decell, H.P. Jr. and Quirein, J.A. (March, 1973). "An Iterative Approach to the Feature Selection Problem". IEEE Cat. \#CliO834-2, pp. 3B-1--3B-12.

Decell, H.P. and Smiley, W. Householder Transformations and Optimal Linear Combinations". Report \# 38 NAS-9-12777, Dept. of Mathematics, Univ. of Houston, Texas.

Householder, Alston S. (1958). "Unitary Triangularization of a. \vdots Non-Symmetric Matrix". J. Assoc. Comput. Mech., 339-342.

Kaileth, T. (Feb. 1967). "The Divergence and Bhattacharyya Distance Measures in Signal Selection". IEEE Transaction on Communications Theory, Vol. 15, NO. 1, pp 52-60.

Kullback, Solomon (1968). Information Theory and Statistics. New York: Dover Publications.

