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THE RELATION OF FINITE ELEMENT AND FINITE DIFFERENCE METHODS 

BY 
Marcel  Vinokur 

SUMMARY 

F in i t e  element and f in i t e   d i f f e rence  methods a re  examined i n   o r d e r   t o  

br ing  out   their   re la t ionship.  I t  i s  shown that   both methods use two types 

of discrete  representations  of  continuous  functions.  They d i f f e r   i n   t h a t  

f i n i t e   d i f f e rence  methods  emphasize the  discretization  of  independent 

var iab les ,   whi le   f in i te  element methods  emphasize the   d i scre t iza t ion   of  

dependent var iables   ( referred t o  as functional  approximations). An 

important  point i s  t h a t   f i n i t e  element methods use  global  piecewise 

functional  approximations,  while  finite  difference methods normally  use 

local  functional  approximations. A general  conclusion i s  t h a t  f i n i t e  

element methods are  best   designed  to  handle complex boundaries,  while 

f in i t e   d i f f e rence  methods are   superior   for  complex equations. It i s  a l so  

shown t h a t   f i n i t e  volume difference methods possess many of  the  advantages 

a t t r i b u t e d   t o   f i n i t e  element  methods. 



INTRODUCTION 

The theore t ica l   p red ic t ion   of  a three-dimensional  f low  past   an  arbitrary 

body requires a numerical  solution. The t r a d i t i o n a l  approach, which has  been 

highly  developed, is t o   u s e  a f i n i t e   d i f f e r e n c e  method. Recent ly ,   the   f in i te  

element method has  been  proposed  as  an  alternative  procedure.  In  order  to 

evaluate   the  re la t ive  advantages and  disadvantages  of  the two methods, it is 

essent ia l   to   understand  their  common bas i s   a s  well a s   t h e i r  fundamental differ-  

ences. The present work at tempts   to  do t h i s  by showing that   both methods use 

two types  of  discrete  representatations  of  continuous  functions.  The d i f f e r -  

ences i n   t h e  two methods stem from t h e   r e l a t i v e  emphasis  given t o   t h e s e  

representations.  

Since  both  f ini te   difference and f i n i t e  element descr ipt ions employ 

different   notat ions,   each  with a myriad of   indices ,  we will use a r a t h e r  

cavalier  notation  with a minimum of  indices.  The notation,  as well a s  some 

mathematical  concepts  that may be somewhat unfamil iar ,   are   discussed  in   the 

next  section.  This i s  followed by  a descr ipt ion  of   the two types  of   discrete  

representations  of  continuous  functions.  This framework i s  then  used  to 

examine  and r e l a t e   t h e   f i n i t e   d i f f e r e n c e  and f i n i t e  element methods as  applied 

t o  continuous f i e l d  problems. 

MATHEMATICAL PRELIMINARIES AND NOTATION 

A lower  case l e t t e r  will denote a function  of real var iables ,   e .g . ,  

u = f ( x )  . (1) 

The le t ter  f denotes  the  functional  rule,   while x s tands  for  a set of  independ- 

ent  variables (which may be  general,  curvilinear  coordinates)  spanning a 

domain V with a  boundary S. The dependent  variable u can  represent a vector  

set of  unknowns, i n  which case  (1) i s  a set   of   equat ions.  If the  dependence 

on only some of  the  independent  variables w i l l  be  discretized, we will write 
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(1) as 

u = f ( x , t )  , (2 1 

where the  dependence on the   var iab les  x will be  discret ized,   while   the 

dependence  on the  remaining  variables t w i l l  remain  continuous. A subscript  

w i l l  denote a pa r t i a l   de r iva t ive ,   o r  a component of a gradient.  Thus, t he  

d i f f e ren t i a l   o f  (1) is wri t ten  as  

du = uxdx = fxdx , (3) 

where  a  summation or  dot  product i s  implied. On the   o ther  hand, a divergence 

will be  denoted by the  symbol a/ax.  Integrations  over a domain or a boundary 

will be  indicated by t h e   l e t t e r s v   o r  S under   the  integral   s ign.   I f  n is 

the normal at  the  boundary, the  divergence theorem  can  be wri t ten as 

dx = I fndx . 
V S 

(Note t h a t   t h e  sumbol dx has   th ree   d i f fe ren t  meanings i n  (3) and (4)) .  

A c a p i t a l   l e t t e r  w i l l  denote an operator  acting on a set of  functions,  

e*g.  9 

v = F(u) . . (5) 

Here F i s  the  operator   rule ,   u(x)   s tands  for  a set   of   funct ions,  and v(x)  the 

result ing  function(s)  after  performing  the  operation(s).  A local  operator 

involves   only  a lgebraic   or   di f ferent ia l   operat ions,   whi le  a non-local  operator 

involves   shif t ing  or   integral   operat ions.  Let 6u(x) denote   the  var ia t ion of 

the  function  u(x) , which is a small change i n  u(x) , keeping  x  fixed. Thus, 

6 X E 0 ,  (6 1 

and from the i r   de f in i t i ons ,   va r i a t ion  and d i f f e r e n t i a t i o n   a r e  commutative, i . e . ,  

6ux = (6u)x . 
The "different ia l"   of  (5) is  then  defined  as 
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6v = 6 ~ ( u ,  u) = l i m  F ( u + ~ u )  - F(u) , (8) 
I l l N l  + 0 

where I l6ul I is  some nom  measuring  the  magnitude  of 6u. Here 6F(u,6u) i s  

cal led  the  Fr6chet   dif ferent ia l   of  F at  the   po in t  u i n   t he   d i r ec t ion  8u. If 

F is a local   operator ,  one  can  define a “derivative”.  Consider  the  operator 

F(u) = f(X,U,UX,UXX) 

Using (6), (7), and ( 8 ) ,  one  can write 

6F(u,6u) = fU6U + fu ( 6 ~ ) ~  + f, ( 6 ~ ) ~ ~  . (10) 
X xx 

Using the   ru l e   fo r   p roduc t   d i f f e ren t i a t ion ,  (10)  can be  transformed  into 

(11) 
By analogy  with  (3),  the  operator 

can  be called  the  Fr6chet  derivative  of (9) at  the   po in t  u.  In  general,  the 

the  Fr6chet   dif ferent ia l   of  any local  operator  F(u)  can  be  expressed  as 

BF(u,Bu) = FUGU + ax (FoBu + F16ux + F BU + . . .) . a 
2 xx (13) 

In  order  to  determine i f  a given  operator i s  a Fr6chet  derivative,  one must 

define an adjoint  operator.  If 6ul and Bu, are  two arb i t ra ry   var ia t ions  of u, 

one  can obtain from (9) the  expression 

The coef f ic ien t   o f  6ul i n  (14) has  the form of  a Fr6chet   dif ferent ia l   of  some 

other  operator  in  the  direction  6u2. We can thus  define  an  operator  F(u) 

(within  an  arbitrary  additive  function  of  X) which is  adjoint  to  F(u),   such 

t h a t  

rJ 
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6F(u,6u) = fu6u - ax lf _. - ax (fu )]&I - z a a 
(15) 

uX xx 

In  general ,   for any local   operator  F(u) we can write 

6u26F(u,6ul) = 6u16F(u,6u2) + -&Foo6~26~1+ a FO16~26~1x + F 1 0 6 ~ 1 6 ~ 2 x + .  . .) - (16) 

An operator i s  se l f -ad jo in t  i f  F (u) = F (u) . Given the  operators  G (u),  Go(u), 

G1(u), etc. ,   the  conditions  under which 

4 

G ~ u  + ax (Go6u + G16ux+ . . .) a 

is  equal   to  a Frgchet   dif ferent ia l  6F(u96u) can  be  easily  determined from 

t h e   r e l a t i o n  

6F(ur6ul + 6u2) = 6F(u,6ul) + 6F(u + 6u1,6U2) = 6F(u,6u2) + 6F(ul + 6u2,6ul). 

The condition i s  found 

6u26G (u,6ul) + 

= 6u16G ( ~ 3 6 ~ ~ )  + 

(17) 
t o   b e  

ax ' [&GO (u,  6u2)$ul + 6G1 (u, 6u2)hlX+ . . . 1 . 
I t  fol lows  that  G(u)  must be a self-adjoint   operator .  If (18) is s a t i s f i e d ,  

one  can eas i ly  show t h a t  F(u) i s  given  (within an arb i t ra ry   addi t ive   func t ion  

of x) by 1 1 

F(u) = u G(Xu)dX + [ I Go(Au)dA + ux G1(Xu)dX + ... I .  (19) 
a i 

0 0 0 

An operator  acting on  a set of  functions which r e s u l t s   i n  a r e a l  number i s  

ca l led  a functional.  (The norm Il6ul I i n  (8) is an  example.) The discussion 

of   Fr6chet   dif ferent ia ls  and adjoint  operators  reveals  the  presence  of annoying 

divergence terms. Since  these  can,  in a sense,  be removed using  the  divergence 

theorem (4), th i s   sugges ts   tha t  a useful  functional i s  the  integral   of   an 

operator  over  the domain of  x, i . e . ,  

I (u)  = F(u)dx . I (20) 
V 

Using  (13)  and (4), it follows  that  
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6I(u~6u) = I BF(u,Gu)dx = I FU6udx + (nFo6u + nF16ux + nF26un + . ..)dx . I 
V V S 

(21) 
Expressing  the  gradient a t  the  boundary i n  terms of normal de r iva t ives ,   t h i s  

can  be  written as 

6I(u,6u) = 

where the   subscr ip t  

again newly defined 

pr inc ip le ,  which i s  

DISCRETE 

FU6udx + (F06u + F16un + F26unn + . . . )ax , I 
V S 

n s i g n i f i e s  a normal der ivat ive,  and To, F1, F2, etc.,  a r e  

operators.  Equation (22) is the   bas i s   fo r  a var ia t iona l  

t he   s t a r t i ng   po in t   fo r  one  form o f   t h e   f i n i t e  element method. 

" 

REPRESENTATIONS OF CONTINUOUS  FUNCTIONS 

Given  an arbi t rary  funct ion  of   the form (Z), t h e  most d i r e c t  way t o  

d i sc re t i ze   t he  dependence on the   var iab les  x is  t o   d i s c r e t i z e  x i t s e l f .  The 

simplest  procedure is t o  choose a s e t   o f  N a rb i t ra ry   po in ts   x i ( i  = 1 t o  N ) ,  and 

to   spec i fy  an  approximation t o  u a t   t hose   po in t s .  We thus  def ine N. functions 

of t ,  
* 

Ui(t) s= f (Xi , t )  , (23) 

where the  superscr ipt  * s i g n i f i e s  an approximate  representation. We w i l l  r e f e r  

t o   t h i s   a s  a Lagrange representation.  In  finite  element  terminology  the  points 

xi are  called  nodes,  and the   func t ions   u i ( t )   a r e  sometimes called  nodal 

parameters. A more sophisticated  procedure,   requiring a smaller number of 

points ,  i s  to   specify  a lso  approximations  to   der ivat ives   of  u (which i n   t h e  

most general  case need not  be  consecutive). An example would be   to   spec i fy  

the  set of  first pa r t i a l   de r iva t ives ,  
L 

Such a representat ion w i l l  be  called  Hermite. Note t h a t  each  point (node) 

would now have  associated  with it more than one  parameter. If u represents  

a set of  dependent  variables, it is poss ib l e   t o   d i sc re t i ze  each by a d i f fe ren t  
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set  of  discrete  points.  This  is  often  done  in  practice. 

An alternative  procedure  is  to  divide  the  domain of x  into N discrete 

volume  elements  V (i = 1  to N), and  to  specify  an  approximation  to  some 

functional of u defined  over  Vi.  A  typical  choice  would  be  the  integrated 

average 

i 

-i u *It) @+ I f(x,t)dx . 
v :  

By  analogy  with  a  Hermite  representation  for  point  discretization,  we  can 

define  higher  order  representations  for  volume  discretization  by  specifying 

approximations  to  integrated  higher  moments  of u. Volume  discretization  is 

useful  in  the  finite  difference  solution of equations  written  in  divergence 

(conservation)  form.  It  is  also  necessary  to  define  piecewise  functional 

approximations  (see  below).  In  finite  element  terminology,  the  volume  elements 

V are  called  finite  elements. i 

Both  types  of  discrete  representations  involve  two  degrees  of  freedom. 

One  is  the  arbitrariness  in  the  location  of  the  points  xi  (or  volume  elements 

Vi). Any  knowledge  about  the  behavior of the  function  to  be  approximated  can 

be  used  to  make  a  judicious  choice.  The  other  freedom  is  the  choice  of  the 

number  and  nature of parameters  to  specify  at  each  point (or volume  element). 

Here  the  nature of the  equations  and  the  numerical  scheme  can  be  a  determining 

factor. 

Discretization  of  Dependent  Variables 

The  point  discretization  discussed  above  cannot  represent  integrals, o r  

derivatives  of  higher  order  than  the  order of the  representation.  Also,  a 

given  representation  gives  no  direct  information  at  points  other  than  the 

discretization  points.  Therefore,  in  order  to  obtain  a  numerical  solution, 

one  must  also  utilize  (even  if  implicitly)  an  analytic  representation of the 

arbitrary  function.  Any  analytic  function  can  be  represented  as  an  infinite 
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s e r i e s   i n  a complete set of  chosen  functions  (providing  the  series  converges). 

An obvious d i sc re t i za t ion  is t o  choose N terms, and le t   the   coef f ic ien ts   be  

the  discret izat ion  parameters .  We w i l l  general ize   this   not ion,  and approximate 

u  by 
L 

where g is any a rb i t r a ry ,  chosen funct ion  of  x  and the  N parameters  ci(i = 1 t o  

N). The parameters ci are  themselves  functions  of  the  undiscretized  variables 

t. If u s tands  for  a s e t   o f  dependent var iables ,  each  one  can  be  represented 

by a different   funct ion g, and the  parameters  ci(t)  would be sets of 

parameters. 

A general  representation which is  nonl inear   in   the ci  cannot  be  easily 

integrated,  and d i f f e ren t i a t ion  can rapidly  lead  to   very complex expressions. 

For this   reason,  it is normally  used  only in   cu rve   f i t t i ng ,  and t o  approximate 

purely  algebraic  terms. An exception is the  rational  function  approximation 

* cooCt) + COl ( t ) x  + %2 ( t ) x  + - - - 2 
u (x, t)  e (27) 

CIO(t) + Cll  ( t ) x  + C12(t)X2 + . . . ’ 

whose derivative  maintains a simple form. Since (27) has some advantages  over 

a  polynomial, it has found uses  in  solving  equations  involving  only  local 

operators.   In  general ,  though,one  chooses  a l inear   representa t ion   in   the   c i ,  

of  the form 

where the  cji(x) a r e  an a r b i t a r i l y  chosen set   of  l inearly  independent  functions,  

sometimes referred  to   as   basis   funct ions.   Since  the  basis   funct ions  should 

be easi ly   integrated and d i f fe ren t ia ted ,   they   a re   o f ten   t aken   to  be  powers of 

x, so t h a t  ( 2 8 )  becomes a  polynomial i n  x. Other  popular  choices  are 

trigonometric and exponential  functions.  Representations (26) and ( 2 8 )  will 

be  referred  to  as  functional  approximations,  or  approximation by t r i a l   func t ions .  
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An important   special izat ion  of   the  l inear   representat ion (28) i s  t o  

combine it with  the  point   d iscret izat ion (23)  by r equ i r ing   t ha t  u equals  the 

nodal  parameters u at  a set of  N nodes x i. e. , 

* 
* 
j j '  

Since  the  $i(x)  are  l inearly  independent,  one  can  always  choose a s e t   o f  x for 

which the  matrix  $i(x.)  i s  non-singular, and thus   so lve   for   the   c i ( t )   in   t e rns  

of  the  nodal  parameters  u.   ( t) .  The ci (t) are   then  said  to   be  determined by 

interpolatory  constraints ,  and the  approximation (28) i s  then  cal led a 

Lagrange i n t e r p o l a t e   t o   f ( x , t )   a t   t h e  nodes x I t  can  be  represented 

d i r e c t l y   i n  terms o f   t h e   u . ( t )  by introducing new basis   funct ions  $i(x) ,  

called  canonical  basis  functions,   with  the  defining  property 

j 

I * 
I 

j' * r" 

1 

e 
Qi(Xj) = 6ij , (30) 

where tjij i s  the  Kronecker de l ta .  They can  be  easily  obtained from the   o r ig ina l  

basis   funct ions '$i(x) by  seeking  the  representation 

rJ N 

I i=l I 1  1 
$. (x)  = c c . .$ .  (x) . 

I t  follows from  (30)  and  (31) t h a t  
N 

Since  @i(xk) i s  non-singular,  the  coefficients  cji  are  uniquely  determined by 

(32). The Lagrange i n t e r p o l a t e   t o   f ( x , t )   a t   t h e  nodes xi can  thus  be  expressed 

succinct ly  as 

Canonical  basis  functions can also  be  defined for Hermite interpolat ion.  

For a first order  representation,  defined by  (23)  and  (24), one can introduce 

the  funct ions $io (x)  and $i l   (x) ,   sa t isfying 
PJ 4 
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and 

These  can  be  obtained  in  a  manner  analogous  to  that 

canonical  basis  functions.  The  Hermite  interpolate 

can  then  be  written  as 

(35) 

described  above  for  Lagrange 

t o  f (x,  t)  at the  nodes  xi 

where  the  summation  is  over  the  total  number of nodes.  More  general Hemite 

interpolates  can  be  similarly  formed. 

Piecewise  Functional  Approximation 

A single  representation of the  form (26) o r  (28) will  be  poor  approxi- 

mation  for  functions  that  undergo  rapid  variation  in  the  x  domain.  It  is 

also  difficult  to  construct  such  representations  for  domains  with  complex 

boundaries  when  the  x  domain  is  multidimensional.  It  is  then  advantageous 

to  combine  such  representations  with  a  volume  discretization,  and  define  a 

separate  representation,  in  each  of M volume  elements VJ, of  the  form 

in  the  general  case, o r  
Nj . 

u*j  (x,t) + c c;  (t) @; (x)  (XEVj ) 
i=  1 

in  the  linear  case,  where N j  is  the  number of parameters  in  element VJ. Such 

a  representation  is  called  a  piecewise  functional  approximation, or approxi- 

mation  by  piecewise  trial  functions.  If  the  approximations  u*j  (x,t)  are 

independently  chosen  in  each  volume  element,  the  resulting  global  representa- 

tion  would  be  discontinuous. 
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A representation  with  some  degree of continuity  requires  matching 

conditions  at  interelement  boundaries,  which  effectively  limits  one  to  the 

linear  case (38). A practical  method  is  to  determine  the c:(t) by  interpo- 

latory  constraints.  We  thus  superimpose  on  the  volume  discretization  an 

independent  point  discretization  defining a set of N nodes  xi  and  associated 

nodal  parameters.  Matching  is  simply  obtained  by  locating  some  of  the  nodes 

on  interelement  boundaries,  where  they  are  shared  by  more  than  one  element. 

The NJ nodes  belonging  to  element VJ therefore  satisfy  the  inequality 
M 
C N j >   N .  
j=l 

One  can  again  choose  the  set of nodes  xk so that @:(xk) is  nonsingular 

(xk€ VJ) in  each  element VJ. This  condition  will  be  sufficient  to  obtain 

continuity  for  an  arbitary  set  of $:(x) if x is a one-dimensional  variable, 

but  continuity  for  multidimensional  domains  imposes  restrictions  on  the  set 

$(x). To show  this  clearly,  we  first  discuss  the  one-dimensional  case,  but 

in a manner  that  can  be  immediately  generalized  to  several  dimensions. 

(39) 

One-dimensional  Representation.  Let x be  one-dimensional, and consider a 

piecewise  representation (38) that  is  everywhere  continuous,  but  whose 

derivatives  can  be  discontinuous  at  interelement  boundaries. It is  therefore 

sufficient  to  choose  Lagrange  interpolation,  placing  one  node  at  each  inter- 

element  boundary, and additional  nodes  in  the  interior of each VJ for  which 

Nj > 2 .  One  can  then  again  introduce  new  basis  functions  vi(x) , called 
Lagrange  cardinal  basis  functions,  satisfying 

for  all i and k. In  those 

interpolate  to  zero  at  all 
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singular  , it follows  that  @i(x) = 0 in  those  elements. Thus 5 (x) i s  non- 

zero  only  over  those  elements  containing ndde  xis i .e.,  two adjoining  elements 

f o r  a  boundary  node  and  a s ing le  element fo r   an   i n t e r io r  node.  One-dimensional 

Lagrange cardinal   basis   funct ions  for   e lements   containing one i n t e r i o r  node 

are   sketched  in   the  top row of  figure 1. Since  the  interelement  boundaries 

consis t   of  one point  at which an  interpolating node is located,  the  functions 

@i (x) are continuous.  Consequently, the  global  representation 

r, 

PJ 

i= 1 

is also  continuous. The local ized  nature   of   the  $,(x)  has  important computa- 

tional  advantages. For example, in tegra ls  of products of u (x,t)   over  the 

domain define  matrix  elements  kij  given by 

# 

* 

k i j  = ITi (x)<(x)dx . (42) 

V 

I t  i s  seen  that  k i j  = 0 unless nodes i and j are   contained  in   the same 

element, so tha t   k i j  i s  a sparse  matrix.   Similar  results  hold  for  integrals 

of  products  of  derivatives  of u (x , t ) .  
* 

I n   f i n i t e  element applications it i s  convenient t o  def ine  for  each 

element VJ a s e t   o f  element ca rd ina l   bas i s   func t ions   q (x )   s a t i s fy ing  

If me  extends  the  Ti(x) by defining  them.  to  equal  zero i f  xi or x l i e  outside 

of  VJ , i . e .  

$(x) o i f  xi or x e ~ j  , 

one  can then  represent u* (x , t) f o r  each VJ a s  

where t h e  second form r e s u l t s  from (44). I t  also  follows from  (44) t h a t  

11 

(44) 



Using (43) through (46), one shows immediately tha t   g loba l  and  element 

representat ions are re la ted  by 

and 

+ M 

j =1 
4gX)  = c @x) 

M * ’  
u*(x,t)  = c u J ( x , t ) .  

(47) 

j = l  

In   o rder   for  (47) and (48) t o  be  valid  at   interelement  boundaries,   the volume 

elements VI must be  considered  disjoint,  and t o   b u t t   t o g e t h e r  at t h e  

boundaries. Element basis   funct ions ?!,(x) are  sketched  in  the  bottom row 

of   f igure 1. 

Another useful  computational  device i s  to   de f ine   fo r   each  element VJ a 

set of  local  coordinates xJ , each r e l a t ed   t o   t he   g loba l   coo rd ina te s  x through 

transformations x = x(xJ)  and x’ = xJ (x). (A special   case is x’ = x).  

The nodes contained i n  each  element VJ can  then  be  designated as x: , where 

i is a loca l  node number ( i  = 1 t o  NJ) , completely  independent  of i t s  global  

node number. Thus there   ex is t  mapping r e l a t ions  which map loca l  node numbers 

into  global  node  numbers, and vice  versa.  The local  nodal  parameters 

a t tached   to  a local  node xi   are   designated  as  u*j ( t ) .  The element  cardinal 

basis  function  corresponding  to  local node xi would then be wr i t ten   as  

3 (x j ) ,  and the   representa t ion   of   u*(x   J t )   in  V j  becomes 

i 
j 

1 
N’ * .  

i=l 
(49) 

The use  of  local  coordinates  can  result   in  functions  ?(xJ)  that   are  easy  to 
. .  

manipulate  analytically. A major  advantage r e s u l t s  i f  a l l   t h e  volume 

elements  are  geometrically  similar  in x space (which is  t r i v i a l l y  so i n  

one dimension),  since  then  they  can a l l  be  described by the   ident ica l   loca l  

coordinates. If the  same s e t  o f  basis   funct ions @i (x ) is chosen  for  each j i  

1 2  



r .  

element,  and  the  nodes x; are  defined  at  geometrically  similar  locations, 

the  element  cardinal  basis  functions  q(xJ)  will  also  be  the  same  for  all 

elements.  It  is  thus  possible  to  create  a  single  subroutine,  valid  for  all 

elements,  in  order  to  perform  calculations  for  a  single  element. Of course, 

in  summing  the  results  to  obtain  a  global  solution,  the  coordinate  trans- 

formations  and  node  number  mappings  must  be  invoked. 

. .  

If  continuity of derivatives  is  required  for  the  piecewise  representa- 

tion,  one  must  use  Hermite  interpolation.  It  is  only  necessary  to  define 

derivatives  at  boundary  nodes,  and  not  at  interior  nodes.  In  fact,  in 

most  applications  of  piecewise Henite interpolation,  nodes  are  only 

defined  at  interelement  boundaries.  The  extension  of  this  subsection  to 

piecewise  Hemiteinterpolation  follows  the  general  manner  indicated  by (34) 

through (36 )  for  the  case  of  a  single,  global  Hermiteinterpolation. 

Tensor  Products 

A piecewise  representation  can  be  easily  obtained  in  several  dimensions 

if  the  global  boundaries  of  the  domain  lie  along  the  coordinate  surfaces. 

One  can  then  choose  volume  elements  and  nodes  to  lie  along  coordinate 

surfaces,  and  construct  cardinal  basis  functions  which  are  products of one- 

dimensional  cardinal  basis  functions  known  as  tensor  products.  We  indicate 

the  process  for  two  dimensions,  departing  from  our  notational  convention, 

by  using x and  y  to  represent  the  two  (not  necessarily  Cartesian) 

coordinates. 

Let  Vk,  xi,  and Ti (x) be  one-dimensional  volume  elements,  global  nodes, 

and  Lagrange  cardinal  basis  functions  along  the  x  coordinate.  Similarly, 

define VR, y., and v. (y)  to  be  one-dimensional  volume  elements,  global  nodes, 
and  Lagrange  cardinal  basis  functions  along  the  y  coordinate.  These  define 

two-dimensional  volume  elements  designated  as VkR, and  the  double  index  node 

number  ij  for  the  node  located  at  xi  and  y  The  function 

J J 

j' 
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has  the  property 

and  is  therefore  a  two-dimensional  Lagrange  cardinal  basis  function. 

Consequently , 
Nx  NY * N 

U*(X>Y>t) P c uij (t)Oij (x,y) 
i=l  j=l 

where 

uij  (t) @ f(xi,Y3,t)  (i=l to N x ,  j=l  to N ) . Y (53) 

Representation (52) is  everywhere  continuous, and can  be  extended  to  higher 

dimensions  and  to  the  case of Hermite  interpolation. 

General  Multidimensional  Representation 

If the  global  boundaries of a  multidimensional  domain  are  too  complex  to 

allow  a  tensor  product  piecewise  representation,  one  must  use  volume  elements 

of  a  more  general  shape.  All  the  results of the  subsection  on  the  one- 

dimensional  representation  can  be  immediately  generalized,  with  the  exception 

of the  continuity  conditions.  If  xi  is an interior  node  located  in  element 

Vj,  we  require  that $i (x) (or 8 (x)) equals  zero  on  the  boundaries  of  Vj. 

But  this  is  only  guaranteed  at  the  boundary  nodes  of  Vj. Thus the 

combination of basis  functions $:(x) in (38) and  nodes  xi  cannot  be 

arbitrarily  chosen,  but  must  be  such  as  to  yield $J~(x) = 0 on  the  boundary 

for interior  nodes of VJ. If  xi  lies  on  one or more  boundaries  of  VJ , then 
we  require  that @ (x) = $i(x) on  each  boundary  for  all  other  volume  elements 

vk sharing  that  boundary.  In  addition  we  still  require  that $:(x) = 0 on 

the  boundaries  of  VJ  that  do  not  contain  xi.  Piecewise  Hermite  interpolation 

puts  even  more  stringent  requirements  on  the 0i (x). 

/cc 

c.d 

-rk 
1 

j 

Up  to  this  time,  the  shape of the  volume  elements  Vj and the  nature of 

the  basis  functions $!(x) have  been  considered  arbitrary.  The  above-mentioned 

14 



r -  

continuity  requirements  effectively limit one t o   t r i a n g l e s  (or tetrahedrons) 

i n  X space (which could  be  curvil inear  in  physical   space),  and  polynomials 

i n  x f o r   t h e  $:(x). I t  a l so   pu t s   r e s t r i c t ions  on the   loca t ion   of   the  nodes 

x The simplest  case is Lagrange interpolat ion  with  l inear   basis   funct ions 

#:(x), f o r  which one  only  requires  nodes a t  the   ve r t i ce s   o f   t he   t r i ang le s  

(or tetrahedrons).  The f i n i t e  element l i t e r a t u r e  i s  replete   with  var ious 

combinations  of  nodes xi and corresponding  cardinal  basis  functions 

(usually  called  shape  functions) 7:(x) , for   bo th   t r iangles  and tetrahedrons, 

and for Lagrange  and  Hermite interpolat ion.  

i' 

The polynominal nature   of   the  $:(x) also  allows one to   es t imate   the  
* 

e r ro r s   i n  u (x), when f ( x )  is assumed exac t   a t   t he  nodes (so t h a t  (23) is 

an  exact  equality). (We suppress  the  dependence on t f o r   t h e  moment.) Such 

estimates  are  derived  in  reference 1, where it is shown tha t   t he   e r ro r  bound 

f o r  Lagrange interpolation  over a t r i a n g l e  i s  inversely  proport ional   to   the 

s ine  of the  smallest  angle.  This would rule  out  extremely  acute  tr iangles.  

Actually,   the  author  has shown ( re f .  2) that   the   s ine  of   the  largest   angle  

en ters   in to   the   e r ror  bound, ruling  out  only  extremely  obtuse  tr iangles.  

For  the  simple  linear  case,  the  author  obtained  least  upper bounds fo r   t he  

e r rors .  Let 

be  the maximum absolute  value  of  the second d i rec t iona l   der iva t ive  of  f i n  

any d i r ec t ion ,   a t  any po in t   i n   t he   t r i ang le .  If 0 and  h a r e . t h e  maximum 

angle and s ide  of   the   t r iangle ,   then  the  resul ts   are  

and 

where I (u*-f)xl is t h e  magnitude of  the  gradient  of  u*-f.  
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Since  arbitrary,  curved  global  boundaries  cannot  be  easily f i t  by a 

global   curvi l inear   coordinate ,  one is faced  with  the  need  to   use  curvi l inear  

elements i n  5 space.  This  can  be done i f  one  can find  transformations  x(c) 

which transform  the  curvil inear  elements  in x space   in to   s t ra ight   s ided  

"parent"  elements i n  5 space. The representat ion  of  u over   the   curv i l inear  

element i s  only  approximate,  being  accurate  only at  t h e  nodes. It is there- 

fo re   su f f i c i en t   t o   t r ea t   t he   t r ans fo rma t ions   x (6 )   i n   t he  same manner. This i s  

the  basis  for  the  isoparametric  transformations  developed by Irons  (ref.  3) .  

Let x1 = x be the  local  coordinates  for  the  curvil inear  element,  and x: be a 

set of   local  nodes  chosen on the  boundary of  (and possibly  within)   the 

element. (There must be a t   l e a s t  3 nodes  per  side and at  least 4 nodes per  

face t o  define  curved  boundaries.)  In  the  transformed 6 p l a n e ,   l e t  ,< , 
and 2 (gj) be  local  coordinates,  local  nodes, and  element cardinal   basis  

functions  for  the  corresponding  "parent"  element. Then the  isoparametric 

transformation  has  the  approximate  representation, 

(In some cases it is  prac t ica l   to   use  a lower  (higher) number of  nodes and order  

of  basis  function  to  represent  the  geometric  transformation  than are used t o  

represent  u*j (x) over  the  element. Such transformations  are  then  called  sub 

(super)  parametric.) Using (57) and i t s  derivatives,   integrals  over  element 

VJ i n  x space  can  be  transformed  into  integrals  over  the  "parent"  element  in 5 

space. 

Splines 

The piecewise  representations  discussed so far  involved  only  interpolatory 

cons t r a in t s   t o   de t e rmine   t he   c i f t )   i n  (38) .  If addi t ional  smoothness constaints  

a r e  imposed by matching  higher  derivatives  (than  those  prescribed by interpola-  
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tion)  at  boundary  nodes,  the  representations  are  called  splines.  The  addftional 

continuity  requirements  on  the $:(x) are so great  for  general  multidimensional 

elements  as  to  make  such  spline  representations  totally  impractical.  We  are 

thus  restricted  to  one-dimensional  splines  (and  their  tensor  product  generaliza- 

tion  to  higher  dimensions).  In  practice,  splines  are  further  limited  to 

volume  elements  with  Lagrange  interpolatory  nodes  only  at  the  two  ends of each 

element.  Thus  for  a  division of the  one-dimensional  x  space  into M volume 

elements,  the  total  number 

applied  at  the M - 1  nodes 
are 

in  number,  where  we  recall 

In  the  usual  case  where  NJ 

of  nodes  N = M + 1.  Smoothness  constraints  are 

that  lie  in  the  interior of the  global  domain,  and 

M 
C Nj - 2M 

j =1 

that NJ is  the  number of parameters  in  element V J .  

is  the  same  for  all V J ,  one  can  specify  exactly 

Nj - 2. smoothness  constraints  at  each of the (M - 1) interior  nodes,  leaving 
exactly  NJ - 2 conditions  to  be  specified  at  the  two  ends of the  global  domain. 

If  there  are  no  additional  end  conditions  on  the  function f(x) to  be  represented, 

the  NJ - 2 conditions  must  be  arbitrarily  specified  and  apportioned  at  the  two 
ends.  Such  splines  are  therefore  not  unique.  It  is  also  clear  that  an  even 

number  for  NJ  will  prevent  a  bias  towards  one  end.  While  splines  can  be 

constructed  for  arbitrary $:(x) , in  most  applications  they  are  limited  to  poly- 
nomials. 

One can again  construct  cardinal  basis  functions $i(x),  and  employ  represen- 
& 

tation (41). Since  the  smoothness  constraints  couple  the  elements  together,  the 

cardinal  basis  functions  are  not  at  all  localized,  but  extend  over  the  global 

domain.  They  are  thus  inconvenient  for  computational  purposes.  There  are  two 

approaches  that  are  used.  In  one,  the  original  basis $:(x) is  used,  and  the 

derivatives  uxi , uni,  etc.,  are  introduced  as  additional  unknowns.  The 
* * 
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interpolat ion and matching  conditions  enable  one  to  solve  for  these  derivatives 

i n  terms of  the  uiJ by invert ing banded matrices. The other  procedure,  valid 

for   equal   intervals ,  is to   in t roduce  a new bas is  @i (x) known as  B sp l ines ,  

which possess  the smoothness  property,  but do not  have  the  cardinal  property 

* 

B 

B Qi(X.) = 6 
1 i j  * 

The B sp l ines   a r e  non-zero  only  over NJ elements, and thus 

have  a localized  nature.  The coef f ic ien ts   o f  B spline  expansions  can  again 

be  obtained  in terms o f   t he   u i  by invert ing banded matrices.  A popular  choice 

f o r  polynomial sp l ines  is piecewise  cubic (N1 = 4) ,  which l eads   t o   ea s i ly  

invertible  tr idiagonal  matrices.  An elementary  discussion  of  splines i s  found 

in   re fe rence  1. 

Our discussion  of  functional  approximations was aimed a t   t h e i r   a p p l i c a t i o n  

i n  numerical  solutions  of  operator  equations.  Their  obvious  role is to   ob ta in  

expressions  for  derivatives and integrals  in  terms  of  nodal  parameters, and 

to  evaluate  functions  at   points  other  than  nodes.   There  are  several   other 

applications,  which should  be  briefly  mentioned. 

One application is to  use  piecewise  functional  approximations  to  obtain 

approximate  analyt ic   solut ions  of   cer ta in   different ia l   equat ions.   In   this  

method, known variable   coeff ic ients   are   replaced by simpler  piecewise  representa- 

t i o n s   i n  terms of known nodal  parameters, so tha t   the   resu l t ing   equat ions  

possess   an  analyt ic   solut ion  in  each  element. The  unknown so lu t ion   coef f ic ien ts  

are  obtained by matching the  solut ions and the i r   der iva t ives   a t   in te re lement  

boundaries  and  applying  boundary  conditions at   the   global   boundaries .  The 

solut ion  of   the  different ia l   equat ions i s  thus  reduced t o   t h a t   o f  an  algebraic 

system for   the   coef f ic ien ts .   Fur ther   de ta i l s   a re  found i n   t h e  works of Gordon 

(ref.  4) and  Canosa  and de Oliveira   ( ref .  5) .  

Another  important  area  of  application is  the   representa t ion   of  complex 

surfaces  in  physical   space.  The independent  variables x are   the two parameters 

defining  parametric  curves on the  surface,   while u s tands   for   the   pos i t ion  

18 



vector. If the  surface  is  very  complex,  one  needs  a  piecewise  representation, 

dividing  the  surface  into  patches.  One  class  of  such  representation  uses  tensor 

products,  interpolating  through  data  given  at  the  corners of the  patches. 

Examples  are  programs  developed  at  McDonnell  Douglas  (ref. 6), using  piecewise 

cubic  Hermite  polynomials,  and  the  work of Riesenfeld  (ref. 7) employing B 

splines.  In  another  class  of  representation,  the  curves  desining  the  boundary 

of the  patch  are  analytically  prescribed,  and  one  seeks  what  are  referred  to as 

blended  interpolations  for  points  inside  the  patch.  Examples  are  the  work of 

Coons  (ref. 8) using  Hermite  polynomials,  and  Gordon  (ref. 9) using  splines. 

All  of  these  approximate  surface  representations  can  play  an  important  role  in 

generating  finite  difference  and  finite  element  grids  and  formulating  surface 

boundary  conditions,  for  the  solution of flows  past  complex  boundaries. 

In  closing  we  list  the  various  degrees of freedom  in  a  functional  approx- 

imation.  One  is  the  choice  of  single  versus  piecewise  representation,  and 

the  nature,  size,  and  location of volume  elements  in  the  latter  instance. 

Another  is  the  functional  form,  which  involves  a  choice of basis  functions  in 

the  linear  case.  The  number,  location,  and  nature  of  interpolating  nodes 

is  another  degree of freedom.  Finally,  for  piecewise  representations,  there 

is  the  choice of using  additional  smoothness  constraints  to  define  splines. 

While  continuity  and  convergence  criteria  make  some  of  these  choices  inter- 

dependent,  it  still  allows  for  large  degree  of  flexibility  in  constructing 

functional  approximations. 

FORMULATION  OF THE EXACT  EQUATIONS 

There  are  two  mathematically  equivalent  ways  to  formulate  the  equations 

describing  continuous  fields.  In  the  direct  approach,  the  equations  and 

boundary  conditions of the  problem  are  given. For certain  classes  of 

equations,  an  indirect  variational  formulation  is  possible,  which  incorporates 

some  of  the  boundary  conditions. A finite  difference  numberical  solution  is 
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usually  based on the  direct   formulation,  while  the  variational  formulation i s  

the   s t a r t i ng   po in t   fo r   one  form o f   t h e   f i n i t e  element method. These two 

formulations  are  briefly  discussed below,  where x will s t and   fo r   t he  complete 

set of  independent  variables. 

Direct Formulation 

The normal way t o  formulate a f i e l d  problem is  to   spec i fy   tha t   u (x)  i s  a 

solution  of  an  operator  equation (s) 

G(u) = 0 . (58) 

A complete  specification  requires  subsidiary  equations  valid on subspaces of 

x called  boundaries. If S r e p r e s e n t s   t h e   i t h  boundary  subspace,  the 

subsidiary  equations 

i 

B (u) = 0 , XES' 

are ca l l ed   t he  boundary conditions on S . The boundary Si can  be  prescribed 

o r  free, i.e.,  implici t ly   def ined  in   terms  of   another   operator   equat ion.   In  

many problems S is  def ined  in   the limit as  x approaches  infinity.  If 

S = C S defines a closed  subspace,  then (58) and (59) define a boundary value 

problem. If x i s  one-dimensional,  one  can a l so  have  an i n i t i a l   v a l u e  problem, 

where a l l   t h e  boundary condi t ions  are   specif ied at  only one  boundary.  For 

multidimensional  x, a mixed t y p e   o f   i n i t i a l  boundary  value problem i s  possible ,  

which is an   i n i t i a l   va lue  problem with  respect   to  one (time-like)  independent 

var iable ,  and a boundary value problem i n   t h e  subspace  defined by the   o ther  

indepdndent  variables. 

i 
(59) 

i 

i 

i 

i 

Two other  points  should  be made wi th   respec t   to  a problem formulation. 

In  certain  problems,  internal  boundaries  (such  as  shocks  or  sl ip  surfaces)  can 

occur, where the   so lu t ion  i s  discontinuous. The condi t ions  a t   these  surfaces  

are   not  boundary conditions  in  the  sense  used  here,   since  they  are  actually 

l imi t ing  forms of the   f ie ld   equat ions  (58). The other   point  refers t o   c e r t a i n  
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classes of  boundary value  problems, i n  which a well behaved solution  only 

exists  for  specific  values  of  certain  parameters,   called  eigenvalues.   In 

eigenvalue  problems,  the  determination  of  the  eigenvalues  can  be an important, 

i f  not   the   pr incipal   object ive.  

Variational  Formulation 

An indirect   var ia t ional   formulat ign  exis ts  for boundary value problems 

i n  which the  operator  G(u) (58) i s  self adjoint .  Then G(u) is a Frgchet 

derivative  of  another  operator  F(u) , i . e . ,  

G = F U .  (60) 

The operator  F(u)  defines  the  integral   functional  I(u)  given by (20) , whose 

Fr6chet   d i f fe ren t ia l  i s  given by (22) .  A variational  statement  of  the  original 

problem s t a t e s   t h a t  

BI(u,Bu) = 0 (61 1 

f o r   a l l   v a r i a t i o n s  6u. This  immediately  implies (SS), the   or iginal   operator  

equation, which is then  referred  to  as  the  Euler  equation. But it a lso  

requires   the boundary conditions (59)  on  each S t o  be  such tha t   t he  boundary 

in t eg ra l   i n  (22) i s  equal  to  zero.  If only  the first term exis t s ,   the   requi re -  

ment i s  t h a t   e i t h e r  Bu is zero, i .e. ,  u i s  prescribed on t h e  boundary, o r  

Fo i s  zero. Thus  (59)  would be  l imited  to  

i 

- 

.B (u) = u - 4 (X) i i 

i 
(62a) 

B (u) = Fo(u) , (62b) o r  

where  4i(x) i s  a prescribed  function of  x  on the  boundary S . If t h e  second 

term a l s o   e x i s t s   i n   t h e  boundary integral   in   (22) ,  we addi t iona l ly   requi re   tha t  

e i t h e r  un is  prescribed, or P i s  zero,   etc.  The conditions  u,  un, etc. , 

prescr ibed  are   cal led  the  pr incipal  boundary condi t ions,   whi le   the  a l ternate  

conditions To = 0, F = 0, etc.,  are ca l led   the   na tura l  boundary  conditions. 

i 

1 

1 

2 1  



Thus, corresponding t o  each  term i n   t h e  boundary integral   in   (22) ,  a boundary 

condition (59) must e x i s t  on each S , which is  e i ther   the   p r inc ipa l   condi t ion ,  

or the  natural   condition  determined  implicit ly by (58). The var ia t iona l  

i 

statement (61) is thus   subjec t   to ' the   cons t ra in ts  o f  the  pr incipal   condi t ions,  

but  automatically  incorporates  the  natural   conditions.  

There a r e  problems f o r  which  G(u) i s  self ad jo in t ,  which involve boundary 

conditions (59) tha t   a re   ne i ther   p r inc ipa l   nor   na tura l ,   as   def ined  above. I t  

i s  usual ly   possible   to   extend  the  var ia t ional   pr inciple   to   include  those 

cases.  Let 
i i i H (u) = h ( x , u , ~ ~ , u ~ ~ ,  . ..) , XES 

be a local  operator  defined on the  boundary  subspace Si. The Fr6chet 

d i f f e r e n t i a l  can  be wri t ten  as  

H (u,6u) = Ho6u + H16un + H26unn + . . . , xesi i i i i 

Then the  extended  integral  functional 

I (u)  = F(u)dx + C Hi(u)dx 
i 

V Si 

has  the  Fr6chet   dif ferent ia l  

6I(u,  u) = I FU6udx + C 1 [(Fo+ H0)6u i + (F1+H1)6un i + ( F 2 + ~ 2 ) 6 ~ n n  i + . . .]dx . 
i 

V Si  (66) 

The extended  variational  principle (61) now possesses  extended  natural boundary 

conditions To + Ho = 0, Fl + H: = 0 , etc. For  most cases,  one  can f ind 

operators  $(u)  such  that  boundary  conditions (59) tha t   a re   no t   p r inc ipa l  

conditions  can  be made t o  be  extended  natural  conditions as defined by t h e  

extended  functional  (65). One can a l so  show tha t   severa l   d i f fe ren t   choices  

f o r  H (u)  are  possible  in some s i tua t ions .  

i 

i 

When (58) or (59) involve  several  equations it is poss ib le   to   handle  some 

of them using Lagrange mult ipl iers .   Specif ical ly ,  i f  (58) o r  (59) a r e  

2 2  



r 

replaced  by 

G(u) = 0 and  Go(u) = 0 

and  B1(u) = 0 and B: (u) = 0 XES , i 

where  G (u) is  the  Fr6chet  derivative of F(u) , the  variational  principle  can 
then  be  stated  in  terms of the  functional 

I(u) = [F(u) + XG0(u)]dx + C I [Hi(u) + uiB;(u)]dx , (69) 
i 

V Si 

where  the  functions X(x)  and p (x)  are  parameters  to  be  varied  independently. 

G(u) = 0 and Go(u) = 0 are  the  Euler  equations  corresponding  to  the  variations 

of 6u and 6A, respectively.  Similarly,  some  of  the  equations B (u) = 0, and 

Bo(u) = 0, are  the  natural  conditions  corresponding  to  the  variation of 6u, 

6un, . . . , and 6X on  the  boundary S1. Sometimes  the  roles of G(u)  and  Go(u) can 

be  reversed,  leading  to  alternate  variational  principles  for  the  same  problem. 

i 

i 

i 

The  variational  formulations  discussed so far  have  been  restricted  to 

prescribed  boundaries si. We  indicate  the  modification  due  to  a  free  boundary 
by  considering  the  case  where  the  boundary S and  boundary  condition B (u) 

are  determined  by  the  solution  of 

i  i 

gi [u(x) ,XI = 0 , (70) 

which  implicitly  defines S (u) and V(u). The  functional I(u)  is  now  written i 

as 

I (u). = F (u)dx , 

v (u) 

and  its  Fr6chet  differential  is 

61 (u,6u) = 1 6F(u,  6u)dx + C F(u)6nidx , 
i I v si 
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where €ini is the  amount 3 moves normal t o  i tself  due to   t he   va r i a t ion   6u (x ) ,  

and 't and si are   t he  domain and  boundary  before u is  varied.  If 6n(si) 

represents   the   var ia t ion  6u a t  t he   f i xed  boundary si, one  can show  from (70) 

i 

t h a t  
6n i = - g$(+) 

gn + gu  un 
i i  (73) 

Combining (72) and (73), we f i n d   t h a t   t h e  free boundary  modifies  the  natural 

boundary  condition to   r ead  
- 
F -  o i i  = o .  

gn + guun 
(74) 

The variational  formulation  has two advantages  over  the  direct  formulation. 

The operator  F(u) i s  a lower order  operator  than G(u) , permitt ing a functional 

approximation  with a lower degree  of  continuity.   Also,   since  the  variational 

formulation  has  the  natural  boundary  conditions  buil t   into it, it therefore  

has fewer boundary conditions  to  satisfy  than  the  direct   formulation. I t  has 

the  disadvantage  of  being  indirect ,  and  only  existing  for a ce r t a in  class of  

problems. 

We are now ready t o  examine how t h e  two types  of   discret izat ions  discussed 

in   the  previous  sect ion  are  used to   ob ta in  approximate  solutions  to  continuous 

f i e l d  problems, s t a r t i n g  from e i the r   o f   t he  two formulations  discussed  above. 

FINITE DIFFERENCE METHODS 

Any approximate method of  solving a continuous  f ield problem whose s t a r t i n g  

point is the   d i sc re t i za t ion  of some of  the  independent  variables will be  termed 

a f in i t e   d i f f e rence  method. The most connnon procedure employs poin t   d i scre t iza-  

t i o n  a t  N nodes  xi,  with the i r   assoc ia ted  unknown nodal  parameters which can  be 

functions  of  the  variables t. This  lends itself n a t u r a l l y   t o   t h e   d i r e c t  

formulation, by evaluating (58) approximately a t  N evaluat ion  points  x which 

do not  necessarily  coincide  with  the xi.  (Recall  that i f  u stands  for   several  
j 9  
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dependent  variables,  each may be  discret ized by a d i f fe ren t  set of nodes.) The 

operator G(u) involves   d i f fe ren t ia l   opera tors   in  x which m u s t  be  approximated 

by f i n i t e   d i f f e r e n c e   o p e r a t o r s   i n  terms of   the  unknown nodal  parameters.  This 

has two consequences.  In  order to  obtain  simple  difference  approximations, 

it is  highly  desirable  to  choose  the nodes t o  l i e  along  coordinate  surfaces i f  

x is multidimensional. The other   point  refers to   the   na ture   o f   the   func t iona l  

approximation which is implied by the  difference  approximation.  In  the 

previous  section,  functional  approximations were defined  over  global  regions. 

Yet i n   i n i t i a l   v a l u e  and i n i t i a l  boundary value  problems,  the  solution  along 

t h e  time-like coordinate i s  only known up to   the   po in t   p resent ly   reached   in   the  

calculat ion.  Even i n  boundary value  problems, a difference  approximation  based 

on a global  functional  approximation would be  overly complex,  and r e s u l t   i n   t h e  

need to   invert   very  dense  matr ices .   For   these  reasons,   t radi t ional   f ini te  

difference  approximations  are  based on functional  approximations  that   interpolate 

d a t a   a t  nodes xi l i m i t e d   t o  a neighborhood  of the  evaluat ion  point  x We 

discuss  such  local  difference  approximations first,  and subsequently examine 

some recent  difference  approximations  based on global  functional  approximations. 

j '  

Methods Based on Local Functional Approximations 

The f i rs t  observation one should make i s  that   local   funct ional  approxima- 

t i ons  used a t  neighboring  evaluation  points  are  in  general   incompatible.   This 

can  be  simply  seen by considering  second  order Lagrange  polynomial interpolat ions 

i n  one  dimensions f o r  Yi = x Using symmetrically  placed  points  (leading t o  

central  difference  formulas),  the  local  functional  approximation  at xi is  a 

parabola  through  the  points up-1, u; , and u ; + ~  , whi le   t ha t   a t  xi+l is a 

parabola  through ui , u ~ + ~ ,  and  ui+2 . These two approximations  describe two 

d i f fe ren t   curves   in   the i r   reg ion   of   over lap  between xi and xi+l. Once the  

approximate  solution  for  the uj is obtained, it is not clear which of t he  

i' 

* *  * 

* 

curves to   u se   i n   o rde r   t o   i n t e rpo la t e   fo r   t he   va lues   o f  u" between  nodes 
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(presunably a weighted  average would give  the  best   resul ts) .   Actual ly ,   the  

question is ra the r  academic, s ince  the  difference  in   the  values   given by the  

two approximations  should  be  no  greater  than  the  errors  in  the  approximations 
* 

By contrast ,   the  piecewise  functional  approximations of the  previous 

sect ion,   a l though  local ized  in   nature ,   are   dis joint   funct ions  that   but t   together  

with no regions  of  overlap. They therefore   give unambiguous values  for any 

quantity  (except  derivatives  at   interelement  boundaries of  an  order  higher  than 

t h a t  demanded by the smoothness of  the  approximation). Yet it is th is   very  

ambiguity in  the  local  functional  approximation which gives a l o c a l   f i n i t e  

difference  approximation i t s  f l e x i b i l i t y  and power. If  G(u) i s  quasi- l inear ,  

the  local   value o f  u determines  the  nature  of  the  operator,  which i n   t e r n  

determines  the optimum type  of  difference  approximation. Thus the  nature  of 

the  local  approximation  can  be  determined  at  each  evaluation  point by t h e  

local  solution.  This i s  t h e   b a s i s   f o r  upwind differencing and the  type 

differencing  of  transonic  f lows. Even at  t h e  same evaluat ion  point ,   d i f ferent  

terms in   the   opera tor  G(u) can  be  approximated  separately. The na ture   o f   the  

approximation  can  be made t o  change dur ing   an   i t e ra t ive   so lu t ion ,  or a marching 

solution  with  respect  to  another  independent  variable. AD1 methods  and 

s p l i t t i n g  o r  factor izat ion  techniques  are   appl icat ions  of   this   degree  of  

f l e x i b i l i t y .  

The local  functional  approximation  also  has  to  be  modified  for  evaluation 

points  5; near o r  a t   g loba l   boundar i e s ,   i n   o rde r   t o   s a t i s fy  boundary conditions.  

This  can  be done most readi ly  i f  the  global  boundary is a coordinate  surface.  

For a more general boundary which does  not conform to  the  coordinate  system, 

the  approximation  can become quite  involved, i f  one  wants to   maintain  the same 

level  of  accuracy. For this   reason,  a nonconforming  boundary  should  be 

avoided i f  possible.  

j9 
. 
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Lagrange Representation 

The simplest   types  of  f inite  difference  formulas  for  derivative  operators 

are  based on  Lagrange  polynomial interpolat ion.  This is the   bas i s   fo r   t he  

standard  forward, backward  and central   d i f ference  formulas   for   par t ia l  

der ivat ives   of  any order,  and of  any order  of  accuracy. Lagrange interpolat ion 
* * 

can  also  be  used t o  express u i n  terms  of  neighboring u . ( j  # i), assuming i 3 * 
t h a t  u. is unknown. Such  a device i s  used t n  some numerical  algorithms. 

1 

In   solut ions  involving  t ime-l ike  coordinates ,   f inal   values   of   der ivat ives  

are  already known at   points   previously computed. In  boundary  value  problems, 

one  needs t o  compute t h e  same der ivat ive at a l l  nodal  points.  This  suggests 

the  use  of  Hermite  interpolation  to  provide more accurate  difference  formulas 

without  increasing  storage  requirements. 

Hermite  Representation 

An example of a Hermite f i n i t e   d i f f e r e n c e  formula i n  one dimension is 
* * * * *  

derived from the  specification  of  ui-l,   uxx(i-ll,ui , ui+l  and  uxx(i+l), which 

define a unique  quartic  polynomial.  (This i s  an example of a Hermite  representa- 

tion  with  nonconsecutive  derivatives.)  Evaluating  the  second  derivative  of u (x) 

a t  xi = xi ( for   equa l   spa t ia l   in te rva ls   h ) ,  one obtains 

* 

- 
2 *  * * * * * 

(uxx(i-l)  + lo uxxi + uxx( i+l ) )  = 12(ui-l  + 2ui + u i + l )  J (75) 

which is  the  standard Hermite  centered  finite  difference  formula  (ref. 10).  The 

so lu t ion   for  uxxi i s  obtained by tridiagonal  inversion.  Other  Hermite  differ- 

ence  formulas  involving any par t ia l   der ivat ives   can  be  s imilar ly   obtained.  

* 

An important  application  of Hermite interpolat ion is the  construction of 

difference  formulas   for   ini t ia l   value problems o f   t he  form 

where x is  one-dimensional. If the  solut ion i s  known up t o   t h e   p o i n t  xi, t h e  

values  of u. and u f o r  a l l  j 5 i are avai lable   to   construct  a var ie ty   of  
* * 
J x j  - 
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* 
loca l  Hermite in te rpola tes  from  which one  can exp l i c i t l y   p red ic t  ui+l . A more 

accurate but   implici t   d i f ference  formula i s  obtained by including ux(i+l) i n  

the  representat ion.  Such a formula is normally  used  as a co r rec to r   i n  an 

i t e r a t i v e   s o l u t i o n ,  where a predictor  formula and (76) were first used t o  

ca lcu la te  a first approximation  for u 

* 

* 
x( i+ l )  

Another  approach t o   t h e  numerical   solut ion  of   ini t ia l   value problems 

employs higher  derivatives  uxx, uxxx, e t c . ,  which can  be  obtained i n  terms of 

lower der ivat ives  by d i f f e ren t i a t ing  (76) .  One can  then  construct  the  Taylor 

series 

U*(X) = ui + UXi(X - x.) + 1 u*  (x - X i ) 2  + .. . * *  
1 2 xxi  (77) 

If t h e   s e r i e s  is t runca ted   a f te r  a f i n i t e  number of  terms, t h e   r e s u l t  can  be 

looked at  a s  a local  Hermite interpolate   through  the  s ingle   point  xi. Thus any 

s t e p   i n  a f in i t e   d i f f e rence   a lgo r i thm  fo r   t he   so lu t ion   o f   an   i n i t i a l   va lue  

problem  can  be  obtained from a loca l  Hermite interpolation  (although  the  local 

functional  approximation  corresponding t o  a given  algorithm is  not  necessarily 

unique). 

Different  representations  can  be  used  in  obtaining  difference  formulas  for 

i n i t i a l  boundary value  problems. Let t be  the  t ime-l ike  var iable ,  and assume 

tha t  by d i f f e ren t i a t ing  (58) one  can express  ut,  utt, etc. ,  as  functions  of 

u u e t c . ,  where x represents  the  remaining  independent  variables.  If 

one first d i sc re t i ze s  x space, and defines Lagrange parameters   ui( t )   a t   the  

nodes  xi,  one  can then  use a local  functional  approximation and  Lagrange in t e r -  

po la t ion   to   eva lua te  ux,  uxx, etc.,  and obtain  expressions  for  dui/dt, d ui/dt , 2 *  2 

e tc .  The l a t t e r  can then  be  used to   de f ine  a Hermite d iscre t iza t ion   of   the  t 

coordinate, and the   so lu t ion  can  be  advanced i n  t, using (77) (with x replaced 

by t ) ,  which represents  Hermite interpolation  through a s ing le   po in t   i n  t space. 

x’ xx’ * 

* 

In summary, any s tandard  f ini te   dif€erence  a lgori thm  for   solving a set of 

par t ia l   d i f ferent ia l   operator   equat ions  can  be  der ived by applying  sequences of 
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local  functional  approximations, and interpolating  parameters  of Lagrange or 

Hermite representations.  The number of   points  and the  order   of   interpolat ion 

determine  the  accuracy.  of  the  approximation  (i.e.,   truncation  errors).  This 

s t i l l  leaves freedom in   the   choice   o f   po in ts  and parameters, and na ture   o f   the  

functional  approximations.  These can a l l  be  optimized t o  provide  the  best  

s t ab i l i t y   p rope r t i e s   fo r   t he   numer i ca l   so lu t ion .  

Methods Based on Global-Functional  Approximations 

We turn  now t o   f i n i t e   d i f f e r e n c e  methods based on global  functional 

approximations,   l imiting  ourselves  to Lagrange d i s c r e t i z a t i o n   a t  nodes  x, and 

the   case  yi = xi. Thus the  nodal  parameters  are u; ( t ) ,  where t represents   the  

remaining  undiscretized  variables.   Partial   derivatives  are  special  examples of  

l inear  operators  obeying  the  property 

L(au + bv) = aL(u) + bL(v) , (781 

where u and v a r e  two arb i t ra ry   func t ions ,  and a and b are   constants .  Thus a 

local   operator  G(u) can  be  written  generally as 

G(u) = g[xst,Us L t U s  Lxus LX(Lt4I , (79) 

where the   subscr ip ts   ind ica te   the   var iab les  on which the   l inear   opera tor  L 

operates,  and g i s  an a rb i t ra ry   func t ion  of  t h e   s i x  arguments.  For any se t   o f  

l inear ly   independent   bas i s   func t ions   $J~(x)   the   l inear   representa t ion  (28) 

be  expressed i n  terms of  canonical  basis  functions  $i(x) and the  nodal 
rJ 

4. 

parameters u i It3 a s  

The  two basis   funct ions  are   re la ted by defining  matrix  elements  aij  as 

a i j  = $i(xj)  , 

and the  inverse  matrix  with  elements  bij   satisfying 

bijajk = 8ik . 
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Then 4 
$ i ( ~ )  = b. .$.(x) . 

1 3  3 

If we define 

xi  (x> = L X P i  (x11 , 

it follows from (33),  (82), and  (83) t h a t  

N *  

i=l 

where 
* 

xi(x) = b.   .x . (x> = Lx[@i(x)] . 
1 3  J 

For l inear   operators   operat ing on t we obtain 

* N 
Lt[U ( x , t > l  = C Lt[ui(t)]4i(x) . * @  

i=l 

Evaluating (79) a t   the   eva lua t ion   po in ts  = x , we obtain  the  following sets 

of  equations for the  parameters u.  ( t )  : 
j j  * 

1 

g[xj , t ,u i ( t ) ,   Lt[u;( t ) ] ,  N * , ,  C ui(t)Xi(xj) ,  N C Lt [u i ( t ) ]K(x j ) ]  = 0 .  (87) 

i=l i=l 

For an   a rb i t ra ry  set of  $i (x),   the  matrices  ai j  are dense,  and the i r   i nve r s ion  

is ine f f i c i en t .  The prac t ica l   use   o f  (87) r equ i r e s   r e s t r i c t ions  on t h e  

functions Cpi(x). Three  such  choices will be  described,  each  leading t o  a 

prac t i ca l   f i n i t e   d i f f e rence  method i n  x space. An arbitrary,  independent 

method can be  used i n  each case  to  perform  the  numerical   solution  in  the t 

space. 

Finite  Fourier  Series 

If x i s  one-dimensional,  with  periodic boundary conditions,  a convenient 

choice i s  
21rikx/L @,(x) = e > 

where L i s  the  length  of  the  region, and i = The representat ion i s  the  
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f i n i t e   F o u r i e r   s e r i e s  

where N = 2K+1. If x. a r e  chosen to  be  equally  spaced,  the  transformation 

between u. ( t )  and t h e  Ck(t)  (corresponding to   matr ix   mult ipl icat ion  by a. and 

b. .) i s  accomplished e f f i c i e n t l y  by  using fast Fourier  transforms  (ref.   11).  

For   l inear   different ia l   operators ,   the   funct ions  xi(x)   as   def ined by  (83) are 

just proport ional   to   the  $i(x) ,   leading  to   fur ther   s implif icat ions.   Fini te  

difference methods using (89) a r e   r e f e r r e d   t o  as pseudospectral (ref. 12) o r  

"accurate  space  derivative" (ref. 13) methods. They can  be  extended t o   h i g h e r  

dimensions  using  tensor  products. 

J * 
J l j  

13 

A Fourier  series  can  be  reformulated  as  an  expansion i n  Chebycheff 

polynomials,  based on the   i den t i ty  
n 

k= 0 
cos nx = C ak  cos x . k 

The nodes xi are no longer  equally  spaced  in  the new x domain, but  are  located 

a t   t h e   r o o t s   o f   t h e  Nth order Chebycheff  polynomial. Thus the   bas i s   fo r   t he  

accuracy  of  such a difference scheme is the  same one tha t   unde r l i e s  Gaussian 

quadrature. 

Differential  Quadrature 

The ideas  behind  the  polynomial  formulation  of a Fourier method can  be 

gene ra l i zed   t o  any set of  orthogonal  polynomials,  with  the nodes xi again 

chosen a t   t he   roo t s   o f   t he  Nth order  polynomial. The matrix  elements xi (x. ) 

are easily  calculated,  using  the  properties  of  the  orthogonal  polynomials. The 

method, known as   different ia l   quadrature ,  i s  described  in  reference  14. 

4 

1 

*line  Differencing 

A t h i r d  approach  using  global  functional  approximations is to  use  piecewise 

approximations,  with  nodes  and  evaluation  points  located on interelement 
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boundaries.  In  one  dimension, a spline  approximation is necessary,  with 

smoothness constraints  determined by the  highest   derivative  present i n  t h e  

operator Lx. As indicaeed  previously,   cardinal  basis  functions are not 

p r a c t i c a l ,  and the  or iginal   basis   funct ions  are  employed, with  the  der ivat ives  

at   the  interelement  boundaries  as  additional unknowns. These der iva t ives   a re  

related  to  the  nodal  parameters  through banded matr ix   re la t ions,   ra ther   than 

e x p l i c i t l y   a s   i n  (84).  For a cubic  polynomial  spline,   the  relation  for 

first der ivat ives  i s  i d e n t i c a l   t o   t h e  one  given by Hermite differencing. The 

second  der iva t ive   re la t ion   d i f fe rs  from the Hermite  formula,  with (75) replaced 

by 
2 *  * * * * *  

(2uxx(i-1) + 8uxxi + 2uxx(i+l)  ) = 12(u i-1 + 2ui + ui+l) . 
Sequences of  one-dimensional  differencing  using AD1 methods a n d s p l i t t i n g ,   a r e  

. used i n  multidimensional  problems.  Further  details on t h e  use of   sp l ine  

differencing  in   the  numerical   solut ions  of   par t ia l   d i f ferent ia l   equat ions  are  

found in   re fe rence  15. 

F i n i t e  Volume Differencing 

Finite  difference  equations  based on  volume d iscre t iza t ions   a re   o f ten  

employed when the  operator  equation (58)  can be  writ ten  in  divergence (or 

conservative) form 

Here F(u) i s  a locator  operator on u. 

elements Vi,  each  of which is  enclosed 

is integrated  over element V , and the  i 

r e s u l t  can  be  written  as 
ar;* i 1 

at v1 
+ T  c 

where  u i s  defined by  (25) , and F "5 - i j  

Let x be  djscret ized  into N volume 

by a set o f  boundaries s . If (91) 

divergence  theorem  (4) is applied,   the 

i j  

i s  defined  as 
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The  unknown parameters are the  and a functional  approximation is required 

to  express  the  average normal fluxes Fij i n  terms of  these  parameters.  This 

can  be most easily  demonstrated  for  one-dimensional  differencing.  Letting  the 

subscript  k r e f e r   t o  a global numbering of  interelement  boundaries (which are 

nodes i n  one dimension), a local  functional  approximation  for  element V can 

be  writ ten  as 

i 

The nota t ion   k( i )   ind ica tes  a par t icular   choice o f  nodes k i n   t h e  neighborhood 

of  element V , and Tk(x) i s  a local  canonical  basis  function. The l a t t e r  i s  not 

t o   b e  confused  with  the  element  cardinal  basis  functions  defined by (43) and 

(44). The nodes k ( i )  need  not  be  contained i n  V , and '$(x) # 0 for   those  

nodes. Integrating (94) over  element V , one obtains 

i i 

i 

i 

where 

The < can  then  be  expressed i n  terms of  t he  by inverting a sparse  matrix 

i n  a manner s i m i l a r   t o   t h a t  which e x i s t s   f o r  Hermite differencing. 

The determination  of  the $, when F(u) involves   different ia l   operators ,  

again  creates   ambigui t ies   resul t ing from the  incompatibi l i ty   of   local  

functional  approximations a t  neighboring  elements V . Once the  uk are 

obtained by inver t ing  (95), the   local   representat ion u (x)  can  be  obtained 

from (94). One can  then  determine F(u ), and use (93) t o   c a l c u l a t e   t h e  

terms  for   the two boundaries  along  the x d i rec t ion .  If this  procedure is 

* i 

* i  

* i  

.. 
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followed,  the  value  of F1’ for  a  given  boundary  separating  two  elements  will 
be  independently  calculated  for  each of the  elements.  Yet  global  conservation, 

obtained  by  summing (92) over  all  the  elements,  requires  that  the  two Ti’ be 
equal  in  magnitude  and  opposite  in  sign.  One  must  therefore  choose  a  single, 

unambiguous Fij for  each  boundary,  using  some  averaging  or  biasing.  If  t  is 

a  time-like  variable,  the  bias  can  be  alternated  with  each  marchfng  step. 

Note  that  at  global  boundaries  exact  prescribed  values of Fij  can  be  imposed. 

.. 

If  x  is  multidimensional,  the  above  one-diaansional  differencing  can  be 

used  sequentially  along  several  coordinates,  using  splitting  techniques. A 

particular  advantage  of  finite  volume  differencing  is  that  the  original 

equation  (58)  has  been  integrated, so that  the  operator F(u) involves  lower 

order  differential  operators  than G(u). Therefore  a  cruder  local  approximation 

(94) can  be  employed.  The  possibility  of  alternating  the  bias  when t is  time- 

like,  allows  even  still  cruder  approximation  for  each  marching  step  (ref. 16). 

The  conservative, o r  integral  nature  of  the  numerical  solution  also  guarantees 

that  jump  conditions  across  discontinuities  are  automatically  satisfied,  even 

if  the  discontinuities  are  smeared  out  by  the  calculation. 

Methods  Based  on  a  Variational  Formulation 

We  conclude  this  section  by  describing  briefly  a  finite  difference 

approach  based  on  the  variational  formulation  (61)  and  (65).  The  starting 

point  is  the  same  as  for  the  direct  formulation.  One  first  chooses  a  set 

of  nodes  x.  and  evaluation  points  inside  the  domain V and  on  the  boundaries 

S1, the  type  of  nodal  representation,  and  the  nature of the  functional  approxi- 
3 j 

mation.  These  are  then  used  to  evaluate  the  operators F (u*) and Hi(u*)  at 

the  evaluation  points x as  functions of the  nodal  parameters.  The  next  step 

is  to  approximate  the  integral  functional  I(u)  in  terms of the  discretized 

F(u)  and  Hi(u).  This  is  done  by  appropriate  quadrature  formulas  of  the  form 

jD 
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I(u*) +F5c w j  [F(u*)lj  + C C w i  [Hi(u*)lk. 
j i k  

(97) 

Here w. and wk are   weight   coeff ic ients   def ined  implici t ly  by some functional 

approximations  of  the  respective  integrands. (These functional  approximations 

can i n  general  be  independent  of  those  used in   ob ta in ing  [F(u ) ]  . and 

[H (u ) ]  . i n  terms of  the  nodal  parameters.) The summations i n  j and k a re  

over  the  evaluation  points  contained  in  the domain V and boundary si, 
respect ively.   In  many cases one  simply  chooses w = wk = 1. 

i 
J 

* 

i *  
J 

3 

i 
j * * 

With I ( u  ) expressed  as a function  of  the  nodal  parameters u through 
j 

(97)  (assuming  Lagrange representa t ion   for   the  moment), t he   va r i a t iona l  

pr inc ip le  (61)  simply becomes 

providing N equat ions  for   the N unknown parameters.  This method is  sometimes 

cal led  the  Euler  method,  and is  described  further  in  reference  17.   Actually,  

t h e  method bears a s t r ik ing  resemblence t o  methods based on functional 

approximations,  being somewhat hybrid  in  nature,   with one f o o t   i n  each camp. 

I t  i s  therefore  a good po in t   t o   l eave   f i n i t e   d i f f e rence  methods, and tu rn  our 

attention  to  functional  approximation methods. 

FUNCTIONAL APPROXIMATION  METHODS 

Any approximate method of  solving a continuous f i e l d  problem whose 

s t a r t i ng   po in t  is the   d i sc re t i za t ion   o f   t he  dependent  variables will be 

termed a functional  approximation method. We will describe such  methods i n  

terms of  the  general   functional  representation  (26),   applying  the approxima- 

t i o n  first t o  a variational  formulation, and subsequently t o   t h e   d i r e c t  

formulation. The r e s u l t s  will then  be  special ized  to   l inear  and piecewise 

representa t ions ,   the   l a t te r   g iv ing  what we normally  called  f inite  element 

methods. 
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Variational  Formulation 

The functional  approximation (26) lends i tself  n a t u r a l l y   t o   t h e   v a r i a -  

t ional  formulation (61)  and  (65). The  method will be first descr ibed  for   the 

case when the  dependence on a l l  the   var iab les  will be  approximated s o  tha t  

the  functions ci i n  (26) become constant, and t h e r e  i s  no var iab le  t. This 

case is usual ly   cal led  the R i t z  or Rayleigh-Ritz method. The function 

g(x ;c j>  m u s t  first be  chosen  so as to   s a t i s fy   t he   p r inc ipa l  boundary 

condi t ions.   Subst i tut ion  of  (26) i n t o  (65) y ie lds  

I ( c j )  &I F[g(x;c.)]dx + C I Hi[g(x;cj)ldx . 
J i 2  (99) 

V SI 

This   res t r ic t s   g (x ;c . )   fur ther   to   func t ions   wi th   suf f ic ien t   cont inui ty   for  

t he   i n t eg ra l s  t o  ex i s t .  The var ia t iona l   p r inc ip le   (61) ,   appl ied   to  a l l  var ia -  
J 

t i ons  6c  gives   the  set  o f  equations 
j s  

- d O  j = l t o N  a 1  
ac 

j 

f o r   t h e  N parameters c 
j '  

The  method can  be  extended to  functional  approximations  (26), where c 

a r e  now functions  of  undiscretized  variables t. I t  is then   re fer red   to  as 

the  Kantorovich method. The integral   funct ional  (65)  must now be  writ ten as 

j 

I (u) = I F(u)dxdt + C Hi (u)dxdt , (101) 
i 

T V(t) s t  8 5 t )  

where T and St r e f e r   t o   t h e  subdomain of   var iables  t ,  and their   boundaries.  

Substi tution o f  (26) i n t o  (101) y ie lds  

i 
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Equation  (102)  is  now  considered  an  integral  functional 

the  unknown  functions  c. (t) . The  variational  principle 
3 

the  Fr6chet  differential 

6I(c.  ,Bc.) = 0 , 
J J  

over 

(61) 

t  space  involving 

then  states  that 

which  results  in  the  set of equations  and  boundary  conditions  necessary  to 

determine  the  set  of  unknown  functions  c. (t). 
J 

As indicated  before,  the  operator F(u) involves  lower  order  differential 

operators  than G(u), permitting  a  functional  approximation  with  lower  order  of 

smoothness.  The  approximation  also  need  not  satisfy  the  natural  boundary 

conditions,  since  they  are  automatically  satisfied  in  the  variational  process 

(to  the  same  degree  that  the  equation G(u) = 0 is  satisfied).  For  these 

reasons  a  Ritz o r  Kantorovich  method  is  much  to  be  preferred.  Unfortunately, 

it  is  limited  to  boundary  value  problems  in  which G(u) is  self-adjoint.  There 

have  therefore  been  many  attempts  to  create  so-called  "variational"  principles 

designed  to  solve  problems  for  which  a  true  variational  principle  does  not 

exist.  These  new  principles  may  be  classed  as  adjoint  variational,  quasi- 

variational, o r  restricted  variational.  Finlayson  and  Scriven  (ref.  18)  have 

shown  that  they  are  all  either  based  on  a  direct  formulation  in  disguise, or  

offer  no  real  advantage  over a method  based  on  a  direct  formulation.  There 

is  therefore  no  further  need  to  consider  any  of  these  formulations. 

A new  method  which  makes  use  of  a  variational  formulation  in  an  iterative 

procedure  is  the  pseudo-functional  method of Norrie and deVries  (ref.  19). 

It  is  designed  for  problems  which  come  close  to  admitting  a  variational 

principle.  More  precisely,  assume  that (58) is  given  by 

G (u) = FU(u) + Go (u) = 0 , (104) 

and  the  boundary  conditions  (59)  that  are  not  principal  conditions  can  be 

written  as 
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i B (u) = Fj (u) + B.(u) = 0 , XES , j = O,l,etc., 
- i i 

1 (105) 

where the  operators  P. (u) a r e   r e l a t e d   t o   F ( u )   a s   i n  (20)  and (22). If the  

terms G (u)  and B!(u) are su f f i c i en t ly  small, then (104)  and  (105) can  be 

solved by i t e r a t ion .  Let u represent   the  solut ion after m-1 i t e r a t ions .  

Then um i s  def ined  as   the  solut ion  of  

1 

0 3 
m- 1 

*m 
Fu(u 1 + G o b  *(m-1$ e 0 , (106) 

sub jec t   t o   t he   na tu ra l  boundary conditions 

Equations (106)  and  (107) are   thus  seen  to   fol low from the   appl ica t ion   of   the  

var ia t iona l   p r inc ipa l  (61) t o   t he   func t iona l  

I ( U * ~ )  6 I [ F ( U * ~ )  + G ( ~ * ( ~ - ' ) > u * ~ ] d x  + C Hi (u*(m-l))u*mdx . (108) I i 
V i 

S 

An i t e r a t i v e  R i t z  procedure can  be  applied t o  (108), u n t i l  a converged  solution 

fo r   t he   c .  is obtained. 
I 

The Method of  Weighted Residuals 

If a variational  formulation  does  not  exist,  even  approximately,  then a 

functional  approximation method m u s t  be  based on a direct   formulation. To 

accomplish t h i s ,  (58) and (59) must be  converted  into  functionals.  To Bee 

how t h i s  can  be  done, l e t  us rewrite the  R i t z  procedure  applied  to a var ia t iona l  

formulation,  in  terms  of  the  equivalent  direct   formulation. If we subs t i t u t e  

(26) and (66), and apply   the   var ia t iona l   p r inc ip le  (61) t o  a l l  var ia t ions  

6 c  we obtain 
j '  

i 

J G(u*)dx + c J [E B: (u*) + - B~ (U + - BZ(u ) + . . .]dx 6 0 , (109) agn * agnn * 

acj  
ac 

j i j j 
Si V 
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s a t i s f i e d  by the  choice 

in tegra l  terms i n  (109) 

By using  integrat ion by 

equivalence  of  the sets 

where we used (60) and le t  Bo = Fo + Ho = 0, B = F + H1 = 0, etc. ,  repre- 

sent  the  extended  natural  boundary conditions  in  (59).  (The pr incipal  

boundary conditions  give  ag/ac = 0, agn/acj = 0,  etc. ,  on S , and are  assumed 

i -  i i -  i 
1 1  

i 
j 

of  g(x;c ). Thus contr ibut ions  to   the boundary 

will only come from the   na tura l  boundary  conditions.) 

p a r t s  and t h e  divergence  theorem (4), one  can show t h e  

of  equations (109)  and  (100). But (109) could  have 

j 

and 

been  obtained from the  direct   formulat ion by integrat ing (58)  and the   na tura l  

boundary conditions (59) over   their   respect ive domains, a f t e r  first multiplying 

by appropriate  weighting  functions.   Particular  l inear  combinations  of  these 

integrals  then  yield  (109).  Note that  the  weighting  function  for  Bi(u) is the  

same a s   t h a t   f o r  G(u) , but  those  for B1 (u) , B2 (u) , etc. , ( i f   they  are   present)  

a re   d i f fe ren t .  

i i 

The above considerations  suggest  that   the  direct   formulation (58)  and  (59) 

be  recast   in  the  equivalent weak form 

J $(x)  G(u)dx = o , 
V 

I $(x) Bi(u)dx = 0, (111) 

si 
where  (110) and (111) a re  assumed val id  f o r  a l l   a rb i t ra ry   func t ions   $ (x) .  A 

functional  approximation method can  be  obtained by choosing a f i n i t e  set of  

linearly  independent  weighting  functions $. (x) t o  approximate  $(x>, and sub- 

s t i t u t i n g  (26) and each $. (x) i n   t u r n   i n t o  (110). If G(u ) is  termed the  re- 

s idua l ,   the   resu l t ing  set of  equations is thus  obtained by equating t o  zero  the 

integrals  of  weighted  residuals  over  the domain. The method is  therefore   of ten 

r e fe r r ed   t o   a s   t he  method of weighted  residuals. If a l l   t h e  boundary  conditions 

are no t   s a t i s f i ed  by the  choice  of (26) ,  additional boundary residual  equations 

3 * 
3 
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(111) must be  calculated. These normally  use  the same weighting  functions as 

i n  (110),  although (109) shows that   d i f ferent   weight ing  funct ions may be 

appropriate   for  some B (u). i 

By analogy  with  the  variational  case,   integration  by  parts  can  be  used  to 

obtain  integrals   involving  lower  order   different ia l   operators .  It is a l so  

poss ib l e   t o  combine equation  residuals and  boundary r e s idua l s   i n   t he  same 

equation, as was done i n  (109). To indicate  these  procedures,   consider a 

term i n  G(u) t h a t  can  be wr i t ten   as  a divergence  aF/ax. Then the   i n t eg ra l  

f o r   t h a t  term  can  be  written  as 

jQj dx = I JljnFdx - QjxFdx . (112) 

V S V 

If one  of  the terms i n  Bi(u) i s  nF(u), it is  then  c lear  how (110)  and  (111) can 

be combined to   e l imina te   tha t   t e rm.  Note t h a t  (112)  imposes  smoothness  condi- 

t i ons  on $.(x) .  We will henceforth examine the  method of  weighted  residuals 

based on (110) with  the  understanding  that  these  can  be  transformed by 

in tegra t ion   by   par t s  and combined with (111) to   e l imina te   ce r t a in  boundary 

residual  terms. When t h i s  i s  not  possible,  boundary in t eg ra l s  (111) would be 

t r ea t ed   i n   t he  same manner a s  (110). 

1 

Let us general ize  (110)  by introducing  the  undiscretized  variables t ,  

and considering  integrations  over  the domain and boundary  of  the  discretized 

variables  x.  Thus, given (58), (26) and a set of  weighting 

the  method of  weighted  residuals  gives  the  equations 

I Qj (x , t )   G lg (x ;c i ( t ) ]dxe  0 j = 1 t o  N 

V 

functions Q. (x, t )  , 
3 

t 

fo r   t he  unknown funct ions  c . ( t ) .   There  are  many possible   choices   for   $ . (x , t ) ,  

each  one  leading t o  a d i f fe ren t  method. They are   fu l ly   d i scussed   in   the  book 

by Finlayson  (ref. 20). The var ious   c lass i f ica t ions   a re   b r ie f ly  summarized below. 

I I 
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Method of Moments 

If $ . (x , t )  form an  arbitrary,   l inearly  independent set of  functions, we 

have the  general  method o f  moments. Normally, it i s  r e s t r i c t ed   t o   func t ions  

of  x only, and a re   t yp ica l ly  members of a complete set of  functions.  A 

popular  choice is polynomials i n  x. 

3 

Galerkin Method 

In the  Galerkin method, the  weighting  function is  chosen t o   g i v e   t h e  

same equations as those  provided by a variational  formula. I t  follows from 

(109) t h a t  we must have 

where g i s  considered a function  of x and ci i n  performing  the  partial   deriva- 

t i v e ,   i . e . ,  t is  considered a fixed  parameter.  This i s  probably  the most 

popular method, p a r t i c u l a r l y   i n   f i n i t e  element applications.  

Least Squares Method 

In   t h i s  method we s e t  

where again G(g) is considered a function  of x  and ci. The name of   the method 

becomes obvious on subs t i t u t ing  (115) in to  (113)  and interchanging  integration 

and d i f f e ren t i a t ion ,   t o   ob ta in  

While  (116) minimizes the  integrated  square  of   the  res idual ,  a more log ica l  

procedure would be t o  determine  the maximum value  of G 2  i n   t h e  domain f o r  a 

given  choice  of ci, and t o  minimize t h i s  maximum  among a l l  choices  of c 

While th i s   has  been  used h i s t o r i c a l l y ,  it 5s d i f f i c u l t   t o   a p p l y   i n   p r a c t i c e ,  

and has  been  superseded by (116). One disadvantage  of  the least squares method 

i' 
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is  tha t   t he   o rde r  of the  differential   operators  cannot  be  lowered  through 

integrat ion  by  par ts .  

Collocation Method 

If we admit discontinuous  functions  for Jc several  new methods a re  

avai lable .  Let y.  ( j  = 1 t o  N) be a set of n a r b i t r a r y   p o i n t s   i n   t h e  x domain, 
J 

cal led  col locat ion  points .  Then i f  

j ’  

IJj(X> = & ( x  - xj3 , - 
(117) 

where 6 represents   the  Dirac  del ta   funct ion,   subst i tut ion  of  (108) i n  (103) 

y ie lds  

G[g(Yj;Ci(t)l 6 0  , (118) 

i .e . ,  the   res idua l  is set   equal   to   zero  a t   the   col locat ion  points ;   hence,   the  

name col locat ion method. Note tha t   i n t eg ra t ion  by p a r t s  i s  not  possible.  

Subdomain Method 

If one  divides  the domain V i n to   a rb i t r a ry  subdomains vJ , one  can  define 

a less   violent   a l ternat ive  to   the  Dirac  del ta   funct ion;  namely, t h e  

charac te r i s t ic   func t ion  

Equation (113) now becomes 

I G[g(x;ci(t)]dx s 0 . 
vj 

Thus the   in tegra ted   res idua l  i s  set equal t o  zero  in  each subdomain vJ; hence, 

t he  name subdomain method. Note tha t  terms i n  G(u) t h a t  can  be  written as a 

divergence can be  converted  via  the  divergence theorem (4) to   in tegra ls   over  

the  boundaries  of v’ involving lower order  operators.   This method is  some- 

t imes  cal led  the method of   in tegra l   re la t ions .  
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Least  Squares  Collocation Method 

The methods described above  can often  be combined. An example is the  

least   squares-collocation method. We s ta r t   wi th   the   l eas t   squares  method 

(106),  and  approximate the   i n t eg ra l  by appropriate  quadrature  formulas  over 

M arb i t ra ry   co l loca t ion   po in ts  xi, where M L, N. The resul t ing  equat ions  for  

the  parameters ck a r e  

In   pract ice ,  one often  chooses wi = 1. As M approaches i n f i n i t y ,   t h e  method 

approaches  the least squares method. On the  other  hand, i f  M = N and 

aG[g(yi;c,(t)]/acj i s  non-singular,  then (111) is reduced to   the   co l loca t ion  

method  (108)  (assuming t h a t   a l l  wi are  non-zero). 

The equivalence  of  the N-point  quadrature  approximation  to  the  least 

squares method  and the   co l loca t ion  method can  be  generalized  to any residual  

method involving  continuous  weighting  functions.  Omitting  the dependence on 

t ,  we can write the N-point quadrature  approximation t o  (11’3) a s  

N I $ j ( x ) G [ g ( ~ ; ~ k ) ] d ~ +  C w.$.(yi)G[g(Fi;ck)] & O .  

V 
i=l J 

This  reduces  to  the  collocation method i f  $. (yi) i s  non-singular 
1 

and w.  are 
1 

non-zero.  Thus, i f  the   in tegra ls   in   a   res idua l  method are  too complex t o  

evaluate   analyt ical ly ,  and  no integrat ion by p a r t s  is  employed, an  N-point 

quadrature  approximation is  ident ica l   to   a   co l loca t ion  method. By a  judicious 

choice  of  collocation  points yi, t h i s  method g ives   r e su l t s  whose accuracy is  

consistent  with  the  original  functional  approximation. The choice  can  be 

made ra t iona l  i f  the  funct ional   representat ion is l inear ,  which is t h e  case 

we consider  next. 
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Linear  Functional Approximation 

A l l  t he  methods described so  f a r  have  been  considered f o r  a general 

functional  approximation (26). In   p rac t ice ,  one normally  uses  the  linear 

representat ion (28). This   s implif ies  some 

weighting  function  for  the  Galerkin method 

qj (x) = 9j (x) 

o f   t h e  methods.  For example, t h e  

becomes 

Y (123) 

i . e .  , the  weighting  functions  are  the  basis  functions  themselves. If qj (x) 

are  given  by (78), i. e . ,  i f  (28) i s  a f in i te   Four ie r   se r ies ,   then   the   Galerk in  

method'is   called a spec t ra l  method '(ref.  21). 

A l inear  representation  allows  the  introduction  of  nodal  parameters  as 

unknowns by choosing  an  arbitrary  point  discretization xi. It i s  then 

poss ib le   to   es tab l i sh  a correspondence  with f i n i t e   d i f f e r e n c e  methods. The 

most obvious  one is through  the  collocation method. If the   co l loca t ion   po in ts  

a re   ident i f ied   as   the   eva lua t ion   po in ts ,  it is  evident   that   the   col locat ion 

method is i d e n t i c a l   t o  a nodal f i n i t e   d i f f e r e n c e  method employing a global 

functional  approximation. The method of   different ia l   quadrature   has  i t s  

analogue in   t he   co l loca t ion  method,  where it is referred  to   as   or thogonal  

col locat ion.  

Most convent ional   f ini te   difference methods employ local   funct ional  

approximations.  Since  those  functional  approximation methods based on discon- 

tinuous  weighting  functions  (i.e.,   collocation  or subdomain) yield  equations 

evaluated a t   d i s j o i n t   p o i n t s   o r  subdomains,  one  can general ize  them by per- 

mitting  local  functional  approximations. One can then  say  that   al l   convention- 

a l   f i n i t e   d i f f e r e n c e  methods a re   co l loca t ion  methods using  local  functional 

approximations.  Similarly, one  can cons ider   f in i te  volume difference methods 

as  subdomain methods (with  the  divergence theorem applied)  using  local 

functional  approximations.  Finally,  the  Euler  difference method may be 
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thought of as  a  variational-collocation  method  using  local  functional  approxi- 

mations. 

Weighted  residual  methods  using  continuous  weighting  functions,  and 

which  do  not  employ  quadratures,  can  only  be  formulated  in  terms of a  global 

functional  approximation.  Even  for  discontinuous  weighting  functions,  a 

global  functional  approximation  may  be  preferred.  For  complex  domains,  the 

integrals  resulting  from  such  a  global  approximation  could  not  be  calculated 

analytically.  Even  for  one-dimensional or tensor  product  approximations, 

global  functional  approximations  would  lead  to  dense  matrices.  Both  of 

these  difficulties  can  be  avoided  by  using  piecewise  functional  approximations, 

which  will  now  be  discussed. 

Finite  Element  Methods 

Any  functional  approximation  method  using  a  piecewise  functional  repre- 

sentation  is  termed  a  finite  element  method.  Thus,  the  domain  of  x  is  divided 

into  M  volume  elements V , called  finite  elements,  and a set  of N global 

nodes  x  and  their  associated  nodal  parameters u.(t).  (We  assume a  Lagrange 

representation  for  now.) For each  element V we  have  a  set  of  local  coordin- 

ates  xk, N local  nodes  xa,  the  asqociated  local  nodal  parameters UR (t),  and 

element  cardinal  basis  functionsTa(x ) .  The  latter  are  called  element  shape 

functions.  The  representation  of  u*(x,t)  in  element Vk is 

k 

* 
j’ 3 

k 

k k  *k 

k k  

The  use  of (49) in  the two types of functional  approximation  methods  will  be 

briefly  outlined. 

Variational  Finite  Element  Method 

We  will  describe  the  Ritz  method for simplicity.  The  variational  formula- 

tion (99) and  (100)  can  be  easily  reformulated  in  terms  of  the  finite  elements. 

Let I be  the  contribution  to  the  integral  functional (99) from element V , k  k 
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given by 

Here ax/ax  represents  the  transformation  Jacobians  for  elements Vk and t h e  

element  boundaries s . The boundary integrals   exis t   only  for   e lements   lying 

on the  global  boundary,  with  contributions coming from those  boundaries S 

that  border  element V . From (126)  one  can then  determine  31  /aut . By 

means of   the  mapping between loca l  and global node  numbers, th i s   can   be  

rewr i t ten   as  a 1  /au , i n  terms of  global  nodal  parameters. The var ia t iona l  

pr incipal  (100) is obtained by summing over a l l  the  elements, i .e . ,  

k 

k i  

i 

k k *k 

k *  
j 

aIk 

j 

C - e o ,  j = 1 t o N .  
k=l  au 

Note tha t   cont r ibu t ions   to  (125) come only from elements  containing  global node 

x and the  resulting  equation  involves  only  the  nodal  parameters  contained 

in  those  elements.   This  insures  sparse  matrices  in  the  solution  of  the 

algebraic  sygtem (125). 

j D  

Residual  Finite Element Methods 

The method of  moments does  not  provide a u s e f u l   f i n i t e  element method, 

since  the  weighting  function is  not  localized. The most popular method is  the 

Galerkin method. Omitting t h e  dependence on t f o r   t h e  moment, i f  xR is the  

local node i n  element V corresponding to   g loba l  node  x it follows from 

(123)  and  (113) tha t   t he   con t r ibu t ion   t o  (113)  from element Vk is 

k 

k 
j' 

If (126) i s  renumbered with a global node  numbering,  and wr i t t en  as Ik i n  

terms of global  nodal  parameters,  then (113) becomes 
j 
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M k  C 1 . 6 0 ,  j = 1 t o  N , 
k=l  

where contr ibut ions  to  (127) again come only from elements  containing node 

X If p a r t  of G(u) had  been  integrated  as  in (112) t o  create boundary 

integrals ,   then  addi t ional  boundary terms would be needed i n  (126) f o r  nodes x 

on the  global  boundary. 

j '  

j 

The l e a s t   s q u a r e s   f i n i t e  element method is  formulated i n  a  manner 

s imi l a r   t o   t he   va r i a t iona l  method,  based on (116). The co l loca t ion   f i n i t e  

element method fol lows  direct ly  by subs t i t u t ion   i n to  (118). If some of   the  

collocation  points l i e  on  element  boundaries,  then Hermite or spl ine 

representations  are  required  to  provide  sufficient smoothness to   ca l cu la t e  

the  operator  G. Lower order   representa t ions   a re   suf f ic ien t   i f   a l l   the   co l loca-  

t ion   po in ts   a re   in   the   in te r ior   o f   e lements .  

j 

An important  advantage  of f i n i t e  element  methods is that   prescr ibed 

boundary conditions on global  boundaries  are  simply  satisfied by se t t i ng   t he  

appropriate  nodal  parameters  equal  to  their  boundary values.  Equations (124) 

or (126) would not  be  calculated  for  those  nodes.  Derivative boundary  condi- 

t ions can  be s a t i s f i e d  by using  Hermite  shape  functions. The  number of un- 

known nodal  parameters  can  be  further  reduced when  some of  the  elements 

conta in   in te r ior  nodes. If x .  i s  an   i n t e r io r  node located  inside element 

V , then (125) (or (127)) i s  the  only  equation  involving u The set of  

e q u a t i o n s   f o r   a l l   t h e   i n t e r i o r  nodes i n  Vk can  be  solved  for   the  inter ior  

nodal  parameters i n  terms of  the  nodal  parameters on the  element  boundary. 

By this   process ,   cal led  condensat ion,   the   f inal  set of  equations  contains 

only  nodal  parameters  associated  with nodes  on interelement  boundaries. 

3 * k 
j '  

CONCLUSION ' 

Fini te   d i f fe rence  methods  have  been discussed from a r a t h e r  unorthodox 

viewpoint . in   order   to   br ing  out   their   re la t ionship  to   funct ional   approximation 
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methods. Let us now examine th i s   r e l a t ionsh ip  by first comparing the  nodal 

f i n i t e   d i f f e r e n c e  method with  the  f ini te   e lement  method. Both methods r e l y  

on a d i s c r e t i z a t i o n   o f   t h e  x domain in to  nodes and the   in t roduct ion  of 

associated  nodal  parameters  to  represent  the unknown function  u(x). I t  i s  

i n   t h e  manner i n  which one obtains  equations  to  solve  for  these  parameters 

t h a t   t h e  two methods diverge. 

The f i n i t e  element method requires  two addi t iona l   d i scre t iza t ions .  One 

is the   d i scre t iza t ion   inherent   in   the   g loba l   func t iona l   approximat ion  which 

permits  an unambiguous evaluation  of  u,   or any operator on u, a t  an   a rb i t ra ry  

point  x. The o ther   d i scre t iza t ion ,  which is  p e c u l i a r   t o   t h e   f i n i t e  element 

method, is the   addi t iona l   d i scre t iza t ion   of   the  x domain in to  volume elements 

that   def ine a piecewise  functional  approximation.  These  three  discretizations 

are   not   independent ,   but   are   interrelated  to   provide  desired smoothness t o   t h e  

approximation  with  the minimum of  complexity. I t  i s  the  achievement  of  these 

two contradictory  goals   that  i s  the  hal lmark  of   the art o f   t h e   f i n i t e  element 

method. Final ly ,  a var ia t ional   or   weighted  res idual  method must be  chosen 

to   def ine  appropriate   integral   funct ionals .  The la t ter   choice  a lso  involves  

some ingenui ty ,   s ince  integrat ion by parts  for  continuous  weighting  functions, 

or  proper  choice  of  collocation  points,   can  lessen  the smoothness requirements. 

The choice  of method i s  thus  a lso  coupled  to   the  three  discret izat ions.  

The conventional  nodal  f inite  difference method i s  e s sen t i a l ly  a 

col locat ion method, with nodes  and collocation  points  al igned  along  coordinate 

l ines  if x is multidimensional. The f ini te   difference  approximations  to   the 

governing  equations  can  be  interpreted  as  resulting from local   funct ional  

approximations. The approximation  can  therefore  vary from po in t   t o   po in t ,  

and even for   individual  terms i n  equations. The a r t   i n   t h e   f i n i t e   d i f f e r e n c e  

method is  t o   u s e   t h i s   g r e a t   f l e x i b i l i t y   t o   o b t a i n   e f f i c i e n t  and s t a b l e  

solut ions.  
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The power o f   t h e   f i n i t e  element method lies i n  its a b i l i t y   t o   h a n d l e  

complex boundaries  through  the freedom i n  choosing  the volume d iscre t iza t ions ,  

and the   ea se   i n   s a t i s fy ing  boundary conditions. An additional  advantage 

e x i s t s  for var ia t iona l  and cer ta in   weighted  res idual  methods,  where we can 

deal   with  operators   of   lower   different ia l   order  and  admit  approximations of 

lower  smoothness. Since a single  global  functional  approximation is required,  

t h e  method appears t o  be less f lexible   in   deal ing  with  the complex physical 

phenomena associated  with  highly  nonlinear  equations,  such  as  those  of  fluid 

dynamics. Some progress  has  recently  been  reported  in  simulating  type 

differencing  ( ref .  22) and upwind differencing  ( ref .  25) w i t h i n   t h e   f i n i t e  

element method. 

The nodal f i n i t e   d i f f e r e n c e  method has   t he   f l ex ib i l i t y   t o  cope with  the 

phenomena associated  with  the  complexities  of  the  equations. On the   o ther  

hand,  boundary condi t ions   can   be   sa t i s f ied   accura te ly   in   p rac t ice   on ly  i f  t he  

boundaries  are  coordinate  surfaces. Here the  recent  work of  Thompson (ref .  24) 

is  generating  coordinate  systems  for  arbitrary  surfaces  gives  promise  to  free 

t h e   f i n i t e   d i f f e r e n c e  method from i t s  major  disadvantage. The use  of  piece- 

wise approximations  (a f i n i t e  element  concept!) to   represent   a rb i ta ry   sur faces  

can also  play an important  role. 

For i n i t i a l  boundary value  problems,  f inite volume differencing can be 

thought of  as   the  subdomain method with  local  functional  approximations.  Since 

i t  a l s o   r e s u l t s   i n  lower order   d i f fe ren t ia l   opera tors ,  it can  be s a i d   t o  

possess   the  other   advantage  a t t r ibuted  to   f ini te   e lement  methods. Actually, 

i t s  a b i l i t y   t o   t r e a t   d i s c o n t i n u i t i e s   e a s i l y   g i v e s  it somewhat of  an  advantage. 

In  conclusion,  finite  element methods are   best   designed  to   handle  complex 

boundaries,   while  f inite  difference methods appear t o  be  superior   for  complex 

equations. Time and fur ther   research will t e l l  i f  one of t h e  methods w i l l  be 

a b l e   t o  overcome its shortcomings and emerge as   c lear ly   super ior   in   so lv ing  

boundary  and i n i t i a l  boundary value  problems. 
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FIGURE I :  ONE-DIMENSIONAL LAGRANGE CARDINAL BASIS FUNCTIONS WITH ONE  INTERIOR NODE 
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