
*For sale by tho_Natinnal_Tperhniral_Information Service. Sorinplield. Virginia 22161


## TABLE OF CONTENTS

Page
Chapter 1. INTRODUCTION ..... 1
Chapter 2. DIFFERENTIAL EQUATIONS AND TURBULENCE MODELS ..... 6
2.1 Convective Transport Equations ..... 6
2.1.1 The Continuity Equation ..... 6
2.1.2 The Momentum Equation ..... 6
2.1.3 The Stagnation Enthalpy Equation ..... 8
2.2 Boundary Conditions ..... 10
2.3 Turbulent Shear Stress ..... 12
2.3.1 Prandtl Mixing-Length Model for $\varepsilon_{M}$ ..... 12
2.3.2 Turbulent Kinetic Energy Model for ${ }^{M} \varepsilon_{M}$ ..... 16
2.3.3 Constant Eddy Diffusivity Model ..... 18
2.4 Turbulent Heat Flux ..... 18
2.4.1 Constant Turbulent Prandtl Number ..... 18
2.4.2 Variable Turbulent Prandtl Number ..... 19
2.5 Laminar-Turbulent Transition ..... 21
Chapter 3. FLOW NEAR A WALL ..... 22
3.1 Computation in the Near-Wall Region ..... 22
3.2 The Couette Flow Equations ..... 22
3.3 Using the Wall Function ..... 25
3.3.1 Momentum Equation ..... 26
3.3.2 Stagnation Enthalpy Equation ..... 27
3.4 Bypassing the Wall Function ..... 28
3.4.1 Momentum Equation ..... 29
3.4.2 Stagnation Enthalpy Equation ..... 30
3.5 Routine LAMSUB ..... 30
3.6 Integral Parameters ..... 31
3.7 Pipe and Channel Flows ..... 32
Chapter 4. METHOD OF SOLUTION ..... 34
4.1 Transformation of the Equations ..... 34
4.2 Finite-Difference Equations ..... 36
4.3 Grid and Slip Scheme ..... 38
4.4 Entrainment and Grid Control ..... 40
4.5 The Calculating Procedure ..... 42
Page
Chapter 5. INPUT/OUTPUT ..... 43
5.1 Introduction ..... 43
5.2 Flow Descriptors and Controls ..... 43
5.3 Body Forces and Sources ..... 48
5.4 Fluid Properties ..... 50
5.5 Boundary Conditions ..... 51
5.6 Initial Profiles ..... 53
5.7 Turbulence Constants ..... 56
5.8 Other Constants and Output ..... 59
Chapter 6. PROGRAM ORGANIZATION ..... 61
6.1 Structure of the Program ..... 61
6.2 MAIN ..... 62
6.3 STEP ..... 62
6.4 WALL ..... 64
6.5 AUX ..... 65
References ..... 67
Appendices
I PROGRAM NOMENCLATURE ..... 68
II
OUTPUT NOMENCLATURE ..... 75
III STAN5 PROGRAM ..... 77
IV SAMPLE DATA SETS ..... 121
a

D


E-surface
g
$\mathbf{g}_{c}$
$1^{\prime}$
constant in program correlation for $A^{+}$or $B^{+}$, or constant In constant eddy diffusivity model, or coefficient in transformed equation (4.7).
production constant, turbulent kinetic energy equation.
damping constant, van Driest damping function (see equation 2.24 for correlation).
constant in program correlation for $\mathrm{A}^{+}$or $\mathrm{B}^{+}$, or constant in constant eddy diffusivity model, or coefficient in transformed equation (4.7).
generalized $x$-direction body force, momentum equation.
dissipation constant, turbulent kinetic energy equation.
damping constant, Evans damping function (see equation 2.24 for program correlation).
constant in program correlation for $\mathrm{A}^{+}$or $\mathrm{B}^{+}$, or constant in variable turbulent Prandtl number model, or specific heat of fluid, or coefficient in transformed equation (4.7). $\mathrm{P}^{+}$or $\mathrm{V}_{\mathrm{o}}{ }^{+}$.
friction coefficient, $g_{c} \tau_{o} /\left(\rho_{\infty}^{U}{ }^{2}\right)$, or $\left.g_{c} \tau_{o} / \bar{\rho} \bar{U}^{2}\right)$ for pipe and channel flows.
coefficient in transformed equation (4.7).
damping function to suppress mixing length in the region immediately adjacent to a wall, equation (2.22) and (2.23).
dissipation term, turbulent kinetic energy equation.
see Figure 4.1.
total energy flux boundary condition at a wall, fit $_{0}^{\prime \prime} I_{0}^{*}+\dot{q}_{0}^{\prime \prime}$ (see Figure 2.2).
local gravitational constant to determine free-convection body force.
proportionality constant, Newton's Second Law.
fluctuation in static enthalpy.

| $i^{*}$ | fluctuation in stagnation enthalpy. |
| :---: | :---: |
| I | static enthalpy of fluid. |
| I-surface | see Figure 4.1. |
| I* | stagnation enthalpy of fluid, $I+U^{2} /\left(2 g_{c} J\right)$. |
| $\mathrm{I}^{*+}$ | non-dimensional stagnation enthalpy, ( $\left.I_{0}{ }^{*}-I^{*}\right) U_{\tau} /\left(\dot{q}_{0}^{\prime \prime} / \rho_{0}\right)$. |
| J | conversion constant, mechanical to thermal energy. |
| $\mathrm{J}_{\mathrm{q}}$ | diffusion term, turbulent kinetic energy equation. |
| k | thermal conductivity of fluid. |
| $\ell$ | mixing-length (see section 2.3.1) |
| 嗅 ${ }^{\prime \prime}$ | mass flux at $I$ or $E$ surface (see Figures 2.2 and 4.1). |
| Nu | Nusselt number, pipe and channel flow, St P $\overline{\text { Pr }}$. Re. |
| P | thermodynamic pressure. |
| $\mathrm{P}^{+}$ | non-dimensional pressure, $g_{c} \nu_{0}(d P / d x) /\left(\rho_{0} U_{\tau}^{3}\right)$ |
| $P e_{t}$ | turbulent Peclet number, program correlation for $\mathrm{Pr}_{t}$. |
| Pr | Prandtl number, $\mu \mathrm{c} / \mathrm{k}$. |
| $\mathrm{Pr}_{\text {eff }}$ | combined laminar and turbulent Prandtl number, equation (2.14). |
| $\mathrm{Pr}_{t}$ | turbulent Prandtl number, $\varepsilon_{M} / \varepsilon_{H}$ (see equation 2.37 for program correlation). |
| q' | combined laminar and turbulent heat flux, Figure 2.2 and equation (3.2). |
| $q^{+}$ | non-dimensional heat flux, $\dot{q}^{\prime \prime} / \dot{q}_{0}^{\prime \prime}$. |
| $q^{2 / 2}$ | turbulent kinetic energy |
| I | radius |
| Re | pipe or channel flow Reynolds number, equation (3.29). |
| $\mathrm{Re}_{\mathrm{H}}$ | enthalpy thickness Reynolds number, $\Delta_{2} \mathrm{U}_{\infty} / \nu_{\infty}$ |
| $\mathrm{Re}_{\mathrm{M}}$ | momentum thickness Reynolds number, $\Delta_{2} \mathrm{U}_{\infty} / \nu_{\infty}$ |
| $\mathrm{Re}_{\text {tran }}$ | Reynolds number (Re or $\mathrm{Re}_{\mathrm{M}}$ ) for transition from laminar to turbulent flow. |
| $s$ | generalized energy source, stagnation enthalpy equation. |


| $\mathrm{s}^{+}$ | non-dimensional generalized energy source, $v_{0} s /\left(\dot{q}_{0}^{\prime \prime} U_{\tau}\right)$. |
| :---: | :---: |
| S | energy source term, stagnation enthalpy equation, UX/J + s |
| $\mathrm{Sc}_{\mathrm{q}}$ | turbulent Schmidt number, $\varepsilon_{M} / \varepsilon_{q}$. |
| St | Stanton number, $\dot{q}_{0}^{\prime \prime} /\left\{\rho_{\infty} U_{\infty}\left(I_{0}^{*}-I_{\infty}^{*}\right)\right\}$, or $\dot{q}_{0}^{\prime \prime} /\left\{\bar{\rho} \bar{U}\left(I_{0}^{*}-\bar{T}^{*}\right)\right\}$. |
| Tu | longitudinal free-stream turbulence intensity, $\sqrt{\frac{u^{\prime 2}}{}} / U_{\infty}$. |
| $u^{\prime}$ | fluctuation in $U$ component of velocity. |
| U | velocity component in $x$-direction. |
| $\mathrm{U}_{\boldsymbol{\tau}}$ | shear velocity $\sqrt{g_{c} \tau_{0} / \rho_{0}}$. |
| $\mathrm{U}^{+}$ | non-dimensional $U$ velocity component $U / U_{T}$. |
| $v^{\prime}$ | fluctuation in $V$ component of velocity. |
| V | velocity component in y -direction. |
| $v_{0}^{+}$ | non-dimensional $V$ velocity component at wall, $V_{o} / U_{\tau}$ or (m' ${ }_{0}^{\prime \prime} / \rho_{0}$ )/ $U_{\tau}$. |
| W | $\rho_{0} U_{\tau}^{3} /\left(g_{c} J^{\prime} \dot{O}_{0}^{\prime \prime}\right)$ |
| x | distance along surface (see Figures 2.1 and 4.1). |
| $\mathrm{x}^{+}$ | non-dimensional $x$ distance, $x_{T} / \nu_{0}$. |
| X | body force term, momentum equation, $\frac{\rho g}{g_{c}}+b f$. |
| . $\mathrm{X}^{+}$ | non-dimensional body force term, $g_{c} \nu_{0} X X /\left(p_{0} U_{\tau}{ }^{3}\right)$ |
| y | distance normal to surface (see Figures 2.1a and 4.1). |
| $\mathrm{y}^{+}$ | non-dimensional $y$ distance, $y U_{T} / \nu_{0}$. |
| $\alpha$ | angle between surface tangent and axis-of-symmetry line (see Figures 2.1a and 4.1), or constant in internal correlation for $\mathrm{Pr}_{t}$. |
| $\beta$ | power-law coefficient velocity equation slip scheme. |
| $\gamma$ | power-law coefficient, diffusion equation slip scheme. |
| $\delta_{1}$ | displacement thickness, equation (3.22a). |
| $\delta_{2}$ | momentum thickness, equation (3.22b). |
| $\delta .99$ | boundary layer thickness where $\mathrm{U} / \mathrm{U}_{\infty}=0.99$. |


| $\Delta_{2}$ | enthalpy thickness, equation (3.22c). |
| :---: | :---: |
| $E_{H}$ | eddy diffusivity for heat. |
| $\varepsilon_{M}$ | eddy diffusivity for momentum. |
| $\varepsilon_{q}$ | eddy diffusivity for turbulent kinetic energy. |
| K | Karman constant, mixing-length model. |
| $\lambda$ | outer length scale constant mixing-length model. |
| $\lambda_{0}$ | program input value of $\lambda$. |
| $\mu$ | dynamic viscosity of fluid. |
| $\mu_{\text {eff }}$ | combined laminar and turbulent viscosity, equation (2.6). |
| $\mu^{+}$ | non-dimensional viscosity, $\mu_{\text {eff }} / \mu_{0}$. |
| $v$ | kinematic viscosity of fluid. |
| $\rho$ | density of fluid. |
| $\tau$ | combined laminar and turbulent shear stress, equation (3.1). |
| $\tau^{+}$ | non-dimensional shear stress, $\tau / \tau_{0}$. |
| $\phi$ | generalized dependent variable in transformed equation (4.7). |
| $\psi$ | stream function coordinate. |
| $\omega$ | non-dimensional stream function coordinate. |
| Subsc |  |
| axi | axisymmetric (see section 3.6), |
| d | downstream edge of finite-difference control volume. |
| e | edge of shear layer, equation (2.18). |
| eff | effective value. |
| $\mathrm{ff}_{P}$ | "flat plate" value, without transpiration or pressure gradient. |
| eq | equilibrium value, equation (2.25). |
| $N$ | number of stream tubes. |
| \% ${ }^{0}$ \} | wall value. |
| $t$ | turbulent value. |

2.5

Superscript
overbar time averaged quantity, or bulk mean value (Section 3.7).
:
:

## Chapter 1

INTRODUCTION

In recent years it has become practicable and popular to compute turbulent boundary layers using finite-difference techniques and the digital computer. These techniques have now been developed to the point where one can readily develop one's own program for particular applications, and numerous workers have described their programs in the literature and have made listings or card decks available to others. There is no question that the development of one's own program is a tedious process and the programs become sufficiently complex that a great deal of development effort is usually required. For the user who doesn't expect to devote a great amount of time (and money) on a program it is often more practicable to make use of someone else's program, provided that the program is sufficiently well documented that it can be used intelligently.

It is the objective of this report to describe one such program which has gone through a considerable period of development, and which has been found useful in connection with an experimental turbulent boundary layer research program at Stanford University. Enough people have asked for copies of this program that it seems worthwhile to provide in a more formal way the documentation that is really necessary if the program is to be used properly.

No claim of superiority is made; in fact, there is no question that there are other programs developed for particular applications that are faster and are in some cases even more precise. However, this program is believed to be unique in its degree of generality, in the large variety of different kinds of problems that can be handled, and, in particular, in an input-output scheme that makes it possible to handle a great variety of problems without touching the deck. Very minor modifications in the deck open up a whole realm of additional possibilities.

The original basic program from which this one was developed was the Patankar/Spalding program described in their 1967 book [1]. Much of that program will be recognized in this present version, and a complete understanding of all the details of the present program may require reference to that publication. However, it is hoped that this description will be sufficiently complete to make further study unnecessary in most cases. A later revision of
the Spalding program was published in 1970 [2] in which a number of important improvements were made. Some of these improvements have been incorporated in the present version, and it is our belief that the present version suffers in comparison only with respect to size and speed, and perhaps in accuracy for some unusual types of problems. The largest source of inaccuracy and uncertainty in turbulent boundary layer finite-difference procedures lies in the methods used to model the turbulence, and this has nothing to do with the computational procedure.

The basic features of the program will now be described, and then elaborated upon in the chapters that follow.

The program is designed to solve two-dimensional parabolic differential equations only, i.e., the boundary layer equations incorporating the usual boundary layer approximations. The eddy diffusivity concept must be used in modeling the turbulent stresses, although beyond that point there is great flexibility. The program does not handle re-circulating flows.

The program solves the momentum equation of the boundary layer, as a minimum, plus any number of diffusion equations, all simultaneously. The listing presented in the Appendix is dimensioned to a maximum of five diffusion equations, and the output routine handles only five, but it is a simple matter to increase this number if desired.

A coordinate system for axi-symmetric flows is used so that a large variety of flow types can be accommodated by simple manipulation of variables in the input routine. These include the boundary layer on a flat plate, flow inside nozzles and diffusers (for a prescribed potential flow distribution), flow over axi-symmetric bodies, both developing and fully developed flow inside circular pipes and flat ducts, circular and flat jets and free-shear flows. As presently set up, the program provides for one wall surface, and thus the duct-flow problems are limited to simple pipes and flat ducts with symmetrical boundary conditions. In principle there is no reason why two walls, such as are encountered in circular tube annuli, cannot be handled, but this does require some additional program modification.

The program solves laminar boundary layers as well as turbulent boundary layers, and provision is made for a transition from a laminar to a turbulent boundary layer based on a momentum thickness Reynolds number criterion. Solution of laminar boundary layers is of necessity slower than is possible with
programs developed for laminar boundary layers alone, because the program was developed for the more complex turbulent problems.

Fluid properties are treated as variable with the properties of any ; particular fluid supplied through a separate subroutine. In the present program listing the only fluid properties provided are those of air (essentially the Keenan and Kaye Gas Tables). Properties of other fluids may be introduced by attaching additional property subroutines. Fluid properties may also be treated as constant, in which case the properties are introduced directly into the input routine. The types of problems that can be handled with the present listing are obviously limited by inclusion of only the properties of air. For example, the program could readily solve a binary diffusion problem, together with heat transfer, but it would be necessary to append an additional properties subroutine unless the constant properties mode is deemed adequate.

Viscous dissipation in the energy equation is included as an option controllable through the input routine, so high velocity flows can be readily solved. Provision is also made for introducing axial body forces and internal heat generation. A particular provision is made to introduce an axial gravity force, and this together with the variable property option allows solution of both laminar and turbulent free-convection problems.

In principle the chemically reacting boundary layer may be solved to various degrees of approximation, but this does require the addition of source terms which are not included in the present listing.

Any kind of initial conditions can be accommodated, and the boundary condition possibilities using the input routine, while not infinite, are nevertheless large. Free-stream velocity, rather than pressure, is treated as a variable boundary condition, and heat and mass flux along a wall may assume any values. Alternatively, wall enthalpy (or concentration in the case of mass diffusion) and mass flux may be treated as independent. In the case of duct flows there is no free-stream and pressure is computed as a dependent variable.

Several possibilities for turbulence modeling are included and can be activated in a simple manner in the input routine. The Prandtl mixing-length scheme may be used throughout, or, alternatively, a one-differential-equation turbulent kinetic energy scheme may be used for the flow outside the sublayer region. This alternative involves solution of the turbulent kinetic energy differential equation of the boundary layer, which is simply another diffusion
equation. As another possibility, eddy diffusivity in the outer part of the boundary layer may be evaluated as an empirical function of Reynolds number. In all cases a mixing-length scheme is used to calculate the sublayer near the wall, and two possibilities are programed. In one the Van Driest exponential damping function is used, while in the other the Evans linear damping function is used. Internal empirical correlations for the damping constants to account for effects of pressure gradient and transpiration are contained in the program, or, alternatively, the user can supply his own constants. Other variations in the turbulence physics can be quite easily made, but this does require some re-programming.

The energy equation, and any other type of diffusion equations, is solved through the concept of turbulent Prandtl number (or turbulent Schmidt number). The program contains an internal calculation for turbulent Prandtl number as a function of turbulent Peclet number, which gives reasonably good results over the entire spectrum of Prandtl number, including the liquid metal region. Alternatively, the user may specify his own turbulent Prandtl number.

The concepts of "slip" values at the wall and a "Nall Function" are employed, allowing the use of a relatively coarse grid in the direction normal to a wall surface. The region adjacent to the wall is computed by numerically Integrating the Couette flow forms of the boundary layer equations, but with physics input identical to that used outside the wall region. This option can, however, be bypassed, but at the cost of a greatly increased number of grid points near the wall. The Wall Function is especially useful in high Reynolds number applications where the number of cross-stream grid points can otherwise become excessive.

The program is "almost" independent of any particular dimensioning system. It would be completely independent were it not for the fact that the property subroutine for air which is packaged with the program is based on Btu, $f t, 1 b_{m}$ units. The dimensioning system to be used is designated in the input routine by two constants.

Finally, a word about the differencing scheme employed is in order, because in this respect it differs from many other programs. A fully implicit scheme is employed for the main dependent variables (velocity, enthalpy, mass concentration, etc.), and this, together with the fact that the conservation equations are always satisfied, in principle allows large forward steps to be
taken without stability problems. However, fluid properties and turbulence properties are handled explicitly, and if these are changing markediy in the flow direction it is not possible to take large forward steps without stability and accuracy problems. The advantage is that nowhere is iteration required. This restriction to relatively small forward steps (typically about one or two boundary layer thicknesses) is not necessarily disadvantageous, because one of the reasons for making finite-difference calculations is that variable boundary conditions can be easily handled, and there is often a need for output data, such as heat flux, at frequent intervals along a surface. Both of these requirements dictate a small forward step size anyway.

The remaining chapters of this report will now expand upon this brief description, culminating in detailed instructions about how to set up a problen and use the input routine. It might well be noted here, however, that the input subroutine (which is actually packaged at the end of the program) contains very extensive descriptive coments, suggestions, and instructions, and is thus a convenient summary of much of this report.

## DIFFERENTIAL EQUATIONS AND TURBULENCE MODELS

### 2.1 Convective Transport Equations

The types of flows modeled by STAN5 are those described by the parabolic boundary layer equations, which include the continuity, momentum, and stagnation enthalpy equations. They are written to describe flow of a turbulent, compressible fluid over an axi-symmetric body. All equations have been timeaveraged, and in the equations all dependent variables and properties are either mean quantities or fluctuating quantities (as denoted by primes). They are also applicable to laminar flows, in which case the turbulent stress and heat flux are ignored. Figure 2.1 describes the coordinate system and typical velocity and stagnation enthalpy profiles. Note the coordinate system is written in terms of the independent variables, $x$ and $y$. The radius, $r$, is a transverse radius of curvature and is related to $y$ as shown in Figure 2.1(a), and the longitudinal radius of curvature is neglected (i.e., $\alpha(x)$ in Figure 2.1(a) varies slowly with $x$ ).

### 2.1.1 The Continuity Equation

The time-averaged continuity equation for this coordinate system
is given by

$$
\begin{equation*}
\frac{\partial}{\partial x}(r \rho U)+\frac{\partial}{\partial y}(r \rho V)=0 . \tag{2.1}
\end{equation*}
$$

In the above equation and the momentum and energy equations which follow, thermodynamic quantity-velocity fluctuation correlations are neglected.

### 2.1.2 The Momentum Equation

The time-averaged momentum equation in the $x$-direction is given by

$$
\begin{equation*}
\rho U \frac{\partial U}{\partial x}+\rho v \frac{\partial U}{\partial y}=-g_{c} \frac{d P}{d x}+\frac{1}{r} \frac{\partial}{\partial y}\left[r\left(\mu \frac{\partial U}{\partial y}-\rho \overline{u^{\prime} v^{\prime}}\right)\right]+g_{c} X . \tag{2.2}
\end{equation*}
$$

In the program, the body-force term in equation (2.2) is decomposed into

$$
\begin{equation*}
x=\frac{\rho g}{g_{c}}+b f \tag{2.3}
\end{equation*}
$$


(a) Coordinate system

(b) Velocity and stagnation enthalpy profiles

Figure 2.1. Notation for the differential equations and profiles.
where the first term is a free convection body force in the positive $x$ direction and bf is a generalized, x-direction body force with units of (force/unit volume). The bf term might be used to model magnetohydrodynamic body forces.

Pressure gradient is computed for pipe/channel flows as described in [1,2]. For flows over a surface $d P / d x$ is computed in terms of the free-stream velocity and body force,

$$
\begin{equation*}
-g_{c}\left(\frac{d P}{d x}\right)=\rho_{\infty} U_{\infty} \frac{d U_{\infty}}{d x}-g_{c} X_{\infty} \tag{2.4}
\end{equation*}
$$

In the momentum equation, the turbulent shear stress, $-\overline{u^{\prime} v^{\top}}$, is modeled using the eddy diffusivity for momentum, $\varepsilon_{M}$, as defined by

$$
\begin{equation*}
-\overline{u^{\top} v^{\prime}}=\varepsilon_{M} \frac{\partial U}{\partial y}=\frac{\mu_{t}}{\rho} \frac{\partial U}{\partial y} \tag{2.5}
\end{equation*}
$$

where $\mu_{t}$ is the turbulent viscosity. The laminar viscosity combines with the turbulent viscosity to obtain an effective viscosity

$$
\begin{equation*}
\mu_{e f f}=\left(\mu+\mu_{t}\right)=\rho\left(\nu+\varepsilon_{M}\right) \tag{2.6}
\end{equation*}
$$

Combining equations (2.2), (2.5), and (2.6) yields the final form for the momentum equation that is programmed.

$$
\begin{equation*}
\rho U \frac{\partial U}{\partial x}+\rho V \frac{\partial U}{\partial y}=-g_{c} \frac{d P}{d x}+\frac{1}{r} \frac{\partial}{\partial y}\left[r \mu_{e f f} \frac{\partial U}{\partial y}\right]+g_{c} X . \tag{2.7}
\end{equation*}
$$

### 2.1.3. The Stagnation Enthalpy Equation

The time-averaged stagnation enthalpy equation is given by

$$
\begin{equation*}
\rho U \frac{\partial I^{*}}{\partial x}+\rho V \frac{\partial I^{\star}}{\partial y}=\frac{1}{r} \frac{\partial}{\partial y}\left\{r\left[\frac{k}{c} \frac{\partial I}{\partial y}-\rho \overline{1^{\star \cdot} v^{\prime}}+\frac{\mu}{g_{c} J} \frac{\partial}{\partial y}\left(\frac{U^{2}}{2}\right)\right]\right\}+s \tag{2.8}
\end{equation*}
$$

where $I^{*}$ is the stagnation enthalpy of the fluid, defined as $I^{*}=I+$ $\mathrm{U}^{2} / 2 \mathrm{~g}_{\mathrm{c}} \mathrm{J}$, and I is the static enthalpy.

In the program, the energy source term in equation (2.8) is decomposed into

$$
\begin{equation*}
s=\frac{U X}{J}+s \tag{2.9}
\end{equation*}
$$

where the first term is work done against $x$-direction body forces and $s$ is a generalized source (energy rate/unit volume). The $s$ term might be used: to model Joulean heating for an electrically conducting fluid or nuclear heating.

In equation (2.8), a model for $\overline{-i^{\beta^{\prime}} v^{\prime}}$ is required. The term is a correlation involving fluctuations in stagnation enthalpy and cross-stream velocity, and is approximated as

$$
\begin{equation*}
\overline{-i^{*} v^{\prime}} \simeq-\overline{i^{\prime} v^{\prime}}+u\left(\overline{u^{\prime} v^{\prime}}\right) \tag{2.10}
\end{equation*}
$$

where $i^{\prime}$ is fluctuation in static enthalpy. The turbulent heat flux, $-\overline{i^{\top} v^{\top}}$, is modeled using the concept of eddy diffusivity for heat, $\varepsilon_{H}$, as defined by

$$
\begin{equation*}
-\overline{i^{\prime} v^{\top}}=\varepsilon_{H} \frac{\partial I}{\partial y}=\left(\frac{k_{t} / c}{\rho}\right) \frac{\partial I}{\partial y}, \tag{2.11}
\end{equation*}
$$

where $k_{t}$ is the turbuient conductivity. The eddy diffusivities for heat and momentum are related through the turbulent Prandtl number,

$$
\begin{equation*}
P r_{t}=\frac{\varepsilon_{M}}{\varepsilon_{H}} \tag{2.12}
\end{equation*}
$$

The laminar conductivity combines with the turbulent conductivity to form an effective conductivity (divided by specific heat, c),

$$
\begin{equation*}
\left(\frac{k}{c}\right)_{e f f}=\frac{k}{c}+\left(\frac{k}{c}\right)_{t} \tag{2.13}
\end{equation*}
$$

Equations (2.6), (2.12), and (2.13) are combined to form an effective Prandtl number,

$$
\begin{equation*}
\operatorname{Pr}_{e f f}=\frac{\mu_{e f f}}{(k / c)_{e f f}}=\frac{1+\frac{\varepsilon_{M}}{\nu}}{\frac{1}{P r}+\frac{\varepsilon_{M}}{\nu} \frac{1}{P r_{t}}} . \tag{2.14}
\end{equation*}
$$

Equations (2.5), (2.10), (2.11), and the definitions for $\mu_{e f f}$ and $\operatorname{Pr}_{\text {eff }}$ are combined with equation (2.8) to give the final form of the stagnation enthalpy equation that is programmed.

$$
\begin{align*}
\rho \mathrm{U} \frac{\partial I^{*}}{\partial x}+\rho V \frac{\partial I^{*}}{\partial y}= & \frac{1}{r} \frac{\partial}{\partial y}\left\{r \left[\frac{\mu \text { eff }}{\mathrm{Pr}_{\text {eff }}} \frac{\partial I^{*}}{\partial y}\right.\right.  \tag{2.15}\\
& \left.\left.+\frac{\mu_{\text {eff }}}{g_{c}^{J}}\left(1-\frac{1}{\mathrm{Pr}_{\text {eff }}}\right) \frac{\partial}{\partial y}\left(\frac{U^{2}}{2}\right)\right]\right\}+S .
\end{align*}
$$

### 2.2 Boundary Conditions

For boundary layer flows in which there are a wall and a free stream, e.g., flow over a flat surface or a body of revolution, the boundary conditions for the momentum equation are given by

$$
\begin{gather*}
U(x, 0)=0  \tag{2.16a}\\
V(x, 0)=\dot{m}_{0}^{\prime \prime}(x) / 0  \tag{2.16b}\\
\operatorname{Lim}_{y \rightarrow \infty} U(x, y)=U_{\infty}(x), \tag{2.16c}
\end{gather*}
$$

where $\dot{m}^{\prime \prime}{ }_{0}(x)$ is wall mass transfer per unit area due to fluid injection or suction.

Boundary conditions for the stagnation enthalpy equation are given by

$$
\begin{gather*}
I^{*}(x, 0)=I_{0}^{*}(x), o r \\
\dot{q}^{\prime \prime}(x, 0)=-\frac{k}{c} \frac{\partial I^{*}(x, 0)}{\partial y}=\dot{q}_{0}^{\prime \prime}(x)  \tag{2.16d}\\
\operatorname{Lim}_{y \rightarrow \infty} I^{*}(x, y)=I_{\infty}^{*}(\operatorname{constan} t) \tag{2.16e}
\end{gather*}
$$

The wall boundary condition (2.16d) is either a level or a flux. For both cases, if there is transpiration at the surface, the transpired fluid is assumed to leave the surface in thermal equilibrium with it. If a flux boundary condition is specified, then the program requires specification of the total energy flux from the surface. This is related to the surface heat flux, $\dot{q}_{0}^{\prime \prime}(x)$ as shown in Figure 2.2 for a differential element of surface area.


Figure 2.2. Wall flux boundary condition.

Boundary layer-type flows with a wall and a line of symmetry, e.g., flow in a circular pipe or a flat duct, have the following boundary conditions at the centerline, $y=0$, and wall, $y=r_{w}$.

$$
\begin{align*}
U\left(x, r_{w}\right) & =0,  \tag{2.17a}\\
V\left(x, r_{w}\right) & =0,  \tag{2.17b}\\
\frac{\partial U(x, 0)}{\partial y} & =0,  \tag{2.17c}\\
I^{*}\left(x, r_{w}\right) & =I_{0}^{*}(x), \text { or }  \tag{2.17d}\\
\dot{q}^{\prime \prime}\left(x, r_{w}\right) & =\dot{q}_{0}^{\prime \prime}(x), \\
\frac{\partial I^{*}(x, 0)}{\partial y} & =0, \tag{2.17e}
\end{align*}
$$

Because such flows are confined flows, the pressure gradient must be determined. This is accomplished indirectly in the program by linking it to conservation of mass: a pressure gradient is computed to conserve the mass flow rate as the momentum equation is integrated in the $x$-direction.

Boundary layer flows with a free surface and a line of symmetry, e.g., jets and free shear flows, have the following boundary conditions at the centerline, $y=0$, and the edge of the shear layer, $r_{e}$.

$$
\begin{align*}
& \frac{\partial U(x, 0)}{\partial y}=0,  \tag{2.18a}\\
& V(x, 0)=0,  \tag{2.18b}\\
& \operatorname{Lim}_{r \rightarrow r_{e}} U(x, r)=U_{\infty}(x),  \tag{2.18c}\\
& \frac{\partial I^{*}(x, 0)}{\partial y}=0,  \tag{2.18d}\\
& \operatorname{Lim}_{r \rightarrow r_{e}} I^{*}(x, r)=I_{\infty}^{*} \text { (constant) } . \tag{2.18e}
\end{align*}
$$

### 2.3 Turbulent Shear Stress

Turbulent shear stress is modeled using the eddy diffusivity for momentum. The program incorporates three options for modeling $\varepsilon_{M}$, as follows. :
2.3.1 Prandtl Mixing-Length Model for $E_{M}$ The Prandtl mixing-length model relates eddy diffusivity for momentum to the mean velocity gradient by defining a mixing-length, $\ell$, such that

$$
\begin{equation*}
\varepsilon_{M}=\quad \ell^{2}\left|\frac{\partial U}{\partial y}\right| \tag{2.19}
\end{equation*}
$$

$\vdots$
The mixing-length for the region near the wall but outside the viscous region immediately adjacent to the wall is given by

$$
\begin{equation*}
\ell=k y . \tag{2.20}
\end{equation*}
$$

A suggested value for $K$ is 0.41 .
Immediately adjacent to the wall, the viscous sublayer is modeled by introducing a damping function, $D$, that effectively suppresses the linear dependence of equation (2.20). With the damping function, the mixing-length for the viscous region becomes

$$
\begin{equation*}
\ell=K Y D . \tag{2.21}
\end{equation*}
$$

Two damping function options are available in the program. The first type is the Van Driest damping function,

$$
\begin{equation*}
D=1.0-\exp \left[-y^{+}\left(\nu_{0} / v\right) / A^{+}\right] \tag{2.22}
\end{equation*}
$$

where $y^{+}\left(v_{0} / v\right)$ is the non-dimensional distance from the wall, expressed in "wall coordinates", defined in Section 3.2 , and $A$ is an effective sublayer thickness defined in an analogous manner. The second type of damping function in the program is the Evans damping function,

$$
D= \begin{cases}y^{+}\left(v_{0} / v\right) / B^{+}, & y^{+}\left(v_{0} / v\right) \leq B^{+}  \tag{2.23}\\ 1.0, & y^{+}\left(v_{0} / v\right)>B^{+}\end{cases}
$$

where $\mathrm{B}^{+}$is an effective sublayer thickness.
The effective thickness of the viscous sublayer is probably the single most important parameter in computation of turbulent boundary layers. The sublayer, though comprising a very small fraction of the total boundary layer thickness, is the region where the major change in velocity takes place and,. except for very low Prandtl number fluids, is the region wherein most of the resistance to heat transfer resides. If this region is modeled accurately, only a very approximate scheme is needed throughout the rest of the boundary layer.

Thickness of the sublayer is evidently determined by viscous stability considerations. The experimental evidence is that a favorable pressure gradient ( $d P / d x$ negative) results in increased thickness, while an adverse pressure gradient has the opposite effect. Transpiration into the boundary layer (blowing) decreases the thickness, if it is expressed in non-dimensional wall coordinates, while suction has the opposite effect. Surface roughness, while not a subject of this paper, causes a thinning of the sublayer.

The effects of pressure gradient and transpiration on $A^{+}$or $B^{+}$are conveniently expressed in terms of a non-dimensional pressure gradient parameter, $\mathrm{P}^{+}$, and a non-dimensional blowing parameter, $\mathrm{V}_{\mathrm{o}}{ }^{+}$, both of which can be either positive or negative. In both of these parameters the main argument is normalized with respect to the same wall coordinate parameters as is the effective sublayer thickness $A^{+}$or $B^{+}$.

The functional dependence of $A^{+}$upon $\mathrm{P}^{+}$and $\mathrm{V}_{0}^{+}$has been deduced experimentally by examination of a very large number of velocity profiles obtained at Stanford [3]. This functional dependence can be directly related to $\mathrm{B}^{+}$, and both can be expressed algebraically as

$$
\begin{equation*}
\left.\mathrm{A}^{+}\right\}=\frac{\mathrm{A}_{\mathrm{fp}}^{+} \text {or } \mathrm{B}_{\mathrm{fp}}^{+}}{\mathrm{a}\left[\mathrm{~V}_{\mathrm{o}}^{+}+\mathrm{b}\left(\frac{\mathrm{P}^{+}}{1+\mathrm{cV}_{0}^{+}}\right)\right]+1.0} \tag{2.24}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{a}=7.1 \text { if } \mathrm{V}_{\mathrm{o}}^{+} \geq 0.0, \text { otherwise } \mathrm{a}=9.0 ; \\
& \mathrm{b}=4.25 \text { if } \mathrm{P}^{+} \leq 0.0, \text { otherwise } \mathrm{b}=2.9 ; \\
& \mathrm{c}=10.0 \text { if } \mathrm{P}^{+} \leq 0.0, \text { otherwise } \mathrm{c}=0.0 .
\end{aligned}
$$

A recommended value for $A_{f p}^{+}$and $B_{f p}^{+}$are 25 and 35 , respectively.
Equation (2.24) is plotted on Figure 2.3 for $A^{+}$, and in the graph the effects of pressure gradient and transpiration can be clearly seen. Note that a strong favorable pressure gradient forces $A^{+}$to very high values, and that blowing lessens this effect, while suction increases it. If $A^{+}$becomes very large, the viscous sublayer simply overwhelms the entire boundary layer, resulting in re-laminarization. The thickening of the sublayer caused by a favorable pressure gradient (accelerating flows) results in a decreased Stanton number simply because the major resistance to heat transfer is in the, viscous sublayer.
$A^{+}$, as represented by equation (2.24) and Figure 2.3, has been evaluated under essentially equilibrium conditions, i.e., conditions under which $\mathrm{v}_{0}^{+}$ and/or $\mathrm{P}^{+}$are invariant or, at worst, are varying only slowly along the surface. This is the case of inner region equilibrium. It is probable that when a sudden change of external conditions is imposed, the inner region comes to equilibrium more rapidly than the outer region, although this has not been proved. In any case, under non-equilibrium conditions where $V_{0}^{+}$or $p^{+}$are changing rapidly, it has been observed that the sublayer does not change instantaneously to its new equilibrium thickness, i.e., $A^{+}$does not immediately


Figure 2.3. The variation of the damping constant, $A^{+}$, with $\mathrm{V}_{0}^{+}$and $\mathrm{P}^{+}$.
assume its new equilibrium value. Since $A^{+}=A^{+}\left(V_{0}^{+}, P^{+}\right)$, lag equations of :: the form (suggested by Launder and Jones [4])

$$
\begin{equation*}
\frac{d \mathrm{~V}_{0, \text { eff }}^{+}}{\mathrm{dx}}=-\frac{\left(\mathrm{v}_{0, \text { eff }}^{+}-\mathrm{v}_{o, e q}^{+}\right)}{\mathrm{C}} \tag{2.25}
\end{equation*}
$$

are solved to simulate the effect. The term $\mathrm{V}_{0, \mathrm{eq}}^{+}$is the local blowing parameter, and $V_{o, e f f}^{+}$is its effective value, used to compute the damping constant. A similar equation is solved for $P^{+}$. The recommended value for $C$ is 4000 .

In the boundary layer momentum equation (2.7), the body force term, $X$, must exert some influence upon the viscous sublayer thickness. In the program it is assumed that the influence of $X$ upon the damping coefficient is similar to the pressure gradient. Thus a non-dimensional body force, $X^{+}$, is computed, and the algebraic sum $\left(\mathrm{P}^{+}-\mathrm{X}^{+}\right)$is used in place of $\mathrm{P}^{+}$to evaluate an equation of the form of equation (2.25) for $\mathrm{P}_{\mathrm{eff}}^{+}$.

The outer region of the flow, referred to as the wake region, is modeled using a mixing-length directly proportional to the boundary layer thickness. The program input variable $F R$ determines the thickness as $\delta(1.00-F R)$, with a recommended value of 0.01 for $F R$.

$$
\begin{equation*}
\ell=\lambda \delta .99 \tag{2.26}
\end{equation*}
$$

A recommended value of $\lambda$ is 0.085 . The outer region is defined as $y>$ $\lambda \delta_{.} .99^{\prime}$.

There is some evidence that the effective value of $\lambda$ is larger than 0.085 for boundary layers in which the momentum thickness Reynolds number is less than 5500. This may be a result of the fact that at low Reynolds numbers the sublayer is a larger fraction of the boundary layer and the approximation of a constant mixing-length over the remainder of the boundary layer is less valid. For strong blowing, even at low Reynolds numbers, $\lambda$ again appears to be close to 0.085 , and this is consistent with the above explanation because the sublayer is then thinner. The following equation has been found to describe the observed low Reynolds behavior of $\lambda$ quite well.

$$
\begin{equation*}
\lambda=2.942 \lambda_{0} \operatorname{Re}_{M}^{-1 / 8}(1.0-67.5 \mathrm{~F}), \tag{2.27}
\end{equation*}
$$

where $F=\rho_{0} V_{0} / \rho_{\infty} U_{\infty}$ and $\lambda_{0}$ is the program input value. If $\lambda$ becomes less than $\lambda_{0}$, it is set equal to $\lambda_{0}$.

### 2.3.2 Turtulent Kinetic Energy Model for ${ }^{E} M$

The Prandtl mixing-length is essentially an equilibrium model that can handle turbulent flows with slowly changing boundary conditions. For strongly non-equilibrium boundary layers (especially under adverse pressure gradient conditions or when there is an appreciable amount of free-stream turbulence), a higher level of closure model for the turbulent shear stress is desirable. The turbulent kinetic energy model (TKE model) relates a velocity scale-length scale product to the eddy diffusivity for momentum,

$$
\begin{equation*}
\varepsilon_{M}=\frac{\mu_{t}}{\rho}=\left(\frac{A_{g}}{K}\right) \ell \sqrt{\frac{q^{2}}{2}}, \tag{2.28}
\end{equation*}
$$

where $q^{2} / 2$ is the turbulent kinetic energy of the flow and $\ell$ is the mixinglength, as defined by equations (2.21) or (2.26).

Actually, the TKE model incorporated into the program is a hybrid model; the Prandtl mixing-length model for $\varepsilon_{M}$ is used in the near-wall viscous region and the TKE model for $y^{+}>2 A^{+}$or $y^{+}>B^{+}$. In principle, the TKE model may be applied in the viscous region, but this requires modification to the length scales for production and dissipation. At present there are no provisions in the program for computing TKE in the viscous sublayer region.

Turbulent kinetic energy of a flow is computed in the program by solving a differential equation of the form

$$
\begin{equation*}
\rho U \frac{\partial\left(q^{2} / 2\right)}{\partial x}+\rho V \frac{\partial\left(q^{2} / 2\right)}{\partial y}=-\rho \overline{u^{\prime} v^{\prime}} \frac{\partial U}{\partial y}-\phi+\frac{1}{r} \frac{\partial}{\partial y}\left(r J_{q}\right) \tag{2.29}
\end{equation*}
$$

In the TKE equation, the production term (the first term to the right of the equal sign) is modeled from equations (2.5) and (2.28), and given by

$$
\begin{equation*}
-\rho \overline{u^{\prime} v^{\prime}} \frac{\partial U}{\partial y}=\rho\left(\frac{A}{k}\right) \ell \sqrt{\frac{q^{2}}{2}}\left(\frac{\partial u}{\partial y}\right)^{2} \tag{2.30}
\end{equation*}
$$

The dissipation term, $\theta$, is modeled as

$$
\begin{equation*}
\mathcal{D}=\rho\left(\mathrm{B}_{\mathrm{q}} \kappa\right) \frac{\left(\sqrt{q^{2} / 2}\right)^{3}}{\ell} \tag{2,31}
\end{equation*}
$$

where $k$. is the von Karman constant.
$\mathrm{B}_{\mathrm{q}}$ is the dissipation constant, and it is related to $A_{q}$ by requiring production to equal dissipation in the logarithmic region near the wall.

$$
\begin{equation*}
B_{q}=\frac{A_{q}^{3}}{k^{4}} \tag{2,32}
\end{equation*}
$$

For $k=0.41$, suggested values for $A_{q}$ and $B_{q}$ are 0.22 and 0.38 , respectively.

The diffusion term, $J_{q}$, is modeled as

$$
\begin{equation*}
J_{q}=\rho\left(\nu+\varepsilon_{q}\right) \frac{\partial\left(q^{2} / 2\right)}{\partial y} \tag{2.33}
\end{equation*}
$$

where $v$ is the laminar kinematic viscosity, and $\varepsilon_{q}$ is related to $\varepsilon_{M}$ by a turbulent Schmidt number,

$$
\begin{equation*}
S c_{q}=\frac{\varepsilon_{M}}{\varepsilon_{q}} \tag{2.34}
\end{equation*}
$$

A suggested value for $\mathrm{Sc}_{\mathrm{q}}$ is 1.7 .
Boundary conditions for equation (2.29), with a wall and a free stream, are

$$
\frac{q^{2}}{2}=\left(\frac{K}{A_{q}} \ell \frac{\partial U}{\partial y}\right)^{2} \text { at } y^{+}=\left\{\begin{array}{l}
2 A^{+}  \tag{2.35a}\\
B^{+}
\end{array}\right.
$$

and

$$
\begin{equation*}
\underset{\mathrm{y} \rightarrow \infty}{\mathrm{Lim}} \frac{q^{2}}{2}=\binom{\text { free stream }}{\text { turbulence level }}=\frac{3}{2} \mathrm{~T}_{\mathrm{u} \infty}^{2} \mathrm{U}_{\infty}^{2} . \tag{2.35b}
\end{equation*}
$$

Equation (2.35b) assumes isotropic free-stream turbulence and $T_{U}=\sqrt{u^{\prime 2}} / U_{\infty}$.

### 2.3.3 Constant Edy Diffusivity Model

An alternative to the assumption that mixing-length in the outer region is constant is the assumption that eddy diffusivity for momentum is constant. Eddy diffusivity in this region can be correlated to either displacement thickness or momentum thickness Reynolds number or diameter Reynolds number in the case of pipe-flow. In the program, this option is given by

$$
\begin{equation*}
\frac{\varepsilon_{M}}{\nu}=a \operatorname{are}_{M}^{b} \tag{2.36}
\end{equation*}
$$

In the above expression, suggested values of $a$ and $b$ for pipe-flow are 0.005 and 0.9 , respectively. For pipe-flow this option is to be preferred to the constant mixing-length option.

### 2.4 Turbulent Heat Flux

* Turbulent heat flux is modeled using the eddy diffusivity for heat. The program incorporates two options for modeling $\varepsilon_{H}$, a constant turbulent Prandil and a variable turbulent Prandtl number.


### 2.4.1 Constant Turbulent Prandtl Number

The eddy diffusivity for heat is modeled by relating it to the eddy diffusivity for momentum,

$$
\begin{equation*}
\operatorname{Pr}_{\mathrm{t}}=\frac{\varepsilon_{\mathrm{M}}}{\varepsilon_{\mathrm{H}}} \tag{2.12}
\end{equation*}
$$

where $\mathrm{Pr}_{t}$ is the turbulent Prandtl number.
A very simple physical model of the turbulent momentum and energy transfer processes leads to the conclusion that $\varepsilon_{H}=\varepsilon_{M}$, i.e., $\operatorname{Pr}_{t}=1.00$ (the "Reynolds Analogy"). Slightly more sophisticated models suggest that $\mathrm{Pr}_{t}>$ 1.00 when the molecular Prandtl number is very much less than undty. A suggested value for gases is 0.90 .

### 2.4.2 Variable Turbulent Prandtl Number <br> An improved model for $\operatorname{Pr}_{t}$ is to allow it to vary with distance

 from the wall, as suggested from experimental data from Stanford [3]. Several conclusions can be drawn from the Stanford data. First, the turbulent Prandtl number, at least for air, apparently has an order of magnitude of unity. Thus the Reynolds Analogy $\left(P r_{t}=1.00\right)$ is not a bad approximation.The second conclusion is that $\mathrm{Pr}_{\mathrm{t}}$ seems to go to a value higher than unity very near the wall, but is evidently less than unity in the wake or outer region. The situation very close to the wall is especially vexing be-. cause it is extremely difficult to make accurate measurements in this region; and yet it seems evident that something interesting and important is happening in the range of $y^{+}$from 10.0 to 15.0 . The behavior of $\mathrm{Pr}_{t}$ at values of $y^{+}$less than about 10.0 is highly uncertain but fortunately not very important, because molecular conduction is the predominant transfer mechanism in this region. At the other extreme, in the wake region $\mathrm{Pr}_{t}$ does not need to be known precisely, because the heat flux tends to be small there.

Another conclusion, for which the evidence is not yet very strong, is that there is some small effect of pressure gradient on Pr $t^{\text {. Data }}$ suggest that an adverse pressure gradient tends to decrease $\operatorname{Pr}_{t}$, and there seems a tendency for $\mathrm{Pr}_{t}$ to be increased by a favorable pressure gradient (an accelerating flow). Transpiration, apparently, does not influence Pre unless there is an effect very close to the wall that is hidden in the experimental uncertainty in this region.

Incorporated into the program to predict the general behavior of turbulent Prandtl number for gases, as well as low and high laminar Prandtl number fluids, is a conduction model for $\mathrm{Pr}_{t}$. The model simulates the idea that an
"eddy" exchanges energy both in transit in the vertical direction and while equilibrating with the surrounding fluid at the end of its travel. From analytical considerations, the model is expressed by

$$
\begin{equation*}
P r_{t}=\left[\frac{\alpha^{2}}{2}+\alpha c P e_{t}-\left(c P e_{t}\right)^{2}\left(1.0-\exp \left[-\alpha / c P e_{t}\right]\right)\right]^{-1} \tag{2.37}
\end{equation*}
$$

In the above equation, $\mathrm{Pe}_{\mathrm{t}}$ is the turbulent Peclet number, $\left(\varepsilon_{M} / \nu\right) \mathrm{Pr}$, and $\alpha=\sqrt{1 / P R T}$, where PRT is the asymptotic value of $\operatorname{Pr}_{t}$ for large $y^{+}$, in the wake region. The programed value for $c$ is 0.2 , and the suggested value for PRT is 0.86 . Equation (2.37) is plotted in Figure 2.4 for three values of Pr using these constants.


Figure 2.4. Variation of turbulent Prandtl number with Pr.

### 2.5 Laminar-Turbulent Transition

In laminar boundary layers, disturbances to the flow will either die out or grow; if the disturbances continue to grow, there will be a region downstream where transition occurs, beyond which fully turbulent flow will eventually be established. The onset of transition depends to a large extent upon whether the prevailing boundary conditions have a stabilizing or a destabilizing effect on the flow. Smooth surfaces and favorable pressure gradients (acceleration) can cause the former, and rough surfaces, adverse pressure gradients, and free-stream turbulence can cause the latter effect.

For two-dimensional boundary layer flows over a smooth surface, with a constant free stream velocity, and with moderate free-stream turbulence, the onset of transition is usually considered to be related to a critical momentum thickness Reynolds number, Re ${ }_{\text {tran }}$. This is analogous to flow in a pipe where $\mathrm{Re}_{\text {tran }} \simeq 2300$. Once transition commences, it will continue until the flow becomes completely turbulent.

Transition is modeled in the program by flagging the program to commence computation of turbulent shear stress and heat flux when the flow momentum thickness Reynolds number, $\mathrm{Re}_{\mathrm{M}}$, exceeds $\mathrm{Re}_{\text {tran }}$. To effect a gradual transition, the local value of $A^{+}$is modified according to the empirical equation

$$
\begin{equation*}
A^{+}=A^{+}+\left(300.0-A^{+}\right) \times\left\{1.0-\sin \left(\frac{1.57}{\operatorname{Re}_{\text {tran }}}\left[\operatorname{Re}_{M}-\operatorname{Re}_{\operatorname{tran}}\right]\right)\right\}^{2} \tag{2.38}
\end{equation*}
$$

for the region in the downstream flow direction where $\mathrm{Re}_{\mathrm{M}} \leq \operatorname{Re}_{\text {tran }}{ }^{\text {. This }}$ equation has the effect of smoothly increasing the turbulent viscosity in the near-wall region. A suggested value for $\mathrm{Re}_{\mathrm{tran}}$ is 200. Transition with $\mathrm{B}^{+}$ is handled in a similar manner.

## Chapter 3

FLOW NEAR A WALL

### 3.1 Computation in the Near-Wall Region

Computation of a flow field involves solving the finite-difference equations at discrete nodes in the cross-stream direction. The nodal spacing, or grid, can be coarse if velocity and enthalpy profiles are slowly changing between nodes. For a turbulent flow, large gradients in velocity exist with the near-wall region requiring a fine nodal spacing. It is customary in most finite-difference turbulent calculations to have at least as many nodal points in the near-wall region (say the inner 20 per cent of the boundary layer) as are used in the remaining coarse part of the grid.

In computing near-wall flows in this program, the Couette flow form of the boundary layer equations are solved between the wall and a point near the wall, the join point. At the join point the Couette flow solutions are matched to the finite-difference solutions, in terms of velocity and shear stress, and enthalpy and heat flux, and the resulting unknowns, wall shear stress and wall heat flux, are thus determined.

In dealing with flow in the near-wall region, the program has two options. The first option is to "use the Wall Function." Here the Couette flow equations are numerically integrated over the region of high velocity gradient. A major advantage of this option is that it greatly reduces the required number of finite-difference nodes. Using the Wall Function is especially advantageous when computing high Reynolds number flows.

The second option in computing flow near a wall is to 'bypass the Wall Function." Here the finite-difference mesh is carried down to the wall with a progressively finer spacing. Bypassing the Wall Function is recommended for large pressure gradients when the Couette flow approximation begins to lose its validity.

### 3.2 The Couette Flow Equations

In the near-wall region both velocity and stagnation enthalpy profiles can have large gradients in the cross-stream direction, but their streamwise gradients are usually small. By neglecting these streamwise gradients, the convectiv.
transport equations are simplified to ordinary differential equations, and the integrated form of these equations is the Couette flow equations.

To develop the Couette flow equations, the boundary layer equations will be recast in terms of shear stress and heat flux using

$$
\begin{equation*}
\tau=\left(\mu+\mu_{t}\right) \frac{\partial U}{\partial y}=\mu_{e f f} \frac{\partial U}{\partial y}, \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{q}{ }^{\prime \prime}=-\left[\frac{k}{c}+\left(\frac{k}{c}\right)_{t}\right] \frac{\partial I}{\partial y}=-\frac{\mu_{e f f}}{\operatorname{Pr}} \frac{\partial}{\partial y}\left[I^{*}-\frac{u^{2}}{2 g_{c} J}\right] \text {. } \tag{3.2}
\end{equation*}
$$

These definitions are substituted into the momentum equation (2.7) and stagnation enthalpy equation (2.15), and they are re-written, along with the continuity equation (2.1), for plane flow (no-radius effect included).

$$
\begin{gather*}
\frac{\partial(\rho U)}{\partial x}+\frac{\partial(\rho V)}{\partial y}=0,  \tag{3.3a}\\
\rho U \frac{\partial U}{\partial x}+\rho V \frac{\partial U}{\partial y}=g_{c}\left(-\frac{d P}{d x}+\frac{\partial \tau}{\partial y}+x\right),  \tag{3.3b}\\
\rho U \frac{\partial I^{*}}{\partial x}+\rho V \frac{\partial I^{*}}{\partial y}=-\frac{\partial}{\partial y}[\dot{q} "-U \tau]+\frac{U X}{J}+s . \tag{3.3c}
\end{gather*}
$$

These equations are non-dimensionalized using "wall coordinates". In the definitions which follow, the small zero subscript denotes a wall value.

$$
\begin{align*}
U_{\tau} & =\sqrt{g_{c} \tau_{0} / \rho_{o}},  \tag{3.4a}\\
U^{+} & =U / U_{\tau},  \tag{3.4b}\\
v_{0}^{+} & =v_{0} / U_{\tau},  \tag{3.4c}\\
x^{+} & =x U_{\tau} / u_{0},  \tag{3.4d}\\
y^{+} & =y U_{\tau} / v_{0},  \tag{3.4e}\\
\tau^{+} & =\tau / \tau_{0}, \tag{3.4f}
\end{align*}
$$

$$
\begin{align*}
P^{+} & =\frac{g_{c} v_{o}}{\rho_{0} U_{\tau}^{3}} \frac{d P}{d x}  \tag{3.4~g}\\
X^{+} & =\frac{g_{c} v_{o}}{\rho_{0} U_{\tau}^{3}} x \tag{3.4h}
\end{align*}
$$

for the momentum equation, and, in addition,

$$
\begin{align*}
I^{{ }^{+}} & =\frac{\left(I_{0}^{*}-I^{*}\right) U_{\tau}}{\dot{q}_{0}^{\prime \prime} / \rho_{0}},  \tag{3.41}\\
q^{+} & =\frac{\dot{q}^{\prime \prime}}{\dot{q}_{0}^{\prime \prime}},  \tag{3.4j}\\
S^{+} & =\frac{\nu_{0}}{\dot{q}_{0}^{\prime \prime} U_{\tau}} s,  \tag{3.4k}\\
W & =\frac{\rho_{0} U_{\tau}^{3}}{g_{c}^{J} \dot{q}_{0}^{\prime \prime}}, \tag{3.4l}
\end{align*}
$$

for the stagnation enthalpy equation.
Integration of equations (3.3a) and (3.3b) with respect to $y$, combining, and transforming to "wall coordinates" yields

$$
\begin{align*}
\tau^{+}= & 1+\mathrm{v}_{0}^{+} U^{+}+\left(\mathrm{P}^{+}-\mathrm{x}^{+}\right) \mathrm{y}^{+}\left[1-\frac{1}{y} \int_{0}^{y}\left(\frac{\rho}{\rho_{\infty}}\right)\left(\frac{U}{U_{\infty}}\right)^{2} d y\right]  \tag{3.5}\\
& +f_{x}
\end{align*}
$$

where

$$
\begin{aligned}
& \therefore \quad f_{x}= \\
& \rho_{\infty} U_{\infty} \frac{d U_{\infty}}{d x}\left[\frac{\rho U}{\rho_{\infty} U_{\infty}} \int_{0}^{y}\left(\frac{\rho U}{\rho_{\infty} U_{\infty}}\right) d y-\int_{0}^{y}\left(\frac{\rho}{\rho_{\infty}}\right)\left(\frac{U}{U_{\infty}}\right)^{2} d y\right] \\
&+\frac{\rho_{\infty} U_{\infty}^{2}}{\tau_{0}}\left[\frac{d}{d x} \int_{0}^{y}\left(\frac{\rho}{\rho_{\infty}}\right)\left(\frac{U}{U_{\infty}}\right)^{2} d y-\frac{\rho U}{\rho_{\infty} U_{\infty}} \int_{0}^{y}\left(\frac{\rho U}{\rho_{\infty} U_{\infty}}\right) d y\right] .
\end{aligned}
$$

The Couette flow form of the momentum equation used in the program is equation (3.5) with $f_{x}$ neglected. This form was developed by Julien et al. [5] ar
retains an integral term to better approximate a departure from Couette flow when $\mathrm{P}^{+}$is large. The additional term is exact for asymptotic accelerating flows.

Integration of equations (3.3a) and (3.3c) with respect to $y$, combining, and transforming to "wall coordinates", yields

$$
\begin{equation*}
\mathrm{q}^{+}=1+\mathrm{v}_{0}^{+} I^{{ }^{+}}+\mathrm{U}^{+} \tau^{+} \mathrm{W}+\mathrm{U}^{+} \mathrm{y}^{+} \mathrm{X}^{+} \mathrm{W}+\mathrm{S}^{+} \mathrm{y}^{+}+g_{\mathrm{x}}, \tag{3.6}
\end{equation*}
$$

where

$$
\begin{aligned}
g_{x}= & \frac{\left(I^{*}-I_{\infty}^{*}\right)}{\dot{q}_{0}^{\prime \prime}}\left[\frac{d}{d x}\left(\rho_{\infty} U_{\infty}\right) \cdot \int_{0}^{y}\left(\frac{\rho U}{\rho_{\infty} U_{\infty}}\right) d y\right. \\
& \left.+\rho_{\infty} U_{\infty} \frac{d}{d x} \int_{0}^{y}\left(\frac{\rho U}{\rho_{\infty} U_{\infty}}\right) d y\right] \\
& -\frac{1}{\dot{q}_{0}^{\prime \prime}} \frac{d}{d x}\left[\rho_{\infty} U_{\infty}\left(I_{0}^{*}-I_{\infty}^{*}\right)\right] \int_{0}^{y} \frac{\rho U}{\rho_{\infty} U_{\infty}}\left(\frac{I^{*}-I_{\infty}^{*}}{I_{0}^{*}-I_{\infty}^{*}}\right) d y \\
& -\frac{\rho_{\infty} U_{\infty}\left(I_{0}^{*}-I_{\infty}^{*}\right)}{\dot{q}_{0}^{\prime \prime}} \frac{d}{d x} \int_{0}^{y} \frac{\rho U}{\rho_{\infty} U_{\infty}}\left(\frac{I^{*}-I_{\infty}^{*}}{I_{0}^{*}-I_{\infty}^{*}}\right) d y .
\end{aligned}
$$

The Couette flow form of the stagnation enthalpy equation used in the program is equation (3.6) with $g_{x}$ neglected.

### 3.3 Using the Wall Function

In the previous section it was seen that the Couette flow equations are merely first integrals of the Couette flow form of the boundary layer equations, and they relate wall shear stress and wall heat flux to shear stress and heat flux at some point away from the wall. By replacing the shear stress and heat flux with their constitutive equations, the Couette flow equations become first-order ordinary differential equations describing the variation in velocity and stagnation enthalpy across the Couette layer adjacent to the wall. These equations are then numerically integrated across the layer and matched to the finitedifference solutions for velocity and stagnation enthalpy, resulting in explicit expressions for the wall shear stress and heat flux. The match-up point
is located midway between the second and third finite-difference nodes from the wall and is referred to as the join point, or 2.5 point.
3.3.1 Momentum Equation

The constitutive equation (3.1) for snear stress is rewritten in terms of "wall coordinates" as

$$
\begin{equation*}
\tau^{+}=\mu^{+} \frac{\partial U^{+}}{\partial y^{+}} \tag{3.7}
\end{equation*}
$$

where $\mu^{+}=\left(\mu+\mu_{t}\right) / \mu_{0}$.
From Section 3.2, the Couette flow equation for momentum is

$$
\begin{equation*}
\tau^{+}=1+V_{0}^{+} U^{+}+\left(P^{+}-X^{+}\right) y^{+}\left[1-y \int_{0}^{y}\left(\frac{\rho}{\rho_{\infty}}\right)\left(\frac{U}{U_{\infty}}\right)^{2} d y\right] \tag{3.8}
\end{equation*}
$$

An ordinary differential equation describing momentum transport across the Couette layer is obtained by equating (3.7) and (3.8), along with using the mixing-length hypothesis to model $\mu^{+}$.

$$
\begin{equation*}
\frac{d U^{+}}{d y^{+}}=\frac{2 \tau^{+}\left(\frac{\mu_{0}}{\mu}\right)}{1+\left[1+4 K^{2} y^{+2} D^{2} \tau^{+}\left(\frac{\rho}{\rho_{0}}\right)\left(\frac{\mu_{0}}{\mu}\right)^{2}\right]^{1 / 2}} \tag{3.9}
\end{equation*}
$$

In the program the above equation is numerically integrated, using equation (3.8) for $\tau^{+}$, and equation (2.22 or 2.23 ) for $D$, from the wall outward to the join point.

The join point, or match-up point, is located at $y_{2.5}$, which is the arithmetic average of $y_{2}$ and $y_{3}$, locating nodal points 2 and 3 . The required value of $U$ at the join point is $U_{2,5}$, the arithmetic average of $U_{2}$ and $U_{3}$, as computed from the finite-difference solution.

Since the integration of equation (3.9) is in "wall coordinates", the upper limit to the integral needs to be in "wall coordinates". It is not yet possible to convert $U_{2.5}$ and $y_{2.5}$ to $U_{2.5}^{+}$and $y_{2.5}^{+}$because $\tau_{0}$ is still an unknown. However, a join-point Reynolds number can be formed which relates the "physical coordinates" to the "wall coordinates",

$$
\begin{equation*}
\operatorname{Re}_{2.5}=\frac{\mathrm{U}_{2.5} \mathrm{y}_{2.5}}{v_{0}}=\left(\mathrm{U}^{+} \mathrm{y}^{+}\right)_{2.5} \tag{3.10}
\end{equation*}
$$

As $U^{+}=U^{+}\left(y^{+}\right)$is evaluated from integration of equation (3.9), the $U^{+} y^{+}$ product is computed and compared to $\operatorname{Re}_{2.5}$. Integration is terminated when the $\mathrm{U}^{+} \mathrm{y}^{+}$product equals $\operatorname{Re}_{2.5^{\circ}} \quad$ With the join-point values of $\mathrm{U}^{+}$ and $y^{+}$now known, the wall shear stress and friction factor are computed from $U_{2.5}$ and the definition of $U^{+}$,

$$
\begin{equation*}
\tau_{0}=\frac{\rho_{0} U_{2.5}^{2}}{g_{c}\left(U_{2.5}^{+}\right)^{2}} \tag{3.11a}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{f} / 2=\frac{g_{c}^{{ }_{c}^{\top}}{ }_{o}}{\rho_{\infty} U_{\infty}^{2}} \tag{3.11b}
\end{equation*}
$$

### 3.3.2 Stagnation Enthalpy Equation

The constitutive equation (3.2) for heat flux is rewritten in terms of wall coordinates as

$$
\begin{equation*}
q^{+}=\frac{\mu^{+}}{P_{e f f}} \frac{\partial I^{\star^{+}}}{\partial y^{+}}+W \frac{\mu^{+}}{P_{e f f}} \frac{\partial}{\partial y}\left(\frac{U^{+^{2}}}{2}\right) \tag{3.12}
\end{equation*}
$$

From Section 3.2, the Couette flow equation for stagnation enthalpy is

$$
\begin{align*}
q^{+}=1 & +V_{o}^{+} I^{\star+}+U^{+} \tau^{+} W  \tag{3.13}\\
& +U^{+} y^{+} X^{+} W+S^{+}{ }^{+}
\end{align*}
$$

An ordinary differential equation describing enthalpy transport across the Couette layer is obtained by equating (3.12) with (3.13),

$$
\begin{equation*}
\frac{d I^{\star+}}{d y^{+}}=\frac{\operatorname{Pr}_{e f f}}{\mu^{+}}\left(1+V_{0}^{+} I^{\star+}\right)+\left(\operatorname{Pr}_{e f f}-1\right) W_{d y^{+}}^{d}\left(\frac{U^{+2}}{2}\right)+\frac{\operatorname{Pr}_{e f f}}{\mu^{+}}\left(U^{+} y^{+} X^{+} W+S^{+} y^{+}\right) \tag{3.14}
\end{equation*}
$$

In the program equation 3.14 is numerically integrated in the same loop as equation (3.9) for $\mathrm{U}^{+}$.

If the stagnation enthalpy boundary condition is a level type, i.e., $I^{*}(x, 0)=I_{0}^{*}(x)$, then wall heat flux and Stanton number are computed from $I_{2.5}^{*}$, the arithmetic average of $I_{2}^{*}$ and $I_{3}^{*}$, and the definition of $I^{*}$,

$$
\begin{equation*}
\dot{q}_{0}^{\prime \prime}=\frac{\rho_{0} U_{2.5}}{U_{2.5}^{+} I_{2.5}^{{ }^{+}}}\left(I_{0}^{\star}-I_{2.5}^{\star}\right) \tag{3.15a}
\end{equation*}
$$

and

$$
\begin{equation*}
S t=\frac{\dot{q}_{0}^{\prime \prime}}{\rho_{\infty} U_{\infty}\left(I_{0}^{*}-I_{\infty}^{*}\right)} \tag{3.15b}
\end{equation*}
$$

If the stagnation enthalpy boundary condition is a flux type, then the wall enthalpy and heat flux are linked through the total energy flux boundary condition (see Figure 2.2).

$$
\begin{equation*}
\dot{E}_{\text {total }}(x)=\dot{m}_{0}^{\prime \prime} I_{0}^{*}+\dot{q}_{0}^{\prime \prime} \tag{3.16}
\end{equation*}
$$

For flux type boudary conditions, equations (3.15a) and (3.16) are solved algebraically for $I_{0}^{*}$ and $\dot{q}_{0}^{\prime \prime}$. The Stanton number is then formulated from equation (3.15b). Note that the Stanton number evaluated in the program, equation (3.15b), is based on stagnation enthalpy difference, and not recovery enthalpy difference. The latter would require knowledge of a "recover factor" which has no real significance or usefulness in the general problem, i.e., for other than constant free-stream velocity flows.

### 3.4 Bypassing the Wall Function

The second user option is to "bypass the Wall Function", implying the join point is in close proximity to the wall where laminar-like flow exists. For turbulent flows, this implies a join-point value $y^{+}$of less than, say, 2.0. In this region the viscosity ratio $\left(\mu+\mu_{\tau}\right) / \mu_{0}$ is unity, and the Couette flow equations can be integrated in closed form. Match-up with the finitedifference solutions for velocity and stagnation enthalpy is similar to the procedure involved in "using the Wall Function".

### 3.4.1 Momentum Equation

To obtain an expression for $\mathrm{U}^{+}$at the edge of the Couette layer, the constitutive equation (3.7) for the shear stress is equated to the Couette flow equation for momentum (3.8) and integrated (with $\mu^{+}=1$ ).

$$
\begin{equation*}
\mathrm{u}^{+}=\mathrm{y}^{+}+\left(\mathrm{v}_{0}^{+}+\mathrm{P}^{+}-\mathrm{x}^{+}\right)\left[\frac{\exp \left(\mathrm{v}_{\mathrm{o}}^{+}{ }^{+}\right)-1 .-\mathrm{v}_{0}^{+} \mathrm{y}^{+}}{\left(\mathrm{v}_{0}^{+}\right)^{2}}\right] \tag{3.17}
\end{equation*}
$$

Recall that while $\mathrm{U}^{+}$and $\mathrm{y}^{+}$are unknown, their product is the joinpoint Reynolds number (see Section 3.3.1).

$$
\begin{equation*}
\mathrm{Re}_{2.5}=\frac{\mathrm{U}_{2.5}{ }^{\mathrm{y}} 2.5}{v_{0}}=\left(\mathrm{U}^{+}{ }^{+}\right)_{2.5} \tag{3.10}
\end{equation*}
$$

In the program, the solution to equation (3.17) is obtained by linearizing and solving in three successive steps:

$$
\begin{align*}
& \mathrm{y}_{2.5}^{+}=\left(\operatorname{Re}_{2.5}\right)^{1 / 2}  \tag{3.18a}\\
& \mathrm{y}_{2.5}^{+}=\left[\frac{\operatorname{Re}_{2.5}}{1+\frac{\left(\mathrm{P}^{+}-\mathrm{x}^{+}\right) \mathrm{y}_{2.5}^{+}}{2}+\frac{\mathrm{v}_{0}^{+} \mathrm{y}_{2.5}^{+}}{2}}\right]^{1 / 2} .  \tag{3.18b}\\
& \mathrm{y}_{2.5}^{+}=\left[\frac{\operatorname{Re}_{2.5}}{1+\frac{\left(\mathrm{P}^{+}-\mathrm{x}^{+}\right) \mathrm{y}_{2.5}^{+}}{2}+\frac{\mathrm{v}_{0}^{+} \mathrm{y}_{2.5}^{+}}{2}}\right]^{1 / 2}
\end{align*}
$$

After solving for $y_{2.5}^{+}$, the value of $\dot{U}_{2.5}^{+}$is obtained from equation (3.10). The shear stress and friction factor are obtained from equations (3.11a-b).

### 3.4.2 Stagnation Enthalpy Equation

An expression for $\mathrm{I}^{{ }^{+}}$at the edge of the Couette layer is obtained by integrating equation (3.14), which relates the constitutive equation for heat flux to the Couette flow equation for stagnation enthalpy.
In the integration, the viscous dissipation, work against body forces, and energy source terms are neglected. The resulting expression for $\mathrm{I}^{+}{ }^{+}$, with $\mu^{+}$; equal to unity and $\operatorname{Pr}_{\text {eff }}$ equal to Pr , is

$$
\begin{equation*}
\mathrm{I}^{\star^{+}}=\frac{\exp \left[\mathrm{PrV}_{0}^{+} \mathrm{y}^{+}\right]-1}{\mathrm{~V}_{\mathrm{o}}^{+}} \tag{3.19}
\end{equation*}
$$

In the program, equation (3.19) is approximated by

$$
\begin{equation*}
\mathrm{I}_{2.5}^{\star^{+}}=\operatorname{Pr}\left(\frac{\mathrm{V}_{\mathrm{o}}^{+} \mathrm{y}_{2.5}^{+^{2}}}{2}+\mathrm{y}_{2.5}^{+}\right) \tag{3.20}
\end{equation*}
$$

After solving for $I_{2.5}^{*}$, the wall heat flux and Stanton number are obtained as described at the end of Section 3.3.2.

### 3.5 Routine LAMSUB

As indicated in the previous sections, the Couette flow equations are solved from the wall out to the foin point where $y^{+}=y_{2.5}^{+}$. The main function of the LAMSUB routine is to assure the condition

$$
\begin{equation*}
\text { YPMIN } \leq \mathrm{y}_{2.5}^{+} \leq \operatorname{YPMAX} \tag{3.21}
\end{equation*}
$$

where YPMIN and YPMAX are program input variables.
$\because$ When "bypassing the Wall Function", YPMIN must be zero, and YPMAX should be less than two (unity is recommended). This will give a join-point Reynolds number of less than four, thus assuring the assumption that turbulent viscosity can be neglected in the Couette flow equations.

When "using the Wall Function" typical values for YPMIN and YPMAX are 20 and 40 , respectively. These values bracket the upper limits of the integrals, and assure that the Couette flow equations are not applied outside their region of applicability. For a flat plate boundary layer, the
upper limit might be 50 to 100 , and for high Reynolds number flows, the upper limit might extend out to between 100 and 200 . For boundary layer flows with strong pressure gradient, the limit of applicability can drop to near 15 -- thus the reason for the Wall Function bypass option.

15 -- thus the reason for the hall Function bypass option.
Routine LAMSUB controls the join point value as follows: if $y_{2.5}^{+}$drops below YPMIN, the routine removes the stream tube located at $y_{3}$, and if $\mathrm{y}_{2.5}^{+}$becomes larger than YPMAX, the routine inserts a new stream tube midway between $y_{2.5}$ and $y_{3}$. In both cases, after the grid has been readjusted, the wall function is again solved and the new $y_{2.5}^{+}$is compared using equation (3.21).

### 3.6 Integral Parameters

At each integration step, when one surface is a wall, the velocity profile displacement and momentum thicknesses, $\delta_{1}$ and $\delta_{2}$, are calculated along with the enthalpy thickness, $\Delta_{2}$, for the stagnation enthalpy profile. These thicknesses are defined as follows:

$$
\begin{align*}
\delta_{1} & =\int_{0}^{\delta}\left(1-\frac{\rho U}{P_{\infty} U_{\infty}}\right) \frac{I}{r_{0}} d y  \tag{3.22a}\\
\delta_{2} & =\int_{0}^{\delta} \frac{\rho U}{\rho_{\infty} U_{\infty}}\left(1-\frac{U}{U_{\infty}}\right) \frac{r}{r_{0}} d y,  \tag{3.22b}\\
\Delta_{2} & =\int_{0}^{\delta} \frac{\rho U}{\rho_{\infty} U}\left(\frac{I^{*}-I_{\infty}^{*}}{I_{0}^{*}-I_{\infty}^{\star}}\right) \frac{r}{r_{0}} d y \tag{3.22c}
\end{align*}
$$

$+$
where $r_{0}$ is the wall radius. Integration is carried out in the program using a trapezoidal rule.

In the program the boundary layer equations can be solved with or without consideration of transverse radius of curvature. Generally, transverse curvature effects are important for thick axisymmetric boundary layers. If these curvature effects are considered, then $\delta_{1}$ and $\delta_{2}$ are modified by solving the equations

$$
\begin{equation*}
\delta_{1, a \times 1}\left(1 \pm \frac{\delta_{1, a \times 1} \cos \alpha}{2 r_{0}}\right)=\delta_{1}, \tag{3.23a}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{2, \operatorname{axi}}\left(1 \pm \frac{\delta_{2, a x i} \cos \alpha}{2 r_{0}}\right)=\delta_{2} \tag{3.23b}
\end{equation*}
$$

for $\delta_{1, a x i}$ and $\delta_{2, a x i}$ after calculating $\delta_{1}$ and $\delta_{2}$ using equation (3.22). Figure 2.1 shows $\alpha$ and its relation to the wall radius. The proper sign choice is (+) for external flow over a body of revolution and (-) for flow inside a body of revolution (due to the coordinate system used in the program).

### 3.7 Pipe and Channel Flows

If the flow is a confined flow, a friction factor, Stanton number, and Nusselt number are computed using the following definitions.

$$
\begin{align*}
& \frac{C_{f}}{2}=\frac{g_{c}^{\tau_{o}}}{\bar{\rho} \bar{U}^{2}},  \tag{3.24}\\
& S t=\frac{q_{o}^{\prime \prime}}{\bar{\rho} \bar{U}\left(I_{o}^{\star}-\bar{I}^{\star}\right)},  \tag{3.25}\\
& N u=S t \cdot \overline{P r} \cdot \operatorname{Re}, \tag{3.26}
\end{align*}
$$

where the bar quantities are mean quantities.
The mean stagnation enthalpy is defined by

$$
\begin{equation*}
\bar{I}^{*}=\frac{\int_{0}^{r_{W}} \rho U I_{r d y}^{*}}{\int_{0}^{T_{W}} \rho U r d y} \tag{3.27}
\end{equation*}
$$

The mean velocity is defined by

$$
\begin{equation*}
\overline{\mathrm{U}}=\frac{2 \pi \int_{0}^{r_{w}} \rho \text { Urdy }}{\bar{\rho} \pi r_{w}^{2}}=\frac{2\binom{\text { mass flow }}{\text { rate } / \text { radian }}}{\bar{\rho} r_{w}^{2}}, \tag{3.28}
\end{equation*}
$$

and the Reynolds number is defined as

$$
\begin{equation*}
\operatorname{Re}=\frac{\overline{\rho U D}}{\bar{\mu}}=\frac{4\binom{\text { mass flow }}{\text { rate } / \text { radian }}}{\bar{\mu} r_{W}} \tag{3.29}
\end{equation*}
$$

The mean values for density, viscosity and Prandtl number are those values at the $y$ location where $I^{*}=\bar{I}^{\star}$.

### 4.1 Transformation of the Equations

The continuity, momentum, and stagnation enthalpy equations were developed in Chapter 2. The first step in transformation is to recast the convective transport equations into stream function coordinates using the von Mises transformation. In essence, the $y$-coordinate is replaced by a coordinate that is constant along streamlines, namely, the stream function $\psi$. The new independent variables become $x$ and $\psi$, and the $U$ velocity component is defined by

$$
\begin{equation*}
\mathrm{U}=\frac{I}{r p} \frac{\partial \psi}{\partial y} \tag{4.1}
\end{equation*}
$$

In stream function coordinates the momentum equation (2.7) and the stagnation enthalpy equation (2.15) become

$$
\begin{equation*}
\rho U \frac{\partial U}{\partial x}+\rho U \frac{\partial}{\partial \psi}\left[r^{2} \rho U \mu_{e f f} \frac{\partial U}{\partial \psi}\right]=-g_{c} \frac{d P}{d x}+g_{c} X \tag{4.2}
\end{equation*}
$$

$\rho U \cdot \frac{\partial I^{*}}{\partial x}+\rho U \frac{\partial}{\partial \psi}\left[r^{2} \rho U \frac{\mu_{e f f}}{\operatorname{Pr}_{e f f}} \frac{\partial I^{*}}{\partial \psi}\right]=$

$$
\begin{equation*}
\frac{\partial}{\partial \psi}\left[\frac{\mu_{e f f}}{g_{c} J}\left(1-\frac{1}{P_{e f f}}\right) r^{2} \rho U \frac{\partial}{\partial \psi}\left(\frac{u^{2}}{2}\right)\right]+s \tag{4.3}
\end{equation*}
$$

Note that in the transformation the $V$ component of velocity disappears and the continuity equation is no longer used explicitly, due to the definition of the stream function.

In the stream function coordinate system, the boundary layer fluid flows between two surfaces, $I$ and $E$. The I-surface originates at $y=0$, and the $E-$ surface forms the second bounding surface. Sign convention for a positive y displacement is always from the $I$ to $E$ surface. Fluid crossing the I surface is $\dot{m}_{I}^{\prime \prime}$; this flow might be due to wall transpiration. Fluid crossing the $E$ surface is $\dot{m}^{\prime \prime \prime}$; this flow might be due to entrainment. The bounding solid surface is described by $\alpha$, related to the rate of change of surface curvature in the $x$-direction, and $r_{I}$, which describes the transverse
curvature of the I-surface. Location of the E-surface, $r_{E}$, is related to $r_{I}$ and $\alpha$. Figure 4.1 shows the coordinate system.


Figure 4.1. The stream-function coordinate system.

The sketch in Figure 4.1 depicts an external boundary layer over either a flat or conical surface, with $I$ being a wall and $E$ being a free stream. In the program, there is a limited freedom in defining these bounding surfaces. This will be discussed more thoroughly in Chapter 5.

The second and final step in the transformation is to recast equations (4.2) and (4.3) Into the Patankar-Spalding coordinate system using the transformation

$$
\begin{equation*}
\omega=\frac{\psi-\psi_{I}}{\psi_{E}-\psi_{I}}, \tag{4.4}
\end{equation*}
$$

where $\psi_{E}$ and $\psi_{I}$ are the stream function values on the bounding surfaces.
In this non-dimensional stream function coordinate system, the momentum and stagnation enthalpy equations become

$$
\begin{equation*}
\frac{\partial U}{\partial x}+\left[\frac{r_{I} \dot{m}_{I}^{\prime \prime}+\omega\left(r_{E} \dot{m}_{E}^{\prime \prime}-r_{I} \dot{m}_{I}^{\prime \prime}\right)}{\left(\psi_{E}-\psi_{I}\right)}\right] \frac{\partial U}{\partial \omega}-\frac{\partial}{\partial \omega}\left[\frac{r^{2} \rho U \mu_{e f f}}{\left(\psi_{E}-\psi_{I}\right)^{2}} \frac{\partial U}{\partial \omega}\right]=\frac{g_{c}}{\rho U}\left[-\frac{d P}{d x}+x\right] \tag{4.5}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial I^{*}}{\partial x}+\left[\frac{r_{I} \dot{m}_{I}^{\prime \prime}+\omega\left(r_{E} \dot{m}_{E}^{\prime \prime}-r_{I} \dot{m}_{I}^{\prime \prime}\right)}{\left(\psi_{E}-\psi_{I}\right)} \frac{\partial I^{*}}{\partial \omega}\right]-\frac{\partial}{\partial \omega}\left[\frac{r^{2} \rho U \mu_{e f f}}{\left(\psi_{E}-\psi_{I}\right)^{2} P_{\text {Pr }}} \frac{\partial I^{\star}}{\partial \omega}\right] \\
&=\frac{\partial}{\partial \omega}\left[\frac{r^{2} \rho U}{\left(\psi_{E}-\psi_{I}\right)^{2}} \mu_{e f f}\left(1-\frac{1}{P r_{e f f}}\right) \frac{\partial}{\partial \omega}\left(\frac{U^{2}}{2}\right)\right]+\frac{S}{\rho U} \tag{4.6}
\end{align*}
$$

The transformed equations have the general form of a diffusion equation:

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+(a+b \omega) \frac{\partial \phi}{\partial \omega}-\frac{\partial}{\partial \omega}\left(c \frac{\mu_{e f f}}{P r_{e f f}} \frac{\partial \phi}{\partial \omega}\right)=d \tag{4.7}
\end{equation*}
$$

where $a, b, c, d$ are constants.
In the program, equation (4.7) becomes the velocity equation when Preff is set equal to unfty.

### 4.2 Finite-Difference Equations

As indicated in Chapter 1, the original basic program from which STAN5 has evolved is the Patankar/Spalding program, described in their 1967 book [1]. Only the numerics of the finite-difference equations and the concept of a wall function have been carried over into STAN5. It is our intent in this section to point out several facts regarding the finite-differencing scheme. These equations are well documented in Patankar and Spalding [1,2], and, for a revised version of the program, by Spalding [6].

The central theme in obtaining the finite-difference equations, hereafter referred to as $F D E$ 's, is twofold: (1) to form a miniature fntegral equation over a finite-control volume; and (2) to presume a linear variation of the dependent varlable over the control volume to effect the integration. Figure 4.2 shows node locations and a control volume for three adjacent nodes at an upstream and a downstream station.

The first term in equation (4.7) is transformed into an FDE term, as follows:

$$
\begin{align*}
\frac{\partial \phi}{\partial x} & \simeq \frac{1}{\delta x \delta \omega} \int_{1-\frac{1}{2}}^{1+\frac{1}{2}} \int_{x_{u}}^{x_{d}}\left(\frac{\partial \phi}{\partial x}\right) d x d \omega \simeq \frac{1}{\delta x \delta \omega}\left[\int_{1-\frac{1}{2}}^{1}\left(\phi_{x_{d}}-\phi_{x_{u}}\right) d \omega+\int_{i}^{1+\frac{1}{2}}\left(\phi_{x_{d}}-\phi_{x_{u}}\right) d \omega\right. \\
& \simeq \frac{1}{\delta x \delta \omega}\left[\left(\frac{1}{4} \phi_{i-1}+\frac{3}{4} \phi_{i}\right) \frac{1}{2}\left(\omega_{i}-\omega_{i-1}\right)+\left(\frac{3}{4} \phi_{i}+\frac{1}{4} \phi_{i+1}\right) \frac{1}{2}\left(\omega_{1+1}-\omega_{i}\right)\right]_{x_{u}}^{x_{d}} \tag{4.8}
\end{align*}
$$



Figure 4.2. Typical nodal locations and control volume for finitedifference equations.

The second term in equation (4.7) is transformed into an FDE term using integration by parts:

$$
\begin{align*}
(a+b \omega) \frac{\partial \phi}{\partial \omega} & \simeq \frac{1}{\delta x \delta \omega} \int_{x_{u}}^{x_{d}} \int_{i-\frac{1}{2}}^{i+\frac{1}{2}}(a+b \omega) \frac{\partial \phi}{\partial \omega} d \omega d x \\
\simeq & \frac{1}{\delta \omega}\left[(a+b \omega) x_{u, i+\frac{1}{2}} \cdot \phi_{x_{d, i+\frac{1}{2}}}-(a+b \omega) x_{u, i-\frac{1}{2}} \cdot \phi_{x_{d, i-\frac{1}{2}}}\right.  \tag{4:9}\\
& \left.-b \int_{i-\frac{1}{2}}^{i+\frac{1}{2}} \phi_{x_{d}}^{d \omega}\right] .
\end{align*}
$$

In the above equation, the integral is evaluated in a like manner to equation (4.8). Several assumptions are built into equation (4.9): (1) the integrand of the integral is evaluated only at $x_{d}$; (2) the equation is "linearized" in that ( $a+b \omega$ ) is evaluated at $x_{u}$; and (3) the integrand is presumed to vary linearly with $\omega$ over the control volume. Assumption (3) implies small cross-stream convection; this was later changed by Patankar and Spalding [2] using a "high lateral flux modification", or "upwind-differencing" to more properly account for high lateral convection. The modification is not used in Stans.

The third term in equation (4.7) is transformed into an FDE as follows:

$$
\frac{\partial}{\partial \omega}\left(c \frac{\partial \phi}{\partial \omega}\right) \simeq \frac{1}{\delta x \delta \omega} \int_{x_{u}}^{x_{d}} \int_{i-\frac{1}{2}}^{i+\frac{1}{2}} \frac{\partial}{\partial \omega}\left(c \frac{\partial \phi}{\partial \omega}\right) d \omega d x
$$

$$
\begin{equation*}
\simeq \frac{1}{\delta \omega}\left[(c)_{x_{u, i+1 / 2}} \frac{\left(\phi_{i+1}-\phi_{i}\right)_{x_{d}}}{\left(\omega_{i+1}-\omega_{i}\right)}-(c)_{x_{u, i-1 / 2}} \frac{\left(\phi_{i}-\phi_{i-1}\right)_{x_{d}}}{\left(\omega_{i}-\omega_{i-1}\right)}\right]^{(4} \tag{4.10}
\end{equation*}
$$

The above equation is "linearized" in that $c$ is evaluated at $x_{u}$.
The fourth and final term in equation (4.7) is the source term. It is transformed into an $F D E$ term as follows:

$$
\begin{align*}
d & \simeq \frac{1}{\delta x \delta \omega} \int_{x_{u}}^{x_{d}} \int_{i-\frac{1}{2}}^{i+\frac{1}{2}}(d) d \omega d x \\
& \simeq \frac{1}{\delta x \delta \omega} \int_{x_{u}}^{x_{d}} \int_{i-\frac{1}{2}}^{i+\frac{1}{2}}\left[(d) x_{u}+\left(\frac{\partial d}{\partial \phi}\right)_{x_{u}}\left(\phi_{d}-\phi_{u}\right)\right] d \omega d x \tag{4.11}
\end{align*}
$$

In STAN5, the velocity source term is handled precisely as described by Patankar and Spalding [1]. Sources for stagnation enthalpy and turbulent kinetic energy are evaluated at $x_{u}$; the downstream contribution is neglected.

The FDE terms described by equations (4.8) to (4.11) are assembled into a form

$$
\begin{equation*}
\phi_{x_{d, i}}=A \phi_{x_{d, i+1}}+B \phi_{x_{d, i-1}}+C, \tag{4.12}
\end{equation*}
$$

where $A, B$, and $C$ are coefficients evaluated at the upstream station, $x_{u}$. A set of $\phi$ equations is written for each dependent variable. In the text which follows, the velocity dependent variable is designated as $U$, and all other dependent variables are designated as $\phi$-equation variables.

## 4.3"Grid and Slip Scheme

A sketch of the finite-difference grid and nodal locations was previously given in Figure 4.2. Cross-stream grid lines in that sketch divide the region between the I-surface and the E-surface into non-dimensional stream tubes, or flow tubes (from consideration of the definition of $\omega$ ). The number of flow tubes that comprise the cross-stream grid is denoted by $N$. Two additional stream tubes (to define slip points) are inserted by the program near the $I$
and $E$ surfaces, making a total of $N+2$ tubes, and thus $N+3$ nodal points. A cross-stream grid is shown in Figure 4.3.


Figure 4.3. Cross-stream grid between the $I$ and $E$ surfaces.

In the above sketch, the 2.5 point on the grid is the foin point, discussed in Section 3.3.1; the (2) point and the ( $\mathrm{N}+2$ ) point are the slip points. Finite-difference equations of the form of equation (4.12) are solved for all nodes (2) through $(N+2)$. Boundary conditions for these equations are obtained through wall-function calculations, described in Chapter 3, if one surface is a wall.

The grid is established from the initial velocity profile, $U=U(y)$. The profile is integrated using equation (4.1) to obtain $U=U(\psi)$, where flow between consecutive $y$ locations is $\Delta \psi$, or non-dimensionally $\Delta w$. The $\Delta w$ values, which represent the fractional amount of the initial flow, remain constant throughout the calculations, unless altered by routine LAMSUB, discussed in Section 3.5. The amount of boundary layer fluid can change, but the fractional percentages in each stream tube are fixed.

The slip points, along with "using the Wall Function", were developed by Patankar and Spalding [1] to allow use of a linear profile assumption (Section 4.1) in the near-wall region, thus eliminating the need to compute across a region of high velocity gradient. The scheme is an excellent "engineering tool" in terms of computational speed while preserving accuracy.

The idea behind the slip scheme is to presume power-law profiles for velocity and other $\phi$-equations in the near-wall region.

$$
\begin{gather*}
\mathrm{U}=\mathrm{C}_{1} \mathrm{y}^{\beta}  \tag{4.13a}\\
\left(\phi-\phi_{1}\right)=\mathrm{C}_{2} y^{\gamma} \tag{4.13b}
\end{gather*}
$$

Each of the above equations contains two unknowns, which are obtained by matching the function and its first derivative (e.g., shear stress or heat flux) at the join point. From these two criteria come defining FDE's for the slip points.

$$
\begin{align*}
\mathrm{U}_{2} & =\mathrm{U}_{2}\left(\mathrm{U}_{3}, \beta\right)  \tag{4.14a}\\
\phi_{2} & =\phi_{2}\left(\phi_{1}, \phi_{3}, \gamma\right) \tag{4.14b}
\end{align*}
$$

The above equations are linearized in that the upstream values of $\beta$ and $\gamma$ are used. Similar types of equations can be developed for slip values near a free stream and near a symmetry line (see Patankar and Spalding [1 or 2〕 for a complete description).

The procedure described above to obtain slip values near a wall was later changed by Patankar and Spalding [2] to more accurately account for convection between the wall and the join point. In STAN5, this correction was accomplished by a modification to the join-point velocity and essentially accomplishes the same goal. The correction is needed for low values of $B$; for $\beta>0.9$, i.e., a linear profile in the near-wall region due to laminar flow or "bypassing the Wall Function", the power-law slip scheme is adequate.

### 4.4 Entrainment and Grid Control

Entrainment is applicable to flows in which there are free surfaces. For example, the free surface for a wall boundary layer is the location where $U$ approaches $U_{\infty}$, i.e., its cross-stream gradient approaches zero. The function of entrainment is to introduce new fluid into the region between the $I$ and $E$ surfaces, thus expanding the grid outward into "fresh" fluid and thus preserving the near zero gradient at the outer edge of the computation
region. The expansion can be easily seen by recalling that to increment ( $\psi_{E}-\psi_{I}$ ) with a constant $\Delta \omega$ spacing causes $\Delta \psi$ to increase and thus $\Delta y$. The entrained fluid is distributed to all flow tubes.

To determine if fluid should be entrained, the dependent variable difference near the free surface is compared with its free-stream value, e.g., $\left(U_{N+3}-U_{N+1}\right) / U_{N+3}$ is computed and compared to ENFRA, a program input variable. This idea is depicted in Figure 4.4. The entrainment calculation for velocity in STANS is

$$
\dot{m}_{\text {new }}^{\prime \prime}=\dot{m}_{\text {old }}^{\prime \prime} \quad+\left[\begin{array}{l}
\text { b.l. }  \tag{4.15}\\
\text { mass } \\
\text { flux }
\end{array}\right]\left[\text { ENFRA }-\frac{U_{N+3}-U_{N+1}}{U_{N+3}}\right] \text {. }
$$



Figure 4.4. Entrainment at the free stream.

When there are $\phi$-equations being solved in addition to the momentur equation, each of these gradients near the free stream is checked to assure no defects in profiles develop. This is especially important in accelerating flows or low Prandtl number flows, where the thermal boundary layer grows outside of the momentum boundary layer. There is a flag in STAN5 that can be set to base entrainment on either the momentum equation or on the behavior of all equations. Note that in STAN5, fluid is never allowed to be detrained, due to stability considerations.

Integration stepsize, $\Delta x$, is partly determined by entrainment. The control is via an input variable FRA, say $5 \%$, which requires that the mass flow rate into the boundary layer through the $I$ and $E$ surfaces be no more than FRA - $\left(\psi_{E}-\psi_{I}\right)$ over the distance $\Delta x$. This control, in effect, cuts back the stepsize if the boundary layer entrainment is large.

### 4.5 The Calculating Procedure

Equation (4.12) in Section 4.2 is the general form for the finite-difference equations. The equations couple all grid points in the cross-stream direction, and they are solved by a tri-diagonal matrix algorithm for $1=2$ to $N+2$. They have been linearized in the sense that the coefficients are calculated at the upstream stations. Thus, the program is "one step behind" in fluid properties, eddy viscosity, etc.

Because of linearization, the equations are only partially implicit, and this requires the use of a smaller $\Delta x$ stepsize than could be used by a fully implicit scheme. For heat transfer calculations this does not present much of a problem, though, because the stepsize must be small enough to follow variable boundary conditions.

## Chapter 5

INPUT/OUTPUT

### 5.1 Introduction

To facilitate use of the program, a rather flexible input format has been developed which makes it possible to compile and link edit, and still accommodate a large number of input options merely by reading in numerical DATA. Other changes can be readily made in the core of the program, but the objective of this chapter will be to describe in detail how to access the program through DATA that are read directly by the computer.

All of the data input to the program are concentrated in the final subroutine which is labeled SUBROUTINE INPUT (KERROR). This subroutine contains a very large number of comments which in themselves constitute a set of instructions for its use. In reading this chapter it will be useful to refer to the input subroutine, and the present discussion will be based on the assumption that the reader has the input subroutine before him (her).

First it should be noted that each "read" statement is preceded by the symbols ******* extending across the page. Preceding these symbols the instructions for the "read" statement are given.

All of the "read" statements (except the title) are in the form of either a series of integer numbers or a series of decimal numbers. All of the integer numbers are in fields of five spaces. It is important to note that integers must be justified to the right side of these fields.

All decimal numbers are arranged in fields of 10 digits, and of course may be placed anywhere within that field.

### 5.2 Flow Descriptors and Controls

On the card following a title, eight integers are read, all of which convey rather fundamental information about the type of problem to be solved. Some of the program nomenclature will be introduced as these, and other variables and constants appearing below, are discussed.

GEOM is an integer, from 1 to 9 , which signals in a general way the type of system geometry to be solved. GEOM $=1$ is the simple boundary layer on a flat plate, but this case also applies for an axi-symmetric body so long as the boundary layer thickness is small relative to the body radius. Thus it
can be used for flow in a nozzle (subsonic or supersonic), or for flow over an axi-symmetric body such as a missile, even including a stagnation region.
$G E O M=2 \& 3$ differ from 1 only in that radius is included in the boundary layer equations so that boundary layer thickness need not be small relative to body radius.
$G E O M=4 \& 5$ refer to flow in circular and flat ducts, respectively. Strictly speaking, the "boundary layer" is treated as if it filled the entire duct; however, a judicious choice of grid spacing makes it possible to handle entry-length problems with accuracy. It is also possible to solve pipes or duct's which have slightly convergent or slightly divergent walls.

GEOM $=6,7,8,9$ cover the cases of circular and flat jets, and free shear flows.

MODE refers to whether the flow is to be laminar or tubulent. MODE $=1$ is a laminar flow, while $M O D E=2$ is turbulent. As will be seen below, it is possible to start with $M O D E=1$ and then shift to a turbulent flow on the basis of an input transition criterion.

FLUID refers to the type of fluid. FLUID $=1$ is any constant-property fluid, such properties to be supplied in a later read statement. FLUID = 2 refers to air, the properties of which (based on the Keenan and Kaye Gas Tables) are provided as a separate subroutine in the program. The air properties cover temperatures from $180^{\circ} \mathrm{R}$ to $4620^{\circ} \mathrm{R}$, but do not take into consideration dissociation at high temperatures. The program is not provided with the properties of any variable-property fluids other than air, but it is only necessary to designate some other fluid with a number ( 3 or higher) and then construct a subroutine similar to SUBROUTINE PROP2. The appropriate call for any other property subroutine must be inserted as indicated in the MAIN program.

NEQ refers to the total number of boundary layer equations to be solved. Thus, if the momentum equation alone is to be solved, $N E Q=1$, but if momentumand energy are to be solved, $N E Q=2$. Actually, the program dimensioning allows NEQ to be as high as 6, if, for example, a number of mass diffusion equations must be solved. Another related variable, NPH, will be found through. out the program. $N P H=N E Q-1$, and is the number of diffusion equations (energy, mass, etc.) that must be solved. It is assumed that the momentum equation is always solved.

N defines the grid structure in the y -direction; it is the number of flow tubes. Thus the number of grid points in the y -direction is $\mathrm{N}+1$. $\mathrm{Be}-$ cause of the "slip" scheme described earlier, the program inserts two more: grid points, one near the $I$ surface, and one near the $E$ surface. Thus the total number of grid points with which the program works is $N+3$. Within the program the grid points are numbered starting with 1 at the $I$ (for internal) surface and extending to $N+3$ at the $E$ (for external) surface. The character $I$ is used to index the grid points, and $I$ then varies from 1 to $\mathrm{N}+3$. For convenfence, the last three points are designated NPI $=$ $\mathrm{N}+1, \quad \mathrm{NP} 2=\mathrm{N}+2, \quad \mathrm{NP} 3=\mathrm{N}+3$. The two "slip" points, which have no real physical significance, are $I=2$ and $I=N P 2$.

The choice of $N$ determines how fine or how coarse a grid structure is to be used, and only experience can tell what is necessary to achieve desired precision for a particular problem. For a turbulent boundary layer when "using the wall function" (this will be discussed further below), $N$ in the range 15-20 is generally satisfactory. If "bypassing the wall function" is used, or if the flow is laminar, $N$ should generally be greater than 30 . If $N$ is less than 12 the program will not operate, and $N$ is limited to 50 by the dimensionIng of the program. However, this limitation can be readily changed, if desired. Finally, it should be noted that the program will change $N$ internally under special circumstances to be discussed later in connection with the input values of YPMIN and YPMAX.

KIN and KEX are indicators which determine the character of the $I$ and $E$ boundaries, respectively. If either is set equal to 1 , that boundary is a wall; if set equal to 2 , the boundary is a free stream; 3 indicates a line of symmetry, such as the centerline of a pipe or a free jet. As presently assembled, the program will handle only one wall surface, so, for example, it is not possible for both KIN and KEX to be equal to 1 . Note that the $I$ and $E$ boundaries are literally "inner" and "outer" with respect to the axi-symmetric coordinate system, so, for example, for flow in a pipe the $I$ boundary must be the centerline of the pipe and the $E$ boundary must be the pipe wall; they are not interchangeable. On the other hand, for $G E O M=1$ the $I$ and $E$ boundaries are interchangeable and either could be the wall.

KENT is an indicator for the entrainment calculation at a free boundary. If there is no free boundary, KENT can be left blank. If KENT $=0$ entrainment
is calculated based on the behavior of the momentum equation alone; if KENT $=1$ all diffusion equations are tested. Since it is quite possible for the thermal boundary layer, for example, to extend outside the momentum boundary layer, and one generally wants to adjust entrainment so that the region of interest (the region enclosed by the $I$ and $E$ boundaries) encloses the thickest boundary layer, it is generally wise to set $K E N T=1$. On occasion this can lead co some instability, and this is the reason why the option to set $K E N T=0$ is provided.

The next card to be read contains more general information, all in the form of decimal numbers. $X U$ is the present location of the calculations in the $x$ direction, and is one of the primary independent variables. Here $X U$ is initialized, so this is where calculations start. Most often $X U$ is 0.0 , but it can be any positive number where it is desired to commence calculations. (Actually $X U$ refers to the "upstream" side of the finite-difference step in the $x$-direction, as opposed to $X D$ on the "downstream" side. The difference between $X V$ and $X D$ is $D X$, the step length.) $X D$ is the $X$-distance where it is desired to stop calculations. Thus $X U$ and $X L$, as read here, define the distance over which calculations are to take place. These are dimensional. quantities and may be in feet, inches, meters, or whatever is desired. The actual dimensioning system to be used is designated later. Recall, as shown in Figure 4.1, that $x$ is intrinsic, measured along the I-surface, and is not the projection onto the axis of symmetry.

DELTAX is a number (non-dimensional) from which $D X$, the step-length, is derived. It is the ratio of $D X$ to boundary layer thickness, so $D X$ grows as the boundary layer thickens. For a pipe-flow it is the ratio of $D X$ to pipe radius. Actually, DELTAX determines a maximum value of $D X$ and can be overIidden by another number, FRA, which will be discussed shortly. DELTAX $=1.0$ is a reasonable value when dealing with a gas for which properties are varying rapidly. If properties are nearly constant considerably larger values may be used and this is particularly true for laninar flows. For fully developed flow in a pipe DELTAX can sometimes be made equal to 10 or greater. If DELTAX is too large, a slight instability will be noted, with oscillation of the output data. It is often advantageous to use large values of DELTAX to reduce computation time. A further option is avallable using the constant $K l$ and the auxiliary
boundary condition, $A U X I(M)$ (see below), whereby DELTAX can be changed arbitrarily in the course of a calculation.

RETRAN provides a way to effect intemally a transition from a laminar to a turbulent boundary layer. For a simple boundary layer, the momentum thickness Reynolds number is employed as a transition criterion, and RETRAN is the Reynolds number at which MODE will automatically shift from 1 to 2. Actually, the transition is made smoothly, rather than abruptly, over a range of momentum thickness Reynolds number from RETRAN to twice RETRAN by smoothly bringing the sublayer damping constant down from a large number to its equilibrium value (see SUBROUTINE WALL). Typically, a transition Reynolds number of 200-300 provides realistic results. If it is desired to make laminar boundary layer calculations only, care must be taken to make sure RETRAN is a number larger than any momentum thickness Reynolds numbers anticipated. For flow in a pipe or duct, RETRAN is interpreted as a diameter Reynolds number, but of course diameter Reynolds number does not vary in the $x$-direction in this case. For totally turbulent boundary layers and flows, RETRAN can be 0.0 , or left blank, if desired. For free-convection boundary layers, or for flows for which there is no wall surface, Reynolds number has no useful significance, so RETRAN must be set to unity.

FRA, when multiplied times the total amount of flow between the $I$ and $E$ boundaries, specifies the maximum amount of new fluid that will be permitted to enter the region of interest between $X U$ and $X D$ either by entrainment or by mass transfer through a porous wall. If this amount is exceeded by the specified value of DELTAX, then $D X$ is appropriately reduced in value. $F R A=0.05$ is a reasonable value for most applications.

ENFRA is the entrainment fraction. It has significance only when there is a free-stream boundary, in which case it is the desired difference (expressed as a fraction of the total difference through the boundary layer) between the free-stream velocity, or the corresponding dependent varlable in a diffusion equation, and the next closest grid point (excluding the slip point). This difference is maintained by automatically adjusting the rate of entrainment of freestream fluid. The appropriate value of ENFRA differs somewhat for different kinds of problems, and is also related to the chosen grid spacing near the outer edge of the boundary layer. Calculated results are not necessarily highly sensitive to the value chosen for ENFRA, but a very inappropriate value can lead to
either instability (wild oscillations in entrainment rate and in boundary layer thickness) or inaccurate overall results. For cypical boundary layer calculations, turbulent or laminar, a value of 0.005 frequently works well, but a fine grid near the outer edge may suggest a value as low as 0.001 . On the other hand, for a free-convection boundary layer or any case where free-stream velocity is at or near zero (for example, a jet) ENFRA should be very much larger, 0.01 to 0.05 . One way to get a handle on ENFRA, in any case, is to plot the initial velocity profile, perhaps based on an appropriate analytic solution, and then superimpose the desired grid on the plot. The difference in velocity between the free-stream and the next adjacent grid line, divided by the maximum velocity difference for the whole boundary layer, is then usually a good value for ENFRA.

If there is no free-stream, as would be the case for pipe-flow, then ENFRA can be left blank.

GV is a gravity constant which should be either set at zero or left blank if gravity is not a relevant parameter. The only gravity effects that can be considered are those in the direction of flow (x-direction). Note that a positive value of $G V$ represents a gravity force in the positive or flow direction; if simple free-convection on a vertical flat plate is being considered, remember that GV must be negative. Note also that gravity has no effect unless there are density gradients across the boundary layer; the free-convection boundary layer is a.compressible flow boundary layer, and nothing will happen if FLUID $=1$.

## 5.3 -Body Forces and Sources

The next card read concerns some integer Indicators having to do with body forces in the momentum equation, and energy and other types of sources in the diffusion equations. BODFOR can be 0,1 , or 2 . If 0 , there is no body force present other than pressure. If $B O D F O R=1$, the body force is the result of a gravity force acting upon density, and of course a value for GV must also be spectified.
$\therefore$ If $B O D F O R=2$, an external body force is present, and this force is introduced through a specified set of auxiliary boundary conditions AUXI (M), which will be discussed later. Provision is made only for a body force that is a function of $x$, and independent of $y$. BODFOR $=2$ also includes BODFOR $=1$. A body force has the dimensions force per unit of volume.

The source indicators, SOURCE(J), are not read unless there are one or more diffusion equations in addition to the momentun equation, i.e., unless $N E Q$ is greater than 1 , and NPH is greater than 0 . The index $J$ varies from 1 to NPH so that one value for SOURCE is read for each diffusion equation, reading across the card in integer fields of 5 , after BODFOR.

If there is more than one diffusion equarion it must be decided ahead of time which is which, and the designation of a source for each equation establishes what kind of a diffusion equation it is to be. Of course, the initial dependent variable profiles and the boundary conditions, both of which are discussed later, must be consistent with this choice.

If there is to be no source for a particular diffusion equation, set SOURCE $=0$, or at least leave it blank. If $S O U R C E=0$, the equation could be the energy equation with viscous dissipation neglected, or it could be a mass diffusion equation with no chemical reaction. Only the initial and boundary conditions serve to make a distinction (together also with the Prandtlor Schmidt number), since the differential equations are identical.

SOURCE $=1$ activates viscous dissipation as an energy source, as well as body-force work, and the equation is then definitely the energy equation.

Setting. SOURCE $=2$ for a particular diffusion equation has more extensive effects. It activates the source function for the turbulence energy equation (Production-Dissipation), but additionally it changes the method of calculation of eddy viscosity (and thus eddy conductivity) from the mixing-length method to the turbulent kinetic energy method, wherein eddy viscosity is proportional to the square root of the turbulent kinetic energy. However, the program still uses mixing-length in the Wall Function, and it still uses mixing-length out to the edge of the viscous sublayer if the Wall Function does not extend that far. If there is no wall, turbulent kinetic energy is used throughout.

SOURCE $=3$ is the same as $S O U R C E=1$, except that an external energy source, as a function of $x$ alone, may be introduced through AUX2(M). Such a source must have the dimensions (energy)/(volume time).

SOURCE $=4$ also implies that an external volume source is being introduced through AUX2(M), but viscous dissipation and body-force work are omitted, so this could be a source different from energy.

Note that all of these external body forces and sources which are introduced through the auxiliary functions $A U X 1(M)$ and AUX2 (M) are functions of $x$ only. This is obviously somewhat limiting, but the only practical way to
introduce sources that vary in the $y$-direction is by modifications in the core of the program. However, this can be easily done in SUBROUTINE AUX, where some comments are given.

### 5.4 Fluid Properties

The next card is the one in which fluid properties are introduced. The amoun't of information actually read depends upon whether constant properties are to be used or whether the variable properties contained in a separate property subroutine are to be used. In any case the initial static pressure PO is alwaýs read, and for the variable property case this is all that is needed. For constant properties, density, RHOC, and viscosity, VISCOC, are next to be read; if onily the momentum equation is to be solved this is all that is necessary. If one or more diffusion equations are to be solved, the only additional property is the Prandtl number for the energy equation, PRC(J), or a Schmidt number for each and every mass diffusion equation, making sure that they are read in the same order as has been established for designating each equation, i.e., $J=1$ refers to a particular diffusion equation, and $J=2$ to another, and this order must be maintained throughout the entire input routine. Note that although the symbol $\operatorname{PRC}(J)$ is used, this can be either a Prandtl or a Schmidt number. Finally, all units must comprise a consistent set. Note that the read statements are so arranged that it doesn't matter if there is a redundancy of information. Thus the program might be set up to solve both momentum and energy equations with constant properties; but if in the second card FLUID is changed to 2 the program will run with variable air properties and simply will not read the constant properties (except PO). Similarly, if NEQ is changed to 1, the program will not read Prandtl number or anything else having to do with a diffusion equation; it is not necessary to remove this input information if an abbreviated problem is to be run. As a word of caution, do not try to solve the momentum equation alone without setting FLUID $=1$ and supplying the appropriate constant properties. There is no way to introduce variable propertles without temperature or mass concentration distributions upon which to base them.

### 5.5 Boundary Conditions

The next card supplies some information about types of boundary conditions, and the number of entries read depends upon the number of differential equations to be solved. NXBC, an integer number, refers to the number of points along the boundaries at which boundary condition information is to be supplied. The cards following will contain that information. Internally, the program will determine boundary values at each $X U$ position by linear interpolation between the $x$-positions of the input boundary data as specified here. Thus NXBC must have as a minimum a value of 2 so that there is something to interpolate between. If boundary values are varying with respect to $x$ in other than a linear manner, many more than two boundary values may be required for an accurate representation. The program is dimensioned such that NXBC may be as large as 100. Free-stream velocity is evaluated from a cubic spline fit scheme rather than Inear interpolation, except that when $N X B C=2$ inear interpolation is used.

The other items read on this card refer to the type of boundary condition at a wall that is going to be supplied for any and all diffusion equations. If there is no wall nothing is read, and the same is true if only the momentum equation is to be solved. TYPBC(J) can be either 1 or 2 , depending upon whether the boundary condition read is to be, respectively, a specification of the value of the dependent variable at the wall, or the flux of the dependent variable at the wall. In the case of the energy equation, the question is whether it is the enthalpy at the wall or the heat flux that is to be specified. For the turbulent kinetic energy equation set $\operatorname{TYPBC}(J)=1$. Of course a specification for every diffusion equation must be supplied, and in the proper order.

The following card continues boundary specifications. These items, all decimal numbers, are read in the form of a table. The number of lines in the table must be equal to NXBC. $X(M)$ is the $x$ location of the points where boundary information is to be supplied. The first entry, $X(1)$, must be equal to or less than $X U$ read earlier; the last entry, $X(N X B C)$, must be equal to or greater than $X L$. For a variable velocity boundary condition, the value of $X U$ must coincide with an $X(M)$ in the table. Between the first and last point, the spacing of any other boundary condition points can be completely arbitrary. Discontinuities, for example, can be simulated by placing two points very close together. When free-stream velocity is changing rapidly, it is important to use a large number of points and not produce situations that a spline
fit will have difficulty accommodating; abrupt changes of velocity are troublesome and can lead to unwanted velocities between the specified points.

RW(M) is a geometry specification for an axi-symmetric body. It is the transverse radius of the body at each specified $x$-location. Note that RW is a function of $x$, distance measured along the surface, and not the projection onto the axis of symmetry. The boundary layer can be either on the inside or the outside of the body for $G E O M=1 . G E O M=2$ and 3 are restricted in this regard. For a pipe, $G E O M=4, R W(M)$ is the pipe radius. For a boundary layer on a non-axisymmetric body, for example a flat plate or an airfoil, use $G E O M=1$ and set all values of $R W(M)$ equal to any constant number, such as 1.0. For an axi-symmetric stagnation point use GEOM $=1$ or 2 and set $R W(M)=X(M)$. For a flat duct, $G E O M=5 ; R W(M)$ is the duct half-width.

Two additional pieces of boundary condition infomation can, if desired, be read on this card, $A U X 1(M)$ and $A U X 2(M)$. It has already been noted that these auxiliary items can be used for specified body forces or specified internal heat sources, if proper indicators are activated. AUX1 (M) can also be used to provide a control on DELTAX. These functions, however, are provided in general so that the user can conveniently introduce any kind of information that is a function of $x$, and then appropriately modify the core of the program to make use of the information. If there is a wall present, the program additionally calculates two more functions, AUXM1 and AUXM2, which are linearly interpolated values of $A U X 1(M)$ and $A U X 2(M)$, and are always available in the COMMON.

The primary boundary condition data are read on the next cards, again in the form of a table in which the number of lines wust equal NXBC. UG(M) is the free-stream velocity which must always be supplied if there is indeed a free stream. (In the case of a pipe or duct flow this colum can be left blank.) A particular feature of this version of the program is the fact that free-stream velocity is treated as an independent boundary condition rather than pressure or pressure gradient. A minor modification of the basic program is necessary 1f.pressure is to be the independent boundary condition. Note that UG is zerc for simple free convection, or for a jet in a stagnant environment.

The second column (second field of 10 spaces) is the mass flux at the wall, $A M(M)$. If there is no wall this colum is simply not read. AM is positive in the positive direction of the coordinate system. Thus, if the $I$ boundary is a wall, positive $A M$ is mass transfer into the boundary layer, but if the $E$
boundary is a wall (as in pipe-flow), negative $A M$ is mass transfer into the boundary layer.

The next five columns are read only if there is a wall and if one or more diffusion equations are to be solved. $F J(J, M)$ is either the wall value of the dependent variable in a diffusion equation or it is the wall value of the dependent variable flux. Whether it is a wall value or a flux is determined by TYPBC(J), discussed above. Thus for the energy equation $F J$ is either a wall value of enthalpy or a wall value of heat flux. The sign of the flux is again positive in the positive direction of the coordinate system which goes in the direction from $I$ to $E$. Thus, for flow in a pipe, a heat flux into the fluid results when $F J$ is negative. Care must be taken when $F J$ is a flux and there is mass transfer at the wall. FJ is then the product of the mass flux and the value of the property in question in a reservoir outside the wall. For example, for the energy equation with FJ as a flux, FJ is the product of $A M$ and the enthalpy of the transferred fluid in an external reservoir. For the turbulent kinetic energy equation, FJ should be 0.0 .

### 5.6 Initial Profiles

The next series of cards contains the initial or starting profiles for velocity and the dependent variables for each of the diffusion equations. These are read in the form of a table, as in the previous case. The number of entries in the vertical columns must be equal to $N+1$. Each colum again occupies 10 spaces.

The first colunn contains $Y(I)$, the distance measured from the I-boundary for each of the grid points at which the other information is to be supplied. In $Y(I)$, $I$ is an integer which varies from 1 to NP3, but 2 and NP2 are omitted, since these are the slip positions which are evaluated within the program. Thus the table will contain $N+1$ entries. $Y(1)$ is always 0.0 , since $y$ is measured from the I-boundary.

The spacing of the various $Y(I)$ is very important, since it establishes the cross-stream grid for the entire boundary layer calculation. First, the obvious fact should be noted that it is not possible to start finite-difference calculations with this program from a singularity; starting profiles are mandatory, but the boundary layer can be as thin as desired, although a very thin starting boundary layer may require a large number of calculations to progress
very far in the $x$-direction. Generally, the starting profiles are where analyti boundary layer solutions can be used to great advantage. Typically, one knows something like momentum thickness Reynolds number at the start, and simple analytic solutions can then be used to establish initial total thickness and initic profile shapes. Actually, since bouncary layers, and especially turbulent hounc ary layers, come to equilihrium relatively quickly, the initial profile shapes are often not at all critical; it is important that the initial integral parameters (such as momentum and enthalpy thickness) be close to correct. For example, a laminar boundary layer calculation could be started with a simple linear velocity profile, and within a few downstream steps the correct profile will be closely approximated. An exception to this discussion is flow in a pipe or duct where the "boundary layer thickness" is always the distance from the wall to the centerline. It is possible to start such calculations with a uniform velocity profile and thus calculate the velocity entry length, but for accuracy this does require using a relatively fine grid spacing near the wall.

Now, to get back to the $Y(I)$ spacing, the reason it is so important is that the program reads the initial data, calculates the fluid flow in each flow tube, totals this for the entire region $f$ rom $I$ to $F$, and then calculates the fraction of the flow in each flow tube. As the boundary layer grows, the total flow in the region $I$ to $E$ may grow due to entrainment andor mass transfer, and the distance from $I$ to $E$ may grow, but the fraction of the total flow in each flow tube is maintained constant. The fraction of the flow from the I-boundary to some $Y(I)$ is given the symbol $O M(I)$ (omega). Thus the flow between the $I$ and the $I+1$ grid point is $O M(I+1)-O M(I)$. It is these initial values of $O M(I)$ that remain the same throughout the calculation (with an exception to be discussed below). Now there is no requirement that the $O M$ spacings be uniform; on the contrary, it is generally more efficient if they are not. But it is important that the $O M$ spacing differences between adjacent flow tubes not be too large. As a rule of thumb, differences greater than a factor of about 3 should be avoided. A good way to set up the initial velocity profile is to lay it out on a piece of graph paper and then superimpos. lines for grid points, crowding them closer together in the regions where velocity is changing rapidly. A mental estimate of the relative flow rate between each pair of grid lines will usually suffice to make sure that large steps in
flow rates are avoided. This graphical procedure was also recommended as a guide for specifying entrainment fraction.

If there is a wall and the boundary layer is turbulent, a decision must be made whether to use a small number of grid points, along with "using the: Wall Function", or to "bypass the Wall Function" and use a fine grid down to . the wall. For a great many calculations the results will not differ much, and "using the Wall Function" is a little simpler and cheaper in computation time. For very high Reynolds numbers there is really no choice; a grid fine enough to allow "bypassing the Wall Function" may require an excessive number of grid points. "Bypassing the Wall Function" does become useful where pressure gradients are large, or boundary conditions are changing rapidly along the wall, or it is simply desirable to have a print-out of the variables near the wall. The accuracy question comes down to the adequacy of the Couette flow approximation, which is used in the Wall Function. For large adverse pressure gradients, for example, the Couette flow approximation begins to yield a substantial error in local shear stress in a typical case when $\mathrm{y}^{+}$becomes larger than about 15 or 20.

When "bypassing the Wall Function", it is necessary that $U$ and $y$ at the first grid point $\left(I=3\right.$ if $K^{\top} N=1$, or $I=N P 1$ if $K E X=1$ ) be so chosen that $\mathrm{y}^{+}$is about 1.00 , or less. This can be checked by multiplying $U$ by $y$ and dividing by kinematic viscosity, which gives the product $\mathrm{U}^{+} \mathrm{y}^{+}$. In this region $\mathrm{U}^{+}=\mathrm{y}^{+}$, approximately. The spacing of the grid points farther from the wall can then be gradually increased by steps of perhaps 20 percent out to about $\mathrm{y}^{+}=20$, and $25-30$ percent thereafter, 1.e., $\mathrm{y}^{+}=1.2,1.4,1.7,2.1$, etc.

When "using the Wall Function" it is important that the first grid point be at a value of $y^{+}$not less than about 20.0. The subsequent points can then be spaced at intervals that increase by 25 to 30 percent, i.e., 25.0 , 31.0, 39.0, 49.0, etc.

For both cases, after $y^{+}$becomes greater than about 200, quite large, equally spaced steps generally can be used because velocity is no longer changing rapidly. The important thing is to concentrate the grid where rapid changes are taking place.

It is important that the velocity at the free-stream edge of the boundary layer be precisely the same as the value of free-stream velocity introduced as a boundary condition earlier.

Having once established the initial velocity profile, the other columns are filled in with the corresponding initial dependent variable profiles for the diffusion equations, all in the same order as discussed earlier. Any of these can be totally zeros if desired, or all equal to the free-stream value, as would be the case for a heat transfer problem with an unheated starting length. For turbulent kinetic energy it is possible to atart with all zeros and the program will generate its own kinetic energy. In any case, the wall value of turbulent kinetic energy should be 0.0. In the case of the energy equation the dependent variable is always stagnation enthalpy, not temperature.

The value of the dependent variable in the diffusion equations at the outer edge of the boundary layer is always constant, and is established by the value specifled in the initial profiles.

### 5.7 Turbulence Constants

Some of the turbulence constants are read in the next cards. If the flow is laminar, dumay turbulent values can be used, or these entries can be left blank. If there is no wall, some of the constants are also redundant.
$\therefore \quad A K$ is the wall region mixing-length constant, kappa. There is not total agreement on the value of kappa, but 0.41 is extensively used. ALMGG is lambda, the outer region mixing-length constant (or outer region length-scale constant when turbulent kinetic energy is used). There is also a constant eddy diffusivity option available (see below) in which case ALMGG becomes a dummy. For boundary layers a value of 0.085 appears reasonable; for flow in a pipe 0.07 is suggested, but the constant diffusivity option is recommended for pipe-flow. For a boundary layer the value for ALMGG is overridden at monentum thickness Reynolds numbers below about 5500 by an internal correlation that yields a higher value. This override can be suppressed by setting $\mathrm{K} 2=3$ (see below).

ALMGG is a non-dimensional constant which yields a mixing-length when multiplied by boundary layer thickness. But "boundary layer thickness" must be defined, and $F R$ provides this definition. If $F R$ is set equal to 0.01 , the boundary layer thickness upon which ALMGG is based is the distance from the wall to the point where the velocity is within 1 percent of free-stream velocity. The suggested values for ALMGG given above are based on $\mathrm{FR}=0.01$.
$A Q$ and $B Q$ are turbulence constants which are used for the turbulence energy equation, but also for the constant eddy diffusivity option. In the former case $A Q$ is the eddy diffusivity constant while $B Q$ is the dissipation constant. Of the three constants, $A K, A O, B Q$, only two are independent. The three are related by the equation:

$$
A K=(A Q * * 0.75) /(B Q * * 0.25)
$$

If $A K=0.41$, some reasonable values for $A Q$ and $B Q$ are 0.22 and 0.38 . When the constant eddy diffusivity option is used (set $K 2=2$, see below), eddy diffusivity in the outer region is evaluated from the equation:

$$
\frac{E_{M}}{V}=A Q * \text { (Reynolds number) } * * B Q
$$

For an external boundary layer, momentum thickness Reynolds number is used; for flow in a pipe or duct, diameter Reynolds number is used. Reasonable values for the pipe case are $A Q=0.005, B Q=0.9$.

YPMAX and YPMIN are controls on the values of $y^{+}$at the outer edge of the Wall Function. They are operable whether the flow is laminar or turbulent, but are meaningless if there is no wall. Routine LAMSUB provides a scheme $\therefore$ whereby extra grid points can be automatically inserted between the wall and the next point out, or grid points can be removed from the same region. In s other words, the grid number $N$ is changed. YPMAX sets a maximum limit on the value of $y^{+}$at the outer edge of the Wall Function. If this limit is exceeded an extra grid point will be inserted. YPMIN sets a minimum limit on the value of $y^{+}$at the outer edge of the Wall Function. If $y^{+}$at the outer edge is less than this limit, the grid point nearest the wall will be removed.

When using the Wall Function, a typical procedure is to set YPMIN $=20.0$ and $\operatorname{YPMAX}=50.0$ to 100.0. When bypassing the Wall Function, set YPMIN $=0.0$ and $\operatorname{YPMAX}=1.0$. This scheme is also useful in setting up the initial profiles when it is desired to bypass the Wall Function. For example, a rather coarse grid can be introduced in which $\mathrm{y}^{+}$at the innermost point is, say, 50.0. Then if YPMIN $=0.0$ and $\operatorname{YPMAX}=1.0$, the program will insert a series of points down to near $y^{+}=1.0$, with optimal spacing.

The damping function constant for the viscous sublayer is read in the next card. Two options are available, together with some variations. APL refers to $A^{+}$in the Van Driest exponential damping function scheme; BPL refers to $\mathrm{B}^{+}$in the Evans linear damping function scheme. The program will use the scheme for which the larger number is indicated, i.e., if APL is larger than BPL, the Van Driest scheme will be used, and vice versa. In either case an empirical internal correlation is used to modify the value of APL or BPL to account for the effects of pressure gradient and transpiration. For the Van Driest scheme, $A^{+}=25.0$ is suggested for external boundary layers, and $A^{+}=26.0$ for flow in a circular pipe. $B^{+}=35.0$ appears to be about correct for the Evans scheme. In any event, the user is urged to experiment with the constants and compare results against proven experimental data. If it is desired to not use the internal correlation for transpiration and pressure gradient, SIGNAL should be set to 1.0 ; otherwise SIGNAL may simply be left blank. For example, the internal equation for the effects of pressure gradient is probably not valid for a free-convection boundary layer, or for any boundary layer involving body forces in the flow direction, so in such a case set SIGNAL = 1.0.
:The next card contains a lag constant, PPLAG, to account for the time required for the sublayer to adjust to different externally imposed conditions, such as pressure gradient or transpiration. PPLAG $=4000.0$ has been found to be reasonably satisfactory.

Also in this card is read the turbulent Prandtl number, PRT(J), for each of the diffusion equations. PRT(J) is not read if the flow is laminar, nor is it read if only the momentum equation is being solved. The program contains an internal calculation for turbulent Prandtl number near a wall, based on a conduction model. The value of turbulent Prandtl number read here is the value for a region far removed from the wall. However, this value is used in the near-wall analysis and does affect it directly and importantly. Right at the wall, turbulent Prandtl number is computed to be twice the value far removed from the wall. For the energy equation it has been found that $\operatorname{PRT}(J)=0.86$ gives reasonable results for air, and is also quite satisfactory for liquid metals. In the latter case the internal analysis yields a turbulent Prandtl number over the entire region of interest considerably greater than the value of PRT(J) read in the input.

For the turbulent kinetic energy equation the internal correlation is not used, and a value of $\operatorname{PRT}(J)=1.7$ may be about right, although there is great uncertainty about this figure.

If it is desired to suppress the internal calculation for turbulent Prandtl number and thus use a constant turbulent Prandtl number (or turbulent Schmidt number) throughout, set $K 3=3$, as described later.

### 5.8 Other Constants and Output

The dimensioning system used is established in the next card. GC is the constant in Nevton's Second Lav ( $g_{c}$ ). If $S I$ units are being used, $G C=1.0$. If English Engineering units are used $G C=32.2\left(1 b_{m} f t\right) /\left(1 b_{f} \sec ^{2}\right)$, etc. $C J$ is the proportionality factor in the First Law of Thermodynamics (J). Again, if $S I$ units are used, $C J=1.0 ;$ but with Fnglish Engineering units, $J=$ $778 \mathrm{ft}-\mathrm{lb}_{\mathrm{f}} / \mathrm{Btu}$. The other quantities read on this card, AXX , etc., are merely auxiliary constants which may be employed by the user for special purposes, after making appropriate adjustments inside the program.

The final card reads some integer numbers concerned with a number of different things. The first, NMMRUN, is the number of sets of DATA that are to be read. Ordinarily this would be 1 , but DATA sets may be stacked if desired. SPACE designates the number of integrations between output prints,i.e., if $\operatorname{SPACE}=10$, the program will print out a complete set of results every 10 integrations in the $x$-direction. There are two special cases. If SPACE $=\cdots 11$, a one-line set of abbreviated results will be printed out for every integration; if $S P A C E=21$, a complete set of results will be printed every 20 integrations, and a one-line abbreviated set will be printed for every integration.

OUTPUT is a number designating the particular output format to be used. Three are presently available, designated by the integer numbers 2, 4, 6 .

OUTPUT 6 is a general-purpose routine usable for any kind of problem. Complete profiles of all dependent variables are printed, together with numerous other pieces of information such as shear stress at a wall, heat flux, entrainment rates, eddy viscosity, etc. This routine is the only one which is usable for $\mathrm{KEX}=1$, as well as KIN $=1$, and it is the only one which should be used when free-stream velocity is at or near zero.

OUTPUT 2 is especially designed for external boundary layers when the I-boundary is a wall. $\mathrm{U}^{+}$and $\mathrm{y}^{+}$are printed, as well as the dimensional
profiles; and the non-dimensional parameters $\mathrm{C}_{\mathrm{f}} / 2$, St , momentum thickness Reynolds number, enthalpy thickness Reynolds number, are all printed.

OUTPUT 4 is a routine for flow in a pipe or duct. Parameters peculiar to this type of problem, such as mean velocity, mixed-mean enthalpy, and diameter Reynolds number, are printed along with the pertinent profiles.
$\because$ The options SPACE $=11$ and 21 are available only for output routines 2 and 4.
$\therefore$ Some additional data may be printed with any of the output routines by setting the indicator Kl (see below) to any number greater than 10 . Five specially designated pieces of information, $\operatorname{SP}(1), \ldots \mathrm{SP}(5)$, will be printed, but they must first be assigned at some point in the body of the program. This option simply provides the user with a simple method of capturing additional information of his own choosing.

The integer indicators $\mathrm{K} 1, \mathrm{~K} 2, \mathrm{~K} 3$, have been mentioned several times in this chapter. These indicators provide the user with a convenient scheme for causing particular things to happen within the program. They have already been used for a number of purposes, but the user still has the option for other uses. The uses already programmed are as follows:

Kl greater than 10: Five specially defined pieces of information will be printed in all of the output routines.

K1 equal to 9 or 20: DELTAX becomes equal to $A U X I(M)$, and the input value of DELTAX is overridden.

K2 equal to 2 :
Program will use the constant eddy diffusivity option in the outer region, rather than mixinglength.

| K2 equal to 3: | An internal empirical equation for ALMGG will be <br>  <br> suppressed, and the input value of ALMGG will be |
| :--- | :--- |
|  | used throughout. |

## Chapter 6

## PPOGRAM ORGANIZATION

### 6.1 Structure of the Program

Program STAN5 consists of a driver program and six subroutines.
The driver program, MAIN, sets all boundary conditions and conducts the integration. In addition, fluid properties, entrainment, DX stepsize, and integral parameters are calculated in this routine.

SUBROUTINE STEP is a package containing five subsections. In STEP(1), the initial slip points and $\beta$ and $\gamma$ near the $I$ and $E$ surfaces are computed. STEP (2) computes the initial radii and converts the initial $y^{\prime} s$ to $\psi$ 's and then to $\omega^{\prime} s$. These two routines are required only at the start of integration or if LAMSUB readjusts the profiles. STEP(3) computes y's from the velocity profile, and the $\psi$ distribution and the radif associated with these $y$ locations. Also, the velocity profile is searched for its maximum and minimum values, and the boundary layer thickness is determined. In STEP(4), all finitedifference coefficients are formed and the resulting FDE's are solved. STEP(5) is used to initialize variables at the start of integration.

If one of the bounding surfaces is a wall, SUBROUTINE WALL computes wall shear stress and heat flux, along with $C_{f} / 2$ and $S t$. The internal correlation for $A^{+}$or $B^{+}$as a function of $V_{0}^{+}, P^{+}$, and $\mathrm{BF}^{+}$, and LAMSUB, are contained in this subroutine.

Effective viscosities and effective Prandtinumber for turbulent flow. calculations are computed in SUBROUTINE AUX, and, in addition, all source terms for the $\phi$-equations, e.g., viscous dissipation or TKE production and dissipation.

Printing during integration is via SUBROUTINE OUT, which contains three subsections, with the first designed primarily for external boundary layers, the second for pipe flows, and the third for a general output.

SUBROUTINE PROP2 is a variable-properties table for air at moderate temperatures, to be used with compressible flow calculations.

SUBROUTINE INPUT reads and prints all input variables. In addition, it performs diagnostics on these variables to look for "pitfalls" associated with setting up a problem or incompatibilities among the variables.

### 6.2 MAIN

The driver of any program is generally the most complex routine, and the one contained in STAN5 is no exception. Therefore, it has been diagrammed and is given in Figure 6.1. Since the flow chart presents the sequence of events straightforwardly, no further discussion is felt necessary.

### 6.3 STEP

Five sections comprise STEP(K), with STEP1, STEP3, and STEP4 very similä in content to that found in Patankar and Spalding [1,2].

STEP1 computes slip-point quantities near the $I$ and $E$ surfaces and $\beta$ and $\gamma$ (see Section 4.3). This routine is used only for the initial profiles and for profiles readjusted by LAMSUB (see Section 3.5).

STEP2 has two functions, and is used only for the initial profiles and for profiles readjusted by LAMSUB. It computes the radii that correspond to initial values of $y$ in the velocity profile. It also converts the initial $y$ table to $\psi$, using equation (4.1), and finally to $\omega$, $\mathrm{OM}(\mathrm{I}$ ), using equation (4.4), with $\psi_{I}$ arbitrarily set to zero. Note that integration of equation (4.1) between the $I$ and $E$ surfaces gives mass flow rate per radian (or unit depth for two-dimensional flows). The variable PEI is this quantity. For internal flows, PEI remains constant (unless there is mass transfer at the wall), and for external flows PEI is increased at each integration step due to entrainment or wall mass transfer.

STEP3 has three functions; it is called at each integration step. This routine computes $y$ locations of the nodes by integrating the velocity profile using equations (4.1) and (4.4) and the mass flow rate per unit radian, PEI. The radif are then calculated from the $y$ 's. Finally, the velocity profile is searched to obtain maximum and minimum velocities, UMAX and UMIN, and the input variable $F R$ is multiplied times (UMAX - UMIN). The y table is then interpolated to obtain the location for this product, YL; this variable is the boundary layer thickness, defined as delta sub (1.000-FR). For pipe flows $Y \mathrm{Y}$ is the wall radius.

STEP 4 has two functions; it is called at each integration step. It computes the velocity finite-difference coefficients $\mathrm{AU}(\mathrm{I}), \mathrm{BU}(\mathrm{I})$, and $\mathrm{CU}(\mathrm{I})$, and those for the $\phi$ equations, $A(J, I), B(J, I)$, and $C(J, I)$. The FDE's are then assembled and solved to obtain profiles for velocity, $U(I)$, and $\phi$-dependent variables, $F(J, I)$.


Figure 6.1. Flow chart of the driver routine in STAN5.

STEP5 is called at the beginning of the program to zero the arrays and initialize parameters.

### 6.4 WALL

SUBROUTINE WALL performs the functions described in Sections 3.1 through 3.5 to determine friction factor and Stanton number. It is called one or more times per integration (depending on whether LAMSUB is invoked) providing one surface is a wall.

The first part of the routine sets up the join point conditions for velocity and stagnation enthalpy: $\mathrm{y}_{2.5}$ is $\mathrm{YI} ; \mathrm{U}_{2.5}$ is UI; $\mathrm{I}_{2.5}^{*}$ is $\mathrm{FI}(\mathrm{J})$; and $R_{2.5}$ is REW. The shear velocity $U_{\tau}$, UTAUW, is also computed using the wall shear stress from the previous integration step.

The second part of the routine sets up various source terms for the stagnation enthalpy Wall Function equation (3.14). The variable C3 is $W$, C4 is $W \cdot X^{+} / 2$, and $C 5$ is the term in equation ( 3.4 k ) to convert $s$ to $S^{+}$. Since the non-dimensionalizations contain $\dot{q}_{0}^{\prime \prime}$ in the denominator; an adiabatic wall should be simulated with a very small but non-zero heat flux.

In the third section Couette flow quantities are formed: PPL is $\mathrm{P}^{+}$; GPL $_{y}$ is $\mathrm{V}_{\mathrm{o}}^{+}$; and BFPLUS is $\mathrm{X}^{+}$. These quantities are then converted into effective values by solving a lag equation (2.25) for $v_{o, e f f}^{+}$, GPLE; and for $\left(P^{+}-X^{+}\right)_{\text {eff }}$, PPLE. The constant in equation (2.25) is the input variable PPLAG. Finally, the $A^{+}$or ${B^{+}}^{+}$equation (2.24) is evaluated using these effective values. If transition from laminar to turbulent flow is in progress, $A^{+}$or $B^{+}$is modified according to equation (2.38).

The fourth section examines the join-point Reynolds number. If it is less than 4 (which is synonymous with setting the input variable YPMAX < 2), the Wall Function is bypassed (section six below); otherwise section five is used.

The fifth section of SUBROUTINE WALL is "using the Wall Function". Here equation (3.9) is solved for $U^{+}$and equation (3.14) is solved for $I^{\star^{+}}$. Both equations are numerically integrated by a trapezoidal rule using progressively larger $\Delta y^{+}$steps, DYPL. In the output from this section $y_{2.5}^{+}$is YPL, $U_{2.5}^{+}$is UPL, and $I_{2.5}^{\star^{+}}$is $\operatorname{HPS}(J)$. When the $U^{+} y^{+}$product equals $R e_{2.5}$, control is transferred to section seven, described below. During integration $\tau^{+}$and $y^{+}$are continuously monitored, and if $\tau^{+}$becomes less than 0.1 or
$y^{+}$becomes greater than YPMAX, control is transferred to LAMSLB to insert a new point near the wall.

The Wall Function bypass option is contained in the sixth subsection of WALL. Here equations $(4.18 a-c)$ are solved for $y_{2.5}^{+}$, with $U_{2.5}^{+}$computed from the definition of $\mathrm{Re}_{2.5}{ }^{\circ}$

Outputs from either section five or six are used in section seven to compute wall shear stress, TAUK, using equation (3.1la). The friction factor, CF2, is then formed following equation (3.11b). If there are no $\phi$ equations being solved, control is passed to section ten of WALL.

If $\phi$ equations are being considered, section eight is used, providing the Wall Function is being bypassed, and equation (3.20) is solved for $\mathrm{I}_{2.5}^{\mathrm{*}^{+}}$.

Section nine uses $\mathrm{I}_{2.5}^{\boldsymbol{*}^{+}}$from either section five or eight to compute wall heat flux, $Q W(J)$, and Stanton number, $S T(J)$. If there is a total flux boundary condition, the wall value of $\phi$ is computed (see Section 3.3.2).

Routine LAMSUB is contained in the tenth section. It is invoked in accordance with equation (3.21), which is fully described in Section 3.5.

### 6.5 AUX

In the first part of subroutine AUX, the turbulent viscosity and conductivity for each node is computed and added to its laminar counterpart to obtain an effective viscosity and conductivity.

Computation of the turbulent viscosity at each node begins with evaluating the damping function, $D V(I)$, as described by equation (2.22) or (2.23). Then the $\lambda \delta .99$ mixing-length, $A L$, is evaluated according to equation (2.26), with $\lambda$, ALMG, obtained from equation (2.27). If the flow is in the near-wall region, the mixing-length is switched to KyD , equation (2.21)

Once a mixing-length for the node is established, the turbulent viscosity $\mu_{t}$, EMUT, is evaluated using either the Prandtl mixing-length model, equation (2.19), or the constant eddy viscosity model, equation (2.36), or the turbuient kinetic energy model, equation (2.28). The turbulent viscosity is added to the laminar viscosity to form an effective viscosity, $E M U(I)$, as defined by equation (2.6).

If the stagnation entahlpy equation is being solved, the turbulent Prandtl number, PRTJ, is set either to its input value, PRT(J), or to a value calculated using the variable turbulent Prandtl number model, equation (2.37).

For TKE the input variable is the turbulent Schmidt number. An effective Prandti/Schmidt number, $\operatorname{PREF}(J, I), i s$ formed according to equation (2.14). In the second part of subroutine AUX all source terms for the $\phi$-equations are formulated. The sources are defined as all terms to the right of the equal sign after a $\phi$-equation is transfomed using equation (4.7), and finite-differenced according to equation (4.11).

## References

1. Patankar, S. V., and Spalding, D. B., Heat and Mass Transfer in Boundary Layers, lst Ed., Morgan-Grampian, London, 1967.
2. Patankar, S. V., and Spalding, D. B., Heat and Mass Transfer in Boundary Layers, 2nd Ed., International Textbook Company Ltd., London, 1970.
3. Kays, W. M., and Moffat, R. J., "The Behavior of Transpired Turbulent Boundary Layers," Studies in Convection, Vol. $1:$ Theory, Measurement and Application, Academic Press, London, 1975.
4. Lamder, B., and Jones, W. P., "On the Prediction of Laminarization," presented at the ARC Heat and Mass Transfer Subcomittee Meeting of April 5, 1968.
5. Julien, H. L., Kays, W. M., and Moffat, W. M., "Experimental Hydrodynamics of the Accelerated Turbulent Boundary Layer With and Without Mass Addition," Jn. Heat Transfer, Trans. ASME, Series C, Vol. 93, No. 4, p. 373, November 1971.
6. Spalding, D. B., "A General Computer Program for Two-Dimensional BoundaryLayer Problems," Report HTS/73/48, Dept, of Mech. Engrg., Imperial College of Science and Technology, September, 1973.

## Appendix I

## PROGRAM NOMENCLATLRE

| A (J, I) | Finite-difference coefficient for $\phi$-equations. |
| :---: | :---: |
| A2 | Integral term in Couette flow form of momentum equation. |
| AJE (J) | Linear-interpolated value of $F J(J, M)$ if flux type boundary condition and E-surface is a wall. |
| AJI (J) | Linear-interpolated value of $F J(J, M)$ if flux type boundary condition and I-surface is a wall. |
| AK | Kappa in Prandtl mixing-length model. |
| ALMG | Outer layer constant in Prandtl mixing-length constant, modified if low Reynolds number ( $\mathrm{K} 2 \neq 3$ ). |
| ALMGG | Input value of outer layer constant in Prandtl mixing-length model. |
| AM(M) | Wall mass flux boundary condition, positive in direction of increasing $y$. |
| AME | Linear-interpolated value of $A M(J)$ if wall mass $f l u x$ and E-surface is a wall. |
| AMI | Linear-interpolated value of $A M(J)$ if wall mass flux and I-surface is a wall. |
| APL | Van Driest damping coefficient in mixing-length model, input value SIGNAL=1.) or computed from internal correlation (SIGNAL=0.). |
| AQ | Production constant in TKE model or constant in eddy diffusivity model. |
| AU (I) | Finite-difference coefficient for velocity equation. |
| AUXI (M) $\because$ | Generalized $x$-direction body force for momentum equation (BODFOR=2) in units of force/unit volume, specified at each $X(M)$. |
| ALXX $2(\mathrm{M})$ $\cdots$ | Generalized energy equation source [SOURCE $(J)=2,3]$ in units of energ: rate/unit volume, specified at each $X(M)$. |
| AUXM1 | Linear-interpolated value of AUXI (M). |
| AUXM2 | Linear-interpolated value of AUX2 (M). |
| AXX | Not used by program. |

$B(J, I) \quad$ Finite-difference coefficient for $\phi$-equation.
BETA Power of $y$ in slip scheme, near-wall region.
BF(I) Body force temm for momentum equation (gravity, AUXM1 for BODFOR $\neq 0$ ).
BFPLUS Body force in "wall coordinates" ( $\mathrm{X}^{+}$).
BODFOR Type of body force for momentum equation.
BPL Evans damping coefficient in mixing-length model, input value (SIGNAL=1.) or computed from internal correlation (SIGNAL=0.).

BQ
Dissipation constant in TKE model or constant in eddy diffusivity model.
$B U(I)$ Finite-difference coefficient for velocity equation.
BXX Not used by program.
$C(J, I) \quad$ Finite-difference coefficient for $\phi$-equation.
CAY Acceleration parameter, $\left(v / U_{\infty}^{2}\right) d U_{\infty} / d x$.
Wall friction coefficient, $C_{f} / 2$.
CJ Conversion factor, mechanical to thermal energy.
CSALFA Cosine $\alpha$, to relate $y$ and $r$.
CU(I) Finite-difference coefficient for velocity equation.
CXX Not used by program.

DELI Boundary layer displacement thickness.
DEL2 Boundary layer momentum thickness.
DEL3 Boundary layer enthalpy thickness.
DELTAX Maximum integration stepsize (DELTAX * YL).
DPDX Pressure gradient due to free-stream velocity variation and freestream body force (pressure gradient to conserve continuity and momentum if pipe/channel flow).

DX Integration stepsize (computed by program).
DXX Not used by program.

| EMC (I) | Effective dynamic viscosity, sum of laminar and turbulent contributior |
| :---: | :---: |
| ENFRA | Entrainment fraction to control boundary layer entrainment. |
| EXX | Not used by program. |
| $F(J, I)$ | $\phi$-dependent variable in $\phi$-equations (e.g., stagnation enthalpy or TKE equations) at $Y(I)$. |
| FI(J) | Join-point value of $\mathrm{F}(\mathrm{J}, \mathrm{I})$. |
| $\mathrm{FJ}(\mathrm{J}, \mathrm{I})$ | Boundary value of $F(J, I)$, specified at each $X(M)$ [level if $\operatorname{TYPBC}(J)=1$ and flux if $\operatorname{TYPBC}(J)=2]$. |
| FLUID | Type of free-stream fluid. |
| FMEAN | Bulk-mean stagnation enthalpy for pipe flow, to adjust Stanton number |
| FR | Defines boundary layer thickness. |
| FRA | Fraction to determine DX stepsize. |
| GAMA (J) | Power of $y$ in slip scheme, near-wall region. |
| GC | Proportionality constant, Newton's 2nd Law. |
| GEOM | Geometry descriptor. |
| GPL | Blowing parameter in "wall coordinates" ( $\mathrm{V}_{0}^{+}$). |
| GV | Gravity constant for momentur body force. |
| H | Boundary layer shape factor. |
| I | Cross-stream index for dependent variable ( $\mathrm{I}=1$ at $\mathrm{y}=0$ ). |
| INDE (J) | Type of boundary condition at E-surface (TYPBC (J)). |
| INDI (J) | Type of boundary condition at I-surface (TYPBC(J)). |
| INTG | Integration step counter. |
| ITKE | I index value at edge of mixing-length model/TKE model boundary. |
| J | Index for $\phi$-equations (all $J$ loops bypassed if only solving velocit: equation). |

```
KASE Flag to identify if one surface is a wall.
KD Flag to determine how damping coefficient will be determined for
        Prandtl mixing-length model.
Kl Flag to control print of SP(I) and changes in DELTAX.
K2 Flag to suppress corrections to ALMGG or to use eddy diffusivity
        model.
K3 Flag to suppress use of internal correlation of turbulent part of
    PREF(J,I).
KENT Flag to control the entrainment calculation.
KERROR Flag to terminate program if input data error detected.
KEX Type of E-surface.
KIN Type of I-surface.
KRAD Flag to identify if transverse radius effects are to be included in
equations.
LVAR Flag to prematurely teminate program (e.g., if dimensioning exceeded, negative'pressure, etc.).
M Index for boundary condition location.
MODE Flag to signal laminar or turbulent flow.
\(N \quad\) Number of initial stream tubes (which requires specification \(N+1\) inttial profile points).
NEQ
Number of equations to be solved.
NIND Counter for number of data sets executed.
NPH Number of \(\phi\)-equations to be solved (NEQ-1).
NP \(1 \quad N+1\).
NP \(2 \quad N+2\).
NP3 N + 3.
NUMRUN Number of consecutive data sets to be processed.
NXBC Number of boundary condition locations (X(1) \(<\mathrm{X}(M)<X(N X B C))\).
```

| OM (I) | Non-dimensional stream function. |
| :---: | :---: |
| $\mathrm{OMD}(\mathrm{I})$ | OM (I+1) - OM(I). |
| OUTPUT | Flag to signal type of print format, related to GEOM. |
| PEI | Boundary layer mass flow rate per unit radian (or per unit depth if transverse radius not considered). |
| PO | Initial free-stream static pressure. |
| PPLAG | Lag constant for changing $\mathrm{P}^{+}, \mathrm{X}^{+}, \mathrm{V}_{0}^{+}$. |
| PPL | Pressure gradient parameter in wall coordinates ( $\mathrm{P}^{+}$). |
| $\operatorname{PR}(J, I)$ | Laminar Prandtl number. |
| PRC(J) | Constant property laminar Prandtl/Schmidt number. |
| PRE | Pressure at $\mathrm{X}=\mathrm{XD}$. |
| $\operatorname{PREF}(\mathrm{J}, \mathrm{I})$ | Effective Prandtl number, combining the laminar and turbulent Prandtl numbers. |
| PRO | Pressure at $\mathrm{X}=\mathrm{XU}$. |
| PRT (J) | Initial value of turbulent Prandtl number for $\phi$-equation (asymptote if variable turbulent Prandtl number model used). |
| QW (J) | Flux of $\phi$-equation at a wall (positive in positive $y$-direction). |
| QWF (J) | Flux of $\phi$-equation at a wall/ [F(J,wall) - FI $J$ ) ]. |
| R (I) | Transverse radius of finfte-difference node at $Y(I)$. |
| RBOM (I) | 1. / [OM $(\mathrm{I}+1)-\mathrm{OM}(\mathrm{I}-1)]$. |
| REH | Enthalpy thickness Reynolds number. |
| REM | Momentum thickness Reynolds number (diameter Reynolds number for pipe flow) |
| RETRAN | Reynolds number for laminar-to-turbulent transition. |
| RHO ( I ) | Fluid density. |
| RHOC | Constant property fluid density. |
| RHOM | Fluid density at location of FMEAN for pipe flow. |
| ROMD ( I) | 1. $/[O M(I+1)-O M(I)]$. |


| RW (M) | Distance from axis of symmetry to body surface, specified at each $X(M)$. |
| :---: | :---: |
| RWO | Wall radius for pipe flows. |
| SC(I) | Diffusion term for velocity equation (small c). |
| SD | Source term at $\mathrm{X}=\mathrm{XD}$, not used by program. |
| SOURCE (J) | Type of source function for $\phi$-equation. |
| SP(I) | Special print array, user supplied. |
| SPACE | Print spacing. |
| ST (J) | Wall Stanton number (based on FMEAN if pipe flow). |
| $\operatorname{SU}(J, I)$ | Source term for $\phi$-equation. |
| $T(I)$ | Static temperature if stagnation enthalpy equation (FLUID $=2$ ); shear stress if no $\phi$-equations. |
| TAU | Shear stress at join-point location. |
| TAJW | Wall shear stress. |
| TYPBC(J) | Type of boundary condition for $\phi$-equations (level or flux). |
| $U(I)$ | Velocity-dependent variable in momentum equation at $Y(I)$. |
| UG (M) | Free-stream velocity, specified at each $X(M)$, except for pipe/channel flows. |
| UGD | Free-stream velocity at $X D$, obtained using 3rd order spline fit to UG (M) . |
| UGU | Free-stream velocity at $X U$, obtained using 3rd order spline fit to UG (M). |
| UI | Join-point velocity. |
| UMAX | Maximum U(I) in velocity profile. |
| UMIN | Minimum $U(I)$ in velocity profile. |
| VISCO(I) | Laminar dynamic viscosity. |
| VISCOC | Constant property laminar dynamic viscosity. |


| $\mathrm{X}(\mathrm{M})$ | Location along wall (centerline if no wall) where boundary values are given. |
| :---: | :---: |
| XD | Downstream value of $x$ where differential equations are solved. |
| XL | Value of $x$ where integration terminated, |
| XU | Value of $x$ where integration begins; during integration the upstrear value of $\mathbf{x}$. |
| Y(I) | Independent variable, perpendicular to $x$, measured from I-surface. |
| YEM | Location for ( 1 - FR) - UMAX. |
| YIP | Location for (1-FR) - UMIN. |
| YPMAX | Maximum $y^{+}$at outer edge of Wall Function. |
| YPMIN | Minimum $\mathrm{y}^{+}$at outer edge of Wall Function. |

## Appendix II

OUTPUT NOMENCLATURE

AME $\quad \dot{m}_{E}^{\prime \prime}$, wall mass flux, Figure 4.1, or entrainment, equation (4.15). AMI $\quad \dot{m}_{I}^{\prime \prime}$, wall mass $f l u x$, Figure 4.1.

APL $A^{+}$, Van Driest damping constant, equation (2.22).

BETA $\quad B$, slip constant, equation (4.13a); or $-H * \operatorname{Re}_{M} * K / C_{f} / 2$, acceleration parameter, OUTPUT $=2$.

BPL $\mathrm{B}^{+}$, Evans damping constant, equation (2.23).
CF2
$C_{F} / 2$, friction factor, equations (3.11b) or (3.24).
EDR
EMU (I)
F
$F(1, I)$
$F(2, I)$
$F(1$, wall $)$
FM
FW
G
Clauser parameter, $(H-1) /.\left(H \sqrt{C_{f} / 2}\right), \quad$ OUTPUT $=2$.
GAMA (J)
H
HPLUS (I)

I
y location.
INTG
integration number.
K
acceleration parameter, $\quad\left(\nu / U_{\infty}^{2}\right) d U_{\infty} / d x$.
NJ
Nu, Nusselt number, equation (3.26).
$O M(I) \quad \omega$, equation (4.4).

PEI $\quad\left(\psi_{F}-\psi_{T}\right)$, boundary layer mass flow rate/radian (on unit depth), equation (4.4).

PPLUS $\quad \mathrm{P}^{+}$, pressure gradient parameter, equation (3.4g).
PRESS PRESSURE

QWALL $\quad \dot{q}_{0}^{\prime \prime}$, wall heat $f l u x$, equation (3.15a).
$R(I) \quad r$, radius at $y$ location.
RE Reynolds number, equation (3.29), OUTPUT $=4$.

REM

REH

RHO (I) $\quad \rho$, fluid density at I-surface.
RHO (NP3) $\rho$, fluid density at E-surface.
SP(I) special output array, user supplied.
SQRT (K)/UG $\sqrt{q^{2} / 2} / U_{\infty}$, turbulent kinetic energy equation.
$S T(J) \quad S t$, Stanton number, equation (3.15b).
$T(I)$ static temperature, degrees Rankine; or $\tau^{+}$, equation (3.4f), if $N E Q=1$ and OUTPUT $=2$.

TAUPLUS $\quad \tau^{+}$, equation (3.4f).
TAUWALL $\quad \tau$, wall shear stress, equation (3.1la).
$\mathrm{U}(\mathrm{I}) \quad \mathrm{U}$, velocity at y location.
UGU $\quad U_{\infty}$ at print location.
$U M \quad \bar{U}$, mean velocity equation (3.28).
$\left.\begin{array}{l}\text { UPL, } \\ \operatorname{UPLUS}(I)\end{array}\right\} \quad \mathrm{U}^{+}$at y location, equation (3.4b).
VWPLUS $\quad \mathrm{V}_{0}^{+}$, equation (3.4c).
$\mathrm{XU} \quad \mathrm{x}$ at print location.
$Y(I) \quad y$, dependent variable location.
$\left.\begin{array}{l}\text { YPL, } \\ \operatorname{YPLUS}(I)\end{array}\right\} \quad y^{+}$at $y$ location, equation (3.4e).

## STAN5 PROGRAM



```
C.....SUEROUTINE SUPPLIED EY'USER.
    IFIFLUID.NE.II GO TO 115 MAINOS6O
    MalNO57O
    (INTG.GT.O) 6O TO 205 NAINO5BO
    00 110 I=1,NP3
    VISCOCII=VISCOC
    RHOII|=RHOC
    T(I)=1.
    IF (NPH.EQ.O) GO TO 110
    DO 105 J=1,NPH
    PR(J,I|=PRCIJ)
    105 CONTINUE
    1HO CONTINUE
    GO TO 205
    11500 130 I=1,NP3
    IPROP=FLUID-1
    60 TO (120,122,124),IPRJP
    120 J=1
    IF(SOURCE(J).EQ.2)J=2
    CALL PROPZ(I,FIJ,II,T(I),VISCOIIJ,PRII,IJ,RHOIIII MAINOT4O
    IF ILVAR.EQ.7I GC TO 1000 MAINOT50
    GO TO 130
    MAINO760
C.....CALLS FOR OTHER PROPERTY SUBROUTINES CAN BE INSERTED HERE. IT IS MAINOT7O
C.....ALSO NECESSARY TO CHANGE PROPERTY CALLS IN SUBROUTINE HALL. MAINOT8O
    122 CONTINUE
    124 CONTINUE
    130 CONTINUE
```



```
C.....WALL RADIUS AT EACH X LOCATION EVALUATED BY MAINO83O
C.....BY LINEAR INTERPCLATION OF INPUT DATA NAIVOB4O
205 IF ILSUB.GT.OI GC TO 35 M, MAINOB5O
205 IF ILSUB.GT.OI GC TO 35 M, MAINOB5O
            R1I=RW(M-1:
            x2=x(M)
            x = x(M-1)
            RUU=R11+(R12-R11)*(XU-X1)/(x2-x1)
            IFIGEOM.EQ.7IGO TC 225
            IFIGEOM.EQ.9IGC TC 230
            RWO=RUU
            CSALFA=(SORT(AES ((X2-X1)*(X2-X1)-(R12-RL1)*(R12-R11)))
            IFIKIN.EO.2.ANC.KRAD.EQ.1)RUU*RUU-Y(NP3)&CSALFA
            IFIGEOM.EQ.4.OR.GEOM.EQ.6)GO TO 220
            60 TO 30
    220 CSALFAxI.00 MAINO980
    RUU=0.0
    GO TO 30
    225CSALFA=1.00
            IF(INTG.EO.OIPI=0.5*RUU*RJU*U(1) FRHO(1)
            IFIINTG.EO.OIGO TC }3
            PI=PI-AMI*RUU*CX
            IFIPI.LE.0.0IRUU=0.0
            IFIPI.LE.O.OIGEOF=6
            IFIGEOM.EO.6 IKIN=3
            IFIGEOM.EQ.6)MRITEI6,2281
            IFIGEOM.EQ.6IGO TC 30
            RUU=SORT(PI#2./(U)I)#RHO(I)|)
            GO TO 30
    230 CSALFA=1.00
            IFIINTG.EO.OJEN=0.0
            IFIINTG.EO.OIRWO=0.0
            IFIINTG.EQ.O)RMO=0.0
                            MAIN0870
                            vaINO880
                                    MAINO890
                                    MA INOTOO
                                    MAIN0910
                                    MAINO920
                                    MAIN0930
                                    MAIN0940
                                    MAIN0950
                                    MAINO950
                                    "AINO970
    RUU=0.0
                                    IN0980
                                    MAINO990
            UU*RJU*U(1)FRHO(1) MAINIO20
                MAIN1010
                                    MAIN1O30
                                    *AIN1040
                                    mAIN1050
                                    NAIN1060
                                    NAIN1070
                                    MAINIO8O
                                    MAINIO80
                                    MAIN1090
    *A!N1100
    MAINIIIO
                                    AINLI2O
                                    MAINII30
                                    MAIN1140
                                    *AIN1150
```



## CRIGINAL PAGE IS <br> OF. POOR QUALITY

```
    330 IF(KEX.EQ.2IAME-AMEN MAIN1760
        IFIKIN.EQ.2IAPI=AVIN
    MAIN1770
    335 IFIKEX.EO.2.AND.AME.GT.O.IAME=O.
        IFIKIN.EQ.2.ANC.AMI.LT.D.IAMI=0.
    AMMAX=PEIE#O.&
        IFIKEX.EQ.2.ANO.AME.LT.-AMMAXI AME=-AMMAX
        IFIKIN.EC. 2.ANC.AMI,GT.AMMAXIAMI=AMMAX
    340 IFIKIN.EC.3IAMI=O.
        IF(KEX.EQ.3)AME=0.
```




```
    345 IF(AMI - 0.0142,40.42
    MAIN1870
    40 IF(AME - 0.0)142.44,42
    42CX=FRA#PEI/(ABSIR\I)由AMI-R(NP3)*AME|)
        IFIOX.GT.OELTAX@YLJDXDDELTAX*YL MAINI900
        GO TO 46
    44 DX = DELTAX&YL
    46 IFIINTG.EO.OIGO 10 49
        IFIOX.GT.20. EDXOLOIWRITEI6,481
    49 IF(INTG.LT.10)0X=0.2*DX
        INTG=INTG+1
        INTG=INTG+1 MX MAIN1960
        EXOLD=OX
        IFIREM.GT.RETRANIMCOE=2
        IF (XD.GE.{X(NXBC)-1.5*DX)) XL=X(NXBC)-1.5*OX
        IF(XD.GT.X(NYBC) )PRO=PRE
        IF(XO.GT.X(NXBCI) GO TO 55 MAIN2O2O
    MAIN1780
    MAIN1790
        MAIN1800
        MAIN1810
        MAIN1820
    MAIN1820
    MAIN1840
C
    MAIN1890
    MAIN1910
    MAIN1920
    MAIN1930
    O- MAIN1940
        MAIN1950
        MAIN1960
        MAIN1980
C------------_----------------------------MOOY FORCE ----MAIN2030
C..... BODY FORCEICTHER THAN PRESSURE GRADIENTI, SUCH AS MAIN204O
C..... BOUYANCY OR A BCDY FORCE PER UNIT VOLUME, FOR THE MAIN205O
C..... MOMENTUM EQUATION. POSITIVE IN THE POSITIVE X-DIR. MAIN2OGO
            IF (BODFOR.EG.O) GC TO 410 MAIN2OTO
            00 405 [=1,NP3
                            MAIN2080
        BF(I)=GV&RHO(I)/GC
        BF(I)=GV#RHO(I)/EC
    4O5 CONTINUE
    BFG=BF(I)
    MAIN2090
    MAIN2100
            IF (KEX.EQ.2) BFG=BF(NP3)
                    MAIN2110
    IF (KEX.EQ.2) BFG=AF(NP3) MAIN2120
|F (KEX.EQ.2) BFG=BF(NP3)
C.....PRESSURE GRACIENT FOR EXTERNAL FLOW COMPUTED BY
    MAIN2150
C.....FITTING A 3RC ORDER SPLINE-FIT TD FREE-STREAM VELOCITY MAIN2IGO
C.....INTRODUCED IN THE INPUT DATA.
    MAIN2170
    410 IF (INTG.EQ.1) DPSUM=0.0
    MAIN2180
            IF IGEOM.EO.4IGO TO 435
            mATN2190
            IFIGEOM.EO.5IGO TC 440
                    MAIN2200
            IF IINTG.NE.II GO TO 415
            M=1
            mAIN2210
                            MAIN2220
            IF(KEX.EQ.2)UGUICE=U(NP3)
            MAIN2230
            IFIKIN.EO.2.AND.KEX.NE.2IUGUIDE=UII) MAIN224O
            FHOLD=RHOI1ONO.KEX.NE.2IUGUIOE=UNH
            RHOLD=RHO(1)
            IF (KEX.EO.2) RHCLD=RHOINP 3)
            RHO2=RHOLD
            MAIN2250
            BFG=BF\ll
            IF (KEX.EO.2) BFG=BF(NPj)
            FPP{1)=0.
            FPP(NXBC)=0.
            NXBCMI =NXBC-1
            IF (NXBC.EQ. 2) GO TO $25
            DELI= X(2)-X(1)
            DO411 I=2,NXBCM1
                    MAIN2260
                    vAIN2270
                    MAIN2280
            NAIN2290
            MAIN2300
                    MAIN2310
    MAIN2320
    MAIN2330
MAIN2340
MAIN2350
```

```
            DELM=DELI MAIN2360
            DELI=X(ItI)-X(I) MAIN2370
            OELSUM=DELI+CELM MAIN2380
            AFPP (I|=-DELI/OELSUH/2.
                    MAIN2390
            EFPP{II-DELP/OELSUM/2.
                            MAIN2400
411 CFPP{I|=3.*(UGII-1)*DELI-UG(I)*DEL3UM+UG(I +1)*DELM)/{DEL|*DELM
    1*DELSUMI
        BFPP{2)=BFPP(2)*FFP{1)+CFPP(2)
        IF (NXBC.EQ.3) GO TO 414
        00412 I=3,NXBCMI
        TRATIO=1./(1.-GFPP(I)#AFPP(I-1))
        AFPP(I)=AFPP(I);*TRAT10
    412 BFPP(I)={BFPP(I|)EFPP(I-1) +CFPP(I||FIRATIJ
    41400 413 I=2,N X8CM1
        J=NXBCM1-1+2
    413 FPP(J)=AFPP(J)*FPP(J+1)+BFPP(J)
    GO TO 425
C.....ADJUSTMENT OF PRESSURE FDR CORRECT DENSITY
    415 IF IFLUIC.EO.1) GC TO 425
            RHO2=RHO(1)
            IF (KEX.EQ.2) RHC2=RHD(NP3)
            OPDXN=DPDX*RHCZ/AROLD
            PRE=PRE* (DPOXN-D FCX)*0.5*DX/GC
            RHOLD=RHO2
            GO TO 425
    418 M=N+1
            OXN=X(M)-X(M-1)
            AA=0.1666666*FFP (F-1)/DXM
            8B=0.1666666*FPP|F|/DXM
            CC=UG(M-1)/DXM-0.1666666*) XM=FPP(M-2)
            D=UG(M)/0XM-0.166t666*DXH*FPP(M)
    425 CONTINUE
            FRO=PRE
            IF (XD.GT.X(F)) GC TO 418
            IF (INTG.EO.1) UGC=AA*{X(H)-XU)*(X(M)-XU\:{X(M)-XU) MA?N2700
            1+BB=(XU-X(M-1))#(XU-X(M-1) )# (XU-X(M-1)) +CG*IX(M)-XU)+D*(XU-X(M-I)|VAIN2710
            IFIINTG.EQ.I.AND.AESIUGUIDE-UGDI.GT.O.OUL*UGUIDEILVAR=5 MAIN272O
            UGU=UGD
            XMXD=X(M)-XD
            XDMX= XD-X(M-1)
            UGO=AA*XMXO*XMXD*XMXD*B8*XDNX*XDMX&XDMX +Cこ*XMXD*O* XOMX MAIN2760
C.....IF IT IS DESIRED TO INTRODUCE THE FREE-STREAM VELOCITY AS AN NAIN2770
C.....ANALYTIC FUNCTION, RATHER THAN A TABULATION, THIS IS THE PLACE VAIN27RO
C.....TO PUT IT IN. IT THEN OVERRIDES THE PRECEDING STATEMENT. MAIN2790
C.....THE FOLLCHING IS SPECIAL FOR EQUILIBRIUM IDVERSE PG FLOWS. MAIN2800
C.E..IF(XD.GT.BXX.AND.KI.EQ.15)UGD=AXXF((XD-CXXI/(BXX-CXXI)**OXX MA/N2810
    DPDX = (UGU+UGOI*(UGU-UGDI*O.5%RHO2/(XD-XU)+GC&BFG MAIN282O
C.....NOTE THAT THIS PRESSURE GRADIENT IS ACIUALLY THE TRUE MAIN2A3O
C.....PRESSURE GRACIENT TIMES G SUB C MAIN2840
    DP SUM=OPOX*DX+CPSLM YAIN2850
    PRE = PO &OP SUM/GC
C.....THIS PRESSURE IS USED ONLY IN THE PRJPERTY SUBROUTINE, AND THERE
c.....ONLY TO EVALLATE CENSITY.
    GO TO 451 MAIN2890
C--m-m----mRESSURE GRADIENT - INTERNAL FLOW ----MAIN2900
    435 CONTINUE
            PRO=PRE
            IFIINTG.EO.1)RHOF =RHO(1)
            LGU=2.*PEI/(RINP3)*R(NP3I*RHOM )
            DPDX=-PE[*UGU#(R(NP3)-RHO)/(RWOFRWU#RmO*DX)-2.*CF2*RHOM*
```

```
    IUGU#UGU/R(NP3)+GC*EF\1) NAIN2960
    DP SUM= DPCX*OX+DPSUM
    PRE =PO&DPSUN/GC
    CO TO 445
    440 CONTINUE
    PRO=PRE
    IFIINTG.EO. I IRHOM=RHO\1\
    UGU=PEI/(R(NP3)*Y(NP3)&RHOM)
    UGU=PEI/(R(NP3)*Y(NP3)*RHOM)
    1Y(NP3)+GC*BF{1)
        OPSUM=DPOX&DX+DPSUM
    PRE =PO+DPSUM/GC
    445 [F (XD.LE.X(F)) GC TO 451
    M=M+1
    CO TO 445
    451 CONTINUE
    IF(LVAR.EQ.5) GO TC 1020
    IF (PRE.LT.O.) LVAR=4
    IF (LVAR.EQ.4) GC TO 1010
    55 IFIKASE.EQ.21 GO TO 65
C
    58 CALL WALL
        IF (LVAR.EQ.E) GC TO 1000
        IF(N-LT.12) CO TO 1030
        IFILSUB.GT.OIGO IC 10
    *AIN2970
    IFILSUB.GT OIGO IC 10 MAIN3I90
C----m-m INTEGRAL PARAMETERS - EXTERNAL FLOW ----MAIN3210
C.....CALCULATION OF CISPLACEMENT THICKNESS,MJMENTUM THICKNESS, MAIN }322
C.....SHAPE FACTOR, MOMENTUM THICKNESS REYNOLDS NUMBER, ANO THE ENTHALPYMAIN3230
C.....IHICKNESS REYNOLCS NUMBER.
            GO TO (500,500,500,538,538,560,56J,560,56,1, GEEOM NAN3240
    500 VISG=VISCO(NP3)
            RHG=RHO\NP3 )
            IFIKIN.EQ.1IGO TC 505
            RHG=RHO (1)
            VISG=VISCO(1)
    505 IFIUGU.LT.O.0011GC TO 520
        SUNI=0.
        OO 510 I=2,NP3
    510 SUM1=SUML+(V(I)-Y(I-1))*{R(I)&R(I-1H)/2.
            DELI=SUMI/RWG-PEI/ (RWO*RHG*UGU)
            SUM=0.
            00 515 I=3,NP2
    515 SUM=5UM+(1.-(U(I)*UII-1)|/(2.*UGUB)*OND(I-1)
            DEL 2=PEI*SUM/(RWO&RHG*UGU)
C.....CORRECTION OF INTEGRAL PARAMETERS FGR TRANSVERSE CLRVATURE
            IF (KRAD.NE. 1) GC TO }51
            IF (KIN.EQ.2I GO TC 517
    OELI=RWO*(-1.*SORT(1.*2.*CSALFA*OELI/RHO)I/CSSALFA
    OEL2*RYO*1-1.*SORTI1.*2.*CSALFA*DEL2/RWOSI/CSSALFA
    GO TO 519
    517 DEL1=RWO*{+1.-SORT(1.-2.*CSALFAEDEL1/RWO)//CSALFA
    DEL2=RWO* (*1.-SORTI1.-2.*CSALFA*DEL2/RWO)//CSSALFA
    519 CONTINUE
    H=DEL1/OEL2
    REM=DEL 2*UGU*RHG/VISG
    5 2 0 ~ C O N T I N U E ~
    1F(NPH.EQ.0) 6O TC 560
    REH=O.
    IFISOURCEIII.EQ.2.AND.NPH.EQ.1IGO TO }53
    J=1
```

```
    IFISOURCE(1).EQ.2IJ=2 MAIN3560
    FW=F(J,1)
    FG=F(J,NP3)
    IF(KIN.EQ.I)GC TC 525
    FW=F(J,NP3)
    FG=F(J,1)
    525 SUM=0.
        DO 530 I=3,NP2
        DEL=OMD(I-1)*0.5*(F(J,I)+F(J,I-1)-2.*FG)
        530 SUM=SUM4DEL
        IFIABSIUCU*IFW-FGJI.LT.O.DOOO1)GO TO 535
    DEL 3土PEI*SUM/(RNC*RHG*UGU* (FW-FGI)
    IF {KRAD.NE.1) GC TO 534
    IF (KIN.EQ.2) GO TO 532
    OEL3=RWO*(-1.+SORT(1.+2.*CSALFA*DELJ/RNO))/CSALFA
    GO TO 534
    532 OEL 3=RWO* (+1.-SORT|I.-2.*CSALFA*DEL3/RWOI//CSALFA
    534 REH=DEL 3*UGU*RHG/VISG
    535 CONTINUE
    GO TO 560 MAIN3750
C---_-m---mNTEGRAL PARAMETERS - INTERNAL FLOH ----MAIN 3760
    538 FMEAN=0.0
        V!SCOM= VISCO(1)
        RHOM=RHO111
        IF(NEQ.EO.1)GO TC 555
        IFISOURCEIII.EO. Z.AND.NPH.EO.1JGO TU }55
        J=1
        IF(SOURCE(1).EQ.ż)J=2
        IF(ABS(IF(J,1)-F(J.NP3))).LT..0001)ST(J)=0.0
        IF(ABS(IF(J,1)-F(J.NP3))).LT..0001)GO TO 555
        CO 540 I=3,NP2
        DEL=IOM(I)-ON(I-1)|(F(J.I)+F(J,I-1)!/2.
    540 FMEAN=FMEAN+DEL
    \muM=0
    545 MM=MM+1
        RATIO=1.0
        IF(INTG.EO.1IGO TC 550
        IF(MM.EQ.NPZ)GO TC 550
        IF(ABS(F(J,MM)-FMEAN).GT,ABS(FIJ,MM)-F(J.MM+1|)IGOTO 545 MAIN3940
        RATIO=(F(J,MM)-FMEAN)/(FIJ,NM)-F(J,MM+1)) MAIN3950
    550 RHOM=RHO(MM)-(RHO(NH)-RHOUMM+1)/FRATID
    VISCOM= VISCO(FM) - (VI SCO(MM)-VISCO(MM+1))*RATIO
C.....STANTON NUMBER AND CF2 ARE CALCULATED HERE BY SIMPLY
C.....FODIFYING THE VALLES CALCULATED IN THE WALL FUNCTION
C.....WHERE FREE-STREAM U AND F ARE USED.
    ST(J)=ST(J)*(RHO(1)/RHOM)*(F(J,1)-F(J,NPj))/IFMEAN-F(J,NP3|) MAIN4010
    555 REM=40#PEI/(Y(NPI)&VISCOM)
    CF2=CF2*RHO(1)/(RHOM)
    560 CONTINUE
    MAIN4O8O
```




```
    CALL OUT MAIN4120
    IFILVAR.GT.1:60 TO 1000
C..... THE TERMINATION CONDITIDN
    IF(XD.GT.XL\ GO TC 1000
    IF (KASE.EQ.2) GO TO 70 MAIN4160
```



```
C..-..LINEAR INTERPOLATION OF WALL MASS TRANSFER OATA, MAIN4180
```


SUBROUTINE STEP(KSTEP) STEP 0000

```
C.....
    INTEGER GEOM,FLUIC,SOURCE(5),SPACE, BODFOR,OUTPUT,TYPBC
        COMMON/GEN/PEI,API,AME,DPDX,XU,XD,KL,DX,INTG,CSALFA,TYPBC (5),
        1MODE,PRT(5),PRE,AXEC, X(10)),RW(10U),FJ(5,100),GC,CJ,AM(100),PRO,
        2UG(1001,PO,SOURCE,RETRAN,NUMRUN,SPACE,RWD,PPLAG,OUTPUT, DELTAX,GV
        STFP0020
        STEP0030
        STEP0040
        3/E/N,NP1,NP2,NP3,NEO,NPH,KEX,KIN,KASE,KRAD,GEOM, FLUID,BODFOR,YPMINSTEPOO6O
        4/GG/BETA,GAMA(5),AJI(5),AJE(5),INOI(5),INDE(5),TAU,OWF(5) STEPOOTO
        5/V/U(54),F(5,54),R(54),OM(54),Y(54),UGU,UGD,UI,FIP51,FMEAN,TAUW
        STEP0080
        6/W/SC(54),AU(54), BU(54),CJ(54),A(5,54),B15,54),C(5,54),SU(5,54),SOSTEP O090
        7/L/AK, ALMG, ALMGG,FRA,APL,BPL,AQ,BQ,EMU(54),PREF(5,541,AUXM1 STEPO100
        8/LI/YL, UMAX, UMIN,FR,YIP,YEM,ENFRA,KENT,AUXMZ STEPO110
        9/P/RHO(54),VISCO(54),PR(5,54),RHOC,VISCOC,PRG(5),T(54),RHOM, BF(54)STEPO120
        1/0/H,REM,CF2,ST(5),LSUA,LVAR,CAY,REH,PPL,GPL,QN(5),KD
        STFPO130
        2/CN/AXX,BXX,CXX,DXX,EXX,<1,N2,K3,SP(54),AUX1(100), AUX211001,YPMAX STEPO140
        3/ADD/RBON(54),CMC(54),ROMJ(54), ITKE
C.....
            GO TO (100,200,300,400,500), KSTEP
C.....
```



```
C.....STEPI COMPUTES SLIP POINT QUANTITIES,BETA,GAMAIJI AT STEPOZOO
C.....BEGINNING OF INTEGRATION OR AFTER LAMSUB HAS STYPO21O
C.....BEEN ACTIVATED.
C.....
    100 GO TO (22,24,26),KIN
        22 IFILSUB.GT.OIGO TC 23
        EETA=(U(4)/U(3)-1.)/(Y(4)/Y(3)-1.)
        23 U(2)=U(3)/(1.+2.*BETA)
            Y(2)=Y(3)*BETA/(2.*EETA)
            GO TO 30
C..... FREE BOUACARY
        24 UlI=U(1)*U(1)
            L13=U(1)*U(3)
            433=U(3)*U(3)
            S0x84.*U11-12.*U13*9.*U33
            U(2)=(16.*U11-4.*U13+U3j)/(2.*(U(1) +U(j)1+S0RT(S0))
            Y(2)=Y(3)*(U(2)+C(3)-2.*U(1)i*.5/(U(ट)+U(3)+U(1))
            GO TO 30
        2E IF(KRAD.NE.O) GO TC 28
C..... SYMMETRY LINE, PLANE FLUW
            U(2)=(4.*U(1)-U(こ))/3.
            V(2)=0.
            GO TO 30
C..... SYMMETRY LINE, AXIALLY SYMMETKICAL FLOW
        28 U(2)=U(1)
            Y(2)=Y(3)/3.
C..... SAME AS abCVE RUT for kEX
        30 GO TO (32,34,36),KEX
C..... WALL
        32 IFILSUB.GT.OJGO TC 33
            BETA= (U(N)/U(NP1)-1.)/((Y(NP3)-Y(IN))/(Y(NP3)-Y(NP1))-1.)
        33 UTNPZI=U(NP1:/I1.*2**BETA)
            Y(NP2)=Y(NP3)-(Y(NP3)-Y(NP1))-BETA/(2.+BETA)
            GO TO 38
        34 U11=U(NP1)*U(NP1)
            UL3=U(NPI)#U(NP3)
            U33=U(NP3)*U(NP3)
            SO=84.*U33-12.*U13*9.*U11
C..... FREE BOUNCARY
            U(NP2)=(16.*U33-4.*U13+U11)/(2.*(U(NP1)+U(NP3))+5CRT(SO))
```

```
        Y(NP2)=Y(NP3)-(Y(AP3)-Y(NP1))*(U(NP2)*U(NP11-2.*U(NP3))*.5/ STEP0600
        1(U(NP2)+U(NP1)+U(NP3))
        GC TO 38
C..... SYMMETRY LINE
    3\epsilonU(NP2I=14.*U(NP3)-UINPA\)/3.
        Y(NP2)= Y(NP3)
    38 CONTINUE STEPO66O
        IFINEC.FG.1) GC TC 58 STEPO6TO
C...-.CALCULATION CF SLIP VALUES FSN DTHER DEPEVDENT VARIABLES STEPOGAS
        DO 56 J=L,NPH STEP0690
        IF(LSUB.EQ.OIGAMA(J)=0.0 STFPOTOO
        GO TO 142,44,461,KIN
    42 IFISOURCE{J).EG.2.OR.ABSIF(J.3)-F{J,lJ).LE..UOLIGO TO 43
        IFILSUB.GT.OIGO TC 4?
        GAMA(J)=((f(J,4)-F(J,1))/(F(J,3)-F(J.1))-1.|/(Y(4)/Y(3)-1.)
    43F(J,2)=F(J,1)+(F(J,3)-F(J,1))*(1.+日ETA-GAYA(J))/(1.+日ETA+GAMA(J))
        GO TO 48
    44G={U(2)+U(3)-日.*(\1)\/{5.*(U(2)+U(3))*8.*U(1))
        GF=[&.-PRT(J))/II.+PRT(J)
        GF = (G+GF)/(1.+G*GF)
        F(J,2)=F{J,3)*GF+(1.-GF)*F(J,1)
        GC TO 48
    4t F(J,Z)=F(J,l)
        IF(KRAD.EQ.O)F(J,2)={4.*F(J,1)-F{J,3)//3.
    48 GC TO (50,52,E4),KEX
    50 IFISOURCEIJI.EG.2.CR.ABSIFIJ.NPII-F(J.NP3I).LE..OOLIGO TO 51
        IFILSUB.GT.OJGO TC 5I
        IFILSUB.GT.OJGO TC 51 
        {(Y(NP3)-Y(NP1II-1.)
        IGAMA(JJ) STCP0900
        GO TO 56
        52G=(U(NP2)+U(NP1)-8.*U(NP3))/(5.*(U(NP2)+U(NP1)1+8.*U(NP3)) STFP0920
        GF=(1.-PRT(J))/(1.tPRT(J))
        GF=(G+GF)/(1.*G*GF)
    GF=(G+GFI/(1.*G*GF)
        GO TO 56
    54F(J,NP2)={4.*F(J,NP3)-F(J,NP1)I/3.
    5 6 ~ C O N T I N U E ~
    58 CONTINUE
        RETURN STEP1000
        STSP0610
    STFP0620
STEP0630
    STFP0640
    STEP0650
    STFPOT00
    STEP0715
    STEPOT20
    STEPO730
    STEPO740
    STEPO750
    STEPO760
    STEP0770
    STEPO780
    STEO0790
    STFPO800
    STEP0810
    STFPO820
    STEDO830
    STEP0840
    STEP0850
    STEPO870
    STEPORRO
        STCP0900
        STEP0910
        STEP0920
        STEP0930
    STEP0940
    GF=(G+GFI/(1.*G*GF)
    STEPO950
    STEO0970
    STEP0980
    STEP0990
        RETURN STEP1000
```



```
C.....STEP2 COMPUTES ONIII ARRAYS ANO PEI
STEP1020
C.....AT BEGIMNING OF INTEGRATION QR AFTER LAMSUB HAS STEPIO30
C.....bEEN ICTIVATEC.
STEP1040
C.....
C....OCALCULATION CF RACII
    200 IFIKRAD.EQ.O) GO TC 220
    CO 210 I= 2,NP3
    C0 210 I= 2,NP3
        GO TO 240
    220 DO 230 I=2,NP3
C..... RII! CANNCT EGUAL IERJ
    230 R(IIIR(1)
    230 R(I)=R(1)
C.:-.CCALCULATION CF OPEGA VALUES. THESE VALUES ARE ESTABLISHED BY THE STEP1150
C.....INITIAL VELOCITY PROFILE AND REMAIN UNCHAVGLD THEREAFTER.
        GM(1)=0.0
    STFP1050
STFP1060
    SNTSPO80
    STEP1070
STEP10RO
STEP1090
STEP1100
STFP1110
STEP1120
    STFP1130
STFP1130
STEP1140
STEP1150
        CM(2)=0.0
STEP1160
STEP1170
    00 250 I=3,NP2
STEP1180
```

```
C...... FOLLOWING EQLATION RESULTS FRUM CONTINUITY
    250 CMI:I=OW(I-1)&.5*(RHO(I)*J(II*R(I)+KHO(I-I)*U(I-I)*R(I-1))*
        I(Y(I)-Y(I-I|)
        PEI=CMINP2I
C....- OMEGA IS NCRPALIZED AT THIS POINT
    DC 260 I=3,NPI
    260 CM(I)=OMII)/FEI
        CM(NP2)=1.0
        CM(NP3)=1.0
        CO 270 I=2,NPI
        RBOM(I)=1./(CM(I+1)-OM(I-1))
        CMD(I)=ON(I+I)-OM(1)
        ROMD(I)=1./OMD(I)
    270 CONTINUE
        IFILSUB.GT.OIRETURN
        OO 280 1 = 5,API
        KXERR = 0
        OMRAT = (OMII) -[FII-1)|/(OM(I-1) - OM(I-2))
        IFIOMRAT.GT.4.O.CR.OMRAT.LT.O.25IKXERR=7
        IFIKXERR.EO.7IMRITE(6.275)I
        IFIKXERR.EO.7ILYAR=8
        IF (LVAR.EQ.8) DLTPUT=6
    280 CONTINUE
    275 FORMAT(/.37M PROCRAM TERMINATED BECAUSE THE OMEGA./
        12IH SPACING GETWEEN I = ,I2,IX,I7HAND THE PRECEOING,'
        249H NODE IS EITHER MORE THAN FOUR TIMES JR LESS THAN,/
        334H ONE QUARTER THE PREGEDING SPACINGI
        AETURN
```



```
C.....STEP3 CCMPUTES Y'SPR'S
C.....AND COMPUTES UMAX,UMIN,AND YL
C.....
    300 [F \INTG.EQ.OI GO TO 360
C.....Y NEAR THE I BCUNCARY
        GO TO (312,314,3161,KIN
    312 Y(2)=(1.+BETA)*OP(3)*4./(|3.*RHO(2) +RHO{3)|*(U(2)+U(3)))
        GO TO 320
    314 Y(2)=12.*OM(3)/((3.*RHO(2)+RHO(3))*(U(2)+U(3)+4.*U(1)))
        60 10 320
    316 Y(2)=.5#OM(3)/(RHC(1)*U(1))
    320 Y(3)=Y(2)4.2E*CM(3)*(1./(RHO(3)*U(3))+2./(RHO(3)*U(3)*RHD(2)*
        1U(2I)!
        IF(BETA.GE.0.9.ANC.KIN.EQ.1)Y(3)=3.0%OM(3)/(RHD(3) #(3) +RHO(2)
        1*U(2)!
C.....Y 'S FOR INTERMECIATE GRID POINTS
            00 330 I=4,NPI
    330 Y(I)=Y(I-1) & 2.*OMO(I-1)/(RHO(I)*U(I)+RHO(I-I)*U(I-1))
C..O.OY NEAR THE E ECUNCARY
            Y(NP2)=Y(NP1)+.25*CMO(NP1)*(1./|RHO(NP1)*J(NP1)|+2./
            1(RHO(NP1)*U(NP1) *RHO(NP2)*U(NP2)|)
            60 TO (332,334,3361,KEX
```



```
        1])*(U(NPI):U\NP2!)J
            IF (BETA.GE.0.9) Y(NP3)=Y(NP1)+1.5#(OM(NP2)-OM(NP1 I)/
        1 (0.5&(RNOINP1)*U(NP1)*RHO(NP2)#U(NPZ))\
            60 TO 340
    334 Y(NP3)=Y(NP2) + 12.*OMO(NP1)/|(RHO(NP1)*3.*RHO(NP2))*{U(NP2
        1) FU(NP1)+4.*U(NP3)II
            GO TO 340
    336 Y(NP3)=Y(NP2)+.5*OMD(NP1)/(RHO(NP3)*U(NP3))
STEP 1200
```



```
STEP 1210
STEP 1220
STFP 1230
STEP 1240
STED 1250
STEP 1260
STEP 1270
STEP 1280
STEP 1290
STFP 1300
STEP1310
STEP 1320
STEP 1330
STEP 1340
STEP 1350
STFP 1360
STEP 1370
STEP 1380
STEP 1390
STEO 1400
STEP 1410
STEP 1420
STEP 1430
STEP 1440
STFP 1450
STFP 1460
STEP 1470
STEP 1480
STEP 1490
STEP 1500
STEP1510
STEP1520
STEP 1530
STEP 1540
STEP 1550
STEP 1560
STEP 1570
STEP 1580
STEP 1590
STEP 1600
STEP 1610
STEP 1620
STEP 1630
STEP 1640
STEP 1650
STEP 1660
STEP 1670
STEP 1680
STEP 1690
STEP 1720
STEP 1730
STEP 1740
STEP 1741
STEP 1742
STEP 1750
STEP 1760
STEP 1770
STEP 1780
STEP 1790
```

```
    340 IFIKRAD.EQ.O) GO TO 344
    DO 342 1=2,NP3
    342 Y(I)=2.*Y(I)*PEI/(RIU*SQRTIR(1)*R(1)+2.*Y(II#PEI*CSALFA|)
    CO to 350
    344 DO 346 I=2,NP3
    346 Yil|=PEI*Y(II/RII|
    350 Y(2)=2.*Y(2)-Y(3)
    IFIBETA.GE.O.9.AND.KIN.EQ.1/Y(2)=Y(3)/3.
    IFIBETA.GT.O.9.AAO.KEX.EQ.1/GO TO 351
    Y(NP2)=2.*Y(NP2)-Y(NP1)
    GO TO 352
    351 Y(NP2)=(2.#Y(NP3)&Y(NP1)1/3.
C.... CALCULATION OF RADII
    35200 355 I=2,NP3
            IF(KRAD.EO.OIR(I)=R| I)
    IF(KRAD.NE.OSR(I)=RII)+YII)#CSALFA
    355 CONTINUE
C.....CALCULATION OF THE BOUNOARY LAYER THICKNESS
C.....BASED ON THE FR CRITERION USED IN 'INPUT'. I.E., IF FR
C.....IS 0.01. THIS ROLTINE CALCULATES YL WHICH IS THE 99 PER-
C.....CENT THICKNESS OF THE BDUNDARY LAYER. YL IS THEN A DISTAMCE UPON
C.....GHICH A TURBULENCE LENGTH SCALE IS BASED.
C SEARCH fOR THE MAXIMUM AND MINIMUM VELOCITIES
    360 UMAX=U(1)
        UMIN=U{I\
        CO 375 J=3,NP3
        IF(J.EO.NP2) GO TC }37
        IF(U(J).GT.UPAX)UPAX=U(J)
        IF(UIJ).LT.UNINJUMIN=U(JI
    375 CONTINUE
    DIF=ABS(UMAX-UMINI#FR
C.....SEARCM NEAR THE I SOUNDARY
    IF(KIN.NE.2) GO TC 386
    U2I=ABSI.5*(U(2)+U(3))-U(1))
    IFIU2I.LT.DIFI GO TO 380
    Y[P=SORTIDIF/U2I)*(Y(2)+Y(3))*.5
    60 TO 388
    380 J=2
    382 J=J+1
    UJ1=U(J)-U\1I
    IFIABSIUJII.CE.DIF) GO TO 384
    60 TO }38
    384 Al=1.
    IF(UJ1.LT.0.JAI=-1.
```



```
    GO TO 388
    386 YIP=0.
C....SEARCH NEAR THE E BOUNDARY
    388 IFIKEX.NE.2: GO TO 396
    U2I=ABSI.5#(UINPII&U(NP2I)-U(NP3)I
    IF(U2L.LT.OIFI GC TO 390
    YEM=SORT(DIFIU21)*(.5*(Y(NP1) +Y(NP2))-Y(NP3))+Y(NP 3)
    GO TO 398
    390 J=NP2
    392 J=J-1
    CJI=U(J)-U(NP3)
    IF(ABS(UJII.GE.DIF) GO TO 394
    GO TO 392
    394 Al=1.
    IFIUJI.LT.O.IAI=-1.
```

STEP 1800 STEP 1810 STEP1820 STEP 1830 STEP 1840 STEP 1850 STEP 1860 STEP1870 STEP 1880 STEP 1890 STEP 1900 STEP 1910 STEP 1920 STEP 1930 STEP 1940 STEP 1950 STEP 1960 STEP 1970 STEP 1980 STEP 1990
STEP 2000 STEP 2010 STEP 2020 STEP 2030 STEP 2040 STFP 2050 STEP 2050 STEP 2070 STEP 2080 STEP 2090 STEP 2100 STEP 2110 STEP 2120 STFP 2130 STEP 2140 STFP 2150 STEP 2160 STED 2170 STEP 2180 STFP 2190
STEP 2200
STEP 2210
STEP 2220
STEP 2230
STED 2240
STED 2250
STEP 2260
STED 2270
STEP 2280
STED 2290
STEP 2300
STFP 2310
STEP 2320
STEP 2330
STFP 2340
STEP 2350
STED 2360
STEP 2370
394 A1.1.
STEP 2380
STEP 2390


```
            G0 TO 1422,424,4261,XIN
    422 BU(2)=0.
            AU(2)=1./11.*2.*EETA)
            GO TO 430
    424 S0=84.*U(1)*((1)-12.*U(1)*U(3) +9.* *U(3)&U(3)
            BU(2)=8.*(2.*U(1)+U(3))/(2.*U(1)+7. कU(3)+SORT(SOI)
            IF(U(5)-LE.U(1))EU(2)=1.
    AU(2)=1.-BU(2)
            GO TO 430
    426 BU(2)=0.
            AK1=1./OX-(DPOX-GC+BF(2)//(RHO(1)*U(1)*U(1))
    &. AK2=-U(1)*AK1+(DPOX-GC*BF(2))/{RHO11)*U(1))
    AJ=RHO(1)#U(1)*.2E#(Y(2)+Y(3))|F=2/EMU(2)
    IFIKRAD.EQ.OI GO TO 428
    AU(2)=2./(2.*AJ*AK1)
            CU(2)=-.5*AJ*AK2*AU121
    GO TO 430
    428 CU(2)=1./(2.*3.*AJ#AKI)
            AU(2)=CU(2)*(2.-A J#AK1)
            CU(2)=-CU(2)*4.*AJ*AK2
C.....SLIP COEFFICIENTS NEAR THE E BUUNJARY FOR VELOCITY EOUATION
    430 GO TO 1432,434,4361,KEX
    432 AU(NP2)=0.
            BU(NPZ)=1./(1.*2.申BETA)
        GO TO 440
    434 SO=84.*U(NP3)*U(NP3)-12.*U(NP3)*U(NP1)*9.*U(NP1)*U(NP1)
    AU(NP2)=8.*(2.*U(AP3) +U(NP1))/(2.*U(NP3)+7.*U(NP1)+SORT(S01)
    BU(NP2)=1.-AL(NP2)
            GO TO 440
    436 AU(NP2)=0.
    6K1=1./DX- (DPDX-GC*BF(NP2))/(RHO(NP3) #U(NP3)#U(NP3))
    BK2=-U(NP3)*EK1+(DPOX-GC*BF(NP2))/(RHO(NP3)&U(NP3) )
    BJ=RHOINP3)*U(NP3)*. 25*(2.*Y(NP3)-Y(NP1)-Y(NP2))**2/EMU(NP1)
    CU(NP2{=1./{2.+3.*BJ*BK1)
            BU(NP2I CU(NP2)*(2.--NJF8K1)
            CU(NP2)=-CU(APZ)*4.*BJ*BK2
    440 IF(MEO.EQ.I) GO TO 4T1
C.....SLIP COEFFICIENTS NEAR THE I BOUNOARY FDR OTHER EQUATIONS
    00 470 J=1,NPH
            C(d, 2)=0.
    C(J.NP21=0.
    60 TO (452,4E4,456 1,KIM
    452 IF IINDIIJI.EC.II 60 TO 453
    VA=GAMA(J)/(II.+BETA)+(ONF(JI+AMI))
            A(J,2)=(1.-VA*AMI)/(1.+VA* AMI)
            B(J,2)=0.
            C(J,2)=2.*AJI(J)&VA/I1.*VA*AMII
    60 10 460
    4E3 A(J,2)=(1. +BETA-GAMA(J))/(1.+BETA+GAMA(J))
    B(J,2)=1.-A(J,2)
            IF(SOURCE(J).NE. 21G0 TO 460
            A(J,2)=-1.
            O(J.2)=0.
            C(J,2)=2.*FI(J)
            60 T0 460
    454 A(d,2)={U(2) कU(3)-8.*U(1))/(5.*(U{2)+U(3))+8.*U(1))
    GF=(1.-PREF(J,2))/(1.*PREF(J,2I)
    A(J,2)={A(J,2)&GF}/(i.+A(J, 2)|GF)
    B(J,2)=1,-A4 J,2)
    60 TO 460
    STFP 3000
```

STEO 3010
STEP 3020
STED 3030
STEP 3040
STEP 3050
STEP 3060
STEP 3070
STED 3080
STEP 3090
STEP 3100
STEP 3110
STEP 3120
STEP 3130
STEP 3140
STFD 3150
STEP 3160
SIEP 3170
STFP 3180
STEP 3190
STEP 3200
STEP 3210
STEP 3220
STEP 3230
STFP 3240
STFP 3250
STEP 3260
STEP 3270
STEP3280
STEP 3290
STEP 3300
STFP 3310
STEP 3320
STEP 3330
STEP 3340
STEP 3350
STEP 3360
STEP3370
STEP 3380
STEP 3390
STEP 3400
STEP 3410
STEP 3420
STEP 3430
STEP 3440
STEP 3450
STEP 3460 STEP 3470 STED 3480 STEP 3490 STEP 3500 STED 3510 STEP 3520
STEP 3530
STEP 3540
STEP 3550
STEP 3560
STEP 3570
STEP 3580
STEP 3590

```
    456 B(J,2)=0.
    DS=0.
    AKL=1./DX-OS
    CS=0.
    AK2=-AK\*F(J,1)-CS
    AJF=AJ*PREF{J,21
    IFIKRAO.EQ.OI GO TO 457
    A(J.2)=2.f(2.+AJF#AKL)
    C(J,2)=-. 5&AJF*AK2*A(J,2)
    G0 TO 460
    457C(J,2)=1./(12.*3.*AJF*AK1)
    A(d,2)=C(J,2)*(2.-AJF#AK1)
    C(J,2)=-C(J,21*4.*AJF#AK2
C.....SLIP COEFFICIENTS NEAR THE E BOUNDARY FDR OTHER EQUATIONS
    460 GO TO (462,464,4661,KEX
    462 IF (INDE(J).EG.1) ED TO 463
    VA=GAMA(J)/(|l.* EETA):(OWF(J)-AME))
    B(J,NPZ)=(1,&VA*AME)/(1,-VA*AME)
    A(J.NP2I=0.
    C(J,NP2Ix-2.4AJE(J)&VA/IL.-VA&AME)
    GO TO 470
    463 E(J.NP2)= (1.&BETA-GAMAIJ)I/IL.*BETA + GAMAIJII
    A(J,NP2)=1.-8(J.NP2)
    IFISOURCEIJJ.NE.2IGO TO 470
    A(J,NP2)=0.
    B(J.NP2)=-1.
    C(J,NP2)=2.*FI(J)
    GO TO 470
    464 8(J,NP2)=(U(NP2) +UNNP1)-8.*U(NP3))/(5.*(U(NP2) +U(NP1))* 8.*U(NP3))
    GF={1.-PREF{J,NP1H/(1.*PREF{J,NP1)}
    B(J,NP2)=(BIJ,NP2)*GF|/(1.* + (J,NP2)&GF)
    A(J,NP2)=1.-B(J,NP2)
    GO TO 470
    466 A(J.NP2)=0.
    05=0.
        BK1=1./0x-05
        C5=0.
        BK2=-BK1*F(J,NP3)-CS
        EJF=8J*PREF(J,NP1)
        C(J,NP2)=1./(2.+3.**SJF*BK1)
        B(J,NP2)=CIJ,NP2)\(2.-8JF*BK1)
        C(J,NP2)=-C\J,NP2 \*4.*8JF&BK2
    470 CONTINUE
C.....SETTING UP VELCCITIES AT A FREE BOUNOARY
    471 IF(KEX.EQ.2)U(NP3)=S ORT (U(NP3) कU(NP3)-2.*DX*(DPDX-GC*BF(NP3))
        1/RHO(NP3)/
        [F(KIN.EO.2)U(1) =SORT(U(1)*U(1)-2.*DX*(DPDX-GC*BF(1)//RHO(1))
C.....THIS IS THE TRI-OIAGOMAL ROUTINE WHERE THE FINITE
C.....0IIFFERENCE ECUATIONS ARE AGTUALLY SOLVED.
C......INTEGRATE VELOCITY
    BU(2)= BU(2)&U(1) + CU(2)
    00472 1=3,MP2
    TT = 1./(1.-8U(I )&AU(&-11)
    AU(I) = AU(IJ&TT
    472 BU(I) = {8U(Ij&BU(I-1) + CU(II)*TT
    DO 474 I=2,NP2
    JJ=NP 2-I +2
    474 U(JJ)=AU(JJ) #U(Jd*1) +BU(JJ)
    DO 476 I=3,NPI
    IFIUIII.G7.0.0IGO TO &76
```

STEP 3600
STEP 3610
STEP 3620
STEP 3630
STEP 3640
STEP 3650
STEP3660
STEP 3670
STEP 3680
STEP 3690
STEP 3700
STEP 3710
STEP 3720
STEP 3730
STEP 3740
STEO 3750
STEP 3760
STEP 3770
STEP 3760
STEP 3790
STEP 3800
STEP 3810
STEP 3820
STEP 3830
STEP 3840
STEP 3850
STEP 3860
STEP 3870
STEP3880
STEP 3890
STEP 3900
STEP 3910
STEP 3920
STEP 3930
STEP 3940
STEP 3950
STEP 3960
STEP 3970
STEP 3980
STEP 3990
STEP 4000
STEP4010
STEP 4020
STEP4030
STEP4040
STEP4050
STEP4060
STEP4070
STEP4080
STEP 4090
STEP4100
STEP4110
STEP4120
STEP4130
STEP4140
STEP4150
STEP4160
STEP4170
STEP4180
STEP4190

```
        U1110-U&I\ STEP4200
        KXX=1
    4 7 6 \text { CONTINUE}
    KXXX=KXXX+1
    IFIKXX.EQ.OSGO TO 478
    IFIKXXX.6T. 2IC0 T0 470
C.....ATTEMPT TO RE-SOLVE IF NEGATIVE VELOCITY APPEARS
    IFIKEX.EQ. 2IAME=AME/1m }
    IFIKIN.EO.2IAMI=AMI/IL3
    004777 I=2,NP1
    RAVG=0.5*(R|I*I| कR|IIA
    RHOAV=0.5*(RHO(I+1)+RHO(I))
C......AOJUSTMENT OF EMU AT 2.5 AND M+1.5
    IF (I.GT.2) 60 TO 4771
    IF (XIN,ME.I) GO TO 4778
    IF IBETA.LT.0.02.OR.BETA.GT.O.91 GO TO 4777
    EMU(2) =TAU* (Y(2) &Y(3))/IBETA*IU(2)+UU3)|!
    4778 [F \KEX.NE.1) 60 10 4777
    IF (BETA.LT.O.O2.OR.BETA,GT.0.9) GO TO 47TT
    EMU(NP1)=TAU*(Y(NP3)-0.5*(Y(NP1)+Y(NP2)1)/
    1(BETA*0.5*(U(NP1)I+U(NP2II)
C.....COMPUTE SMALL C'S
    4777 SC(I)=RAVG*RAVG*RHOMV&0.5*(UII+1)*U(I)|*EMUII)/(PEI*PEI|
            WRITE (6,4771 INTG
        477 FORMAT (/10X, 'VELOCITY NEGATIVE, RE-SGLYE, INTG=1, I4/1
            60 tO 401
    478 CONTINUE
C....-SETTING UP VELOCITIES AT A SYMMETRY LINE
    IFIKIN.NE.3) GO TO 480
    U(1)=U(2)
    IF(KRAD.EO.0)U(1)=0.75*U(2)+. 25#U(3)
    480 IF(KEX.EQ.3)U\NP31=.75*U(NP21+.25*U(NP1)
            IF (NEO.EO.1) GC TO 494
C.....INTEGRATE F ECUATIONS
    DO 492 J=1,NPH
    00 482 I=2,NP2
    AU(Il=A(J.I)
    OU(II=8(J.II
    482 CU(II=C(J.II
        IF (SOURCEIJI.NE.2I GO TO 4886
        IF \ITKE.EG.1) GC TO 4886
        IF IKEX.EO.1) GO TO 4884
        004882 I=1,ITKE
    AU\II=0.
    BU(I)=0.
4882 CU(I)=F(J.ITKE)
    60 T0 4886
4884 DO 4885 I=ITKE,NF3
    AUCII=0.
    BUIII=0.
4885 CU(II=F(J.ITKE)
4886 CONTINUE
    BU(2)= BU(2)*F(J.1) CU{2)
    DO 484 1=3,NP2
    TT = 1./41.-8U\I|&MU(I-1I)
    AU(I) = AU(IJ*TT
    484 8U\I)={BU(I)*BU(I-I) + CU(1)|FTT
        00 486 I=2,NP2
        JJ=NP2-I*2
486F(J.JJ)=AU|JJ)&F(J,JJ+1) & BU(JJ)
        STEP4200
        STEP4220
        STEP4230
        STEP4240
        STEP4250
        STEP4260
    STEP4270
    STEP4280
    STEP4290
    STEP4300
    STEP4310
    STEP4320
    STEP4330
    STEP4340
    STEP4350
    STEP4360
    STEP4370
    STEP4380
    STEP4390
    STEP4400
STEP4410
STEP4420
STEP4430
STEP4440
STEP4450
STEP4460
STEP4470
STEP4480
STEP4490
STEP4500
STEP4510
STEP4520
STEP4520
STEP4530
STEP4540
STEP4550
STFP4560
STEP4570
STEP4580
STEP4581
STEP4582
STEP4583
STEP4584
STEP4585
STEP4586
STEP4587
STEP4588
STEP4569
STEP4590
STEP4591
STEP4592
STEP4593
STEP4594
STEP4600
STEP4610
STEP4620
STEP4630
STEP4640
STEP4650
STEP4660
```



SUBROUTINE WALL
WALLOODO

ORIGINAL' PAGE IS
OF POOR QUALITY


```
    OO 10 J=1,NPH WALLO620
    HW(J)=F(J,NP?)
    HG(J)=F(J,l)
    PRW(J)=PR(J,NP3)
    PR{(J)=0.5*(PR{J,AP1)+PR(J,NP2))
    FI(J)=.5*(F(J,NPz})+F(J,NPI)
    FE=F(J,N)-(F(J,N)-FIJ,NPL))/IVIN)-Y(NP1)JF(Y(N)-.5*(Y(NPI)+Y(NP2)
1 |
    IF(MODE.EO.L)FE=FI(J)
    IF{GAMAIJ).GIE.O.9.AND.GAMA(J).LE.1.1)FE=FI(J)
    IF(SOURCE(J).EG.2)FE=FI(J)
    10 FI(J)={F|\J/FFE|/2.
    GO TO 40
    20 IF(KIN.NE.I)RETURN
        RHM=RHO(1)
        VISW=VISCOIII
    VISG=YISCO(NP3)
        RHG=RHO(NP3)
        RHI=0.5#(RHO{2) +RHO\3)I
    VISI=0.5*iVISCO(2)+VISCO{3))
    8FOR=(BF(2)+8F(3))/2.
    UGG = UGU
    YI=.5*(Y(2)+Y(3))
    UI=.5*(U(2)+L(3))
    UE=U(3)+0.5*(Y(2)-Y(3))*(U(4)-U(3))/(Y(4)-Y(3))
    IF(MODE.EQ.1)UE=UI
    IFIBETA.GE.0.9IUE=UI
    UI = (UI + UE)/2.
    REW=ABS(UI*YI*RHW/VISWI
    AMH = AMI
    IF{NEO.EO.1JGO TC }4
    OO 30 J=1,NPH
    HW(J)=F(J.1)
    HG(J)=F(J,NP3)
    PRW(J)=PR\J,II
    PRI(J)=0.5年(PR(J,2)+PR(J,3))
    F((J)=.5*(F(J,2)+F(J, 3))
    FE=F(J,3)+0.5*(Y(2)-Y(3))&(F(J,4)-F(J,3))/(Y(4)-Y(3))
    IFIMODE.EQ.I IFE=FIIJI
    IF(GAMA(J).GE.O.9.AND_GAMA(J).LE.I.L)FE=F\IJ)
    IF(SOURCE(J).EO.2)FE=FI\J)
    30 FI(J)=(FI(J)+FE)/2.
    40 UTAUW=SORT(GC*TAUB/RHW)
    UTAUG=SORT (GC&TAUH/RHG)
    IFIREM.LT.4.IGC IC 160
```



```
C.....SOURCE TERMS FOR COUETTE FLOM STAG ENTHALPY EQUATION
    S=0.0
    IFINEO.EO.1IGO TC 160
    DO 150 J=1,NPH
        IFISOURCEIJ).EO.3.OR.SOURCE(J).EQ.4JS=AUXM2
        IFISOURCE\JI.EQ.1.CR.SOUKCE(JI.EQ.3IGO TD 130
        GO TO }15
    130 IFIUGG.LT.O.O1)GE TO 140
    DENOM=OW(J)*CJ
    IF(ABSIOENOM).LT.0.00001JGO TO 140
C..e..MOTE: IF WALL HEAT FLUX IS NEAR ZERO, VISCOUS DISSIPATION WALLII8O
C..... IS NOT PROPERLY HANDLED. ALWAYS USE AT LEAST A SMALL WALLI190
C..... HEAT FLUX. SAME TRUE OF HEAT SOURCE, S. WALL1200
    C3N=TAUMWUTALM/DENCM
wall 1210
```

```
            C4=VISH*BFOR/(2.#DENOM&RHN)
            C5N=VISW*CJ/ (RHW*DENOM*UTAUM)
    140 C3=(C3+C3N)/2.
    C5=(C5+C5N)/2.
    IFIINTG.LT.5IC3-0.0
    IFITYPAC\J).EQ.1IGO TO }15
    AJN=AJE(J)
    IF(KIN.EQ.1)A.JM=AJI(J)
    * IFIABSIAJNI,GT.AES(1.1*AJOIIKKK=INTG
    IF\INTG.LE. (KKK+1IIC3=0.0
    AJO=AJE(J)
    IF(KIN.EO.I)AJO=AJI(J)
    150 CONTINUE
C.....COUETTE FLOW EQUATION TERMS ARE COMPUTED HERE
    180 IF (INTG.LT.2) OLODPX=0.
            IFIUGG.LE.O.O1IGC TO 165
            CAY=-0.5*{DPCX+OLOOPX-2.申GC*BFOR)/(UGG#UGF*UGGI#VISG/(RHG*RHG)
    165 PPL=. 5*(DPOX + OLDDPX)#VISW/ITAUW*RHW*GC=UTAUWI
            GPL=AMM/(RHN#UTAUM:
            BFPLUS=BFOR*VISH/(TAUM*RHW*UTAUW)
            BFPLUS={BFPLCS+BFOLD\/2.
            BFOLD=BFPLUS
            IFIKSTART.EO.IIPPL=0.
            IFIKSTART.EO.IJBFPLUS=0.
            IFIKSTART.EG-1IGPL=0.
            AKK=AK
            IF(MDDE.EQ. 1 )AKK=0.0
C.....TURBULENT FLOW DAMPING TERMS ARE COMPUTED HERE
            IF(KD.EO.1)GO TO 180
            IFIKD.EO.3IGC TO 180
            IFIINTG.EO.IIPPLE=PPL-BFPLUS
            [FIINTG.EQ.1IGPLE=GPL
            IFIPPLAG.LT.400.1 PPLE=PPL-8FPLUS
            IF {PPLAG.LT. 400.) GPLEAGPL
            IFIPPLAG.LT.400.1GO TO }17
            IFIMARKER.EQ.IIGC TO }17
            DIR=1.0
            IF(|PPL-BFPLUS).GT.PPLEJDIR=0.3
            PPLE=PPL-8FPLUS-(PPL-BFPLUS-PPLE)#EXP(-{RHW#DX*UTAUG)/
            I(VISW*PPLAG*DIRI)
            GPLE=GPL-(GPL-GPLE)*EXP(-(RHW*OX*UTAUGI/
            I(VISH*PPLAG)I
    170 CONTINUE
C.....THE FOLLOWING ARE EMPIRIGAL CJRRELATIONS FOR THE DAMPING TERM
C.....IN THE MIXING-LENGTH EXPRESSION.
    AC=7.1
    BC=4.25
    CC=10.0
    IFIPPLE.GT.O.IBC=2.9
    IFIPPLE.GT.O.ICC=0.
    IFIGPLE.LT.O.JAC=9.0
    APL=APLO/IAC* {GPLE*BC* (PPLE/{1.*CC*GPLEJ))+1.|
    8PL=8PLO/(AC& (GPLE*8C # (PPLE/{1.+CC*GP(E))) +1.)
    IF(APL.LT.-.001IAPL=1000.
    IFIBPL.LT.-.001) BPL=1000.
    IFIINTG.EO.1.OR.REM.GT.2.*RETRANIGO TO 1BJ
C.....THE FOLLOWING IS G GIMMICK TU SIMULATE A GRADUAL TRANSITION.
    IF\KD.LE.1.AND.MCCE.EO.2JAPL=APL+(300.-APL)*(I.-SIN(1.5T
    1*(REM-RETRAN)/RETRAN) )&#2
WALL 1220
MALL 1230
WALL 1240
WALL 1250
HALL 1260
wall 1270
WALL 1280
WALL 1290
WALL 1300
Wall 1310
WALL 1320
WALL 1330
WALL 1340
```



```
C..... COUETTE FLOH EQUATION TERMS ARE COMPUTED HERE WALL 1360
180 IF (INTG.LT. 2 ) OLDOPX=0.
IFIUGG.LE.O.O1IGC TO 165
```



```
WALL 1370
WALL 1380
WALL 1390
WALL 1400
WALL1410
WALL 1420
WALL 1430
WALL 1440
WALL 1450
WALL 1460
WALL 1470
WALL 1480
WALL 1490
WALL 1500
WALL 1510
WALL 1520
WALLI530
WALL 1540
WALL1550
HALL 1560
WALL 1570
WALL 1580
hall 1590
hall 1600
WALL 1610
WALL 1620
WALL1630
WALL 1640
WALL 1650
WALL 1660
WALL 1670
WALL 1680
MALL 1690
WALL 1700
WALLI710
WALLIT20
wall 1730
WALLI740
WALL 1750
WALL 1760
WALL1770
HALL 1780
C.....the following is a gimmick tu simulate a gradual transition.
hall 1790
WALL 1800
wall 1810
```




```
            IFIPETC.GT.100..CR.MODE.EQ.1IGO TO 245 WALL2430
            ALPHA= SORT\1./PRTJI
            AOP=AL PHA/PETC
            IFIAOP,GT.10.IAOP=10.
            PRTJ=1./(1./(2.- PRTJ)+ALPHA&PETC-PETC#PETC*(1.-EXP(-AOP)))
            IF(K3.EQ.3.OR.SOURCE(J).EQ.2JPRTJ=PRT(J)
    245 PREFW=EORT/(1./(FRR&PRW(J))+EDR/PRTJ)
            OHY(J)=(PREFW/(ECRT*VR))*(1.+GPL*(HPS(J)*OHY(J)*OYPL/2.)+5*C 5*
            1YPL+C4*UPL*YPLI+C3*
            21PREFU-1.1*(UPL-DUDY*DYPL/2.)*DUDY
            HPS(J)=HPS(J)+DHY(J)*DYPL
    250 CONTINUE
    260 YPL=YPL&DYPL
    REL=UPL*YPL
    IFIINTG.EO.1IGO TC 270
    IF(YPL.GT.YPHAX)LSUB=2
    IFILSUB.EQ.21 GO 10 340
    270 IF(KCHECK.EO.1) GC TO 280
    wALL 2440
    WALL2440
WALL }246
WALL 2470
WALL2480
    HALL }249
    WALL 2500
    WALL 2510
    WALL }252
    WALL 2530
    WALL 2540
    WALL 2550
    HALL 2560
    *ALL2570
    WALL2500
    MALL2620
    WALL2630
C.*...AT THIS POINT THE PRODUCT UPL*YPL IS COMPARED TO U*Y*RHOIMU AT THEWALL 2640
C.....JOIN-POINT IN THE MAIN PROGRAM GRIO. WALL 2650
    IFIREL.LT,REHIGO TO 210 WALL2660
    280 ERR=REL-REW WALL 2660
    AERR=ABS(ERR)
    ER 2=AERR/REN
    IF(ERZ.LT.0.01)GO TO }30
    KCHECK=1
    IFIERR.LT.0.0IOYFL=ABS(DYPL/2.0)
    IFIERR.GT.0.OIDYPL=-ABS(OYPL/2.0)
    GO TO 220
    WALL }268
    WALL 2690
    WALL }270
    WALL 2710
    WALL2720
    WALL2730
WALL2740
C ---.THIS SECTION IS LSED IF THE NUMERICAL INTEGGATION SECTION SIX ----WALL2750
C.....THIS SECTION IS LSED IF THE NUMERICAL INTEGRATION WALLLIOGO
C....-OF THE COUETTE FLCK EQUATIONS IS BYPASSED WALL2770
    290 YPL=SORT(REM)
            YPL=SQRT(ABS (AEW/{1.+(PPL-BFPLUS)*YPL/2.+GPL&YPL/2.) )
            YPL=SORT(ABS\REW/11.+(PPL-BFPLUSI*YPL/2.+SPL#YPL/2.)i)
            UPL=REW/YPL
            TPLUS=1.*GPL*UPL +(PPL-8FPLUS)*YPL
            IFITPLUS.LT.0.0)TPLUS=0.3
            IF(TPLUS.LT.O.1)LTPL=1
            IFITPLUS.LT.0.1)LSUB=2
    OUDY= TPLUS
```



```
C.....WALL SHEAR STRESS AND FRIETION FACTOR ARE COMPUTEO HERE
    WALL2770
            WALL2790
            WALL2790
            HAL
WALL2860
    WALL2880
    300 IFIYPL.LT.YPMIN.ANC.MODE.EG.2)LSUB=1 WALL2B90
            IF(YPL.GT. YPMAXILSUB=2
            IFILSUB.NE. 2 ICLOC FX=DPDX
            WALL2900
            EETA=DUDY&YPL/UPL
                            UALL
                            MALL2910
C.....THE FOLLOWING IS AN APPROXIMATE CORRECTION FOR USE
    MALL2920
mALL2921
C-...OOF PLANE MALL FUACTION EOUATIONS FOR AXI-SYMMETRIC PROBLEMS
WALL2922
    RADRAT=\&(NP2)*R(NP1)|/(2.*R(NP3))
    WALL2922
    IF (KIN.EQ.1) RAERAT=(RI2) *R(3))/(2.*R\1))
    WALL2923
    TAUM#ABSIRADRAT#RHWUUFUI/ (UPL#UPL#GCI)
    TAU=TAUN*TPLUS*GC
    WALL 2930
    IFIUGG.LT.0.001)60 TO 310
    WALL2940
    CF2=GC*TAUW/ (RHG*UGG*UGG)
    WALL2960
    310 CONTINUE
    IFINEQ.EQ.1I60 TC 340
    WALL2960
C.-...
    WALL2980
WALL2990
    0O 330 J=1,NPH
    WALL 3900
```

|  | IF IREW.GE.4.1 GC TO 320 边 | $\begin{array}{r} \text { WALL } 3010 \\ - \text { WALL } 3020 \end{array}$ |
| :---: | :---: | :---: |
|  |  | HALL 3030 |
|  |  | WALL 3040 |
|  |  | WALL 3050 |
|  |  | WALL 3060 |
|  |  | WALL 3070 |
|  |  | WALL 3080 |
|  | WALL HEAT TRANSFER AND STANTON NUMEER ARE COMPUTEO HERE | WALL 3090 |
|  | GAMA JIm DHY(J)EYFL/HPS(J) | WALL 3100 |
|  | QWF(J)=RADRAT + RHM*UI / (UPL*HPS(J) | WALL 3110 |
|  | IF (SOURCE (J).EQ. 2 ) GAMA $J$ ) $=0.0$ | Hall 3120 |
|  |  | mall 3130 |
|  | IF(SOURCE(J).EQ. 2 )GO TO 328 | WALL 3140 |
|  | [F(INDI(J).EQ.I.CR.INDE(J).EQ.1)GO TO 325 | WALL 3150 |
|  | IFIKEX.EO.IIEC TO 322 | WALL 3160 |
|  |  | WALL 3170 |
|  |  | MALL 3180 |
|  | OW(J) = AJI (J)-AMI + HWIJ) | WALL 3190 |
|  |  | WALL 3200 |
| C...... | IF VARIABLE PROPERTY ROUTINE OTHER THAN 2 IS USED, CHANGE THIS | WALL 3210 |
| C.....C | CALL AS APPROPRIATE. ALSO AFTER STATEMENT 325 | WALL 3220 |
|  | GO TO 326 | NALL 3230 |
| 322 | F(J,NP3) = (FI(J)-AJE(J)/QWF(J)I/(l.-AME/QUF(J)) | WALL 3240 |
|  | MW(d) $=$ F(J,NP3) | WALL 3250 |
|  | OW( $J$ ) $=-A J E(J \mid+A M E+$ Hal $J$ ) | WALL 3260 |
|  | IF(FI.UID.EQ. 2 ICALL PROP2(NP3,F(J.NP31, T(NP3),VISCOINP3), PR(J, NP 3i, | MALL 3270 |
|  | RHOINP3:1 | WALL 3280 |
|  | GO 70326 | WALL 3290 |
| 325 | CONTINUE | WALL 3300 |
|  |  | WALL 3310 |
| 326 |  | WALL3320 |
|  | IF (ABS(HG(J)-HWP J)I.LT.0.000001.OR.UGG.LT..001)G0 TO 328 | MALL 3330 |
|  |  | WALL 3340 |
|  | IF(KEX.EO.I.AND.INDE(J).EQ.IIQW(J)=-QW(J) | WALL 3350 |
| 328 | IF (KIN.EO. 1 ) PREF (J,2) ${ }^{\text {P PREFW }}$ | WALL3360 |
|  | IF (KEX.EQ. 1 ) PREF (J.NPI)=PREFW | WALL 3370 |
| 330 | CONTINUE | MALL 3380 |
| C 340 | - SECTION TEN | MALL 3390 |
|  | KSTART=KSTART+1 | WALL 3400 |
|  | IFIMNTG.EO. 1. ANO. KSTART.LT.4IGO TO 40 | WALL 3410 |
|  | MARKER=0 | MALL 3420 |
|  | IF ILSUB.GT. 0 IMAR KER=1 | WALL 3430 |
|  | IF ILSUB.EQ.O) RETURN | MALL 3440 |
|  |  | mall 3450 |
| C..... | LAMSUB ROUTIAE | WALL 3460 |
| C.e.s.IF LSUB EQUALS 1. ISEE CONOITIONS IN MAIN PROGRAMI, WALL 3470 |  |  |
|  | THIS ROUTINE HAS AS IIS FUNCTION THE DELETION OF THE FIRST | WALL 3480 |
| C.e...GRID LINE MEAREST THE WALL. IN EFFECT IT COMBINES THE |  |  |
|  | FIRST TWO SPACES AND REDUCES THE NUMBER OF SPACES, $\mathrm{N}_{\text {, }}$ BY ONE. | WALL 3500 |
| C.....ALTERNATIVELY, IF LSUB EQJALS 2, IT INSERTS ANOTHER GRID WALL 3510 |  |  |
|  | POINT BETNEEN I AND 3- | WALL 3520 |
|  | INTGE=INTG-I | MAL63530 |
|  | $\text { WRITE }(6,930)$ | Wall 3540 |
| 930 | FORMATI/ ROUTINE LAMSUB HAS BEEN CALLED'I | WALL 3550 |
|  | IFILSUB.GT.1) 60 T0 390 | WALL 3560 |
|  | $\mathrm{N}+\mathrm{N}-1$ | WALL 3570 |
|  | MRITE(6,920)N, INTGE | MALL 3580 |
|  | NP $1=N+1$ | mall 3590 |
|  | NP $\mathbf{2}=\mathrm{N}+2$ | WALL 3600 |



```
    NP3=N+3 WALL 3610
    IFIKIN.EQ.1)GOTO 360 WALL3620
    U(NP3)=U(N+4)
    U(NP2)=U(N+3)
    Y(NP3)=Y(N+4)
    Y(NP2)=Y(N+3)
    IFINEQ.EQ.IIGO TC 460
    00 350 J=1,NPH
    F(J,NP3)=F(J,N+4)
    350 F(J,NP2)=F(J,N+3)
    GO TO 460
    360 CONTINUE
    OO 380 I=3,NP3
    U({)=U(I+1)
    Y(1)=Y(I+1)
    IFINEO.EO.1)GO TO 380
    OO 370 J=1,NPH
    370 F(J,I)=F(J,I+1)
    380 CONTINUE
    GO TO 460
    390 N-N+1
    WRITE(6,920:N,INTGE
```



```
C.....CHANGE IF PRCGRAF DIMENSIDNING IS CHANGED. *क#*********************WALL 3830
    IFIN-GT-50IGC YO 470 WALL 3840
    NP2=N+2
    NP3=N+3
    IFIKIN.EQ.IIGO TC 420
    Y(NP3) = Y(NP2).
    Y(NP2)=Y(NP1)
    U(NP3)=U(NP2)
    U(NP2)=U(NP1)
    \therefore.YI=0.5@(Y(NP2)&Y(N))
    Y- Y(NPII=0.5*IY(N)+YI)
    U(NPI)=0.5* (U(NI+LII)
    IFINEQ.EO.1IGO TO 410
    00 400 J=1.NPH
    F(J,NP3)=F(J,NP2)
    F(J,NP2)=F(J,NP1)
    400 F(J,NP1)=0.5#(F(J.N)+F\(J))
    410 CONTINUE
    GO TO 455
    42000 440 K=1 NM
    I=NP3+(I-K)
    U(II=U(I-1)
    Y(I)=Y(I-I)
    IFINEO.EQ.1) GO TO 440
    OO 430 J=1,NPH
    430 F(J,I)=F{J,I-1)
    440 CONTINUE
YI=0.54(Y(2)+Y(3))
    Y(3)=0.5*(YI*Y(3))
    U(3)=0.5*(UI+L(3))
    IFINEQ.EO.1) GO TO 455
    00 450 J=1,NPH
    450 F(J.3)=0.5*(FI(J) FF(J.3):
455 EMU(NPIIEEMU(N)
BF(NP3)= BF(NP2)
    VISCO(NP3I=VISCOINPZI
    RHO(NP3)=RHOINPZ&
    WALL3630
    WALL 3640
    HALL 3650
    MALL3660
    HALL3670
    HALL 3680
    MALL3690
    MALL3700
    WALL3710
    MALL3720
    WALL }373
    WALL }374
    WALL3750
    WALL 3760
    WALL 3770
    WALL3780
    WALL3790
    WALL 3800
    WALL3810
    WALL 3820
    WALL 3850
    MALL3860
    WALL 3870
    WALL 3880
    WALL 3890
    WALL 3900
    HALL 3910
    WALL }392
    HALL3930
    WALL3940
    WALL3950
    WALL3960
    WALL3970
    WALL3980
    WALL3990
    WALL4000
    WALL4010
    WALL4020
    WALL4030
    HALL4040
    WALL4050
    WALL4060
    WALL4070
    WALL4080
    *
    WALL4090
WALL4100
WALL4110
WALL4120
WALL4130
WALL4140
WALL4140
WALL4160
WALL4170
WALL4180
WALL4190
WALL4200
```

```
    T(NP3)=1.
    IF (NPH.EO.O) GO TO 460
    DO 458 J=1.NPH
    458 PR(J,NP3)=PR(J,NP21
    460 CONTINUE
    IF\LTPL.EQ.1)MRITE(6,62)
        RE TURN
        470 MRITE (6.940)
            LVAR=6
        62 FORMATI' LSUR=2 WAS INVOXEO BECAUSE SHEAR STRESS RATIO'/
        1. IN WALL FUNCTICN GOT LESS THAN O.L. DUE PROBABLY'/
        2' TO EXCESSIVE PRESSURE GRADIENT OR SUCTIJN'/I
    g40 FORMATI//" PROGRAM TERMINATED BECAUSE N HAS EXCEEDEO THE'/
        1. NUMBER OF FLOW TUBES FOR WHICH THE PROGRAM IS DIMENSIONED'//I
    920 FORMATIIX,ITHN HAS SHIFTED TO ,12,IX,9HAT INTG =,I4/I
        RETURN
        ENO
        SUBROUTINE AUX
C.....
    INTEGER GEOM,FLUIO,SOURCE(5),SPACE, BODFOR, OUTPUT, TYPBC
    COMMON/GEN/PEI,AMI,AME,OPDX,XU,XD,XL,DX,INTG,CSALFA,TYPBC(5),
    1MODE,PRT (5), PRE,NXEC,X(100),RW(100),FJ(5,100),GC,CJ,AM(100), PRO,
    2UG\1001, PO, SOURCE,RETRAN,NUMRUN,SPACE,RHD,PPLAG,OUTPUT, DELTAX,GV
    3/E/N,NPI,NP2,NP3,NEQ ,NPH,KEX,KIN,KASE,KRAD,GEOM, FLUID,BODFOR,YPMIN
    4/GG/BETA,GAMA(5),AJI(5),AJE(5), INDI(5),INDE(5),TAU,OWF(5)
    5/V/U(54),F(5,54),R(54),OM(54),Y(54),UGU,UGD,U1,FI(51,FMEAN,TAUW
    6/w/SC(54),AU(E4), QU(56),CU(54),A(5,54),B(5,54),C(5,54),5U(5,54),5D
    7/L/AK,ALMG,ALMGG,FRA ,APL,BPL,AQ,BQ,EMU(54),PREF(5,54 1,AUXM1
    8/L1/YL, UMAX, UMIN,FR,YIP,YEM,ENFRA,KENT, AUXM2
    9/P/RHO(54),VISCO(54),PR(5,54),RHOC,VISCOC,PRC(5),T(54), RHOM,BF(54)
    1/O/H,REM,CF2,ST(5),LSUB,LVAR,GAY,REH,PPL,GPL,OW(5),KD
    2/CN/AXX, EXX,CXX,CXX,EXX,K1,K2,X3,SP(541,AUX11100), AUX2(1001,YPMAX
    3/ADD/RBCM(54),CMC(54),ROMD(54),1TKE
        DIMENSION DV(S4)
C.....
            ITKE=1
            UGG=U(1)+FLGAT(KEX-1)*(U\NP3)-U(1))
            RHGERHO(1)+FLOAT(KEX-1)*(RHO(NP3)-RHO(1))
            AMN=-AME+FLOAT(KEX-1\#{AME +AMI)
            RHM=RHO(NP3)+FLOAT(KEX-1)&(RHD(1)-RHJ(NP3))
            VISW=VISCO(NP3) +FLOMT(KEX-1)क(VISCO(L)-VISCO(NP3)I
            UTAU= SORTIGC*TAUH/RHWI
            YPUT=RHW*UTAL/VISh
            IF (INTG.GT.LI GC TO 10
            KOUNT=O
            IF (MODE.EO.2) KCLNT=1
        1 RAVG=R\II
            RHOAV=RHO(1)
            VISAV=VISCO\1I
            KTURB=0
            IF (NPH.EO.O.AND.MODE.EQ.2.ANO.K2.NE. 2IWRITE\6,6)
            IFIK2.EQ.2.AND.MCDE.EQ.2IWRITEIO,9)
            IF INPH.EO.O.AND.FODE.EQ.L.AND.KD.LT.2) WKITE(6,7)
            IF INPH.EQ.O.ANO.MODE.EQ.2.AND.KD.GE.2) WRITE{G,AI
            IF (NPH.EQ.O) GO IC 10
            JTKE=0
            DO 5 J=1.NPH
            IF ISOURCE\JI.EO.2I JTKE=J
```

    ORIGNAL \(P_{A}\)
    OR POOE

```
            IF IJ.EQ.JTKE.ANC.MODE.EQ.2) WRITE (6.4) AUX004UO
            IF IJ.EQ.JTKE.AND.MODE.EN. 2.AVD.K2.EQ.21 WKITE 16,31._ AUKOO410
        3 FORMATI//: K2 SHCULD NOT BE SET EJUAL TO 2 %//I SUYOO420
        4 FORMATI' FLOW IS TURBULENT ANJ PROGRAM IS USING TURBULENT.
            1/" KINETIC-ENERGY TO EVALUATE EDOY VISCJSITY, EXCEPT IN THE",
            1: WALL FUNCTION MHERE MIXING-LENGTH IS USED. NOTE THAT THE',
            1: PRINTED-OUT VALUES OF TKE HAVE NU MEANING IN THE NEAR-WALL!,
            1' REGION, I.E., FCR YO LESS THAN O+, OR 2*A+.',I
        5 IF (SOURCE(J).EQ.2) KTURZ=1
            IF (MODE.EQ.II GC TO 1O
            IF IKTURB.EQ.O.AAC.K2.NE.2IWRITE (6,6)
            IF (KD.LT.2) WRITE (6,7)
            IF (KD.GE.2I WRITE (6,81
        6 FORMATI' FLOH IS TLRBULENT ANJ PRUGRAM IS WS ING THEORANDTL MIX-DAUNOS2J
        1/! ING-LENGTH HYPCTHESIS TO EVALUATE EOM
        1/! ING-LENGTH HYPCTHESIS TO EVALUATE EDOY-VISCOSITY'/I AUXOOS40
        7 FORMAT!: THE VAN DRIEST SEHEME IS BEING USED TO EVALUATE*
            1/: THE MIXING-LENGTH OR LENGTH-SCALE DAMPING NEAR THE WALL."/)
        B fORMATI. THE EVANS SCHEME IS BEING USED IJ EVALUATE THE.
        1/' MIXING-LENGTH OR LENGTH-SCALE DAMPING VEAR THE WALL."/I
    9 FORMATI' FLOM 1S TURGULENT ANO PROGRAM IS USING THE CONSTANT',
            1. EDDY DIFFUSIVIIY OPTION IN THE UUTER REGIJN*/I
C.....
    1000 100 I=2,NP1
        YM=0.5*{Y(I+I)+Y(I|)
        IF (KEX.EQ.1\ YM=Y(NP3)-YM
        IF (FLUID.EQ.1) GC TO }1
        RAVG=0.5*(R(1) R (It1))
        RHOAV=0.5*(RHO(I)+RHO(I+I))
        VISAV=0.5#(VISCO(I)+V.ISCO(I+1))
    12 EMUT=0.
        CV(I)=1.
        IF (MODE.EQ.I) GC TO 50
        KOUNT = KOUNT +1
        IF (KOUNT.EQ.1) GC TO 1
        IF (KASE.EQ.2) GO TO 25
        AUX00730
        AUX00740
C----VMN ORIEST DAMPINGFUMT-------- EDDY VISCJSITY DAMPING TEAM ----AUXOO750
c.....VAN ORIEST OAMPINE FUNCTION
AUX00760
C.....APL, BPL COMPUTEC IN WALL
    IF (FLUIO.NE.I) YPUT=SORT(RHOAV*TAUW*GC)/VISAV
    MLOC=YM*YPUT
    IF (KD.GT.I) GO TC }1
    IF (YLOC/APL.GT.10.) GO TO }2
    DVIII=1.-1./EXPIVLOC/APLI
    GO TO 22
C.e...EVANS DAMPING FUNCTION
    15 OV(I)=YLOC/BPL
    20 IF(DV(I).GT.I.J OVIII=1.
C.-...LOWER LIMIT VALUE DAMPING TERM
    22 IF (OV(I).LT.0.00011 OVII)=0.0001
    25 CONTINUE
    su\times00770
    AUR00780
    AUX00790
    AUx00800
    AUXOOB10
    AUX00820
    AU\times00830
    AUX00840
    AUX00850
    AUX00860
    AUX00870
    AUXOORAO
```



```
    IF (I.GT.2) GO TO 30
AUX00900
    4ux00910
    IF IGEOM.EO.4.OR.GEOM.EQ.5\ GO TO 30 AUX00920
    IF IREM.LE.100.-OR.KZ.EQ.3) GO TO 30 AUMO0930
C....-EMPIRICAL CORRELATION FOR ALMG FOR HALL FLOWS AUXOO94O
C.....THIS CORRELATION THEN OVERRIDES THE INPUT ALMGG
    AUX00940
    AMOR=AME/RHO(1)
    AUX00950
    AUX00960
    If (KIN.EQ.I) AMOR=AMI/RHO(NP3)
    AUX00970
    ALMG =ALMGG*2.942/REM**0.125*(3.-67.5*AMOR/UGU)
    AUX00980
    IF \ALMG.LT.बLMGGI ALMG=ALMGG
AUX00980
```

```
C.....COMPUTE MIXING LENGTH
    30 AL=ALMG*YL
        IF {KASE.EQ.I.AND.YM.LT.AL/AK) AL=AK&YM
    IFIKASE.EQ.1.AND.K2.EQ.2IAL=AK#YM
    IF (KTURB.EQ.1.ANT.KASE.EQ.2I GO }104
    IFIKASE.EQ.2IGO TC 35
    YTKE=Y(1)#YPLIT
    IF (KEX.EQ.I)YTKE=(Y(NP3)-Y(I+1))=YPUT
    IFIKTURB.EQ.1.ANC.KD.LE.1.ANO.YTKE.GE.2.由APLIGO TO 40
    IFIKTURB.EO.1.ANC.KD.GE,Z.AMD.YTKE.GE.BPLIGO TO 4O
    35 EMUT=RHOAV*A(&AL*ABS(&U(I+I)-J(II)/(Y(I+1)-Y(I)))*DV\I)#DV(I)
    IF(K2.NE.2.OR.KASE.EQ.2)GO TO 36
    EMUTC = (AO#REM**BGI#VISAV
    IF(EMUT.GT.ENUTCIEMUT=EMUTC
    IFIYM.GT.O.4#YLIEMUT=EMUTC
    3E IFIKTURB.NE.1)GO TO 50
C.....ADJUSTMENT OF TKE IN MEAR-HALL REGION
    FJJAVE=((AK*EMLTI//AO&RHOAV*AL*DV(I|))**2
    F(JTKE,I)=FJJAVE
    ITKE=\
    IF (KEX.EQ.1.AND.ITKE.EQ.LI ITKE=I
    CO TO 50
C.....COMPUTE EODY VISCOSITY USING TURBULENT KINETIC ENERGE EON
    40 FJJAVE=ABS(0.5#(F{JTKE,I+1)+F(JTKE,I))|
    EMUT =AO*RHOAV*AL*OVII|*SORTIFJJAVEJ/AK
C---------_-_NOM
            IF (NPH.EO.O.ANO.KASE.EQ.L) TIII=ABSIEMUII)&(U(I+I)-U(I)I/
    I|Y(I+I|-Y(I|)|/(GC*TAUM)
            IF INPH.EQ.O) GO TO }10
        EDR=EMUT/VISAV
        00 90 J=1,NPH
        IF IMODE.EQ.1\ GC TO 80
        JPHI=1
        IF (SOURCE{JJ.GT.O) JPHI=SOURCE\JI
        GO 7O 162.68,62.621. JPHI
C.....
C.....STAGNATION ENERGY EQN, TURBULENT PRANDTL NUYBER
        62 PRTJ=PRTIJI
            IF IKASE.EQ.2.OR.K3.EQ.3I GO TO 7U
C.....THE FOLLOWING IS THE FREE CONSTANT IN THE TURBULENT PRANDTL
C....-NUMBER EOUATION. EXPERIENEE MAY SUGGEST A DIFFERENT VALUE.
        CT = 0.2
        PETC=EDR#CT*(PR(J.I*1.1*PR(J.I):/2.
        IFIPETC.LT..CO1 IPETC=.001
        IF(PETC.GT.100.1G0 T0 69
        AL PHA=SORTII./PRTJI
        AOP=ALPHA/PETC
        IFIAOP.GT.10.1AOP=10.
        PRTJ=1./(1./i2.#PRTJ)&ALPHA*PETC-PETC#PETC#(1.-EXP(-AOP|I)
        GO TO }6
C......TURGULENT KINETIC ENERGY EQN, TURB PRANDTL NUMAER
    68 PRTJ=PRT(J)
C---me-m EFFECIVE PRAMOTL/SCHMIDT NUMBER
        69 IFIKIN.EO.1.AND.I.EO.2IGO TO 90
            IFIKEX.EO.I.AND.I.EO.NPIISO TO }9
        70 PREF(J,I)=(1.0+ECR)/(EDR/PRTJ+1.0/(0.5*(PR(J.I I+1)&PR(J,I)I|)
            GO TO 90
C.....-LAMINAR EFFECTIVE PRAMDTL NUMBER
aUx01000
auxololo
sux0 1020
aUxO1030
AUXO 1040
auxoloso
auxO 1502
AUXO 1054
AUKO1080
AUXO1070
AUXO1080
Aux01090
Auxollo
AUXO1110
AUXO1120
AUXO1130
AUXO1140
AUXOI150
auxO1160
AUXO1161
aUxO1162
AUX01170
AUXO1180
sux01190
AUXO1200
AUXO1 210
AUXO1 220
AUXOL230
AUXO1240
AUXO1250
C-__ IF INPH.EQ.OI
AuxO1270
AUXO1280
AUXO1290
aux01300
AUXO1310
AUXO1320
AUXO1330
AUXO1340
AUXO1350
AUXO1360
AUXO1370
AUXO1380
AUXO1390
aUXO1400 AUXO1410 AUXO1420 AUXO1430 AUXO1440 aUxO1450 aux 01460 aUXO1470 AUXO1480 aUXO1490 aux 01500 auxols10 AUXO1520 AUXO1530 aUXO1540 AUXO 1550
```

```
        80 PREF(J,I)=0.5*(PR(J,T*1)+PR(J,\))
        90 CONTINUE
    100 CONTINUE
        DO 110 I=2,NPI
        RHOAV=(RHO(I)+RHO(I+I) )/2.
        RAVG=(R(1)+R(I+1)|/2.
C.&...ADJUSTMENT OF EMU AT 2.5 4NO N+1.5
        IF (I.GT.2) GO TC 110
        IF (KIN.NE.I) GO TO 105
        IF IBETA.LT.O.OZ.CR.BETA.GT.O.9) GU TO IIO
        EMU(2)=TAU#(Y(2)+Y(3))/(BETA*(U(<)+U(3))
    105 IF (KEX.NE.I) GO TO 110
    \becauseIF IBETA.LT.O.O2.OR.BETA.GT.O.91 GO TO 11J
        EMU(NP1)=TAU*(Y(NP3)-0.5*(Y(NP1)+Y(NP21)I/
        1 (BETA*0.5*(UINP1) +U(NP2)))
C.....COMPUTE SMALL C'S
110 SC(II*RAVG*RAVG*RHOAV*O.5*(UII+L)*UII))*EMU(I)/(PEI*PEII
110 SC(II*RAVG*RAVG*RHOAV*O.5*(UII+I)*UII)J*EMU(I)/(PEI*PEII
C-200 l=3,NF1
    CO 150 J=1,NPH
    SU(J,I)=0.
    SD=0.
    IF (SOURCE(J).EO.O) GO TO }15
    NSOR = SOURCE{JI
    GO TO (115,130,115,1201, NSOR
```



```
    115 IF (1.EQ.2) PREF(J.1)FPREF(J.21) STAGMATIJN ENEPGY EON SOURCF ----AUXOI820
        PREFF=(PREF(J,I) +FREF(J,I-1)I*0.5
        CS=SC(1)*(U(I+1)*U(I+1)-U(1)*U(I))*RJMU(I)
```



```
    CS=(1.-1./PREFF )#CS#RBOM(I)
        SU(J,I)=CS/(GC*CJ)+8F(I)/(CJ*RHOI(I)
    120 IF (UPI).LT.0.0001) GO TO }12
        IF (SOURCE(J).EQ.3I SU(J,I)=SU(J,I)+AUXM2I(RHO(I)#U(II)
        IF (SOURCEIJI.EQ.4) SU(J.II)=AUXM2/(RHOIIIOU(II)
    125 SD=0.
    125 SD=0.0 150
C-_GO TO 150
    130 AL=ALMG*YL
            IF {KASE.EO.2) GO 10 140
            YMO=Y(1|
            IF (KEX.EO.1) YMO=Y(NP3)-Y(I)
            IF (YMQ.LT.AL/AK) AL=AK#YMQ
    140 OU200M= 5*i(U(I*I)*U(I+IJ-U(I)*U(I))*RJMO(I) +
            1 IU(I)*U(I)-U(I-1)*U(I-I)|&RDMD(I-1))
            OVO= -5*(DV(II)+CV(I-1))
            FJ2=ABS(F(J,II)
            PROD=AO*AL*DVO*SCRT(FJ2)*(RHOII)*RIII/PEIJ**2/(UCII*AK*4.1*
        1 DU20CM**2
            DIS5:BO*AK*FJ2**1.5/1AL*DVO*U\I|!
            IFIDISS*CX.GT.FJ2IDISS=FJ2/OX
            SU(J.II=PROO-CISS
            FGT=F(J.NP3)
            IFIKIN.EQ.2IFGT=F(J.1)
            IFIKIN.EO.3IFGT=0.0
            IFIF(J,Il.LT,FGTISUIJ,II=PROD
            SD=0.0
    GO TO }15
C.....ADD OTHER SOURCE FUNCTIUNS HERE
        AUXO1560
        90 CONTINUE 0. (PRIJ,T*1ItPR(J,G)I
        -COMPUTE SMALL C'S
C- \F (NEQ.EQ.II 60 IO 300
        AUKO1570
        1570
        AUXO1580
        AUXO1600
        AUXO1610
        AUXO1620
        AUXO1630
C.0...IF (I.GT-2)GO TC 110-5 4NO N+1.5
    AUX01640
    AUX01650
    AUNO1560
    AUX01670
    AUXO1680
    AUXO1690
    AUX01690
    AUx01705
    AUKO1710
    AUX01720
    AU\times01730
    \DeltaUx01740
        A!xO1745
    AUXO1750
    AUXO1760
    \Deltaux01770
    AUXO1780
    AuxO1790
    AUXO1800
    AUxO1830
    CS=SC(I)*(U(I+1)#U(I+II-U(I)*U(I))&RJMU(I) AUX01840
    CS=SC(I)*{U(I+I)#U(I+I)-U(I)*UII))*RJMU(I)
        Aux01860
        AUX01870
        Au\times01980
```



```
        4ux01910
        AUX01920
AJjol943
                                    aux01950
                                    Aux01960
                                    4u\times01970
                                    AUX01980
                                    AUXO1990
                AuxO?000
                                    Aux02.10
        Auxu2つ20
                                    AUXG203,
                                    AUKO>05n
                                    all>02060
                                    AUx02060
                                    AUX02070
AUXOZORS
\Deltaux02090
AUXO2100
AUXO2110
AUXO2120
\DeltaUXO213is
AUX02135
AUX0215n
```



```
            IFIINTG.EO.2.AND.KSPACE.EO.2LIWRITE(6.282) SUTOO49N
            IFISPACE.NE.1IGO 10 215
            IFIKSPACE.EO.IIGO TO 215
            CPL=APL
            IF(KD.GT.1)CPL=BPL
            HRITE(6,284)NINTG,XU,UGU,CAY,FAM,REM,CF2,H,NEH,STA,F(I,1),CPL, AME
            IFIKSPACE.EO.11.AND.XD.LT.XLISO TU }27
            IFIINTG.EQ.FLAG2IGO TO 215
            IFIKSPACE.EQ.21.AND.XD.LT.XLISO TU 279
            IF(XD.GE.XL) UGU=UGO
    215 CONTINUE
            WRITE(6,280)
            MRITE{6,282)
            CPL=APL
            IF(KD.GT.1)CPL=BPL
            WRITE{6,284ININTG,XU,UGU,CAY,FAM,REM,CF2,H,REH,STA,F(1,I),CPL,AME
            IF(KL.GT.10)WRITE(6,286IISP(I),I=1,5),G,BTA
                            EUTOO500
                            กuT00512
                            CuT00520
                            IUTgO530
                            CUTOO540
                            CuTOO550
                            CuT00560
                            CuTOO570
guT00580
EUT00590
CUT00600
OUT00610
OUT90620
nuT00630
CUT00640
OuT00650
    286 FORMAT(1X,23HSPECIAL OUTPUT - SP(I)=,E9.3,1X,6HSP(2) =,E 9.3,1X,6HSPCUTOO660
```



```
    2F5.2,1X, SHBETA=,F5.2i GUT006RO
    288 FORMATI/.5X.64H I YIII UIII YPLUSIII UPLUSIII OUTOD690
    1 HPLUS(II,5X,IOHSORTIKI/UG,/1
        IFINEQ.GT.1)MRITE (6,288)
        IFINEO.EO.I)MRITE(6,290)
    290 FORMAT(/,5X,66F I U(I) UIII VPLUSIII UPLUSIII EUTOO730
    l TAUPLUS ./$
    292 FORMATS 6X,12,4X,FB.6, 2X,F7. 2, 3X,FB.2,0X,F5.2,9X,F9.4,5X,F7.4, EUT00760
    15x,F6.3,2x,F7.31
        YPUT=U(NP3)*SORT(CF2*RHO(NP3)*RHO(1))/VISCO(1)
        LPUT=1./(UINP3)*SGRTICF2#RHD(NP3)/RHO(L)))
        IFINPH.EO.OIGC TC }29
        IF{ABS(IFIL,I)-F(I,NP3))*ST(1)I.LT..OUOL)GO TO 293
        IF INEQ.GT.I.ANO.SOURCE(I).NE.Z)HPUT= SQRT(CF2由RHD(I)/RHOINP3)I/
        1 ((F(L,1)-F(1,NPI))*ST(1)
    OUT00700
    CUT00710
    nuT00720
    I TAUPLUS,1) OUTOO740
        0ur00770
```



```
        CuT00800
    SUT00810
CUT00830
C.....- OUT00831
```



```
    293 MU=54 OUTO0833
OM =54
CUTOO834
C.....
            00 274 I=1,NP3
            M=1
            YPLUS(I)=Y(I)*YPLT
            UPLUS(1)=U(1)*UPLT
                    CUT00850
                    CUT00870
            IFII.NE.2IGO TC 245
                    CUT00880
            60 TO (240,225,220,225,225),NEQ OUTOO890
220 IF(SOURCEIII.EC. 2)GO TO 235
                    OUT00900
            1FISOURCE(2).NE.2IGO TO 225
                                    0UT00910
            ORATIMUI=SORI(ABS(FI(2)II/U(NP3) OUT00920
OUT00930
225 IFISOURCEIL).EQ.2IGO TO 235
EUT00940
    MP(MU)=0.0 (1, )-F(1,NP3))*ST(1)).LT..0001)50 TO 23n OUTOO950
            IF(ABS((F(1,1)-F(1,NP3))*ST(1)).LT..0001)50 TO 23n OUT00950
230 FII,MUI=FIIII
OUT00970
    GO TO 240
Cur00980
    235 ORAT(MU)=SQRT(ABS(FI(1))I/U(NP3)
guT00990
240 Y(MU)=0.5#(Y(I)+Y(3))
OUTO1000
            U(MU)=UI
CuTO1010
            YPLUS(MU)=0.5*(Y(2)+Y(3))&YPUT
OUTO1020
            UPLUS(MUP=UITUPUT
CUTO1030
    M=MU
OUTO1040
245 1FII.EO.NP2IGO TO 274
CUTO 1050
```

```
        GO TO (250,255,265,255,255),NEO
    250 TAUPL=1.0
    IF(I.NE.I.ANC.M.NE.MUITAUPL=0.5*(I(M) +T(M-1))
    IF(M.EQ.MUITAUPL=TAU/CGC#TAUN)
    IF(I.EQ.NP3)TAUPL=0.0
    WRITE(6,292) M,Y(M),U(M),YPLUSIM),UPLUSIMI,TAUPL
    GO TO 274
    255 IF(SOURCE{1).EG.2IGO TO 272
    HP\I|=0.0
    IF(ABS({F(1,1)-F(1.NP3)|&ST(1)|.LT..JOJI)GJ TO 260
    HP(I)=(F|1,1)-F(1,I||#HPUT
    260 HRITE(6,292) M, Y(M),U(M),YPLUS(M),UPLUS(M)
    1,HP{M}
        GO TO 274
    265 IFISOURCEII).EQ.2IGO TO 272
    IF(SOURCE(2).NE.2)GO TO 255
    ORAT(I)=SORTIAES(F(2,I))//U(NP3)
    HP(1)=0.0
    IF(ABS(IFI1,I)-F(1,NP3))I.LT..0001)GO TO 270
    HP(I)={F(1,1)-F(1,I))*HPUT
    270 WRITE(6,292) M,Y(M),U(M),YPLUS(M),UPLUS(M),HP(M),ORATIM)
    GO TO 274
    272 ORAT(I)=SORT(AESIF(1,1)II/U(NP3)
        CUMMY=0.0
        WRITE(G,292IF,Y(M),U(MI, YPLUS(M),UPLUS(M), OUMMY,ORAT(M)
    274 CONTINUE
    WRITE(6.280)
    IF(XD.GT.XLIGO TC 276
    IFIINTG.EQ.1IGO TC 276
    IFIKSPACE.EQ.11.OR.KSPACE.EQ.21IHRITE(6.282)
    276 CONTINUE
    280 FORMAT(//)
    FLAG2=FLAG2+KSPACE-1
    279 FLAG=FLAG SPACE
    27日 CONTINUE
    282 FORMATI/.115H INTG XJ UGU K REM
    1 CF2 H ST FEH FI,WALLI APL OR GPL AMES
    284 FORMATI 3X,13, 2X,F7.4, 2X,FT.2,1X,E10.3, 2X,F6.4, LX,F7.1, 2X,F8.6, 2X,
    1F5,3,3X,F7.1,2X,F8,6, 2X,F8,2,2X,F6,2,2X,F8,41
        RETURN
C.0.-.
    300 CONTINUE
        GO TO 1000
    400 CONTINUE
C.....
C.....THIS OUTPUT ROUTINE IS DESIGNEO PRIMARILY FJR FLOM IN A TUBE.
        IF{INTGANE.LIGO TO 404
        KSPACEOSPACE
        IFPNPH.GT.0IGO TO 403
        ST(1)=0.0
        PR{1,7)=0.0
        F(1,NP31=0.0
        SOURCE\11=0
    4 0 3 ~ F L A G = 1
    FLAG2=1
    404 IFIKSPACE.EQ.11.OR.KSPACE.EQ.21:SPACE=1
    IFIXD.GE.XLIGO TO 405
    IFIINTG.NE.FLAGIGO TO }42
    405 CONTINUE
    480 FORMATI 2X,5HINTG=,I3,1X,3HXU=,F6.3,1X,3HRE=,F9.1,
```

OUTO 1060
250 TAUPL=1.0
IF(I.NE, I.ANC. H.NE.MUITAUPL=0.5*(I(M)+T(M-1))
IF(I.EQ.NP3) TAUPL $=0.0$
WRITE(6,292) M,Y(M),U(M),YPLUS(M),UPLUSIMI,TAUPL
GO TO 274
255 IF(SOURCES1).EG. 2 IGO TO 272
HP $I I=0.0$
IF(ABS(IF(1,1)-F(1.NP3)IEST(1)).LT..JOJI)GJ TO 260
HP (I) = (Fil, I)-F(1,I\|)\#HPUT
260 HRITE(6,292) $M, Y(M), U(M), Y P L U S(M), U P L U S(Y)$
1,HP(M) GO TO 274
265 IFISOURCEII).EQ. $21 G 0$ TO 272
IF(SOURCE(2) NE. 2 IGO TO 255
ORAT (I) =SORTIAES (F(2,I) I)/U(NP 3)
HP(I) $=0.0$
IF(ABSI(FI1,1)-F(1,NP3))I.LT..0001)GO TO 270
HP (I) = (F(1,1)-F(1,I))*HPUT
270 WRITE(6,292) M,Y(M),U(M),YPLUS(M),UPLUS(M),HP(M), ORAT(M)
GO TO 274
272 ORATII)=SORT(AES(F(1, I)II/U(NP 3)
CUMMY=0.0
HRITE(G, 292IF, Y(M),U(AI, YPLUS(M), UPLUS(M), OUMMY, ORAT (M)
274 CONTINUE
WRITE(6.280)
IFIINTG.EQ. 1160 TC 276
IFIKSPACE.EQ.11.OR.KSPACE.EQ.21IWRITE (6.282)
276 CONTINUE
FLAG2=FLAG2+KSPACE-1
279 FLAG=FLAG SPACE
278 CONTINUE

284 FORMATI $3 x, 13,2 X, F 7,4,2 X, F 7,2,1 X, E 10,3,2 X, F 6,4,1 X, F 7.1,2 X, F B, 6,2 X$,
F5.3, 3X,F7. $2,2 x, F 8,6,2 X, F 8,2,2 x, F 6,2,2 x, F 8,41$
RETURN
300 CONTINUE
GO TO 1000
C......THIS OUTPUT ROUTINE IS DESIGNEO PRIMARILY FJR FLOM IN A TUBE.

IF\{INTGANE. $1 / G 0$ TO 404
KSPACE=SPACE
ST(1)=0.0
PR $11,71=0.0$
$F(1, N P 31=0.0$
SOURCE111=0
403 FLAG=1
FLAG2=1
404 IFIRSPACE.EQ.11.OR.RSPACE.EQ.2115PACE=1
IFIXD.GE.XLIGO TO 405
IFIINTG.NE.FLAGIGO TO 425
480 FORMATI2X,5HINTG=,I3,1X,3HXU=,F6.3,1X,3HRE=,F9.1,

OUT01070
OUTO1080
OUTO1090
OUTO 1100
OUTO1110
OUTO 1120
OUTO 1130
OUTO1140
CuTOL150
OUTO 1160
CUTO 1170
OUTO1180
CUTO1190
OUTOL200
OUTOL210
OUTOL 220
OUTO 1230
OUTO 1240
OUTO1250
OUTO1260
OUTO1270
OUTO1280
OUTO1290
OUTO1300
OUTO 1310
OUTO1320
OUTO 1330
OUTO 1340
OUTO1350
OUTO 1360
CUTO 1370
OUTO 1380
CUTO1390
OUTO 1400
OUTO1410
OUTOI420
OUTO 1430
OUTO1440
OUTO 1450
CUTO 1460
CUTO 1470
OUTO 1480
OUTO 1490
CUTO1500
OUTO1510
OUTO 1520
OUTO 1530
OUTO 1540
OUTO 1550
OUTO 1560
OUT01570
OUTO 1580
OUTOL590
OUT01600
OUTO1610
DUT01620
OUTO 1630
OUTO 1640
OUTO 1650

```
    11X,4HCF2=,F7.5,1X,3HST=,F7.5,1X,3HNU=,F7,2,1X,3HUM=,F7,2,1X, OUT01660
    13HFM=,F9.2,1X,6HPRESS=,F10.3,1X,3HFW=,F8.21
        NINTG=INTG-I
        J=1
        IF(SOURCE{J).EC. 2. MNO.NPH& EQ. 2JJ=2
        IFISOURCE(J).EO.2.AND.NPH.EQ.1)ST(1)=0.0
        ANU= 5TIJ)PPR\d,7i*REM
C......MOTE THAT NUSSELT HERE IS CALCULATEO FROM I= % PR, WHEREAS THE
C.....OTHER PARAMETERS ARE BASED ON MIXEO MEAN IEMPERATURE.
        WRITE(6,48OININTG,XU,REM,CF2,ST(J),ANU,UGJ,FMEAN,PRO,F(J,NP3)
        IFIKI.GT.IOIGRITE(6,482)(SPIII,I= L,5)
    OUTO1670
        FORMAT(12X,23HSPECIAL OUTPUT - SP{1)=,E10.3,1X,6HSP(2)=,E10,3,1X,6
        1HSP(3)=,E10.3,IX,EHSP(4)=,E10.3,1X,GHSP(5)=,E10.3)
            IF(XD.GT.XL)GC TC 410
            IFIKSPACE.EQ.11IGE TO 420
            IFIINTG.EQ.FLAGZIGO TO 410
            IFIKSPACE.EO.2116C TO 420
        484 FDRMATI/.5X,45H I F(I) U(I) F(1,1) F(2,I)
        1,5X,'YPL',5X,'UPL',7X,'EDR',6X,'TIII'/|
    410 WRITE(6.484)
    486 FORMATIGX,12,3X,FG.6,2X,F7.2,F10.2,F10.2,3X,F8.2,2X,F6.2,
        14X,F6.2,4X,F7.21
            DUM=0.0
            YPUT=UGU*SORTICF2I
            00 415 I=1,NP3
            IF(KEX.EQ.1)YPL=(Y(NP3)-Y(IJ)*RHO(NP3)*YPUT/VISCOINP3)
            IFIKIN.EQ.1)YPL=(Y(I)-Y(1)I&RHOII|#YPUT/VISCOIII
            UPL=UIIJ/YPUT
            IF(NPH.EQ.1)F(2,1)=0.0
            IF(I.GT.2.ANC.I.LT.NPZJEDN={EMU(I)+EMU(1-1))/(2.*VISCO(1))
            IFII.LT.3.OR.I.GT.NPIIEDR=1.0
            IFINPH.EQ.O)IGRITE(6,486)I, Y(I),U(II,DUM,JUM, YPL,UPL,EOR,T(I)
            IFINPH.GT.OIWRITE(6,486)I,Y(I),U(I),F(I,I),F(2,II,YPL,UPL,EDR,T(I)
    415 CONTINUE
            HRITE(6,488) OUTO2000
    48 FORMATC/I)
    FLAG2=FLAG2+KSPACE-1
    420 CONTINUE
    FLAG=FLAG*SPACE
    4 2 5 ~ C O N T I N U E ~
        RETURN
C.0.0.
    500 CONTINUE
    GO TO 1000
    6OO CONTIMUE
C this is a general purpose output routine
C.....
            IFIINTG.EO.1 IFLAG=1
            FAM=0.0
            IF(XD.GE.XLIEO TO 605
            IFIINTG.NE.FLAGIGC TO }62
    GOS CONTINUE
        NINTG=INTG-I
    680 FORMATI/I, 2X,5HINTG=,I3,2X,3HXU=,FB,5,2X,4HPEI=,FB.5,2X,4HAMI=,
        1F8.4,2X,4HAME=,FG.4, 2X, 9HPRESSURE=,F9.3, <X, SHBETA=,F7.4, 2X,
        22HK=,E10.3)
    682 FDRMATI12X,4HREME,FQ.1.2X,4HREH=,F9.1.1X,4HCF2E,FB.6,2X,9HA OR BPLOUTO222O
    I=,F6.2, 2X,2HH=,FE.3,2X,7H{HO(1)=,F7.4.2X,9HRHO(NP3I=,F7.4) CUTO2230
    684 FORMATII2X,28HCISPLACEMENT OF I-SURFACE =,F7.5I OUTO2240
    686 fORMAT(12X,9HST(J)=,5F9.6) CUTOZ250
```

```
        688 FORMATI/P I Y(I) R(I) OM(I) U(I) EMUIII UUTO2260
    I T(I) F(1,i) F(2,I) F(3,1) F(4,I) F(5,1)101) nuT02270
    690 FORMATI 4X,I2,1X,F&,6, 2X,F7.4,3X,F7,5,1X,F7.2, 2X,F10.7, 2X,F6.1, 2X, OUTO2280
    15F10.31
```



```
    MRITEI6,680ININTG,XU,PEI,AMI,AME,PRO,BETA,CAY OUTO2310
    CPL=APL
    IFIKASE.EQ.2I 60 TO 610
    IFIKD.GT.IICPL=BPL
    IF\KASE,EQ.1 IHRITE(6,682IREM,REH,CF2,CPL,H,RHD{1),RHD(NP3)
694 FORMATII2X,2FF=,F6.3, 2X,7+VHPLUS=,F7.4, 2X,6HPPLUS=,F7.4.2X,8HTAUWA NUTO 2360
    1LL=,F9.6j
        IFIKASE,NE.1IGO TO 610
        IFIKIN.EO.1.AND.UINP3).GT.0.001)FAM=AMI/(JIVP3)&RHO(NP3I)
        IFIREX.EQ.1.AND.UII\.GT.O.001)FAM=AME/(UII)&RHOII|)
        WRITE(6,694)FAF,GFL,PPL,TAUH
610 IFIGEOM.EQ.9IWRITE{6,684IRWO
    ERU{1)=0.0
    IF(KASE.EO.1.AKD.NPH.NE.O)WRITE(6,686)(ST(J),J=1,NPH)
    IF(XASE.EQ.I.AND.NPH.NE.D)WRITE(6,690)(Q#(J),J=1,NPHI
696 FORMAT(12X,BHOWALL= .5F10.5)
658 FORMAT(12X,9HGAMA(JI = .5F9.5)
    IFIKASE.EQ.I.AND.APH.NE.D)WRITE(0,098)(GAMAIJ),J=I,NPH)
    IF(KI.GT.10)WRITE(6,699)(SP(I),I=1,5)
CuT02370
nUT02380
OUTO2390
CUTO2400
OUTO2410
OUTO2420
nuTO2430
OUTO2440
DUTO2450
OUTO 2460
OUT02470
CUT02480
EUTO2490
699 FORMAT(12X,23HSPECIAL OUTPUT - SP(1)=,EIU.J,IX,6HSP(2)=,E10.3,IX,6CUTO2500
    LHSP(3)=,E10.3,1X,6HSP(4)=,E10.3,1X,6HSP(5)=,E10.3) SUTO2510
    WRITE(6,6881
    EMU(NP3)=0.0
    00615 I=1.NP3
    IFINPH.EO.O)WRITE(6,692)I,Y(II,RIII,UMIII,U(II,EMUIII,TIII
    IF(NPH.GT.O)WRITE{6.690)I,Y(I),RII),OM(I).U(I),EMU(I),T(I),
    1(F(J,I),J=1,NPH)
El5 CONTINUE
    FLAG=FLAG+SPACE
E2O CONTINUE
    RETURN
1000 CONTINUE
    RETURN
    END
```

    SUBROUTINE PROPZ(K,FX,TI,VISCJI,PRA,RHJAI
    C.....
C.....this program calulates the prjpertles of alr at ab solute static
C.....ENTHALPY DETERFIAED FROM FIJIII AND UIII. IT IS ESSENTIALLYA
C......TABULATION OF THE ECKERT AND DRAKE TABLËS. IT IS ASSUMED
C.....IN USING THIS SUEROUTINE THAT THE OEPENOEVT VARIABLE IH TH:
C..... THERMAL ENERGY EGUATION IS STAGNATIDN ENTHALPY.
C..... HERE:
C..... K=L IMPLIES START MITH LJWEST TABULATED STATIC ENTHALDY
C..... $\quad=2$ IMPLIES START WITH PREVIDUSLY USED TABULATEO STAYIC.....
C..... ENTHALPY
C..... HI=AESOLUTE STATIC ENTHALPY(BI/LBM)
C..... PRESSTATIC PRESSURE (LBF/SQ.FT.II
C..... RHOA=CALCULATED OENSITY ILBM/IGU.FT.I)
C...... VISCOI= $=$ CALCULATED OYNAMIC VISCJSITY ILBM/ISEC.FT.II
C..... PRA=CALCULATEO DRANDTL NUMBER
C..... TI=CALCULATED TEMPERATJRE (DEGG. RANKINE)

```
        [NTEGER GEOM,FIUIC,SOURCE(5),SPAC\dot{E},BOOFJR,OJTPUT,TYPBC
        COMMON/GEN/PEI,AMI,ANE,DP)X,XJ,XD,XL,DX,I,TG,CSALGA,TYPBC(5),
    1MODE,PRT(5),PRE,NX8C, X(1JJ), RN(LUJ),FJIS,10U),GC,CJ,AM(100),PRD.
    2UG(1001,PO,SCURCE,RETRAN,NUMRUN,SPACE,RWJ,PPLAG,OUTPUT, OELTAX,GV
    S/V/U(54),F(5,54),R(54),OM(54),Y(541,UGU,JJJ,UI,FI\5),FMEAN,TAUW
    1/0/H,REM,CF2,5T(5),LSUB,LVAR,CAY,NEH, PPL,GPL,OW(5),KD
        DIMENSICN HA(34),TA(34),VS(34),PA(34)
        dATA MA(1),HA(2),HA(3),HA(4),HA(5),HA(6),HA(7),HA(8),HA(9),HA(10),
    1HA(11),HA(12),HA(13),HA(14),HA(15),HA(16),HA(17),HA(18),HA(19),
    2HA(20),HA(21),HA(22),HA(23),HA(24),HA(25),HA(26),HA(27),HA(28),
    3HA(29),HA(30),HA(31),HA(32),HA(33),HA(34)/42.89,64.43,85.97,
    4107.50.129.06,150.68,172.39,194.25,216.26,238.50,260.97,283.6日,
    5306.65,329.88. S53.37.377.11,401.09,425.29,449.71,499.17,549.35.
    6600.16,651.51,703.35,755.61,8u8.28,861.28,914.61,968.21,
    71022.09.1076.20.1130.56.1185.11,1270.471
        DATA TA(1),TA(2),TA(3),TA(4),TA(5),TA(0),TA(7),TA(8),TA(9),TA(10),
        ITA(11),TA(12),TA(13),TA(14),TA(15),TA(16),TA(17),TA(1B),TA(19),
        2TA(20),TA(21),TA(22),TA(23),TA(24),TA(25),TA(26),TA(27),TA(28),
        3TA(29),TA(30),TA(31),TA(32),TA(33),TA(34)/180.0,270.0.360.0,450.0,
        4540.0,630.0,120.0,810.0,900.0,990.v.1 U2v.J,1170.0,1260.0,1350.0,
        51440.0,1530.0.1620.0.1710.0,1800.0.1980.0,<160.0.2340.0.2520.0.
        62700.0.2880.0.3060.0.324J.0.3420.0,3600.J.J. 3 7 80.0.3960.0.4140.0.,
        74320.0.4620.01
        CATA VS(1),VS(2),VSI3),VS(41,VS(5),VS(6).VS(7),VS(8),VS(9),VS(10),
        IVS(11),VS(12),VS(13),VS(14),VS(15),V5(16),VS(17),VS(18),V5(19).
        2VS(20),VS(21),VS(22),VS(23),VS(24),VS(25),V5(26),VS(27),VS(28),
        3VS(29),VS(30),VS(31),VS(32),VS(33),VS(34)/46.53,69.10,89.30,107.4, OROP O440
        4124.1,139.4,153.6,166.9,179.5,191.4,202.8,213.5,223.9,233.9,243.6, PROP 0450
        5253.0,262.0.270.3,279.0,295.5,310.9,325.8,339.8,353.3,366.8,379.2, PROP 0460
        6391.5,402.9,416.8,430.1,439.8,451,3,461,1,475,01
        DATA PA(1), PA(2),PA(3),PA(4),PA{5),PA{6),PA(7),PA(81,PA(9),PA\10), PROPO480
    1PA(11),PA(12),PA(13),PA(16),PA(15),PA{16),PA(171,PA(18),PA(191, PRCO0490
    2PA(20),PA(21),PA(22),PA(23),PA(24),PA(25),PA(26),PA(27),PA(28), PROP)500
    3PA(29),PA(30),PA(31),PA(32),PA(33),PA(34)/0.770,0.753,0.739,0.722,PQTP 0510
    40.708,0.697,0.689,0.683,5.680,0.680,0.68J,0.682,0.684,0.686,0.689, PROP O520
    50.692,0.696,C.E99,0.702,0.706,0.714,0.722,0.726,0.734,0.741,0.749, PROP 0530
    60.759,0.767,0.783,0.803,0.831,0.8.83,0.916,0.9721 PROD0540
    HI=FX-(USK)#('(K))/(2.0*G[*CJ)
    IF(HA(34).LT.HI.CR.HA(1).GT.HI)LVAR=7
    IF (LVAR.EO.7) WRITE (6.6)
    IF(HA(34).LT.HI)HI #HA(34)
    IF\HA(1).GT.FIIH[=HA|I)
6 FORMATI//: ENTHALPY IS DUT DF THE NANGE OF4/
    1* VALUES TABULATEC IN PROP2'//I
        IF(K.EQ.1) Lal
    OO 1 I =L.34
    IFIMAIII.GT.FII GO TO 2 PROPO64O
L
2 M=1-1
    IF(HA{M).LE.HI) GC TO 5
    OO 3 J=1.M
    MB=M-J
    IF{HA(MB).LE.HII GOTO 4
3 CONTINUE
4 M=MB
    I=M+1
5 L=I
    TI=TA(M)+(TA(I)-TA(M))*(HI-HA(M))/(MA(I)-HA(M))
    VISCOI=(VS(M)+{VS(I)-VSIH) ) & (HI-HA(M) //(HA(I)-HA(M|))*0.0000001
    PRA=PA(M)+(PA{I)-PA(M))&(HI-HA(M)|(HA(I|-HA(M))
```

OROPOIRO
PRJPO190
PREPO200
PREPO210
PROPO229
0 OROO 0230
PRJOO240
PRIPO250
PROP 0260
PR 200270
PRDP028J
PRJP 0290
PROPO 0200
PRIDCO 310
PP.jPO 0320
PROOO333
PROPO 0340
DROPO 350
PROP 0360 PROP 0370 PROOU380 pROPO390 PROD 0400 OROOO410 ORIP 0420 PROP 0430 OROP 0440 PRDP 0450 PREP0470

## PROPO480

 PRCO 0490 PROP 9500 pOIP0510 PROP 0530 PROD 0540 PROP 0550 PROP 0560 PRRP 0570 PROP 0580 PR OP 0590 PROPO600PRIP 0610
PRIP 0620
PROP 0630
PROP 0640
PRCP 0650
PROP 0660
PROP 0670
PROP 0680
PROP 0690
PROP 0700
PROPO 710
PROPO 720
PRCPO 0730
ORCP 0740
PROP 0750
PROPO 0760
PRDP 0770









```
    KD=0
    IFIAPL.GE.BPL.ANC.SIGNAL.GE.1.0IKD=1
    |FIBPL.GE.APL|KD=2
    IFIBPL.GE.APL.ANC.SIGNAL.GE.I.OIKD=3
C......THE QUANTITIES READ AT THIS POINT ARE DEFINED:
C..... PPLAG= A LAG CONSTANT IN THE EFFECTIVE VALUE OF PPLUS. GPLUS,
C..... USED IN THE EVALUATION OF APL, OR gPL.
C...... PRT(J) (SUGGESTED VALUE = 4000.' 
C..... NEAR A WALL THIS VALUE IS UVERRIDEN INSIDE THE
    PROGRAM UNLESS K3 IS SET EQUAL TO 3.
C.-...)SEE INFORMATION ON K3 BELOW.
C ########***********)
    IF(NEO.GT.1)PEAD(5,580) PPLAG,(PRT(J),J=1,NPH)
    IFINEO.EQ.I)REAO(5.580IPPLAG
C.....
    HRITE(6,780)
    WRITE(6,640)
    WRITE(6,650) AK,ALMGG,FR,PPLASO,AQ,BO, YPMAX,YPMIN
    IFIPPLAG.LT.400.IWRITE(6,990)
    IFIBO.LE.O.OIGO TC 275
    IF(NPH.LT.1)GO TC 275
    AKCHEC= (AO**.75)/(BQ**.25)
    AKERR=AES(AK-AKCFEC)
    K20=0
    DO 274 J=1,NPH
    274 IFISOURCE(J).EO.2)K20=1
    IFIAKERR/AK.GT.0.01.AND.K20.EQ.1)WRIJE(6,710)
    275 HRITE(6.930)
    WRITEI6,940)APL,BPL,SIGNAL
    IF(KD.EQ.OINRITE(6,950)
    IFSKD.EQ.2IWRITE16.955)
    IFINEQ.GT.1IWRITE{6,6601
    IFINEQ.GT.1)MRITEI6,650) (PRT(J),J=1,NPH)
```



```
C.....STANTS THAT ARE CESIRED.
C.....: GC= 32.2 IA BRITISH SYSTEM
C.E... CJ= 776.0 IN GRITISH SYSTEN
C.....IF YOU USE A SYSTEM SUCH AS MKS, GL=1.O ANO CJ=1.0. JUST USE INPU3930
C.....A CONSISTENT SYSTEM, THE PROGRAM WLKKS IN REAL NORLD DIMEN- INPU394O
C..ESIONS, NOT NCNOIMENSIONAL VARIABLES. BE CAREFUL ABOUT THF
C.....OIMENSIONS OF VISCOSITY -- IN ENGLISH UNITS USE LBM/(SEC-FT).
C......THE CONSTANTS AXX, BXX, ETC.,MAY BE LEFT BLANK IF THEY ARE NDT
```




```
C (DECIMAL NUNBERS)
INPU4000
INPU4010
    READ(5,580) CC,CJ,AXX,BXX,CXX,OXX,EXX
C.....
    WRITE(6,790)
    WRITEI6.7201
    WRITE(6, 910) GC,CJ,AXX,BXX,CXX,DXX,EXX
C.....READ IN THE NUMBER OF RUNS OF DATA THAT YJU WANT USED (NUMRUNI,
C.....AND THE SPACING (NUMBER OF INTEGRATIONSI JF THE OUTPUT DATA THAT
C=....AND THE SPACING (NUMBER OF IF IF YOU SET SPA:E=11, AN ABBREVIATED
INPU4020
INPU3540
\(K D=0\)
INPU3550
FIAPL.GE.BPL.ANC.SIGNAL.GE.1.0IKD=1
INPU3560
IFIBPL.GE.APL.ANE.SIGNAL.GE. 1.OIKD=3
INPU3570
INPU3580
C..... PPLAG= A LAG CONSTANT IN THE EFFECTIVE VALUE OF PPLUS, GPLUS, INPU3590
C..... USED IN THE EVALUATION OF APL, OR 9PL. INPU3600
C..... ISUGGESTED VALUE \(=4000.1\) INDU3610
C..... PRT(J) - TURBULENT TRANSFER KATID FUR F(J) ITRY. B6) INPU3620
C..... NEAR WALL ThIS VALUE IS OVERRIDEN INSIDE THE
INPU3630
C..... PROCRAM UNLESS K3 IS SET EQUAL TO 3. INPU3640
C..... SEE INFDRMATION DN K3 BELOW. INPU3650
```



```
C \{DECIMAL NUMBERS)
IF(NEO.GT.1)AEAD(5.580) PPLAG, (PRT(J),J=1,NPH)
IFINEQ.EQ.I)REAO (5.580)PPLAG
C.....
HRITE16,7801
WRITE(6,650) AK,ALMGG,FR,PPLAS, AQ,BQ, YPMAX,YPMIN
IFIPPLAG.LT.400.IWRITE(6,990)
IF \(B\) BOLLE.0.0IGOTC 275
IF (NPH.LT. 1 IGO TC 275
\(A K C H E C=(A Q * * .75) /(B Q * * .251\)
\(\mathrm{K} 20=0\)
DO 274 J=1,NPH
274 IF(SOURCE(J).EO. 2 )K20=1
IFIAKERR/AK.GT.O.O1.AND.K20.EQ.1IWRIJE 6,710 I
275 HRITE (6.930)
WRITE 6,940 IAPL, BPL, SIGNAL
IFIKD.EQ.OIWRITE(6,950)
IFINEQ.GT.IIWRITE\{6,660\}
IFINEQ.GT. 1 IMRITE( 6,650 ( PRT(J), J \(=1\), NPH)
C..... READ IN CONVERSICA CONSTANTS, AND ANY OTHER ARBITRARY DECIMAL CON-INPU 3 B90
C......STANTS THAT ARE CESIRED.
INPU3900
C..... GC= 32.2 IA BRITISH SYSTEM INPU3910
C.E... \(\quad C J=778.0\) IN BRITISH SYSTEM INPU3920
```



```
C.....SIONS, NOT NCNOIMENSIONAL VARIABLES. BE CAREFUL ABOUT THE \(\quad\) INPU 3950
C..... OIMENSIONS OF VISCOSITY --. IN ENGLISH UNITS USE LBM/(SEC-FT). INPU3960
C......THE CONSTANTS AXX, BXX, ETC. MAY BE LEFT BLANK IF THEY ARE NDT INPU3970
```



```
C (DECIMAL NUMBERSI
INPU4010
C.....
RITTE16.720
INPU4030
INPU 4040
INOU4050
INPU4060
INOU4070
INPU4080
C.E... DATA SET WILL EE PAINTED JUT, OMITTING ALL PROFILES, BUT INCLUDINGINPU4090
C.A...ALL OTHER OATA AT EACH INTEGRATION. SETTING SPACE=ZI WILL CAUSE INPU4I00
C.....A COMPLETE DATA SET TO BE PRINTED EVERY 20 INTEGRATIONS, AS WELL INPU4110
C......AS AN ABEREVIATEC SET EVERY INTEGRATION. ITHESE OPTIONS LIMITED INPU4120
C......TO QUT2, OUT4).
INPU4130
```

```
C.....READ IN OESIRED CUTPUT SUBRJUTINE \2, 4, 6, ETC:J OE READ IN HERE INPU4140
C.....SOME ADOITIONAL ARBITRARY INTEGERS, K1,K2,K3, MAY BE READ IN HERE INPU4I50
C.....IF OESIRED - CTHERWISE LEAVE BLANK. IF XL IS SET GREATER THAN 10,INPU4160
C.....ALL OUTPUTS HILL PRINT OUT ONE TO FIVE SPECIALLY DESIGNATED PIECESINPU4ITO
```



```
C.....-3 A VARIATION OF TURBULENT PR NEAR A WALL WILL BE SUPRESSED, SEE INPU4I90
C.....PRT(JI ABOVE. SETTING K2 EQUAL TO 3 WILL DO THE SAME THING FOR INPU42OO
C.....ALMGG.
C.....IF K2 IS SET EQUAL TO 2, PROGRAM WILL USE A CONSTANT EDDY DIF-
C.....fUSIVITY IN THE CUTER REGION, INSTEAO DF A CONSTANT MIXING-
C.....LENGTH. IT WILL BE EVALUATED FROM THE EQUATION, EOR=AQ&REM#&BO,
C......WHERE REM IS MCMENTUM THICKNESS REYNOLDS NUYBER, OR PIPE DIAMETER
C.....REYNOLDS NUMEER. DONT USE THIS OPTION IF FZEE-STREAM VELOCITY
C.....IS IERO (SEE CCMNENT ON AO,BOI.
C.....IF KI IS SET EQUAL TO 9 JR 2O. DELTAX BECOMES EOUAL TO AUXI(M),
INPU4280
C.....ANO THE ORIGINAL INPUT VALUE OF DELTAX IS OVERRIDDEN. THIS ALLOWSINPU429O
C.....DELTAX TO VARY WITH X.
C.....(SEE PRESSURE GRADIENT CALCULATION IN MAIN FOR KI 15I)
```



```
C IINTEGERSI
        REAO(E,585) HUMRUN,SPACE,OUTPUT,K1,K2,K3 INPU4340
C.....
WRITE16,730)
        WRITE{6,740) NUMRUN,SPACE,OUTPUT,K1,K2,K3
        IFIGEOM.EQ.4.OR.GECM.EQ.5IGO TO 11
        IFIK2.NE.3.ANC.KASE.EQ.1.AND.K2.NE.2.ANO.YODE.EO.2IMRITE(6,960)
    11 CONTINUE
        K10=0
        IFIK3.NE.3.AMC.KASE.EQ.1JK10=1
        IF\K10.EQ.1.AND.NEQ.GT.1.AND.MODE.EQ. 2IWRITE(6,970)
        IF(K1.EQ.20.CR.K1.EQ.9)WRITE(6,992)
C.....
C.....INPUT DATA ERROR CHECK
C.....
    IF(XU.LT.X(1).OR.XL.GT.X(NXBC)IWRITE{6,503)
    IF(XU.LT.X(1).OR.XL.GT.X(NXBCI)KERROR=3
    IFIXU.GE.XL)WRITE{6,500)
    IFIXU.GE.XLIXERROR=3
    IFIYINP3).GT.0.1*(X(2)-X(1)))|WRITE(6,522)
    IFIBQ.LT.O.I KERRCR=5
    IFIGC.CT.0.5 IKERRCR=5
    IFIOUTPUT.LT.IIKERROR=5
    IFIKIN.EO.1.AND.U(1).GT.O.OIKERROR=5
    IFIKEX.EQ.1.ANO.UINP3I.GT.O.OIKERRUR=5
    IF(NEO.GT.OIGO TO 13
    IF(TYPBC(1).LT.1)KERROR=5
    13 IFIGEOM.LT.6.AND.RW(I).EQ.0.01KERROK=5
    IFIGC.EQ.0.O.OR.CJ.EQ.O.OI KERROR=5
    IF(SPACE.EQ.OIKERROR=5
    IF(KERROR.EQ.5)HRITE(6,502)
    IF(MODE.EO.1IGO TC 15
    IFIAK.LT..25.OR.AK.GT..6)NRITE(6,504)
    IFIAK.LT.. 25.OR.AK.GT..6IKERROR=4
    25 CO 16 M=2,NXEC
    16 IF(X(M).LT.X(M-1))KERROR=1
        IFIY(3)-LT.Y(1)|KERROR=1
        CO 18 I=4,NPI
    18 IF(Y(I)-LE.Y(I-I)IKERROR=1
    IF(YINP3).LT.Y(NPI))KKERROR=1
    IFIKERROR.EO.IINRITEI6,507)
    INPU4330
INPU4350
        HRITE{6,740) MUMRUN SPACE,OUTPUT,KI K2,K3 INPU4360
        [NPU4370
        INPU4380
    INPU4390
    INPU4400
    INPU4410
INPU4420
INPU4430
INPU4440
INPU4450
INPU4460
INPU4470
INPU44780
INPU4490
INPU4500
INPU4510
INPU4510
INPU4520
INPU4540
INPU4550
INPU4560
INPU4570
INPU4580
INPU4590
INPU4600
INPU4610
INPU4620
INPU4630
INPU4640
INPIJ4650
INPU4660
INPU4670
21
INPU4680
INPU4690
INPU4690
INPU4710
INPU4720
INPU4720
INPU4740
```




```
700 FJRMAT(/" INITIAL STATIC PRESSURE 'I
710 FORMATI//' WARNIAG: THE IVPUT VALUES LF AK, AQ, ANO SO, ARE'/
    1. INCONSISTENT"//I
720 FORMATI/,107F G-SLB-C J AXX INOU5390
1 BXX CXX DXX EXXI INPU54:NO
730 FIRMATI/.81H NC. OF RUNS OF DATA PRISTOUT SPACING SUTPUINOU5410
1TOPTION KI K2 K3I 
740 FORMAT(13x,12,22x,12,15x,12,10x,I5,15,15,/)
750 FORMATI/: CCNSTANT FLUID PROPERTIES ARE BEING USED'I
760 FORMATI/G INITIAL PROFILES*/I
770 FORMATI/: BOUNCARY CONOITIONS ALOMG I- ANL g-SURFACES*/I INPU5460
780 FORNATI/" TLRBULENCE CONSTANTS '।
790 FORMATI/" DINENSIONING SYSTEM CONSTANTS ARBITRARY
    ICONSTANIS')
    INPU535J
INPU5360
INPI'5370
[NPU538]
INPU5420
|NOI:5430
800 FORMATI/: THE FLUID IS AIR (KEENAN ANJ KAYE GAS TABLES)') INPU550J
820 FORMATI/63H EOCY-FERCE SJURCE(II SUURCE(Z) SOURCEI3) SOURCEI4I SOUINPU5510
    IRCE(5) )
INPU5520
830 FORMAT(5X,11,9x,11,9x,I1,9x,11,9x,IL,9x,11,1) [NPU5530
850 FORMATI 3X,12,7X,F7.5,2X,F7.2,F\perpO.3, LX,F1U.3,1X,F10.3,F11.3,1X,F1O INPU5540
850 FORMAT( 3X,12,7X,F7.5,2X,F7.2,F\perpO.3,1X,FIU.3,1X,F10.3,F11.3,1X,F1O INPU5540
870 FORMATIIX,F8.4,3X,F9.7.1)
890 FORMATI38H NXEC IAUMBER OF SPECIFIED BC POINTSII
900 FORMAT(IOX,F10.2)
910 FORMATI 2X,F4.1,7x,F5.1,18X,5F15.41
920 FORMATI/: PRCGRAM TERMINATED BECAUSE NXBC WAS READ AS A%/
    1. NUMBER LESS THAN2, WHICH IS NOTT MLLJWEU.'//I INPU5610
G30 FORMATI/: APLUS BPLUS SIGNAL,I INPU5620
940 FORMATI4X,F6.2,4X,FG.2,4X,F6.21 INPU5630
```



```
    1: ACCOUNT FOR THE INFLUENEE OF PRESSURE GRADISNT AND TRANSDIR-:/ INPU5SSO
    2" ATION ON APLUS':
    2" ATION ON APLUS':'
    1: ACCOUNT FOR THE INFLUENEE OF PRESSURE GZADIENT AND TRANSPIR-'/ INPU568O
    2' ON BPLUS'I
S60 FORMATI' IF REM [S LESS THAN ABOUT 6000,"/
1. LAMBDA IS EEING COMPUTED BY AN INTERNAL EJUATION.'/I
G7O FORMATI' PRT NEAR THE WALL IS BEING'/
    1: EVALUATED GY AN INTERNAL EQUATION, EXGEPT WHEN PRT IS FOR'/I INPU5T3O
    2' THE TURSULENT KE EQUATION.'/I
980 FORMATI/I PROGRAP HILL BOMB OUT BECAUSE N IS GREATER THAN 40."/1
990 FORMATI/O IF THE LAG CONSTANT IS LESSS THAN 400. IT IS TREATED'/
    1' AS IF IT WERE 2ERO.'/1
592 FORMATI/' DELTAX IS BEING OVERRIOUEN EY AJXI(M)."/) INPUS780
    RETURN
850 FORMATI 3X,12,7X,F7.5,2X,F7.2,F\perpO.3,&X,F1U.3,1X,F10.3,F11.3,1X,F1D INPU5540
INPUS560
INDU5570
INPU5580
INOU5590
U690
INPU5700
INOU5710
G70 FORMAT(' PRT NEAR THE WALL IS BEIING'/ INPU5720
    INPU5740
INOU5750
INPU5760
INPUS770
INPUS780
    END
INPU5790
IND(15800
```



## ORIGNALI PAGE IS OF POOR QUALITY



| 1. | EXTERNAL | l turbulent | BOUNDARY | LAYER, USING | TURB | KINETIC | ENERGY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | 1 | 21 | 215 | 211 |  |  |  |
| 3. | 0.0 | 4.0 | 1.0 | 300. | . 05 | . 005 |  |
| 4. | 0 | 2 |  |  |  |  |  |
| 5. | 2117. | 0.075 | 0.000012 | 1.0 |  |  |  |
| 6. | 2 | 1 |  |  |  |  |  |
| 7. | 0.0 | 1.0 |  |  |  |  |  |
| 8. | 4.0 | 1.0 |  |  |  |  |  |
| 9. | 110. |  | 0. |  |  |  |  |
| 10. | 110. |  | 0. |  |  |  |  |
| 11. | 0.0 | 0. | 0. |  |  |  |  |
| 12. | 0.0024 | 73. | 73. |  |  |  |  |
| 13. | 0.0034 | 81. | 71. |  |  |  |  |
| 14. | 0.0044 | 85. | 67. |  |  |  |  |
| 15. | 0.0056 | 88. | 62. |  |  |  |  |
| 16. | 0.0066 | 91. | 57. |  |  |  |  |
| 17. | 0.0078 | 93. | 52. |  |  |  |  |
| 18. | 0.0088 | 96. | 47. |  |  |  |  |
| 19. | 0.01 | 98. | 41. |  |  |  |  |
| 20. | 0.0112 | 99. | 36. |  |  |  |  |
| 21. | $0.0122^{\circ}$ | 101. | 31. |  |  |  |  |
| 22. | 0.0134 | 102. | 26. |  |  |  |  |
| 23. | 0.0144 | 104. | 21. |  |  |  |  |
| 24. | 0.0166 | 106. | 13. |  |  |  |  |
| 25. | 0.0188 | 108. | 5. |  |  |  |  |
| 26. | 0.0232 | 110. | 0. |  |  |  |  |
| 27. | 0.41 | 0.085 | .01 | . 22 | . 377 | 1.0 | 0.0 |
| 28. | 25.0 |  |  |  |  |  |  |
| 29. | 4000. | 1.7 |  |  |  |  |  |
| 30. | 32.2 | 778.0 |  |  |  |  |  |
| 31. | 1 | 212 |  |  |  |  |  |
| 32. |  |  |  |  |  |  |  |
| 33. |  |  |  |  |  |  |  |
| 34. |  |  |  |  |  |  |  |
| 35. | NOTE: MOM | MOMENTUM AND | TURBULEN | T KINETIC ENE | ERGY | ION ARE | ING SO |
| 36. |  | THE THERMAL | ENERGY EQU | UATION CAN BE | E ADD | A THIRD | EQUATIO |
| 37. |  | DESIRED. SE | E PREVIOUS | S NOTE ON YPM | MAX. |  |  |





| 1. | FLOW 11. | A SLIPERS | 1 C. H0ZZLE, | PRESCRIPED CORE | [LCC.ITY DISTF.IBUTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | 3 | $2 \quad 2$ | 220 | 10 |  |
| 3. | -0.1783 | 1.6358 | 0.25 | 200.0 .61 | 0.01 |
| 4. | 0 | 1 |  |  |  |
| 5. | 2980.8 |  |  |  |  |
| 6. | 40 | 1 |  |  |  |
| 7. | -. 1783 | 0.2083 |  |  |  |
| 8. | 0.0208 | 0.2083 |  |  |  |
| 9. | 0.0416 | 0.2083 |  |  |  |
| 10. | 0.1692 | 0.1864 |  |  |  |
| 11. | 0.2888 | 0.1650 |  |  |  |
| 12. | 0.3767 | 0.1503 |  |  |  |
| 13. | 0.4448 | 0.1385 |  |  |  |
| 14. | 0.4994 | 0.1291 |  |  |  |
| 15. | 0.5443 | 0.1213 |  |  |  |
| 16. | 0.5805 | 0.1150 |  |  |  |
| 17. | 0.61 | 0.1098 |  |  |  |
| 18. | 0.6356 | 0.1054 |  |  |  |
| 19. | 0.658 | 0.1015 |  |  |  |
| 20. | 0.6952 | 0.0951 |  |  |  |
| 21. | 0.7249 | 0.089 |  |  |  |
| 22. | 0.7491 | 0.0857 |  |  |  |
| 23. | 0.7691 | 0.0822 |  |  |  |
| 24. | 0.7931 | 0.0781 |  |  |  |
| 25. | 0.8117 | 0.0748 |  |  |  |
| 26. | 0.8261 | 0.0723 |  |  |  |
| 27. | 0.8457 | 0.0689 |  |  |  |
| 28. | 0.8545 | 0.0674 |  |  |  |
| 29. | 0.8603 | 0.0664 |  |  |  |
| 30. | 0.8616 | 0.0664 |  |  |  |
| 31. | 0.8655 | 0.0671 |  |  |  |
| 32. | 0.8731 | 0.0684 |  |  |  |
| 33. | 0.8882 | 0.071 |  |  |  |
| 34. | 0.9071 | 0.0743 |  |  |  |
| 35. | 0.9388 | 0.0798 |  |  |  |
| 36. | 0.9775 | 0.0865 |  |  |  |
| 37. | 1.0229 | 0.0944 |  |  |  |
| 38. | 1.0751 | 0.1035 |  |  |  |
| 39. | 1.1038 | 0.1085 |  |  |  |
| 40. | 1.1341 | 0.1137 |  |  |  |
| 41. | 1.1999 | 0.1251 |  |  |  |
| 42. | 1.2726 | 0.1378 |  |  |  |
| 43. | 1.3524 | 0.1516 |  |  |  |
| 44. | 1.4394 | 0.2667 |  |  |  |
| 45. | 1.5334 | 0.183 |  |  |  |
| 46. | 1.6358 | 0.2008 |  |  |  |
| 47. | 0123.78 |  | 150.69 |  |  |
| 48. | 0123.78 |  | 150.69 |  |  |
| 49. | 0123.78 |  | 150.69 |  |  |
| 50. | 0151.85 |  | 150.69 |  |  |
| 51. | 0189.74 |  | 150.69 |  |  |
| 52. | 0227.59 |  | 150.69 |  |  |
| 53. | 0265.38 |  | 150.69 | - |  |
| 54. | 0303.13 |  | 150.69 |  |  |
| 55. | 0340.77 |  | 150.69 |  |  |
| 56. | 0378.36 |  | 150.69 |  |  |
| 57. | 0415.85 |  | 150.69 |  |  |
| 58. | 0453.25 |  | 150.69 |  |  |
| 59. | 0490.53 |  | 150.69 |  |  |
| 60. | 0564.75 |  | 150.69 |  |  |


| 61. | 0638.42 | 150.69 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 62. | 0711.56 | 150.69 |  |  |  |  |  |  |  |
| 63. | 0784.02 | 2 150.69 |  |  |  |  |  |  |  |
| 64. | 0891.38 | $8 \quad 150.69$ |  |  |  |  |  |  |  |
| 65. | 0996.99 | 150.69 |  |  |  |  |  |  |  |
| 66. | 1100.7 | 150.69 |  |  |  |  |  |  |  |
| 67. | 1301.7 | 150.69 |  |  |  |  |  |  |  |
| 68. | 1446.5 | 150.69 |  |  |  |  |  |  |  |
| 69. | 1631. | 150.69 |  |  |  |  |  |  |  |
| 70. | 1805.2 | 150.69 |  |  |  |  |  |  |  |
| 71. | 1969. | 150.69 |  |  |  |  |  |  |  |
| 72. | 2122.2 | 150.69 |  |  |  |  |  |  |  |
| 73. | 2310.7 | 150.69 |  |  |  |  |  |  |  |
| 74. | 2471.4 | 150.69 |  |  |  |  |  |  |  |
| 75. | 2663.2 | 150.69 |  |  |  |  |  |  |  |
| 76. | 2831.4 | 150.69 |  |  |  |  |  |  |  |
| 77. | 2978.6 | 150.69 |  |  |  |  |  |  |  |
| 78. | 3107.4 | 150.69 |  |  |  |  |  |  |  |
| 79. | 3165.7 | 150.69 |  |  |  |  |  |  |  |
| 80. | 3220.1 | 150.69 |  |  |  |  |  |  |  |
| 81. | 3318.6 | 150.69 |  |  |  |  |  |  |  |
| 82. | 3405.3 | 150.69 |  |  |  |  |  |  |  |
| 83. | 3481.4 | 150.69 |  |  |  |  |  |  |  |
| 84. | 3548.5 | 150.69 |  |  |  |  |  |  |  |
| 85. | 3607.8 | 150.69 |  |  |  |  |  |  |  |
| 86. | 3660.4 | 150.69 |  |  |  |  |  |  |  |
| 87. | 0.00000 | $0 \quad 123.780 \quad 369.17$ |  |  |  |  |  |  |  |
| 88. | 0.00373 | $3 \quad 122.31 \quad 369.17$ |  |  |  |  |  |  |  |
| 89. | 0.00746 | $6 \quad 120.73 \quad 369.17$ |  |  |  |  |  |  |  |
| 90. | 0.0112 | $119.02 \quad 366.42$ |  |  |  |  |  |  |  |
| 91. | 0.01493 | $3 \quad 117.14 \quad 363.02$ |  |  |  |  |  |  |  |
| 92. | 0.01867 | $7 \quad 115.07 \quad 359.26$ |  |  |  |  |  |  |  |
| 93. | 0.02053 | $3 \quad 113.94 \quad 357.21$ |  |  |  |  |  |  |  |
| 94. | 0.0224 | $112.74 \quad 355.04$ |  |  |  |  |  |  |  |
| 95. | 0.02427 | $7 \quad 111.46 \quad 352.72$ |  |  |  |  |  |  |  |
| 96. | 0.02614 | $4 \quad 110.08 \quad 350.22$ |  |  |  |  |  |  |  |
| 97. | 0.028 | $108.59 \quad 347.52$ |  |  |  |  |  |  |  |
| 98. | 0.02987 | $7 \quad 106.97 \quad 344.58$ |  |  |  |  |  |  |  |
| 99. | 0.03174 | $4 \quad 105.18 \quad 341.35$ |  |  |  |  |  |  |  |
| 100. | 0.03360 | $0 \quad 103.2 \quad 337.74$ |  |  |  |  |  |  |  |
| 101. | 0.03547 | $7 \quad 100.95 \quad 333.67$ |  |  |  |  |  |  |  |
| 102. | 0.03734 | $4 \quad 98.354 \quad 328.96$ |  |  |  |  |  |  |  |
| 103. | 0.0392 | 7 $95.268 \quad 323.37$ |  |  |  |  |  |  |  |
| 104. | 0.04107 | $7 \quad 91.432 \quad 316.42$ |  |  |  |  |  |  |  |
| 105. | 0.04294 | $4 \quad 86.286 \quad 307.09$ |  |  |  |  |  |  |  |
| 106. | 0.0448 | $78.152 \quad 292.35$ |  |  |  |  |  |  |  |
| 107. | 0.04667 | $7 \quad 00.000 \quad 150.69$ |  |  |  |  |  |  |  |
| 108. | 0.41 | 0.085 | 0.01 | 0.0 | 0.0 | 1.0 |  | 0.0 |  |
| 109. | 25. | 0.86 |  |  |  |  |  |  |  |
| 110. | 4000. |  |  |  |  |  |  |  |  |
| 111. | 32.2 | 778. |  |  |  |  |  |  |  |
| 112. | 1 | 56 |  |  |  |  |  |  |  |
| 113. |  |  |  |  |  |  |  |  |  |
| 114. |  |  |  |  |  |  |  |  |  |
| 115. | NOTE: VA | VAPIABLE PROPERTIES OF AIR ARE BEING COMPUTED USINS SURROUTINE |  |  |  |  |  |  |  |
| 116. |  | PROP2. THE FLOW IS AN AXI-SYMMETRIC BCUNDDARY LAYER AND THF |  |  |  |  |  |  |  |
| 117. |  | WALL RADIUS IS BEIHG CONSIDFRED ( $T E O 1:=3)$. NOTE CHANGF IH FRA,ENFRA. |  |  |  |  |  |  |  |
| 118. |  |  |  |  |  |  |  |  |  |

