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A DIRECTIONALLY SOLIDIFIED IRON-CHROMIUM-ALUMINUM-TANTALUM

CARBIDE EUTtCTIC ALLOY

by Fredric H. Harf

Lewis Research Center

SUMMARY

An iron-base eutectic alloy containing about 13. 6 percent chromium, 3. 7 percent
aluminum and 9 percent tantalum carbide by weight was directionally solidified and tested
to determine its potential as a gas turbine material. The directionally solidified alloy
contains alined tantalum carbide fibers with < 100) parallel to the direction of solidifica-
tion in an a-iron matrix with { 110) parallel to the direction of solidification. The alloy
displays ultimate tensile strengths of 602 megapascals at room temperature, 58 mega-
pascals at 1000° C, and 34 megapascals at 1100° C. Its estimated rupture stress for a
100-hour life is 21 megapascals at 1000° C and 11 megapascals at 1100° C. The alloy
displays excellent oxidation-erosion resistance, but during thermal cycling to 1100° C in
a burner rig, faceting of the tantalum carbide fibers occurs, and the specimens distorted
because of the loads imposed by the test apparatus. Because of its relatively low high-
temperature strength, the alloy is unsuitable for use in gas turbine vanes, which at pres-
ent experience stresses between 35 and 70 megapascals at 1100° C.

INTRODUCTION

Stator vanes undergo the highest metal temperatures in aircraft gas turbines and
must withstand stresses between 35 and 70 megapascals in an environment that can cause
rapid deterioration by oxidation and erosion. The vanes are often made of cobalt-base
alloys and protected by coatings. The service life of the stator vanes could be extended
if a strong alloy with greater resistance to the environment could be found. Iron-base
alloys containing chromium and aluminum are among the most oxidation resistant mate-
rials (ref. 1). These alloys have been used commercially for many years as electrical
resistance heating elements. Often they contain about 1 weight percent of yttrium to en-
hance the stability of the oxides (refs. 2 to 4). Their high temperature strength,



however, is generally low, and a strengthening mechanism must be introduced before
they can be considered for use in the structural parts of gas turbine engines. Some
possible strengthening methods are oxide dispersion and fiber or laminate reinforce-
ment.

The objective of the program described in this report was to determine the possi-
bility of strengthening iron-chromium-aluminum alloys by reinforcing them with alined
tantalum carbide fibers. Tantalum carbide fibers have been successfully introduced into
nickel and cobalt alloys by directional solidification, creating high-strength, high-
temperature alloys, such as the Co+TaC and Ni+TaC in-situ composites (refs. 5 to 7).

The iron -chromium -aluminum+tantalum carbide alloy described here was direction-
ally solidified to produce an iron-based matrix containing fibers of tantalum carbide.
The composition of the matrix used is essentially that of Walter and Cline (ref. 8).
Limited tensile and stress-rupture tests were performed at 1000 and 1100 C on as-
solidified specimens. Thermal cycling tests and microstructures are also described.

EXPERIMENTAL PROCEDURE

Preparation of Melts

All materials were prepared from elemental constituents, except for tantalum car-
bide. The purity of each of the charge constituents was better than 99. 8 percent. The
1500-gram mastermelts were produced in 400 cubic-centimeter zirconia crucibles. The
melt chamber of the vacuum furnace was evacuated to about 2 pascals (15 j^m Hg) and
back filled with argon to suppress any boiling in the melt. The initial charge in the cru-
cible was iron and tantalum carbide to which chromium and aluminum were added just be-
fore pouring at about 1650° C. The zirconia shell molds, embedded in fire-clay grog,
had been preheated to about 875° C. -One melt, which contained no tantalum carbide, was
cast into button-head shaped tensile bars. The other melts were cast into 10-millimeter-
diameter remelt bars about 140 millimeters long.

Directional Solidification

The directional solidification was performed in a radiofrequency, induction heated
Bridgman furnace (fig. 1). The remelt ingots were contained in 12. 5-millimeter-inside-
diameter, high-purity alumina crucibles, which were heated by radiation from a graphite
susceptor. Argon flowing through the apparatus at 0. 5 cubic meter per hour protected
the melt from contamination. The surface temperature of the melt was determined by
optical pyrometry. A thermal gradient, previously determined to be about 250° C per



centimeter at the liquid-solid interface (ref. 9), was generated by a water spray at the
base of the furnace setup. The solidified bars were withdrawn from the furnace at con-
trolled rates by a screw mechanism.

Microstructural Analysis

Each directionally solidified bar was surface ground along its length to provide a
flat surface about 7 millimeters wide. This surface was then hand polished and exam-
ined by optical metallography to determine the quality of the alined structure and to de-
termine what portions of the bars were suitable for machining into specimens for me-
chanical testing. Specimens subjected to metallographic examination for other purposes
were given a final polish with alumina slurries. Since the carbide structure was clearly
evident in the polished material, no etching was necessary. However, the specimens
that were to undergo scanning electron microscopy were etched electrolytic ally in a solu-
tion of 30 percent hydrochloric acid, 7. 5 percent nitric acid, 7. 5 percent acetic acid,
and 55 percent water by volume.

The texture of specimens was determined with a pole figure goniometer, using
nickel-filtered copper radiation. The intensity of the {200} reflections of the tantalum
carbide fibers and of the {110} reflections of the a-iron matrix were recorded. Speci-
mens were prepared by sectioning perpendicular to the axis of solidification and etching
the cut surface in a mixture of hydrochloric acid and hydrogen peroxide.

Mechanical Tests

The as-cast carbide-free specimens and the stress-rupture specimens from bars
directionally solidified at the rate of 20 millimeters per hour conformed to figure 2(a);
all other test specimens were machined according to figure 2(b).

Tensile tests were conducted in air at room temperature, 1000° and 1100° C, mostly
at crosshead speeds of 0. 5 millimeter per minute. On some tests a speed of 1.2 milli-
meters per minute was used. .

Stress-rupture tests were performed in air at 1000°, 1100°, and 1200° C. The
specimens were heated to the test temperature in 3 to 5 hours and soaked an additional
1 to 2 hours before loading.



Thermal Cycling

Thermal cycling was performed in a burner rig in which typical gas-turbine engine
environments can be simulated (ref. 10). The test specimens were heated in a Mach 0. 3,
1650° C blast of combustion products from JP-5 grade jet fuel and air. Cooling was ac-
complished by a Mach 0. 7 blast of room-temperature air.

The thermal cycling specimens were 12. 5-millimeter-diameter, 75-millimeter long
bars in which a 40-millimeter exposed test section had been directionally solidified at 10
millimeters per hour. The specimens had well alined tantalum carbide fibers as deter-
mined by the examination of a ground and polished 7-millimeter-wide, longitudinal flat.

Eight specimens were exposed simultaneously in the burner rig. The specimens
were secured in a holder which rotated at 450 rpm. The centerline of the specimens was
21 millimeters from the centerline of the holder and parallel to the centerline of the
holder. The specimens were secured by setscrews.

In each cycle the specimens were heated for 2 minutes and reached a metal temper-
ature of 1100° C. They were cooled to 425° C in 1 minute. The burner rig was shut
down after 300, 600, 1200, and 1800 cycles to permit the specimens to be examined and
weighed. Changes in the micro structure were determined after 1800 cycles.

RESULTS AND DISCUSSION

Selection of Composition

As a result of a survey of the literature and binary phase diagrams (refs. 1 to 4, 8,
and 11), compositions in the iron-chromium-aluminum system were chosen for the ma-
trix. Tantalum carbide was chosen as the reinforcement, because of previous work
(refs. 5 to 7) in which fibers were grown successfully in various matrices. From pre-
liminary button and full-scale melts, it was determined that the combination of an iron-
base matrix alloyed by weight with 15 percent chromium, 4 percent aluminum, and
0. 5 percent tantalum, and reinforced with 8 or 9 percent tantalum carbide could be di-
rectionally solidified as a fiber-reinforced ductile alloy. This results in an overall com-
position which contains (by weight percent) 13. 6 chromium, 3. 7 aluminum, 9 tantalum
carbide, and the balance, iron. The as-cast structure for this alloy is shown in figure 3.

Solidification Rates

Metallography showed that full alinement was produced at withdrawal rates of 5 and
10 millimeters per hour and that cellular structures could begin to appear at 20



millimeters per hour. A typical alined structure of the alloy is shown in figure 4. The
test sections of most specimens were solidified at the rate of 10 millimeters per hour,
while portions used for gripping were solidified more rapidly. Tensile and stress -
rupture specimens usually had a 45-millimeter gage section solidified at 10 millimeters
per hour (note exceptions in table II) and 15-millimeter grip lengths at each end solid-
ified at 15 millimeters per hour or faster. All specimens tested in this program failed
within the gage sections.

Microstructure

The material directionally solidified in this program contained tantalum carbide fi-
bers that varied in cross section from round to polygonal to ribbon-like (fig. 5). Con-
ventional pole figures from the {110} reflections of a-iron matrix show a very strong
(110) orientation (fig. 6(a)) parallel to the direction of solidification. Similarly a pole
figure using the {200} reflections of tantalum carbide revealed a strong (100) orientation
parallel to the direction of solidification (fig. 6(b)). These findings differ from those
reported by Walter and Cline who found a (110) orientation in the tantalum carbide
(ref. 8).

Mechanical Testing

Tensile test results obtained on the directionally solidified alloy and on as-cast
carbide-free Fe-Cr-Al are presented in table I and compared with the tensile properties
of an oxide dispersion strengthened(Fe-15Cr-6Al-2Y, with 4 vol % oxide) alloy (ref. 12).
The directionally solidified, carbide-reinforced material had an ultimate strength at
room temperature of 602 megapascals (which is an advantage of 117 megapascals over
the as-cast carbide-free alloy) and an ultimate strength of 58 megapascals at 1000° C
(an advantage of 47 megapascals). On the other hand, the oxide dispersion strengthened
Fe-Cr-Al displayed an ultimate tensile strength of 38 megapascals with 7.7 percent elon-
gation at 1093° C; and the directionally solidified, carbide-strengthened alloy, 35 mega-
pascals with 55 percent elongation at 1100° C (ref. 12).

Again, in stress rupture, the oxide dispersion strengthened alloy (ref. 12) is
stronger than the directionally solidified, carbide-reinforced alloy as shown in table n
and plotted in figure 7. In the longitudinal direction the estimated stress for a 100-hour
life at 1000° C is 21 megapascals and at 1100° C only 11 megapascals in the directionally
solidified, tantalum carbide-containing alloy. By comparison, a 100-hour life can be ob-
tained in the oxide dispersion strengthened alloy with about 36 megapascals at 1000° C
and 28 megapascals at 1100° C. Elongation in the latter, however, is lower. But,



the fiber-reinforced, directionally solidified alloy is much stronger than the as-cast ma-
trix without tantalum carbide, which, when stressed to only 5. 5 megapascals at 1100° C,
fails on loading.

The changes brought about by loading at room and at elevated temperatures are evi-
dent in the microstructure. The as-directionally solidified fibers (fig. 4) break into
short segments under tensile loading at room temperature (fig. 8). The failures in ten-
sile and stress rupture at 1000° C and higher are accompanied by extensive void forma-
tion in the matrix and spheroidization of broken fibers (figs. 9 to 11).

Thermal Cycling

Thermal cycling at 1100° C was terminated at 1800 cycles, when the specimens had
severely distorted under the combined effect of centrifugal and air-blast loadings
(fig. 12). Examination of the microstructure showed that faceting of the fibers had oc-
curred (fig. 13, cf. fig. 4). Faceting of tantalum carbide fibers had previously been ob-
served by Dunlevey and Wallace (ref. 13) after a cobalt alloy had been subjected to as few
as 200 2-minute cycles.

The thermal cycling resulted in weight gains of 1.04, 1.47, 1. 98, and 2.41 milli-
grams per square centimeter of exposed surface at 300, 600, 1200, and 1800 cycles, re-
spectively. These changes are quite small and demonstrate that the excellent oxidation-
erosion resistance of the Fe-Cr-Al matrix appears not to have been degraded by the pre-
sence of tantalum carbide fibers.

CONCLUDING REMARKS

By directional solidification, highly oxidation resistant iron-chromium-aluminum
alloys containing alined tantalum carbide fiber have been produced. The fibers greatly
strengthen the iron base matrix, but the strength of the alloy is inferior to that produced
in similar matrices by oxide dispersion strengthening. The expectation that directionally
solidified Ferl3. 6Cr-3.7Al+9TaC would be useful in vane applications for gas turbine
engines where stresses of 35 to 70 MPa at 1000 to 1100° C are encountered, is
unfulfilled.

SUMMARY OF RESULTS

Iron alloys containing chromium and aluminum additions have excellent oxidation re-
sistance, but they have very low strength at elevated temperatures. Therefore, a
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program was undertaken to determine whether the high-temperature strength could be
increased sufficiently to make iron-base alloys suitable for gas turbine vane applications.
This involved producing by directional solidification an alloy having an a-iron matrix
containing by weight 15 percent chromium and 4 percent aluminum reinforced with 8 to 9
weight percent tantalum carbide fibers. The following results were obtained:

1. When directionally solidified at rates of 10 millimeters per hour or less, with a
gradient of 250° C per centimeter, the tantalum carbide was alined in fibers and ribbons
in a matrix of a-iron. Strong orientations of {100) for the tantalum carbide and of
(110) for the matrix were obtained parallel to the direction of solidification.

2. The directionally solidified alloy had ultimate tensile strengths of 602 mega-
pascals at room temperature, 58 megapascals at 1000° C, and 34 megapascals at
1100° C.

3, The directionally solidified alloy had a 100-hour stress-rupture life for 21 mega-
pascals at 1000° C and 11 megapascals at 1100° C. This is not adequate for anticipated
vane stresses of 35 to 70 megapascals at 1100—Cr —

4, The alloy offers excellent resistance to oxidation and erosion in burner rig tests.
However, the thermal cycling causes faceting of the tantalum carbide fibers.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, October 20, 1976,
505-01.
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TABLE I. - TENSILE TESTS

Type of
alloy

Directionally solidified

As cast

Oxide dispersion strengthened3

Nominal composition,
wt%

Fe-13. 6Cr-3. 7Al+9TaC

Fe-15Cr-4Al

Fe-15Cr-6Al-2Y(4 vol % oxide)

Temperature,
°C

25
1000
1100

25
1000

25
1093

Ultimate
tensile

strength,
MPa

602
58
34

481

11.4

625

38

0.2%
yield

strength,
MPa

566
58
34

348
11.0

410
34

Elongation,

%

16
11

55

35
84

15
7 .5

Cross-rolled sheet, properties are averaged for specimens cut parallel to direction of final rolling pass (ret. 12).

TABLE n. - STRESS RUPTURE TESTS

Type of
alloy

Directionally solidified

As cast

Oxide dispersion strengthened

Nominal
composition,

w t %

Fe-13.6Cr-3.7Al+9TaC

Fe-15Cr-4Al

Fe-15Cr-6Al-2Y(4 vol % oxide)

Solidification
rate,

mm/hr

10

20

20
20

—

—

Temperature,

°C

1000
1000

1100
1100
1100

1200
1200

1000
1100

1093

1

1

Stress,
MPa

22.0
51.8

11.0
27.5
20.7

20.7
27.5

11
5.5

31.0
31.0
29.3
29.3

Life,
hr

19.7

. 1

86.2
. 1
.4

.04

.02

(a)
(a)

3.2
58. 5

116. 1
139.7

Elongation,

%

21

29

—
20
35

31
37

—
—

15.8
8
8.5

9.5

Failed on loading.
bCross-rolled sheet, properties are averaged for specimens cut parallel to direction of final rolling pass (ref. 12).
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Figure 3. - Microstructure of as-cast Fe-13.6Cr-3.7AI+9TaC alloy.
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(a) Optical micrograph, unetched. (b) Scanning electron micrograph, etched.

Figure 4. - Longitudinal sections of an Fe-13.6Cr-3.7AI+9TaC alloy specimen directionally solidified at 10 millimeters per hour.
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(a) Optical micrograph, unetched. (b) Scanning electronmicrograph, etched.

Figure 5. - Cross sections of Fe-13.6Cr-3.7AI+9TaC alloy directionally solidified at 10 millimeters per hour.
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(a) Reflection of (1101 planes of alpha-iron matrix showing (110)
texture.

(b) Reflection of (2001 planes of tantalum carbide showing <100>
texture.

Figure 6. - Pole figures of Fe-13.6Cr-3.7AI-9TaC alloy diregionally
solidified at 10 millimeters per hour. Shading indicates intense
reflections. Direction of solidification is perpendicular to plane
of figure.
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Figure 7. - Larson-Miller plot of stress rupture data for directionally solidified
Fe-Cr-AI+TaC alloy and 4 volume percent oxide dispersion strengthened
Fe-15Cr-6AI-2Y alloy Iref. 12).

. 50 Ml .

Figure 8. - Longitudinal section at failure of tensile specimen from Fe-13.6O3.7AU9TaC
alloy directionally solidified at 10 millimeters per hour. Tested at room temperature;
unetched.
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Figure 9. - Longitudinal section at failure of tensile specimen from Fe-13.6Cr-3.7AI+9TaC
alloy directionally solidified at 10 millimeters per hour. Tested at 1100° C; unetched.
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(a) At fracture surface. (b) At 1 centimeter from fracture surface.

Figure 10. • Longitudinal sections of stress rupture specimen failed at 1000° C in 19.7 hours under stress of 22 megapascals.
Fe-13.6Cr-3.7AI+9TaC alloy directionally solidified at 10 millimeters per hour; unetched.
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• • >u ' *•
(a) At fracture surface. (b) At 1 centimeter from fracture surface.

Figure 11. - Longitudinal sections of stress rupture specimen failed at 1100° C in 86.2 hours under stress of 11 megapascals.
Fe-13.6Cr-3.7AI+9TaC alloy directionally solidified at 10 millimeters per hour; unetched.

10 mm

Figure 12. - Appearance of specimens of
Fe-13.6Cr-3.7AI + 9TaC alloy, directionally
solidified at 10 millimeters per hour, after
3-minute thermal cycles between 1100°and
425° C
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(a) Optical micrograph, unetched.

(b) Scanning electron micrograph, etched.

Figure 13. - Longitudinal sections of an Fe-13.6Cr-3.7AI+9Ta alloy specimen
direction- ally solidified at 10 millimeters per hour. Specimen was
subjected to 1800 3-minute thermal cycles between 1100°and 425°C.

16 NASA-Langley, 1977 E-8890



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON. D.C. 2O546

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE S3OO SPECIAL FOURTH-CLASS RATE
BOOK

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION
451

POSTMASTER : If Undeliverable (Section 158
Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS
TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N
Washington, D.C. 20546




