NASA CR- 144899 (NASA-CR-144899) BOLTED JOINTS IN GRAPHITE-EPOXY COMPOSITES (Douglas Aircraft Co., Inc.) 156 p HC A08/MF A01 CSCL 13M N77-15438 Unclas G3/39 11492 BOLTED JOINTS IN GRAPHITE-EPOXY COMPOSITES By L. J. Hart-Smith Prepared under Contract NAS1-13172 by DOUGLAS AIRCRAFT COMPANY, McDONNELL DOUGLAS CORPORATION, Long Beach, California for NATIONAL AFRONAUTICS AND SPACE ADMINISTRATION REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE SEDIMORIES VA 22161 | | • | - | v." | | | | | |---|---|---------------|-----|---|--|---|--| | | | • | | | | • | • | • | j | # NOTICE THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE. . | 1. Report No.
NASA CR-144899 | 2. Government Acces | ssion No. | 3. Recipient's Catalog No. N/77-15438 | |--|--|----------------------------|---------------------------------------| | 4. Title and Subtitle | | | 5. Report Date | | BOLTED JOINTS IN GRAPHITE-EPOXY | COMPOSITES | | JUNE 1976 | | | | | 6. Performing Organization Code | | 7. Author(s) | | | 8. Performing Organization Report No. | | L. J. Hart-Smith | | | or various organization report no. | | 2. 0 | | | 10. Work Unit No. | | 9. Performing Organization Name and Address | | | | | Douglas Aircraft Company, McDonnell Douglas Corporation, | | | 11. Contract or Grant No. | | 3855 Lakewood Blvd, | | | NAS1-13172 | | Long Beach, California 90846. | | | 13. Type of Report and Period Covered | | 12. Sponsoring Agency Name and Address | | | Contractor Report | | National Aeronautics and Space | Administration, | <u> </u> | 14. Sponsoring Agency Code | | Washington, D.C. 20546. | | · | The opening regardy code | | 15. Supplementary Notes | | · | | | | | | | | | | | | | 16. Abstract | | | | | Experimental data gene | - | | ation of bolted joints in | | | | | other data, methods are provided | | for the analysis and design of | | | | | two near-quasi-isotropic patter | | | • • • | | epoxy laminates and hybrid grap | nite-glass/epoxy | laminates were teste | ed. The tests encompassed a | | range of geometries for each la | minate pattern to | cover the three bas | sic failure modes — net section | | tension failure through the bol | t hole, bearing a | nd shearout. Statio | tensile and compressive loads | | were applied. A constant bolt | diameter of 6.35 | mm (0.25 in.) was us | sed in the tests. The inter- | | action of stress concentrations | associated with | multi-row bolted joi | nts was investigated experi- | | mentally by testing single- and | double-row bolte | d joints and open-ho | ole specimens in tension. For | | tension loading, linear interac | tion was found to | exist between the b | earing stress reacted at a given | | bolt hole and the remaining ten | sion stress runni | ng by that hole to b | e reacted elsewhere. The inter- | | action under compressive loading | g was found to be | non-linear. Most o | of the joints tested were of | | double-lap configuration using | regular hexagon-h | ead bolts. Comparit | ive tests were run using single- | | lap bolted joints and double-la | p joints with pin | connections (neithe | er bolt head nor nut) and both of | | these joint types exhibited low | er strengths than | were demonstrated b | by the corresponding double-lap | | joints. The new empirical anal | ysis methods deve | loped here for singl | e-bolt joints are shown to be | | capable of predicting the behav | | | | | (such as different bolt sizes a | | 7 | · · · · · · · · · · · · · · · · · · · | | 17. Key Words (Suggested by Author(s)) | | 18. Distribution Statement | | | Bolted Joints | | 777757-7 | | | Graphite-Epoxy
Composites | | Unclassified - v | inlimited. | | Stress Concentrations | | | | | Experimental Results
Empirical Analyses | | - | | | 19. Security Classif. (of this report) | 20 Security Classif / |) | | | Unclassified | 20. Security Classif. (c
Unclassified | | 21. | ^{*} For sale by the National Technical Information Service, Springfield, Virginia 22151 #### **FOREWARD** This report was prepared by the Douglas Aircraft Company, McDonnell Douglas Corporation, Long Beach, California under the terms of Contract NAS1-13172. The test specimens were fabricated at Douglas and tested at Langley Research Center. The program was sponsored by the National Aeronautics and Space Administration's Langley Research Center, Hampton, Virginia. Mr. M. B. Dow was the Contracting Agency's Technical Monitor. ## CONTENTS | | - | Luge | |---|------|------| | <u>SUMMARY</u> | | . 1 | | INTRODUCTION | | . 2 | | SYMBOLS | | . 43 | | EXPERIMENTAL INVESTIGATION | | . 4 | | TEST SPECIMENS | | . 4 | | Materials | | | | Laminate Pattern Selection | | | | Fabrication Procedures | | | | Configurations | | | | Test Procedures | | | | Failure Modes for Bolted Joints in Composites | | | | TEST RESULTS AND DISCUSSION | | | | | | | | DATA INTERPRETATION AND ANALYSIS | , `• | , 10 | | BASIC LAMINATE STRENGTHS | | . 11 | | ELASTIC ISOTROPIC STRESS CONCENTRATION FACTORS | | . 12 | | a. Loaded Bolt Holes | | . 12 | | b. Open Holes | | | | STRESS CONCENTRATION FACTORS FOR COMPOSITES | | | | a. Loaded Bolt Holes | | | | b. Open Holes | | | | SHEAROUT STRESS CONTOURS | | | | BEARING STRESS CONTOURS | | . 24 | | COMPRESSION BEARING | | | | STRENGTH OF SINGLE-HOLE (ROW) BOLTED JOINTS | | | | STRESS CONCENTRATION INTERACTION (MULTI-ROW BOLTED JOINTS) | | | | DIFFERENCES BETWEEN PROTRUDING HEAD FASTENERS AND PIN CONNECTIONS . | | | | COMPARISON BETWEEN SINGLE-LAP AND DOUBLE-LAP JOINTS | | | | | • | J | | CONCLUDING REMARKS | • | 35 | | REFERENCES | | 39 | | <u>TABLES</u> | | 41 | | ILLUSTRATIONS | | 99 | ## TABLES | Table | | Page | |-------------------------------------|---|-----------| | I | Laminate Patterns and Layup Sequences | . 41 | | IIA & IIB * IIIA & IIIB IVA & IVB | Tension-Through-the-Hole Specimens, All-Graphite Fibers, Epoxy Resin | 2-47 | | VA & VB
VIA & VIB
VIIA & VIIB | Tension-Through-the-Hole Specimens,
S-Glass Longitudinal Plies, Graphite Cross Plies, 4
Epoxy Resin | 8-53 | | VIIIA & VIIIB | Bearing and Shearout Specimens, (Tensile Loading), All-Graphite Fibers, Epoxy Resin | 4-55 | | IXA & IXB | Bearing and Shearout Specimens, (Tensile Loading),
S-Glass Longitudinal Plies, Graphite Cross Plies, 5
Epoxy Resin | 6–57 | | XA & XB | Bearing and Shearout Specimens, (Compressive Loading), All-Graphite Fibers, Epoxy Resin | 8-59 | | XIA & XIB | Bearing and Shearout Specimens, (Compressive Loading),
S-Glass Longitudinal Plies, Graphite Cross Plies, . 60
Epoxy Resin | 0-61 | | XIIA & XIIB | Open-Hole Specimens, (Tensile Loading), All-Graphite Fibers, Epoxy Resin | 2–63 | | XIIIA & XIIIB | Open-Hole Specimens, (Tensile Loading),
S-Glass Longitudinal Plies, Graphite Cross Plies, 64
Epoxy Resin | :
4–65 | | XIVA & XIVB | Interaction Specimens, (Tensile Loading), All-Graphite Fibers, Epoxy Resin | 6-67 | | XVA & XVB | Interaction Specimens, (Tensile Loading),
S-Glass Longitudinal Plies, Graphite Cross Plies, 68
Epoxy Resin | 3–69 | | XVIA & XVIB | Interaction Specimens, (Compressive Loading), All-Graphite Fibers, Epoxy Resin | 0-71 | | XVIIA & XVIIB | Interaction Specimens, (Compressive Loading),
S-Glass Longitudinal Plies, Graphite Cross Plies, 72
Epoxy Resin | 2–73 | | XVIIIA & XVIIIB | Pin Connection Specimens | . 74 | | XIXA & XIXB | Single-Lap Specimens | . 75 | | XX | Monolayer Properties | . 76 | | XXI | Calculated Laminate Material Mechanical Properties | . 77 | | * Note: ' | Tables with A suffix are in S.I. Units; Tables with B suffix | are | | | | | Note: Tables with A suffix are in S.I. Units; Tables with B suffix are in U.S. Customary Units; Tables with neither suffix cover both unit systems. | XXIIA & XXIIB XXIIIA & XXIIIB XXIVA & XXIVB XXVA & XXVB | Tension-Through-the-Hole Specimens, All-Graphite Fibers, Epoxy Resin | 78-85 | |--|--|-------| | XXVIA & XXVIB
XXVIIA & XXVIIB
XXVIIIA & XXVIIIB | Filled-Hole Specimens, (Tensile and Compressive Loading), | 86-91 | | XXIXA & XXIXB
XXXA & XXXB
XXXIA & XXXIB
XXXIIA & XXXIIB | Bearing and Shearout Specimens, (Tensile Loading) All-Graphite Fibers, Epoxy Resin | 92-98 | ## ILLUSTRATIONS | Figu | ire | D | |------|---|------| | 1. | Test Specimen and Set-up for Tension-Through-the-Hole Failure Mode | Page | | 2. | Shearout and Bearing (Tensile) Test Specimens | • | | 3. | Compression Bearing Test Specimen and Fixture | 100 | | 4. | Open-Hole Stress-Concentration Test Coupon (Tensile Loading) | 101 | | 5. | Stress-Concentration Interaction Test Specimen (Tensile and Compressive Loading) | | | 6. | Single-Lap Test Specimen and Minimized Eccentricity Test Set-up (Tensile Loading) | | | 7. | Tension-Through-the-Hole Test Specimens (Graphite/Epoxy) | 105 | | 8. | Tension-Through-the-Hole Test Specimens (Graphite/Glass/Epoxy) | 105 | | 9. | Bearing and Shearout Test Specimens | 100 | | 10. | Stress-Concentration
Interaction Test Specimens | 107 | | 11. | Open-Hole, Compression Bearing, and Single-Lap Test Specimens | 100 | | 12. | Load-Introduction Fixture for Compression of Interaction Specimens . | 110 | | 13. | Lateral Support Fixture for Compression Tests of Interaction Specimens | | | 14. | Modes of Failure for Bolted Joints in Advanced Composites | 112 | | 15. | Geometry of Double-Lap Bolted Joint | 112 | | 16. | Elastic Isotropic Stress Concentration Factors for Loaded Bolt Holes with Reference to Net Section | | | 17. | Elastic Isotropic Stress Concentration Factors for Loaded Bolt Holes, with Reference to Bolt Bearing Area | | | 18. | Influence of Joint Geometry on Elastic Strength of Bolted Joints in Isotropic Material | | | 19. | Elastic Isotropic Stress Concentration Factors for Open Holes in Strips of Finite Width | | | 20. | Influence of Joint Geometry on Elastic Strength of Finite-Width Strips Containing Open Holes | | | 21. | Stress Concentration Factors at Failure for Bolted Joints in Morgan- | 118 | | 22. | Stress Concentration Factors at Failure for Bolted Joints in Morgan-
ite II / Narmco 1004 Graphite-Epoxy (Orthotropic Pattern) | | | 23. | Stress Concentration Factors at Failure for Bolted Joints in Thornel 300 / Narmco 5208 Graphite-Epoxy (Quasi-Isotropic Pattern) | | | 24. | Stress Concentration Factors at Failure for Bolted Joints in Thornel | 121 | | 25. | Influence of Joint Geometry on Predicted Tensile Strengths of Bolted Joints in Composites | |-----|---| | 26. | Influence of Joint Geometry on Net-Section Tension Strengths (Predicted Empirically) for Graphite Epoxies | | 27. | Net-Section Failure Stresses for Thornel 300 / Narmco 5208 Graphite-
Epoxy and S-1014 / Thornel 300 / Narmco 5208 Glass-Graphite-
Epoxy Composite Strips Containing Open Holes | | 28. | Assessment of Scale Effect and Influence of Fiber Pattern on Stress
Concentrations at Filled (Unloaded) Holes in Modmor II / Narmco
1004 Graphite-Epoxy Composite Under Tensile Loading 125 | | 29. | Influence of Fiber Pattern on Tensile Strength of Modmor II / Narmco 1004 Graphite-Epoxy Composite Strips Containing Filled (Unloaded) Holes | | 30. | Influence of Fiber Pattern on Compressive Strength of Modmor II / Narmco 1004 Graphite-Epoxy Composite Strips Containing Filled (Unloaded) Holes | | 31. | Shearout Stress Contours for Various Laminate Patterns of Modmor II / Narmco 1004 Graphite-Epoxy Composites | | 32. | Shearout Stress Contours for Various Laminate Patterns of Modmor II / Thornel 75S / Narmco 1004 Graphite-Epoxy | | 33. | Shearout Stress Contours for Various Laminate Patterns of AVCO 5505 Boron-Epoxy Composite | | 34. | Bearing Stress Contours for Various Laminate Patterns of Modmor II / Narmco 1004 Graphite-Epoxy Composite | | 35. | Bearing Stress Contours for Various Laminate Patterns of Modmor II / Thornel 75S / Narmco 1004 Graphite- Epoxy | | 36. | Bearing Stress Contours for Various Laminate Patterns of Avco 5505 Boron-Epoxy Composite | | 37. | Bearing Stress as Function of Edge Distance to Bolt Diameter Ratio for Thornel 300 / Narmco 5208 Graphite-Epoxy | | 38. | Bearing Stress as Function of Edge Distance to Bolt Diameter Ratio for S-1014 / Thornel 300 / Narmco 5208 Glass-Graphite-Epoxy . 133 | | 39. | Typical Tensile-Bearing Failures of Bolted Joints in Graphite-Epoxy and Glass-Graphite-Epoxy Composites | | 40. | Compressive-Bearing Stresses for Thornel 300 / Narmco 5208 Graphite-
Epoxy and S-1014 / Thornel 300 / Narmco 5208 Glass-Graphite-
Epoxy | | 41. | Typical Failures of Bolted Joints under Compressive Bearing in Graphite-Epoxy and Glass-Graphite-Epoxy Composites 136 | | 42. | Stress Concentration Factors in Bearing and Tension as Functions of Joint Geometry for Graphite-Epoxies | | 43. | Non-Dimensionalized Joint Strengths and Failure Modes as Functions of Joint Geometry for Graphite-Epoxies | 138 | |------------|---|-----| | 44. | Comparison Between Predicted and Observed Joint Strengths for Thornel 300 / Narmco 5208 Graphite-Epoxy | | | 45. | Comparison Between Predicted and Observed Joint Strengths for S-1014 / Thornel 300 / Narmco 5208 Glass-Graphite-Epoxy | , | | 46. | Inter-Relationship Between Failure Modes as a Function of Bolted
Joint Geometry for Graphite-Epoxy Composites | | | 47. | Calculated Interactions Between Bearing and Tension Loads on Two-Row Bolted Joints in Graphite-Epoxy Composites | | | 48-
53. | Experimental Interactions Between Bearing and Tension Loads on Two-Row Bolted Composite Joints | | | 54-
59. | Experimental Interactions Between Bearing and Compression Loads on Two-Row Bolted Composite Joints | | | 60. | Comparison Between Bearing Strengths for Pin-Loading and Regular (Torqued) Bolts | | | 61. | Bearing Damage at Bolt Holes in Graphite-Epoxy Composites | | | 52. | Comparison Between Bolt Bearing Strengths in Single- and Double-
Shear for Graphite-Epoxy Laminates | | | | | | ## BOLTED JOINTS IN GRAPHITE-EPOXY COMPOSITES By L. J. Hart-Smith Douglas Aircraft Company, McDonnell Douglas Corporation ### SUMMARY The objectives of this report are to present the data generated during a comprehensive experimental investigation of bolted joints in graphite-epoxy composites and, by interpreting these and other data, to provide methods for the analysis and design of such joints. The specimens tested incorporated quasi-isotropic and two near quasi-isotropic patterns of the 0, $\pm \pi/4$, $\pi/2$ (0°, ± 45 °, 90°) family. Both all-graphite/epoxy laminates and hybrid graphite-glass/epoxy laminates were tested. The tests encompassed a range of geometries for each laminate pattern to cover the three basic failure modes — net section tension failure through the bolt hole, bearing, and shearout. A constant bolt diameter of 6.35 mm (0.25 inch) was used in the tests. The interaction of stress concentrations associated with multi-row bolted joints was investigated experimentally by testing single— and double—row bolted joints and open—hole specimens in tension. For tensile loading a linear interaction was found to exist between the bearing stress reacted at a given hole and the remaining tension stress running by that hole to be reacted elsewhere. The interaction under compressive loading was found to be non—linear. Most of the joints tested were of double—lap configuration using regular hexagon head bolts. Comparative tests were run using single—lap bolted joints and double—lap joints with pin connections (neither bolt head nor nut) and both of these joint types exhibited lower strengths than were demonstrated by the corresponding double—lap joints. The new empirical analysis methods developed here for single-bolt joints are shown to be capable of predicting the behavior of multi-row joints. These methods are formulated to account for further effects (such as different bolt diameters and different environments) as data become available. ### INTRODUCTION Experience with bolted joints in composite structures for aerospace applications has indicated a need for greater analysis capability in joint design than has been needed for conventional ductile metals. Major problems contributing to this situation are the fact that bolted joints in composites fail at loads which are not close to either perfectly elastic or perfectly plastic predictions and that there is an almost unlimited number of possible combinations of composite material(s) and fiber patterns which may require bolted joints. Prior work in this area has been fragmented and too specific to provide a simple rational analysis method applicable to arbitrary composite joints. However, prior work has characterized the various failure modes and identified both the dominant factors and the joint parameters associated with such joints. This prior knowledge makes it possible to confine attention to ranges of joint parameters near the optimums and to plan an in-depth experimental study in association with the development of analysis methods, both to explain the tests and to predict the capability of joint geometries other than those for which test data exist. The purpose of this investigation was to conduct a series of tests on bolted joints in graphite-epoxy composites and develop empirical analysis methods. The fiber patterns tested include the quasi-isotropic pattern and two near-isotropic patterns. The graphite-epoxy used (Thornel 300 / Narmco 5208) is a current high-strength material of moderate modulus and is used widely throughout the composites industry. About one half of the specimens tested were from laminates that had the fibers aligned with the load direction replaced by S-glass. These hybrid laminates exhibited greater stress concentration relief at bolt holes than did the all-graphite materials. The findings of this investigation are supplemented with those from prior work. Conventional fabrication and testing techniques were used throughout. The laminates for each pattern and material combination were cured in large single sheets to minimize any effect of processing variables. Most of the test specimens were so designed as to permit the generation of multiple results from each. The test specimens covered the entire range of joint geometries of practical interest. The tests were conducted at room temperature. The experimental investigation employed a single bolt diameter, 6.35 mm (0.25 in.), throughout. Therefore the specific strength values derived do not account for the known sensitivity to scale effect for bolts of other sizes. The analysis techniques developed permit straightforward extension to account for such effects as operating temperature and bolt diameter, as well as to other composite
material systems, once the appropriate test data have been generated. While a considerable body of information about experiments on bolted joints in composite structures can be found in the literature, there appears to be no other comparable analytical investigation. The analyses which have been reported are mostly of finite elements and, as such, apply to specific situations which are covered in greater depth than is possible with the empirical methods developed here, but which do not lend themselves to such comprehensive parametric studies as the empirical methods permit. The significance of the material presented in this report is that empirical analysis methods have been developed for bolted joints in graphite-epoxy composites and that these methods cover a range of geometries, fiber patterns and material combinations of practical interest so that efficient joints can be designed. The methods are applicable to both single- and multiple-bolt joints and are capable of extension to account for other factors and new material systems as data become available. The test program employed here can serve as a model to account for such variables as new composite materials, larger bolt diameters, and different operating environments. The units used for physical quantities in this report are given both in U.S. Customary Units and in the International System of Units (SI) (ref. 1). #### SYMBOLS C constant d bolt diameter e edge distance from middle of bolt $F_{br} \qquad \text{material allowable bearing strength}$ $F_{tu} \qquad \text{material allowable tensile ultimate strength}$ $k_{b}, k_{r} \qquad \text{interaction coefficients (defined in equation 26)}$ k bc composite stress concentration factor at failure, with respect to bearing stress k_{be} elastic isotropic stress concentration factor, with respect to bearing stress k tc composite stress concentration factor at failure, with respect to net section tension stress k te elastic isotropic stress concentration factor, with respect to net section tension stress P 1oad t laminate thickness specimen width coefficient (defined in equation 2) Θ laminate tensile stress laminate bearing stress $\sigma_{\mathbf{h}}$ laminate in-plane shear stress ### EXPERIMENTAL INVESTIGATION This section of the report explains the choice of materials and fiber patterns employed in this program, describes the test specimens, the test procedures, and the characteristic failure modes, and presents a compilation of the test results. These results are interpreted in the succeeding section. The test results are classified here according to failure mode. ### TEST SPECIMENS #### Materials The laminates from which the bolted joint specimens were fabricated were made of the Thornel 300 / Narmco 5208 graphite-epoxy composite. This material was selected because of its widespread use throughout the U.S. composites industry at the start of this program. It is a high-strength material of intermediate modulus and has been found to have such a mix of properties as to make it attractive for aerospace applications. About half of the specimens had the longitudinal plies replaced by S-1014 glass fibers impregnated with the same Narmco 5208 resin. All cross plies ($\pm \pi/4$ and $\pi/2$) were graphite. The compos- ite material from which the laminates were fabricated was in the form of 7.62 cm (3.0 in.) unidirectional prepreg tapes. #### Laminate Pattern Selection Three fiber patterns were selected for this program. Six laminates were fabricated since each pattern was used in both the all-graphite and mixed graphite-glass composites. The fiber patterns and layup sequences are identified in table I. The layup sequences were selected to intersperse the ply orientations as thoroughly as possible so as to minimize the number of parallel adjacent plies and, thereby, to minimize the matrix stresses. The three fiber patterns were selected on the basis of a previously unpublished investigation by the contractor. The results of that investigation are reported in this paper. In that systematic survey of the bearing and shearout strengths of bolted joints, it was found that the optimum fiber patterns grouped about the quasi-isotropic combination. #### Fabrication Procedures The method of fabrication was as follows. Large flat panels were laid up for each fiber pattern and laminate thickness. The composites were cured conventionally in an autoclave. These panels were cut into several smaller pieces, one for each specimen configuration. Each of these pieces then had the aluminum doublers bonded to it in long continuous strips. The adhesive used was either FM-73 or EA9309. These pieces were then cut to the correct specimen length and slit to the appropriate widths, using a diamond-coated slitting wheel. Except for the bolt holes drilled at the NASA Langley Research Center (see fig. 1), all bolt holes were drilled by the contractor with carbide-tipped drills, drilling through part of the way from one side and then coming back from the other to minimize breakout. The holes which were drilled at NASA Langley were made with a diamond core drill using ultrasonic excitation. While all of the holes were satisfactory, and the test results do not favor one method over the other, the diamond-drilled holes were slightly cleaner when inspected visually. The techniques to ensure that the holes were properly located was to establish fixed index blocks on the drilling machine so that the holes were always located identically with respect to the ends and sides of the specimens. Each setup was checked on scrap material before the specimens were drilled. Those specimens with bonded aluminum doublers were set up in a milling machine to trim the metal doublers with a fly-cutter so that they were parallel to the opposite face of the composite laminate and so that the composite laminate was located centrally within the doublers. This machining was done to ensure that the loads were applied properly. ## Configurations The test specimens and fixtures used in this program are shown in figures 1 to 13. Each test specimen is explained below. Bolts of 6.35 mm (0.25 in.) were used throughout the tests. Net-tension specimens.— The test specimens illustrated in figures 1, 7 and 8 were proportioned to induce failure by tension through the bolt hole. A range of values of each of the geometric ratios d/w and e/w was covered with the objective of testing at a variety of stress concentration factors. Specimens of three widths (3, 4 and 6 times the bolt diameter), each having two or three edge distances were tested for each of the six laminates. The bolts were loaded in double shear. A total of 36 specimens was tested in this part of the investigation, with each specimen providing four or six data points. Bearing and shearout specimens.— The test specimens shown in figures 2 and 9 were of sufficient width (10 bolt diameters) to preclude tension failures for the laminate patterns tested. Double—shear tests were performed at edge distances of two, four, six and eight bolt diameters to encompass both shearout failures, in which the proximity of the end of the specimen was sufficient to limit the joint strength, and bearing failures, in which all boundaries of the specimen were sufficiently far removed to permit the maximum strength possible to be developed. Twelve specimens, each with four test holes, were used to assess the resistance to shearout and bearing under tension loads. Figures 3 and 11 depict the specimen and test fixture used for applying a compressive bearing load. Twelve of these specimens were tested. The bolts were loaded in double shear. Open-hole specimens. - Figures 4 and 11 show the test specimens which were used to measure the strengths of each laminate in a strip containing an open hole. The strip width was four times the bolt diameter. Twelve of these specimens were tested, each having the same geometry and providing two data points per specimen. Multi-bolt interaction specimens.— Figures 5 and 10 show the two-row bolted joint specimens employed to investigate the interaction between stress concentrations when some of the total load is reacted by any given bolt while the remainder of the load passes by to be reacted at the other bolt hole(s). Both tensile and compressive loads were applied. Forty eight such specimens were tested, twenty four each in tension and compression. The selection of two bolts and uniformly thick laminates in this specimen was to ensure that the load reacted at each bolt would be known even though the load paths were redundant. With this design, the load must be shared equally between the two bolts. The bolt holes were drilled right through the three laminates simultaneously to ensure that the bolts were a precision fit in the holes. Indeed, the bolts were selected on a hole-by-hole basis to improve the fit. Figures 12 and 13 illustrate the fixtures employed to load these specimens in compression. The fixture in figure 13 provided lateral support for the compression specimens. <u>Pin-joint specimens.-</u> Two quasi-isotropic specimens of the type shown for bearing and shearout in figure 2 were tested with the load transferred by a simple pin, instead of the conventional mechanical fasteners, to quantify just how much additional load transfer is accomplished because of the bolt head and nut. <u>Single-lap shear specimens.</u> Four quasi-isotropic all-graphite specimens were made and tested in tension as shown in figure 7. The special test fixture was designed to eliminate the laminate bending usually associated with single-shear single-row bolted joints. #### Test Procedures The bolts used throughout the tests were NAS 464-4 6.35 mm (0.25 in.) titanium alloy heat treated to 1100-1240 MPascal (160-180 ksi). New bolts were used for each test to preclude the possibility of accumulated bolt distortion affecting the results. The bolts were torqued to 2.8 N.m (25 in-1b), which is the normal tightening torque for such
bolts in composite applications. The method for testing those specimens containing two or more bolt holes at each end of the specimen was as follows. The load was always reacted at the central bolt hole through the doublers. The outermost holes were tested first and the specimens were then cut back as shown in figures 1 and 2 for the succeeding tests. The testing of the open-hole specimens in figure 4 was accomplished by pulling between each adjacent pair of large holes in turn. The method of introducing and reacting the load for the compression bearing specimens is evident from the test fixture illustrated in figure 3. Likewise, the loading of the single-lap joint specimens is explained in figure 6. The testing of the tension interaction specimens posed no special problems. The fixture in figure 12 was used to load the compression interaction specimens. The load-introduction members contain a threaded hole, in the middle of their round bases, which was used to locate the fixtures correctly with respect to the loading platens of the test machine. The lateral-support fixture shown in figure 13 rode on the specimen itself. ## Failure Modes for Bolted Joints in Composites Figure 14 illustrates characteristic modes of failure for bolted joints in advanced filamentary composites. The basic modes of tension through the net section, shearout, cleavage, and bearing are governed by both geometric and material parameters. It is necessary to consider each of these failure modes in interpreting test data and in evaluating designs. In many instances a failure can occur in a combination of modes rather than in a single form. #### TEST RESULTS AND DISCUSSION The results of the specimen tests are reported in tables II to XIX. These various tables include both raw data and derived data as well as an identification of the mode of failure. The following observations are made on the data from the present investigation. Net-tension specimens (tables II to VII). The net section (tension-through-the-hole) stresses are significantly less than the ultimate laminate stresses, indicating the presence of stress concentration factors at failure. The failure loads and net-section stresses are functions of the geometric parameters d/w and e/w. The joint strengths do not vary much between any of these fiber pattern and material combinations tested, but the modes of failure did vary. The widest (six bolt diameters) of the all-graphite laminates all failed in bearing, regardless of the edge distance, while the two narrower sets of such specimens (three and four bolt diameters) nearly all failed in tension, with a few bearing failures at large edge distances. In contrast with this behavior, the graphite-glass epoxy laminates exhibited no tension failures at all. This latter group failed predominantly by bearing for the larger edge distances and by shearout when the bolt was installed close to the end of the specimen (at two bolt diameters from the edge). Bearing and shearout specimens (tables VIII to XI).— The bearing stresses at failure were typically of the order of 830 MPascal (120 ksi) regardless of fiber pattern or material. Most results were scattered throughout the range 690 to 970 MPascal (100 to 140 ksi). These results show that the fiber patterns tested represent a strength plateau which is insensitive to minor fiber pattern changes. The use of the softer glass plies in the longitudinal direction does not impose any loss in either bearing or tension strength but does tend to ensure that any failures at stress concentrations in such laminates will be local rather than potentially widespread and catastrophic due to a tension crack in an all-graphite laminate. The influence of shearout as a distinct mode other than a bearing failure is slight, being evident only for the orthotropic all-graphite laminates at the shortest edge distance tested, namely two bolt diameters. All other failures in this series of tests were by bearing. The bearing strengths under compression were only slightly higher than for tensile bearing (despite the grossly different stress trajectories) for the all-graphite epoxy laminates but the strengths for the graphite-glass epoxy laminates under compressive bearing showed about a 20 per cent improvement with respect to tensile bearing. Open-hole specimens (tables XII and XIII).— The graphite-glass epoxy laminates were consistently about 25 per cent stronger than the equivalent all-graphite epoxy specimen of the same fiber pattern. The net-section strengths for these 4d wide strips were about twice as high as those strips of the same width containing a loaded bolt hole. This result was expected because the stress concentration factors at loaded holes are typically much more severe than for unloaded holes. The fiber pattern had a measurable influence on the strength attained, pattern 3 being slightly stronger than pattern 2 which was stronger than pattern 1. The patterns 6, 5 and 4 were ranked similarly. The holes caused failures at stresses significantly below the ultimate laminate strengths for each pattern and material combination. Multi-bolt interaction specimens (tables XIV to XVII).— The most significant finding of the investigation of the two-row bolted joints is that the strengths were not very much higher than those of a single-row joint in an all-graphite specimen of the same width (four bolt diameters). The failure mode, net tension, was the same in each case. This similarity of failure loads means that the combination of the stress concentration induced by the load to the second bolt bypassing the first bolt and the stress concentration caused by the load in the first bolt itself is nearly as bad as that induced by reacting the entire load at a single bolt hole. The two-hole graphite-glass epoxy specimens exhibited higher strengths than for the single-hole specimens by as much as fifty percent, demonstrating again an advantage for the graphite-glass combination over the all-graphite reinforced composite. The compression loads sustained by these interaction specimens were consistently higher than for tensile loading. <u>Pin-connection test specimens (table XVIII)</u>. The bearing strengths developed by pin loading of the holes in the quasi-isotropic all-graphite laminates were only about half as high as for the same specimens with conventional bolts. Single-lap test specimens (table XIX).— The bearing strengths at failure with single shear bolts were about 690 MPascal (100 ksi) or about twenty percent lower than for double shear. This results applies when the bolt is able to deflect due to the local eccentricity in load path but the basic laminate is relieved from the gross bending moment usually associated with single-lap joints by the special fixture shown in figure 6. ### DATA INTERPRETATION AND ANALYSIS METHODS This section of the report begins with a listing of the basic laminate strengths which have been computed to serve as a basis for the establishment of stress concentration factors at failure. The purpose of the succeeding analyses for each of the characteristic failure modes is to generate methods and understanding which will permit the generalization of specific test data to joint geometries for which test data are not available. Each of the basic failure modes (tension-through-the-hole, shearout, and bearing) is then assessed in turn. The test data from the present investigation are supplemented * where appropriate by other results, given in the appendices where the source references are identified. The analysis for tension failures is in two parts. The first is for the elastic isotropic stress concentration factors and serves as the basis for all such analyses. Correlation factors between such elastic isotropic stress concentration factors and those observed at failure in composites are then established from test data. An isotropic elastic stress concentration reference is used for both quasi-isotropic laminates and orthotropic laminates in which the material axes coincide with the load and geometric axes because, for the specific area of interest, such orthotropy could be represented by a proportionality constant. The values of such correlation factors between the stress concentration factors are found to depend on both the composite material and the fiber pattern. The joint geometries at which transitions between failure modes occur are, likewise, found to be a function of both the composite material and fiber pattern. The various analyses for each individual failure mode for single bolted joints are then integrated into a method for preparing design charts covering the entire range of possible geometries and depicting over which regime each mode of failure prevails. The data interpretation and analysis section then proceeds to address the problem of load sharing at multi-row bolted joints. The test data generated on two-row bolted joints are combined with those for single-row bolted joints and open holes, for each of the six laminates, to explain a linear interaction theory for those cases in which the failure mode is net tension. For wider bolt spacings, the failure can be bearing. A technique is proposed for accounting for a transition between bearing and tension failures in such cases. ### BASIC LAMINATE STRENGTHS The basic laminate strengths for the materials tested in this investigation have been computed using the monolayer data in table XX. The computer program used to compute laminate properties in terms of such experimentally derived monolayer data employs a modified Hill's criterion to establish the load level at which some ply first becomes critical. Because of the much higher elongation of the glass fibers than the graphite fibers, an initial failure in a cross ply need not denote the maximum load capacity of the laminate. Indeed, the original computations for the strength of the hybrid graphite-glass/epoxy laminates predicted failures at lower loads than the 0 (0°) glass fibers
alone could carry. Therefore, the program was modified to predict failure at the second fiber failure instead of the first in the event that, after the cross plies $(\pm \pi/4)$ $(\pm 45^{\circ})$ had failed, the remaining fibers could withstand a higher load than that at which the initial failure was predicted. (It is believed that the failure of the $\pm \pi/4$ $(\pm 45^{\circ})$ graphite fibers prior to the failure of the 0 (0°) glass fibers is responsible for the preponderance of bearing failures for the hybrid laminates rather than the tension failures demonstrated by the all-graphite laminates having the same joint geometries). The average failure strengths and moduli predicted for each of the six laminates used in this program are given in table XXI. These strengths serve as the basis for the calculated stress concentration factors in composites at failure. ### ELASTIC ISOTROPIC STRESS CONCENTRATION FACTORS #### a. Loaded Bolt Holes The experimental data of Frocht and Hill (ref. 2), along with the theoretical investigations cited below, provide a means of establishing an empirical equation for the stress concentrations at lightly loaded bolt holes. Such an equation applies within the elastic regime for isotropic materials. At higher load levels the ductile materials, such as aluminum alloys, yield locally to reduce the stress concentrations at bolt holes. Composites, likewise, exhibit lower stress concentrations at failure than would be predicted from linear elastic theory. However, because of the more limited extensibility of composites in comparison with that of ductile metals, the stress concentration factors at failure for composites are much higher than for ductile metals. Consequently it is incorrect to perform stress analyses on bolted joints in fiber-reinforced composites by assuming that the net sections of the members being joined are uniformly stressed at the yield stress (or at any other uniform stress, for that matter), as is commonly assumed for metal practice. The objective of this section is to develop the basis of analyses for bolted joints in graphite-epoxy composite laminates in such a form that the stress concentration factors at failure can be accounted for. The elastic isotropic stress concentration factor at a loaded bolt hole is given here by the equation $$k_{te} = 2 + (\frac{w}{d} - 1) - 1.5 \frac{(w/d - 1)}{(w/d + 1)} \Theta$$ (1) in which the parameter θ is defined as $$0 = 1.5 - 0.5/(e/w)$$ for $e/w \le 1$ $0 = 1$ for $e/w \ge 1$ The various geometric parameters are identified in figure 15. The maximum stress in the plate, adjacent to the bolt hole on the diameter perpendicular to the load direction, is given by $$\sigma_{\text{max}} = k_{\text{te}} \frac{P}{t(w-d)}$$ (3) In this and all other mention of stress concentration factors in this report, the stress concentration factor is evaluated with respect to the net rather than gross section. Equations (1) and (2) lose their physical significance for $d \rightarrow w$ and for $e \rightarrow d/2$. For values of e not much greater than d/2 the critical stress condition is one of shearout or cleavage rather than of tension through the hole and it is necessary to account for these different failure modes separately to identify which is more critical for a particular geometry. For the limiting case in which $d/w \rightarrow 0$ (and e is not so small as to make shearout or cleavage critical) the failure mode will be in bearing but, even so, equation (1) correctly characterizes the tension stress in the laminate next to the loaded bolt hole. Equation (1) above can be re-expressed with respect to the bearing area, instead of the net tension area, so that $$k_{be} = \frac{\sigma_{max}}{P/td} = \frac{k_{te}}{(w/d - 1)} = 1 + \frac{2}{(w/d - 1)} - \frac{1.5 \Theta}{(w/d + 1)}$$ (4) Equations (1) and (4) are derived as follows. The limiting value of unity for $k_{\mbox{\scriptsize be}}^{\mbox{\scriptsize in an infinite plate is adopted from figure 7 of reference 2 in which it is$ attributed to theoretical investigations by Bickley (ref. 3) and by Knight (ref. 4). The limiting value $k_{te} = 2$ as the hole diameter approaches the width of a finite strip is also based on theory. Koiter (ref. 5) computed this limiting value for a large open hole in a narrow strip. Since there is no contact on the sides of a loose or net fit bolt hole, nothing in his analysis would be changed by reacting the load at one end by a bolt instead of the entire section. Therefore the same value should apply here also. The equations were also made to produce values of $k_{te} = k_{be} = 2.5$ for d/w = 0.5 and $e/w \ge 1$ to comply with the other of Knight's theoretical computations. In addition to these discrete points, the equations were selected to conform with the general trend of the experimental data of Frocht and Hill in figures 5 to 7 of reference 2. final constraints imposed on equations (1) and (4) are the physically necessary ones that k_{he} is a monotonically increasing function of d/w and that $d(k_{he})$ / d(d/w) = 0 as $d/w \rightarrow 0$. Likewise, k_{te} is a monotonically decreasing function of d/w. The form of the function Θ in equation (2) is such that, for an infinitely wide plate containing a loaded bolt hole within a finite distance of the edge of the plate, $$k_{be} \rightarrow 1 + \frac{3}{4} / \left(\frac{e}{d}\right)$$ as $\frac{d}{w} \rightarrow 0$ (5) This relation satisfies the obvious requirements that $k_{\mbox{\footnotesize{be}}} \to \infty$ for e/d \to 0 because the bolt would pull straight out of the half hole at the end of the laminate with no resistance and that the effect of the e/d ratio should become increasingly small as the value of that ratio becomes progressively larger. This constant 3/4 was deduced here largely by curve fitting the Frocht and Hill data (ref. 2) for e/w \simeq 1/3 and e/w \simeq 1/2 for moderate rather than small values of d/w because no more appropriate data is yet available. Figures 16 and 17 depict equations (1) and (4). The experimental data of, and reported by, Frocht and Hill (ref. 2) are included in these figures. The dominant influence is clearly the d/w term in both equations while the e/w or e/d term has but a minor influence. In order to adapt the equations above for single loaded bolt holes to the situation prevailing at multi-row bolted joints, it is necessary to understand the stress trajectories in the immediate vicinity of the bolt hole. Bickley (ref. 3) has performed analytical studies on the elastic isotropic stress concentrations around loaded bolt holes. These investigations have established that the hoop tension stress adjacent to the bearing perimeter of the bolt is of the order of the average bolt bearing stress P/dt from a to c and on to the mirror image of a on diameter bb in figure 15. The bearing stress varies from about 2P/dt in the middle of the contact area (point c in figure 15) to zero on the edges (point a and opposite) for a loose or net fit bolt. In order to derive expressions for the ratio of the strengths of bolted joints to the strength of the basic laminate containing the joint, it is necessary to rearrange equation (1) to read $$P = \frac{\sigma_{\text{max}}^{\text{tw}}}{\left(1 - \frac{d}{w}\right) + \frac{1}{\left(\frac{d}{w}\right)} - \frac{1.5\Theta}{\left(1 + \frac{d}{w}\right)}}$$ (6) Equation (6) permits an assessment of the influence of the joint geometry on the joint strength and is plotted nondimensionally in figure 18. It can be seen that, for a given maximum stress in the plate, the load carried is maximized when $$d/w = 0.40$$ (7) This corresponds with a bolt pitch of approximately 2.5 bolt diameters which, on the basis of this interpretation of the stress concentrations at loaded bolt holes in elastic isotropic materials, would appear to be the optimum bolt pitch. (The customary bolt pitch of 4d established for ductile metals has been established largely on the basis of ultimate static strength). Figure 18 indicates that the bolted joint strength is fairly insensitive to minor variations about the optimum location and that the maximum possible joint efficiency for a brittle elastic isotropic material barely exceeds 20 per cent. ### b. Open Holes The stress concentration factor at the net section of a strip containing an unloaded hole is needed for the assessment of the interaction of stress concentrations at multi-row bolted joints in loaded plates. The equation proposed here for a hole in a strip is $$k_{te} = 2 + \left(1 - \frac{d}{w}\right)^3$$ (8) Corresponding with this, one can compute the net section strengths as a function of the hole diameter to width ratio. The strength of the net section can be non-dimensionalized to read $$\frac{P}{\sigma_{\text{max}} wt} = \frac{\left(1 - \frac{d}{w}\right)}{k_{\text{te}}} = \frac{\left(1 - \frac{d}{w}\right)}{2 + \left(1 - \frac{d}{w}\right)^3}$$ (9) Equation (8) was derived as follows. An obvious constraint is the classical solution that $k_{\text{te}} = 3$ as $d/w \to 0$, which is attributed to Kirsch in 1898 by Timoshenko (ref. 6). Another constraint is the theoretical value of $k_{\text{te}} \to 2$ as $d/w \to 1$ deduced by Koiter (ref. 5). (This value has been confirmed experimentally by Wahl and Beeuwkes (ref. 7)). A third constraint is not evident from equation (8) and requires an assessment of equation (9). On physical grounds one should assume both that P is greater for $d/w \to 0$ than for any greater value of d/w and that d(P)/d(d/w) is zero as $d/w \to 0$. Equation (9) satisfies all of these constraints and, thereby, lends confidence to the simple equation (8). Equations (8) and (9) are plotted in figures 19 and 20, along with largely photoelastic data from references 7 and 8. ## STRESS CONCENTRATION FACTORS FOR COMPOSITES #### a. Loaded Bolt Holes Narrow composite strips and wide panels with relatively close bolt pitches tend to fail under load by
tension of the net section through the bolt hole(s) (see fig. 14). The failure stresses are usually considerably less than the basic laminate strengths and the reason for this is the limited stress concentration relief associated with advanced composite materials. Consequently, the tension failure stress for composites is a function of the local stress concentration, and hence of the joint geometry, as well as of the material and fiber pattern. Some of the early investigations into bolted joints in advanced filamentary composites are still reported in reference 9 (Volume II, Analysis, figures 2.4.2-15 to -17) in terms of an "allowable" net-section design strength supposedly applicable for all joint geometries. It is suggested here that the considerable scatter shown in those diagrams should be explained in terms of the influence of joint geometry on the net-section failure stress. Otherwise, the use of those data in the form presented in reference 9 will lead to some designs which are excessively conservative and to others which are dangerously unconservative. In references 10 and 11 it is suggested that a linear relationship exists between the elastic isotropic stress concentration factors for low load levels and the stress concentrations at failure of bolted composite joints of the same geometry. The basis of this linear relationship is illustrated in figures 21 and 22 which have been replotted from reference 12 using the stress concentration equations (1) and (2). The stress concentration factors k_{tc} were evaluated with respect to experimentally determined laminate strengths. The straight lines have been constrained to pass through the point (1,1), for which there is no stress concentration at any load level, with a slope evaluated by minimization of the squares of the deviations between individual points and the lines. A straight line is employed because the degree of scatter does not justify any more complex representation. The test data on which figures 21 and 22 are based are recorded in tables XXII to XXV of the appendix. The open-hole data have been included with the loaded-hole data to show that, at least as far as the net section through the bolt hole is concerned, the origin of the stress concentration is not important. Much the same proportional reduction in stress concentration at failure of the composite is shown for both the loaded and unloaded holes. Therefore, it is reasonable to assume that two bolted joints having different geometries but the same elastic isotropic stress concentrations (by compensating differences in the d/w and e/w ratios) would experience similar stress concentrations at failure also. The justification offered for plotting measured orthotropic stress concentration factors at failure of the non-isotropic material in figure 22 against calculated elastic isotropic stress concentration factors is as follows. When attention is confined to only the net section through the bolt hole perpendicular to the load direction and the axes of material orthotropy are the same as the geometric axes of the joint (length and width), the difference between the elastic isotropic stress concentration factors and the corresponding elastic orthotropic stress concentration factors is merely a proportionality constant. This constant can be just as conveniently accounted for in the slope of the line in figure 22, without having to evaluate the constant, as by determining its value and rescaling the abscissa of such a figure. Test data for the present program, from tables II to IV, are depicted in figures 23 and 24, showing how the stress concentrations at failure compare with the calculated elastic isotropic stress concentrations. The equations used to characterize the stress concentrations are as follows: Quasi-isotropic Thornel 300 / Narmco 5208 (0, $\pi/4$, $\pi/2$, $-\pi/4$)_s $k_{tc} = 0.73 + 0.27 k_{te}$ Orthotropic Thornel 300 / Narmco 5208 $$(0, \pi/4, \pi/2, 0, -\pi/4, \pi/2, 0, \pi/4)_{s} & (0, \pi/4, 0, -\pi/4, \pi/2, \pi/4, 0, -\pi/4)_{s}$$ $$k_{tc} = 0.60 + 0.41 k_{te}$$ (11) The similarity of the results for patterns 2 and 3 results from the similar elastic moduli and strengths (see table XXI). The hybrid glass-graphite/epoxy laminates did not fail in tension for this program so no stress concentration values could be calculated. The equations corresponding with equations (10) and (11) for the Morganite II / Narmco 1004 system, for which the results are presented in figures 21 and 22 are as follows: Quasi-isotropic Morganite II / Narmco 1004 (0, $\pi/4$, $\pi/2$, $-\pi/4$)_s $$k_{tc} = 0.75 + 0.25 k_{te}$$ (12) (10) Orthotropic Morganite II / Narmco 1004 (0, $\pi/4$, 0, $-\pi/4$)_S $$k_{tc} = 0.54 + 0.46 k_{te}$$ (13) These equations (12) and (13) should not be expected to apply also to the similar Modmor II / Narmco 1004 graphite epoxy (Narmco 5206) material because of a significant change in interlaminar shear strength between the two systems. Figures 23 and 24 include test data for bearing failures as well as the tension failures respresented by equations (10) and (11). The reason why these data contribute confidence to the coefficients in equations (10) and (11) is as follows. If a joint specimen fails in bearing rather than tension, the computed value of $k_{\rm tc}$ would necessarily be higher than that which would have been exhibited during a tension failure. Therefore, those data in figures 23 and 24 pertaining to bearing failures should lie consistently above the lines denoting equations (10) and (11). This is seen to be so. Furthermore, an examination of figures 23 and 24 shows that the transition between tension and bearing failures for these composite laminates occurs for joint geometries having $k_{\rm te}$ values of about 5.5 and that the bearing data diverge progressively more from the lines plotted for tension failures with still greater values of the stress concentration factor $k_{\rm te}$. (The data plotted in figures 21 and 22 are complete. Bearing and tension results for that investigation were indistinguishible). In equations (10) to (13) the net-section strength is related to the material and geometric properties of the joint in terms of the equation $$P = \frac{(w - d)tF_{tu}}{k_{tc}}$$ (14) The application of the concepts described above is explained as follows. An elastic isotropic stress concentration factor is evaluated for any specific geometry under consideration, using equations (1) and (2). Then, for the particular material system being assessed, the corresponding stress-concentration factor in the composite laminate at failure is evaluated by means of an equation such as equation (10). This design method does not require the testing of each and every joint geometry being assessed. The test data from selected geometries can thus be generalized to other geometries, which were not tested, by working in terms of the stress concentrations. As more data become available, the coefficients in equations (10) to (13) and the like can be expanded to account for such effects as different environments and different bolt diameters. Composite materials have been shown in figures 21 and 23 to exhibit lower stress concentrations at failure than linear elastic theory would predict. Therefore, it is appropriate to redefine equation (6) as follows, for composite materials. $$\frac{P}{F_{tu}^{tw}} = \left(1 - \frac{d}{w}\right) / k_{tc}$$ (15) Equation (15) is plotted in figure 25, in which the relationship between \mathbf{k}_{te} and \mathbf{k}_{te} is of the form $$(k_{tc} - 1) = CONSTANT \times (k_{te} - 1)$$ (16) The values of the constant shown in figure 25 are 0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1. Three features in figure 25 are noted. The first is that the smaller values of the constant are associated with higher joint strengths for a given common laminate strength F_{tu} because k_{tc} is less than k_{te} . The second feature is that the optimum value of $exttt{d/w}$ changes as the stress concentrations decrease close to the limiting fully-plastic case. Whereas the optimum d/w ratio is 0.40 for a perfectly-elastic isotropic material, that optimum is closer to 0.30 for the quasi-isotropic composites tested in this program since the constant in equation (16) is, in that case, given by equation (8) as 0.27. The optimum for the two orthotropic laminate patterns tested in the present program is, likewise, found to be at $d/w \simeq 0.35$. This shows that the optimum joint geometry (dominated by the d/w ratio) is a function of both the material system and fiber pat-The third feature of figure 25 is that the stress concentration relief exhibited by the graphite-epoxy laminates is sufficient to double the optimum bolted joint strength for the quasi-isotropic laminates tested (with respect to predictions for a brittle elastic isotropic material) from just over 20 percent of the basic material strength to 42 percent. The radial lines from the origin in figure 25 denote lines of constant bearing strength $F_{\mbox{\scriptsize br}}$. The predominant failure mode for small d/w ratios is usually bearing, rather than tension, so the tension strengths predicted in that portion of figure 25 can not usually (Bearing failures are discussed in a later section of this report). Because figure 25 is plotted in non-dimensionalized form, it does not provide a convenient quantitative comparison between the potential strengths of the different laminate patterns tested during the present program. Figures 26 have been prepared to afford such a comparison, taking into account the different basic laminate strengths for the all-graphite composites. #### b. Open Holes The test data from the present investigation, pertaining to tension failures at unloaded holes, are recorded in tables XII and XIII and are illustrated in figure 27. The results for the all-graphite laminates all represent tension- through-the-hole failures. However, none of those coupons with
glass fibers show any evidence of tension failure. All of this latter group show classical shearout failues in the 0 (0°) direction originating at the sides of the holes. It is not possible to make deductions about the tensile failure of graphite-glass hybrid laminates at stress concentrations on the basis of these data. The stress concentration factors for the present all-graphite specimens have been calculated to lie in the range 1.5 to 2.0 at failure and are significantly lower than the stress concentration factors calculated for loaded bolt holes in equivalent specimens. These results are shown in the lower left corners of figures 23 and 24, using equation (8) to compute the elastic isotropic stress concentration factors $k_{\rm te}$. Figure 21, likewise, includes open-hole results in the lower left corner and these are seen to be compatible with the line plotted to fit the loaded hole results. The results of the present investigation are supplemented by some previously unpublished tests on filled (but unloaded) holes in the Modmor II / Narmco 1004 graphite-epoxy encompassing a far wider range of fiber patterns than was tested here. These results (see tables XXVI to XXVIII of this report), obtained by the contractor, are illustrated in figures 28 to 30 to show the influence of fiber pattern, hole size, and direction of loading (tension or compression) on the strength of graphite-epoxy laminates. The test specimen used for both the specimens with the holes and the basic laminate control specimens was a honeycomb sandwich beam under four-point loading. The holes tested were of 6.35 mm'(0.25 in.) diameter in 38.1 mm (1.5 in.) wide strips and 25.4 mm (1.0 in.) diameter in 50.8 mm (2.0 in.). The holes were filled with net-fit pins. Figure 28 presents the tensile test results for both size holes plotted in terms of the ratio of the stress concentration factors observed at failure to the elastic orthotropic stress concentration factors as calculated using equations from reference 9. It is clear both that there is significant stress concentration relief, between low stresses and failure, in all cases and that the larger holes are associated with consistently greater stress concentrations at failure. There is also a clear indication that the maximum relief is achieved with laminates which contain either few or many 0 (0 $^{\circ}$) plies. Figure 28 cannot be used to determine the absolute strength of a laminate with a hole in it because of the variable orthotropic reference strengths. This limitation is overcome in figure 29, in which the net-section strength for the 6.35 mm (0.25 in.) holes is depicted on an absolute basis. The strength increases essentially monotonically with the percentage of 0 (0°) plies. Figure 30 presents the corresponding data for compressive instead of tensile load. The test specimens were honeycomb sandwich beams with 6.35 mm (0.25 in.) holes in the 38.1 mm (1.5 in.) wide facings, just as for the tensile tests. An examination of figures 29, for tensile loading, and 30, for compressive loading, shows that the strength of laminates with unloaded filled holes is lower when loaded in compression than in tension. Since the pins filling the holes were not an interference fit, one should assume that the same results would apply also for open holes. Compressive tests were not conducted for the 25.4 mm (1.0 in.) holes. A direct comparison between the present and prior test results is possible only for the quasi-isotropic all-graphite pattern. In this case, the present stress concentration factors ranged from 1.5 to 1.7 while, in the prior tests, the factors ranged from 1.5 to 1.6. The results are thus seen to be comparable, with the small difference possibly attributable to the different tests specimen geometries. Test data from the present program are included in figure 29. #### SHEAROUT STRESS CONTOURS When the edge distance between a loaded bolt and the edge of a composite laminate is small, or the fiber pattern is deficient in cross plies ($\pm\pi/4$ and/or $\pi/2$ '($\pm45^{\circ}$ and/or 90°)), the predominant mode of failure is either shearout or cleavage (fig. 14). Just as in the preceding case of tension through—the—hole failures, the characteristic shearout and cleavage modes of failure are strongly influenced by the joint geometry, fiber pattern, and composite material of which the joint is made. Figure 31 shows previously unpublished shearout stress contours, as a function of fiber pattern, which were obtained during an earlier investigation, by the contractor, on Modmor II / Narmco 1004 graphite-epoxy laminates. These data are given in tables XXIX to XXXII of this report. All such specimens tested had 6.35 mm (0.25 in.) diameter bolts, an edge distance of 12.7 mm (0.5 in.), and a width at least as great as 38.5 mm (2.5 in.). That geometry had been selected in anticipation of consistent shearout or cleavage failures. Yet, despite an edge distance ratio e/d (fig. 15) as low as 2 and a w/d ratio at least as great as 10, all of those fiber patterns containing less than 50 percent 0 (0°) plies failed consistently in tension through-the-hole rather than by shearout. Failures were by shearout in the upper portion of the triangle, and it can be seen that the reduction of cross plies is associated with a consistent loss of shearout strength. Figure 32 illustrates the corresponding shearout stress contours for mixed graphite-epoxy laminates. These laminates were made from Modmor II fibers in the 0 (0°) and $\pi/2$ (90°) directions, and Thornel 75S fibers in the $\pm\pi/4$ ($\pm45^{\circ}$) directions, with Narmco 1004 epoxy. The results share one characteristic with those in figure 31 inasmuch as the highest shearout strength is demonstrated for intermediate amounts of $\pm\pi/4$ ($\pm45^{\circ}$) fibers, with lower strengths for those laminates containing either few or many such fibers. The major difference between figures 31 and 32 is that, in the latter, all failures were in shearout. This difference between figures 31 and 32 illustrates the sensitivity of the strength and behavior of bolted joints in composites to the particular composite material as well as to the joint geometry and fiber pattern. The data from which figure 32 was prepared are recorded in reference 13. Figure 33, replotted from reference 13, presents the corresponding shear-out stress contours for AVCO 5505 boron-epoxy, 0.1 mm (0.004 in.) fibers. This diagram is included in a report on graphite-epoxy to emphasize the point that the nature of the data presented in figures 31 and 32 is characteristic of the particular materials system being assessed. In comparison with figures 31 and 32 for graphite-epoxies, the boron-epoxy data shares the characteristic of lower strengths for few and many $\pm \pi/4$ ($\pm 45^{\circ}$) fibers. There is a transition between shearout and tension failures, but at a different location than in figure 31. The The data for these tests are recorded in reference 13. The "shearout stresses" in figures 31 to 33 were calculated by the customary formula $$\tau_{s} = P / [2t(e - \frac{d}{2})]$$ (17) The value so calculated is not, in general, a material property alone since it is known from prior testing to be a function of the e/d ratio (ref. 14) and possibly the w/d ratio also. Such shearout stresses are meaningful as a measure of joint strength, even if the failure mode is in bearing or tension (as is the case for many of the failures of the specimens tested to produce figures 31 to 33), provided that the specimen geometry is identified to prevent unwarranted extrapolation. In every test on which figures 31 to 33 are based, the w/d ratio was at least eight and sometimes as high as twelve to eliminate any influence from that parameter. The shearout test data for the present investigation are reported in tables VIII and IX. Equation (17) was used to compute the "shearout stresses". The value of w/d used for these specimens was sufficiently high that its value should have very little effect on the results. It should be noted that, in tables VIII and IX, shearout failure occurred only for e/d values as low as two. For greater edge distances, the failure was always bearing and occurred at a higher load. The shearout stresses developed in this test program for e/d ratios of the order of two are either as good as or better than those which have been attained in prior investigations (compare, for example, tables VIII and IX with figure 31). The stresses are, however, significantly less than the in-plane shear strengths of the laminates tested (see table XXI). This confirms the presence of significant stress concentrations in the shear distribution reacting the bolt load, as has been observed in prior investigations. In concluding this section, it should be noted that very few shearout failures were experienced during this program. This is the result of consciously restricting the fiber patterns to be favorable for efficient bolted joints and essentially free from premature failure by shearout (see figure 31). This investigation confirmed that earlier assessment. Shearout failures at large edge distances in composite laminates are associated with unsuitable fiber patterns for bolted joints. The failure loads of bolted composite joints failing in shearout has been found by prior testing to be either independent of, or only weakly dependent upon, the e/d ratio (see ref. 14). ## BEARING STRESS CONTOURS In most cases in which both the edge distance and panel width (or bolt pitch) are large in comparison with the bolt diameter, the dominant failure mode is bearing. Such damage is localized and is usually not associated with catastrophic failure of a composite structure. The initiation of such a failure may be caused by compressive bearing at the base of the bolt hole or by tension or shearout at the sides of the hole. Figure 34 presents some previously unpublished test results from a
systematic survey of the bearing strength of Modmor II / Narmco 1004 graphite-epoxy laminates of various fiber patterns. These data were obtained from the same test specimens as used for the shearout tests shown in figure 31, but with a greater edge distance. Two important features are evident in figure 34. first is the large plateau at the peak bearing stress in the vicinity of the quasi-isotropic pattern (25% 0, 50% $\pm \pi/4$, 25% $\pi/2$). The second important feature in figure 34 is the change in failure mode from bearing to shearout, in spite of the large edge distances and widths, for those laminate patterns containing more than about fifty to sixty percent of 0 (0 $^{\circ}$) plies. Figures 35 and 36 (replotted from reference 13) contain bearing data corresponding with the shearout data for the mixed-graphite and boron/epoxy laminates for which the shearout results are presented in figures 32 and 33. The shape and location of the transitions in failure modes differs between each of figures 34 to 36 and, therefore, such behavior cannot be projected from one material for which test data exist to another for which they do not. Joint geometries known to be associated with bearing failures for one composite material are sometimes associated with tension or shearout failures for other composites, even if the joint geometries are identical. The test data from which figure 34 has been prepared are recorded in tables XXIX to XXXII of this report. The test data from the present investigation are reported in tables VIII and IX and illustrated in figures 37 and 38. A photograph of typical failure modes is provided in figure 39. An edge distance ratio e/d as great as four is necessary to develop the full bearing strength of these laminates. The solid symbols in figures 37 and 38 denote bearing failures, while the open symbols signify tension failures, at less than the potential bearing strength. The solid lines show average strengths of bearing failures for the range of e/d ratios over which each line extends. The chain lines refer to the predictions of equation (5). In comparing the data in figures 37 and 38 with those shown in figure 34, two things are clear. First, the present data are consistent with the existence of a plateau of maximum bearing strength for the same fiber pattern domain as was demonstrated in figure 34. However, the strengths of the laminates 'tested during the present investigation [891-908 MPascal (129-131 ksi) for the all-graphite laminates and 834-850 MPascal (119-122 ksi) for the graphite-glass hybrid laminates] are significantly lower than those shown in figure 34 [965-1000 MPascal (140-145 ksi)] and considerably lower than those bearing stresses [1172-1241 MPascal (170-180 ksi)] associated with the net-tension failures in the tests on which figures 21 and 22 are based (see tables XXII to XXV of this report). Second, the data in figures 37 and 38 suggest that, for all practical purposes, the same maximum bearing strength was developed for both material systems and all three fiber patterns tested in the present program. These results highlight the need for data generated specifically for the composite material of interest. ### COMPRESSION BEARING Tables X and XI record the measurements made on compression bearing specimens during the present investigation. The results are summarized in figure 40, showing average bearing strengths of 866 MPascal (126 ksi) for the all-graphite laminates and 1209 MPascal (175 ksi) for the hybrid graphite-glass laminates. In comparison with tension bearing (see figures 37 and 38), it is apparent that there is a slight increase in bearing strength for the all-graphite laminates when the bolt load is reacted by compression rather than by tension, but for the hybrid laminates, there is a pronounced increase in bearing strength. Figure 41 illustrates sample compression bearing failure modes and it is evident that these look very similar to those in figure 39 for tension bearing. The logitudinal stresses in the fibers adjacent to the hole diameter perpendicular to the load changes sign between tensile and compressive bearing, yet the failure modes and loads exhibited are much the same for both cases. Therefore, it is concluded that the longitudinal stress did not play a major role in the bearing failures observed during the present investigation. With the elimin- ation of this factor and the similarity of the shear fracture lines in figures 39 and 41, it is evident that the in-plane shear dominated the bearing failures for this program. ## STRENGTH OF SINGLE HOLE (ROW) BOLTED JOINTS The analyses above for tension, shearout, and bearing failures each govern a range of joint geometry which cannot be defined a priori for any given combination of material and laminate pattern until the various interactions have been established. The purpose of this section is to integrate these three analyses and to show, thereby, how to compute the strength and governing failure mode. The method applies to a single bolt or to individual bolts out of a single row. The basis of the method is the stress concentration equations (1) to (16), together with figure 17 when replotted in terms of stress concentration factors at failure of the composites. The derivation of the equations governing the transition between tension and bearing failures is as follows. From equation (15), the joint strength for a tensile failure is given by $$P = F_{tu} w t \left(1 - \frac{d}{w}\right) / k_{tc}$$ (18) while, for a bearing failure $$P = F_{br} d t (19)$$ Now the stress concentration factor in the composite at failure is expressible with respect to either the net section or the bearing area and these factors are related, as in equation (4), by $$k_{bc} = k_{tc} / \left(\frac{w}{d} - 1 \right)$$ (20) At the transition between tension and bearing failures, then, $$P = F_{tu} d t / k_{bc} = F_{br} d t$$ (21) whence $$k_{bc} = F_{tu} / F_{br}$$ (22) If, for sufficiently small values of d/w, the net-tension analysis were to predict lower stress concentration factors than given by equation (22), these lower values could not be realized because of a failure in bearing. This failure mode transition is shown in figure 42, based on experimental data, where bearing failures dominate up to some value of d/w, with tension failures for greater values of d/w. Instead of $k_{\rm bc}$ continuing to decrease with decreasing d/w according to a tension calculation, $k_{\rm bc}$ is not permitted to decrease below the value calculated using equation (22) for bearing failures. Figure 43 presents strengths for the three patterns of Thornel 300 / Narmco 5208 graphite-epoxy composite using data generated in the present investigation and for the two patterns of Morganite II / Narmco 1004 graphite-epoxy composite. All such data are recorded in the tables of this report and the specific locations are cited in the text above for each failure mode. The composite stress concentration factors at failure are computed as follows. From equation (16), $$k_{tc} = 1 + C (k_{te} - 1)$$ (23) and, from equation (19), $$k_{bc} = k_{tc} / \left(\frac{w}{d} - 1 \right)$$ (24) while, from equations (1) and (2), $$k_{\text{te}} = 2 + \frac{\mathbf{w}}{\mathbf{d}} - 1 - 1.5 \Theta \left(\frac{\mathbf{w}}{\mathbf{d}} - 1 \right) / \left(\frac{\mathbf{w}}{\mathbf{d}} + 1 \right)$$ (25) These equations enable the stress concentration factor $$k_{bc} = \int \left(\frac{d}{w}, C, \frac{e}{w}\right)$$ (26) to be evaluated and it is these computations which are shown in figures 42 and 43, using the values of C given by equations (10) to (13). Figures 42 and 43 apply only for $e/w \ge 1$. Figures 44 and 45 show the relationship between joint strength and laminate width to bolt diameter ratio, for all six laminate patterns in the present investigation and the two laminate patterns for the other graphite-epoxy identified above. The experimental data are included on these plots. No tension failures were observed for the glass-graphite fiber reinforced laminates tested in this program, so the transitions between bearing and tension failures cannot be located. All the plots in figures 44 and 45 are dimensional to permit a oneto-one comparison between bolted joint strengths of laminates containing the same total number of plies. (The format of figure 43 lends itself more to an assessment of the joint efficiency of any particular laminate by relating the joint strength to the laminate strength away from the joint). The important conclusions to be drawn from figures 44 and 45 are: (1) that such plots provide a meaningful assessment of joint strength and serve as a basis of comparison between different composite materials and fiber patterns, (2) that the maximum joint strength, for a given laminate width, is attained with a d/w ratio close to that at the transition between bearing and tension failures, (3) that the load capacity per unit width decreases rapidly for geometries far removed from the transitional configurations, (4) that the orthotropic fiber patterns permit closer bolt spacings without the risk of catastrophic tension failures than the quasi-isotropic patterns allow, and (5) that the use of glass longitudinal fibers rather than graphite appears to reduce the stress concentrations in tension at the net section through the bolt(s). Figures 42 to 45 do not address the influence of the e/d ratio on the joint strength. Figure 46 is a qualitative generalization for a range of e/d values, of one of the lines in figure 43. The shearout failure zone lies below those for bearing and tension. It is important to note that, for some fiber pattern / material combinations, the bearing zone may disappear completely and that, for others, either the tension or shearout and cleavage zones may be forced outside the range of geometries of practical interest. Nevertheless, the general form of figure 46 would hold. ## STRESS CONCENTRATION INTERACTION (MULTI-ROW)
BOLTED JOINTS The preceding sections have dealt with either single-bolt joints or with individual bolts isolated out of a single row by representing the latter as a single bolt in a strip of a width equal to the bolt pitch. In such cases, the failure can be defined uniquely in terms of the bolt load alone. In most applications, however, this is not the case because the load is frequently transferred in multi-row fastener patterns (as at a chordwise splice in a wing skin, for example) or along a bolt seam aligned with the dominant load (as at a wing spar cap, for instance). In such more complex load situations, it is necessary to characterize both the bolt load and also the general stress field in which the particular bolt under consideration is located. The stress concentrations from each source will obviously interact and "analyses" which do not take this into account would not be meaningful. The first interaction data for bolted joints in composites appear in reference 15. The first attempt to explain such interactions analytically, and to account for them during design, is in reference 16. Additional experimental work is reported in reference 17, using essentially the same two-bolt interaction specimen as used in the present investigation. However, the laminate patterns in reference 17 are different from those used in the present investigation, so a comparison is not possible. The interpretation (ref. 16) of the original data (ref. 15) suggested a linear interaction between tension and bearing stresses of the form $$\sigma_{\text{max}} = k_b \sigma_b + k_t \sigma_t \le F_{tu}$$ (27) in which F_{tu} was the basic laminate strength, σ_b the bolt bearing stress at the hole under consideration, and σ_t the net-section tension stress caused by the remainder of the load (not reacted at that bolt). The proportionality constants k_b and k_t account for both the specimen geometry and any stress concentration relief of which the material is capable. This summation may be looked upon as the sum of the contribution due to the load reacted at a bolt hole and that due to the portion of the total load running by that hole and reacted elsewhere. The data generated during the present investigation confirm the validity of equation (27) for the all-graphite laminates subject to tension loads, for which the failures were in net-section tension. For the hybrid glass-graphite laminates, the failure mode changed from tension to bearing and this requires that the interaction (27) appears to be subject to the same cut-off as defined in equation (22) for single-row bolted joints. Thus, equation (27) should be re-arranged to read $$\sigma_{b} = (F_{tu} - k_{t} \sigma_{t}) / k_{b} \le F_{br}$$ (28) to cover both tensile and bearing failures. Before proceeding with the discussion of the present test results on this topic, it is appropriate to demonstrate what can be predicted on the basis of the single-hole equations, developed above, when used in conjunction with equation (27) or (28). The expressions for k_b at a loaded bolt hole and k_t at an unloaded hole can be evaluated in terms of the elastic isotropic factors. k_b and k_t and the correlation factor C between stress concentration factors observed in composites at failure and those in truly isotropic elastic material specimens of the same geometry. Equation (16) reads $$k_{tc} = 1 + C (k_{te} - 1)$$ (29) in which, for a loaded hole, equation (1) reads $$k_{te} = 2 + (\frac{w}{d} - 1) - 1.5 \frac{(w/d - 1)}{(w/d + 1)} \Theta$$ (30) (in which Θ is defined in equation (2) and usually has the value unity) and, for an unloaded hole, equation (8) reads $$k_{te} = 2 + \left(1 - \frac{d}{w}\right)^3$$ (31) Now, from equation (4), $$k_{be} = k_{te} / (\frac{w}{d} - 1)$$ and $k_{bc} = k_{tc} / (\frac{w}{d} - 1)$ so that equation (26) takes on the form given by $$k_{b} = \frac{1}{(w/d - 1)} \left| 1 + C\left(\frac{w}{d} - 1.5 \frac{(w/d - 1)}{(w/d + 1)} \Theta\right) \right|$$ (32) $$k_t = 1 + C \left[1 + (1 - \frac{d}{w})^3 \right]$$ (33) Figure 47 illustrates some predictions using these coefficients, plotted in non-dimensional form, for several different values of d/w, for the quasi-isotropic graphite-epoxy laminates tested in this program, for which equation (10) gives C = 0.269. The value of Θ is set at unity to isolate end effects. The horizontal cut-off denotes bearing failures, while the sloping lines signify tension failures. On the basis of these predictions, one could anticipate that, for the w/d = 4 set of interaction specimens tested for this investigation, the failures would all be in tension for the single hole both loaded and unloaded as well as for the two-hole specimens. The linear equation (26) should hold for that case. This, indeed, was observed to be so. For wider strips and the same bolt diameter, figure 47 would suggest a non-linear interaction with bearing failures for relatively light tension loads. This figure indicates that, for single loaded bolt holes, bearing failures will occur for $w/d \ge 5$. This is consistent with the present investigation of tension through-the-hole failures, in which it was seen that bearing failures occurred for $w/d \ge 6$ while tension failures occurred for $w/d \le 4$, for the quasi-isotropic graphite epoxy. The transitional value of w/d at which bearing failures first occur, and the value of the bearing cut-off v/d are both functions of the composite material and fiber pattern. Plots of the type of figure 47 for multi-row bolted joints could be prepared similarly from single-hole data for any composite material for which tests had established the values of C and v/d The interaction test data generated during this program are recorded in tables XIV to XVII and shown in figures 48 to 59. The linear interaction for tensile loading of the all-graphite laminates is particularly clear for all three patterns (see figs. 48 to 50). The graphite-glass hybrid laminates exhibit a non-linear interaction in the manner that follows from figure 47 because, for such laminates in a joint geometry for which w/d = 4, the failure of single loaded holes was observed to be in bearing rather than tension. diagrams for the all-graphite laminates, figures 48 to 50, contain also the theoretical predictions based on the single-hole data discussed above. It is evident that the agreement is good but could be improved by a higher value of $k_{\scriptsize t}$ in equation (26). The reason for this is apparent from figures 23 and 24 which show that the mean theoretical values for k_{tc} (given by equations (10) and (11)) are significantly less than those observed experimentally for open holes. The use of an upper bound estimate for k_{tc} instead of a linear mean value constrained to pass through the points (1,1) in figures 23 and 24 would permit an improvement in predicting the test data in figures 48 to 50. corresponding lines in figures 51 to 53 permit the use of equations (26) to (33) in reverse to compute values of C in equation (29) for the graphite/glass hybrid laminates. The values so computed are as follows: Pattern 4: C = 0.51, Pattern 5: C = 0.48, Pattern 6: C = 0.61 (34) The actual computation of these values was performed as follows, using the tworow loaded hole data. For w/d=4, equation (31) gives $k_{\text{te}}=2.42$ for an open hole, while equation (30) gives $k_{\text{te}}=4.10$ for a loaded hole. Since the failures were in tension and each bolt accepts an equal load, the failure condition can be expressed in the form $$F_{tu} = (1 + 3.10C) \left(\frac{d}{w - d}\right) \sigma_{br} + (1 + 1.42C) \sigma_{t}$$ (35) from which C can be determined. (The quantity $\sigma_{\rm br}$ d / (w - d) is equal to the net-section tension stress at the bolt hole, due to the bearing load). A point of special significance about the tension/bearing interaction test results is that, for the all-graphite laminates tested, the use of two bolts in series did not increase the load carried much above that which a single bolt alone would be expected to have carried in a laminate of that thickness (twice that on which the single-bolt tests were performed). That this should be so can be deduced from figures 48 to 50, regardless of the relative proportion of bearing and tension loads, provided that the linear interaction for tension failures applies. For the quasi-isotropic pattern, with w/d = 4, the tension load capacity of the net section is practically identical with the bearing load capacity on a single bolt. Therefore, any ratio of loads shared between bearing and tension in a multi-row joint of that w/d ratio made from that composite material and laminate must inevitably be associated with essentially the same total load capacity per unit laminate thickness. The orthotropic patterns 2 and 3 carry slightly more load in net tension for w/d = 4 than in bearing, so the mult-row bolted joints would be slightly stronger than a single-row for those materials, fiber pattern and geometry combinations. Figure 47 suggests that, even for other w/d ratios, provided that the failures are by tension at the net section, the use of multi-row bolted joints offers no significant strength increase over a single-row joint of the same material and geometry. Only in that regime of joint geometries as is associated with bearing failures for single-row bolted joints is there to be found any major increase in joint strength by the use of multi-row bolt patterns. Furthermore, even in such cases, it appears that still higher strengths could be attained by a single row of bolts closer together. However, this latter approach would mean accepting potentially catastrophic tension failures in conjunction with such higher loads. The analysis methods developed in this section permit a rational investigation of alternative joint design configurations without an extensive test program. These methods can establish whether or not a candidate design is
either suitable or optimum for a given requirement and can minimize the amount of any testing necessary. The interaction between compression and bearing in mult-row bolted joints depends on a fundamentally different mechanism than that discussed above for tensile loading. In the case of the compression of a laminate containing an unfilled hole, there is a stress concentration just as with tensile loading of the same specimen. When the hole is filled with a net-fit bolt, however, the picture is changed completely. The compression load need no longer be diverted around the hole; it can be transmitted straight across by bearing on both sides of the bolt. In this situation, the superposition of laminate compression to compressive bearing is simply additive with respect to bearing stress. Thus, $$\sigma_{b} + \sigma_{c} \leq F_{br} \tag{36}$$ The test data in figures 54 to 56 for compressive loading of the all-graphite laminates support this superposition for filled holes. The corresponding test data in figures 57 to 59 for the graphite/glass hybrid laminates are influenced by buckling, inasmuch as the drop off in bearing capacity is greater than equation (36) would predict. Figures 54 to 59 contain also a probable vertical cut-off line for loose fit bolts which are sufficiently sloppy to prevent the reaction of the compressive laminate stress by bearing on the bolt and cause the 'diversion of the load around the hole. Open-hole compression tests were not run in this program, so these cut-offs have been estimated in terms of calculated laminate strengths in compression and stress concentration factors deduced for tensile loading of laminates containing open holes. ## DIFFERENCES BETWEEN PROTRUDING HEAD FASTENERS AND PIN CONNECTIONS Figure 60 shows the data, recorded in table XVIII, for pin-loaded holes and the comparison with the higher strengths exhibited by regular hexagon-head bolts with nuts. These tests were performed for the quasi-isotropic pattern 1 in the all-graphite material and showed a nearly two-to-one increase in strength between pins and bolts. The difference in test technique between the two sets of test results in figure 60 is that, in the case of the pin tests, the nuts were not in contact with the clevis plates. Otherwise, the test setup is like that shown in figure 1. The explanation offered here to explain the differences in figure 60 is as follows. The basis of the greater strength for protruding head fasteners with respect to pin connections (which can develop no tensile load) is the appreciable differences between the initial and ultimate failures of bolted joints in composite laminates, particularly if the initially damaged area is constrained so that the broken material cannot be displaced. Figure 61 is a photo of relatively modest damage sustained at bolt holes without any reduction in load capacity during an earlier previously unreported test by the contractor on Modmor II / Narmco 1004 graphite epoxy. In this specimen, the bolt was dragged about three diameters by the load. The broken composite material re remained constrained by the bolt, the steel clevis plates and the as yet undamaged composite. Since there was nowhere to which the damaged composite material could be displaced, and the mode of failure for that and many other fiber patterns is of a local nature, the bolt maintained its load and would continue to do so as long as the load direction was not reversed. ### COMPARISON BETWEEN SINGLE-LAP AND DOUBLE-LAP JOINTS Despite the care taken to eliminate or minimize the effects of bending and eccentricity by the special fixture in figure 6, figure 62 shows how the test results from the present investigation, recorded in table XIX, still show about a twently percent drop with respect to double-shear strengths. Therefore, due account should be taken of the differences between single- and double-shear bolted joints in the analysis of practical areospace structures. ### CONCLUDING REMARKS The following conclusions were made from this investigation. The fiber patterns tested were well chosen and their performance is representative of other patterns containing similar percentages in each of the $(0, \pm \pi/4, \pi/2)$ directions because the three patterns tested lie on what can be thought of as a strength plateau. The choice of fiber pattern in the joint area, for any given application, is influenced by the laminate outside the joint area and the desired mode of failure at the joint. The multi-test (multiple-hole) test specimens were found to offer significant economy in specimen fabrication costs, when evaluated on a per test basis, without causing any interaction between the individual test results and without adding unduly to the complexity of the tests. The use of glass fibers was beneficial in nearly every case. The exception was that, because of a lower modulus for the glass fibers with respect to the graphite fibers, the stabilization of compressively loaded joint specimens was a problem. Those specimens containing longitudinal glass fibers which were loaded in tension were consistently as strong or stronger than the equivalent all-graphite specimens. The glass/graphite hybrids were almost exclusively associated with local bearing failures rather than the potentially catastrophic tension-through-the-hole failures which prevailed for many of the all-graphite specimens. The materials behaved in a predictable manner inasmuch as the empirical analysis methods devéloped from single-hole data were shown to be consistent with the observations on two-row bolted joint tests. The key to the analysis method is the analysis for tension failures, to which an experimentally derived cut-off for bearing failures is applied to prevent misapplication of the tension analysis to joint geometries for which it does not hold. Elastic isotropic stress concentration factors are computed for any given joint geometry by new equations presented in this report. The corresponding stress concentration factor to be anticipated in the composite at failure is then computed from the elastic isotropic value and an experimentally derived correlation factor for that particular composite material. The experimental testing need not include the geometry being analyzed so these methods serve to generalize existing test data beyond those specific geometries already tested. The testing on two-row bolted joints is representative of multi-row bolted joints. The key result is that, for those joint geometries producing tension failures for a single bolt, the addition of further rows of bolts will generally increase the joint strength very little. Only when bearing failures occur do multi-row bolt patterns increase the joint strength significantly above the strength of a single bolt row. From the present testing, the orthotropic patterns are slightly superior to the quasi-isotropic pattern and those laminates containing the longitudinal glass fibers were distinctly superior to the all-graphite laminates with regard to their suitability for multi-row bolt patterns. The transition between tension and bearing failures occurs in the range of a strip width (or bolt pitch) of between four and six diameters for the all-graphite laminates but at a width less than three diameters for the glass/graphite hybrid laminates. Since the bearing strengths for all laminates tested were similar, it would be possible to use more bolts per unit width in laminates having longitudinal glass plies, thereby making stronger joints. In most cases, the maximum obtainable bolted joint strength for a given width of composite laminate is associated with a w/d ratio slightly less than those for which bearing failures occur. In some of the orthotropic pattern cases, the maximum strength is developed when the w/d ratio is at the transition between bearing and tension failures. Neither perfectly elastic nor fully-plastic theories are capable of explaining the test results. The strength loss in the best designed single-row bolted joints, with respect to the basic laminate strength, is of the order of a factor of two or slightly higher. The highest possible joint strengths for graphite-epoxy composites have been found not to exceed about forty to fifty percent of the basic laminate strength, even for the ideal combination of joint dimensions. The d/w ratio dominates the joint strength (with the e/w ratio having only a minor effect) and the maximum joint strengths are developed only throughout a small range of d/w values (typically from about 0.25 to 0.4). The strongest joints are associated with the joint geometry at the transition between bearing and tension failures or with a tension failure for slightly greater d/w values. There were no significant differences between the performance of bolt holes drilled with carbide tipped drills or ultrasonically excited diamond core drills. The latter holes were visibly cleaner, however. Joints with regular bolts having protruding heads are about twice as strong as those loaded only by a simple pin for those cases in which the failure mode is bearing. The mechanism of this strength gain appears to be one of damage confinement rather than additional load transfer through friction. The significance of the findings of the present investigation are two-fold. This is the first systematic test program encompassing a wider range of joint geometries than have been investigated before in programs more closely tied to specific composite hardware. Therefore the basic governing phenomena have been explored more thoroughly. Second, the empirical analysis methods developed provide a capability for the rational analysis and design of bolted joints in graphite-epoxy composites. Further tests are recommended in three areas. The first is that of larger bolt diameters because of differences observed in other programs between joint strengths and stress concentrations at different size holes. The second is the testing of mult-row bolted joints
in strips sufficiently wide to enforce bearing failures rather than the tension failures which occurred during the present program, in order to confirm the validity of the present theoretical projections in this area and to thereby assist in the oprimization of joint proportions. The third series of tests should account for environmental effects such as reduced and elevated temperatures because the matrix resin properties are sensitive to environmental effects. ### REFERENCES - 1. Mechtly, E. A.: The International System of Units Physical Constants and Conversion Factors. NASA SP-7012, 1973. - Frocht, M. M. and Hill, H. N.: Stress Concentration Factors Around a Central Circular Hole in a Plate Loaded Through Pin in the Hole. Journal of Applied Mechanics, Volume 7, pp. A5-A9, March 1940. - 3. Bickley, W. G.: The Distribution of Stress Round a Circular Hole in a Plate. Philosophical Transactions of the Royal Society (London), Series A, Volume 227, pp. 383-415, 1928. - 4. Knight, R. C.: Action of a Rivet in a Plate of Finite Breadth. Philosophical Magazine, Series 7, Volume 19, pp. 517-540, March 1935. - 5. Koiter, W. T.: An Elementary Solution of Two Stress Concentration Problems in the Neighbourhood of a Hole. Journal of Applied Mathematics, Volume XV, Number 3, pp. 303-308, 1957. - 6. Timoshenko, S. and Goodier, J. N.: Theory of Elasticity. Second edition, McGraw-Hill Book Co., Inc., p. 80, 1951. - 7. Wahl, A. M. and Beeuwkes, R.: Stress Concentration Produced by Holes and Notches. American Society of Mechanical Engineers Transactions, Volume 56, pp. 617-636, 1934. - 8. Seely, F. B. and Smith, J. O.: Advanced Mechanics of Materials. Second edition. John Wiley & Sons, Inc., p. 394, 1952. - 9. Anon.: Advanced Composites Design Guide. North American Rockwell, USAF Contract Report, Third edition, January 1973. - 10. Thompson, C. E. and Hart-Smith, L. J.: Composite Material Structures — Joints. Douglas Aircraft Company, Technical Report MDC-J0638, July 1971. - 11. Lehman, G. M.: Development of a Graphite Horizontal Stabilizer. Douglas Aircraft Company, NADC Contract Report MDC-J0945, December 1970. - 12. Lehman, G. M.: Development of a Graphite Horizontal Stabilizer. Douglas Aircraft Company, NADC Contract Report MDC-J1435, June 1970. - 13. Nelson, W. D.: Composite Wing Conceptual Design. Douglas Aircraft Company, - USAF Contract Report MDC-J4110, November 1971. - 14. Nelson, W. D.: Composite Wing Conceptual Design. Douglas Aircraft Company, USAF Contract Report MDC-J4140, August 1971. - 15. Leonhardt, J. L., Shockey, P. D. and Studer, V. J.: Advanced Development of Boron Composite Wing Structural Components. Convair / General Dynamics, USAF Contract Report AFML-TR-70-261, December 1970. - 16. Nelson, W. D.: Composite Wing Conceptual Design. Douglas Aircraft Company, USAF Contract Report MDC-J4129, May 1971. - 17. Fant, J. A., Olson, F. O. and Roberts, R. H.: Advanced Composite Technology Fuselage Program. Convair / General Dynamics, USAF Contract Report AFML-TR-71-41, Volume VI, October 1973. TABLE I LAMINATE PATTERNS AND LAYUP SEQUENCES | LAMINATE | | PLY PERCENTAGES | | | | |-------------------|----------------------------------|-----------------|----------------|--------------|--| | PATTERN
NUMBER | MATERIAL | 0
(0°) | ±π/4
(±45°) | π/2
(90°) | | | 1 | GRAPHITE-EPOXY (QUASI-ISOTROPIC) | 25 | 50 | 25 | | | 2 | GRAPHITE-EPOXY | 37.5 | 37.5 | 25 | | | 3 | GRAPHITE-EPOXY | 37.5 | 50 | 12.5 | | | 4 | GRAPHITE-GLASS-EPOXY | 25* | 50 | 25 | | | 5 | GRAPHITE-GLASS-EPOXY | 37.5* | 37.5 | 25 | | | 6 | GRAPHITE-GLASS-EPOXY | 37.5* | 50 | 12.5 | | ^{*} GLASS FIBERS — ALL OTHERS GRAPHITE | LAMINATE
PATTERN
NUMBER | LAYUP SEQUENCE
FOR 16-PLY LAMINATE | LAYUP SEQUENCE
FOR 32-PLY LAMINATE | |-------------------------------|--|---| | 1,4 | $[(0/\frac{\pi}{4}/\frac{\pi}{2}/-\frac{\pi}{4})_2]_s$ | $[(0/\frac{\pi}{4}/\frac{\pi}{2}/-\frac{\pi}{4})_{4}]_{s}$ | | 2,5 | $(0/\frac{\pi}{4}/\frac{\pi}{2}/0/-\frac{\pi}{4}/\frac{\pi}{2}/0/\frac{\pi}{4}/-\frac{\pi}{4}/0/\frac{\pi}{2}/-\frac{\pi}{4}/0/$ | $(0/\frac{\pi}{4}/\frac{\pi}{2}/0/-\frac{\pi}{4}/\frac{\pi}{2}/0/\frac{\pi}{4}/-\frac{\pi}{4}/0/\frac{\pi}{2}/-\frac{\pi}{4}/0$ | | | $\frac{\pi}{2}/\frac{\pi}{4}/0$) | $\frac{\pi}{2} \frac{\pi}{1} = 0$ | | 3,6 | $(0/\frac{\pi}{4}/0/-\frac{\pi}{4}/\frac{\pi}{2}/\frac{\pi}{4}/0/-\frac{\pi}{4})_{s}$ | $\left[\left(0 / \frac{\pi}{4} / 0 / - \frac{\pi}{4} / \frac{\pi}{2} / \frac{\pi}{4} / 0 / - \frac{\pi}{4} \right)_{2} \right]_{s}$ | | <₫ | |----------| | - | | - | | | | نيا | | | | α | | <1 | | - | TENSION THROUGH-THE-HOLE SPECIMENS ALL GRAPHITE FIBERS, EPOXY RESIN FIBER PATTERN - 25 PCT 0, 50 PCT ±1/4, 25 PCT 1/2 SI UNITS | SHEAROUT
STRENGTH
MPASCAL | 122
888
1534
1534
153 | 1 8881
74117
24117 | 23
11
15
15
15
15
15
15
15
15
15
15
15
15 | 1150
1110
1110
158
158
158
158
158
158
158
158
158
158 | 173.4
106.7
80.4
87.3
1111.6 | 2000-2
1111-7-7
186-9
2110-8 | |---------------------------------|--|--|--
--|--|--| | TENSION
STRENGTH
MPASCAL | 127
196.0
187.0 | 156.2
179.8
151.7 | 2000
2000
2000
2000
2000
2000
2000
200 | 50000000000000000000000000000000000000 | 255
262
268
268
268
268
268
268
268
268
268 | 286
2999
3099
285
285
285
285
285 | | BEARING
STRENGTH
MPASCAL | 639
980-7
760-5 | 788-4
933-2
903-5 | 701
772
812-5
7910-3
692-2 | 701.3
777.1
795.4
813.0 | 500
500
500
500
500
500
500
500
500
500 | 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | FAILURE
MODE | 8888
8888
8888
8888
8888
8888
8888
8888
8888 | 88888
8888
9000
9 | NNNNNN
ZZZZZ
HUUUUUU
HHHHHH | | | | | FAILURE
LOAD
KNEWTON | 9.2968
14.3233
14.55679
12.0324 | 11.6543
13.9007
13.2112
11.1206 | 9.7861
10.9426
11.4542
11.4352
11.4319 | 10.3866
11.7211
11.5876
11.4764
11.7656 | 7.5394
7.5394
7.623
7.623
7.623
8.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.653
6.65 | 8.4294
8.6740
8.98964
8.9632
8.5851
9.1856 | | PANAL
THICK | 2.294
2.304
2.456
2.494 | 2.332
2.349
2.306
2.304 | 22.235
22.235
22.235
22.262
22.262
24.68 | 000000
000000
000000
000000 |
22.22.22
22.22.22
23.22.24
23.25.24
24.25.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26.24
26. | 22222
22222
22222
22222
22222
22222
2222 | | FOGE
CIST | 38.47.1
188.47.1
18.85.1 | 19.00
38.41
38.40
19.19 | 12
25
25
25
25
25
25
25
25
25
25
25
25
25 | 12.53
19.72
25.55
19.36
12.60 | 112
25
25
25
15
17
16
46
46 | 12.45
25.54
255.54
112.886
112.886 | | PANEL
MIONEL | 38.19
38.17
38.17 | 8888
8888
8888
8888
8888 | 255
255
255
255
255
255
255
255
255
255 | 22222
22222
22222
22222
24222
2222 | 199.12
199.12
199.12
199.26 | 119930 | | BC
CTC
TAM
F M | 6.340
6.340
6.340
6.340 | 6.340
6.340
6.340
6.340 | \$\$\$\$\$\$
\$\$\$\$\$
\$ | 66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
666666 | 66.32
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33
66.33 | 66.325
66.337
66.337
66.337
67.75
67.75 | | DIOL
MM RE | 6.454
6.4554
6.358 | 6.350
6.464
6.449
6.530 |
00000
4m4mm4
4m20
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m700
4m | 66 - 140 - 1 | 66.24
66.24
66.24
66.24
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26
66.26 | 666666
666666
666666666666666666666666 | | HOL | ∢ ®∪0 | ∢ ∞∪∩ | | | ⊲൩ഀഩൎ൨ൎ൨ | | | SPECIMENIO | HHS-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | THS-1-2
HTS-1-2
1-1-2 |
HHHHH
HHHHNS
HHHHNS
HHHNS
HHHNS
HHHNS
HHHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHNS
HHN
HNS
HHNS
HHN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN | H S H H H S H H H S H H H S H H H S H H H S H H H S H H H H S H H H H S H | HHHHH
SOUND
HHHHHH
SOUND
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI
HILLI | 11111111111111111111111111111111111111 | | 8 | |-----------------------| | _ | | , | | ш | | پ | | $\boldsymbol{\Theta}$ | | Ø | | - | HI AROU ENGTI S I 9280 400M 400mmo **500400** よろててるら PH0000 410000 0000 ころまこ **41990m** らら1249 0900g $\mathbf{u}_{\mathbf{x}}\mathbf{x}$ 0 = -0ろろししろろ **301129 U**mmmmm ST I NON NOT I N440 P0-10 1005001 000mmn も8127万 らのららなる 20-20 SULLIN W-W mp o o o o o N000110 50-4-10 O ZXX ころろろ NNNN mmmmmm 444 4mm mmmmmmヤヤヤヤヤ ū ш 1-0 06 I SF 5 12774 404 T000001 104111 909700 $\omega \phi \otimes \omega \omega$ 004470 • • • SUNGOV-NE N 2250 450-0 91223 **そのころらる** S 0461 سناران رام يسا $\sim \infty \infty \infty \infty \infty$ ထထထထထတ္ A & Y S നഗ \sim ILURE Z. SONOS SOSSOS SSSSSSS SONOSON 00000000ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ SO 00 00 00 00 0x 0x 0x 0x بناينانيانيانيان $\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u}$ تبايناتنا تناتناتنا www.mana. will }-- }-- }-- }-- }--FFFFF ---- \circ đΣ α . ı. 0×7 +45 dS w 0000 900000 0000 000000 000000 200000 L UR AD B 9225 250.00 +-25250 1695 1839 1980 2015 1940 ທທທອນລ INO w E W-22633 2263 2264 2155 -0-₽C DG 2320 こならららら $\forall \exists$ NONONN コーベベーベ ERS 50 LL. (X) QMO ANEL INCK IN. Œ 0903 0907 0967 0982 0.922 0.929 0.836 0.836 0.8396 0.893 900000 000 00 P 2010 004 98 98 14 · 906 -H900 000000 -300000 0000 000000 \supset تناننا -0 493 776 006 762 496 Ĩ かしてい tu⊢• @NN3 よろう よりら IC U) 470070 41110 α. UNZ てららて てららて V-CHE . $\alpha \cup$ ے تک \bar{c} ശര ... IL 510 507 509 510 00000 00000 00000 00000 **4**000 ヤーのものす 760 760 760 761 761 $\omega\omega\omega\omega$ 15 2200 000000 LL: b- · กงกุ่งกับก 70 ZUZ <u>urrrr</u> ⋖ Q ---. 1 20 Z 2200 0000 0.30000 0.30000 0.30000 2000 F > 5000 かんかんひ w **⊿**⊲ • **セセセセ** かなななな たなななな 522 -NOWN SUNN ろうろうんろ SINDONN $\widetilde{\mathbb{E}}_{\mathcal{O}}$ ◁ α 550 541 502 503 04°07 7°07 7°07 **とらしりょ**り 1500010 (十つ) (こう) (う) 400 نین ∑∵ ろらろままる こるこうころ **ONWAND** OM-NÖÖ NAS. 2222 œ. 22222 らみろうなら 22222 でいるないと NNNN SUNDANA 王山三 α تنا HOL ARUD ARUD 400000 4000000**∢**mn∪∪∩ 468000 Z ĭĮ. 44444 2222 *നമ്പവന്ദ*ന とうらいららら 999999 1111 11111 11111 **-**-- ○ برن 11111 11111 111111 111111 TITIT w SOSO NUNC NONNON νινινινινιν a. IIII IIIIII TITIT TABLE IIIA TENSION THROUGH-THE-HOLE SPECIMENS # FIBER PATTERN - 37.5 PCT 0, 37.5 PCT ±1/4, 25 PCT #/2 | | SHE AROUT
STRENGTH
MPASCAL | 149.5
92.2
92.1
148.9 | 142.2
77.1
86.7
119.9 | 214
1158
1158
1658
2255
00
2255
00 | 2225
1118.7
1118.5
1160.7
222.8 | 124.5
124.5
98.2
128.7
1128.7 | 207.6
122.7
89.0
94.2
128.3 | |--------|----------------------------------|--|---|---
---|--|---| | | TENSION
STRENGTH
MPASCAL | 150.6
204.6
204.7
149.7 | 144.5
170.3
191.9 | 2227112
2227112
22387118
22387118 | 2220
27720
2773
2773
2773
2773
2773
2773 | 30228
30228
30228
30228
3022
3022
3032 | 29
33
33
33
33
34
35
35
37
37
37 | | | BEARING
STRENGTH
MPASCAL | 754.3
1023.7
1024.1
749.2 | 729.5
855.1
964.0
603.7 | 50000000000000000000000000000000000000 | \$38886
\$300
\$300
\$300
\$300
\$300
\$300
\$300
\$30 | 6573
6911.6
6570
627.1 | 610
6527
6627
674
616
8 | | , | FAILURE
MODE | 88888
8888
9999 | 88888
8888
8888
8888
8888 | NNNNNN
WWW.
NNNNNN
NNNNNNNNNNNNNNNNNNNN | | HHHHH
MMMMM
NNSNSN
NNSNSN | HHHHHH
MMMMM
NNNNNN | | ITS | FAILURE
LOAD
KNEWTON | 11.0538
14.4567
14.5457
10.9426 | 11.4764
13.5226
15.2129 | 12.3458
112.3458
112.3458
112.9221
9.6749 | 9.7861
12.3216
12.4995
12.2550
10.3644 | 9.2306
10.2532
9.5332
9.5304
9.5192
9.5192 | 9.0077
9.5637
9.3190
9.8973
10.0752 | | IND IS | PANEL
THICK | 2.311
2.228
2.240
2.304 | 2.4482
2.494
2.4894
2.464 | | WNG-14N
BEREEN
BEREEN
NONNN | 864.000
888
888
888
887
887
887
887
887
887 |
220000
22444
24444
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
24600
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246000
246 | | | EDGE
DIST | 19
38.42
38.46
19.20 | 19.44
38.40
38.47
19.17 | 125.55
125.55
125.55
125.55
125.55
125.55
125.55 | 112211
245542
2455440
245640
246546 | 1225
125
125
125
125
125
125
125
125
125 | 1100
100
100
100
100
100
100
100
100
10 | | | PANEL | 38.17
38.17
38.22 | 38888
8888
8888
8888
8888
8888 | 202222
202222
20222
2022
2022
2022
202 | 2222222
2222222
244222
24222
24222
24222
24222
24222
24222
24222
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
242
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
242
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
242
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
242
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
242
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
2422
242
2422
2422
2422
2422
2422
242
2422
2422
2422
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242
242 | 1100000
00000
000000
000000
000000 | 199.22
199.23
199.23
199.24 | | | BOLT
DIAM | 6.340
6.340
6.340
6.340 | 6.340
6.340
6.340
6.340 | 66
66
66
66
67
67
67
67
67
67
67
67
67
6 | 20075 | 6666
6666
6666
6666
6666
6666
6666
6666
6666 | 66.000 000 000 000 000 000 000 000 000 0 | | | DIO
MAM | 6.4726
6.4526
6.4532
6.490 | 6.350
6.452
6.4752
6.474 | 66.3883
66.3883
66.3883
66.404
66.60 | 6666
6677
6674
6674
6674
6774
6774
6774 | 6.3447
6.3465
6.3465
6.3462
7.147 |
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20
66.20 | | | HOLE | 4@UQ | ∀ ®∪0 | √ ®®∪∪̈́∆ | ∢๛็ตบบ็อ | ∢ต็ตบบ้อ | ∢๛๛บบื่อ | | | SPECIMEN
ID | THS-2-1
118-2-1
118-2-1 | THS-2-2
THS-2-2
THS-2-2 | 11111
11111
11111
11111
11111
11111
1111 | THE STATE OF S | 111111
1111111111111111111111111111111 | THS-12-6
THS-12-6
THS-12-6
THS-12-6
THS-12-6 | TABLE IIIB TENSION THROUGH-THE-HOLE SPECIMENS FIBER PATTERN - 37.5 PCT 0 DEG., 37.5 PCT ±45 DEG., 25 PCT 90 DEG. US CUSTOMARY UNITS | SHEAROUT
STRENGTH
KSI | 2133.
2133.
244. | 20.6
11.2
17.6 | 22.00
22.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00 | るのましたろう
ころでしまら
でもなるます。 | WHHHW W W W W W W W W W W W W W W W W W | 18674 | |-----------------------------|--------------------------------------|--------------------------------------|---
--|--|--------------------------------------| | TENSION
STRENGTH
KSI | 21.8
29.7
29.7
21.7 | 21.0
24.7
27.8
17.4 | 044499
04000111
040044 | WW44WW
VA000W
ONWNOT | 44444
44444
60.11/20 | 44444
wrive
4000 | | BEARING
STRENGTH
KSI | 109
148.5
108.7 | 105-8
124-0
139-8 | 92.7
11.20.7
12.0.6
12.4.6
96.5 | 120.5
120.5
120.5
120.5 | 94.7
1000.3
94.3
95.3
900.1 | 00000
00000
00000 | | FAILURE | 8888
8888
9999 | 8888
8888
8888
8888 | MMMMMM
MMMMMM
MNNNNN
NNNNNNNNNNNNNNNNN | HHHHH
MMMMM
SZSZS
NNNNNN | MAHHHH
SZZZZZ
NNONN | THHH
MMMM
NNNN
NNNNN | | FAILURE
LOAD
LB | 2485.0
3250.0
3270.0
2460.0 | 2580.0
3040.0
3420.0
2120.0 | 2115
2775
2005
3006
2905
2175
0 | 2200
2770
2810
2810
2300
2330 | 2210
2200
2305
2165
2165
2165
2110 | 2025
2150
2095
2225
2225 | | PANEL
THICK. | .0910
.0877
.0882
.0907 | .0977
.0982
.0980 | 0916
0926
0921
0934
0934 | 00914
00928
00928
00921
00918 | 000000
0000000
00000000000000000000000 | 00000
00000
000000
000000 | | EDGE
DIST | 1.513
1.513
1.514 | 1.5125 | 11
10
10
10
10
10
10
10
10
10
10
10
10
1 | 1.0007
1.0007
1.0006
1.770 | 1.005
1.005
1.007
1.007 | 491
776
1.006
1.007 | | PANE
VIOTH | 1.504
1.503
1.503
1.503 | 1.510
1.507
1.509
1.510 | 1.0002
1.0000
1.0004
1.0002 | 0002
0002
0002
0002
0002
0002 | 77777
7780
7878
8878
8878 | 27.7.0
87.0.0
87.7.0 | | BOLT
DIAM
IN. | 2496
2496
2496
2496
2496 | .2496
.2496
.2496
.2496 | 2000
2000
2000
2000
2000
2000
2000
200 | 000000
00000
00000
00000 | 24496
24496
24496
24496
24496 | 2490
2495
2496
2496 | | HOLE
DIAM
IN. | .2530
.2540
.2540
.2540 | 2027 | 2222
2252
2551
2001
2001
2001 | 22222
245545
245227
24550
2550 | 22529
25229
25229
25484
8810 | 2550
2550
2552
2552
2532 | | HOLE | 4.80D | 4800 | ∢๛็ตบบ็อ | ∢∞ึത∪ပီ∆ | ∢മയററ്റ | ∢ ®®∪ | | SPECIMEN | THS-2-1
THS-2-1
THS-2-1 | HS-2-
HS-2-
HS-2-
HS-2- | HHIS
HNS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1
NS-12-1 | HHHING PARKET IN THE | 11111
20000
11111
2011
11111
11111 | S-2-
S-2-
S-2- | TABLE IVA TENSION THROUGH-THE-HOLE SPECIMENS FIBER PATTERN - 37.5 PCT 0. 50 PCT ±1/4. 12.5 PCT 1/2 STIND IS | SHEAROUT
STRENGTH
MPASCAL | 158888
180585
0440 | 167.5
83.1
156.1 | 2402040
0402044
040000 | 2111112
2443
2511243
85126
866 | 1131
1001
1003
1249
1249
168 | 2223
24453
24410
244110
244111
2441111111111111111 | |-------------------------------------|---|--
---|--|--
---| | TENSION
STRENGTH
MPASCAL | 159-7
191-0
193-0
182-4 | 170.0
188.7
191.6
153.7 | 20000000000000000000000000000000000000 | 2000
2000
2000
2000
2000
2000
2000
200 | 988489
9846946
468464 | 99999999999999999999999999999999999999 | | BE AR I NG
STRENGTH
MP ASC AL | 794.4
946.9
950.3
901.1 | 846.7
923.4
956.3
789.0 | 705.0
802.5
8880.0
722.6 | 717.3
756.5
874.6
1001.8
706.6 | 627
699
7199
695
645
647
5 | 7557
7807
77037
7784
7784
8 | | FAILURE
MODE | 8888
8888
8888
8888 | 88888
8886
8866 | HABBBH
BRRGCN
NNS
SNS
SNS | HBBBRRN
BRRCGN
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCOON
SCO | HHHHHH
NSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | MMMMMM AMANANANANANANANANANANANANANANANA | | FAILURE
LOAD
KNEWTON | 11.6543
13.9674
13.3447
12.5662 | 12.5440
13.1890
14.1676
11.4097 | 10.4533
11.9880
13.1223
12.9888
13.4114 | 10.8092
11.4097
13.2112
14.8571
12.0769 | 9.2301
10.4533
10.6757
10.4088
11.5876
9.8083 | 9.9195
11.2540
10.5423
11.5654
10.9871 | | PANEL
THICK | 2.314
2.327
2.215
2.200 | 2.337
2.253
2.337
2.337 |
222222
22222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
2022
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222
20222 | 20000000000000000000000000000000000000 | 22222
22222
22222
22222
22222 | 22222
22222
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
2224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
2224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22 | | EDGE
DIST. | 19.004
338.46
19.11 | 19.20
38.47
38.41
19.18 | 255
255
255
255
255
255
255
255
255
255 | 110
25
25
25
10
25
25
25
25
25
25
25
25
25
25
25
25
25 | 125
125
125
125
125
125
125
125
125
125 | 12.51
19.77
25.59
25.51
12.50 | | PANEL
MIDTH | 3777 | 37.94
37.49
38.08
39.00 | 22255
2255
2555
2555
255
255
255
255
25 | 222222
222222
24242
24242
24242 | | 19.52
19.52
19.52
19.52
19.52 | | BOLT | 6.3400
6.3400
6.3400 | 6.340
6.340
6.340 | 66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
666666 | 6666
6666
6666
6666
6666
6666
6666
6666
6666 |
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00 | 6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00 | | HOLMAM | 6.44
6.44
6.45
7.77
7.77 | 6.358
6.474
6.447
6.441 | 6 4 4 0 8 6 4 4 0 8 6 4 4 0 1 0 6 4 4 0 1 0 6 4 4 0 1 1 0 6 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 66.00000000000000000000000000000000000 | 66.34
66.34
66.41
79.42
79.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43
75.43 | 6.368
6.368
6.445
6.4474
6.00
8.00
8.00 | | HOLE | ∢ ®∪Ω | ₹ ®∪0 | ∢ต็ตบเ็ื่อ | ∢മതാധ്മ | ∢™താറ്റ | ∢™്നാ∪്ഥ | | SPECIMEN | HTT
HTSH
HTSH
HTSH
HTSH
HTSH
HTSH
HTSH | HEN | HTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT | NONNON | TITITI
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO
NONNO | TITITI
NOON
NOON
NOON
NOON
NOON
NOON
NOO | TABLE IVB TENSION THROUGH-THE-HOLE SPECIMENS FIBER PATTERN - 37.5 PCT 0 DEG., 50 PCT ±45 DEG., 12.5 PCT 90 DEG. US CUSTOMARY UNITS | SHEAROUT
STRENGTH
KSI |
23
112.4
26.4
26.1 | 222.3 | 200
200
200
200
200
200
200
200
200
200 | 22000
22000
3450
6666 | 321449
321449
11499 | 320-44
320-44
350-64 | |-----------------------------|--|---|--|---|--|---| | TENSION
STRENGTH
KSI | 23.2
27.7
28.0
26.5 | 24.7
27.7
27.8
22.3 | ww444w
www444
000044 | 440m00 | 401000
401000
401000 | 400000
740000
400100 | | BEARING
STRENGTH
KSI | 115.2
137.3
130.7 | 122.8
133.9
138.7
114.4 | 1023
1127
1277
1033
104 | 0112004
0146694
0146694
014694 | 1011-11000-1100-1100-1100-1100-1100-11 |
90000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000 | | FAILURE | 88888
8888
9999 | 88888
8888
9999 | HABBBH
MARAMM
NOOONS
NOONS | HBBBBBH
HBBBBB
NGGGGN
NGGGG
N | NONNON
NONNON
NONNONN | NNNNNN
EZZZZ
WUWWWW
WONNNNNNNNNNNNNNNNNNNNNNNNNNNNNN | | FAILURE
LOAD
LB | 2620.0
3140.0
3000.0
2825.0 | 2820.0
2965.0
3185.0
2565.0 | 2350 0
26950
2950 0
2920 0
3015 0
2415 0 | 2430.0
25455.0
2970.0
3340.0
2315.0 | 2075
2350
2400
23400
23400
2205
0 | 2230
2530
2370
2600
2470
2345 | | PANEL
THICK. | .0911
.0916
.0872
.0866 | 0920
0887
0920
0898 | 09923
09928
09926
0916
0908 | 00000000000000000000000000000000000000 | 09925
09925
09930
09916
09943 | 0933
0923
0931
0921
0921 | | DISCH
IN THE | 1.513 | 1.5124
1.5124
7.55 | 1.005
1.005
1.770
4.95 | 1.009
1.009
1.773
4.95 | 1.0007
1.0007
1.0007
4.89 | 1.007
1.007
1.778
1.778
4.92 | | PANEL
WIOTH | 11.
444.
4469.
1489.
1899. | 1.494
1.476
1.535 | 1.003
994
999
1.0001
1.005 | 000000
000000
000000000000000000000000 | 77776
7777
7557
7554 | 2000000
2000000 | | BOLT
DIAM
IN. | .2496
.2496
.2496
.2496 | 2496
2496
2496
2496 | 24496
24496
24496
24696
24696 | 24495
24495
24496
24496
24496 | 24496
24496
24496
24496
24496 | 24490
24490
24495
24496
24496 | | HOLE
OIAM
IN. | .2513
.2540
.2546
.2550 | 25549
25349
2538
2538 | 2523
2520
2520
2520
2530
2530 | 25523
25508
25508
25508
2510
2517 | 2507
2507
2507
2508
2508
2510 | 2507
2524
2526
2526
2526
2503 | | HOLE | 4 000 | 4800 | ∢ชื่อกบบ็อ | ∢മത∪റ്ററ | ∢๛็๛บุ๊ก | ∢മയററ്റ | | SPECIMEN
ID | HILL
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NSS
1111
NS
1111
NS
1111
NS
1111
NS
1111
NS
1111
NS
1111
NS
1111
NS
NS
1111
NS
1111
NS
1111
NS
1111
NS
111
NS
1111
NS
1111
NS
1111
NS
1111
NS
1111
NS
111
NS
111
NS
111
NS
111
NS
111
NS
111
NS
111
N | 1118
1118
1118
1118
1118
1118
1118
111 | ###################################### | HTTTTT
SHITTT
SHITT
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | HITTH
NONNON
HITTH
NONNON
HITTH
HUMMAN
HITTH | 99999
111111
0000000
1111111
HHLL | TABLE VA TENSION THROUGH-THE-HOLE SPECIMENS S-GLASS LONGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN FIBER PATTERN - 25 PCT 0, 50 PCT ±1/4, 25 PCT #/2 | | SHEARDUT
STRENGTH
MPASCAL | 172.1
888.4
83.8
164.3 | 158
90.7
132.0 | 2469
11268
11268
1260
2360
966 | 2551
1118
1118
162
162
163
163
163
163
163
163
163
163
163
163 | 2339
11006
1340
1340
1340
1340
1340
1340
1340
1340 | 231.8
139.7
106.9
107.6
134.2 | |--------|---------------------------------------|---|---
---|--|--
---| | | TENSION
STRENGTH
MPASCAL | 168861
168881
16881 | 148
2028
1872
1387
5 | 243
285
2748
2748
2748
2748
118 | 2004
2010
2010
2010
2010
2010
2010
2010 | 882404
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
640464
64 | 28471100
8471100
8471100 | | | BEARING
STRENGTH
MPASCAL | 820.0
979.2
928.9
828.1 | 739.8
997.5
936.7
664.2 | 734
8711-9
8350-4
834-6
696-9 | 7422
9092
8334
1165
7165
3 | 703
755
755
730
730
730
730
730 | 7255
7555
7555
7152
7152
7152
7152
755
755
755
755
755
755
755
755
755
7 | | | FAILURE | NBBN
1881
8008 | NBBN
IRRI
RGGR | NBGBBN
TXXXXI
TOOOOG | NBBBBN
IXXXXI
XQQQQX | 888888
88888
999999 | NBBBBBN
LAAAAN
DOOOOM | | 1.5 | FAILURE
LOAD
K NEWTON | 11.7656
14.0341
13.5226
11.9212 | 10.3644
14.4567
13.5004
9.5192 | 10.7202
12.5885
12.3661
11.9880
12.0547 | 13.7202
13.2335
12.1214
12.0102
11.9657 | 10.0752
10.4756
10.8314
10.2309
10.4978
10.1419 | 10.0085
10.5200
11.0538
11.1428
10.4311
8.6963 | | SI UNI | PANEL
THICK. | 2.263
2.261
2.296
2.271 | 2.210
2.286
2.273
2.261 | 22.2306
22.2348
22.2364
22.2381 |
22.259
22.259
22.259
22.259
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25.250
25 | 22.23.38
22.23.38
22.23.38
22.23.38 | 22.329
22.329
22.3309
22.3311
22.3311 | | | EDGE
DIST | 188.30
19.24
19.23 | 18.03
38.07
38.17
19.20 | 112
255
255
125
558
125
558
125
558 | 11255
1255
1255
1255
1255
1255
1255
125 | 12.46
25.58
25.56
12.98
12.51 | 12.46
19.62
25.62
25.62
19.98 | | | M M M M M M M M M M M M M M M M M M M | 38.12
38.01
37.73 | 387.0
7.00
7.00
7.00
8.00
8.00 | 222222
222222
24444
44442
44444
44444
44444
44444 | 22222
22222
22222
22222
22222
22222
2222 | 199
199
199
199
199
199
199 | 19.37
19.33
19.34
19.44
19.45 | | | BOL
MAM
MAM | 6.340
6.340
6.340
6.340 | 6.340
6.340
6.340
6.340
6.340 | 66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32
66.32 | 66.000
66.000
66.000
66.000
66.000
66.000
66.000
66.000
66.000
66.000
66.000
66.000
66.000
66.000
66.000
66.000
66.000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.00000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.00000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.00000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.00000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.0000
66.00000
66 | 66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
666666 | 66 3 3 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | HOL
MAM
MAM | 6.3
6.47
6.41
6.41
6.41
6.95 | 6.391
6.419
6.502 |
6.350
6.350
6.350
6.350
6.250 | 66.3255
66.3255
66.3255
66.2711
66.2711 | 00000000000000000000000000000000000000 | 66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00 | | | HOLE
ID | ⋖恋∪○ | ₹®∪ 0 | ▼ ®ຫບ ບໍ ດ | ∢ต็ตบบ็ก | ∢മ്മാ∪്ഥ | ∢മത∪്റ | | | SPECIMEN | | THST-4-2
THST-4-2
THST-4-2
1-4-2 | HITTI
NONNON
111111
NONNON
111111
44444
111111
HUMMUM | 144444
111111
144444
1111111
00000000
1111111 | HITTI
NONNON
1111111
NONNON
1111111
44444
111111
111111 | 11111111111111111111111111111111111111 | TABLE VB TENSION THROUGH-THE-HOLE SPECIMENS S-GLASS LONGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN FIBER PATTERN - 25 PCT 0 DEG., 50 PCT ±45 DEG., 25 PCT 90 DEG. US CUSTEMARY UNITS | | SHEAROUT
STRENGTH
KSI | 232.0 | 123.0 | をとしてなるない。
ちとしてなる。
ととするよう。 | WOLLENS
SWATANG
PACONO | 321123
400450
50064118 | | |--------|-----------------------------|---|--------------------------------------|--|--|--|--| | | TENSION
STRENGTH
KSI | 222
222
223
24
23
25
25
25
25
25
25
25
25
25
25
25
25
25 | 221
229
19-33
19-6 | w4444w
₩00H00w
w00W04 | W4444
NWQQQ4
NWQNWW | 00000004
0000000
40000000 | 4700074
810001
000000 | | | BEARING
STRENGTH
KSI | 118.9
1342.0
120.7 | 107
144-7
135-9
96-3 | 1000326
0000366
0000000000000000000000000 | 10211-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- | 105.0
105.0
105.0
105.9 | 863009
803009
80300000
8030000000000000000 | | | FAILURE
MODE | NBBN
HRRH
RGGR | NBBN
TAAT
AGGA | ND DD DN
LA A A A L
A Q Q Q Q A | NOODOX
IKAKAI
KOODOX | 888888
88888
000000 |
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
STANKE
ST | | | FAILURE
LOAD
LB | 2645.0
3155.0
3040.0
2680.0 | 2330.0
3250.0
3035.0
2140.0 | 2410.0
2830.0
2780.0
2695.0
2710.0 | 2410.0
2725.0
2725.0
2700.0
2690.0
2310.0 | 2265.0
24355.0
2435.0
2360.0
2280.0 | 2250.0
2365.0
2485.0
2365.0
23455.0
1955.0 | | | PANEL
THICK
IN. | 0891
0890
0904
0894 | 0870
0895
0895 | 09903
08903
0898
0898
0898 | 009000
009000
008900
00886
93 | 0892
0897
0895
0893
0901 | 0917
0909
0911
0910
0910 | |)
) | EDGE
DIST | 1.510
1.509
1.509 | 1.499
1.503
1.756 | 1.006
1.0006
1.773
1.773
494 | 1.006
1.006
1.007
1.669
1.694 | 1.007
1.007
1.006
1.006
4.93 | 1.009
1.009
1.009
1.009 | | | EPAN
INDI
INDI
IL | 1.501
1.497
1.486
1.485 | 1.483
1.483
1.497 | 1.005
1.0001
1.0001
1.0001 | 1.006
1.005
1.006
1.009
1.003 | 77777
77777
77777
7777 | 7.763
7.760
7.661
7.666 | | | BOLT
DIAM
IN. | 2496
2496
2496
2496
2496 | 2496
2496
2496
2496
2496 | 24496
2496
2496
24996
24996
24999 | 24496
24496
24496
24496 | .24490
.24496
.24496
.24496 | .24490
.24496
.24496
.24496
.24996 | | | DIOLE
IN. | 2510
2539
2527
2557 | | 200000
200000
200000
200000
200000 | 2522
25524
25509
25524
25694 | 2513
2530
2531
2536
2536
2536
2508 | 2510
2533
2533
2549
2549
2512 | | | HOL E | 4 00 0 | 4800 | ⊲അത∪ാറ | < *** ตือ ∪ บื้อ | ∢മത∪∪്റ | ∢മയാറ്റ | | | SPECIMEN
ID | 7 HS - 4-1
7 HS - 4-1
7 HS - 4-1
7 HS - 4-1 | HS-4-
HS-4-
HS-4- | 11111111111111111111111111111111111111 | HTT
HTT
HTT
HTT
HTT
HTT
HTT
HTT | HTTTTT
NATIONAL
1111011
11111111111111111111111111111 | THE THE PROPERTY OF PROPER | | | | | | | | | | ## TABLE VIA TENSION THROUGH-THE-HOLE SPECIMENS S-GLASS LONGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN FIBER PATTERN - 37.5 PCT U, 37.5 PCT ±1/4, 25 PCT 1/2 ## SI UNITS | SHEAROUT
STRENGTH
MPASCAL | 158-4
781-7
154-1 | 162.8
875.9
80.7
160.4 | 201125
201125
201125
2016
8404
8404 | 251
1125
125
151
151
151
151
151
151
151 | 218
1118
1118
2117
20
20
20
20
20
20
20
20
20
20
20
20
20 | 2000
1111
1115
1115
1115
1115
1115
1115 | |---------------------------------|---|--|---
---|---|--| | TENSION
STRENGTH
MPASCAL | 153.0
1592.0
148.0
168.0 | 1159
1768
1788
1588
1588 | 2224
2824
2027
277
275
26
66
66
66 | 22000
2000
2000
2000
2000
2000
2000
20 | 3315
3315
3315
3316
3016
8 |
4400
4004
4008
4008
4008
4008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008
6008 | | BEARING
STRENGTH
MPASCAL | 764.5
903.6
797.8
745.3 | 794.0
837.9
891.3
799.5 | 6653-7
8233-7
8334-1
7809-8
657-9 | 756-7
887-9
844-6
877-5
783-3 | 644
8022
7672
6107
6107
6107
6107
6107
6107
6107
6107 | 709.1
8816.2
8815.1
675.3 | | FAILURE | NBBN
IRRI
ROGR | NBBN
IRRI
IRGGR | NBBBBN
INARAI
KOOOOA | NBBBBRN
IRRAGOR
ROGOR
ROGOR | 8888888
888888
999999
999999 | NEW BRY ENGRANCE AND SHOOT SHOT AND SHOT AND SHOOT AND SHOOT AND SHOOT AND SHOOT AND SHOOT AND SHOOT A | | FAILURE
LOAD
KNEWTON | 12.7442
12.7442
11.0094
10.2976 | 11.0094
11.6988
12.3438
11.0983 | 9.4302
11.7878
12.8998
12.0769
11.2762 | 9.9195
12.6774
11.5876
12.5440
11.2095
10.1419 | 9.0744
10.8314
11.7211
11.8545
11.0316 | 9.8528
11.2762
11.2762
11.4319
11.7211 | | PANEL
THICK. | 2.184
2.225
2.177
2.179 | 2.187
2.202
2.184
2.189 | 22.250
22.250
22.250
22.250
22.268
22.281 | 2.073
2.253
2.253
2.256
2.258
2.258 | 2.230
2.235
2.235
2.235
2.268 | 2.192
2.192
2.212
2.230
2.193 | | FDGE
DIST | 1388
1388
1888
1997
1997 | 188.25
388.25
198.25
199.25 | 12055
1205
1205
1205
1205
1205
1205
1205 | 1255-55
1255-55
1255-55
1255-125
1255-125 | 112.50
25.55
25.62
129.42 | 255
255
255
255
255
255
255
255
255
255 | | PANEL | 37.86
37.93
38.10 | 38.01
37.95
38.13
38.32 | 222222
545555
5655
5655
5655
5655
5655
5 | 2222222
5555555
5655555
565555
56555
56555
56555
56555
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655
5655 | 19
19
19
19
19
19
19
19
19 | 199-199-199-199-199-199-199-199-199-199 | | BOLT | 6.340
6.340
6.340 | 6.340
6.340
6.340
6.340 |
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00 | 66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34
66.34 | 66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00 | 66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | DIOL
MAM
MM | 6.368
6.459
6.477
6.497 | 6.365
6.472
6.500 | 6.396
6.396
6.419
6.410
6.410
6.420 | 6.3888
6.3888
6.3424
6.3424
6.3724
1.15 | 6.32
6.32
6.32
6.32
6.32
6.32
6.32
6.32 |
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$66666
\$666666 | | HOLE
10 | 4800 | 4 B U O | ⊲മ്മാവ്മ | ⊲മ്മാറ്റ | ∢മത∪ധ്മ | ๔๓๓๐บํ๐ | | SPECIMEN ID. | 1 H S - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 1111
8155
1155
1161
1161
1161
1161
1161 | ###################################### | HHHHH
NNNNN
1111111
11111111
11111111 | PHHHH
NOWNON
111111
111111
111111
111111
111111
1111 | HHHHH
NONONON
1111111
0000000
000000 | TABLE VIB S-GLASS LONGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN FIBER PATTERN - 37.5 PCT 0 DEG., 37.5 PCT ±45 DEG., 25 PCT 90 DEG. TENSION THROUGH-THE-HOLE SPECIMENS US CUSTOMARY UNITS | HEAROUT
TRENGTH
KSI | 23
101.9
22.4
4. | 23.46 | 204-123
204-1832
204-1828 | 2222
2222
3222
3222
3222
3222
3222
322 | 2216.00 | 8211128
424988
424988
444
444
444
444
444
444
444
444
444 | |--------------------------------|--------------------------------------|---|---|---|---|---| | TENSION S
STRENGTH S
KSI | 2222
22362
23643 | 2222
2354
1995
1995 | 0.040
1.104000
1.1040000 | 9844499
4412196
20000 | 400004
040040
00000
000000 | സസസസസ
() () () () () () () () () () () () () (| | BEARING
STRENGTH.
KSI | 1110.9
1131.0
108.1 | 12515-2115-2116-0 | 11111
912219
917219
51767
517614 | 10122888
10122888
101372888 | 93.3
1120.0
1119.3
1111.3 | 11102
1208
1208
1468
1468 | | FAILURE
MODE | SBBS
HRRH
RGGR | NBBN
TAAT
AGGA | NDDDDDN
IAAAAI
AOOOOA | NOODOX
IXXXXI
XOOOOX | 888888
888888
888888
888888
888888
88888 |
NEWEWEN
TAXXXI
TAXXXI
TAXXXI
TAXXXI
TAXXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI
TAXXI | | FAILURE
LOAD
LB | 2380.0
2865.0
2475.0
2315.0 | 2475.0
2630.0
2775.0
2495.0 | 2120 0
2650 0
2900 0
2715 0
2535 0 | 22330
28530
28530
28520
22520
22520
22520 | 20435
2635
2635
2665
2665
2665
2005 | 2215
2540
2535
2535
2535
2535
2105 | | PANEL
THICK. | .0860
.0876
.0857
.0858 | .0861
.0867
.0860
.0862 | 00000
000000
0000000
00000000000000 | 00000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0865
0863
0871
0878
0864 | | EDGE
DIST. | 1.507
1.508
1.508 | 1.506
1.506
1.505 | 1.007
1.007
1.007
768
496 | 1.0008
1.0008
1.0008
4.93 | 1.009
1.009
1.009
1.769 | 1.004
1.004
1.006
1.773 | | PANEL
WIDTH
INTH | 1.493
1.500
1.508 | 1.497
1.494
1.501
1.509 | 990
982
10085
1002
1009 | 1.000
1.0099
1.0059
1.0055 | 77777
22222
22722
2272
2272
2272
2272 | トファファ
ろうろうらう
よろうので | | BOLT
DIAM
IN. | | 2496
2496
2496
2496 | 224444
244444
244444
24444
2444
2444
2 | 24496
24496
24496
24496
24496 | 24490
24495
24495
24496
44969 | 22444
22444
24449
244496
24496
34496 | | D I A ME | 2222 | 2550
2550
2554
2531
2531 | 22222
22222
22222
2222
2222
2222
2222
2222 | 22222
24222
24222
24225
24225
2423
2423 | 2516
2544
2544
2544
2594 | 2222
2222
2222
2222
2222
2222
2222
2222
2222 | | HOLE | ∢ ₩∪Ω | 4800 | ๔฿๎๓บ บ้อ | ∢๛็ตบบ้อ | ∢๛็ตบบ็ก | <a>™<a>™<a>™<a>™<a>™<a><a>™<a><a>™<a><a><a><a><a><a><a><a><a><a><a><a><a>< | | SPECIMEN 10 | | HH NH N | HHHHH
NONONON
111111
NUNUNUN
111111
NUNUNUN | | TTTTT
SOUTH
SOUTH
TITITI
TOUGH
TITITI | TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
TITITI
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NONCH
NON | ## TABLE VIIA TENSION THROUGH-THE-HOLE SPECIMENS S-GLASS LUNGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN FIBER PATTERN - 37.5 PCT 0, 50 PCT ±1/4, 12.5 PCT #/2 ## SI UNITS | | SHEAROUT
STRENGTH
MPASCAL | 25
25
26
26
26
26
26
26
26
26
26
26
26
26
26 | 486
960
4 | 27122
1122
122
144
153
153
153
153
153
153
153
153
153
153 | 2000
2000
2000
2000
2000
2000
2000
200 | 256
1060
1077
1077
1077
1077
1077
1077
107 | 2008
2008
2008
2008
2008 | |---|---------------------------------------|--|--|---
--|--|---| | | TENSION
STRENGTH
MPASCAL | 154.4
173.6
191.2 | 141.3
192.9
200.9
162.8 | 22474
2005
2005
2005
2005
2005
2005
2005
200 | 2000
2000
2000
2000
2000
2000
2000
200 | 2469494949494949494949494949494949494949 | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | BEARING
STRENGTH
MPASCAL | 946
955
955
955
955
955
955
955
955
955
95 | 702.4
958.3
1002.9
813.5 | 743
8343
8124
898
898
740
6 | 8887162
438876
438876
458877 | 787
787
787
787
788
789
789
789
789 | 7462
7788
7788
7789
766
766
766
766
766
766
766
766
766
76 | | | FAILURE
MODE | NBBN
IRRI
ROOR | S B B S S S S S S S S S S S S S S S S S | NEGEGEN
HXXXXH
XOOOOX | NBBBBN
TXXXT
XOOOOX | NBBBBBN
HXXXXH
NGGGGX | NBBBBN
IKKKKI
KOOOOK | |) | FAILURE
LOAD
K NEWTON | 10.7869
12.1437
13.3669
11.0538 | 9.8973
13.4559
13.6783
11.1873 | 10.4533
11.0094
11.0983
12.54550
10.0752 | 10.1419
112.0547
12.0547
112.0324
11.5654 | 10.4756
11.5654
10.5645
11.5209
11.2762 | 9.9640
10.6090
11.2318
11.0094
10.0752 | | 5 | PANH
MINGK | 2.217
2.212
2.217
2.172 | 2.222
2.215
2.151
2.151 | 22.00
22.00
22.00
22.00
22.00
22.00
20
20
20
20
20
20
20
20
20
20
20
20
2 | 2.159
2.1997
2.1184
2.1184
1.824 | 2.192
2.192
2.192
2.193
2.164
2.230 | 2.121
2.182
2.151
2.200
2.195
2.202 | | | EDGE
DIST | 198.324
198.338
198.35 | 1388
1888
1889
1880
1880
1880 | 112
225
255
620
112
622
622
622
632
632
632
632
632
632
63 | 255.55
255.55
1125.55
555
555
555
555 | 2255
2255
2255
2255
2255
2255
2255
225 | 112
25
25
25
25
25
25
25
26
12
46 | | | M M M M M M M M M M M M M M M M M M M | 37.99
38.05
37.98 | 38.01
37.96
38.11
38.05 | 222222
222222
22222
22222
22222
22222
2322 | 200000
500000
500000
50000
50000
5000
5 | 199.28
199.26
199.30
199.31 | 19.28
19.22
19.15
19.15 | | | BOLT | 6.340
6.340
6.340
6.340 | 6.340
6.340
6.340
6.340 | 66666
666667
66667
6677
677
677
6 |
6466
6466
6466
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470
6470 | 66666
66666
666667
667667
667667
667667
667667
667667
667667
667667
667667
667667
667667
667667
667667
667667
667667
667667
667667
667667
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767
66767 | 66666666666666666666666666666666666666 | | | HOLE | 6.4482
6.4429
6.378 | 6 4485
6 3472
6 383 | 6 - 2 + 0 0 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 66.44.1
66.44.0
66.44.0
67.488 | 666666
666666
6666666
66666666
666666 | 6666
6666
6666
6674
6674
6674
6674
6674 | | | HOLE | 4000 | 4900 | ۵
ښه
ښه | ∢‱ത∪∪്റ | <
• • • • • • • • • • • • • • • • • • • | <
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹ | | | SPECIMENIO | THS-6-1
1-6-1
1-6-1
1-6-1 | THS-6-2
THS-6-2
THS-6-2
THS-6-2 | 80000000000000000000000000000000000000 | HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH | 000000
111111
00000
111111
NNSUSUS
1111111
HLLLLLLLLLLLLLLLLLLLLLLLLLLLLL | 99999
99999
111111
808888
1111111
1111111111 | | | | | | | | | | ## TABLE VIIB ## TENSION THROUGH-THE-HOLE SPECIMENS S-GLASS LONGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN FIBER PATTERN - 37.5 PCT 0 DEG., 50 PCT ±45 DEG., 12.5 PCT 90 DEG. ## US CUSTOMARY UNITS | | -I | | | | | | | |-----|----------------------------|--------------------------------------|--|--|--|--|--| | | STRENGTH
KS I | 22
112
23
33
14
12 | 20
23
23
23
23
24
25
25
25
25
25
25
25
25
25
25
25
25
25 | WUHHWW 6400 6400 6400 6400 6400 6400 6400 64 |
WZH-ZW
WZH-ZW
WZH-ZW
WZH
WZH
WZH
WZH
WZH
WZH
WZH
W | 2000 mm | 200000
200000
200000 | | | TENSION
STRENGTH
KSI | 2222
2252
2454
2454 | 20.5
228.0
23.1
23.4 | w4w44w
n00www
n00w40 | ww444w
www0000
r400000 | WWWWWW
WWAGAW
WWAGAW
WWAGA | 0000000
040704
000000 | | | BEARING
STRENGTH
KSI | 1125-3 | 10114591 | 1020
1020
1020
1020
1020
1020 | 107.7
118.4
126.5
1021.2 | 1009-6
1100-3
1100-3
100-3 | 107.7
1111.3
1114.5
1105.1 | | | FAILURE | NBBN
HAKH
KOOK | NBBN
TAAT
TAGE | NOODOA
IXXXXI
XOOOOX | NOODON
IXXXXI
XOOOOX | NOBOOON
IGAKKI
GOOOOK | NBBBBN
HRRRRH
RGGGGR | | | FAILURE
LOAD
LB | 2425.0
2730.0
3005.0
2485.0 | 2225.0
3025.0
3075.0
2515.0 | 2350
24750
24950
2820
2850
22650 | 2280
2555
2710
2705
2800
2800
2810 | 23.500
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
23.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24.400
24 | 2240.0
2385.0
2525.0
2475.0
22475.0
23865.0 | | | PANEL
THICK.
IN. | 0873
0873
0873
0855 | 0875
0872
0847
0854 | 0875
08875
08848
08861
0875 | 000000
0000000
000000000000000000000 | 9000000
10000000
0000000000000000000000 | 0853
0853
0864
0866
0866 | | 200 | EDGE
DIST. | 1.511
1.511
1.510 | 1.510
1.511
1.511 | 1.009
1.009
1.009
1.009 | 1.0007
1.0007
1.010
1.010
1.010 | 1.007
1.007
1.007
1.771 | 779
1.007
1.007
1.780 | | | PANEL
NIOTH | 11.
4496
1496
1495
1895 | 1.496
1.500
1.500 | 1.0010
1.0003
1.0003
9995
9995 | 11
1000
000
000
000
000
000
000
000 | 77777
636689
636089 | トトトトト
ででいいい
ゆか後ならな | | | BOLT
DIAM
IN. | 2496
2496
2496
2496 | 2496
2496
2496
2496
2496 | 2000
2000
2000
2000
2000
2000
2000
200 | 00000000000000000000000000000000000000 | .24496
24496
24496
24496
24496 | .24496
.24496
.24496
.24996
.24996 | | | HOLE
DIAM | | 2222 | 25528
25528
25528
25528
25528
25528 | 22020
22020
22020
22020
20020
20020
20020 | とないないでいるようましょうない | .2511
.2500
.2541
.2550
.2550 | | | HOLE
ID | ∢യ∪റ | ∢ ∞∪0 | ≼യയ∪∪്ഥ | ∢മ്മ∪∪്റ | ∢മത∪്റ | ∢ത്ത∪്മ | | | SPECIMEN
ID | THS-6-1
THS-6-1
THS-6-1 | HS-6-
HS-6-
HS-6- | HHHHH
WWWWW
1111111
WWWWWW
1111111
HHHHHH
WWWWWW | 99999 | NONNONN
NONNONN
NONNONN | THS-6-6
THS-6-6
THS-6-6
THS-6-6
THS-6-6 | TABLE VIIIA BEARING AND SHEAROUT SPECIMENS (TENSILE LOADING) ALL GRAPHITE FIBERS, EPOXY RESIN STINU IS | μI | | | | | | | | | | | |---|---|---|-------------|-------------------------------|---|--------------------|-------------|-----------------------------------
--|-----------------| | SHEARDU
STRENGT
MPASCAL | 50 | 2224
23384
1259
1259
338
338
338
338
338
338
338
338
338
33 | | 101 | 125.8
225.7
225.7 | 000 | | 900 | 128.4
245.4
77.1 | 2- | | TENSION
STRENGTH
MPASCAL | mα | 100
100
100
100
100
100
100
100
100
100 | | 404 | 100.0 | 92. | | 1-26 | 99.7
93.7
93.2 | , w | | E AR I N
TRENG
PASCA | 51.
97. | 8887122
887122
887122
69714
69714
69714
69714 | 25 PCT 11/2 | 233 | 0000
0000
0000
0000
0000 | 350 | .5 PCT 11/2 | 35. | 907.6
748.0
843.9 | 36. | | AILUR | \(\alpha \) | Მ ᲛᲛᲛᲛᲛᲛ
Ს
Ს
Ს
Ს
Ს
Ს
Ს
Ს
Ს
Ს
Ს
Ს
Ს
Ს
Ს
Ს | T ± 1/4. | 04.04.04 | ,
(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 | CXX | ±11/4. 12. | $\alpha \alpha \alpha$ | 888
888
899
899 | $\alpha \alpha$ | | AILURE
LOAD
NEWTON | 0.8981
1.8100 | 11.
13.
103.
103.
12.
12.
12.
12.
12.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13 | 37.5 PC | 9.897
0.742
2.810 | 13.2779
10.2754
13.8340 | 4.100
2.588 | 50 PCT : | 2.321
1.787 | 13.1223
10.5868
12.1881 | 3.433 | | AHE C | -2
-29
-34 | 222222
222222
232222
232222
232222
232222
232222
232222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
23222
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
232
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
232
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
232
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
232
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
2322
232
2322
2322
2322
2322
2322
232
2322
2322
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232
232 | PCT 0, | 245 | 2.316
2.367
3.16 | 300 | PCT 0, | 2000
2000 |
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
25.286
26 | 22,0 | | EDGE
DIST | 7 20 6 | 250
250
250
250
250
250
250
250
250
250 | - 37.5 | 2.7 | 25.96
12.80
37.90 | 5.2 | 37.5 | 2.7
7.7
1.0 | 25.52
12.82
37.78 | DIV. | | P ANEL MIDTH | 63.05
63.05
63.05
63.05
63.05 | 66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
66666
666666 | TERN | 644
044 | 63.70
63.70
63.70 | 90 | TERN - | 864
999 | 660
660
660
660
660 | nω
∞oʻ | | BOLT
DIAM
MM | 6.32
6.32 | | SER PAT | mmm | 6.277 | (mm | SEP PAT | mmm | 66.325
3255
3255
5555 | | | OHO
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN | 99 | 66666
600699999999999999999999999999999 | F18 | ,
,
,
,
,
, | 6.373 | 97 | FIB | | らてらこ | 300 | | HOLE | ∢∞: | വല≉മ∪വ | | ∢ മ∪ | oo∢∞ | ۵۵ | | 4 00 | ೦೯ | عد. | | SPECIMEN
ID | \$\$-1-
\$\$-1- | 222211
1111111111111111111111111111111 | | \$\$-2-
\$\$-2-
\$\$-2- | 855-2-1
855-2-2
855-2-2 | \$\$-2-
\$\$-2- | | SSS-3-
SS-3-
SS-3-
SS-3- | 211 | SS-31 | TABLE VIIIB BEARING AND SHEARDUT SPECIMENS (TENSILE LOADING) ALL GRAPHITE FIBERS, EPOXY RESIN US CUSTOMARY UNITS | SHEAROUT
STRENGTH
KSI | | 101 105 105 105 105 105 105 105 105 105 | | 492288892
4922888961 | | 41899000
41809000 | |------------------------------|-----------|--|----------|---|-----------|--| | TENSION
STRENGTH
KSI | DEG. | 10000000000000000000000000000000000000 | 90 DEG. | 01441010
01441004
0164100404 | 90 DEG. | | | E BEARING
STRENGTH
KSI | 25 PCT 90 | 0404544 | 25 PCT | 1326.3
1316.2
1346.3
1246.3
127.7 | 12.5 PCT | 10011100111001110011100811008110081100 | | FAILURG | DEG. | ###################################### | 45 DEG. | $\begin{array}{c} \alpha \alpha$ | DEG. | a a a a a a a a a a | | FAILURE
LOAD
LB |) PCT ±45 | 2450
2655
2655
2950
2890
2890
2910
2910
2910 | .5 PCT ± | 22225
24150
2880
23100
31100
231400 | PCT ±45 | 2315
24550
24550
2380
30560
30560
30560
600 | | PAN
HIIOK
IN. | DEG., 50 | 0000000
00000000
0000110000000
00011000000 | DEG., 37 | 00000000000000000000000000000000000000 | DE G., 50 | 0000000
000000000000000000000000000000 | | DIST. | PCT 0 | 1.500388
1.000388
1.00038
1.00034
1.0054
1.0054 | PCT 0 | 1.0003
1.0003
1.0003
2.0002
9005
9005 | PCT 0 | 1.50086
1.50058
1.50058
1.0064
1.0064 | | PAN
NON
HEN | - 25 | 20000000000000000000000000000000000000 | 37.5 | 20000000000000000000000000000000000000 | 37.5 | 20000000000000000000000000000000000000 | | BOLT
DIAL
NAT | ATTERN | 24490
24490
24490
24490
24490 | TERN - | 000000000
0000000000000000000000000000 | TERN - | 2244444
224444444444444444444444444444 | | HOLL
INAM | IBER P | 000000000 4400000000000000000000000000 | ER PAT | 20000000
20000000000000000000000000000 | EK PAT | 22222222222222222222222222222222222222 | | HOLE
ID | u. | 43004800 | F18 | 4mU04mU0 | FIBE | 4mu04mu0 | | SPECIMEN
ID | | | | 22221111122222222222222222222222222222 | | | TABLE IXA BEARING AND SHEAROUT SPECIMENS (TENSILE LOADING) S-GLASS LONGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN SI UNITS | SHEAROUT
STRENGTH
MPASCAL | | 229
80.5
118.9 | | 220.6
76.1
58.9 | യസ് | 7. P | | 248
1537
2330
1007 | 4 ω π
4 ··· α | | |------------------------------------|--------------|--|--------------|--------------------------|----------------------|---|-----------|---|-----------------------------------|---| | TENSION
STRENGTH
MPASCAL | | 77.1
97.6
95.9
91.5 | 2 | 74.1
91.8
98.1 | 6. | -0+ | 2 | 98999
98999
99999 | N@1 | ~ W | | BEARING
STRENGTH
MPASCAL | PCT 11/2 | 699
883.7
869.3
829.2 | 25 PCT #/8 | 327 | 1000
1000 | 700 | .5 PCT #/ | 78768
78757
88767 | \$00° | 50
50 | | FAILURE | 1/4, 25 | 8888
EXXX
GGG | ±4/4. | IXX | XI | 888
888
888
888
888 | ±1/4, 12 | SB B B B B B B B B B B B B B B B B B B | IXC | x, ox | | FAILURE
LOAD
KNEWTON | 50 PCT ± | 10.2309
12.9888
12.7219
12.1214 | 37.5 PCT | 9.408 | 1.721
9.652 | 12.5440
13.7450
13.4114 | 50 PCT : | 10.1642
12.0102
11.0761 | 23.30 | 1.943 | | PANEL
THICK. | PCT 0. | 2.324
2.324
2.314
2.314 | PCT 0. | 22, | 222 | 22.22 | PCT 0. | 2.090
2.228
2.192 | . 24
16 | • 16
• 19 | | PANEL EDGE
WIDTH DIST.
MM MM | PATTERN - 25 | 63.67 12.80
63.61 27.88
63.63 50.81
63.67 25.22 | TTERN - 37.5 | 63.69 37.7 | 63.72.25.3 | 63.86.37.85
63.81.50.90
63.82.25.05 | ⊢ | 63.65 37.94
63.65 37.97
63.69 50.84 | 63.86 12.8
63.81 37.9 | 63.70 50.8
63.72 25.1 | | BOLT
DIAM
MM | FIBER | 0000 | BER PA | 6.32 | 004
2004
7010 | 0000
0000
0000
0000
0000
0000 | 8
FR | | 922 | 6.32 | | OHO
MIO
MARE | | 6 3 4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 | 1 | 4.0.0
4.0.0
5.0.0 | | | LL. | | ひらら
クレク | W.W. | | HOL E | | ∢ന∪റ | | ∢ ∞ | ∪ □< | 4のしこ |) | ∢ ⊕∪(| ⊃ ∢α | ပဝ | | SPECIMEN | | 8888
8888
8888
8888
8888
8888
8888
8888
8888 |)
) | \$ \$ -5 -
\$ \$ -5 - | 2000
1000
1001 | 8888
8888
6888
6888
6888
6888
6888
688 | n
n | 855-6-1
855-6-1
855-6-1 | 555-61
55-61
55-61
55-61 | 2000
2000
2000
2000
2000
2000
2000
200 | TABLE IXB BEARING AND SHEAROUT SPECIMENS (TENSILE LOADING) ## S-GLASS LONGITUDINAL PLIES. GRAPHITE CROSS PLIES. EPOXY RESIN US CUSTOMARY UNITS | BSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | ###################################### | | BSS-4-1
BSS-4-1
BSS-4-1 | | SPECIMEN | | |---|--|--|-----------|---|-----------|---|-----| | 48004300 | ∺
∞ | 4 © O O Q Q | F18E | Q@D | Ti I | 911
900 E | | | 000 000 000 000 000 000 000 000 000 00 | 2501
2507
PAT | . 2497
. 2490
. 2490
. 2490
. 2501 | R PATT | 2499
2500
2481
2495 | BER PA | NAC
DI
DI
DI
DI
DI
DI
DI
DI
DI
DI
DI
DI
DI | | | 24490
24490
24490
24490
2490
2490
2490
2 | R 22
24
90 | 24
24
26
26
26
26
26
26
26
26
26
26
26
26
26 | TERN | 2490
2490
2490
2490 | TTERN | IN BOLT | | | 00000000000000000000000000000000000000 | 7 55 111 | 22.550
20.550
50.550
50.550
50.550
50.550
7 | 37.5 P | 2.507
2.504
2.505
2.507 | - 25 P | PANEL
WIOTH | | | 21 25
20
20
20
20
20
20
20
20
20
20
20
20
20 | . 986
. 986 | 2005
2005
2005
2007
2007
2007 | CT OD | 1.491
2.000
2.993 | CT O D | EDGE
CIST. | (| | 008677
08852
6522 | .088
.087 | 08872
08872
08875 |)EG., 37 | 0910 |)EG., 50 | THICK. | . (| | 277500
277500
277500
277500
277500
277500
277500
277500 | 090.
015. | 2115.0
2620.0
2825.0
2635.0
2170.0 | • 5 PCT ± | 2300.0
2920.0
2860.0
2725.0 | PCT ±45 | FAILURE
LOAD
LB | • | | SBBS/SBBB
RRRIIRRRI
RODRRDDD | 00 m 000 pp | BUBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | 0 | B B B B S
R R R R
G G G R | DEG | FAILURE | | | 72617965
78988531
78988531
78988531 | 40.5
37.8
PCT | 11200
1200
1200
1200
1200
1000
1000 | PCT | 101.4
128.2
126.1 | 25 PCT 90 | BE AR I NG
STRENGTH
KS I | | | 00000000000000000000000000000000000000 | m 55 | - 6 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ୍ ଫ | 2000
- 400
- | DEG. | TENSION
STRENGTH
KSI | | | 1 121 13
8818716
10184870 | 9.0 | 7864
7486
7486
7486
7486
7486
7486
7486 |) | ш ш3
78н3
7473 | | SHE AROUT
STRENGTH
KS I | | TABLE XA BEARING AND SHEAROUT SPECIMENS (COMPRESSIVE LOADING) ALL GRAPHITE FIBERS, EPOXY RESIN SI UNITS | SHEAROUT
STRENGTH
MPASCAL | | 123 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 1115.8 |)
} | 126.9 | |---|--------------------|---|----------------------|--|----------------------|--| | COMPR.
STRENGTH
MPASCAL | | 123.4.1 | | 11114 | | 125.6 | | BEARING
STRENGTH
MPASCAL | PCT 11/2 | 872.1
9451.0
841.8 | 5 PCT 11/2 | 815.3
790.6
954.6
820.3 | 5 PCT 11/2 | 905.8 | | FAILURE
MODE | ±11/4, 25 | 88888
88888
88888 | ±π/4.2 | 88888
8888
6666 | ±1/4. 12. | 8
8
8
8
8
8
8 | | FAILURE
LOAD
KNEWTON | 50 PCT ± | 12.7219
12.7219
13.6560
12.3216 | 37.5 PCT | 12.1437
111.7211
13.9897
12.1437 | 50 PCT ± | 13.1000 | | PANEL MANUEL | PCT 0. | 22.32.22.33.24.24.24.24.24.24.24.24.24.24.24.24.24. | PCT 0. | 2.367
2.362
2.329
2.350 | PCT 0, | 2.299 | | E BOLT PANEL EDGE
M DIAM WIDTH DIST. | FIBER PATTERN - 25 | 19 6.276 50.64 25.40
95 6.495 50.31 25.66
19 6.269 51.43 25.59
57 6.264 51.41 25.62 | FIBER PATTERN - 37.5 | 86 6.292 51.04 25.34
80 6.276 51.16 25.61
28 6.292 50.81 25.57
03 6.274 50.77 25.25 | FIBER PATTERN - 37.5 | 44 6.292 51.81 25.68
02 6.276 50.81 25.60 | | HOLE HOL | | 4040
4444 | | 0000
0000 | _ | A 6.44
8 6.50 | | SPECIMEN | | BSSS-1-4
BSSS-1-5
BSS-1-5 | | BSS-12-4
BSSS-12-14
BSS-12-15
BSS-12-15 | | 855-3-4
855-3-4 | TABLE XB BEARING AND SHEAROUT SPECIMENS (COMPRESSIVE LOADING) ALL GRAPHITE FIBERS, EPOXY RESIN US CUSTOMARY UNITS | SHE AROUT
STRENGTH
KSI | | 66
 | | 0000
0000
0000
0000 | | 18.4 | |------------------------------|-----------|--------------------------------------|-------------|---|---------------|--------------------| | COMPR.
STRENGTH
KSI | .DEG. | 18.1
19.1
17.0 | 90 DEG. | 16.7
119.7
16.8 | 90 DEG. | 18.2 | | BEARING
STRENGTH
KSI | 25 PCT 90 | 126.5
137.1
122.1 | + 25 PCT | 11111111111111111111111111111111111111 | 12.5 PCT | 131.4 | | FAILURE
MODE | DEG., | 8888
8888
8888
8888 | ±45 DEG. | 88888
8888
9000 | DEG., | 886
886 | | FAILURE
LOAD
LB | PCT ±45 | 2860.0
2860.0
3070.0
2770.0 | 5 PCT | 2730.0
2635.0
3145.0
2730.0 | PCT ±45 | 2945.0 | |
PANEL
THICK. | DEG., 50 | .0915
.0917
.0907
.0920 | DEG., 37 | 0932
0930
0917
0929 | DEG., 50 | .0905 | | EDGE
DIST | PCT 0 (| 1.000
1.010
1.007
1.009 | 7.5 PCT 0 [| 1.008
1.007
1.994 | 37.5 PCT 0 DE | 1.011 | | PANEL
WIDTH
IN. | - 25 | 1.994
2.025
2.025 | 37.5 | 2.010
2.014
2.000
1.999 | 37.5 | 2.040 | | BOLT
DIAM
IN. | ATTERN | 2471
2557
2468
2466 | ERN | 2471
2471
2471
2470 | TERN - | .2477 | | HOL
DIAM
INAM | IRER PA | 2557
2557
2557
2542 | ER PATT | 2551
2551
2570
2521 | ER PAT | .2537 | | HOLE
10 | ű. | ∢ ∞∢∞ | F18E | ∢ ∞∢∞ | F186 | ∢œ | | SPECIMEN
ID | | 855-11-4
855-11-4
11-15 | | 8555-27
8555-27
8555-27
855-27
1114 | | BSS-3-4
BSS-3-4 | TABLE XIA ## BEARING AND SHEAROUT SPECIMENS (COMPRESSIVE LOADING) # S-GLASS LONGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN SI UNITS | SHEAROUT
STRENGTH
MPASCAL | | 107.3
1455.8
150.7
145.8 | | 1122
1233
12530
12537 | | 151.0129.7 | |----------------------------------|-------------|---|-------------|--|------------|---| | COMPR.
STRENGTH
MPASCAL | | 105.6
146.2
152.0
145.7 | 0.1 | 1340.7
156.0
151.7 | 2 | 153.7
130.5
1466.1 | | BEARING
STRENGTH
MPASCAL | PCT 11/2 | 1037.7
1037.7
1076.0
1038.5 | 25 PCT m/2 | 932.7
953.7
1117.1
1079.3 | .5 PCT π/ | 1087-8
925-8
1038-2
1055-2 | | FAILURE
MODE | ±11/4, 25 | 88888
8888
8888
8888
8888
8888
8888
8888 | ±π/4. | 8888
8888
8888
8888
8888
8888
8888
8888
8888 | ±π/4, 12 | 8888
8888
9888
9999 | | FAILURE
LOAD
KNEWTON | 50 PCT ± | 10.6757
14.7681
15.3464
14.8126 | 37.5 PCT | 12.6774
13.1445
15.3464
15.1684 | 0 PCT | 14.9238
12.8554
14.6347
14.5679 | | PANEL
THICK. | PCT 0, | 2.273
2.273
2.273
2.273 | PCT .0. | 2.169
2.200
2.187
2.243 | CT . | 2.189
2.212
2.250
2.197 | | PANEL EDGE
WIDTH DIST. | ATTERN - 25 | 50.87 25.09
51.10 25.60
50.80 25.60
51.28 25.64 | TERN - 37.5 | 51.15 25.85
51.02 25.64
51.42 25.64
51.15 25.63 | TERN - 37. | 50.79 25.79
50.91 25.59
50.92 25.40
50.86 25.58 | | BOLT
DIAM
MA | FIBER P | 6.284
6.281
6.274
6.274 | BER PAT | 6.266
6.266
6.266 | . α
. σ | 6.266
6.276
6.264
6.284 | | DI W
NIO
NIO
NIO
NIO | u_ | 6 - 408
6 - 507
6 - 503
6 - 520 | FIE | 0004
404
4004
1001 | 1 H | 6.396
6.396
6.429
6.551 | | HOLE
10 | | ବଉବଉ | | ∢ ∞ ∢ ∘ | 5 | ∢୬ ⊄∞ | | SPECIMEN | | 855-44
855-44-4
855-44-5
855-44-5 | | 88888888888888888888888888888888888888 | | BBBSS
SSSS
SSSS
SSSS
SSSS
SSSS
SSSS
SS | ### SHEAROUT SPECIMENS SSIVE LOADING) w ARING AND RES OXY EP ES PLIE ROSS ن GRAPHITE PLIES LONGITUDINA GLAS! -IND CUSTOMA S ### AROUT ENGTH SI 747.6 **6**-6-6 Simme 80011 **--**1∞---1 ろまるる 7227 ままること $m \propto x$ STI I MPR ENGT 0620 ろりろて るとまる O G 9970 700-9 E C らよるよ ろうして 5 ころろう Oax 0 S 0 ō I 06 108 150 156 156 150 6 740m ARING RENGTH KSI PCT PCT PCT mm ou വവ്യവ 5 Ś 2 SE 2 5 -2 w AILURE 0 ũ **5000** ပ်လူလူလ 9999 DEG EG $\alpha \alpha \alpha \alpha \alpha$ $\alpha \alpha \alpha \alpha \alpha$ $\propto \propto \propto \propto \propto$ 8 മെയയ 5 u 45 +1 2850.0 2955.0 3450.0 3410.0 30000 0000 w +4 PCT AILURE LOAD LB -PC T 4646 Š 2283 5 ŭ. . 50 50 37 ANEL HICK. IN. 0895 0895 0895 0894 0854 0866 0861 0883 65 65 G. • 0000 G G <u>D</u>E DE ů, 0000 0008 008 009 018 009 010 010 015 007 000 007 ш**.** • 0 0 0 EDG DIS PCT PCT PCT 2.003 2.012 2.000 2.019 0000 NOS TH. 4044 ij 0000 5 5 7. A M 2222 2222 2467 2471 2466 2474 **ト** ア ラ ア Z 1 4444 BOLT DIAM IN. Z ERN EL SUND SUNN w ATT ◂ 5528 A 2005 Δ. 2115 **30000** üΣ 2000 مَ HOLE DIA IN. 2222 IBER ۵. 2222 2222 α w LL: ∞ w α HOLE T. ij ABAB < 00 < 00 **4848** ECIMEN ID S-6-4 S-6-4 S-6-5 1444 1444 1501 4450 STATE SOS SOON SOS SSSS യയയ നമനമ O COM SO TABLE XIIA # OPEN-HOLE SPECIMENS # ALL GRAPHITE FIBERS, EPOXY RESIN | TENSION
STRENGTH
MPASCAL | | 299.1
2931.6
315.1 | | 3250 | | 359.5
359.5
359.2 | |--------------------------------|--------------|--|----------|--|-------------|---| | FAILURE
MODE | PCT 11/2 | MMMM
NANA
NANA
NANA | PCT 11/2 | MMMM
MNNN
NNNN
NNNN | PCT 11 /2 | MMMM
MMMM
NNNN
NNNN | | FAILURE F
LOAD
KNEWTON | ±11/4, 25 P(| 13.5893
12.5440
13.2779
13.7895 | ±π/4, 25 | 16.2583
16.4139
15.6577
14.9460 | ±11/4, 12.5 | 15.7245
16.5696
17.2146
17.8596 | | PANEL
THICK | PCT | 2.400
2.367
2.410
2.332 | 7.5 PCT | 2.451
2.550
2.550
2.550 | PCT | 2.537
2.540
2.637
2.639 | | EDGE
DIST. | 10,50 | 00000
00000
00000 | 0, 3 | 500
500
500
500
500
500
500
500 | PCT 0, 50 | 50.80
50.80
50.80 | | PANEL
WIDTH | 25 PCT | 25.23
255.24
255.24
25.26 | 7.5 PCT | 255.25
255.25
25.25
25.25
25.25 | 37.5 PC | 25.27
25.27
25.28
25.28 | | BOLT
DIAM
MMM | TERN - | 6.325
6.325
6.325
6.325
6.325
6.325 | RN - 37 | 6666
6666
6666
6666
6666
6666
6666
6666
6666 | RN - 3 | 666
666
666
666
666
666
666
666
666
66 | | DIOL
MAM | ER PAT | 6.350
6.372
6.373
6.373
6.373 | PATTER | 6.416
6.419
6.375
6.411 | PATTER | 6.398
6.452
6.452
6.454 | | HOLE
10 | F 18 | ∢m∢m | FIBER | ൃയിക്ക | FIBER | ∢∞∢∞ | | S P E C I M E N
I D | | 00 HS-11-10 OHS-11-12 OHS-11-2 | | 0 HS - 2 - 1
0 HS - 2 - 1
0 HS - 2 - 2
0 HS - 2 - 2 | | 00000
HSS-10000
100000
100000
100000
100000 | TABLE XIIB OPEN-HOLE SPECIMENS ALL GRAPHITE FIBERS. EPOXY RESIN | TENSION
STRENGTH
KSI | DEG. | 4444
5000
4000
4000
4000 | ن ق | 44501
647
647
74
74
74 | 90 DEG. | 4000
2000
2000
2000 | |----------------------------|----------|---|-----------|---|------------|--| | FAILURE | PCT 90 | HHHH
HHHH
NNNN
NNNN
NNNN
NNNNNNNNNNNNN | 25 PCT | HHHH
MMMM
NNNN
NNNN
NNNN | 2.5 PCT | HHHH
MMM
NNNN
NNNN | | FAILURE
LOAD
LB | DEG., 25 | 3055.0
2820.0
2985.0
3100.0 | 45 DEG. | 3655.0
3690.0
3520.0
3360.0 | DEG., 12 | 3535.0
3725.0
3870.0
4015.0 | | PANEL
THICK.
IN. | PCT ±45 | 0944900944949494949494949494994994994994 | 5 PCT ± | 0965
0979
1004
0981 | PCT ±45 | 0999
1000
1038
1039 | | EDGE
DIST. | 50 | 2222 | . 37. | 2
2
2
2
0
0
0
0
0
0
0
0
0 | 50 | 22.0000 | | PANEL
WIDTH | 0 DEG | 9995 | ()
(H) | 0
0
0
0
0
0
0
0
0 | 0 DE | \$\$\$\$\$
\$\$\$\$\$
\$\$\$\$\$ | | BOL
DIAN | 25 PCT | 2000 | 5 PC | 2495
2495
2495
2495 | 5 PC | | | HOLE
DIAM | , | 2500
2540
2509 | | 2526 |)
n | 225 | | HOLE
ID | PATTE | . 4040 | ₽ ¥ | 4 ₩ 4 0 | D
ATTER |

 | | SPECIMENIO | u
u | | HS-1- | S-22
 | HS-2- | SS SS SS SS SS SS SS S | TABLE XIIIA # OPEN-HOLE SPECIMENS S-GLASS LONGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN | TENSION
STRENGTH
MPASCAL | | 00000
00000
00000
00000 | | 5064
48856
49856
5064 | | 0004
0000
0000
0000
0000 | |---------------------------------------|-----------|--|----------|--|-----------|--| | FAILURE | PCT 11/2 | DELLAM
DELLAM
DELLAM
DELLAM | PCT 11/2 | DELLAM
OFFLAM
OFFLAM | PCT 11/2 | DEL AM
DEL AM
DEL AM
DEL AM | | FAILURE F
LOAD
KNEWTON | 14, 25 | 17.1701
16.7476
16.9922
17.2591 | ±1/4, 25 | 22.5080
18.9939
21.7296
22.3301 | m/4, 12.5 | 23.1975
23.6201
23.5756 | | PANEL MM MM | 50 PCT ±π | 0 2.296
0 2.258
0 2.278
0 2.324 | 37.5 PCT | 0 2.352
0 2.359
0 2.390
0 2.431 | 50 PCT ±# | 0 2.286
0 2.421
0 2.466
0 2.466 | | H DIST | CT 0. | 2 50 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | PCT 0, | 5 50 8
1 50 8
7 50 8 | PCT 0. | 0 W O W W W O C C C C C C C C C C C C C C | | M M M M M M M M M M M M M M M M M M M | - 25 P | 7 255 7 255 7 255 2 2 55 2 2 5 5 2 5 5 2 5 5 5 5 | 37.5 P | 7 25.3 | 37.5 P | 7 255 2 25 2 25 2 25 2 25 2 2 2 2 2 2 2 | | BOL
DIAM
MM | TTERN . | 0000
0000 | I N N | 1880
1880
1880
1880
1880
1880
1880
1880 | ERN - | \$4\$6
\$4\$6
\$4\$6
\$6\$6
\$6\$6
\$6\$6
\$6\$6
\$6\$6 | | DHO
MAN
MAR | EP PA | 6666
5000
5000
5000
5000
5000
5000
5000 | PATT | 0000
0000
0000
0000 | PATT | 0000
W4W4
00000 | | HOLE
10 | FI3 | 4040 | FIBER | 4646 | FIBER | .4@4d | | SPECIMEN
ID | | 0HS-4-1
0HS-4-1
0HS-4-2
0HS-4-2 | | 0HS-5-1
0HS-5-1
0HS-5-2
0HS-5-2 | | 0HS-6-1
0HS-6-1 | ### TABLE XIIIB # OPEN-HOLE SPECIMENS S-GLASS LONGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN US CUSTOMARY UNITS | TENS ION
STRENGTH
KSI | DEG. | 1000
0000 | DEG. | 73.57 | o DEG. | 78.7 | |-----------------------------|---------|--|---------|--
---------|--| | | | | 06 | | 90 | | | FAILURE
MODE | PCT 90 | DELLAM
DELLAM
DELLAM | 25 PCT | DELLAM
DELLAM
DELLAM | 5 PCT | DEL AM
DEL AM
DEL AM | | ய | 25 | 0000 | ٠ | 0000 | 12 | 0000 | | FAILUR
LOAD
LB | DEG., | 3860
3765
3820
3880 | 45 DEG. | 5060
4270
4885
5020 | DEG., | 52250
532150
532150
5300 | | PANEL
THICK. | PCT ±45 | .0904
.0889
.0897
.0915 | 5 PCT ± | 0926
0917
0941
0957 | PCT ±45 | .0900
.0953
.0971 | | EDGE
DIST | , 50 | 22.0000 | ., 37. | 2.000
2.000
2.000
2.000
2.000 | . 50 | 22.0000 | | MIDAN
INTE | O DEG. | 1.0001
1.0000
992
994 | 0 DEG. | 0000
0000
00000
00000 | 0 DEG. | 992
993
1.004
1.042 | | BOLT
IN AM | 25 PCT | 2222
2244
2455
2555
2555
2555 | .5 PCT | 244
244
2495
2495
2495
2695
2695 | 5 PCT | 2495
2495
2495
2495 | | HOLE
DIAM
IN. | ERN - 2 | 2552
25558
25568
25648 | N - 37. | 2550
2550
2550
2511
2512 | l
W | .2507
.2541
.2507
.2540 | | HOLE | PATT | ଏଉ∢ଉ | ATTER | ଏଉ ଏଉ | . TA | ⋖ ळ ⋖ ₾ | | SPECIMENID | FIBER | 0HS-4-1
0HS-4-1
0HS-4-2
0HS-4-2 | FIBER P | 0HS-55-1
0HS-55-1
0HS-55-1 | FIBER | 0HS-6-1
0HS-6-1
0HS-6-2
0HS-6-2 | TABLE XIVA INTERACTION SPECIMENS (TENSILE LOADING) ALL GRAPHITE FIBERS, EPOXY RESIN | SHEAROUT
STRENGTH
MPASCAL | | 50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
500000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
500000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
500000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
500 | | 66665
10000
10000 | | 622.54 | |--|--------------------|--|----------------------|--|----------------------|--| | TENSION
STRENGTH
MPASCAL | | 2559
2659
2652
2652
2653 | | 301
3151
2315-0
287-0 | | ###################################### | | BEARING
STRENGTH
MPASCAL | PCT 11/2 | 379
3887
3887
74 | 25 PCT #/2 | 4755
470.1
476.1
431.2 | .5 PCT #/2 | 513
496.2
506.3
428.0 | | FAILURE
MODE | ±11/4, 25 | THEF
THEF
TANA
TANA
TANA
TANA
TANA
TANA
TANA
TAN | ±π/4• 2 | TTTT
THE
SNN
SNN
SNN
SNN
SNN
SNN
SNN
SNN
SNN
SN | ±π/4, 12. | ATTE
SSSS
SSSS | | FAILURE
LOAD
KNEWTON | 50 PCT ± | 22.4190
23.5756
23.0863
23.0418 | 37.5 PCT | 26.7783
28.5576
27.6679
25.5773 | 50 PCT ± | 28.0238
27.4010
27.8459
26.4224 | | PANEL
THICK. | PCT 0. | 4.597
4.610
4.615
6.38 | PCT 0. | 4.615
4.719
4.549
4.648 | PCT 0. | 4.257
4.321
4.321
4.35 | | HOLE BOLT PANEL EDGE
DIAM WIDTH CIST. | FIBER PATTERN - 25 | 6.431 6.431 25.19 25.40 6.515 6.515 25.50 25.40 6.457 6.457 25.53 25.40 6.525 6.525 25.43 25.40 | FIBER PATTERN - 37.5 | 6.365 6.365 25.63 25.40
6.436 6.436 25.65 25.40
6.383 6.383 25.59 25.40
6.380 6.380 25.51 25.40 | FIBER PATTERN - 37.5 | 6.406 6.406 25.44 25.40
6.391 6.391 25.42 25.40
6.365 6.365 25.39 25.40
6.520 6.520 25.57 25.40 | | SPECIMEN HOLE | | 111111111111111111111111111111111111111 | | 1 S-1-2-1 S-1-2-1 S-1-3-3 | | 1881
1881
1881
1981
1981
1981
1981
1981 | NOTE THAT TENSION STRENGTH REFERS TO ENTIRE LOAD AT NET SECTION TABLE XIVB INTERACTION SPECIMENS (TENSILE LOADING) # ALL GRAPHITE FIBERS, EPOXY RESIN | SHEAROUT
STRENGTH
KSI | | 8888
6424 | | 0000
0000 | | 0000
847- | |-----------------------------|-----------|--|------------|--------------------------------------|------------|---| | TENSION
STRENGTH
KSI | DEG. |
388-7-101-1 | 90 DEG. | 4444
1559
1047 | 90 DEG. | 2444
24680
24690 | | BEARING
STRENGTH
KSI | 25 PCT 90 | 50000
2000
2000
2000 | , 25 PCT 9 | 6686
6698.1
67.15 | 12.5 PCT 9 | 477
477
623/05 | | FAILURE
MODE | DEG., 2 | MAH
MAN
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | ±45 DEG., | | DEG 1 | HHH
MMMM
SSSS
NOON | | FAILURE
LOAD
LB | PCT ±45 | 5040
5300
5190
5180 | .5 PCT | 6020.0
6420.0
6220.0
5750.0 | PCT ±45 | 6300.0
6160.0
6260.0
5940.0 | | PANEL
THICK. | DEG., 50 | . 1810
1817
1817 | DEG., 37 | .1817
.1858
.1791
.1830 | DE G., 50 | .1676
.1701
.1701
.1864 | | FDGE
DIST | PCT 0 | 0000 | PCT 0 | 00000 | PCT 0 | 0000 | | PANEL
WIDTH | - 25 | .992
1.004
1.005 | 37.5 | 1.009
1.007
1.007 | 37.5 | 1.002 | | BOLT
IN M | ATTERN | 2532
2565
2565
2569 | TERN - | 2506
2534
2513
2512 | ERN I | 2522
2516
2506
2506 | | OHOLI
NAN
ME | IBER PA | .2553
.2565
.2542
.2569 | EK PAT | .2506
.2534
.2513
.2512 | ER PATT | 2522
2516
2506
2567 | | HOLE | u. | | F18 | | F18 | · . | | SPECIMEN
ID | | IS-1-2
IS-1-2
IS-1-3 | | 18-2-1
18-2-2
18-2-3 | | 11881
11881
11881
11881
11881 | NOTE THAT TENSION STRENGTH REFERS TO ENTIRE LOAD AT NET SECTION TABLE XVA INTERACTION SPECIMENS (TENSILE LCADING) S-GLASS LONGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN | | 2777
8007
0004 | | 8880
7650
4694 | | 89.7
89.9
90.1 | |------------------|--|--|--|--|---| | | 345
372.9
351.8 | | 419.53
396.8
407.7
406.2 | | 4444
2000
2000
2000
2000
2000 | | PCT 11/2 | 511.8
547.9
530.7
545.6 | 5 PCT m/ | 628
5958
60559
612591 | 5 PCT #/2 | 627
624
628
640
640
640 | | :π/4, 25 | BRG
TENS
TAB
BRG | ±4/4· | 88888
8888
9099 | m/4, 12. | 0000
0000
00000 | | ₽ 10 PCT ± | 29.6696
31.8938
30.4258
31.3155 | 37.5 PCT | 35.7637
33.4951
35.0075
34.9630 | 50 PCT ± | 34.6072
35.1410
35.2744
35.6747 | | PCT 0. | 4.521
4.519
4.508
4.496 | PCT 0. | 4.455
4.534
4.534
4.914 | PCT 0. | 4.341
4.402
4.402
4.379 | | BER PATTERN - 25 | 411 25.38 25.40
441 25.37 25.40
358 25.54 25.40
383 25.39 25.40 | R PATTERN - 37.5 | .383 25.52 25.40
.363 25.47 25.40
.380 25.32 25.40
.353 25.52 25.40 | R PATTERN - 37.5 | 358 25.45 25.40
396 25.46 25.40
370 25.50 25.40
363 25.36 25.40 | | FI | 6.411 6
6.358 6
6.358 6 | FIBE | 666
800
900
900
900
900
900 | FIBE | 666
66.35
66.35
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66.66
66 | | | | | | | | | | IS-4-1
IS-4-2
IS-4-3 | | 1851
1851
1851
1851
1851
1851
1851 | | IS-66-1
S-66-1
S-66-2 | | | IBER PATTERN - 25 PCT 0, 50 PCT ±1/4, 25 PCT 1/ | S-4-1 6.411 6.411 25.38 25.40 4.521 29.6696 BRG 511.8 345.9 73. S-4-2 6.358 6.358 25.54 25.40 4.519 31.8938 TENS 547.9 372.9 79. S-4-3 6.383 6.383 25.39 25.40 4.496 31.3155 BRG 545.6
366.4 78. | S-4-1 6.411 6.411 25.38 25.40 4.521 29.6696 BRG 511.8 345.9 73. S-4-2 6.441 55.37 25.40 4.519 31.8938 TENS 547.9 372.9 79. S-4-3 6.358 6.358 25.54 25.40 4.508 30.4258 TAB 530.7 351.8 75. S-4-3 6.383 25.39 25.40 4.496 31.3155 BRG 545.6 366.4 78. FIBER PATTERN - 37.5 PCT 0, 37.5 PCT ±π/4, 25 PCT π/2 | S-4-1
6.411 6.411 25.38 25.40 4.521 29.6696 BRG 511.8 345.9 73.
S-4-2
6.358 6.358 25.37 25.40 4.519 31.8938 TENS 547.9 372.9 79.
S-4-3
6.383 6.383 25.39 25.40 4.496 31.3155 BRG 545.6 366.4 78.
FIBER PATTERN - 37.5 PCT 0. 37.5 PCT ±π/4, 25 PCT π/2
S-5-2
6.363 6.363 25.32 25.40 4.455 35.7637 BRG 628.8 419.5 86.8 85.
S-5-2 6.380 6.380 25.32 25.40 4.491 34.9630 BRG 612.8 400.2 87. | S-4-1 6.411 6.411 25.38 25.40 4.521 29.6696 BRG 5-4-2 6.441 6.441 25.38 25.40 4.51 29.6696 BRG 5-4-2 6.358 6.358 25.37 25.40 4.51 31.8938 TENS 5-4-3 6.358 6.358 25.37 25.40 4.496 31.3155 BRG 530.7 75.9 776.9 876.9 876.9 876.9 876.9 876.9 876.9 876.9 876.9 876.9 876.9 8776.9 876.9 | NOTE THAT TENSION STRENGTH REFERS TO ENTIRE LOAD AT NET SECTION TABLE XVB INTERACTION SPECIMENS (TENSILE LCADING) # S-GLASS LONGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN | SHEAROUT
STRENGTH
KSI | | 111.5 | | 12.4
12.4
12.7 | | 00-m | |-----------------------------|-----------|---|-----------|---|-----------|--------------------------------------| | TENSTON
STRENGTH
KSI | DEG. | 00000
00000
00000
00000 | 90 DEG. | 550.00 | 90 DEG. | 60.6
60.7
62.2 | | BEARING
STRENGTH
KSI | 25 PCT 90 | 74.2 | , 25 PCT | 88 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 12.5 PCT | 900.0 | | FAILURE
MODE | DEG., | BRG
TENS
TAB
BRG | 45 DEG. | 88888
8888
9999 | DEG., | 8888
8888
8886
8886 | | FAILURE LOAD |) PCT ±45 | 6670.0
7170.0
6840.0
7040.0 | .5 PCT ± | 8040.0
7530.0
7870.0
7860.0 |) PCT ±45 | 7780.0
7900.0
7930.0
8020.0 | | PANNEL
THICK. | DEG., 50 | 1780
1779
1775
1775 | DE G., 37 | 1784 | DEG., 50 | 1733 | | EDGE
DIST. | PCT 0 (| 00000 | PCT 0 [| 0000 | PCT 0 1 | 1.0000 | | MAN
NOIN
NOIN
TI | - 25 | 00000 | 37.5 | 1.0005 | 7.5 | 1.002
1.002
1.004
1.998 | | BOLT
DIAM
IN. | ATTERN | 2524
2536
2536
2503
2513 | TERN - | 25.05
25.05
25.05
25.05
25.05 | Z
X | 2503
2518
2508
2508 | | HOLE
OIAM
IN. | IBER PA | 2534
2536
2503
2513 | ER PAT | 25053
25053
2512
2512 | PAT | .2503
.2518
.2508
.2508 | | HOL E
10 | u. | | F18 | | F18 | • | | SPECIMEN
ID | | 1 S - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | | NS N | ١ | IS-6-1
IS-6-2
IS-6-3 | NOTE THAT TENSION STRENGTH REFERS TO ENTIRE LOAD AT NET SECTION TABLE XVIA (COMPRESSIVE LOADING) ALL GPAPHITE FIBERS, EPOXY RESIN | | 87.1
955.4
1055.2 | | 99.7
102.2
106.4
98.9 | | 7467
834.00 | |----------|--|---|--|--|---| | | 410.5
446.9
488.9
429.1 | | 463.4
476.1
497.0
468.3 | | 362
3922
4392
364
64
64 | | PCT 11/2 | 591.2
641.5
724.6
620.7 | 5 PCT 11/ | 696.6
713.4
736.5
688.8 | 5 PCT 11/ | 5455-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7 | | 14, 25 | BRG
BUCKL
BUCKL
BUCKL | ±π/4, 2 | BRG
BRG
BUCKL
BUCKL | /4, 12 | B B B B B B B B C B C B C B C B C B C B | | 50 PCT ± | 36.2530
39.2556
40.8792
37.0092 | 37.5 PCT | 41.3462
41.8133
44.3933
40.8347 | 50 PCT ± | 32.4276
34.1624
37.0092
31.6713 | | PCT 0. | 4.699
4.651
4.379
4.585 | PCT 0. | 4.666
4.602
4.699
4.646 | PCT 0. | 44.5889
55488
55488 | | 1 - 25 | 25.40
25.40
25.40
25.40 | . 37.5 | 255.40
255.40
255.40 | - 37.5 | 2222
2225
444
0000 | | ATTER | 255.32
255.47
255.34
314 | TERN | 255
255
255
144
255
155
155
155 | TERN | 2225
2555
2555
2555
2555
2555
2555
255 | | IBER | 6.525
6.579
6.441
6.502 | ER PA | 6.368
6.368
6.413
6.380 | BER PA' | 6.4431
6.4472
6.34490 | | | 6.525
6.579
6.541
6.502 | FI | 6.360
6.368
6.468
6.380 | FI | 6.431
6.472
6.449
6.360 | | | | | | | | | | 15-1-5
15-1-6
15-1-6 | | 18-2-5
18-2-5
18-2-7 | | 1871
1871
1871
1871
1871
1871
1871
1871 | | | BER PATTERN - 25 PCT 0, 50 PCT ± 174, 25 PCT 11/ | S-1-5 6.525 6.525 25.32 25.40 4.699 36.2530 BRG 591.2 410.5 87.
S-1-6 6.579 6.579 25.47 25.40 4.651 39.2556 BUCKL 641.5 446.9 95.
S-1-7 6.441 6.441 25.54 25.40 4.379 40.8792 BRG 724.6 488.9 105.
S-1-7 6.502 6.502 25.31 25.40 4.585 37.0092 BUCKL 620.7 429.1 91. | S-1-5 6.525 6.525 25.32 25.40 4.699 36.2530 BRG 591.2 410.5 87. S-1-6 6.579 6.579 25.47 25.40 4.651 39.2556 BUCKL 641.5 446.9 55.51-7 6.441 25.54 25.40 4.379 40.8792 BRG 724.6 488.9 105. S-1-8 6.502 6.502 25.31 25.40 4.585 37.0092 BUCKL 620.7 429.1 91. FIBER PATTERN - 37.5 PCT 0, 37.5 PCT ±π/4, 25 PCT π/2 | S-1-5 6.525 6.525 25.32 25.40 4.699 36.2530 BRG 591.2 410.5 87. S-1-6 6.579 6.579 25.47 25.40 4.651 39.2556 BUCKL 641.5 446.9 95. S-1-7 6.441 6.441 25.54 25.40 4.585 37.0092 BUCKL 641.5 446.9 95. S-1-8 6.502 6.502 25.31 25.40 4.585 37.0092 BUCKL 620.7 429.1 105. FIBER PATTERN - 37.5 PCT 0, 37.5 PCT ±π/4, 25 PCT π/2 S-2-5 6.368 6.368 25.48 25.40 4.662 41.8133 BRG 713.4 476.1 102. S-2-7 6.380 6.380 25.15 25.40 4.646 40.8347 BUCKL 688.8 468.3 988. | S-1-5 6.525 6.525 25.32 25.40 4.699 36.2530 BRG 591.2 410.5 87. S-1-6 6.579 6.579 25.47 25.40 4.651 39.2556 BUCKL 641.5 446.9 95. S-1-6 6.579 6.579 25.47 25.40 4.379 40.8792 BRG 724.6 4488.9 105. S-1-8 6.502 6.502 25.31 25.40 4.585 37.0092 BUCKL 620.7 429.1 91. FIBER PATTERN - 37.5 PCT 0, 37.5 PCT ±π/4, 25 PCT π/2 S-2-6 6.360 6.360 25.48 25.40 4.666 41.3462 BRG 713.4 476.1 102. S-2-6 6.380 6.380 25.45 25.40 4.646 40.8347 BUCKL 688.8 468.3 106. FIBER PATTERN - 37.5 PCT 0, 50 PCT ±π/4, 12.5 PCT π/2 FIBER PATTERN - 37.5 PCT 0, 50 PCT ±π/4, 12.5 PCT π/2 FIBER PATTERN - 37.5 PCT 0, 50 PCT ±π/4, 12.5 PCT π/2 FIBER PATTERN - 37.5 PCT 0, 50 PCT ±π/4, 12.5 PCT π/2 FIBER PATTERN - 37.5 PCT 0, 50 PCT ±π/4, 12.5 PCT π/2 FIBER PATTERN - 37.5 PCT 0, 50 PCT ±π/4, 12.5 PCT π/2 | NOTE THAT COMPP. STRENGTH REFERS TO ENTIRE COMPRESSIVE LOAD AT NET SECTION TABLE XVIB COMPRESSIVE LOADING) ALL GRAPHITE FIBERS, EPOXY RESIN |
SHE AROUT
STRENGTH
KSI | | | | 11111111111111111111111111111111111111 | | 11111
1201
2004 | |------------------------------|-----------|---|----------|--|----------|--| | COMPR.
STRENGTH
KSI | DEG. | 504
604
604
604
604
604
604
604
604
604
6 | 90 DEG. | 67.2
69.0
72.1
67.9 | 90 DEG. | 52.
53.7
53.7
53.7 | | BEARING
STRENGTH
KSI | 25 PCT 90 | 855.7
93.0
105.1
90.0 | , 25 PCT | 101
103
103
104
99
99 | 12.5 PCT | 7
9
9
7
9
7
9
8
8
7
9
8
8
7
9
8
8
7
9
8
8
8
7
7
8
8
8
8 | | FAILURE | DEG. | BUCKE
BUCKE | 45 DEG. | B B B B B B B B B B B B B B B B B B B | DEG. | BB BR B | | FAILURE
LOAD
LB | PCT ±45 | 8150.0
8825.0
9190.0
8320.0 | .5 PCT ± | 9295.0
9400.0
9980.0
9180.0 | PCT ±45 | 7290.0
7680.0
8320.0
7120.0 | | PANEL
THICK. | DEG., 50 | .1850
.1831
.1724
.1805 | DEG., 37 | 1837
1812
1850
1859 | DEG., 50 | 1805
1751
1794 | | FDGE
H DIST. | PCT 0 | 7 1.000
3 1.000
5 1.000 | PCT 0 | 00000 | PCT 0 I | 2 1.000
0 1.000
1 1.000
1 1.000 | | P ANE | - 25 | 1.000 | 37.5 | 1.003 | 37.5 | 0000 | | BOLT
DIAM | ATTERN | 2569
2536
2536
2550 | TERN + | 25504
25507
25525
25125 | TERN - | 2222
2255
2554
2536
2034
2536
2536
2536
2536
2536
2536
2536
2536 | | HOLE
NIAM | BER P | .2569
.2536
.2536 | R PAT | 2504
2507
2525
2512 | R PATT | 2222
2222
2222
2420
2422 | | HOLE | FI | | F18E | | F18E | | | SPECIMEN | | IS-1-5
IS-1-6
IS-1-7 | | IS-2-5
IS-2-6
IS-2-17 | | 11581
1581
1581
1581
1581
1581 | NOTE THAT COMPR. STRENGTH REFERS TO ENTIRE COMPRESSIVE LOAD AT NET SECTION TABLE XVIIA NTERACTION SPECIMENS S-GLASS LONGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN | ⊢I | | | | 10 A 00 A | | @ MIA + | |------------------------------------|------------|--|-------------|---|------------|--| | SHEAROU
STRENGT
MPASCAL | | 850.0
80.0
80.0
80.1 | | 44
48
49
40
40
40
40 | | mα00
μου
σων4 | | COMPR.
STRENGTH
MPASCAL | | 3741.8 | | 244
4465
4665
600
801
801 | | 408.8
4002.1
426.2
426.4 | | BE AR ING
STRENGTH
MP ASC AL | PCT 11/2 | 5540
5558
5528
557.8 | 25 PCT 11/2 | 5312
53192
671
597 | .5 PCT #/2 | 613.4
607.0
652.7
623.6 | | FAILURE | ±11/4, 25 |
PECK
BBCCKK
CKKK
CKKK
BCCCKK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCK
BCCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCCC
BCCC
BCCC
BCCC
BCCC
BCCCC
BCCCC
BCCC
BCCC
BCCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCCC
BCC
BCCC
BCCC
BCCC
BCCC
BCC
BCCC
BCCC
BCCC
BCCC
B | ±11/4. | BUCKE
BUCKE
BUCKE
BUCKE | ±π/4, 12 | BUCKL
BUCKL
BUCKL
BUCKL | | FAILURE
LOAD
KNEWTON | 50 PCT ± | 31.5601
32.5165
34.8296
32.7834 | 37.5 PCT | 29.3138
30.6483
38.0768
33.9399 | 50 PCT : | 34.2291
34.1624
36.4754
34.8741 | | PAN
THICK
MM | PCT 0, | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | PCT 0. | 4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4 | PCT 0. | 4.381
4.392
4.346
4.346 | | NEL EDGE
DTH DIST. | TTERN - 25 | 5.55
5.54
5.54
5.51
5.51
5.51
5.54
5.54 | ERN - 37.5 | 55.53
57.53
57.52
57.53
57.40
57.40
57.40
57.40 | ERN - 37.5 | 5.48 25.40
5.27 25.40
5.27 25.40
5.26 25.40 | | BOLT DIAM WIN | FIBER PAT | 96
108
111
22
23
23
25
25 | BER PATTE | 6.4436
6.4447
6.3552
6.4062 | BER PATT | 6.358
6.353
6.353
6.353
6.353
6.353
7.35
6.35
7.35
7.35
7.35
7.35
7.35
7.35
7.35
7 | | DIO
DIAN
MAR | _ | 6.396
6.408
6.411
6.383 | FI | 6.44
6.44
6.44
6.05
6.05
6.05 | u. | 2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000 | | HOLE
10 | | | | | | | | PECIMEN
ID | | IS-4-5
IS-4-6
IS-4-7 | ,
) | 1100
1100
1100
1100
1111 | \ | I S-6-5
I S-6-6
I S-6-7
I S-6-8 | NOTE THAT COMPR. STRENGTH REFERS TO ENTIRE COMPRESSIVE LOAD AT NET SECTION TABLE XVIIB INTERACTION SPECIMENS (COMPRESSIVE LOADING) # S-GLASS LONGITUDINAL PLIES, GRAPHITE CROSS PLIES, EPOXY RESIN | SHEAROUT
STRENGTH
KSI | 111.3 | | | | 225
235
246
266
266 | |---|---------------------------------|-----------|---|------------|--------------------------------------| | COMPR.
STRENGTH
KSI | | 90 DEG. | 00000
00000
00000 | 90 DEG. | 66000
16000
16000 | | BEARING
STRENGTH
KSI
75 PCT 90 | 878
886
806 | 25 PCT | 40
40
40
40
40
40
40
40
40
40
40
40
40
4 | 12.5 PCT 9 | 9889
90,40
90,44 | | FAILURE
MODE | 8888
0000
XXXX
XXXX | 45 DEG., | 8688
0000
8888
8888
88888
88888 | DEG. | | | FAILURE
LOAD
LB | 10000 | .5 PCT ± | 6590.0
6890.0
8560.0
7630.0 | PCT ±45 | 7695.0
7680.0
8200.0
7840.0 | | PANEL
THICK.
IN. | 1796
1787
1804
1813 | DEG., 37, | .1751
.1734
.1757 | DEG., 50 | .1725
.1744
.1729
.1711 | | DISTE | 0000 | PCT 0 (| 00000 | PCT 0 DE | 1.0000 | | PAN
INDI
IN I | 1.005 | 37.5 | 1.005 | 37.5 | 1.003
1.005
1.995
995 | | BOLT
DIAM
IN. | 25521 | ERN I | 25033
25033
25033
2023
2023 | TERN - | 2507
2501
2505
2533 | | HOLE
DIAM
IN. | 25523
25523
25524
3134 | R PATT | 25533
25533
2502
2502
2502 | R PAT | 2501
2501
2505
2533 | | HOLE | | F18E | | FIBE | | | SPECIMEN | IS-14-5
IS-14-6
IS-14-7 | | 1 S S S S S S S S S S S S S S S S S S S | | 15-6-5
15-6-6
15-6-7
15-6-7 | NOTE THAT COMPR. STRENGTH REFERS TO ENTIRE COMPRESSIVE LOAD AT NET SECTION ### TABLE XVIIIA # PIN CONNECTION SPECIMENS FIBER PATTERN - 25 PCT 0, 50 PCT ±1/4, 25 PCT 1/2 ### SI UNITS | SHEAROUT
STRENGTH
MPASCAL | 158.4
41.4
27.3
63.6 | 155
300
200
620
620
8 | |---|--
---| | TENSION
STRENGTH
MPASCAL | 44050 | rvω44
Φφινα
ωφινο | | BEARING
STRENGTH
MPASCAL | 44
445
445
441
441
441
441
441
441
441
4 | 4557
3337
494
493.90 | | FAILURE
MODE | 88888
8888
9999 | 8888
8888
9999
9999 | | FAILURE
LOAD
KNEWTON | 6.8058
6.6723
5.9829
6.5611 | 6.6723
4.9153
5.7382
6.4944 | | PANEL
THICK | 2.306
2.322
2.396
306 | 2.304
2.324
2.294
2.309 | | EDGE
MINGE | 12.54
37.97
50.89
25.59 | 12.55
37.82
50.95
25.59 | | MAN | 63.69
63.85
64.16
64.11 | 64.02
63.94
63.99 | | DOC
NAM
MAM | 6.3377 | 66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00 | | DHO
MAN
MAN | 6.4449
6.4444
6.429 | 6.454
6.447
6.434
6.413 | | HOLE
ID | 4 8 0 0 | 4800 | | SPECIMENID | 1111 | PC-11-2
PC-11-2
PC-11-2 | | | | | ### TABLE XVIIIB PIN CONNECTION SPECIMENS FIBER PATTERN - 25 PCT 0 DEG., 50 PCT ±45 DEG., 25 PCT 90 DEG. | | SHEAROUT
STRENGTH
KSI | 23.0 | 22
03400
0400 | |-----------|--|--|--| | | TENSION
STRENGTH
KSI | ~~~~
~~~~ | 7007
7007
7007 | | | BEARING
STRENGTH
KSI | 659
59
59
1 | 66
67
67
67
67
67
67
67
67 | | | FAILURE
MODE | 8888
8888
9999
9999 | 8888
8888
8886 | | STIND XX | FAILURE
LOAD
LB | 1530.0
1500.0
1345.0
1475.0 | 1500.0
1105.0
1290.0
1460.0 | | CUSTOMARY | PANEL
THICK.
IN. | .0908
.0914
.0904
.0908 | 0907
0903
0903
0909 | | O S O | EDGE
DIST. | 1.495
2.003
1.007 | 1.494
2.006
1.007 | | | MAN IN | 2.507
2.514
2.526
2.536 | 22.521 | | | BOLT
DIAM
IN. | 2495
2495
2495
2495 | 22
22
24
24
20
20
20
20
20
20
20
20
20
20
20
20
20 | | | DIOI
NA ME | 2534
2537
2531
2531 | 255
255
253
253
253
255
255 | | | HOLE
10 | 4300 | ⊲ ⊕∪0 | | | SPECIMEN | 1111
1111
1111
1111
1111
1111
1111
1111
1111 | PPC-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2- | | | | | | ### TABLE XIXA # SINGLE-LAP SPECIMENS FIBER PATTERN - 25 PCT 0, 50 PCT ±1/4, 25 PCT 1/2 ### SI UNITS | SHEAROUT
STRENGTH
MPASCAL | 101
101
101
100
100
100
100
100
100
100 | |---------------------------------|---| | TENSION
STRENGTH
MPASCAL | 226.3
239.6
231.0 | | BEARING
STRENGTH
MPASCAL | 669
709.8
684.3
613.3 | | FAILURE
MODE | HHHM
MMM
SSS
SNS | | FAILURE
LOAD
KNEWTON | 19.5277
20.6620
19.9280
17.8819 | | PANEL
THICK. | 4.590
4.590
4.597 | | EDGE
DIST. | 25.80
25.57
25.857 | | P ANEL
WIDTH
MM | 7227
7255
7255
725
725
725
725
725
725
7 | | BOLT
DIAM
MM | 666
666
666
666
666
666
666
666
666
66 | | HOLE
MAM | 0000
0000
0000
0000
0000 | | HOL E | | | SPECIMEN
ID | SL-1-1
SL-1-1-1 | | | | ### TABLE XIXB # SINGLE-LAP SPECIMENS FIBER PATTERN - 25 PCT 0 DEG., 50 PCT ±45 DEG., 25 PCT 90 DEG. | | SHEAROUT
STRENGTH
KSI | 2969
2969 | |---|-----------------------------|---| | | TENSION
STRENGTH
KSI | 2400
0400
0000 | | | BEARING
STRENGTH
KSI | 102.9
102.9
88.9 | | | FAILURE
MODE | BHHH
BENNS
BNS
BNS
BNS
BHHHHHH | | | FAILURE
LOAD
LB | 4390.0
4645.0
4480.0
4020.0 | |) | PANEL
THICK.
IN. | 1814
1807
1810
1810 | | , | EDGE
DIST. | 1.016
1.007
1.018
1.014 | | |
PANE
WIDTH | 7000
7000
7000 | | | BOLT
DIAM
IN. | .2494
.2494
.2494
.2494 | | | HOLE
DIAM
IN. | 2592
2592
2582
2582 | | | HOLE
ID | | | | S P E C I M E N
I D | SL-1-1
SL-1-3
SL-1-3 | TABLE XX MONOLAYER PROPERTIES | | | | | |----------------|-----------------------|---|---| | GRAPHITE-EPOXY | E _L | = 134.0 GPascal (19.44×10 ⁶ psi) | $E_{\rm T}$ = 11.54 GPascal (1.674×10 ⁶ psi) | | | G_{LT} | = 6.18 GPascal (0.897×10 ⁶ psi) | ν _{LT} = 0.3785 | | | $\mathbf{t}_{ t ply}$ | = 0.14 mm (0.0057 in.) | | | | F _{L(TENS)} | = 1404 MPascal (203.66 ksi) | $F_{L(COMP)} = 1359 \text{ MPascal (197.13 ksi)}$ | | | F _{T(TENS)} | = 40.8 MPascal (5.922 ksi) | $F_{T(COMP)} = 142.4 \text{ MPascal (20.65 ksi)}$ | | | F _{LT} | = 92.0 MPascal (13.34 ksi) | | | GLASS-EPOXY | E _L | = 57.2 GPascal (8.3×10 ⁶ psi) | $E_{\rm T}$ = 19.99 GPascal (2.9×10 ⁶ psi) | | | G _{LT} | = 5.93 GPascal (0.86×10 ⁶ psi) | ν _{LT} = 0.26 | | | tply | = 0.13 mm (0.0051 in.) | | | | F _{L(TENS)} | = 1993 MPascal (289.0 ksi) | $F_{L(COMP)} = 1172 \text{ MPascal (170.0 ksi)}$ | | | F _{T(TENS)} | = 75.8 MPascal (11.0 ksi) | $F_{T(COMP)} = 200.0 \text{ MPascal (29.0 ksi)}$ | | | F _{LT} | = 62.1 MPascal (9.0 ksi) | | TABLE XXI CALCULATED LAMINATE MATERIAL MECHANICAL PROPERTIES | PANEL | MATERIAL | PL | Y ORIENTATIO | N (%) | F tu | F _x ^{cu} | F su xy | Ex | |-------|---|--------|--------------|-----------|------------------|------------------------------|------------------|----------------------------------| | No. | FIBER/RESIN | 0 (0°) | ±π/4 (±45°) | π/2 (90°) | MPascal
(psi) | MPascal
(psi) | MPascal
(psi) | GPascal
(10 ⁶ psi) | | 1 | T300/N5208
T300/N5208
T300/N5208 | 25 | 50 | 25 | 468
(67900) | 453
(65720) | 340
(49250) | 53.62
(7.777) | | 2 | T300/N5208
T300/N5208
T300/N5208 | 37.5 | 37.5 | 25 | 622
(90270) | 602
(87370) | 255
(36940) | 66.66
(9.668) | | 3 | T300/N5208
T300/N5208
T300/N5208 | 37.5 | 50 | 12.5 | 614
(89110) | 595
(86240) | 340
(49250) | 67.07
(9.727) | | 4 | S1014/N5208
T300/N5208
T300/N5208 | 25 | 50 | 25 | 774
(112200) | 504
(73140) | 349
(50580) | 33.80
(4.903) | | 5 | S1014/N5208
T300/N5208
T300/N5208 | 37.5 | 37.5 | 25 | 850
(123300) | 604
(87680) | 265
(38460) | 37.00
(5.867) | | 6 | S1014/N5208
T300/N5208
T300/N5208 | 37.5 | 50 | 12.5 | 1000
(145000) | 588
(85270) | 353
(51270) | 37.65
(5.460) | | ⋖ | | |------|--| | - | | | × | | | × | | | i.L. | | | 488 | | TENSION THROUGH-THE-HOLF SPECIMENS ROUN AMO STE 04W 00W 000 42B 52B 10 4 m 7.7 000 I TENSION STRENGTH MPASCAL $\overset{\bullet}{\omega} \overset{\bullet}{\smile} \overset{\bullet}{\omega}$ $\sigma\sigma\sigma$ $\infty \infty 4$ 294 929 11-10 • • • 272 251 244 244 69 40 51 271 アジュ 497 m0-1 255 237 201 222 2828 $\alpha \hat{\alpha} \hat{\alpha}$ RING FNGTH SCAL 112.5 139.1 109.4 905.1 031.9 951.6 $\sim \sim \infty$ 105 492 078.0 012.9 973.8 1008-1 1071-9 056.6 2000 /# PCT 000 A A A 000 S S S ш AILURE SZZ MITTER NSS SSS SZZZ SZZ ZN SSS ₽ 4 • نلانتاننا للاللاللا للاللاللاطا J--- }--por 1- 1h. h- h. OXY RE 5.5643 4.8571 4.1676 8.3934 11.1380 0.1060 3998 5412 4016 m Z om so 3 PN . 6038 9433 . 2146 AILURI LOAD NEWTOI ~4m 284 286 366 a C 2000 . . . 25. 2-2 +0 U) らみる 500 BERS. 0.50 UNITS u. 438 489 413 があれ 273 311 291 200 226 327 251 277 226 4524 4534 4204 **→**¥ ANT MICE 744 LL --. . . ша ar 222 222 222 m(n) m നുമ്പന mmm H17 25 30 92 92 $\omega \omega \omega$ -100 10 $\infty \sim \omega$ ろろろ らろう -0mmNသထင္ API 000 ထကာထ ທູນທູນ ေထာက SS. Tio. ろろろ $\omega\omega\omega$ 200 നന്ന TL HU ZOS $\infty \cap \infty$ Noon 2004 2004 ೧.ಯನ್ 200 41010 L-48 4.00.0 1.98 **⊣**0 5 -14 . . . 47 U.3 U.3 مسر بسم بسم നന്ദ man mmm mmm mmm mmin m \tilde{a} 200 350 350 350 350 350 350 350 350 350 350 350 350 350 350 2000 DEC DIA NAME دي ري ري īŪ נה בא עו a: u. 900 $\phi \phi \phi$ \$ 0 Q <u> ಜನ್ನ</u> 30°0 20°0 404 1355 1056 **200**0 **200** 300 200 IJ≨ www מש נוש נהי $\omega \omega \omega$ 626960 nima 900 LLI H H H H 179.6 208.1 188.8 20.2 SIND 3-2-23-3 3 4 4 4 4 ±±± 545-1 545-2 545-3 111 7.6 0.000 Z **₹**. E F a. -1~m 111 NÃN **ころら** + + + III -12m 111 more HH-TTT COO -NO 111 $\omega \omega \omega$ ナート ト エエエ ファブ 1 1 1 27.00 44.4 111 TABLE XXIIB TENSION THROUGH-THE-HOLE SPECIMENS # FIREP PAITERN - 25 PCT 0 DEG., 50 PCT ±45 DEG., 25 PCT 90 DEG. | SHEAROUT
STRENGTH
KSI | 29.1
23.7 | 22.2
20.6
19.9 | 7111 | 26.0
30.2
27.4 | 22.0 | 1123 | |--|----------------------------------|---|---------------------------------------|----------------------------|---|---| | TENSION
STRENGTH
KSI | 34°-7
29°-5
29°-2 | 2000
2000
2000 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 3375 | 41 .2
39 .0
38 .0 | 004
004 | | BEARING
STRENGTH
KSI | 146.9 | 156.4
146.8
141.2 | 146.2
155.5
162.9 | 131.3 | 161.5
153.2
152.8 | 152.4 | | FAILURE
MODE | HHH
MMN
NNN
NNN
NNN | P F F S S S S S S S S S S S S S S S S S | HHH
RNS
SNS | NON
ZZZ
HHH | SSS
SSS
SSS
SSS
SSS
SSS
SSS
SSS
SSS
SS | ののの
222
世世世
トトト | | FAILURE
LOAD
LB | 3462.0
3269.0
2788.0 | 3499.0
3340.0
3185.0 | 3509.0
3809.0
3870.0 | 4135.0
4752.0
4520.0 | 5168.0
4942.0
4851.0 | 5142.0
4785.0
4960.0 | | P P C F I I I I I I I I I I I I I I I I I I | .0943
.0960
.0950 | .0895
.0910
.0902 | .0980
.0980
.0950 | .1260
.1270
.1370 | .1280
.1290
.1270 | 1350
1360
1350 | | 010000
010000
100000 | . 755
. 760
. 745 | 1.005 | 1.516
1.505
1.510 | . 755
. 755
. 755 | 1.005 | 1.510
1.510
1.506 | | O W
NOIN
NOIN
III | 1.251 | 1.238
1.255
1.255 | 1.2532
1.2559
1.2559 | 1.256
1.257
1.250 | 1.232 | 1.22¢
1.258
1.258 | | BOLT
DIAM
IN. | 2500 | 2500 | .2500
.2500
.2500 | 25000
25000
25000 | 2556
2560
2500
2500 | 25500 | | HOH
NOIN
NOIN
NOIN
NOIN
NOIN
NOIN
NOIN
N | 2500
2500
2500 | 200 | .252c
2550
2500 | | .2500
.2500
.2500 | . 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | | HOLE | | | | | | | | SPECIMEN | TH-529-1
TH-529-2
TH-529-3 | HH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | TH-533-1
TH-533-2
TH-533-3 | H-541-
H-541-
H-541- | TH-543-1
TH-543-2
TH-543-3 | TH-545-1
TH-545-2
TH-545-2 | TABLE XXIIIA TENSION THPOUGH-THE-HOLE SPECIMENS ALL GRAPHITE FIBERS, EPOXY RESIN FIRER PATTERN - 25 PCT 0, 50 PCT ±1/4, 25 PCT 11/2 | SHEAROUT
STRENGTH
MPASCAL | 210.1
201.9
217.5 | 163.6
146.6
156.0 | 9.46
9.66
9.96 | 218.8
246.2
243.2 | 166
1548
1548
1548 | 97.2
94.3
103.8 | |--|-------------------------------|--|-------------------------------|----------------------------------
---|--------------------------------------| | TENSION
STRENGTH
MPASCAL | 164.1
158.3
168.2 | 203.9
186.0
193.2 | 210.9
219.1
210.8 | 165
1855
0 | 207.7
183.3
191.8 | 211.7
205.1
227.9 | | BEARING
STRENGTH
MPASCAL | 906.8
872.4
939.9 | 1137.6
1019.3
1083.7 | 1160.2
1214.3
1183.9 | 932.7
1036.8
1023.9 | 1165.5
1029.5
1076.0 | 1187.7
1152.0
1272.9 | | FAILURE
MODE | TTE
TEN
NS
SS
SS | THT
HER
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN | HHH
NSS
SSS | HH
HMH
NNN
SNN
SNN | HUH
NSS
NSS | | | FAILURE
LOAD
KNEWTON | 10.8937
10.3199
10.4845 | 12.4105
11.1206
12.6196 | 13.0555
13.3224
13.3224 | 15.4353
16.9032
16.8187 | 1.8.2866
16.6586
17.0145 | 18.7894
17.7929
20.4396 | | MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN | 2.489
2.451
2.311 | 2.261
2.261
2.413 | 22.332.332.332.332 | 30.00
40.00
40.00
40.00 | 33.00
23.00
27.00
27.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00 | 3.277 | | FDGE
DIST | 122.
122.
855.
855. | 19.20
19.20
19.20 | 32.00
31.888 | 12.57
12.57
12.57 | 19.30
19.18
10.18 | 31.90
31.38
32.00 | | M M M M M M M M M M M M M M M M M M M | 31.50 | 31.78
31.29
31.95 | 31.97 | 0.40
0.40
0.40 | 31.00 | 337
337
400
400
800 | | FOLUME
MAM | 4.826
4.826
4.826 | 4.826
4.826
4.826 | 4.826
4.826
4.826 | 4.826
4.826
4.826 | 4.826
4.826
4.826 | 4.
9326
4.
826
4.
826 | | HOHO
DIAM
MAM | 4.826
4.851
4.851 | 4.851
4.851
4.877 | 4.826
4.826
4.826 | 4.826
4.826
4.826 | 4.826
4.826
4.826 | 4.4
8.826
4.826
4.826 | | HOLE | | | | | | | | PECIMEN
ID | H-523-2
H-523-2
H-523-3 | H-525-1
H-525-2
H-525-3 | H-527-2
H-527-2
H-527-3 | H-535-1
H-535-2
H-535-3 | H-537-2
H-537-2
H-537-3 | H-539-1
H-539-2
H-539-2 | TABLE XXIIIB TENSION THROUGH-THE-HOLE SPECIMENS ALL GRAPHITE FIBERS, EPOXY RESIN FISH PATTERN - 25 PCT 90 DEG. | | | | |) (| · • | | | | | | |--------------------------|---|--------------------------|--|-------------------------|-------------------------|----------------------------|--------------------------|-------------------------|----------------------|----------------------| | IOI
I | 1010
1010
1010
1010
1010
1010
1010
101 | -8
 | DZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | DIO
IN N | HIN
NON
NON | FAILURE
LOAD
LB | MODE | STRENGTH
KSI | STRENGTH
KSI | STRENGT H
KSI | | 337
111
327
327 | 191001919 | 19000 | 1.240
1.238
1.253 | 5000
5000
5000 | .0980 | 2449.0
2320.0
2357.0 | HHH
BNS
SNS
SNS | 131.55 | 2233
244
4 | 300.5 | | 111
111
1120 | .1910
.1910
.1920 | .1900
.1900
.1900 | 1.251 | . 756
. 756 | 0880.0890.09890 | 2790.0
2500.0
2837.0 | HHT
NON
NON | 165.0
147.8
157.2 | 29.6
27.0
28.0 | 23.7
21.3
22.6 | | 17-12 | .1500
.1900
.1900 | 190
190
190
190 | 1.235 | 1.260
1.255
1.256 | .0895
.0895 | 2935.0
2995.0
2995.0 | HH
MEN
NSN
NSN | 168.3
176.1
171.7 | 30.6
31.8
30.6 | 144 | | 1 1 1 | 1900
1900
1900 | .1900
.1906
.1906 | 1.258
1.250
1.259 | 0.044
0.004
0.000 | .1350
.1330
.1340 | 3470.0
3800.0
3781.0 | MUM
NNN
NNN
NNN | 135.3
150.4
148.5 | 24.1
27.0
26.4 | 35.7 | | 7-1
7-2
7-3 | .1900
.1900
.1900 | .1900
.1900
.1900 | 1.256
1.257
1.256 | 755 | .1280
.1320
.1290 | 4111.0
3745.0
3825.0 | HHT
NNN
NNN | 169.0
149.3
156.1 | 30.1
26.6
27.8 | 22.5 | | 111
111
124 | 1910
| 1900 | 1.257 | 1.256
1.255
1.255 | 1290 | 4222.0
4000.0
4595.0 | HTH
RMR
NNN
NNN | 172.3 | 30.7
29.8
33.1 | 124
150
171 | N +1/E+1 ECIMEN SH ui O $\alpha : \alpha$ EPOXY 0, 50 S D OUGH-THE-HOLE MOISNE AROUT FNGT H SCAL 64.0 400 \$ ~~ \in 44.6 52.1 50.9 1.44 5.31 $\sigma \sigma \sigma \sigma$ $an\bar{n}$ naa $\omega \omega \omega$ SHE I **401** 5/-0 2mm 244.5 225.1 238.4 ထထဝ 100N CAL 200-196-232-600 . . . 10% 40 40 40 40 60 72 64 mon 500 Smo NNN PAN NNN 036.4 1040.8 928.6 1012.2 800.0 784.5 933.2 000 700 I 971-3 893-3 940-1 028.5 082.2 054.1 RING ENGTH SCAL 500 DXA ENS THO SON SOLVIO AILURE 222 222 STR STEE wiwill $\alpha \overrightarrow{\alpha} \alpha$ $\omega \omega \omega$ II. .7637 8846 3019 8571 7289 4131 9032 7031 4165 704 $\omega \omega \omega$ TATLURE LOAD CNEWTON 004 200 NHH 256 966 798 100 8.1.0 4~4 φ.σ.- \$ 20 40m 400 450 S I UNIT U 🔀 or a 18E 353 .200 .200 .150 0200 261 311 286 11 62 11 1386 <u>.</u> 1. **2012** mNm $\omega \omega \omega$ mmm 222 202 222 ui Ez Ex a. -9.15 20 28 23 225 2000 4000 4000 9.05 יטיטיטי うらみ MASSE III. ထတတ N W W 47 သက္ကတ W W W NUN mmm 8 d d 11.80 11.80 80 1.67 1.52 വനവ 5 m ∞ ω _1_ 390 70.4 ထ ထားသ نداند المالي . . . a co mmmmmm minim nmm خـ ۵ 6.350 6.350 6.350 2000 50°C 6.350 6.350 6.350 500 200 BOID NAM MMM www ama mmm $\omega \omega \omega$ 200 000 . . . 200 525 NINK 52 26 26 52 26 52 NON ららら うろう HOHO OIO BAR MAR Single 444 222 444 444 444 444 947 SOO 999 000 O 000 ららら n. HOLD 101 TH-509-1 TH-509-2 TH-509-3 ZUM CIOU -NM 426 -40m TH-507-1 TH-507-2 TH-507-3 12m 10m 521-1 521-2 521-3 17-496 111 525 TTT PROP SON 111 111 于干干 α. 7.00 8000 7.3 44M TABLE XXIVB TENSION THROUGH-THE-HOLE SPECIMENS FIBER PATTERN - 50 PCT 0 DEG., 50 PCT ±45 DEG. | SHE AROUT
STR ENGTH
KSI | 28.3
26.0
27.4 | 22.1 | 200
200
200
200 | 23.1
22.6
26.9 | 21.4
21.4
19.2 | 12.6 | |-------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|---| | TENSION
STRENGTH
KSI | 999
425
675 | 37.88 | 34.5 | 28.5
33.7 | 37.6 | 0,000
4,400
0,000
0,000 | | BEARING
STRENGTH
KSI | 140.9
129.6
136.4 | 149.2
157.0
152.9 | 146.8
152.1
152.3 | 113.8 | 150.3 | 1399.0 | | FAILURE
MODE | NSN
HHH
GGG | NON
TIII
AAA | 888
888
999 | THT
THE
SNN
SNN | HER
HER
NS
S
S
S
S | ETT
EME
NSS
SSS | | FAILUPE
LOAD
LB | 3205.0
2915.0
3102.0 | 3319.0
3571.0
3440.0 | 3240.0
3536.0
3465.0 | 3800.0
3755.0
4365.0 | 4735.0
4755.0
4175.0 | 4380
4450
6820
0 | | PANEL
THICK. | .0910
.0900
.0910 | .0910
.0910
.0900 | 0930 | .1310
.1320
.1290 | .1260
.1266
.1240 | 1260
1280
1260 | | EDGE
CIST | 75.00 | 1.016
1.016
1.000 | 1.516 | .754
.756
.755 | 1.006
1.008
1.002 | 1.504 | | FANEL
FIDTH
IN. | 1.247
1.245
1.240 | 1.241
1.245
1.249 | 1.2559
1.252
1.255 | 1.253
1.253
1.258 | 1.253
1.253
1.253 | 1.252 | | BOLL
PINA
INA | 2500
2500
2500 | 2500
2500
2500 | 25000
25000
25000 | .2500
.2500
.2500 | 2500
2500
2500 | 2500
2500
2500 | | HOLE
CIAN
IN. | 25340
25340
2540 | . 2530
2530
2540 | .2530
.2530 | 25.40 | 2530
2540
2540 | 200
200
200
200
200
400
400 | | 10H | | | | | | | | SPECIMEN
ID | TH-505-1
TH-505-2
TH-505-3 | TH-507-1
TH-507-2
TH-507-3 | TH-509-1
TH-509-2
TH-509-3 | TH-517-1
TH-517-2
TH-517-3 | TH-519-1
TH-519-2
TH-519-3 | TH-521-1
TH-521-2
TH-521-3 | TABLE XXVA TENSION THROUGH-THE-HOLE SPECIMENS FIBER PATTERN - 50 PCT 0, 50 PCT ±1/4 | SHEAROUT
STR ENGTH
MPASCAL | 187.2
184.5
187.7 | 143.4 | 84.2
80.6
82.2 | 199.2
200.7
187.9 | 156.4
146.8
137.4 | 889
7.0
8.0
7.0 | |--|--|----------------------------------|---|----------------------------------|-------------------------------|-------------------------------------| | TENSION
STRENGTH
MPASCAL | 149.2
141.9
143.4 | 174.0
169.4
161.9 | 187.5
179.3
178.8 | 151.6
154.2
144.8 | 195.0
180.9
170.6 | 195.3
195.6
191.1 | | BE AR ING
STRENGTH
MPASC AL | 827.5
783.7
798.3 | 966.4
937.7
901.4 | 1051.2
1006.1
1013.7 | 847.2
861.8
809.1 | 1090.1
1012.3
954.6 | 1098.5
1095.5
1069.3 | | FAILURE
MODE | NON
TII
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO | NNN
TIII
MAGA | 888
888
888
888
888
888
888
888
888
88 | いいい
222
世世世
トトト | | HHH
NNN
NNN | | FAILUPE
LOAD
KNEWTON | 9.3324
9.0299
9.1989 | 10.8981
10.8047
10.2754 | 11.8545
11.2229
11.3074 | 12.8776
13.5226
12.3972 | 16.7031
15.6355
14.5101 | 17.7751 17.8596 17.1701 | | PANEL
THICK. | 22.
3.3.5.
2.3.8.8.
2.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8. | 2.337
2.388
2.362 | 2.337
2.311
2.311 | 32.1.
1.25.1.
1.25.1. | 3.175 | 3.353 | | FDGE
DIST | 13.09
12.70
12.70 | 19.67
19.46
19.46 | 32.54
32.54
32.16 | 12.67
12.78
12.80 | 19.23
19.05
19.18 | 31.98 | | PANAN
MINAL
MOTH | 21.60
31.55
31.75 | 31.6231.57 | 2000
2000
2000
2000
2000 | 31.80 | 2000
2000
2000 | 331
311
312
32
32
32 | | 800
110
110
110
110
110
110
110
110
110 | 4.826
4.826
4.826 | 4.826
4.826
4.826 | 4.826
4.826
4.826 | 4.826
4.826
4.826 | 4.826
4.826
4.826 | 4.826
4.826
4.326 | | U DI AMM | 4.826
4.902
4.877 | 4.826
4.851
4.852 | 4.826
4.826
4.826 | 4.826
4.826
4.826 | 4.826
4.826
4.826 | 4.826
4.826
4.826 | | HOLF | | | | | | | | SPECIMENIO | TH- 1-2
TH- 1-2 | TH-501-1
TH-501-2
TH-501-3 | TH-503-1
TH-503-2
TH-503-2 | TH-511-1
TH-511-2
TH-511-3 | TH-513-1
TH-513-2 | 7H-515-1
7H-515-2
7H-515-3 | TABLE XXVB TENSION THROUGH-THE-HOLE SPECIMENS FIBER PATTERN - 50 PCT 0 DEG., 50 PCT ±45 DEG. | US CUSTOMARY UNITS DECIMEN HOLE HOLE BOLT FANEL EDGE PANEL FAILURE BEARING TENSION SHEAROUT TO DIAM DILAM DILAM LIGHT FAILURE FAILURE BEARING TENSION SHEAROUT THE I - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | | | | | | | | |--|---------|-------------------------|----------------------|----------------------------|--------------------------------------|----------------------------|----------------------------|--------------------------------------| | US CUSTOMARY UNITS CONTINUED U | | HEAR
TREAK
ASI | 7.97 | 3 0 ω | 2mm | 4.98 | 2H0 | mmN | | US CUSTOMARY UNITS US COSTO C | | ENSION
TRENGT
KSI | -00 | W4W | 267 | 22 | 804 | ωω ⊢ | | US CUSTOMARY UNITS PECIMEN HOLE HOLE BOLT PANEL EDGE PANEL FAILURE FAILURE IN. 100 | | EARING
TRENGT
KSI | 220 | 36
36
30 | 52 | 22.2.2.3.5.1.7. | 240
300
300 | $\omega \omega \omega$ | | US CUSTOMARY UNITY PECIMEN HOLE HOLE BOLT PANEL EDGE PANEL FAILURR H-10 | | A I LUR
MODE | エエエ | III | $\alpha_{x}, \alpha_{x}, \alpha_{x}$ | WWW
WWW | 222
ພແພ | HTH
MEM
NSS
NSS | | PECIMEN HOLE HOLE BOLT PANEL EDGE PANEL FOLTONIA WIDTH DIST. THICK. H- 1-1 | - INC > | AILUR
LOAD
LR | 098.
037 | 450.
429.
310. | 665
523
542 | 895.
040.
787. | 755.
515.
262. | 3996.0
4015.0
3860.0 | | PECIMEN HOLE HOLE BOLT PANEL EDGE IN. | STUMA | HING
INC | 0.92
0.94
0.94 | 0.92
0.94
0.93 |
092
091
091 | 124
128
125
125 | 122 | 1330 | | PECIMEN HOLE HOLE SCLT PANEL IN. | | SS S | 255 | 73
76
76 | 222
222
232 | 4500
000 | アフト | 1.259 | | PECIMEN HOLE HOLE
10 | | ZOZ
mF• | 224 | 224
24
24 | ころさい | 2000
2000 | 200
200
200
200 | 1.2559
1.2559 | | PECINEN HH | | 342 | 200 | 45
66
66 | 000
000 | 199 | 966 | 1900
1900
1900 | | PECIMEN HOLD 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | 555
111 | ውውው | $\sigma\sigma\sigma$ | 901 | $a_{i}a_{j}a_{j}a_{j}$ | 1900
1900
1900
1900
1900 | | HH | | 101 | | | | | | <u>.</u> . | | | | P | 1111 | H-501-
H-501-
H-501- | H-503-
H-503-
H-503- | H-511-
H-511-
H-511- | H-513-
H-513-
F-513- | | ### TABLE XXVIA (TENSILE AND COMPRESSIVE LOADING) ALL GRAPHITE FIBERS, EPOXY RESIN SI UNITS | TRENGTH
PASCAL | | 42201
42301
428800
428800 | 91. | | 3421-8 | 370 | 666. | | 30. | 120 | 444
483
483
483
483
483
483
483
483
483 | |----------------------------|-------------|--|---------------------------------|-------------|---|---------------------------------|----------------|-------------|--|--------------|---| | FAILURE N
MODE S | | OTTHE
POTTER
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PENSON
PEN | Z Z Q Q = 000 | | FFF
NBI
NSV | P U S | T T | | 222
1111111 | Z 0. 2 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | | FAILURE
LOAD
KNEWTON | PCT ±π/4 | 10.3999
9.6571
12.1259
13.4737 | 376
376
666 | PCT ±π/4 | 12.9132
12.2415
18.0776 | 9.657 | • 463
• 463 | PCT ±1/4 | 8.055 | 4.358 | 15.3665
15.1062
16.0581 | | DGE PANEL
IST. THICK. | 5 PCT 0, 75 | 0.80 I. II. 8
0.80 I. II. 8
0.80 I. II. 8 | 80 1:11 | 0 PCT 0, 50 | 0880 | 000 | .80 1.06 | 5 PCT 0, 25 | 80 1.06 | | 0.80 1.092
0.80 1.092
0.80 1.041 | | PANEL WIDTH O | TERN - 2 | 60000000000000000000000000000000000000 | 000
000
000
000
000 | TERN - 5 | 38.13
38.13
55.33
5.33
5.03 | 000
000
000
000
000 | 8.20
200 | TERN - 7 | 8.25 | | 330
330
30
30
30
30
30
30
30
30
30
30
30 | | BOLT | ER PAT | 99 4 | | ER PAT | 66.00
0.00
0.00 | 040 | (J) (L) | ER PAT | | ٥ <i>د</i> . | | | HOLE | F18 | 99 4 | | F I B | 00
000
000 | 040 | eile. | F181 | | Ç. | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | HOLE | | | | | | | | | | | | | SPECIMEN
In | | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | すすら | : T. : | | | ## ## ## ## ## ## ## ## ## ## ## ## ## | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | • | | | | • | _ | | ### XXV18 w TABL DEG. d X ш AILURE LOAD LB ECIMENS SIVE LOADING PESIN ÷I S. EPOXY PANEL THICK. IN. 5 • DEG. TENSILE AND COMPRE PHITE FIBERS US CUSTOMARY DGE INT 0 F Dd NON TH 5 03 03 \sim 1 GRA Z Z F Z BOL ⋖ HOLF DIAM ۵. Ē $\boldsymbol{\omega}$ TABLE XXVIIA FILLED-HOLE SPECIMENS (TENSILE AND COMPRESSIVE LOADING) ALL GRAPHITE FIBERS, EPOXY RESIN | NET SECT.
STRENGTH
MPASCAL | | 00000000000000000000000000000000000000 | | 20000000000000000000000000000000000000 | | 321
321
321
321
321
331
34
34
34
34
34
34
34
34
34
34
34
34
34 | | 00000000000000000000000000000000000000 | |----------------------------------|------------|---|---------------
--|------------|--|---------|--| | IRE FATLURE
) MODE
ON | 10 PCT m/2 | 1888
152
162
162
160
160
160
160
160
160
160
160
160
160 | .2.5 PCT 11/2 | 111
TENS
71
COMPR
32
COMPR
73
COMPR
73
COMPR | .0 PCT #/2 | TTTTENS
1991
1699 COMPR
1099 COMPR
1299 COMPR
177 COMPR | т/2 | 46
46
46
40
40
40
40
40
40
40
40
40
40
40
40
40 | | FAILU
LOAD
KNEWT | ±#/4• 1 | 110-7-01
110-7-01
10-7-8-1
10-7-8-1
10-7-8-1 | ±π/4, 1 | 2001
2001
2001
2003
2005
2005 | ±1/4. 1 | 2244
2244
2444
2446
2466
2466
2466
2466 | 2.5 PCT | 22222222222222222222222222222222222222 | | PANTI | TOG 0 | 11111111111111111111111111111111111111 | . T34 0 | 11111111111111111111111111111111111111 | DCT | | T 0, 12 | 11111111111111111111111111111111111111 | | DIST. | T 0, 8 | 0000000
000000
0000000 | T 0, 5 | 2000000
2000000
2000000 | T 0. 4 | 0000000
000000
0000000 | 7.5 PC | | | MINOTH
MIDTH | 10 PC | 890000
890000
600000
6000000000000000000 | 7.5 PC | www.nnww
\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\ticr{\text{\texi}\text{\texit{\texit{\texit{\texit{\texit{\texit{\texit{\texit{\texit{\texit{\texi\texit{\texit{\texi{\tex{\texi{\texi{\texi{\texi{\texi{\texit{\texi{\texi{\texi{\texi{\te | 20 pc | <i>wwwwww</i>
<i>wwwwww</i>
<i>www</i>
<i>www</i>
<i>www</i>
<i>www</i> | RN - 8 | WWW/WWW
BB WWW/WWW
WWW/WW/WW
WWW/WW/WW/WW/WW/WW/WW/WW/WW/W/W/W/ | | BOL
MAR
MAR | TERN - | 00 N00
MW004WW | RN - 3 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | TERN - | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | PATTE | 2000 | | DHZ
SAPL
SAPL | EP PAT | φο κφα
ων 004 ων
νν 000 νν | PATTE | 44 NA4
44CO4WW | ER PAT | 00 N | FIRER | 40 V 00 WW WW 00 00 WW WW 00 00 WW | | HOL
TO | n
a | | FIBER | | 814 | | | | | INEN | | 444444
111111
464444 | | 20000000000000000000000000000000000000 | | 00000 | | | | D
H
O
H | | ##77## | | ####################################### | | ####################################### | | ####### | TABLE XXVIIB (TENSILE AND COMPRESSIVE LOADING) ALL GRAPHITE FIBERS, EPOXY RESIN US CUSTOMARY UNITS | . * | | | | | | | | | |-----------------------------|-----------|---|--------------|--|-----------|---|-----------|--| | NET SECT
STRENGTH
KSI | DEG. | ###################################### | 90 DEG. | ###################################### | DEG. | 1100
1100
1100
1100
1100
1100
1100 | | 11899
4224
7426
7589
1599
1599
1599
1599
1599
1599
1599
1 | | FAILURE
MODE | 3PCT 90 1 | C C C C C C C C C C C C C C C C C C C | 2.5 PCT | C C C C C C C C C C C C C C C C C C C | C6 TOC | CO C | • 930 06 | CO C | | FAILURE
LOAD
LB | DEG., 1 | 2406
226106
226106
288765
24886
25886
25860 | DEG., 1 | 2005
3905
3905
2610
2610
2740
0024
0024
0024 | DEG., 1 | 3221
32821
5410
6115
32811
32811
3271 | 2.5 PCT | 50150
50360
50360
3523860
355380
306230
50630 | | PANEL
THICK | PCT ±45 | | PCT ±45 | 000000
444000
6474444
600000000000000000 | PCT ±45 | | DEG., 1 | 00000000000000000000000000000000000000 | | EDGE
DIST | ., 8) | WWWWWW | ., 50 | 0000000
000000
000000 | . 43 | NNNNNN
000000
000000 | DCT 0 | 000000 | | PANEL
WIDTH | o Dec | 11.0003
10.0003
10.0003
10.0003 | O DEG | 20000
00000
00000
00000
00000
00000 | o nee | 11111111111111111111111111111111111111 | 87.5 | | | BOLT
DIAM
IN. | 10 PCT | | .5 PCT | MW000WW | 50 PCT | 11
0000000
0000000 | TERN - | 14
000000000000000000000000000000000000 | | HOLE HOLE
TO DIAM | PATTERN - | 0000000
0000000
0000000000000000000000 | ITTERN - 37. | 1000000
0000000
0000000000000000000000 | PATTEPN - | 00000V | FIBER PAT | 11
10000000000000000000000000000000000 | | M EN | IRFR | 1024444
1034301 | ER PA | 1111111
1044401 | IBER | 000
 | | 111111 | | SPEC | | #### | 8 I 5 | ##11### | u. | ++11++ | | ++17++ | ### TABLE XXVIIIA FILLED-HOLE SPECIMENS (TENSILE AND COMPRESSIVE LOADING) ALL GRAPHITE FIBERS, EPOXY RESIN SI UNITS | • _ | | | | | | | | đ, | |---|-----------|---|----------|---|-----------
---|---------|---| | NET SECT
STRENGTH
MPASCAL | | 2544500
254500
254500
254500
254500
254500
254500 | | 00000000000000000000000000000000000000 | | 4480
8447
8467
758
339
339
329
9 | | 1177
11814
11814
1144
1179
1179
1180 | | FAILURE
MODE | PCT 11/2 | O OO O | PCT 11/2 | OO OO OO WAXAAAAAAAAAAAAAAAAAAAAAAAAAAAA | | CO C | | COCCOCCOCCOCCOCCOCCOCCOCCOCCCOCCCCCCCC | | FAILURE
LOAD
KNEWTON | ±11/4, 25 | 8.5361
9.8120
11.3430
12.3082
6.9615
10.7825 | ±π/4, 25 | 10.8715
19.5334
19.54104
10.6186
10.5556
13.5556 | 5 PCT #/2 | 16.7520
22.25524
22.1250
12.3527
12.1259
11.9539 | ±π/4 | 6.3126.39120
5.39124
5.39124
6.1208
6.57008 | | PANEL
MINEL | O PCT : | | 5 PCT : | | T 0, 25 | 9888800
41 mm mm m 00
40 mm mm m 00
40 mm mm m m m m m m m m m m m m m m m m | 00 PCT | | | H DIST. | CT 0, 5 | | CT 0. 2 | | - 75 PC | | 1 - 1 | | | MIN | - 25 P(| | - 50 P(| | TTERN | | R PATTE | | | BOLT
DIAM
MM | TTERN | 00 0000
00 000
00 000
0000 | TTERN | 0000000
0000000
0000000000000000000000 | RER PA | | B813 | 00000000000000000000000000000000000000 | | E HOLE
OIAM | REP DA | 00 NOC | REP PA | 44 W44
WWQQ4WW | u. | 00 N00
N000 | | 00 N00 | | FN HOL | I u | | u | | | 111111
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100
1011100 | | 1111111
 | | SPECIM
In | | | | ###################################### | | ###################################### | | ##11### | ### نىڭ ECT. SEN $\vdash \alpha \times$ E S EG 18 تان Sp ထ်ထဲထဲထဲထဲထဲထဲ u ##11### စ်ဝစ်**နက်**ယ်စ် **るるちらりょう** 90 HHHOHOO MUMMUMEN NNONG N 11 UR MINITUE E NONCENTA NO 0 **L**2d **L**Od **ナナトロナロロ** ďΣ \bigcirc COLO 5 5 ш O. 0000000 0000000 0000000 ATLUR LOAD LB 22.23.684 23.23.684 23.23.63 2 040-740 MENS E LOADING RESIN 9 ようぞうなるであ PCT りこうことさい PO40FF0 ũ **多りらせるのう** POXY DANFL THICK. 5 **(**) 0000000 4444444 00000000 000000 4444444 4444444 00000000 000000 000000 4444444 4447444 000000 4 . +1 ころろうならら +1 +1 FCI SIV 0000000 44444444 PCT PCT EG S P V:> 000000 EL. 00 $\alpha \alpha$ 0 0 10 T A u.a. 000 SON TO S NUNNUNN ---٥ ころころころころ SUNDINGE DEG. NON NON E S 5001 5001 5001 5001 5001 700000 000000 00000 0000 0000 000000 000000 000000 000000 000000 JI NE'S α. PHITE US CO u. 7 Q I 0 0 (TENSILE 20000000
20000000 20000000 4 wwcooww coccooc α. GR NAC NAC NAC 0 $\bar{\alpha}$ ā. NNOCONN S Œ O. Ś 0000000 0000000 200000 200000 200000 200000 ۵ 200000V U Z RNCOONN ŧ Ì INTERIOR INTERIOR NNOOONN α Z D. α Q. ũ. Ù. -HOLF 15 -< C Z L L C 100000 100000 100000 a 1004500 a u しつ うなららて ## 11### $\frac{1}{2}$ 4400440 \$1000BUS 900000 **ウトここら44** 666666 トとヨアュース ちもちももも SUMBOOM | ◁ | |-----------| | \times | | | | × | | \times | | | | بغا | | | | Φ | | ⋖ | | | BEARING AND SHEAROUT SPECIMENS (TENSILE LOADING) | RESIN | |------------------| | EPOXY | | GRAPHITE FIBERS. | | ALL | | SHEAROUT
STRENGTH
MPASCAL | | 244074w
8740704w
14004087 | | 98669976
98669976
98669976 | | 44004400
1004600
10046000 | |---------------------------------|------------------|--|-----------|--|-----------|---| | TENSION
STRENGTH
MPASCAL | | 1115
6006
1115
6006
727
1063
4 | | 0.000000000000000000000000000000000000 | | 125,422
125,422
125,422
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,425
125,42 | | BEARING
STRENGTH
MPASCAL | 4 | 1004951
1004951
1002336
1002336
1004021
1004024
100404 | 4 | 102741
902441
902461
902769
901769 | . 4 | 200
300
300
300
300
300
300
300
300
300 | | FAILURE
MODE | PCT ±π/ | FF88FF88
RECONS
NN SN
NN SN | ρCT ±π/ | HENGHENN
SER ON SER
NN NN | PCT ±#/ | NONONONON
TITITIT
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARREST
TARR | |
FAILURE
LOAD
KNEWTON | PCT 0, 75 | 18.1043
29.62129
28.55276
14.99905
18.6910
25.44136 | PCT 0, 50 | 15.1684
24.0684
26.0452
26.06452
14.0564
13.66116
29.0024
28.1572 | PCT 0, 25 | 24400
25400
25600
25600
23600
23600
23600
23600
23600
23600
2400 | | PANEL
THICK. | RN - 25 | 00000000000000000000000000000000000000 | RN - 50 | 22.48.55.69
24.44.44
44.44.44
44.44.51
44.44.51
74.44.51
74.44.51 | RN - 75 | 0404040
0404040
0404040 | | EDGE
MARY
TARE | PATTE | 40000000000000000000000000000000000000 | PATTE | 44007400
44007400
44007400 | PATTE | 48117011
48117011 | | P AN EL MIDTH | a
u
a
u | 4444
4444
60000
6000
6000
6000
6000
600 | I BER | 0.0000000 | स छ छ । | 000000000
0000000
000000
0000000
000000 | | BOLT
DIAM
MM | £1. | 00000000000000000000000000000000000000 | rr. | \$ | u | | | HOLE
MINE
MINE | | | | | | | | HOLT | | 4 @004 B00 | | <u> ಇಹಿಲಿದಿ ಇ</u> ಹಿಲಿದಿ | | 43004700 | | SPECIMEN
10 | | | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 11111111111111111111111111111111111111 | | α | | |----------|--| | \times | | | | | | \times | | | \times | | | | | | W | | | نــ | | | C | | | ⋖ | | COUT 16TH 404450ml 41-41/00 min NEW NEW NEW よりもらりよるら $m\alpha \times$ Sis I SP 011400110 077FC $N \sim \infty M \propto N \sim \Delta$ -Z-. 9 110 88 10 1089994 Sumo ZベY 山上 Fis I 4000404 00004040 04044000 0104m9@r -w-4000m I NG I らてられてらられ 9 α WIS īŪ AXX w CILIF-a vo 5 S 11 URE JODE 7 +4 +1 S SS TEROZZER SZEOZZER SZEOZZ UT SPECIMENS ADING! IIIIIIII PCT THE WELLER CO 5 SONOSOSOS u. Q٤ CX. LL. OXX ∃SX Š 54270 66560 66560 7370 6450 6450 6450 2000000 0000000 0000000 4200000 40000000 6000000 w -30 - EPC • LOAL とというというという。 5 O ũ LL! \bigcirc (_ <u>C</u> دے $\propto \propto$ 0 OMA \Rightarrow <1 00000000 00000000 يدل UJE T C1AND N **....** トラトラトトト $\frac{d}{d}$ S LL H أسراهم لمم إمم إمم أمم أمم أمم ã à OZ ய⊃ ZW S ころろのらとよろ 4H \sim IU 1000-100 001 001 002 できるようりょう 2 1 $\alpha \supset$ ì <₫ 22 \sim LK I Z GR. ί¥. ~ α ANEL INTH 40404040 0.50.04040 0.50.04040 0.00.04040 からからることと **するするこのできる** りのもものののの りのもものの。 1 1 ひひひひなななな ø ⋖ NNNNNNN <3 ۵ NWNWNNN 0000000 000000000 α F- 2 u. W u. 3 JA. a ころろろうころう ろるさらることろ ろうろろろうろう $\frac{22}{22}$ ŭΣ STZ. ころろろろろろう ů. a muna mun 4 かしひ 4 かしつ 46004600 **しししこ** 22221111 Z. と22221111 3.00.00.00.00.0 11111111 $\frac{2}{1}$.E.(⊃ NUNNUNUN SOSSOSSOS 1111111 1111111 νινινινινιν 111 പ.മ.തയയയാന യ സമ്പത്തെയ്ക്ക് ത ۵ തമായമായത്ത TABLE XXXA 3EARING AND SHEARCUT SPECIMENS (TENSILE LCADING) ALL GRAPHITE "IBERS" FPOXY RESIN SI UNITS | SHEAROUT
STRENGTH
MPASCAL | 70000000000000000000000000000000000000 | νυωωφοωω
Γωνσω44Ω
ν44ω4ων | らまとろろろう
ひろうしょうしょう
アンチャロウィッ | |---|---|--|--| | TENSION
STRENGTH
MPASCAL | 1138
1009
1009
1009
1009
1009
1009
1009
100 | 1008
1008
1008
1008
104
104
104
104 | 11
12
12
13
13
13
13
13
13
13
13
13
13
13
13
13 | | BEARING
STRENGTH
MPASCAL
5 PCT #/2 | 659.4
1023.9
987.5
621.7
713.8
1015.9 | PCT 473 22 1053452 1053452 1053453 1053453 105345 1 | 7 L L L L L L L L L L L L L L L L L L L | | FAILURE
MODE
TT/4, 12. | BBHHBBHHBBRNS SS S | A A A A A A A A A A A A A A A A A A A | SHR
SHR
SHR
SHR
SHR
CLVG
BRG | | FAILURE
LOAD
KNEWTON
2.5 PCT 3 | 18.5046
19.7855
27.7124
17.7124
20.2617
24.0624 | 221-25-25-25-25-25-25-25-25-25-25-25-25-25- | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | | PANEL
THICK.
MM. |
444
4474
4474
4474
4474
4476
4476
4476 | CT 0 4 4 4 7 7 0 4 4 4 7 7 0 4 4 7 7 0 4 4 7 7 0 6 7 7 7 0 6 7 7 7 0 6 7 7 7 7 0 7 7 7 7 | 4444444
444444
5454521
529521
529521
529521 | | EDCE
DIST. | 441144
1227772
1227772
24272 | 113.06 F 113.06 F 113.06 F 112.06 F 112.06 F 17.06 1 | 12.50
12.32
60.07
60.10
12.45
12.04
60.12 | | W N N N H H H H H H H H H H H H H H H H | 00000000
000000000
0000000000000000000 | ## ################################### | | | BOLT
DIAM
MA | 00000000000000000000000000000000000000 | 7. 2020000 | | | HOUSE WAS WAS A MANAGEMENT OF THE | | | 00000000 | | H01.
10H | ್

 | するしりするもの | すかしひす かしつ | | SPECIMEN
IO | 111112222
11111111
0000000000000000000 | ###################################### | ###################################### | | | ÷ | | SHEAROUT
STRENGTH
KSI | | 111 122 4 | | 88549544
********************************* | | $ \frac{1}{2} $ 1$ | |---------|----------------------|----------------------|--|--------------|---|----------|--|----------|--| | | | | TENSION
STRENGTH
KSI | 90 DEG. | 011011111011011011011011011011011011011 | 90 DEG. | 7.007.00 H | 90 DEG. | | | | | | SEARING
STRENGTH
KSI | 12.5 PCT | 00440040
00440040
0040040
0000000000 | 12.5 PCT | 64444466
64444466 | 12.5 PCT | 440464
74847
84847
84870 | | | IMENS | RESIN | FAILURE
MODE | DEG., | NN NN
22002200
BUWWWUWW
HHWWHHWW | DE6. | NOBBOOK BE | DEG. | NOBBOORA
HEARHIJAA
AAGGA>OO | | × × 8 | OUT SPEC | S. EPOXY
Y UNITS | E41LURE F
LOAD
LB | PCT ±45 | 441470
644700
644600
8528000
6522000
6520000 | PCT ±45 | 3020
82220
81720
81750
82380
8240
8260
900
900
900
900
900
900
900
9 | PCT ±45 | 2015.0
19655.0
5970.0
1650.0
1840.0
6170.0 | | TABLE X | ND SHEAP
ENSILE L | TE FIBER
CUSTOMAR | TAN
INICK | 6., 62.5 | .1746
.1740
.1740
.1740
.1770
.1760 | 6., 37.5 | 1760
1760
1760
1760
1760
1760 | 6., 12.5 | 17860
177860
17787
1787
1780
1780
1780 | | | RING A | GP AP HI
US | EDGE
DIST. | T 0 0E | 11 11 2000 00 00 00 00 00 00 00 00 00 00 00 0 | T. O. DE | | 30 OE | 22 22 22 22 22 22 22 22 22 22 22 22 22 | | | 8 F A | ALL | NAME OF STREET O | .20 62 | 22222222222222222222222222222222222222 | Ja 09 | 744448696
66666666
74948898 | 75 PCT | 20024
20024
20024
2001
2001
2001 | | | | | 9.00
1.10
1.10
1.00
1.00
1.00
1.00
1.00 | 7
3
10 | 25500
25500
25500
25500
25500
25500 | T NAT | 00000000000000000000000000000000000000 | LAN | | | | | | HOLE
DIAM
IN. | TIVE 6 | | r part | 222222
222222
222222
222222
222222
22222 | R PATT | 2007070070
20070707070
20070707070
200707070 | | | | | 4.01
101
101 | | ⋖ かしたそかいた | F135 | ೯೧೦೮ ೬೮೦೮೨ | F185 | <u>ತ್ತು ಕ್ರಾಥಿಕ್ಷ ಕ್ರಾಥಿಕ್ಟ್ ಕ್ರಾಥಿಕ್ಟ್ ಕ್ರಾಥಿಕ್ಟ್ ಕ್ರಾಥಿಕ್ಟ್ ಕ್ರಾಥಿಕ್ಟ್ ಕ್ರಾಥಿಕ್ಟ್ ಕ್ರಾಥಿಕ್ಟ್ ಕ್ರಾಥಿಕ್ಟ್ ಕ್ರಾಥಿಕ್ಟ್ ಕ್ರಾಥಿಕ್ಟ್</u> | | · · | | | SPECIMEN | | ###################################### | | | | ###################################### | TABLE XXXIA BEARING AND SHEAROUT SPECIMENS (TENSILE LOADING) ALL GRAPHITE FIBERS, EPOXY RESIN | SHEAROUT
STRENGTH
MPASCAL | | 4100 Fee
4100 E40
00420001 | | ₩₩₩₩₩₩₩
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ | | 00440000
000440000
000400400 | |---------------------------------|-------------|---|-------------
---|--------------|--| | TENSION
STRENGTH
MPASCAL | | 1067
1067
107
107
107
107
107
107
107
107
107
10 | | 11.
11.
11.
11.
11.
11.
11.
11.
11.
11. | | 0.0440040 | | TARIN
PARIN
PASCA | PCT #/2 | 514
5980
10550
10550
10591
10290
10290
10590 | PCT π/2 | 1020
1020
1020
962
485
1026
1026
1026
35 | 2 | 99999999999999999999999999999999999999 | | A I L U R | ±1/4, 25 | | ±#/4, 25 | HHARHHAR
BEXXILLAX
NO ON
NO NO | 5 PCT m/ | NNWWNNWW
TIXWIIWU
WKQQKKQQ | | AILUPE
LOAD
NEWTON | 5 u PCT : | 14.278
26.0228
29.22248
15.32123
26.3493
26.3493
26.449 | 25 PCT : | 13
293.25
27.25
27.25
27.25
13.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26.25
26 | PCT 0, 25 | 10.1864
27.1124
26.2890
9.7851
9.7851
28.2017
27.0897 | | ATZ
NUZ
NO | PCT 0, | 4444444
mmmmmmm
04444444
0444444444 | PCT 0. |
4444444
24242
24242
24242
24242
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424 | 1 - 75 | 44444
4444
454671
464671
646671 | | NEL EDGE
OTH DIST | ATTERN - 25 | 63.55 12.78
63.55 12.78
63.55 472.45
63.42 63.47
63.42 63.40
63.42 64.40
63.42 64.40
63.42 64.40 | ATTERN - 50 | 63.45 13.00
63.47 12.78
63.47 47.40
63.42 13.13
63.42 12.90
63.42 47.40 | IRER PATTERN | 50.99 12.95
50.99 12.95
50.99 60.12
50.83 112.95
50.83 60.05
50.83 60.05 | | F J C R
P D I C R
P D M M | 185P | \$ | FIBER P | 00000000000000000000000000000000000000 | li. | 00000000000000000000000000000000000000 | | HO
HO
HAM
MAN
M | ŧ٢ | | Œ | \$40.000000
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW | | 20200000

 | | HOL
TOH | | <u> </u> | | 4800489C | | 48004800 | | SPECIMENTO | | 00000000000000000000000000000000000000 | | 711-70000
1111111
5000000000000000000000000 | | 98 98 98 98 98 98 98 98 98 98 98 98 98 9 | TABLE XXXIB BEARING AND SHEAROUT SPECIMENS (TENSILE LOADING) ALL GRAPHITE FIBERS, EPOXY RESIN US CUSTCMARY UNITS | SHEAROUT
STRENGTH
KSI | | | | | www
Nwo | • • | | | mmno
mmno | | |---|-----------|---|--|-----------|--|-----------------------------------|--------------------------------------|-------------|----------------------------|---| | TENSION
STRENGTH
KSI | DEG. | 80%V8
80%V8 | 15. | DEG. | 775 | • • | | | 11967
18969 | 30-0¢ | | BEARING
STRENGTH
KSI | 25 PCT 90 | 74.7
140.2
153.7
80.0 | 85.6
149.2
139.3 | 25 PCT 90 | 48
48 | | rαn-i | 90 DEG. | 124451
134651
132035 | 3444
3197 | | A I L UP E
MODE | DEG. | ###################################### | ## N B B B B B B B B B B B B B B B B B B | 0FG. | யயம | 1100
1100
1100
1100 | TIM A
SOO | PCT | | A A A D C
I I I A G
I I A G
I I A G
I G | | FAILURE F
LOAD
LB | PCT ±45 | 3210.0
3600.0
6030.0
6570.0 | 680
380
990
990 | PC1 +45 | 9
9
9
9
9
9 | 0220 | 2980
6400
6470
6470
6470 | DEG., 25 | 290
040
230
410 | 2230
2230
6340
6090
0 | | H N N N N N N N N N N N N N N N N N N N | DFG., 50 | 1720 1720 1720 1720 1710 | 1720
1710
1720 | DEG. , 25 | 17.8 | 175 | 1720 | 75 PCT 0 | 178 | 1790
1770
1790
6771 | | EDOS
INSTER | PCT 0 | 11.86675 | 24 00 0
0 0 0 0 | pot o | 20.00
10.00 | cαr.
o.⇔.⊶ | . 508
1.866
1.864 | 1
2
u | 45.00
45.00
61.00 | 2.369 | | PAN
WIOTH
IN. | - 25 | 22222 | 444 | - 50 | 44. | 144
00 | 2.497
2.497
2.497 | TTAG 8 | 2000 | 2 00 2
2 00 1
2 0 0 1 | | 000
1010
1010
1010
1010
1010
1010
1010 | TTER | 22500
22500
22500
2000
2000 | 225
255
250
250
200 | TTERN | 25002 | 200
200
200 | .2560
2550
2550
2500 | H814 | 25.50 | 2500 | | 10101
10101
10101
10101 | TBER PA | 00000
00000
00000 | 2000
2000
2000
2000 | IBER PA | 250 | 250
250
250 | . 2500
2500
2500 | |
2220
2250
2000 | 2000
2000
2000
2000
2000 | | HOH
OI | u. | 4 あじひゃ | (m)(D) | U. | 4 00 | J04 | ಖ೧೮ | | ৰঞ্চ | ರಿತ್ರಪ್ಪಾದ್ ದಿ | | SPECIMENIO | | | 1111
0000 | | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 111
500
1100
111
1000 | 885-3912
885-3912
85-3912 | | S-41-
 | 885-441-2
85-441-2
85-411-2 | | 4 4 | |------------| | 6 | | | | × | | × | | × | | | | دك | | | | മ | | ◁ | | _ | BEARING AND SHEAROUT SPECIMENS (TENSILE LOADING) L GPAPHITE FIBERS, EPOXY RESIN SI UNITS | SHEAROUT
STRENGTH
MPASCAL | 226602
226003
26003
26003
26003
26003 | | SHEAROUT
STRENGTH
KSI | ๛๛๛๛๛๛๛๛ | |--|---|---|---|--| | TENSION
STRENGTH
MPASCAL | 000000000
00000000
444040404 | | TENSION
STRENGTH
KSI | what when when we wondon and who have a second and a second and a | | BEARING
STRENGTH
MPASCAL | 5000
5000
5000
5000
5000
5000
5000
500 | | BEARING
STRENGTH
KSI | 4444
4444
46404
46404
46404 | | FAILURE
MODE
±π/4 | | N W B W B W B W B W B W B W B W B W B W | FAILURE
MODE
FS DEG. | F-BBBB
Brackmrax | | FAILURE
LOAD
KNEWTON
100 PCT | 1124
6.050
124
124
124
124
124
124
124
124
124
124 | XXIIB
ROUT SPEC
LCADING)
RS, EPOXY
RY UNITS | FAILURE
LOAD
LB | 0000000 | | PANNEL TERM. | 4444444
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | TABLE XX
ND SHEAR
ENSILE TE
TE FIBER
CUSTOMAR | TAN INCK | 11111111111111111111111111111111111111 | | DIOGE
MSTE
AMM | 33123
33123
3123
3123
3123
313
313
313
3 | ING A | 000
000
000
000
000
000
000
000
000
00 | 4444
4444
100000
100000
100000 | | WIDTH
ANDTH | ###################################### | BEAR
all G | ATION III | 00000000
000004444
00000000
000000000 | | SOU
OION
AAA | 00000000000000000000000000000000000000 | | DOUGH
TAN
TAN | \$200000
\$200000
\$200000
\$200000
\$200000 | | HOUS
OIS
USE
MS | 000000000
000000000
000000000
0000000 | | ICH
CHY
Ta • | | | W 0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | ನ್ನೂ ಕ್ಷಾಣ್ಣಿಗಳು
ನೂಗು ಬಿತ್ತು ಹಾಗು ಬಿತ್ತು ಕ್ಷಾಣಿಸಿಕೆ | | E | 4 なんじ 4 からし | | New TOE of S | TWA WGGTT
WWW.WW.DWW
1111111
4444444
111111111
WWW.WW.WW.W | | NUMBER OF STREET | ###################################### | FIGURE 2. SHEAROUT AND BEARING (TENSILE) TEST SPECIMENS 6 FIBER PATTERNS AS NOTED IN TABLE I TEST SET-UP AS INDICATED IN FIGURE 1, WITH STEEL CLEVIS PLATES REACHING TO 0.953 HOLES ADJACENT TO TEST SECTION ALL DIMENSIONS GIVEN IN cm 6 FIBER PATTERNS AS NOTED IN TABLE I FIGURE 6. SINGLE-LAP TEST SPECIMEN AND MINIMIZED ECCENTRICITY TEST SET-UP (TENSILE LOADING) FIGURE 7. TENSION-THROUGH-THE-HOLE TEST SPECIMENS (GRAPHITE/EPOXY) FIGURE 8. TENSION-THROUGH-THE-HOLE TEST SPECIMENS (GRAPHITE/GLASS/EPOXY) FIGURE 9. BEARING AND SHEAROUT TEST SPECIMENS FIGURE 10. STRESS-CONCENTRATION INTERACTION TEST SPECIMENS 109 FIGURE 11. OPEN-HOLE, COMPRESSION BEARING, AND SINGLE-LAP TEST SPECIMENS ## FIGURE 12. LOAD-INTRODUCTION FIXTURE FOR COMPRESSION OF INTERACTION SPECIMENS" FIGURE 13. LATERAL SUPPORT FIXTURE FOR COMPRESSION TESTS OF INTERACTION SPECIMENS FIGURE 14. MODES OF FAILURE FOR BOLTED JOINTS IN ADVANCED COMPOSITES FIGURE 15. GEOMETRY OF DOUBLE-LAP BOLTED JOINT FIGURE 16. ELASTIC ISOTROPIC STRESS CONCENTRATION FACTORS FOR LOADED BOLT HOLES, WITH REFERENCE TO NET SECTION FIGURE 17. ELASTIC ISOTROPIC STRESS CONCENTRATION FACTORS FOR LOADED BOLT HOLES, WITH REFERENCE TO BOLT BEARING AREA RATIO OF BOLT DIAMETER TO STRIP WIDTH FIGURE 18. INFLUENCE OF JOINT GEOMETRY ON ELASTIC STRENGTH OF BOLTED JOINTS IN ISOTROPIC MATERIAL FIGURE 19. ELASTIC ISOTROPIC STRESS CONCENTRATION FACTORS FOR OPEN HOLES IN STRIPS OF FINITE WIDTH FIGURE 20. INFLUENCE OF JOINT GEOMETRY ON ELASTIC STRENGTH OF FINITE-WIDTH STRIPS CONTAINING OPEN HOLES FIGURE 21. STRESS CONCENTRATION FACTORS AT FAILURE FOR BOLTED JOINTS IN MORGANITE II / NARMCO 1004 GRAPHITE-EPOXY (QUASI-ISOTROPIC PATTERN) COMPUTED ELASTIC - ISOTROPIC STRESS CONCENTRATION FACTOR FIGURE 22. STRESS CONCENTRATION FACTORS AT FAILURE FOR BOLTED JOINTS IN MORGANITE II / NARMCO 1004 GRAPHITE-EPOXY (ORTHPTROPIC PATTERN) FIGURE 23. STRESS CONCENTRATION FACTORS AT FAILURE FOR BOLTED JOINTS IN THORNEL 300 / NARMCO 5208 GRAPHITE-EPOXY (QUASI-ISOTROPIC PATTERN) FIGURE 24. STRESS CONCENTRATION FACTORS AT FAILURE FOR BOLTED JOINTS IN THORNEL 300 / NARMCO 5208 GRAPHITE - EPOXY (ORTHOTROPIC PATTERNS) FIGURE 25. OF BOLTED OF JOINT GEOMETRY ON PREDICTED TENSILE JOINTS IN COMPOSITES STRENGTHS FIGURE 26. INFLUENCE OF JOINT GEOMETRY ON NET-SECTION TENSION STRENGTHS (PREDICTED EMPIRICALLY) FOR GRAPHITE EPOXIES FIGURE 27. NET-SECTION FAILURE STRESSES FOR THORNEL 300 / NARMCO 5208 GRAPHITE-EPOXY AND S-1014 / THORNEL 300 / NARMCO 5208 GLASSGRAPHITE-EPOXY COMPOSITE STRIPS CONTAINING OPEN HOLES FIGURE 28. ASSESSMENT OF SCALE EFFECT AND INFLUENCE OF FIBER PATTERN ON STRESS CONCENTRATIONS AT FILLED (UNLOADED) HOLES IN MODMOR II / NARMCO 1004 GRAPHITE-EPOXY COMPOSITE UNDER TENSILE LOADING FIGURE 29. INFLUENCE OF FIBER PATTERN ON TENSILE STRENGTH OF MODMOR II / NARMCO 1004 GRAPHITE - EPOXY COMPOSITE STRIPS CONTAINING FILLED (UNLOADED) HOLES FIGURE 30. INFLUENCE OF FIBER PATTERN ON COMPRESSIVE STRENGTH OF MODMOR II / NARMCO 1004 GRAPHITE - EPOXY COMPOSITE STRIPS CONTAINING FILLED (UNLOADED) HOLES FIGURE 31. SHEAROUT STRESS CONTOURS FOR VARIOUS LAMINATE PATTERNS OF MODMOR II / NARMCO 1004 GRAPHITE - EPOXY COMPOSITES FIGURE 32. SHEAROUT STRESS CONTOURS FOR VARIOUS LAMINATE PATTERNS OF MODMOR II / THORNEL 75S / NARMCO 1004 GRAPHITE - EPOXY FIGURE 33. SHEAROUT STRESS CONTOURS FOR VARIOUS LAMINATE PATTERNS OF AVCO 5505 BORON-EPOXY COMPOSITE FIGURE 34. BEARING STRESS CONTOURS FOR VARIOUS LAMINATE PATTERNS OF MODMOR II / NARMCO 1004 GRAPHITE - EPOXY COMPOSITE FIGURE 35. BEARING STRESS CONTOURS FOR VARIOUS LAMINATE PATTERNS OF MODMOR II / THORNEL 75S / NARMCO 1004 GRAPHITE - EPOXY FIGURE 36. BEARING STRESS CONTOURS FOR VARIOUS LAMINATE PATTERNS OF AVCO 5505 BORON-EPOXY COMPOSITE FIGURE 37. BEARING STRESS AS FUNCTION OF EDGE DISTANCE TO BOLT DIAMETER RATIO FOR THORNEL 300 / NARMCO 5208 GRAPHITE-EPOXY FIGURE 38. BEARING STRESS AS FUNCTION OF EDGE DISTANCE TO BOLT DIAMETER RATIO FOR S-1014 / THORNEL 300 / NARMCO 5208 GLASS-GRAPHITE-EPOXY FIGURE 39. TYPICAL TENSILE-BEARING FAILURES OF BOLTED JOINTS IN GRAPHITE-EPOXY AND GLASS-GRAPHITE-EPOXY COMPOSITES FIGURE 40. COMPRESSIVE - BEARING STRESSES FOR THORNEL 300 / NARMCO 5208 GRAPHITE - EPOXY AND S-1014 / THORNEL 300 / NARMCO 5208 GLASS - GRAPHITE - EPOXY FIGURE 41. TYPICAL FAILURES OF BOLTED JOINTS UNDER COMPRESSIVE BEARING IN GRAPHITE-EPOXY AND GLASS-GRAPHITE-EPOXY COMPOSITES FIGURE 42. STRESS CONCENTRATION FACTORS IN BEARING AND TENSION AS FUNCTIONS OF JOINT GEOMETRY FOR GRAPHITE - EPOXIES FIGURE 43. NON-DIMENSIONALIZED JOINT STRENGTHS AND FAILURE MODES AS FUNCTIONS OF JOINT GEOMETRY FOR GRAPHITE-EPOXIES FIGURE 44. COMPARISON BETWEEN PREDICTED AND OBSERVED JOINT STRENGTHS FOR THORNEL 300 / NARMCO 5208 GRAPHITE - EPOXY FIGURE 45. COMPARISON BETWEEN PREDICTED AND OBSERVED JOINT STRENGTHS FOR S-1014 / THORNEL 300 / NARMCO 5208 GLASS-GRAPHITE-EPOXY FIGURE 46. INTER-RELATIONSHIP BETWEEN FAILURE MODES AS A FUNCTION OF BOLTED JOINT GEOMETRY FOR GRAPHITE-EPOXY COMPOSITES CALCULATED INTERACTIONS BETWEEN BEARING AND TENSION LOADS ON TWO-ROW BOLTED JOINTS IN GRAPHITE-EPOXY COMPOSITES FIGURE 47. (REFER TO TABLE I FOR
LAMINATE SPECIFICATIONS) FIGURES 48 - 53. EXPERIMENTAL INTERACTIONS BETWEEN BEARING AND TENSION LOADS ON TWO-ROW BOLTED COMPOSITE JOINTS EXPERIMENTAL INTERACTIONS BETWEEN BEARING AND COMPRESSION LOADS ON TWO-ROW BOLTED COMPOSITE JOINTS 59. . FIGURES 54 FIGURE 60. COMPARISON BETWEEN BEARING STRENGTHS FOR PIN-LOADING AND REGULAR (TORQUED) BOLTS FIGURE 61. BEARING DAMAGE AT BOLT HOLES IN GRAPHITE - EPOXY COMPOSITES FIGURE 62. COMPARISON BETWEEN BOLT BEARING STRENGTHS IN SINGLE - AND DOUBLE - SHEAR FOR GRAPHITE - EPOXY LAMINATES • 7