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CAPABILITIES AND APPLICATIONS OF THE

PROGRAM TO OPTIMIZE SIMULATED TRAJECTORIES

(POST) PROGRAM SUMMARY DOCUMENT

By G. L. Brauer, D. E. Cornick,

and R. Stevenson

Martin Marietta Corporation

P o O. Box 179

Denver, Colorado 80201

SUMMARY

This report summarizes the capabilities and applications of the three-

degree-of-freedom (3DOF) version and the six-degree-of-freedom (6DOF) version

of the Program to Optimize Simulated Trajectories (POST). The document sup-

plements the detailed program manuals (ref. l, 2, and 3) by providing additional

information that motivates and clarifies basic capabilities, input procedures,

applications and computer requirements of these programs. The information will

enable prospective users to evaluate the programs, and to determine if they are

applicable to their problems.

The report is presented in five chapters with the first containing a sum-

mary of what is believed to be the important features of both programs. Chapter

i is intended to provide enough information to enable managerial personnel to

understand the capabilities of the programs. The remaining chapters are pro-

vided to describe the POST structure, formulation, input and output procedures,

sample cases, and computer requirements. These chapters provide answers to

basic questions concerning planet and vehicle modeling, simulation accuracy,

optimization capabilities, and general input rules. Several sample cases are

also presented. These sample cases contain enough detail to enable them to

serve as guidelines for new users. Should more detailed questions arise, it

is recommended that the POST Formulation Manual, Utilization Manual, and Pro-

grammer's Manual be consulted.

INTRODUCT ION

The original 3D version of POST was developed in 1970 as a Space Shuttle

Trajectory Optimization Program. Since that time, the program has been signifi-

cantly improved with additional capabilities added in the areas of vehicle

modeling, trajectory simulation, and targeting and optimization. The program

is capable of simulating and optimizing trajectories for a wide variety of

aerospace vehicles operating in the vicinity of a single planetary body.

The popularity of 3D POST led to the development of the 6DOF version. 6D

POST is identical in design and use as its 3DOF counterpart. The principal

feature of 6D POST, in comparison to other 6DOF programs, is it's easy to use

input procedure. This capability was obtained by the development of a special



NAMELISTinput processor that does not contain the namelist size limitation of
the standard NAMELISTroutine.

During the development process, considerable effort was madeto ensure
that both versions were generalized in capability, yet easy to learn and use.
As a result, 3D and 6D POSTcan be readily used by trajectory engineers without
specialized training in areas such as optimization theory. Ease of use and the
ability to be used on almost any kind of near-Earth trajectory problem has re-
sulted in considerable interest in these programs throughout the industry. This
interest has resulted in numerousquestions being asked by potential users con-
cerning the general capabilities of both programs. Thus, the purpose of this
summaryreport fs to answer these kinds of questions without requiring reference
to the detailed program manuals. As a result, this report contains a broad
spectrum of information related to program features, structure and design,
utilization, sample cases, and computer requirements. These data will provide
the potential user with basic capability information, and the experienced user
with a summaryfor quick reference purposes.

The instruction manuals and source tapes for both 3D and 6D POSTare avail-
able from:

Computer Software Management & Information Center
112 Barrow Hall

University of Georgia

Athens, Georgia

PROGRAM FEATURES

The 3D POST and 6D POST are general purpose-FORTRAN codes designed for

flexible 3D and 6D simulation and optimization of trajectories for aerospace

vehicles. A summary of the key program features is presented in Figure i.

In reviewing the program features, it is important to realize that 3D POST

and 6D POST are separate programs. However, the executive structure and I/0

characteristics are identical. The only significant difference between these

two programs is that the rotational equations of motion are included in 6D POST

as depicted in Figure 2. It is important to note, however, that the 6D version

requires an additional 44 131 octal storage locations over its 3D counterpart.

Simulation Capabilities

POST is best described as an N-phase trajectory simulation program. This

means that the POST input processor and executive str_cture enables the user to

simulate the trajectory by a logical sequence of trajectory phases. In each

phase, physical and nonphysical aspects of the simulation can be modeled to any

accuracy deemed appropriate by the trajectory analyst. In this manner, each

phase of the trajectory can be simulated accurately and efficiently by appro-

priate user input and program option selection. Figure 3 illustrates the rela-

tionship between trajectory phases, events, and POST input data structure. In

2
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len¢ _erohe_ttng models • Five pop- of events to bQ modeled directly.

uIar attitude reference options • lnittaltza_lon trajectory &nd

C_neral GNkC modual_ attitude in all popular re_eren_e

sy_tew
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Figure i.- Summary of Program Features

POST, the data structure is arranged according to the sequence of events defining

the trajectory phases. It is noticed that every phase is specified by an event

that defines the initiation of the phase. Thus, each event (other than the

first and last events) serves two purposes: (i) it ends the previous phase,

and (2) it starts the subsequent phase. The input data cards for each phase

are located between the two events that define the phase. This basic input

rule is also illustrated in Figure 3, where any or all of the simulated data

can be changed in any phase• The data used in the simulation of a specific

phase are the sum of the data input in all previous phases plus any new addi-

tional data and/or options. If the added input data correspond exactly to any

previous input data, then the program will use the latter data in the trajec-

tory simulation. There are no restrictions on the number of events in a given

problem, and the event criteria can be selected as any variable computed in the

program. The capability to define the problem by phases is an important fen-

ture of these programs because it enables complex problems to be formula_ed J_1

a step-by-step fashion.

The simulation capabilities can be categorized in three types: (i) the

planet model, (2) the vehicle model, (3) trajectory simulation options. Sum-

maries of these capabilities are presented in Tables i, 2, and 3, respectively.

Generally each particular simulation model has several options available. How-

ever, if a particular model is not available automatically then general models

can be used augmented by user input data. For example, two commonly used

atmosphere models are available that require no user input. These are the 1962

U.S. Standard and the 1963 Patrick AFB atmosphere models. However, in mm_v

cases, such as a Mars entry study, the user can a_d must input his own _c. _
via generalized input of pressure, density, and temperature (or speed of set,T;*_i_

The detailed procedures for this type of input are described in reference Io

3
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TABLE i.- SUMMARY OF PLANET SIMULATION OPTIONS

Planet Model

Characteristic Options Description

Oblate Spheroid

and

Gravitation Model

Atmosphere

Winds

i. Spherical

2. 1960 Fisher

Earth

3. Smithsonian

Earth

i. General

2. 1962 U.S.

Standard

3. 1963 Patrick AFB

:These models are defined by the equatorial radius,

the polar radius, the rotation rate, the gravita-

tional constant _, and the second, third, and

fourth gravitational harmonics, J2, J3, and J 4 .

For a spherical planet, J2, J3, and J4 are all zero,

I. Atmospheric pressure, temperature, density, and

speed of sound are computed from user input

tables as a function of altitude. Speed of

sound and density tables can be omitted, in

which case they are computed from input values

of ratio of specific heats, molecular weight,

and the Universal gas constant.

2. The 1962 U.S. Standard Atmosphere model is

given as a function of geopotential altitude.

In POST, the molecular weight is assumed con-

stant.

3. In this model, pressure and temperature are

calculated as a function of geometric altitude

and a set of prestored polynomlal coefficients.

i. Geographic I. The wind velocity is input directly in the

geographic frame by defining the Easterly,

Northernly, and radial components of the wind

velocity.

2. Meteorologic 2. The wind velocity is computed from the total

wind speed and meteorologic wind heading.

TABLE 2.- SUMMARY OF VEHICLE SIMULATION OPTIONS

Vehicle

Characteristic Options Description

Propulsion

Aerodynamic

Aeroheatlng

Steering

I. Rocket Engines

2. Jet Engines

3. Ramjet Engines

1, Lift and Drag
Hodel

2. Axial and _;ormal

Force _1odei

I. Chapman's Equation

2. Gener_l Table

Lookup

3. Hodlfied Chapman's

Equation

4. Turbulent Flow

5. ?laxlmum Centerllne

i. Open Loop

2. Closed Loop

1 Vacuum thrust, nozzle exit area, and flowrate or

I can be input for up to 15 engines per phase.
sp

2. The r_tlo o_ total thrust to the atmospheric pres-
sure ratlo and the ratio of specific fuel consumptio

t_ tlre square root of the atmospheric temperaLure

ratio cdn be input for up to 15 engines per phase.

3. Thrust coefficient and specific fuel consumption

can be input for up zo 15 engines per phase.

i. Lift, drag¢ and aldeforce coefficients (3D), and

pitch, yav, and roll aerodynamic coefficients

(6D) are input as tables.

2. Axial, normal, and sldeforce coefficients (3D),

and pltch, yaw, and roll aerodynamic coefficients

(6D) are input as tables.

I. Heat rate is computed from Chapman's equation

witll tlle nose radius as an input.

2. Heal rate is computed as a table lookup based on
as many as three independent varlablea.

3, Heat rate Is computed as the product of Chapman's

heatrate and a general table lookup.

4, Similar to modified Chapman's equations with

different exponents.

5. Heat rate is computed based on correction for

altitude and angle of attack.

1. 3D attitude is calculated from tables, polynomials,

or linear feedback; 6D attitude contmands are com-
puted from tables.

2. All closed loop models must be coded specifically

for each application.



TABLE 3.- SUMMARY OF TRAJECTORY SIMULATION OPTIONS

$iom, lat i_ Features

Integration Methods

Table Interpolation

Evemt a

Orbital Propagators

Special Purpose

Launch

Options

1. gunse Kutte-Ath Order

2. gunge Kutta-ath Order

3. Predlctor-Corrector

I. Piecmaise Constant

2. Piecewisa Linear

3. Piecevise Cubic

I. Primary

2. Secondary

3. Roving

4. Repeating

i. Laplece's Method

2. Encke's Method

i_ _V Additions

2. Static Trim

1. Vertical Holddown

2. Horizontal Takeoff

Descriptions

I. The standard 4th order &unge-Kutta single step

method for a set of first order ordinary differ-

ential equations.

2. An eighth order single step method.

3. A varlable-step variable-order -mthod developed

by F. T. Krogh of the Jet Propulsion Laboratories

I. The function 18 asemmd to be a step function

based on the user's input.

2. Linear interpolation is used between data points.

The tables can be monoveriant, bivarlant, or tri-
variant.

3. Cubic Interpolation is used betveen data points.

The tables can be aouovarlant, blvariant, or tri-
variant.

1. Lvents ChAt must occur, and must occur in ascend-

ins order according to the event number.

2, Events that must occur in ascending order between

their hounding primaries. The occurrence of a

primary nullifies the previous secondaries.

3. Events that can occur any time after the occur-

rence of ell miler primaries.

4. Events that cam repeat at a specified increment

or at specified values.

I. A semianalytlcal method for propagating the posi-

tion and velocity of a nonthrusting vehicle in

vacuum flight over a spherical planet.

2. A rapid method for propagating orbits perturbed

by planet oblateness and atmosphere.

Is

2.

At any specified event an instantaneous velocity

change can be added to the-vehicle.

The engine gLmbal angles or flap deflections are

computed to balance the pitch and yaw moments

caused by thrust of ocher engines and aerody-

namic forces.

1. This model is used to s4,,ulate vehicle holddova

by maintaining the position and velocity retative

to the planet constant until launch.

2. This option is used to simplify horizontal take-

off by allowing the vehicle co accelerate only

in the local horizontal plant

One additional degree of complexity usually arises in 6D trajectory work,

that is, the guidance, navigation, and autopilot equations must generally be

coded in FORTRAN and added to 6D POST in the appropriate subroutines. Froce-

dures for accomplishing this effort are described in reference 2.

Targeting and Optimization Capabilities

POST has a complete discrete parameter nonlinear programming capability.

This means that POST can minimize (or maximize) a user-selected performance

function, subject to nonlinear target conditions and/or inequality constraints.

The control variables can be any parameter that influences the performance crl-

terla and/or the mission constraints. The performance function, the target

conditions and constraints, and the control variables can be selected from a



dictionary of over 400 program variables. Sometypical examples of these

variables are shown in Figure 4. POST also contains several popular opti-

mization algorithms that can be selected by the user. A brief summary of these

algorithms is given in Table 4. As indicated, the accelerated projected gradi-

ent algorithm is normally used as the basic optimization technique. This algo-

rithm is a combination of Rosen's projected gradient method for nonlinear pro-

gramming and Davidson's variable metric method for unconstrained optimization.

In the targeting mode, the minimum norm algorithm is used to satisfy the tra-

jectory constraints. The cost and constraint gradients required by these algo-

rithms are computed normally as first differences calculated from perturbed

trajectories. In some particularly difficult cases, symmetric differences are

used to more accurately approximate the derivatives. To reduce the costs of

calculating numerical sensitivities, only that portion of the trajectory in-

fluenced by any particular independent variable is reintegrated on the perturbed

runs. This feature saves a significant amount of computer time when targeting
and optimization is performed.

Targeting and Optimization [ ._

Problem Formulatlon. J . '

Optimize f(u)

Subject col(u) • 0

with respect to

Typical Opttaization Variables

Payload Weight, Burnout Weight, Launch Weight,

Total Propellant Um_d, Burn Times,

Burnout Velocity, Burnout Altitude,

Downrange, Cronrange, Total Pdmgm.

Typical TarBst Condit£on8 and Constraints

Altitude. Rmd£ua, Velocity, Fl£ght Path Am$1a,

ApogealParXgee Altltuda/Pmdlu*,

Orbital Eleemnta, Dowmranga/Croasrange,

qa. Total o, dynamic pressure, acceleration,

Temperature, I_atrata, Total Heat Load.

Typical Control (Independent) Variable

Attitude Angles (m, B, o or $, 6, V), or Co*ff£c£anta

of Altitude Polyno,alala, Throttle Satc_tgs,

Event Criteria Valoal (Born Time, etc),

Thruat Levels. Weights, Initial ConditXona.

Figure 4.- Optimization Summary

TABLE 4.- TARGETING AND OPTIMIZATION PROBLEM SOLUTION METHODS

General Class of Problems

Cunstratned Opttmizat ion

with Inequal it lea

Optimize: f (_)

S.hject to: E (u) 0

Unconst ca ined Opt imizat ion

Opt imizu: f(_u)

Targeting:

Determine u Such That

Examples

Ascent to Orbit

_lax : 14Pl.l j (Payload %:elght)

Subject tu: hBo = 303 805 [t

(Altitude)

_BO = 0 (FI'A)

VBO = 25 B41 fps
(Velocity)

q • 400 p_f (DynAmic

l'ressurc)

So_u_n_d_i:l£ .r,o.c.ky.t

,Max : h il_.O (MAX Altitude)

Determine tile Entry "¢ And Azimuth

S_ch That Landing Site is Reached,

i.e.,
Latitude _ - Specified

Value

Longitude 0 " Specified

Value

Available Algorithm in POST

A(celerated Projected GrAd-

lent ._le Chod

Sin|_le t'enaIty Functions

US £ng :

- SLeel)est Descent

- Conjugate Gradients

- l)avldou's Method

Steepest Descent

Conjugate Gradients

Davidon'e _thod

Steepest Descent

Conjugate GrAdients

Davidonls _tllod

Newton Raphson

Recomaended Algorithm

Accelerated Projected

Gradient Method

Davidon's Method

Newton Raphson

v

8
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Input/Output Capabilities

All program inputs are made using an improved NAMELIST input processor.

The key features of this extended NAMELIST capability are illustrated in Figure

5. The permissable sequence of NAMELISTs are also given in Figure 6. As indi-

cated, $SEARCH and at least one $GENDAT are required per problem. $TBLMLT and

STAB are optional within $GENDAT depending on whether tabular data are required

in that phase.

REPF.ATEDHOLLERITH SPECIFICATION

/COMMENTS CAN BE PLACEDON DATACARDS
(TO THE RIGHTOFTHE SYMBOL / )

INDVR = 3*SHALPHA, / COMMENTS ON DATA CARDS " oooooGo

I111111

-- 2222222

TITLE " OH* HOLLERITH TITLE *, ooooo

,._qn 3111133

li|11

4444444

/ P$SEARCH _q5o_coo z7_2_,_ m_m _555555

Ol i lllll 11311 566_[55
_Z_72 44444

7777777

O0000OOOOOOOOO0|IIO0_O|OOIIOO00OO0003000000000000600OO00OOOOOO000000¢OOCgO0_

I I,,, 11 II,I I | , , 11 111';_;_111 IiI1111 1111 11,Ii ,11 I, 11 111111,I I,,111}1 I 111,I lit 111 44444 555,5 I'19,99

2222_22_2_222222222_22222_22_2?2_22222_22?222?222_2_222;_22_22_22_?22?2:2_22 5_5_ 7117T _'_'";"_

``_`_```````_```_``_`_`_`\``_`_``_```_```'````_``_``````_`````````_`` ,,,77 l_tL
i_555S_55555555S555555555_55_55555555555_5_5_5555_55S_5555555555i5_55_$55i_$_ Ilia! --

s_s_ss_s_s_sss_s_ssssss,ssss\_s_sss_,ssssssis,ss,_ss_ssssssss_:sss_sssss_sss ;_

ll_ liiSiOlilOli_lnnOillllOlasilallailillliliosnolii_ilOllillSaS
pgllll IIIIIIIIIII

HOLLERITH STRINGS (TITLES, ETC) CAN BE INPUT WITHOUT
COUNTING THE NUNBER OF ELEMENTS IN THE STRING MERELY
BY PLACING A ZERO BEFORE THE LETTER H. THE HOLLERITH
CHARACTER STRING IS THEN BOUNDED BY ANY HOLLERITH
SYMBOL NOT CONTAINED IN THE STRING, e.g., THE HOLLERITH

CHARACTER "*".

SPECIAL NANELIST LIST OPTIONS

BLANK IN COLUMN I -- LIST ONLY THOSE CARUS CONTAINING ERRORS

P IN COLUMN I -- LIST COMPLETE INPUT FILE

L IN COLUM_ I -- LIST COMPLETE INPUT FILE INCLUDING A
CARD COUNT

Figure 5.- Extended Namelist Capabilities



Targeting &

Optlmlzation
Input

General Simulation

Input for Phase i

Table Data

for Phase i

General Data

for Remaining
Simulation

Phases

I
P$SEARCH

C INPUT IN THIS _ANELIST ALL DATA PEPTAINING TO :

1) OPTImiZATION AN_ TARGFT|NG F[IRMULAT|ON

OPTIMIZATION VADIARLF
CnNSTRAINTS AND TARGET ¢[1NO|TEON$

CONTPOL VAPlA_LE
71ALGOPITHM SELFCTION AND CONTROL FLAGS

PSGENDAT EVENT • I,

C INPUT IN T_I$ NAMELIST ALL DATA AND PROGRAM CONTROL FLAGS PFRTA]NIN_
TO:C

C

C l) PLANET MO_EL -
C
C

C 21V_HIC[E MODEL-
C

C

C

C

C _ TRAJECTORY -
C

C

$

PSTBLMLT

C INPUT IN THIS NAMELIST ALL TABLE
$

O_LATE _PHFPOID

GRAVITY COEFPICItNTS

AT_OSP_FDF MOOEL

MA_$ _DnPEPT|£$ AND REFERENCE
GEOMETRY

ENGINE OPTION AN_ ENGINE LO(ATI[]NS
AERO OPTION

GUIDANCE AND CONTROL

INITIAL COqOITIONS

INTrGRATIO_ NETHOO

SPECIAL OPTION CONTROL FLAGS

SCALE FACTORS FOR PHASE l.O

C INPUT THE THRUST TABLE ( FOR PHASF |.O |
$

C INPUT TI E NOZZLE EXIT APEA TABLE
S

C INPUT T_E CD OP V_E CA TABLE FOR _ROPTANK PLUS ORBITER
l

C INPUT THE CL OP THE CN TABLE F O_ DROPTANK PLUS OPEITER
C

ENDPHS = I,

S

PSGENCAT EVENT = ?.Or CRITP = _AS_G, VALUE =0.25,
C TURN OFF HOLDD[1WN MODEL VIA _ATA INPUT HEPE. __._m_

_NDPHS =1,

PSGENDAT EVENT = 3.0, CPITe = _NVELRt VALU_m_ Ir_

:NDPHS =1, _

PSGENDAT EVENT =_.0, CRITk _

C INPUT DATA REOL'IRE TO US_
ENOPH_ _|,

, _ ' _ _. j..._j..f"'_'ALUf • 6 SOD. O,

_,.r_..,,,_"CHANGtD SCtI.E FACTOPS

C_ OR CA TABLES FOR ORBITER ( WITHOUT OROPTANK I

C INPUT CL OP CN TAPL[S FOR OPEI TER I WIT_DUT DROPTANK )
C

ENOPHS = !,
S

PSGENDAT EVENT ='/.O, CI) ITP : _HT_VRP, VALUE = _.Ot
C INPUT UATA RECUESTING LINE.CANE STEEoING

EDNPH$ = It
t

PSGENDAT _VEI_T =E.O, CRITR = 4HA$_., VALUE • 3o0,
C INPUT [_ATA REOUESTING Tk_ROITLING Tt_ IG LI_'IT

ENOPH$ = 1,
t

PSGENDAT EVENT :¢_.0, (RITF = 5HWPPDPt VALUE • G.G,
C INPUT _ATA TO _URN CFF ENGINE ¢

ENOPHS : I •

$

PSGEN_AT FVENI :lO.0_ CRITP = S_T_VPP, VALUE • _O°,

ENDPH$ = ],
fNDPRt t = I,

END JOB • !,
_t

Figure 6.- POST Input Structure
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The program also has the capability to accept input in either English or
metric units. The only restriction being that the input units cannot be mixed.
The output variables can also be printed in either English or metric units,
but not both.

All English to metric conversion constants can be changedby input if de-
sired. The stored values of these constants were obtained from reference 3.

Care must be taken when using metric system input and output. The input

units must be of the same type as the English units. For example, values for

weights must be input in units of force (newtons) rather than mass (kg). Vari-

ables output in nautical miles in English units must be kilometers in metric.

The program also has the capability to print a summary of the table data

input. This feature is useful in that input errors in the table format are

easily detected by reviewing this printout.

In addition to the normal input procedures described above, the program

has the capability to process more than one input problem per pass at the com-

puter. This feature, referred to as Multiple Runs, enables the user to change

the basic input deck (which represents a single problem) by adding a subsequent

set of data cards representing the changes (addition and/or deletions) imme-

diately after the original set of data cards. Once the first problem is com-

pleted, the program will automatically modify the input file as defined by the

additional cards and run the resulting data file. This capability is extremely

useful in performing parametric studies where only a few input variables are

changed from one run to the next.

There are two basic categories of POST output: (i) trajectory data, and

(2) program control data. Trajectory data can be output in the form of a com-

puter printout and/or as a profile tape. The typical computer printout con-

sists of (I) an input echo, (2) an input summary, (3) a trajectory printout

that optionally includes a phase data summary at the beginning of each event,

(4) special trajectory printouts, such as orbital parameter, tracking data,

etc, and (5) targeting and optimization iteration traces and summaries. Tra-

Jectory data can also be written on a profile tape for storage or auxiliary

output purposes. Typical output obtained from the profile tape includes tra-

Jectory plots, orbital ground tracks superimposed on a world map, and punched

cards. The computer routines required to generate these types of output from

the profile tape are computer/system-dependent and not contained in POST, but

are readily available at most modern computing centers. The second type of

output, namely, program control data, is contained in the initial input summary

and is updated in the phase data summaries output at the beginning of each

event. Employing these summaries, the user can always determine exactly what

options are being employed in the simulation during any phase of the trajectory

simulation. The various forms of POST output are summarized in Figure 7.
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POST Output Options
Auxilary Options
Using Profile Tape

I II III

Profile
Printed Output Tape Graphics
Options Option Output

Input Echo

Input Summaries

Data Summaries

Plots

or
Maps

Block Printout or Cards

Iteration Traces

Iteration Sum_ries

Figure 7.- POST Output Options

The basic trajectory prlntblock can be defined, in terms of size and con-

tent, by the user. Any common variable computed in the program can be output

by including its hollerith name in the printblock definition. If the user

does not wish to define a printblock, then a nominal default printblock can be

used. Any printblock may be modified with additions and/or deletions according
to the rules described in reference I.
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The targeting and optimization output has two levels of detail. The
iteration summaryis the output most frequently used and it is always dis-
played in the printout. This summarycontains all the information required to
understand the progress of the iteration process. Information, such as tra-
Jectory sensitivities, stepsize limits, univariant curveflt summaries, current
control variables, current constraint errors, and current performance are in-
cluded in the summary. Whenthe iteration is judged to be improperly converg-
ing, a detailed iteration trace can be requested. This trace gives all in-
formation required to determine the exact iteration cycling calculations and
prints the data in the exact chronological order that they were calculated
internally. The data are usually only required whennew problems are being
formulated, and are extremely useful in identifying problem formulation and
setup errors. It also gives key information that can be used by experienced
POSTusers to speed up the convergence of the targeting and optimization algo-
rlthms.

Program Applications

During the past several years, POSThas been used to solve hundreds of
performance and mission analysis problems for atmospheric and orbital vehicles.
A brief summaryof the more standard applications of POSTis contained in
Table 5. The spectrum of problems shown in Table 5 gives some indication of
the overall versatility of POST.

TABLE5.- TYPICALAPPLICATIONSOFPOST

Type of
Mission

Ascent to

Hear-Earth

Orbit

Ascent to

Synchronous

Equatorial
Orbit

Asclnt

Abort

ICBH

Ballistic
Hisstle

Reentry

Aircraft

Performance

Typa of Vehicle

Titan IIXC & D6E, Space

Shuttle, Single Stage
Co Orbit (VTO and HTO)

Titan IllC, Shuttle/

T_

Specs Shuttle

Titan IX,
Ktamutmmn I & II,

Sa£almtrd

Space Shuttle, X-24C,

Siqle Stale to Orbit

Trenottg@,

Space Tug, IUS,
Solar Electrical

Propulsion

X-24B and C, Space
Shuttle Subacale,
Subsonic

Jet Cruise, Hypersonic
Bombers end

interceptors

Optiuizatica
Variables

Payload, Weight at
Burnout Fuel, Burt_Cime,

Ideal Velocity,
Initial Weight

Payload

Abort Interval

Payload
_sc Distance

Heat Rata

Total Heat

Crossrsnse

Payloed
Fuel

Hath Number

Cruise Time

Payload

Typical Coostrslnts

Equality

Radius

Flight Path Angle

Velocity

Apo8ae

Perigee
lnclinetioa

Landing Site

Longitude and
Latitude

Latitude

Longitude

Crossrenge

Downrange

Lstitude

Longitude

Crossransa

Dcsmrange

Radium

Velocity

Flight Path An|Ie

Argument of
Perigee Period

Apogee, Perigee

Vovnrange

Croearanse

Dynamic Pressure
Velocity and

Hath Altitude

Inequality

Dynamic Pressure
Acceleraclons

Dynamic Pressure

Angle of Attack
Pitch Rates

Acceleration

Dynamic Pressure

Flight Path

Angle at Entry

Acceleration

during Entry

Heat Rate

Accelsretim_

Attitude Angles

Perigee Altitude

Dynamic Pressure

Dynamic Pressure
at .MAX A.ltitude

CPU Time Required
to Solve Problems,

mln

2 -- 20

3 - 50

2 P 5

2 -, 20

3- 15

0.5 • iO

0.1 -- 5

13
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The generality of POST that makes it ideal for detailed vehicle per-

formance work also gives it a unique capability for estimating performance for

advanced vehicle concepts. A few applications of POST to advanced vehicle/

mission concepts are (i) slngle-stage to orbit trajectory optimization, (2)

hypersonic cruise vehicle optimization, (3) parachute simulations for solid

rocket booster recovery concepts, (4) guidance algorithm development for ma-

neuverable reentry vehicles, (5) ascent optimization for a Mars sample return

mission, and (6) simulation of a Mars entry using advanced video guidance con-

cepts.

o

PROGRAM STRUCTURE AND FORMULATION

Executive Design

POST executive logic was designed to provide (i) readily learned input and

output procedures, (2) flexible trajectory simulation, (3) detailed vehicle

modeling, and (4) generalized targeting and optimization. These goals are met

by the POST executive structure, which is presented in Figure 8. As indicated,

executive routines are used throughout. These routines control the program

execution flow by calling subroutines containing the actual mathematical com-

putations. This modular structure allows the program to be modified quickly

and easily.

Both 3D POST and 6D POST are structured in three overlay levels, (0, 0),

(i, 0), and (2, 0), respectively. The first overlay (0, 0) is the master

executive overlay, which controls the overall program. This overlay controls

the read-ln of input data and determines which trajectory computations are to

be performed. All utility routines are contained overlay in (0, 0).

Overlay (0, 0) first calls overlay (i, 0), which reads the namelist input

data from cards and stores the processed data on discs for later use.

Overlay (2, 0) is called by (0, 0) after (i, 0) has completed the input

processing tasks. The first decision in overlay (2, 0) concerns the type of

simulation; i.e., single trajectory or search/optimlzation mode. If a single

trajectory is to be run, the program calls overlays (2, i) (2, 2), and (2, 3)

sequentially, then returns to the master overlay (0, 0). If the search/optimi-

zation mode is to be used, the program control is turned over to subroutine

MINMYS, which calls overlays (2, i), (2, 2), (2, 3), (2, 5), and (2, 6) as re-

quired to perform the search/optimlzation function. When convergence has been

achieved or the maximum number of iterations has been exceeded, control reverts

back to the master overlay (0, 0) for the next problem.
k
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BAsic Simulation _xecutlve, 3D and 6D

_._ TRAJ

b.l D|NPTi_VERLAY(P_5121_Z,i}

7.! SETESN

b.2 SAVIC

b.3 S_TIv

b._ P_ZXM]IOVERLAYIPOST2Z,2t2)

7.1CYCXMI

8.10YNXN1

9.1DYNXA (CR DY_XBI

10.1 DERVZ

11.1MOTIAL

3D Initialization

12.l ORBTR

12.2 WINDS

12.3 GUID!

13.1GUATI

1).2 OUAT2

12.4 GUID1

13.10LGN

13.20LGOM

12.5 I_MIRX

12.b wGTIN!

12.7 INTGRL

|Z._ ATHOS

IO.2 DYe|

il.l DLOOK

G.2 AUXFH1

9.1SPHE_

IO.! FCRMN

IO.2 SUN

8._ TGOEM1

R._ INFX_|

9.1 PAGER

9.2 PRNTIC

b.5 CALE

b.b PHZXMiUVE_LAY(POST231213)

7.1 1GUE_

7._ CLG_

_.1 GSENSR

B._ GNAV

8.3 GGUID

S._ GCNTRL

7.3 CYCXMw OR CYCYM

?.4 DYNXN

8.| DYNSIt DYNS2t OR _YNS3

9.1 kU_t SVDg_ OR TWOBDY

9.2 DERIV

10.I

Iu.2

3D Equations of Notion

GSA

11.1 UPNCq$

11.2 MOTION

11.) AUX_

11.4 CALSPE

11.5 CALES

ll.b GRADS

MOTION, CR MOTFNC
II.I ATMCS •

12.1 ATHOS1, OR

ATMOS2, OR

ATMOS3

11.2 wINDS

II.3 GUIOI

12.10LGM

12.2 OLGOM

11.a IENTRX

II.$ AERO

11.o PROP

12.1 TR]_

13.1 XITER

11.? TMOTM

12.1 GRAV

ll.b AEqO_I

11.o GUID2

12.10LGN

Auxilary Calculacionl

k
T.5 AUXFM

b.) GAMLAM

b._ DGAHLAM

8.6 FACKOk

8.5 XRNGE|

5.b XqNGE_

O.7 DPRN_

8.B CONIC

_.9 MONITP

E.Iu HSwGT

b.11 TRACKER

_.lZ ANMP1

E.I3 CALSPEC

7.b 1%_X_

_.I CONVU

b.2 P&GE_

b.3 PbLOC_

T.? CLS_FL

ChanSes Required _or 6D P0ST

RF.,PRODUCI_I'_ITY OF TIlE

ORIC,_N/_L P;.GE IS POOR

6D Xniclallutlon

1_.1 M('TIAL

I?.1 r'D_ Tr

12.3 (_UT _T

I_.1 OItAT 1

|1.? _lJ_1 ?

I].Z qU/IT 1

IE._ CUTOJ

1_,p _t _.nw

1?.t_ k'_,T TPT

t_'.q 4TqC c

l_.q -"M"I TT

6D Equations of Motion

16.1 _CTIO_

11.1 va¢$o

11.? _Tq._

II.M _CNT"

11.11 ^/oF_

11.1_ r.qv_

I?.] C_AV

11.1x OWOTW

I_,1 _51JAT

Figure 8.- Concluded
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An outline of the approximate calling sequence for each routine is included

in Figure 8, and shows which subroutines are called by a given routine, thereby

allowing the detailed logic flow to be followed easily. The overall program

logic described by the overlays is as follows:

i) Overlay (2, i) reads the previously processed input data from tape,

locates the data for the current phase (event), and initializes the

program values based on this input;

2) Overlay (2, 2) initializes the equations of motion for the current

phase;

3) Overlay (2, 3) integrates the equations of motion from time ti to a

specified stopping condition for the current phase;

4) Overlay (2, 5) calculates the control corrections based on the search/

optimization algorithm being used, limits the control parameters that

violate the control parameter constraints, and tests for convergence;

5) Overlay (2, 6) prints out an iteration summary at the end of each iter-

ation. It also performs any other information output tasks required by

search/optlmlzation algorithm, such as printing trail step summaries.

The program dictionary (subroutine DICT) performs a one-to-one mapping of

variables in common and the Hollerith names by which the user can select the

variables for a variety of uses, including output, stopping conditions, control

variables, and targeting variables.

POST uses a generalized table storing and lookup procedure whereby the size

of tables is limited only by the total data storage allocation of 1500 cells.

Each table has its own multiplier. This is accomplished by dimensioning the

table by (2). The first location contains the address of the table and the
second location contains the table function multiplier. The generalized table

lookup (GENTAB) is set up to handle all allowable types of tables, namely,

constant-value, monovariant, bivariant, and trivariant.

The interaction between the targetlng/optlmizatlon logic and the trajectory

simulation was designed so that the trajectory calculations represent an ex-

ternal evaluation of the objective function and the constraints. In this manner,

any change to the trajectory simulation capability of the program automatically

is available to the targeting and optimization logic.

Coordinate Systems

POST uses numerous coordinate systems to provide the necessary reference

systems for calculating required and optional data. The key computational coor-

dinate systems are illustrated in Figure 9 and I0, and the definitions of all

coordinate systems used are summarized in Table 6. The equations of motion are

integrated in the Earth-centered Inertial (ECI) frame. Thus, the external

thrust and aerodynamic forces, which are computed in the body coordinate system,

17



Z I, ZVE, ZR

Instantaneous Orbit

V I Vehicle Position

YR

T

xvE

xR
Xl

_ et
Figure 9.- Coordinate System _eom ry

"BR /v.- _B _ rote

Yl

The absolute location of the

body reference system is

arbitrary because only the

relative distances are used

in the Equations of Motion.

Figure i0.- Body Frame
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TABLE 6.- POST COORDINATE SYSTEMS

Coordinate Syatem Axes Deflnitlon

Earth-C_terad Inertial (ECI)

Earth-Centered Rotating (ECR

Earth Position Coordinates

Geographic (G) Axes

Inertial La_ch (L) Axes

Body Reference (BR) Axes

Orbital Elemnts

Vsrnal Equinox (VE) AXeS

Body (B) Axes

(x_, YR' ZR)

(.0.y0..0)

Xl.' YL' ZL)

XBR' YBR' ZBR)

Earth-centered Cartesian system with z I coincid_t with the North

Pole, x I coincident with the Greenwich Meridlan at tlme zero and

and in the equatorial plane, and YI completing a rlght-hand

system. The translational equations of _otlon are solved in thAs

system.

SimAlar to the ECI system except thac it rotates with the Earth

so that x R is alw4ys colncldenc with the Greenwlch Mmrldian.

These are the familiar latitude, longitude, and altitude desig-

nators. Latitude is posltlve in the Northern Hm=isphere. Longi-

tude is measured posltlve East of Greenwich. Altitude is measured

positive above the surface of the planet.

This system ls located at the surface of the planet at the

vehicle's current geocentric latitude and longitude. The xG axis

is in the local horizontal plane and points North, the YG axis is

in the local horizontal plane and points Ealt, and zG completes a

rlght-hand system.

An i_ertlal Cartesian system that is used as an lnertlal reference

system from which the inertial attitude angles of the vehlcle are

measured. Thls coordinate system is automatically located at the

geodetic _ and inertial longitude of the vehicle at the start of

the simulation.

Right-hand Cartesian syst*m aligned with the body axes as follows.

The XBR axis is directed along the negative xB axis, the YBR axis

ls directed along the positive YB axis_ and the ZBR is directed

along the negative zB axis.

A nonrectangular coordinate system used in describing orbital

._otion. The orbltal eleemnts are apogee altitude, perigee alti-

tude, lncllnatlon, longltude of the ascending node, true anomaly,

and argument of perigee.

A 1950 mean equator and equinox Earth centered inertial system.

The xVE axls is in the equatorial plane and is directed forward

of the vernal equinox of 1950, the ZVE axis is dirlcted along the

north pole, and YVE co:plates the right hand system.

The body axes form a right-hand Cartesian system aZigned with the

axes of the vehicle and centered at the vehicle's center of

_ravity. The x B axis is directed forward aAong the longltudinal

axis of the vehicle, YB points right (out the right wing), and zB

points downward, completing a right-hand system.

must be transformed to the ECI system. This is performed by the inverse of the

transformation matrix, [IB]. The [IB] matrix is functionally dependent on the

attitude of the vehicle, and is calculated based on the equations describing the

attitude steering option selected by the user. POST contains four standard

attitude reference systems as described in Figure Ii. Any given trajectory

problem may require use of one or more of these systems. For example, simula-

tion of a complete ICBM trajectory typically involves the use of inertial Euler

angles during first and second stage boost, relative Euler angles during third

stage flight, inertial aerodynamic angles during the postboost maneuvers, and

finally aerodynamic angles during reentry. The availability of all these op-

tions, while confusing to new users, is a valuable aid to the experienced tra-

Jectory analyst, and enables him to steer each phase of the trajectory in the

most appropriate manner.
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The matrix transformations between each pair of the coordinate systems

are presented in Volume I. The basic relationships between the principal com-

putational systems are depicted in Figure 12. The inverse transformations be-

tween these coordinate systems can be easily computed by merely transposing

the matrix elements because of the orthonormallty of these matrices.

Planet Model

The planet model consists of three basic categories of equations and input

data: (i) oblate planet geometry and constants, (2) a gravitational model and

its constants, and (3) an atmosphere model that includes winds. In each of

these categories, the user can select prestored options to minimize the amount

of required input data. On the other hand, if the desired option is not avail-

able, then the user can define his own model via input constants. The only

inherent program limitations are defined by the equations representing the vari-

ous models.

The oblate spheroid model is defined in terms of the equatorial radius _,

the polar radius R , the rotation rate _ , the gravitational constant _, and
P P

the second, third, and fourth gravitational harmonics, J2, J3, and J4, respec-

tively. The 1960 Fisher Earth models are preloaded in POST. The geometry of

this spheroid is illustrated in Figure 13.

IG

AB

LB

Figure 12.- Transformations

between Coordinate

Sys terns

North Pole

R ,

South Pole

Figure 13.- Oblate Planet Geometry

Vehicle

The gravitational model includes optionally second, third, and fourth

harmonic terms. This model is adequate for near-Earth ascent, on-orbit, and

entry performance work. For extremely high altitude satellite maneuvers or

ephemeris prediction, a more detailed model that includes lunar and solar per-

turbations and higher order harmonics is generally required. These terms are
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not included in the standard POST program but are available in a special

orbital version.

The gravitational accelerations calculated are given by the equations

x
GXI = -_ _ P(z, r)

where

and

" '_ P(z, r)
GXI - rx

[( 1GZI = - _r3 i + JR 2 (3 - 5Z2) z + H--r 6z2 - 7z2 Z2

+ DR _ /___5_ 10Z2

3 r2)

+ 9Z 4) z]

P(z, r) - 1 + jR2(I - 5Z 2) + H -- (3 - 7Z 2) z + DR _ 9Z _ - 6Z 2 +
r

(i)

x = Xl, y = YI' z = Zl, r = rl,

3 5 35

R = _Irl, Z = Zllrl, J = _ J2, H I _ J3' D = - _- J_

POST has the optional capability of three atmospheric models--the general

table lookup, the 1962 U.S. Standard atmosphere and the 1963 Patrick AFB atmos-

phere using polynomials. The general table lookup model gives the user the flexi-

bility of inputting his own atmospheric model if none of the preloaded models is

adequate. This is particularly useful in performing trajectory analysis for

planets other than Earth.

The table lookup atmosphere model can be defined entirely by using tables

that show pressure, temperature, speed of sound, and density as functions of

altitude. The speed of sound and density tables can be omitted if desired; in

this case, the speed of sound and density are computed as

Cs =_i T

P

0 =K2_ (2)

Mo
= _R__**K2 = -- 7 is the ratio of specific heats, M0 is the molecular

where K 1 M0 ' R*"

weight, and R* is the universal gas constant. The equations and constants de-

fining the 1962 U.S. Standard and the 1963 Patrick AFB atmosphere models are

given in reference 4.
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The atmospheric wind velocity components can be input as tables using

either meteorological or vector notation. If these tables, which are normally

functions of oblate altitude, are not input, then the atmosphere is assumed to

rotate uniformly with the planet.

The wind velocity components can be input directly in the geographic frame

by defining Uw, Vw, and Ww, or by defining the wind speed (Vw) , the wind azimuth

in the G-frame are:

V-WG=LwwIVw(h)(h)sin (Azw(h)+AZWB)1
(3)

It is clear from the above equation that to input vector wind data _WB must be

input as zero, whereas for meteorologic data the preloaded value of 180 deg

should be used.

The wind velocity in the ECI frame is then given by

lwl= [_G]-I_WG (4)

Thus, the atmospheric relative velocity vector in the ECI frame is

vAi--vI - % x ___- _w_

Vehicle Model

The vehicle model consists of five general categories of equations and

data: (i) mass properties, (2) propulsion, (3) aerodynamics, (4) aeroheating,

and (5) guidance, navigation, and control (GN&C). The mass properties model

includes the calculation of vehicle and propellant weights, moments and products

of inertia, and the location of the vehicle center of gravity. The propulsion

model computes engine thrust and flowrate for as many as 15 separate engines.

Standard equations for modeling rocket, turbojet, and ramjet engines are avail-

able in the program. The aerodynamic model includes all standard ways used to

describe aerodynamic force and moment coefficients for both 3DOF and 6DOF work.

The aeroheating model includes all popular heatrate calculation methods, such

as the standard Chapman's equation for laminar flow and a nonstandard maximum

centerline technique developed for Space Shuttle. The GN&C model includes all

equations used for 3DOF openloop steering, as well as general modules for

specific 6DOF simulation of an actual flight control system. These modules

include: (I) a sensor module, (2) a navigation module, (3) a guidance module,

(4) an autopilot module, (5) a controls module, and (6) an airframe module.
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Several specific models are available in each of these general modules; however,

in most cases these modules must be either modified or replaced when a new

system is to be simulated. Procedures for making these modifications or addi-
tions are described in reference 5.

Mass properties.- There are numerous options available for specifying the

initial gross weight of the vehicle, calculating the time rate of change of the

vehicle's gross weight, and computing the amount of weight to be jettisoned at

specified events. The details of these options are presented in Volume II, and

only the general principles are given in this document.

The basic approach employed to compute the time history of the vehicle's

gross weight is to specify only the gross weight at the first event and then

subtract weight losses due to propellant consumption, ablation, and staging.

Using this approach, the gross weight of the vehicle at the beginning of the

simulation is given by

W G = WST G + WpL D (s)

where WST G is the gross weight without payload and WpL D is the payload weight.

The weight of the vehicle during any particular phase is given by

+ /_ dt (6)WG(t) = WG - G

+
where W G is the gross weight on the positive side of the event defining the

beginning of the phase, and WG is the total derivative of gross weight result-

ing from engine flowrates and/or thermal protection system ablation. For events

other than the first, the change in gross weight across the events is computed

as

+- WG (7)W G - Wjett - WpR

where Wjett is the jettison weight, and WpR is the weight of propellant remain-

ing in the previous stage. The propellant remaining can be computed for all

engines or for a single selected engine, and is given by

= Wi
WpR P - Wpc (8)

where Wi is the initial weight of propellant and Wpc is the amount of propellant
P

consumed. This latter term is computed as

i +/_p dtWp C z Wp C (9)
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i is the in-where W is total flowrate for the selected set of engines, and WpcP
itial value used to carry this parameter over a selected set of phases. When

wi C is set to zero at the beginning of a phase, then Wpc represents only the

amount of propellant used during that phase. The Jettison weight, Wjett , can

be computed as an input constant or determined from an input mass fraction

table. When mass-fractlon is used to determine Jettison weight, then

W iwjott l) (i0)

where i is the stage mass fraction computed from a user's input table. The

composite center of gravity and the inertia matrix are input in the vehicle

reference system as defined in Figure 14. In 6D POST, the moments and pro-

duces of inertia are defined as the integrals

I = ly2 + z2 dv I - Ixy dv
xx xy

I - Ix 2 + z2 dv I = lyz dv
yy xz

I . ix 2 + y2 dv I = Ixz dv
zz yz

(Ii)

and the inertia matrix is given by

[l] =

I -I -I
xx " xy xz

-I I -I
xy yy yz

-I -I I
xz yz zz

(12)

Generally, the center of gravity coordinates and the elements of the inertia

matrix are input as tables with gross weight as the independent variable.

Propulsion.- POST can simulate both rocket and Jet engines. As many as

15 engines can be used in either mode in any simulation phase. The equations

used to calculate net thrust and flowrate per engine are summarized in Table 7.

The thrust equation, computed in the Body frame, is given by

m

FTB i Ti_ (13)

where T i is the net thrust of the ilth engine, and _ is a unit vector along

the thrust direction. In the general case, the direction of the thrust is

computed as
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U _

cos 6e cos 6e
P Y

sin 6e
Y

- cos 6e sin 6e
Y P

where 6ep and 6e are the pitch and jaw engine gimbal angles as defined inY

Figure 15. In most 3DOF simulation work, u is simply a unit vector in the
direction of the x-body axis.

(14)

ine Gimbal Point

ynamic Reference Center

c.g. Location

Zre f

lyy

YB (6D)

:ef

W
Z

I
ZZ

ZB (6D)

X _
_ ref

in of

/ Reference
Frame

Yref
Arbitrary

Mass Properties Input:

1) Moments and Products of Inertia in Body Frame (Tables)

2) Engine Gimbal Points in Body Reference Frame

3) Aerodynamic Reference Point in Body Reference Frame (Tables)

4) Center of Mass Location in Body Reference Frame (Tables)

Figure 14.- Mass Properties Input
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TABLE 7.- BASIC THRUST AND FLOWRATE EQUATIONS

Rocket Turbojet Ramjet

ThruaC Thrust Thrust

Exit Araa

T g " n Tvac_(h)

Vacuum Thrult

Throttle SottlnE

Flowrata

/Maximum

• / Propellant

1) N - -_ Wpntax Flowrate

Flowrate

Ps_

6 = pressure ratio - P(h)/Ps£

Specific Fual

Consumption

TRJ w _ CT q A E

Elowrate

2) w = -nZvac

I

Pvac

Vacuum I
ip

W

\
Thrust Coefficient

°

W " sfc TRj

Figure 15.- Engine Gimbal

Angles

Aerodynamics.- The aerodynamic force coefficients can be expressed in

terms of the axial force, normal force, and side force, CA, CN, and Cy, re-

spectively. Here CA and _ produce forces that act in the -xB and -zB direc-

tions, and % produces a force acting along YB" The aerodynamic force coeffi-

cients can also be expressed in terms of the llft, drag, and slde-force

coefficients CL, CD, and Cy (Figure 16), where CL and C D are directed normal
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to, and along the velocity projection, in the XB-ZB plane. Note that Cy pro-

duces a side-force, F_B , acting in the direction of YB.

c.

c, c. 4 cL

-" : -" - " ,",:. ". J I,,

-_ _-.2L i

Figure 16.- Aerodynamic Angles

Lift and drag force coefficients are transformed internally to axial and
normal force coefficients as follows:

I CAI = [cos u
CN Lsln u

where _ is the angle-of-attack.

cos = j CL
(15)

The aerodynamic moments coefficients are defined as: C_ - roll, C -m

pitch, and C - yaw. The pitch and yaw moment coefficients are used in the 3D
n

POST static trim option, and the roll coefficient is added only in the 6 DOF
version.

All aerodynamic coefficients can be input as constant, monovarlant, bl-

variant, or trlvarlant tables. In general, there are four tables allocated to

each coefficient in 3D POST, and eight tables per coefficient in 6D POST. Most

of these tables can have arbitrary mnemonic multipliers. The mnemonic multi-

plier capability enables either the coefficient or its slope to be input di-

rectly into the program. The mnemonic multipliers can be input as the name of

any computed variable in the output variable list. The coefficient for a given

table is then the value of the table lookup multiplied by the value of the

variable defined as the mnemonic multiplier. The values of the aerodynamic

force coefficients are computed by summing individual contributions as defined
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by user input. As an example, the axial force coefficient is computed from the

general equation

CA = CAD + CAM I +

CA_ p _p + CA6Y _y -- 3D POST

: _a + e 6a + r _r + ___
A6 a CA_ CA6

i=l
CA6fl 6fl -- 6D POST

(16)

where each of the coefficients CAo through CA f3 can be defined as functions

of as many as three variables, and the mnemonic multipliers M I through 6f3

can be defined by Hollerith input. Typical examples of CA are:

CA = CAo(M) + CA(M) =_mnemonic multiplier

_monovarlant tables

or

CA = CA(S,M) 1

_no mnemonic multiplier
bivariant table

In 3D POST, _p and _y are generalized pitch and yaw control surface deflection

angles. Similarly, in 6D POST _fi' i = 1,2,3, are general deflection angles,

and 6a, 6e, and 6r are the aileron, elevator, and the rudder deflection angles,

respectively. The detailed equations for all aerodynamic coefficients are

given in the formulation manuals.

CA

lAB = qS Cy

-CN

where the dynamic pressure q is given by

1
q = _ PVA2

and S is the aerodynamic reference area.

(17)
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Aeroheatin_.- POSTprovides for a wide variety of aeroheating calculations.
Someof these options are specific in nature and apply only to particular ve-
hicles, whereas others are quite general. The general option is based on tri-
variant table interpolation of a user-defined heat rate table and provides com-
plete flexibility with regard to vehicle shape and heat transfer methods. An
approximate maximumcenterline heating rate option is also provided. This
approximation is based on an analysis of heat rate data calculated by the
MINIVERaerodynamic heating computer program. A least squares curvefit was
used to obtain fifth order equations that describes the curves for reference
heat rate and for the altitude-velocity and angle of attack corrections. The
equations in this option were written for centerline locations aft of the nose
of the vehicle. These equations are presented in the Formulation Manual. The
other heat rate models are based on Chapman'sequation

Q = K w

15

where the scale factor, K, can be computed from a table look-up.

In addition to the basic heat rate calculation, POST contains several aero-

dynamic heating indicators that provide useful information associated with the

heating environment. One such indicator for zero total angle of attack is

QI =/ qVA dt,

O

which can be modified for various nonzero angle of attack situations.

These heat rate indicators can be used in conjunction with a ten panel

vehicle heating model to incorporate the heating calculation in the vehicle

weight calculations.

In this simplified model, the total heat for each panel is assumed to be

a constant ratio of the total heat calculated by the selected option at a given

location on the vehicle. The total thermal protection system (TPS) weight is

then computed as the sum of the individual panel weights,

i0

WTp S =_ WuA i Ai

i=l

where WuA" is the weight per unit area and A.I is the area of the i-th panel.
1
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Guidance and Control.- POST can simulate both open loop and closed loop

guidance. In 3D POST, the vehicle's actual attitude is computed directly from

an attitude equation (polynomial, table, etc.) or from a user-programmed guid-

ance equation. This approach simulates a pePfec_ autopilot where the actual

and the commanded attitudes are identical. In 6D POST, the complete flight

control system can be simulated in substantial depth. However, this generally

requires that the user code the detailed models associated with the particular

sensor, navigation, guidance, autopilot, and control systems being simulated.

The sensor module computes information that describes the behavior of the

sensing elements of the vehicle's navigation system. Thus, the primary func-

tional responsibility of the module is that of simulating hardware character-

istics of sensors. For example, the behavior of an inertial measurement unit

(IMU) can be described by a mathematical model of the platform and the accel-

erometers. Frequently this module is used for error analysis purposes.

Sensor models called by this module are necessarily vehicle and subsystem

dependent. As a consequence, the sensor model must be designed and imple-

mented for each particular application.

There are many applications of the program that do not require a specific

simulation of the sensors. Therefore, for convenience, a "perfect" sensor

model is coded into this routine. This "perfect" sensor model sets the sensed

program variables equal to their actual values as calculated in the simulation

models.

The function of the navigation model is to estimate the state (position,

velocity, etc.) of the vehicle based on the sensor outputs. Clearly, this

module is also vehicle and subsystem dependent and must be designed and imple-

mented for each specific application. The 6D POST contains no built-in navi-

gation models. As a consequence, the estimated state is set equal to the actual

state. This is also equivalent to simulation of perfect navigation.

The guidance module takes the output of the navigation model and computes

a guidance command. Typically, the guidance command represents a desired change

in the current attitude of the vehicle. This command is computed on the basis

of meeting some specified trajectory condition, such as an inject condition or

a landing condition. The autopilot is designed to remove the errors between

the commanded values of the guidance variables and their actual (or sensed)

values. This is accomplished by deflecting engines, control surfaces, and/or

firing RCS Jets.

The current version of 6D POST contains three prelpaded guidance options:

(i) an open-loop profile steering; (2) a closed loop v-h profile ascent algo-

rithm; and (3) the constant drag Space Shuttle reentry scheme. If these methods

are inadequate, the user may implement his own guidance algorithm into this

module.



The function of the autopilot module is to generate a command that, when

implemented through the deflection equations contained in the controls module,

causes the vehicle to respond as prescribed by the guidance module. This func-

tional responsibility is depicted in Figure 17.

I) v vs h profile ] y ] i) Shuttle ascent |

2) Shuttle reentry l_S--a I 2) Shuttle reentry I

Actual or sensed

vehicle state, e.g.,
acceleration, attitude,
attitude rate

from Simulator

Controls model

6 - 6 + [M]_e

To airframe
model

Nomenc la ture:

8 - Guidance command
--c

8 - Actual or sensed values of guidance variables
--a

e - Generalize error signal

68 - Pitch, yaw, and roll iu_opilot command

- Deflection (engine or aerodynamic surfaces) angles

Figure 17.- Guidance and Control Block Diagram

The autopilot module calculates only autopilot commands based on the input

guidance commands, and does not calculate engine or control surface deflections.

The engine and control surface deflections are computed in the controls module

as a linear function of the autopilot commands. The autopikot commands 68, 85,

8@ represent changes in vehicle attitude. The mixing equations determine the

engine and control surface deflections that create the control forces and

moments.

Currently, there are two Space Shuttle autopilot models available in 6D

POST. One autopilot is for ascent and the other for reentry. The ascent auto-

pilot is somewhat standard and could be used on most ascent problems with little

or no modification. The basic inputs to this model are: attitude commands

from the guidance, inertial attitude angles, body rotational rates, transla-

tional accelerations, and preloaded engine deflection commands. The outputs

are pitch, yaw, and roll autopilot commands, which are sent to the controls

module to determine the engine deflection angles. The reentry autopilot is

Space Shuttle-oriented and is probably not applicable to other vehicle
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configurations. This model is intended to provide attitude control for Space

Shuttle beginning at an altitude of approximately 400 000 ft and ending in the

high subsonic flight regime. The control logic makes use of both aerodynamic

control surfaces torques and reaction control Jets.

The controls model converts pitch, yaw, and roll autopilot commands to

aerodynamic control surface deflection angles and/or engine gimbal angles.

conversion of the autopilot commands into deflection angles is implemented

through the matrix mixing logic given by the equation

The

= a + [M] (IS)

where _ denotes a general deflection angle with a null position of 6 , [M] the--o

mixing gainm, and _e the autopilot commands. The gains contained in the mixing
matrix, [M], and the null deflections, _ , are specified by user input.

--o

In 3D POST, there are five basic types of openloop guidance options for

controlling the attitude of the vehicle during 3 DOF trajectory simulation.

These options are as follows:

i) Body rates;

2) Aerodynamic angles;

3) Inertial aerodynamic angles;

4) Relative Euler angles;

5) Inertial Euler angles.

The body rate option is generally used to simulate strapdown systems with the

body rates being computed from user-specified polynomials. The attitude of the

vehicle is then determined by integration of the quaternary equation

i [E] m. (19)= y -

When using this option the user must specify (i) the initial attitude of the

vehicle, and (2) the coefficients and the Hollerith names of the arguments of

the polynomials used to compute the body rates.

Atmospheric and inertial velocity relative aerodynamic angles are gener-

ally used to simulate reentry and orbital maneuvers, respectively. Similarly,

relative and inertial Euler angles are typically used to simulate vehicles that

employ local horizontal or inertial reference systems. In all of these appli-

cations, the attitude angles can be computed based on five basic techniques:
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l)

2)

3)

Polynomial steering: Under this option the steering angles are com-

puted from a cubic polynomial

o(y) = ciy

i=0

(2O)

where the user selects the Coefficient c and the independent vari-

able y. The highest-order coefficient t_at is input determines the

degree of the polynomial. The argument can be selected as any in-

ternally computed variable; e.g., time, velocity, altitude, etc. The

constant term of the polynomial, c , can be either input at the be-
O

ginning of each phase or carried across as the value of the angle at

the end of the previous phase. The polynomial coefficients are gen-

erally used as the independent variables for targeting/optimization.

Table steering: Under this option the steering angles are computed

via table interpolation, which is denoted by

e(y) _ 0 Tn[f(Y)]. (21)
m

The user initially inputs the table multiplier 8m, the order of

interpolation n, and the table data [[, f([)]. The table multiplier

or the dependent table values can be used as independent variables

for targeting or optimization. The order of interpolation can either

be linear or cubic. The tables'can be monovariant, bivariant, or

trivariant functions of the table arguments.

Piecewise linear steering: Under this option the steering angles are

computed from a general piecewise linear function of the form

[

8(y) z Cl + |c2 - cI (Y - Yl) (22)

[Y2 - Yl

where cI is equal to e at the beginning of the current phase, c2 is

the desired value of 8 at a designated later event, Yl is equal to

the value of the designated event criterion at the beginning of the

current phase, Y2 is the desired value of the designated event, and

y is the current value of the designated event criterion.

This option is similar to the polynomial option except that the values
of e are specified directly rather than as 80, e, _ and $'. Clearly,

8 is linear in time if y = t; otherwise 8 is only linear in y. When

the desired values of the steering angles are used as independent

variables, the problem of cascaded steering effects is avoided and

the targeting/optimization algorithm generally converges faster. This

option also automatically computes the steering angle rates required
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4)

5)

to change the attitude to the desired value at the designated event,

which reduces the problems related to guessing accurate initial pitch

rates.

Linear feedback steering: Under this option the steering angles are

computed from the linear error-error rate feedback control law

% = Cl + KD(Fa- Fd)+ KR_a- 'd) (23)

where cI is a nominal steering angle profile, _ is the displacement

error galn, K R is the rate gain, Fa - Fd is the error in the steering

function error.

This option is, of course, the classic path control law, and enables
the user to steer to a wide variety of trajectory profiles, such as

velocity versus altitude profile, acceleration versus altitude pro-

file, etc. This option is particularly useful for reentry trajectory

shaping.

Generalized acceleration steering: Under this option the steering

angles are computed by solving a set of user-speclfied equations. The

dependent and independent variables in these equations must be selected

from the dictionary of variables already computed in POST. The only

restriction is that these equations must be explicitly a function of

some derivative .compound in the inner loop of the program.

In more precise terms, the steering variables are determined from the

iterative solution of the problem:

For each instant of time, determine the values of the steering vari-

ables, _, that satisfy the steering equations,

e(e) -- y_(e) - Zd = 0 (24)

where _ is a n-component vector of dependent variables, _d is the de-

sired value of these variables and e the error in dependent variables.

A typical application of this option is control normal acceleration

to one-g and axial acceleration to three-g by calculating the angle

of attack and throttle setting that solves the equations

AxB(_, n) - 96.6 = 0

AzB(S , _) - 32.2 = 9
(25)
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Trajectory Simulation

The trajectory simulation features consist of the integration of both the

translational and the rotational equations of motion, the event interrupt and

sequencing logic, and the numerical (in some cases analytical integration)

methods. The flexibility that the user has in selecting these three features

is the key to the utility of the POST programs.

Translational equations.- The translational equations of motion are solved

in the Earth-centered inertial coordinate system (ECI). These equations are

_i + [IB] -I [ATB + AAB]+ GI (26)

where _B is the thrust acceleration in the body frame, _AB is the aerodynamic

acceleration in the body frame, and _I is the gravitational acceleration in

the ECI frame. The external accelerations are first computed in the body frame

and then transformed to the ECI frame. The external forces that cause these

accelerations are illustrated in Figure 18. In 6D POST, the net translational

force due to the reaction control system are also included in the total non-

gravitational force acting on the vehicle.

-FAZB-Normal Force
_-axis

.,._li..........eR= _+7 R .....
ag _ ,

/ i Thrust RocKet

External Forces in Body Frame: / _' (Jet) FAXB -Axial

+ _A = E F _Weight Force
ZB-Axis

Forces in Inertial Frame:

Figure 18.- Force System in Pitch Plane
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There are a number of options for initializing the translational equations

of motion. These options are summarized in Table 8. The most frequently used

option is the planet relative spherical coordinates (_, e, h), and the local

horizontal velocity components (VR, YR' AZR)'

TABLE 8.- TRAJECTORY INITIALIZATION OPTIONS

Position Velocity Attitude Angular Veiocity

Inertial Rectangular

(Xl' YI' Zl)

Earth - Relative Polar

(r, $, 6)

Orbital Element

(a, e, i, n, _, e)

Inertial Rectangular

(Vxl' Vy I' Vzl )

Inertial Local Horizontal

(V I. 7 I, AZI )

Earth-Relatlve Local

i"°riz°ntal (VR' YR' AZR)

,Atmospheric Relative Local

iHorizontal (VA, YA' AZA)

Orbital Elements

(a, e, i, _, _, e)

Inertial Euler Angles

{$I' *I' el)

Relative Euler Angles

(_R, eR, *R)

Aerodynamic Angles

Ca, S, _)

Body Rates (_x, _y, _z)

Inertial Euler Rates

(;I';I'
Relative Eu]er Rates

Rotational equations.- In 6D POST, the rotational equations of motion are

solved in the body-centered coordinate system. These equations are

1

[i] %1

= _B + _ (27)

where

N

eng

--_B "= -_'_J FTB i X A_T i

i=i

I
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and

"dR C£

_AB = qS dp Cm - FAB x ARA B

!mycn

AR_AB 1
[- Xref - cg

= [ Yref - Ycg

- Zre f Zcg

In the rotational equations, e is a four-dimensional vector of quaternary

parameters, [E] is the quaternary matrix, _ is the inertial angular velocity

expressed in the body frame; _ is the total external moment acting in the

vehicle as a result of the thrust, the RCS, and the aerodynamic forces, and

[I] and [E] matrices are given by

IXX - IXy - IXZ"

-Ixy Iyy - Iyz

-Ixz - Iyz IZZ

-eI e2 e3-
e0 e2 -e 3

[El = ,

e0 -e I e 3

e0 eI -e 3
(28)

where the inertia matrix, I, is not necessarily assumed to be constant-valued.

The rotational equations of motion are initialized by defining both the initial

attitude angles and the initial attitude rates. There are three options for

initialization as summarized in Table 7. The equations for each of these

options are presented in reference 6.

38



q

Events and phases.- The concepts involved with the definition of the tra-

Jectory sequence of events, and the relationships between these events and

simulation phases are fundamental to the use of POST programs. As a result,

special emphasis should be placed on clearly understanding these simple yet key

concepts.

In POST terminology, an event is defined in terms of three critical ele-

ments: (i) an event number, (2) event criteria, and (3) an event criteria

value. These three elements combine to define a condition, which when it

occurs, caused the trajectory simulation to be interrupted. The ability to

interrupt the simulation based on any user-deflned condition can be used for

a variety of purposes. For example, an interrupt can be used to change vehicle

data, such as aerodynamics or propulsion; or to change simulation control data,

such as integration methods and so on.

Mathematically, the i-th event criteria defines a scalar-valued continuous

function, Yi(t), and the event numbers index and, in most cases, order these
d

event criteria. The event criteria value, Yi' is used in conjunction with the

event criteria, yi(_), to define the event interrupt equation

d

Yi (t) - Yi = 0 (29)

The time at which the i-th event occurs is then computed by iteratively solving

d

this equation for the value t = ti, where Yi(tll = Yi" This concept is illus-
trated in Figure 19.

JL

Yl ' 8Yl

Yi 6___ At,__ _

t t t

Figure 19.- Illustration of Time-to-Go Logic
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Each event (other than the first event) serves to (i) terminate the pre-

vious phase, and (2) initiate the following phase. This can be explained as

follows. Event i is said to occur at time t - ti, and the plus (+) and minus

(-) sides of the i-th event occur at the left and right limit times, t_ and t[,

respectively. The trajectory data at time ti, and in particular the last

printblock in each phase, are computed using the simulation data defined in

+ the trajectory dataphase i-l. Similarly on the plus side of the event, at ti,

are recomputed using the new data (if any) defined by input for phase i. This

subtle concept is very important in the simulations where mass is discontinuous

due to staging, or accelerations are discontinuous because of changes in pro-
pulsion and configuration characteristics.

Four types of events have been defined to provide flexibility in setting
up a given problem:

l) Primary events: These describe the main sequential events of the tra-

jectory being simulated. These events must occur, and must occur in

ascending order according to the event number. Most problems will

usually be simulated by a series of primary events;

2) Secondary events: These are events that may or may not occur during

the specified trajectory segment. Secondary events must occur in

ascending order during the interval bounded by their primary events.

The occurrence of a primary event will nullify the secondary events

associated with the previous primary event if they have not already
occurred;

3) Roving primary events: These events can occur any time after the

occurrence of all primary events with smaller event numbers. They

can be used to interrupt the trajectory on the specified criterion

regardless of the state of the trajectory or vehicle.

4) Repeating roving events: These events are the same as primary roving

events except the interrupt values are input differently. There are

two options for criteria value specifications. Option i: Input the

initial value, the increment, and the number of times the event is to

be repeated. Option 2: Input an array of event criteria values.

The cycling routine monitors as many as ten events at a time, depending on

the types of events to determine which event is to occur next.

Multiple events are monitored in the following sequence:

i) The next primary event is monitored;

2) As many as nine primary roving events are then monitored, provided

there are no secondary events. A roving primary event is added to the

list of those being monitored as soon as the primary event immediately

preceding that roving event has occurred;
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3) Next, as many as nine secondary events are monitored, provided there

are no primary roving events. (Note that caution must be exercised

when using secondary events because of their nature. Because as many

as nine secondary events are monitored at a time, any one of those

nine will occur as soon as its criterion has been met. Because they

are secondary events, the event that occurs will cancel all secondary

events with smaller event numbers.);

4) Finally, a total of nine primary roving and secondary events are moni-

tored.

Because the program can only monitor nine events (in addition to the next

primary event), the sum of the primary roving events and the secondary events

in a phase must be less than or equal to nine or a fatal error will result.

The tlme-to-go model iterative solves the event criteria equations and

determines when the events occur during the trajectory simulation. Basically,

the algorithm checks the values of the criteria being monitored at each inte-

gration step. If none of the criteria values has bracketed the desired cutoff

value, then another integration step is taken. If a criterion variable is

bracketed with the input step size, then a new stepslze is computed equal to

the predicted tlme-to-go.

The predicted tlme-to-go for each event is computed from the basic secant

equation

At* = -AYi(t) At/[AYi(t + At) - AYi(t) ]
(3O)

where Ay(t) is the difference between the actual and the desired value of the

event criterion. If more than one event is bracketed, then the minimum pre-

dicted time-to-go is used as the integration stepsize. This process is re-

peated until the criterion value is within the specified tolerance of the

desired value. Again see Figure 19.

In POST, the simulation data are input by phase, where each phase is de-

fined by two events--the event initiating the phase and the event terminating

the phase. As a result, the user is required to define via events the sequence

of trajectory phases that specify from beginning to end the problem being simu-

lated. Physically the data for each phase are located in the data deck be-

tween the Hollerith specification of the events defining the phase.

Specific event numbers, which are selected by theuser, must satisfy cer-

tain conditions based on the type of events employed for a given problem. In

general, the event numbers must be monotonic increasing, but they need not be

consecutive.

Integration methods.- There are three general purpose numerical integra-
tion methods available as automatic program options: (i) standard fourth order

Runge-Kutta, (2) an eighth order Runge-Kutta, and (3) a variable-step variable-

order predictor-corrector. The vast majority of users employ the standard
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Runge-Kutta integrator for atmospheric flight simulation. However, recent

computational experience with the predlctor-corrector method indicate that it

is substantially more efficient on certain classes of problems, particularly

those requiring orbital propagation. This method, developed by F. T. Krogh of
the Jet Propulsion Laboratories, represents the state-of-the-art in numerical

solution of systems of ordinary differential equations. It includes all of

the following facilities:

l) A core integrator for advancing the solution from one uniform step to

the next consisting of variable order Adams predictor-corrector equa-

tions requiring the storage of a difference table for only the highest

ordered derivatives;

2) A method to start integration with first-order equations and to in-

crease the order to as high a level as numerical stability permits;

3) Algorithms for changing the stepsize and updating accordingly the dif-

ference tables of the highest-order derivatives including appropriate

smoothing to prevent numerical instability;

4) Algorithms for deciding when and by how much to change the stepsize

based on the accuracy requested by the user;

5) Tests for numerical stability of the predictor-corrector order and

stepsize tentatively chosen in the context of the current differential

equation set;

6) Algorithms for the automatic selection of the core integrator to fit

the characteristics of the set of differential equations at hand;

7) An interpolation algorithm for obtaining dependent variable values to

the user-specified accuracy at values of the independent variable

different from normal integration steps.

In addition to these general purpose numerical methods, 3D POST contains

two special integration methods for propagating orbital trajectories: (i)

Laplace's Method, and (2) Encke's Method.

Laplace's method is an iterative technique for propagating the position

and velocity (in planet-centered coordinates) of a nonthrusting vehicle in

vacuum during flight over a spherical planet. The technique is based on the

analytical solution of the two-body equations, and yields the inertial state

at time t + At as a function of the state at time t.

The equations used in Laplace's method are:

_1(t + _t) - f_i(t) + gXi(t)

Xi(t + _t) - _i(t) + _Xi(t) (31)
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The coefficients f, g, f, and g are computedanalytically from the change in
eccentric anomaly during the time period At. The change in eccentric anomaly
is calculated by solving a special version of Kepler's equation via the Newton-
Raphsonalgorithm.

The Encke method used in 3D POSTis modified from the usual Encke tech-
nique in that it rectifies the reference conic at every integration step and
does not use the standard Q-serles expansion in calculating the gravitational
increment.

The Encke method should be used for orbital problems where small perturb-
ing accelerations, such as the oblateness of the planet, atmospheric drag, or
solar electric propulsion, must be included in the simulation. Numerical re-
sults indicate that, for problems involving small perturbations from Keplerlan
motion, Encke's method is approximately four times faster than Cowell methods,
which integrate the total acceleration.

The Encke method determines the total motion by summing the motion due to

the two-body equations and the motion due to the perturbations to the two-body

equations. _he position and velocity in the inertial planet-centered system

at time t + At is given by

rz(t + at) = r_2(t+ At) + ar(t + at)

V__l(t+ at) ="V2(t + At) + AV(t + at)
(32)

where _2' _2 denotes the Keplerlan motion computed by Laplace's equations;

that is,

r2(t + at) "= fr2(t) + gV2(t)

v2(t + t) = __2(t)+ _12(t)

and (at, AV) denotes the numerical solution of the differential equations

a_ = av

ar(t) = av(t) = o,

where + is the two-body'accelerationat ÷
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Special Purpose Options

In 3D POST, there are numerous special purpose options that aid the user

in modeling special situations that frequently arise in trajectory analysis.

These options efficiently simulate these special situations by using specific

equations that are derived on the basis of the assumptions employed. For ex-

ample, many orbital maneuvers can be adequately modeled as a discontinuity in

velocity. This special case does not require numerical solutions and is

modeled using the classic rocket equation. This and other key special purpose

options are summarized in Table 9.

Auxiliary Calculations

In addition to computing the basic variables, POST also computes numerous

auxiliary variables that are related to (i) conic parameters, (2) range calcu-

lations, (3) tracking data, (4) analytic impact calculations, (5) velocity

losses, and (6) velocity margins. Table i0 summarizes the auxiliary variables

that can be optionally computed. All these auxiliary variables can be used as

independent variables in the targeting and optimization, as event criteria in

the simulation, or as output variables of general interest. Special print

blocks can be requested for conic calculations, tracking station data, and

velocity loss information. These print blocks are arranged in a convenient

format and contain all of the auxiliary variables associated with the particu-

lar type of auxiliary output requested. In some cases, these complete special

purpose print blocks are not required. If so, the particular output variable

desired can be added to the normal trajectory print block by following the

sample procedures as outlined in references 1 and 7.

Targeting and Optimization

The targeting and optimization capability in POST provides the trajectory

analyst with a set of numerical tools that enable him to solve a broad spectrum

of trajectory design problems. This capability is achieved by first providing

the user with the option to specify a variety of problem types, such as full

rang targeting, unconstrained optimization, and constrained optimization in-

cluding equality and inequality constraints. Second, the trajectory analyst

is provided the capability to define the details of the problem formulation

using simple and direct input procedures. These procedures enable him to select

the optimization variable, the constraints, and independent control variables

by specifying only their Hollerith names, their event numbers, the constraint

values and tolerances, and an initial guess for the control variables. Finally,

the trajectory analyst is provided a library of numerical algorithms that can

be used to iteratively solve any standard discrete parameter trajectory problem

formulation. These algorithms include the popular accelerated gradient projec-

tion method for nonlinear programming formulations, Newton-Raphson for full

rank targeting formulations, and the conjugate gradient or the Davidon methods

for unconstrained optimization or constrained optimization employing penalty

functions.

r °
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TABLE9.- SPECIALPURPOSEOPTIONS

INSTA_TA*NEOUS VELOCITY ADDITION - At the bsEinnln8 of each event an in-

stantaneous v•ioclty can be add•d. The direction of th• Impulse is

alon I the thrust vector, which uaually coincides with the loEitudinal
axis of the vehi¢l•. The magnltude of the veloclty addition can be input

directly or calculated from she amount of propellant used. The direction

of the impulse can be controlled via the a_tltude of the vehicle and/or

the ensina slmbal angles.

DESCRIPTION BASIC EQUATIONS

i) Calculate _V given the gross weight, WG, and the aloun_ of propellant
¢onemued, W .

pc

i p'°Iv I 0- pcll

STATIC TRIM - The static trim option is uetd to calculat• the •hEine

simbel angles or th• flap deflection angles required to balance the

pitch and yaw mome_ta caused by thcuat and aerodynamic forces. The

|_atic mo_ent equation, in pitch and yaw,

_a " _P ÷ Tmp + T.2p

- ._ + TMIT+ T_ZT

is nonlinear and an itetativs algorithm Is used to •valuate the re-

quired solutions at every i_tant of ti_e.

2) Calculate Wpc given WG end _V,

3) Cslculat• ths Tnsrtisl i_pul•e vector _iven _V_ the vehicle ettitude_

snd tha sqine $imbai sn$1es°

_vt+ - v_- + av [ZS]'l(2)

a¢| x|p Xr8 f

Asp
'ref ATP Y CA _ Yref

||p

HOLDDOW_ FOR VE_TZCAL TAJCF.OPF - This option is u•ad to simulate vertical

(rocket type) takeoff. W_en using this option, the rela_iv• position

and v•loc£ty re_a£n$ constant and the in|trial po_ition ¢hsn_e• by _he

rotation of the Earth. The inertial velocity maEnitude rm•in• con*cant

_hlle its direction changes. This model simulates physical constraints

that hold _he rocket on the launch pad until the rocket im released.

HOLDDO_N FOR HORIZO,_TAL TAKEOFF - This option i• used Co slmul•te

horizontal _aircra_t _ype) takeoff. When usln_ thls option the

v•hicle •ccelerates in the local horixontal plane according to

the Tortes d_scrlbed by the user Input. The v•rtlcal component

of acceleration _s internally computed co produce the proper hor-
Izontal motion.

YB

Mmaent8 in Pitch Me.ants in Yaw

The victor equation used to co_pute the accelerations that simulate• the

affect• o_ the physical holddovn forces ts

-_z " _ _ V-z

The accelerations u_ed to simulate horigontal takeoff are:

and

_o. [Io] -_t,

l'l l
2 ) / rl

_i - [I°l"_ -_o

ORBITAL PROPAGATION MODEL - Th• integration step, At, is gen-

erally specified in terms of an increment In tim•. However, _hls

option enables the user to specify the Integration step in terms
of an input increment tn true anomaly. This option ts useful in

orblt•l problems _hare the geometry £s easily expressed as a func-

tlon of true anomaly.

The following equations are then used to c•iculate _t as s
function of _.

_2 " _1 + _

r 2 - a I - • cos E2

_E - E2 - El

At - AE - sin _E ÷-_-- sin _S:

In these equation•, subscripts 1 and 2 denote current and future values,

tespectlvely.

REPRODUC_[LITY OF TH_

OPJG_'AL PAGE I3 POO[_
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TABLE 10.- SUI_Y OF AUXILIARY CALCULATIONS

Position and Velocity

Geocentric Radius

Obl_te Atltude

Inertia Velocity Magnitude

Planet Relative Velocity

Atmosphere Relative Velocity

Inertial Flight Path Angle

Planet Relative Flight Path Angle

Atmospheric Relative Flight Path Angle

lnertial Velocity in Geographic Frame

Relative Velocity in Geographic Frame

Atmospheric Velocity in Geographic Frame
Inertial Azimuth

Relative Azimuth

Geocentric Latitude

Geodetic Latitude

Inertial Longitude

Relative Longitude

Sensed Acceleration in Body Frame

Sensed Acceleration in ECI Frame

Conic Variables (Elliptlc and Hyperbollc_

Orbital Energy

Apogee Radius and Altitude

Perigee Radius and Altitude

SemlmaJor Axis

Eccentricity

Inclination

Period

Argument of Perigee

True Anomaly

Longitude of Ascending Node

Angular Momentum

Perigee Latitude

Perigee Longitude

Argument of the Vehicle

Time to Perigee Passage

Time Since Perigee Passage

Eccentric Anomaly

Mean Anomaly

Perigee Velocity

Apogee Velocity

Velocity Required to Circularize

Circular Velocity

Longitude of the Vernal Equinox

Velocity Margin

Range Calculations

Dot Product Range

Crossrange Reference

Inertial Reference

Earth Relative Reference

Auxilisry Attitude Calculations

Aerodynamic Angles

Inertial Euler Angles

Relative Euler Angles

Inertial Aerodynamic Angles

Body Pates

Inertial Euler Angle Rates

Relative Euler Angle Rates

Tracking Data

Slant Range (Vector & Magnitude)

Elevation Angle

Azimuth Angle

Cone Angle

Clock Angle

Space Losses

Analytic Impact Calculations

Geodetic Latitude of Impact

Relative Longitude of Impact

Altitude of Impact

Position Vector at Impact

Velocity Vector at Impact

Velocity Losses

Drag Loss (Inertial & Relative)

Thrust Vector Loss (Inertial & Relative)

Atmospheric Pressure Loss (Inertial & Relative

Gravity Loss (Inertial & Relative)

Ideal Velocity

Sun-Shadow Calculations

Position and Velocity in Vernal Equinox System

Greenwich Hour Angle

Cone and Clock Angles of Sun Vector

Shadow Function

Mu!_tiple Vehicles

Conic Variables

Position and Velocity Variables

Accelerations

Aerodynamic, & Aeroheatin_

Aerodynamic Coefficients

Aerodynamic Forces & Moments

Dynamic Preasure

Total Angle of Attack

Dynamic Pressure & Angle of Attack

Math Number

Reynolds Number

Heat Rate

Total Heat

Atmospheric Denslgy Temperature, Pressure

and Speed of Sound

Propulsion Calculations

Vacuum Thrust

Net Thrust

Total Thrust & Accelerations

Flowrate (Total)

Partial Flowrate

Propellant Consumed

Propellant Remaining

Throttle Setting

Gimbal Angles
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All the targeting and optimization procedures used in POST are completely

numerical. This means that all the function evaluations and derivatives used

by the various algorithms, are computed numerically from only the trajectory

simulation results. Thus, th_ user needs only to define a problem formulation

that is consistent with the vehicle simulation, and the program automatically

does the rest. This numerical approach, although somewhat slower in execu-

tion speed than some analytical methods, offers the advantages of "hands off"

flexibility and a significantly lower program maintenance overhead.

Problem formulation.- Discrete parameter methods provide the basis of the

targeting and optimization formulation and solution algorithms employed in

POST. The use of the discrete parameter approach means that trajectory control

variables are defined by a finite set of parameters, called independent vari-

ables, and given values for these variables the trajectory can be uniquely

computed. A good example of this approach is the representation of the ve-

hlcle's pitch attitude by a piecewise linear function. In this parameterization,

the nodes, el, and the pitchrates, el, are the independent variables that can

be varied to steer the vehicle. A near optimal pitch program can be generated

using these parameters to optimize a selected performance criterion, say pay-

load, subject to both mission and vehicle constraints. In recent years, this

discrete parameter approach to trajectory optimization has replaced the more

complex calculus of variation techniques. This is because the discrete param-

eter methods are simpler to implement, understand, and use, and, as a result,

are substantially more reliable. The reason for this is that discrete param-

eter methods are based on ordinary vector calculus, which is easier for most

practicing trajectory analysts to understand than the complex procedures re-

quired in most variational trajectory programs.

Using discrete parameter concepts, a vast diversity of trajectory optimiza-

tion and targeting problems can be formulated that have a common mathematical

structure. First as described above, there is a vector u of control parameters

which must be selected to define the trajectory

x(t) - ¢ x,u,t:x0 (33)

where the state variable x is typically composed of the components of the ve-

hicle's position, velocity, and mass (or weight) and ¢['] denotes the numerical

integration of the equations of motion. Second, for each trajectory problem

there is a vector of constraints called dependent variables _(_), together

with a vector of constraint limit values, b. These constraints are calculated

at a particular user-specified event. Thus, the dependent variables are com-

puted as functions of the independent variables, u, from the general relation-

ship

e(e) = Y(u,_(u))

where X(u) is the composite vector of state, conditions at all events where con-

straints are defined. Thus,
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dependent variable events occur. The number of constraints, n, can be less

than, equal to, or greater than the number of control parameters, m. In con-

strained optimization, n < m, excess degrees of freedom exist in the formula-

tion enabling some performance criteria to be optimized and the constraints

to be satisfied. In full rank targeting, n - m, no excess degrees of freedom

exist, and as a result it is possible to satisfy only the constraints. The

final case, n > m, generally occurs only during the solution process when an

excess of inequality constraints become active on some intermediate iteration.

Finally, for each trajectory, there is an objective function F(_), which is

calculated in the same manner as the constraints. The object of the problem

is then to determine the control parameters, _, which are feasible in that all

constraint parameters fall within their acceptable ranges and optimal in the

sense that the objective is minimized (or maximized).

The general discrete parameter trajectory optimization problem is then

the well known nonlinear programming problem. Symbolically, it is expressed

as:

minimize:

subject to:

where:

F(u)

Z(u) a b

u is the mxl column matrix of control parameters,

F is the scalar objective function of the vector of control

parameters,

y is the nxl column matrix of dependent parameters,

b is the nxl column matrix of constraint parameter limits,

a is the nxl column matrix of constraint parameter relations

(each element is the appropriate relation of the triple

i, -, or >_).

Virtually all trajectory targeting and optimization problems can be cast in

this structure. Specific examples of nonlinear programming formulations for

ascent, reentry, and orbital maneuvers are presented in the Sample Case Section.

Al_orlthm macrolo_Ic.- POST uses an accelerated projected gradient algo-

rithm (PGA) as the basic targetlng/optimlzatlon technique. PGA is a combination

of Rosen's projection method for nonlinear programming and Davidon's variable

metric method for unconstrained optimization. The program also contains backup

single-penalty function methods that use steepest descent, conjugate gradients,

and/or the Davidon method.

. , .
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The accelerated projected gradient algorithm is based on five intuitive

working principles as follows:

One-Dimensional Search.- Using cost and constraint function gradient in-

formation, a direction of search is established. Then a one-dimensional min-

imization is performed in this direction on an appropriate function. In this

manner, a difficult multidimensional optimization problem is replaced by a

sequence of simple one dimensional minimizations.

Linearized Constraint Correction.- Assume that the current vector of con-

trol parameters is outside the feasible region. This correction scheme approxi-

mates the contours of constant constraints as uniformly spaced parallel hyper-

planes based on their respective gradients and values for the current control

parameter vector. Using this approximation the smallest correction to the con-

trol parameters that would satisfy all active constraints is computed; or that

failing, minimize the sum of the squares of their violations. One-dimensional

minimization of the sum of squares of the constraint errors is then performed

along the direction of this correction to obtain the next iterate of control

parameters.

Gradient Projection.- Once a feasible vector of control parameters is ob-

tained, the negative gradient is resolved into two components; one parallel to

and one normal to the hyperplane tangent to the boundary to the feasible region

at the current point. A minimization is then performed along the direction of

the parallel negative gradient component to obtain the next control parameter

iterate. The function to be minimized in this one dimensional search is the

fourth basic principle of the algorithm.

Estimated Net Cost Function.- Because the constraints are nonlinear, the

tangent plane only coincides with the boundary of the feasible region at the

point of tangency; hence, a search along the component of the gradient lying in

the tangent plane will probably terminate at a point external to the feasible

region. Therefore, the real object of the search should not merely be to find

the minimum value of the cost function in the search direction. Rather it

should be to find a unique point along the search ray that yields on correction

back to the feasible region a new feasible point with the smallest value of the

cost function. This point is approximately determined by minimizing along the

parallel component of the gradient the cost function less an estimate of the

deterioration of the cost function occasioned by correcting back to the feasible

region. The estimate is based on linearized constralnt-correctlon formulae.

Gradient Acceleration.- It is widely known that the convergence of uncon-

strained gradient algorithms can be drastically improved by using gradient in-

formation from several iterations to estimate the inverse of the Hessian matrix

of a quadratic form approximating the cost function. In fact for a cost func-

tion of m control parameters, it can be shown that a Hessian-inverse estimating

accelerated gradient scheme converges in m iterations and a conventional

steepest descent algorithm converges only asymptotically. To similarly accel-

erate the projected gradient algorithm for constrained problems, it is assumed

that the cost function is a quadratic in m-q variables over the constraint

boundary. Here q is the number of active constraints defining the boundary.
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Thus convergence should be accelerated to m-q iterations after the set of
active constraints that determines the feasible region stabilizes.

For the widely knownspecial cases of the general nonlinear programming
problem, the accelerated projected gradient algorithm degenerates to the appro-
priate special purpose state-of-the-art programmingprocedures. For example,
if no constraints are present, the algorlthm degenerates to the Davldon-de-
flected gradient procedure. This procedure has long been considered the method
of choice for solving unconstrained parameter minimization problems. At the
other extreme, if the problem has more active constraints than controls, the
algorithm reduces to the Gauss' least squares procedure for minimizing con-
straint violation. This technique is generally conceded to be the best avail-
able for solving over-determlned systems of equations. Similarly, if the
number of constraints is precisely equal to the numberof controls, the algo-
rithm becomesthe widely knownNewton-Raphsonprocedure for solving systems of
nonlinear equations. This schemeis certainly the simplest of the efficient
methods for solving fully determined systems of equations.

A summaryof macrologlc for the gradient projection algorithm is pre-
sented in Figure 20. As indicated, if the initial guess violates any con-
straints, then the algorithm attempts to satisfy all the constraints by taking
constraint restoration steps. Once a feasible control parameter vector has been
found, the algorithm generates a sequence of iteration pairs. Each pair con-
sists of an optimization step followed by a constraint step. If the user's
initial control-parameter estimate is not feasible, however, a steadily im-
proving sequence of constralnt-correctlon steps is undertaken until a feasible
solution is found. Furthermore, the subsequent optimization step is omitted
after any constraint-correction step which fails to yield a feasible control-
parameter vector.

Finally the algorithm has two stopping conditions. First the search is
stopped if both the change in the cost function and the length of the change
in the control-parameter vector between two successive optimization steps fall
below their respective input tolerances. Symbolically

and

_ io iI

v v+2
where _ and _ are the control-parameter vectors resulting from the optimiza-

tion steps in two consecutive iteration pairs. Second, the procedure is termi-

nated if the maximum permissible number of iterations specified by the user is
exceeded.

The decomposition approach is based on partitioning of the total mission

to an ordered sequence of self-contained mission segments such as ascent, re-

entry, and so on. The constraints in each mission segment are then used to
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Figure 20.- Concluded
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define an associated full rank targeting subproblem. Sequential solution of the

subproblems ensures that the majority of the mission constraints are satisfied

on each master level iteration. A master problem, which represents the complete

problem, is then formulated in terms of the individual subproblem performance

functionals, constraints, and control variables. Included in the master prob-

lem are intersegment constraints that cannot be satisfied at the subproblem

level. (Total AV budgets or propellant limits are 9xamples of master-level

constraints that couple subproblems.) The master problem is optimized using a

two-level procedure with the master-level algorithm optimally coordinating

solution of the subproblems. The dual-level algorithm implemented employs the

accelerated gradlent-projection algorithm to solve the nonlinear program de-

fined by the master problem, and the Newton-Raphson algorithm to solve the sets

of nonlinear equations defined by the subproblems.

A unique consequence of using a two-level algorithm in conjunction with

this decomposition approach is that intermediate target values, which are held

fixed at the subproblem level, can be used as independent variables to be op-

tlmized as the master level.

PROGRAM USE

This section provides the user with the basic procedures required to use

the program. At this point, it is assumed that the user has studied the basic

program capabilities and has concluded that the program can be used to solve

his problem. The question to be answered next is what does the user have to

"do to execute the program.

r

Required Preliminary Analysis

The user must first define the problem as a sequence of events. This can

best be done by constructing a worksheet containing the event descriptions in

columnar form. The user should then assign an integer to each event beginning

with the first event, say i0, and incrementing by an arbitrary integer, say

i0, for subsequent events. There must be at least two events for each prob-

lem, but there is no upper limit to the number of events.

The user must specify the condition at which each event is to occur. This

should be done by writing the name of the condition and the desired value beside

each event. The first event begins at the initial conditions specified by

input and does not require this information.

The user should next identify the vehicle characteristics and specific pro-

gram options required at each event. Any required tabular data such as aero-

dynamic coefficients, etc, should be included. This identification can be the

users own terminology.
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The user can now translate the worksheet to program input with a minimum
of effort by proceeding according to the discussions that follow. A typical
schedule associated with this translation is given in Figure 21.

POSTInput Phases

An execution of the program consists of (I) processing the input data for
all phases, (2) checking for input errors, (3) initializing the equations of
motion, (4) propagating the trajectory until interrupted by the occurrence of
the user-specified condition for the next event, (5) reinitializing the equa-
tions of motion with new user inputs for the event causing the interruption,
(6) repeating steps 4 and 5 until the user-specified final event is reached,
(7) terminating the problem, and (8) processing subsequent cases, if any. A
phase is defined as the time increment from the occurrence of an event to the
occurrence of the next event. As a result, the namesphase and event are
used interchangeably in the following discussions.

The first step is to construct a skeleton deck of namelists in the proper
sequence. Namelist $SEARCHis required at the beginning of each problem.
This is followed by one namelist $GENDATfor each event defined on the work-
sheet. If a given phase requires table input, one namelist $TBLMLTmust
follow the $GENDATnamelist for that phase. The $TBLMLTnamelist is followed,
in turn, by one namelist STABfor each table to be input. This basic NAMELIST
sequence, which must be followed, is illustrated in Figure 22. This completes
the skeleton deck setup. The procedure now is to translate the data described
in the worksheet to program input variables.

The first step in supply the inputs is to translate the event conditions
to program inputs. Three namelist $GENDATinputs are required to accomplish
this task for each event. First, the input variable EVENTis set equal to the
event number listed on the worksheet (e.g., EVENT= 1.0). Secondthe Hollerith
input variable CRITRis required for all events except the first and is set
equal to the program symbol for the desired condition (e.g., CRITR= 6HALTIT_,

for altitude above the oblate planet). Third, the input variable VALUE is re-

quired for all events except the first and is set equal to the desired value

at which the event is to occur (e.g., VALUE = i0 000, for a value of i0 000 ft

or meters depending on whether English or metric units were selected in namelist

$SEARCH by setting the variable I@FLAG to the desired value). On completion

of these inputs, the user has only to specify the vehicle characteristics, the

steering options and the desired program options before the job is ready to be

executed. A summary of key POST input rules is shown in Figure 23.
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Targeting & Optimization Inputs

Basic Input Sequence for

the Four POST NAMELISTS

$SEARCH

General Data for ist Phase

Planet Options and Parameters

Vehicle Options and Parameters

Scale Factors for All Tables in

Ist Phase

All Table Data for Ist Phase

Atmosphere (Not Required) ""-J_

Aerodynamic Coefficients (Usually Required) --/Propulsion (Thrust, Exit Area, Plowrate)

Mass Properties (c.g., c.p., Inertias)

Required Data

Event Number and Type

Event Criteria

Event'Criteria Value

Optional Data

Any Data that

Changes in Phase 2

from What Were

Input (or Prestored)

in Phase I, i.e.

Program Control Flags

Table Scale Factors

New Tables, etc

S
$GENDAT

$TBLMLT

S
STAB

STAB

d

• $GENDAT

$GENDAT
d

ist Phase

Usually Several Tables

Are Required

2nd Phase

Figure 22.-POST Input Structure
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Summary of Key POST

Input Rules Typical POST Input Sequence
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.
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Every POST data deck must have
SEARCH as its is• NAMELIST. If

targeting or optimization is not

required then $SEARCH is empty %

\Every POST data deck must have at

least two events, i.e., a beginning

event and an ending event• The

beginning event is based on TIME =

XXX and does not, therefore, require

criteria• The final event must be

specified in the same manner as any
other event with the addition of the

end-problem card
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Namelist Features

All program inputs are made using the namelist input feature.

The namelist input format allows card columns 2 through 80 to be used for

input. Each variable input must be followed by a comma before the next vari-

able is input. The variables are input as follows:

NAMEI z VALUE1, NAME2 m VALUE2, ETC.

Variables may be input one to a card or several to a card, depending on user
preference.

Subscripted variables may be input as an array or as individual elements.

The first element of the array is assumed if no subscript is present on a sub-

scripted input variable. The following example shows various methods of input
that are all equivalent:

EVENT = 1.0, 1.0,

or

EVENT(l) = 1.0, EVENT(2) = 1.0,

or

EVENT = 1.0, EVENT(2) = 1.0.

In general, decimal points should not be used with integer type variables.

In any case, if no decimal point is input for a variable, the decimal is as-

sumed to be after the last digit for that variable. As a result, it is best to

omit decimal points for all variables unless required.

The namelist used in POST is an extension of the standard FORTRAN namellst

and has the following added capabilities.

i) Special List Options.- The initial dollar ($) for each namelist input

may be preceded in column 1 by any of three print control characters

as follows: Blank will produce a card image print only for cards on

which errors were detected; P will produce a print of each card en-

countered on the input file; and L will print each card encountered

on the input file, but will also insert the card count after the card
image.

2) Embedded Comment Cards.- C or slash in column i of any card will cause

the card to be treated as a comment. Furthermore, when a slash is en-

countered in any other column, the slash and the remainder of the card

to the right of the slash will be treated as a comment.
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3) Special Hollerith Strings.- Hollerith strings may be input as

OHXSTRINGX where STRING is the Hollerith character string and X is

any character not contained in STRING. For example, to input the

Hollerith characters ABCDEFIIIX in variable W, W = OH*ABCDEFIIIX*,

would be acceptable. The symbol O for this option is the number zero.

4) Repeated Specification.- The following notation may be used to repeat

a parameter value in any number of successive array locations: M*XXX,

where XXX can be either REAL, INTEGER, HOLLERITH, LOGICAL, or OCTAL

input parameter values and where M is the number of successive loca-

tions in any array where XXX is to be stored. For example, X = i0"i.,

would set X(1) through X(lO) = i.

5) Improved Error Diagnostics.- The extended namelist prints a diagnostic

below any card in error with an arrow pointing to the erroneous column

on the card.

General Data Input (GENDAT)

The general data inputs are the constant valued variables and arrays that

can be input in any phase. These exclude table data and table multipliers that

are described later. All general data inputs are made via namelist ($GENDAT).

The general data inputs include the following categories:

i) Aerodynamic Inputs

2) Aeroheatlng Calculation Inputs

3) Atmosphere Model/Winds Inputs

4) Event Criterla/Phase Definition Inputs

5) Gravitational Inputs

6) Methods of Guidance (Steering) Inputs

7) Initial Position and Velocity Inputs

8) Numerical Integration Method Inputs

9) Program Control (NPC) Inputs

i0) Propulsion/Throttling Inputs

ii) Vehicle/Propellant Weight'Inputs

The selection of program options is accomplished by the user assigning par-

ticular values to the program control array, NPC(I). A summary of the program

options controlled by this array is given in Table Ii. The elements of this

array are used internally to select the appropriate calculations for the
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TABLE ii.- SUMMARY OF THE PROGRAM CONTROL FLAGS

Input

Symbol

tmc(t)

_c (2)

_c (3)

_c (4)

_c (5)

_c (6)

NPC(7)

_C (S)

m_c(9)

tmc(io)

NPC(It)

_C(12)

tmC(13)

NPC(14)

NPC(I5)

NPC(16)

NPC(17)

_C(IB)

NPC(19)

NFC (20)

m)c(2l)

NFC (24)

_C(25)

_C (26)

NPC (27)

_C(2g)

NPC(29)

NPC (32)

Units

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Stored

Value

0

0

0

0

0

0

0

1

Definition

Conic Calculation Flag

Integration Method Flag

Velocity Vector Initialization Flag

Position Vector Initialization Flag

Atmosphere Model Flag

Atmospheric Winds Flag

Acceleration Limit Option Flag

Aerodynamic Coefficient Type Flag

Propulsion Type Flag

Static Trlm Optlon Flag

Functional Inequality Constraints Option

Flag

Crossrange and Downrange Option Flag

Propellant Jettison Option Flag

Hold-down Option Flag

Aeroheatlng Rate Option Flag

Gravity Model Option Flag

Weight Jettison Option Flag, Based FMASST

Trajectory Termination Flag

Flag to Control Printing of Input Con-

ditions for Each Phase

Flag to Specify the Type of Special In-

tegration Step Size (DT) Prediction to

be_Used

Flag to Indicate the Method by which Flow-

rate is to be Computed for Rocket Engines

Throttling Parameter Input Option Flag

Flag that Controls the Velocity _rgin

Calculations

General Integration Variable Flag

Velocity Loss Calculation Flag

Special Aeroheatlng Ca_culatlons Flag

Activation Flag for the Option to In-

tegrate the Flowrate of Selected Engines

Tracking Station Option Flag

Analytical Vacuum Impact Point Calculation

Flag

Weight Calculation Option Flag

A Flag to Activate the Vernal Equinox, Sun-

Shadow, and Sun Angle Option

The Parachute Drag Option Flag
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options selected. Thus, although the program contains numerous options, any

user who does not intend to use all program capabilities is not penalized in

terms of run time. The inputs corresponding to the options selected via the

NPC array must be specified as input in namelist GENDAT unless the stored

values are to be used, in which case the variables need not be input. An ex-

ample of a typical GENDAT setup is given in Figure 24.

The selection of the guidance and steering options is accomplished by the

user assigning particular values to the guidance control array, IGUID(1). The

general structure of this array is depicted in Figure 25, and Table 12 con-

tains a summary of these guidance and steering flags. Admittedly, the hier-

archical properties of the IGUID array make_ 4t more difficult to learn than

the NPC array. The reason for this additional complexity is that guidance

flags are interrelated. This means that having selected a value for one IGUID

implies that values must also be assigned to certain other specific IGUID ele-

ments. Over the years, other approaches have been evaluated, and this decision

tree approach seems to be the most efficient way to provide flexibility with

the minimum number of program control flags.

Tabular Data Input (TAB and TBLMLT)

The tabular data inputs are the tables and table multipliers that can be

input in each phase.

Each table has its own numeric multiplier. All numeric table multipliers

are input in namelist TBLMLT. The input symbol for a numeric multiplier is

always formed by replacing the T at the end of the table name by an M which

denotes multiplier. For example, the multiplier for table PREST is PRESM. All

numeric multipliers are preset to 1.0 in the program unless overriden by input.

In addition to the numeric table multipliers, there are some special pur-

pose multipliers for certain aerodynamic tables that are specified by Hollerith
names. These are called MNEMONIC multipliers and can be any internally com-

puted variable that is in the output variable list. These multipliers are used

to multiply table lookup values of the corresponding aerodynamic coefficient

tables. All MNEMONIC multipliers are input in namelist TBLMLT. The list of

tables that have this feature and the corresponding MNEMONIC multipliers are

as follows:

Table _emontc multiplier

name tnput symbol

CADPT CADPNH

CADYT CADYNH

CAT CANM

CDDPT CDDPNM

CDDYT {CDDYNH

CDT ICDNM

CLDPT CLDPNM

CLT CLNM

C_T C_tANM

C_PT C.v_IP N M

CNAT CN_H

L_DPT DNCPNM

CW_T CWBNH

CWDYT C_YNM

CYBT CYBNH

CYDYT CYDYNM

Stored Probable value If constant valued or

value monovariant tables are input

DFLP DFLP

DFLY DFLY

ONE AI.PHA OR ALPTOT

DFLP DFLP

DFLY DFLY

ONE ALPHA

DFLP DFLP

ONE ALPHA

ONE ALPHA

DFLP DFLP

ONE ALPHA

DFLP DFLP

ONE BETA

DFLY DFLY

ONE BETA

DFLY DFLY
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TABLE 12 .- SUMMARY OF THE GUIDANCE AND STEERING FLAGS

Input

Symbol

IGUID (i)

IGUID (2)

IGUID (3)

IGUID (4)

IGUID (5)

IGUID(6)

IGUID(7)

IGUID (8)

IGUID (9)

IGUID (i0)

IGUID (ll)

IGUID (12)

IGU ID (i3)

IGUID(14)

IGUID (15)

Units

Integer

Integer

Integer

In=eger

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Stored

Value

0

0

0

0

1

0

0

0

0

0

2

1

0

0

Definition

Type of Guidance (Steering)

Desired, i.e., Body Rates,

Aerodynamic Angles, or Euler

Angles

Attitude Channel Selector.

Flag to Specify the Steering Option

when Commanding All Channels Simultaneous-

ly Using Aerodynamic Angle of Attack,

Sideslip, and Bank

Euler Engle Steering (Inertial or Relative)

Aerodynamic Angle Rate/Inertial Body Rate

Combinations Flag

Separate Channel Options for Angle of
Attack

Separate Channel Options for Side Slip

Angle

Separate Channel Option for Bank Angle

Separate Channel Option for Yaw Angle

Separate Channel Option for Pitch Angle

Separate Channel Option for Roll Angle

Inertial Body Rate Initialization Flag

Yaw Reference Option Flag

General Open or Closed Loop Guidance Option

General Open Loop Guidance Override Option
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Some examples of how these MNEMONIC table multipliers are used are as

follows:

i) Assume that the normal force coefficient slope is given per degree

ALPHA. In this case, CNAT would be input as the coefficient slope

with the CNANM input as

CNANM = 5HALPHA,

the CNAT table lookup value would then be multiplied by the value of

ALPHA to obtain the value of the normal force coefficient.

2) Assume that the normal force coefficient is given as a bivariant func-

tion of ALPHA and MACH. In this case, the MNEMONIC multiplier CNANM

would be input as

CNANM = 3HONE,

the normal force coefficient would then be the actual table lookup

value.

Each table is input in namelist TAB as the input array called TABLE. As

a result, each table being input requires a separate input of namelist TAB.

Termination of the table input data for a given phase is indicated by the pres-

ence of ENDPHS=I in the last input of namelist TAB for that phase.

The table inputs for POST are generalized to include:

i) A preset allowable size for each table. The total size of all tables

is limited only by the core storage allocated for tables. Both of

these values can be changed by a simple program modification to satisfy

user requirements.

2) Generalized argument specification. The argument to be used for each

table is specified by input and can be any computer output variable.

3) Constant valued, monovariant, bivariant, or trivariant table types.

4) Linear or cubic interpolation capability.

An example of typical $TBLMLT and STAB input is given in Figure 26.

Targeting and Optimization Input (SEARCH)

The targeting and optimization inputs are made via namelist $SEARCH.

POST has the capability of performing targeting with or without inequality

constraints, unconstrained optimization, and Constrained 9equality) optimiza-

tion. The generality of POST enables the user to select the independent and

dependent variables for the problem from a llst of over 400 program variables.
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For an optimization problem, the optimization variable must be specified

by input. The variables OPTVAR, OPTPH, and OPT are used for this purpose.

For targeting (constrained) problems, the dependent variables must be speci-

fied by input. The variables NDEPV, DEPVR, DEPPH, IDEPVR, DEPVAL, and DEPTL

are used for this purpose. Both sets of inputs are needed for a constrained

optimization problem. In any case, the search mode (SRCHM), the number of

iterations (MAXITR), and the independent variables (NINDV, INDVR, INDPH, and

U) must be specified by input.

In addition to the above required namelist $SEARCH inputs, there are sev-

eral others that can be used to further increase the rate of convergence on

difficult optimization problems. For the most part, these inputs are related

to problem scaling (MODEW and WOPT), search direction stepsize control (PCTCC),

and convergence tolerances (CONEPS(1)).

Any type of event (primary, secondary, or roving) can be used in targeting/

optimization. However, the user must ensure that the events selected will

always occur. The association of an event number with the definitions of the

targeting and optimization variables enables such things as intermediate tar-

geting and optimization to be performed with the program. This correspondence

also enables the program to remember the state variables at the beginning of

the phases where the independent variables are introduced. Thus, when integra-

ting the perturbed trajectories and the trial steps, only that segment of the

trajectory affected by the control parameters being changed is integrated,

thereby reducing the time required to generate the sensitivity matrix.

The program has the capability to either minimize or maximize a specified

variable with or without satisfying specified constraints.

The following inputs are required to define the optimization variable.

All variables associated with the optimization process are input in namelist

$SEARCH.

i) The Hollerith name of the optimization variable. Input as the variable

OPTVAR. Any of the output variables can be used as an optimization

variable, provided it is sensitive to at least one of the independent

variables.

2) Type of optimization desired - OPT. If no optimization is desired,

input OPT as 0. If the variable defined by OPTVAR is to be minimized,

input OPT equals -I. If OPTVAR is to be maximized, input OPT equals

+i.

3) The phase number (EVENT) associated with the optimization variable -
OPTPH. The variable specified by OPTVAR will be optimized at the piu_

side of the event specified by OPTPH.

4) The weighting for the optimization variable, WOPT. WOPT should be in-

put as approximately i over the anticipated value of OPTVAR.
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5) The decimal percentage change to be madein the control variables for
the initial trial step on each iteration - PCTCC.

The dependent variables can be either equality constraints or inequality

constraints based on user input. Any calculated output or independent vari-

able can be used as a dependent variable and as many as 25 can be specified.

To constrain a control (independent) variable, declare it to be a dependent

variable and set IDEPVR non-zero. For example, suppose ALPHA is to be a con-

trol variable in phase N, but must not exceed 45 degrees. Set INDRV(1) equals

5HALPHA, INDPH(1) equals N, DEPVR(J) equals 5HALPHA, DEPPH(J) equals N,

DEPVAL(J) equals 45., and IDEPVR(J) equals i.

The inequality constraints may be either functional or single-valued.

All inputs associated with the dependent variables are input in namelist

$SEARCH. The required variables are as follows:

I) The Hollerith name of each dependent variable. Input in the array

DEPVR(1), I-i, NDEPV.

2) The phase number (EVENT) associated with each dependent variable -

DEPPH(1), I-i, NDEPV. The variable specified by DEPVR(1) will be

satisfied at the plus side of the event specified by DEPPH(1). If

DEPPH(1) is greater than FESN or not input, the last phase is assumed.

3) The desired value of each dependent variable - DEPVAL(1), I=I, NDEPV.

4) The desired accuracy tolerance in which DEPVR(1) is considered to be

satisfied - DEPTL(1), I=i, NDEPV.

5) The number of dependent variables to be used - NDEPV. The first NDEPV

variables in the array DEPVR(1) will be used as dependent variables.

6) The type of constraint for each DEPVR(1) - IDEPVR(1), I=i, NDEPV.

The following values for IDEPVR(1) can be specified -

IDEPVR(1) - 0, if DEPVR(1) is to an equality constraint

= i, if DEPVR(1) is to be an inequality constraint with

an upper bound

- -i, if DEPVR(1) is to an inequality constraint with a
lower bound.

The search/optimization option allows the user to specify as many as 25

control variables for each problem. The initial value of each control variable

and the phase in which it occurs are also specified by input. If a control

variable is a guidance (steering) variable, such as pitch rate or angle, the

appropriate guidance option (IGUID) must be requested in namelist GENDAT for

the corresponding phase.
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The value of a given control variable as calculated by the targeting/

optimization algorithm will be carried over from one phase to the next until

overrlden by user input or by a new control variable. For example, if the

linear term in the pitch angle polynomial (Hollerith input symbol PITPC2) is

a control variable in phase 1.0, and is not a control variable in phase 2.0,

the calculated value of the pitch rate in phase 1.0 will continue into phase

2.0 unless the coefficient PITPC(2) is input in namellst GENDAT for phase 2.0.

A control variable may be constrained by also defining it to be a depend-

ent variable with an upper or lower bound.

The control parameters can be selected from any variables in the follow-

ing categories :

l) Variables in namelist GENDAT such as initial vehicle position and

velocity, initial vehicle orientation, vehicle attitude polynomial

coefficients, etc. For example, suppose the initial velocity (VELI)

is to be used as a control parameter. The inputs would then be as

follows:

INDVR(1) - 4HVELI,

INDPH(1) - i,

U(l) - AA.,

2) Constant valued table multipliers in namelist TBLMLT. For example,

suppose the table multiplier for the thrust table (TVCIM) is to be

used as a control parameter. The inputs would then be as follows -

INDVR(1) = 5HTVCIM,

INDPH(1) = XX.,

U(l) - AA.,

3) User-speclfied Y arguments from user-specified tables in namelist TAB.

the tables and Y values to be used are specified in the variables

TABL and TABLY which are input in namelist SEARCH. This feature is

limited to monovarlant tables. For example, suppose the first and

fourth Y arguments of the monovariant PITT table are to be used as

control parameters. The inputs would then be as follows -

TABL(1) = 4HPITT, 4HPITT,

TABLY(1) = 1,4,

INDVR(1) = 6HTABLI, 6HTABL2,

INDPH(1) - XX., YY.,

U(1) -- AA., BB.,
69



Each control parameter is uniquely specified by the following variables,
which are input in namelist SEARCH,and are as follows:

I) The Hollerith nameof each control variable. This is input as the
array INDVR(I), I=l, NINDV.

2) The initial value of each control variable. Input as the array U(1),

I=i, NINDV. If SRCHM is non-zero, U(1) overrides any value input for

that variable in namelist GENDAT for phase INDPH(1).

3) The phase number (EVENT) at which each INDVR is initiated. Input as

the array INDPH(1), I=I, NINDV. The variable whose Hollerith name

appears in INDVR(1) is set equal to U(1) at the beginning of the phase

specified by INDPH(1).

4) The perturbation for each control variable to be used to generate the

sensitivities. Input as the array PERT(l), I=I, NINDV. The sensi-

tivity DE(J)/DU(1) is determined by finite differencing U(1) by PERT(I)

and calculating the change in each E(J), For variables whose nominal

value is greater than i0.0, the value of PERT(l) should be input

roughly six orders of magnitude less than the nominal value of the

variable. The stored values for PERT(l) are I.OE-4.

5) The number of control (independent) variables to be used. Input as

the variable NINDV. The first NINDV variables in the array INDVR(1)

will be used as control variables. The number of control variables

must be greater than or equal to the number of target variables plus

the optimization variable unless some of the target variables are in-

equality constraints. An example of a tFplcal setup for namellst

$SEARCH is presented in Figure 27.
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SAMPLE CASES

This section presents six example problems that exemplify 3 DOF ascent,

entry and orbital optimization problems; as well as, a 6 DOF simulation of

the Space Shuttle entry. Each sample caae was selected to illustrate a key

feature of the program. All examples were taken from actual trajectory prob-

lems and are not especially constructed sample cases. In fact, the data decks

shown are the actual working data decks with the removal of redundant data cards

being the only cosmetic clean-up. Hopefully, by studying these example cases,

a new user will be able to correlate the details contained in references 2 and

4. In addition, the examples provide general guidelines that can be followed

when setting up similar problems.

Example i. Space Shuttle Ascent Optimization

An important ascent trajectory optimization problem during the conceptual

phases of the Space Shuttle program was that of determining the maximum payload

capability of various configuration concepts. One such Space Shuttle configura-

tion is shown in Figure 28. The four key components of this configuration are

the orbiter, two solid rocket boosters (SRBs), and the external tank (ET).

This multibody nonsymmetrical configuration created special simulation require-

ments that motivated many of the features contained in POST. For example to

accurately predict the performance capability of an unsymmetrical configura-

tion, such as Space Shuttle, it is important to include the thrust vectoring

losses encountered as the engines gimbal to balance the aerodynamic moments

caused by the configurations nonsymmetrlcal shape. This fact led to the devel-

opment of the static trim option employed in this sample case.

Trajectory Profile and Problem Formulation.- There are a number of ways to

formulate the problem of maximizing payload for a given configuration. Each

approach is based on (i) what is known about the configuration, and (2) what is

known about the basic trajectory to be flown. In this first example, it is

assumed that the user knows the dry weight and the propellant weight of each of

the four major components of the vehicle. Assuming that all the propellant is

consumed during the flight, which is ensured by terminating the simulation on
the event criteria

W = 0, (35)
prop

enables the payload weight to be computed from the equation

WpL D = WBO - Wdry,
(36)

Where WBO is the total burnout weight (at the final event) and Wdry is the

known weight of the remaining vehicle components. Because Wdry is constant for

a given configuration, maximizing WBO is equivalent to maximizing WpL D. Thus,
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in this example the optimization variable was selected to be WBO , which is

computed as the weight of the vehicle at the instant that the weight of
propellant is zero.

As in any trajectory problem, there are a variety of ways in which to simu-

late this mission, and Figure 28 illustrates the approach taken in this example.

As indicated, the simulation starts with a 15 second vertical rise, followed by

a sequence of constant pitch rate steering segments. The static trim option

is used during all early flight phases, and a three-g acceleration limit is

enforced after 60 seconds of flight. Event 8.0 specifies burnout of the SRBs,
_hich are jettisoned seven seconds later at Event 9. Notice also that in

Event 9.0 new configuration data for propulsion and aerodynamics are input.

These data represent the orbiter plus ET combination that are used for the re-

mainder of the trajectory simulation. As mentioned earlier, the final event

criteria is the weight of propellant. Because the last initialization of

weight of propellant was in Event 9.0, the program variable W represents
prop

the amount of propellant in the orbiter plus ET combination at any time. Thus,
the final condition

W -0,
prop

limits the amount of propellant that can be consumed in all flight phases after
the occurrence of Event 9.0.

In this example, the mission requirements are the delivery of the payload

to the perigee of a 50 x i00 n ml parking orbit. These requirement_ are math-

ematically equivalent to the three terminal equality constraints

hf = 303 805.0 ft

Vl f z 25 853.0 fps

Ylf = 0".

where the subscript, f, denotes final burnout conditions. Extensive computa-

tional experience indicates that the (h, VI, YI) constraints are easier to

_tisfy than are their orbital counterparts (hp, ha, 8). The reason for this

is probably related to the nonlinearities involved, with (h, VL, YI) appear-ing more linear in the independent variables.

Finally, the control parameters selected are eight inertial Eulerian pitch-

rates, and the initial gross weight of the vehicle at llft-off. Six of these

pitchrates are used to steer the vehicle during the SRB boost phases, and two

are used during the exoatmospherlc phases. The motivation for using these

particular control variables is computational experience, which shows that pitch

angle steering is an efficient technique for optimizing ascent trajectories.

The particular "breaktlmes" in the pitch history were selected after a few

single pass simulations. The initial gross weight of the vehicle, WG, is
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employed as an independent variable to maximize the payload because in this
set-up there is a direct one-to-one correspondence between an increment in
WG and an increment in WpLD because all vehicle dry weights and propellant
weights are held constant during the optimization.

The previous discussion can be summarizedby stating the precise mathe-
matical formulation of the problem: Determine the control parameters

= (WG, el, e2, _3, 64, es, e6, eT, es}, (37)

that maximize: WBO

Subject to: hf - 303 805 ft = 0

Vlf ,- 25 853 fps = 0

71f - 0 ° = 0

The input data deck for this sample case is presented in Figure 29. It is

important to understand the correspondence between the mathematical formulation

presented and the specific input data contained in $SEARCH in Figure 29. Table

13 is a summary of the key targeting and optimization variables as a function of

the iteration number.

TABLE 13.- ITERATION SUMMARY FOR SPACE SHUTTLE SAMPLE CASE

Iteration

0

1

2

3

4

5

6

7

Op tlmlzation

Variable,

WBO _ lb

308 000

305 151

304 882

308 320

308 369

309 328

310 278

310 300

Cons traint

Error, _ P2

3.98 x 107

4.48 x 103

6.37 x i0 -I

7.02 x i01

4.17 x I0 -3

2.21 x i0 -I

6.09 x i0 -I

5.32 x 10 -5

Optimization

Indicator, % CTHA

89.903

89.964

89.976

89.999
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P$ SE AR CH

C PROBLEM - MAXIMIZE WEIGHT
C SUBJECT TO - ALTITO - 303805 = 0
C VELI - 25853 = O
C GAmlA! - O = 0
C _ _SII=Ir'S__ llal_4nllc_ _ _ _I"I_ _ _ _ _tu__ __ _ _

SRCHM = 6t 1PRO =-1, MAXITR = 10•
OPT = 1• OPTVAR = &HWEIGHT• OPTPH = 12o0•
WOPT z I.OE-6• CONEPS = B9.,OB•
hrINDV = 9• PERT = l.O•
INDVR = 6HIdGTSG • 6HPITPCZ, 6HP]TPCZ• 6HPITPCZ• hHPZTPC2•
INDPH = 1• 2• 3t 4• 5t
U =4031000.0 • -1.8, -. 5 • -. 2 t -.3 •
INDVR(6| = 6HPZTPCZt bHPZTPCZt 6HPITPCZt 6HPITPCZt
ZNDPH(6) = 6• Tt 9, 10t
U(6) = -.2S• --3t -.15•
NDE PV = 3,
DEPVR " bttALTITO• 6HVELI • 6HGAMMAI•
DEPVAL = 303805.0 t 25853.0• O.O•
DEPTL : 100.0 t .1• .001•
S

PSGENDAT EVENT - 1 •
TITLE

-.05,

:50H SAMPLE PROBLEM FOP ASCENT W/ DROP TANK ORBITER
C

NPC ( 2 ) •
IGUID¢I) :
MAXTIH
DT
TIME z
GDLAT
NENG
GXP
SREF z
S

1, 4• 2t NPC(8) = 2, It NPC(161 : 1• NPCfZI) : 1•
It IGUID(4) : 1•

]000.0• ALTMAX = 2000000.0, FESN • 12•
5.0• PINC = 20.0•
0.0•

28.5t LONG = 90.Ot

It WPROPI = 439.0t
218.42• GYP = 33.33t

4500.00t LREF

PS TB LM LT
$

PSTAB TABLE
S

PSTAB TABLE
$

PSTAB TABLE
-20.,
0.0• 1.456 •
1.5• 10816• 2.0, 1.301• 3.t

D 5.•

0.0• .263• .S• 0338• 07•
1.5t °563• 2.0• .4BO• 3.•

De•

O.Ot .180• .St .IB • .7•

= 279.4• AZL
: 2249000.0t ISPV
= 0.• GZP
: 218.833•

TVCIM • l-t

: 6HTVCIT ,O,54T?OOO.O•

= 6HAEIT t0,232.5•

= 6HCDT •2•6HMACH •6HALPHA ,12•5•1,1,1,1,1,1,1,1,

.S• 1.585• .Tt 1.598, .8, 1.242, l.t 3.157, 1.2•2.996t
.SSOt 5., .482, T.• .382t 10., .396,

• 110, .Or .302• l.t .690• 1.2, .671,
°383• 5., .256• 7., .212• 10.• .210t

.200, -8t .251t |-t .495, 1.2, .50?,

Figure 29.- Input Data Deck for Space Shuttle Ascent Sample
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l.St ._85, 2.Or .456, )-t .391, 5., .272t 7., .231, 10., .231,
50,

O.Oe .263, .St .338, .T, .llO, .Be .302, l.e .690, 1.2, .671,
1.5, .563, 2.0, .480, 3., .383, 5., .256, 7., .212, 10., .210,

20. t
O.Oe 1.456, .5t 1.585, .7, 1.598, .Be 1.2/*?, ]., -_.157, 1.2,2.996,
1.5, 1.816, 2.0, 1.301, 3., .850, 5., .482, 7., .382, 10., .396,
$

PSTAB TABLE = 6HCLT ,2t6HIqACH
-20.,
0.0, -1.010, .5,-1.025t .Tt-.99,
1.5• -*B95t 2.0, -.78B, 3.,-.635,

0.,
0.0, .015, .5, .04 , .7, .01 ,
1.5, -.02 , 2.0, -.108, 3.,-.14_,

5.,

0.0, .545, .5, .75, .7• .$3,
1.5• .43 • 2. • .242, 3.• .11,

20. ,
0.0, 2.135, .5, 2.24 , .7, 2.09•
1.5, 1.78 , 2. , 1.292, 3., .875,
$

PSTAB TABLE = 6HCMAT ,I,6HI_ACN
0.0, .019, .?• .0218• .9, .0302,
1.8,-.0395• 2.,-.OA 19, 3. •-.0396,
S

PSTAB TABLE

0.0,137.86,
1.5•1_.43t
7.• 109.42,
ENOPH$ =
S

PSGENDAT EVENT =
IGUID(4) = O,
ENOPHS = 1•
$

PSGENOAT EVENT =
ENDPHS = 1•
t

P$GENDAT EVENT =
ENDPH$ : ltm
S

PSGENDAT EVENT =
NPC (T) = 1•
ASIqAX = 3.0,
ENDPH5 = 1 t
S

P$GENDAT EVENT =
ENOPHS - 1 t
$

P$GENOAT EVENT =

: 6HXREFT ,1,6HNACH
.7,140.05, .9•136.??,
1.8•141.58, 2.,138.3•

10. ,91.91,
1,

2, CRITR

3• CRITR

4, CRITR

5• CRITR

6• CRITR

7, CRITR

,6HALPHA •12•4•1,1,1•1,1•1,1•1,

.8,-.815• 1.,-1.08 , 1.2,--1.11,
5.• -.480, 7., -.43 , 10., -.43•

.8,-.04S, 1.• .OB • 1.2, .038,
5.• -.IS, ?*t -.15 • 10.,-.15 ,

.8t .365• 1.•
5.t .02S • 7.•

.69 , 1.2• .638•

.00 , 10., .00 ,

.8tl.595 • 1., 2.52 , 1.2,2.438,
5°• .55 , 7., .45 • 10., .45 •

,12•1,1,1•
1.• .023•
5.•-.0187•

1.2 t--.011• 1.5•-.032,
T.,-.0082, 10., 0.0•

,12,1•1,1,
1.,147.71,
).•1)1.74•

1.2•145.52•
5.,l18.B3t

= 6HTINE , VALUE = 15.0,

: 6HTIME , VALUE : 25.0•

: 6HTIME • VALUE = 40.0•

= 6HTINE t VALUE = 60.0,

= 6HTZME , VALUE = 120.0,

= &HTIME • VALUE : 150.0•

Figure 29.- Continued
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DT " 10.0,
ENDPHS " It
S

PSGENDAT EVENT

NPCIT) : O,
NPC (9) : Ot O•
WEICON z 0.0•
ENOPH S : 1 •
S

PSGENDAT EVENT
9T " 20.0 •
P][NC s 50.0•
NPC (71 " It
NPC |9) "_ 1•
WJETT
WPR OP I
;SPY
GXP
GYP s
GZP t
SREF "

LREF =
S

PSTBLHLT
S

PSTAB TABLE
S

PSTAB TABLE
S

PSTAB TABLE
-20.,

= 665000.0 t
= 809000.0 •
z 459.0•
= 142.0•

0.0•
25.0 •

_,BAO.O •
135.0•

8• CRITR

9, CRITR

6HWPROP • VALUE = 0.0•

= 6HTDURP • VALUE z 7-t

= 6HTVCIT tOt1431000.Ot

= 6HAE 1T tO•lS4.BA•

= bHCDT •2•6HIqACH ,6HALPHA ,12•7•l•1•1•ltl•l•ltl,

0•.024, .2,.024, .6•.026• .8t.O28t .9•,035, 1o3•.093, 1.51.122t
Z,.116, 2.48t.1, 3•.092, 3°9•.082, _0,.03,
-- 4.t
0,.024• .2,.024• .6•.026, °8**0?8, .9,.035, 1.3•.093• 1.5•.122,
2,.116t 2.48•.1, 3•.092t 3.9,.082• 40•.03•

0o•
0t.026, °2•o026, .6•°026• .8t.024, °9,.036, |°3•°092, 1.5•.218t
2,.106, 2.48t.091• 3•.08Z• 3.9,.074• 40,°022•

0,.042, .2,.062, .6,.04, °8,.0A2, .9t.O?6t 1.3•.124, 1.5,.142,
2,.124e ?.48t.O98w 3t.O88t 3.9eoOTgt 40t.033•

I00•
Or.O?6• .2,.076, .6t.OBt .8,.1, .9,.13t 1.:),.194t 1.5,.192t
"2t.165• 2.48,.127• 3,°114• 3.9,.095t I.O,.OST,

20.,
Ot.36t .2t.36, .6t.362• .8t.44, .9•.t, lt 1.3,.39t 1.5•.36 t 2,.32,
2.48,.2&2, 3,.224, 3.9,.216• 40,.238•

30.,
0t.36, .2•.36, .6•.36, .8,°44• .9,.41• 1.3,.39, 1.5•.36•.2•.32•
2.48•.44t 3•.&|8• 3.9•*&t 4_D•.3,

Figure 29.- Continued
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S
PSTAB TABLE = 6HCLT 92,6HIqACH 96HALPHA 912_7929291919191919]*

--20 • t
09--.079 .29--.08_ .6,-.129 .Bt-.]L2, .99-.12, 2_3_-.12, 1.5,-.22,
29--ol-39 ?.489--.149 39-.]L2, 3.99-*1-9 AOt--14t

4*9

09--*079 o29--*089 *69--01_9 oB9--.]_t 009--0129 ]._9-0129 1.-_t-01_9

2,-.139 2o489-.149 3,-.129 309,-.1, 409-0149
009

09008• 029.089 .b•.O8• .89.069 099.069 Z.39.079 1.59.049 290.0,
_.AB•--.O_• _•--00_9 3099--.04t 60900_9

Sos
0•.29• .2•°29• .69.29t 08•028• 09•.28• 1.39.39 1.59.249 2,.179
2.48,.12, 39.09t 3.99.08, 40t.219

1009
O,.S• 029.69 .690499 .89.489 .99.529 1.39.5;_t 1.59.419 2•033•
2.48•.?5• :3•.2• 3.99.1S• _09.4_

20. •
09.949 .;)90949 .69.92•..Bt.9• .99.949 1.39.899 1059.759 2•°639
2.489.519 3•043• 3.99.399 409.76•

30. •
09.949 .2•.94, .69.929 .89.99 .99.949 1.39.899 1.59.759 29.689
2.4B**679 3•.65• 3.99.629 409.7b•
$

PSTAB TABLE = 6HCMAT ,090.09
$

PSTAB TABLE = 6HXCGT tlt61_EZCON•5•I•I,I•
0987.6_• 202250•93.93• 404500999.6B• 606"rSO•lO4.Gk• 8090009104.379
S

PSTAB TABLE " 6HYCGT tO•O.O•
$

PSTAB TABLE m 6HZCGT ,I•6HWEICONtS•I•I•I•
0931.339 2022S09:31.59 404500931.759 606750932.429 809000•:33.83•
ENDPHS : 1 •
$

PSGENOAT EVENT
ENOPHS : It
$

P$GENDAT EVENT
NPC ( 1 ) : 2 •
ENOPHS "_ 19
$

PSGENDAT EVENT m
ENOPHS = I t
ENDPRB = 1 •
ENOJOB = 19
$

10• CRITI_ = 6)JTDURP • VALUE = 100.09

11• CRITR = 6NTDURP • VALUE = 1_0.0,

129 CRITR = 6HWPROP 9 VALUE m O*t

Figure 29.- Concluded
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In this table, the function P2 is a measure of the weighted error in the

constraints, and is calculated from the equation

= lo_ + " - + L _)_i-.J "

Clearly, in the general case P2 is the square of the norm of the weighted

error vector e__,and is computed as

P2 " e__e__

(38)

The condition P2 ! i is sufficient to ensure that all constraints are satis-

fied to within their specified tolerances.

The other important optimization output variable is the angle, CTHA.

Mathematically, CTHA is defined as the angle between the unconstrained per-

formance gradient vector and the projection of this vector to the plane that is

a tangent constraint manifold. CTHA converges to 90" at the constrained op-

timum because the performance gradient becomes orthogonal to the constraint

manifold at that point. This angle is computed from the equation

CzHA= cos-I ii P II (39)

where _ is the unconstrained performance gradient and P is the projection matrix

to the constraint tangent plane.

Typical output for this type of problem would be (i) the trajectorz block

printout for the nominal trajectory, (2) the sequence of iteration summaries,

(3) the trajectory block printout of the final optimal trajectory, and (4) plots

of all user-requested variables. These types of output are illustrated in

Figure 30. The plot capability is not contained in POST but rather is gener-

ated from a profile type written by POST. The frequency and amount of trajec-

tory printout can also be controlled by the user. In this example, the only

printout is at the minus and plus sides of each event. These data give a brief

but useful summary of the trajectory time histories.

Example 2. Single-Stage-to-Orbit (SSTO) Entry

This SSTO entry case, illustrated in Figure 31, features several advanced

program options, that are particularly useful in entry trajectory analysis. For

example, the trajectory control scheme used is significantly more complex than

the simple open loop technique demonstrated in Example i. In addition, several

of the more advanced program simulation options are employed. Options include

roving events, multiple time channels, feedback steering, monitor variables,

print block changes, special variables, and multiple runs.
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SAMPLE PROBL[I_ FCI_ ASCEN! W/ DRCP tAkK ORLII|K

IP/PIJT DN|T$ • ENGL|._Hw &UTPUT U_JT$ • £NGL|SH

INITIAL CONO |T ICJAS

T|lAt • 0, T[HEO • _o

GCLAI" = _oB_OOOUUOE*&J GOLAT " 2°6_Iu_00(+01 LON& - 2.7V4000_O_*O2 LONG!

GCk&D * 2.O_2S7_101eO? ALT|TO • G*

V£LR * O. GJUqlAAk • 0. AZVLLR " O.
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THE LAUNCI_ PL3 INERTIAL {L) FRAME IS DEFINEO bY

LAIL • 2.8_OGOOOOt+O| LC_L • 2.TgA&OOO(JEt02 AtE • 9.OOOOOOOOE*GI
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_._uuuuuuE tU6
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|GU|0 { 6| • O |@U|_ | 91 * _ IGU|D ||01 • u |GUI0 <||! • O /_U|0 1|2| = 2
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_PA UP • 2,2_9OOOOGE*Ob MJETT • O*

VALUE

• O.
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FT _F b. F AZb -t,bqb_?uObt*03 A_b -9.1_9_27_||-U3 EN_ANG |°_33_71@|'U_
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_N_OOI _. @ALLOT _.6_LEE_QO
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AS?! -).O|22OI22|*U| abZ| |._&|O_t*O|
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Figure 30.- Typical POST Output
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(119.6 _t)----_ 30.69m
Payload (100.7 ft)

.-
76.6m (251.3 ft) m

1.0 - Start Entry @ 1219.2 km (400 000 ft)

0.0 Start Pullout @ 990.6 km (325 000 ft) + 0 s

30.0 End Rollout after 10 s

1 _ (3_ ooo ft) ' _-._35_oInterrupt_ ._c- o.1 _pe_

1219.2 km _
(400 000 ft) Acceleratlon _ "_

--_ __.=_60.0 Terminate act Control 14/s after Initiation
Control

_a__70.O Start Final Rollout

on_.__._75.0 Change Bank Angle Rate95.0 Roving Event

Altitude 332.2 km--_ _76.0 Drive Bank Angle to Zero

(109 000 ft) to Start --'"-.g._80.O Roving Event on Math No. to Change

New Aeroheating 65.0 Roinvine_ Angle of Attack to 20 deg
Event'on/_'--..__/96.0 Roving Event on AltitudeCalculatlon

Flight Azimuth _ to Terminate Aeroheatlng
_Calculatione
_---i00.0 End Trajectory

000 ft) '''_Earth 152 km (50 @ 152 km (50 000 ft)

Figure 31.- Trajectory Profile and Sequence of Events for SSTO Entry

Sample Case
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The simulation is initiated and entry interface ( 400 000 ft), and termin-

ated when the vehicle has descended to 50 000 ft. The trajectory control scheme

attempts to minimize total heat by capitalizing on the ability of the TPS mate-

rial to withstand a high heat rate for a short period of time. The basic op-

timization strategy is to attain the prescribed maximum heat rate as early as

possible on entry into the atmosphere. This limit is then followed until the

acceleration constraint is encountered. The bank-angle linear-feedback steer-

ing algorithm is then switched from controlling heat rate to controlling the

acceleration profile. The acceleration limit is then followed until it is

necessary to deviate from the limit to achieve the specified crossrange. This

trajectory scheme is presented in Figure 31. Parametric results show that this

simple approach provides the minimum total heat for this configuration by mini-

mizing the entry flight time, subject to the heating rate, the acceleration,

and the crossrange constraints.

One of the more difficult problems encountered in this example is that of

determining the proper bank angle schedule to enable the vehicle to "pull out"

of its initial entry plunge at the maximum heat rate that can be tolerated by

the TPS. This "pull-out" maneuver is further constrained because it is im-

portant to minimize the heat rate "overshoot" when the linear feedback steering

option is exercised. This is accomplished by using the POST iteration feature

to solve the pull-out problem, which can be defined as:

determine the desired bank angle, _d' that satisfies the heat rate equation

Q(*d) " Qmax' (40)

when

Q m 0.

In the trajectory set-up, presented in Figure 31, the vehicle is initially

banked ninety degrees (_ = 90") and _d is the desired bank angle when the

vehicle reaches the 325 000 ft altitude. As such, _d really represents the

amount of "un-bank" required to achieve the preper pull-out conditions.

After the proper pull-out conditions are satisfied, the vehicle descends

using closed-loop steering to maintain heat rate and limit maximum deceleration.

This leads to the second problem that must be solved to satisfy the cross-

range requirements. If the vehicle remains on the maximum deceleration boundary

too long, it will be unable to attain the required crossrange. If it departs

too soon, it will be able to satisfy the crossrange, but it will increase the

flight time, and, hence, the total heat. As a result, the following open loop

optimization problem is formulated at the "bottom" of the trajectory: deter-

mine the acceleration boundary departure time, TD, and the bank angle schedule

characterized by the parameters {_I _2 _3 _4}

that maximize: TD (i.e., stay on g-boundary as long as possible)
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subject to: CR ii00 n ml = 0

at the trajectory termination condition h _ 50 000 ft.

Notice that in the formulation, which maximizes the time on the g-constralnt,
the optimization variable, TD, is also one of the independent variables.
This is not uncommon,but is, nevertheless, confusing to new users, who are not
familiar with optimization theory.

As mentioned earlier, the complete SSTOentry problem is solved using the
multiple run feature of POST. The first run is a one-dimensional iteration
problem that determines the bank angle schedule required to achieve the proper
pull-out conditions. The second run, initialized using the converged condi-
tions from Run i, simulates closed loop steering, first, along the heat rate
boundary, and, second, along the acceleration boundary. Whenthe time of de-
parture is reached, the program uses the projected gradient algorithm to maxi-
mize TD, subject to the crossrange constraint. Notice that only two runs and

one pass at the computer are required to efficiently solve this problem. This

is because the external iteration (Run i) and optimization (Run 2) occur at the

"top" and "bottom" of the trajectory. The majority of the flight time is

simulated only once using closed-loop steering to satisfy both environmental

constraints.

The data deck for this example is listed in Figure 32.
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P$SEARCH
SRCHM = 4 •
MAXITR -- 3•
NINOV m 1,
INDVR - 5HDBANK t
INDPH = 20. •
U = -71.1220821•
PERT = .5,
NDEPV • 1,
DEPVR = 6HHEATRT v
OEPPH _ AO.•
OEPTL • .lt
OEPVAL " 100. •
S

P$GENDAT EVENT| 11 " 1.0•
TITLE = 50HMAX HEAT RATE •100.
TITLEI? ) = 60HEAST MISSION
FESN • lO0.t
_AXTIM m 4000°•
ALTMIN • -110000. •
ALTMAX " 450000. •
NPC(|) = 39
NPC (2) = 1,
OT • 20.,
DTIMR (l) = 1°9
DTIMR (2 } = 1.•
DTIMR (3) • 1.,
NPC (3) • ;)t
VELI = 25600..•
GAMMAI = --.8t
AZVELI m 0.•
AZVELI = 90°•
NPC (&|
ALTITO
GCLAT
LONG
J2
MU
OMEGA
RE
RP
NPC (5|
LREF = 200° •
RN =1 °0 •
NPC (9) • O•
SREF • 12120.•
WGTSG : 523076.•
NPC (10)'0 •
NPC (Ill " O,
MONX(1) = bHOYNP

= 2t
= 400000. •
• Oa9

Z' 0o9

= 1.082TE-_•
= 1.4076469E+169
= "70292115E-5 •

= 20925722ot
•" 20855560°•
= 2• O, O, 2•

SEARCH DATA FOR FIRST PROBLEM

• 6HASMG •6HtdEATRT •

GAMMAI • --0.80• PERIGEE • 0

Figure 32.- Input Data Deck for SSTO Sample Entry
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MONY(1) z 6HTZHE t6HTIJqE
NPC(|2) = O•
ZGUID w O• Ot 3t
ALPHA = 30. •
DALPHA : 30.t
BNKANG :: -9C. •
DBANK : -90.•
NSPEC : 1•
SPECI = 400000.•
SPECI(6) = lO0.v
SPECI(T) = 310.•
NPC (| 5) = 1.•
PINC = 50or
PRNT(91) --

tbHTIME •

6HTIMRFI•6HXMAX1 •6HXMAX2 •6HXMAX3 •bHTLPWT •6HUBAR •
6HTIMRF2•6HYXHXI e6HYXMX2 •6HYXMX3 •6HTIMRF3• 6HSPECVI•
bHVELAD •6HW •

S
P$TBLMLT

S
P$TAB TABLE = 6HCDT •ltbHIqACH • 9•1t1•1•

4.09 o4309 4o5t .420t 5009 •&lOt 5o5• o4009 6059 .3909
8•Or .383, loot 0375t 30or 03_)t lOOot .340t

S
PSTAB TABLE = 6HCLT •I•6HMACH • 8•1•191t

4•Or .622• 4.'/• .600• 5.5• o585t 6.5• .570t 7.5t °560•
8.5, .550, 10.• .540, 30.• .520,

S
P$TA8 TABLE == 6HALPHATtl•bHMACH •6•1,1•1•

O.•lO.Ot 1.0•10.0• 2.0•20.0• 4.0•20.• 5.0,30.0• 100.•30.0•

ENOPHS =1•
S

PSGENDAT EVENT(l) = lO.t
CRITR = bHALTITO•
NPC(1) = O•
TIMRF(I) = 0.,
TIMRF(2) = 0.•
DT : 10.•

ENOPH$ = 1•
S

PSGENOAT EVENT(l) = 20°•
CRITR = 6HTIMRFI•
VALUE = 0.0•
TIMRF(1) = 0.,
NDL = 1•
DBANK z -./1.1220821•
DT " 2.•
ENDPH$ = 1•
S

PSGENOAT EVENT(I) : 30°•
CRITR : 6HTZMRFlt
VALUE = 10.,

VALUE : 325000°,

Figure 32.- Continued
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TZNRF(1) I O*t
IGUZD " Ot Ot Ot
HDL = 1 •
ENDPHS I 1•
$

PSGENDAT EVENT - 35. •
CRITR = 6HVELAD •

VALUE " -. 1 t
ENDPH$ " 1 •
$

PSGENDAT EVENT = A,O.• 1°•
CRITR = 6HSPECVI•
VALUE = 5.85•
NDL = 1 •
DT z 2.•
TIMRF(]I = 0.•
ZGUID (1) = O•
IGUID(?) = 1,
IGUID(6) = O•
IGUID(TI = O,
IGUID(8) ,: 4•
KDG(3) '= ÷20.•
KRG(3 ) = 300.•
ZOGF (3) = 1,
DGF ( 3 ) = 6HHE ATR T •
TXMRF(3) - 0.•
$

P$TBLMLT
$

P$TAB TABLE = 6HGNOH3Ttl•6HVELR t "/91t1•I•
0.9 -TO.t 12000*• -'ro_t 13500.• -20.•

15500°• -20., 18500., --45., 24000., -'70. t 30000.• -TO.•
S

PSTAB TABLE = 6HGNHX3TeO•Oo•
$

P$TAB TABLE = 6HGNHN3TtOt-180°•
S

P$TAB TABLE = 6HGDF3T •09100°•
ENDPH$ = 1 •
$

PSGENOAT EVENT = 50or 0.•
CR ][TR = 6HASHG •
VALUE = ].°6•

PIDL " 1,
TZHRF(I) m 0*•
TZMRF (3) a= 0°•
KOG(3) = "200.9
KRG(3) = 3000*9
]DGF (3) _ It
DGF (3) m 6HASMG
$

Figure 32.- Continued
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o

P$'I"B LMLT
$

P$TAB TABLE : 6HGNOM3TtltbHVELR • .Tt191o19
O. • "-'TO. • 12000.• -70._, 13500.• -?0.•

1SSO0.t-20or 18SO0.t .-45.t 24000.t -?O..t 30000o• -?0.•

S
PSTAB TABLE = 6HGNHX3TtO•O.•

t
PSTAB TAELE = 6HGNMN3TtO•-180°9

$
P$TAB TABLE = 6HGDF3T tlt6HTZHRFlt3tltl•lt

0.• 1.4t 30.• 1°4• 10.E10• 1o4t
ENDPHS = 19
$

P$GENDAT EVENT(|) = 60.e
CRITR = 6HTIMRF3 •
VALUE = 141o,
IGUID = 0,0,3•
DALPHA = 30.•
BNKANG = -70.•
OBANK = -26..T182816•
TINRF(3) = 0.•
MOL = I t
DT = 10o•
ENOPHS = 1 •
S

PSGENOAT EVENT = bS°tl°t
VALUE = 90.0•
CR_TR = 6HAZVELR9
CRITR = 1HU•
VALUE = 0.,
IGUID(1)" = 0.,
IGU%C(2 ! = 1.•
I_JIO(6 } = 2.o
IGUID(.T ) = 0.•
IGUID(8) = 1.,
BNKPC (1) = 0.,
END PH S = 1 •
$

PSGENDAT EVENT(l) = 70.•
CRITR = bHTIMRF3 •
VALUE = 20. •
MDL = 1 •
T'IIqR F ('3) = O.•
DBANK = --23.6650460•
ENOPHS = ! t
$

PSGENOAT EVENT||! = 75.9

CRITR = 6HTIPIRF3•
VALUE = 20. •
MDL = 1 •

Figure 32,- Continued
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TIMR F(3 ) = O.e
DBANK = -11.1222061•
ENDPHS " 1•
$

PSGENDAT EVENT = 76.•
CRITR = 6HTIMRF3 •

VALUE = 20. •
TIMRF(3 ) = O*t
MDL = 1 •
DBANK = 0.0•

ENDPHS = 1 t
$

PSGENDAT EVENT(l)
CRZTR : 6HNACH
VALUE = 5. t
I_OL = 1•
ZGU]D(1) : 0.•
IGUIDI2) = 1.•
;GUZO(6 ) = 2.•
IGUIO('r | = 0.•
IGUID (8) = 1.•
BNKPC (1) = 0.•
OT " 5. •
$

P$ T_ LM LT
S
PSTAB TABLE = 6HCDT

-90.,

= 80., 1.•

t2tbHRACH •6HALPHA • 15• 14•l•1•ltltltltltlt

O.OOv .030• 0.20• ,030• 0.60, .030, 0.?0, .033, 0.80• .039•
0.90• .050, 1.10• o105• 1o20• .122• 1.30• .130, 1.40t .125•
1.60t .112, 2.00, .100, 5.00, .069, 10.0, °050, 30.0, °028,

0.00 •
0.00• .030• 0.20• °030t 0.60• .030• O.?Ot .033t 0.80t .039•
0.90• .OSO, 1.10• .1051 1.20, .127, 1.30, .1-_0• 1._0• .125•
l.bO, .112, 2.00, .100, 5.00, .069, 10.0, .050, 30.0• .028•

4.00•
0.00• .042, 0.20, .O&2, 0.60, .042t 0.70, .045, 0.80, .050,
0.90, .06T, 1.10, .130• lo20, .142• 1.30, .145, 1.40, .141,
1.60• .128, 2.00, o110• S.OO• .OTO• 10.0• .050• 30.0• .028•

8.00 •
0.00, .055, 0.20, .055• 0.50, .055, 0.60• .060, 0.75• .0"?0,
0.80, .080, 0.90• .112• 1.00• .150• 1.10, .168• 1.20• .170,
1._K), .168, 1.80• .142, 3.00• .103, 5.00, .072, 30.0, .040,

12.00,
0.00, °0?5, 0.20, .075, O.SO, .093t 0.65, .112, O.'rO, .123•
0.80• .l'tS• 0.90, .218• 1.05, °234, 1.30• .228t 1.50, .210•
2.00, .171, 3.00, .182, 5.00, .100, 10.0, °083, 30.0, .060•

16.00,
0.00, .102, 0.20• .103• 0.50• .150, 0.65, .183, 0.75, .250•
0.85, .305, 0.95, °325• 1.00, .330• 1.20, °325• 1.50• .295,
2.50, .202, 3.50, .163• 5.00, .140• 10.0• .120, 30.0, .090•

Figure 32.- Continued
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• r

t

20.00t
0.00• o170•
0.80_ .397•
1.S0_ .392•

24.00t
O.OOt .260•
O.80t .535•
2.00• .421•

28.00t
0.00• .37S•
0.80t .682•
2.00• .563•

32.00•
0.00• .510t
O.90t .882•
3.00• . S4J, •

36.00•
O.OOt .650•
0.90•1.020•
3.00• .682•

40.00•
0.00• .786t

0._0 91* 136t

3.00• .863•

44.00•

O.OOt .911•
0000•102329

3.00 • 1.007t
90.009

0.00. .911t

0.90•1.232•
3.00 t 1.007t

$

0.20• .170•
0.90• ,,427•
2.00• .323•

0.20• .260 t.
0.90• .572•
2.50• .347•

0.20• .375•
0.90• .722•
2.50_ .471•

O.20t .SlOt
1.00• .897•
4.00• .490•

0.20• .650•
1.00•1.038•
4.00t o618•

0.20• .786t
1o00•1.152•
4.00• .777•

0.20• .911t
1.00•1.248•
4.00• .932•

O.20t .911•
1.00•1.248•
4.00• .932,

PSTAB TABLE = 6HCLT

-90. O0 •
0.00• .06S•"
1.?0• .020•
3.00• .O00t

0.00•
0.00• .06S•
1.20• .020•
3.00• .000•

4.00•
0.00• .220•
1.20• .162•
2.70• .094•

8.00,
0.00• .384•
1.20• .305•
4.00• .130•

12o00,

0.40, .210• 0.60• .272•
1.00• .440• 1.10• .441•
3.00• .238• 5.00• .190•

0.40• .320• 0.60, .&O0•
l.O0_ .575• 1.30• .542,
3.00• .312• S.O0• .270•

0.40• .AS?• 0.60• .5S5•
1.00t .735, 1.10, .730•
3.00• .420• 5.00• ._SS•

0.40• .596• 0.60• .713•
1.10, .890• 1.S0• .818•

6.00• .453• 10.0• .431•

0.40• .747• 0.60, .860•
1.10,1.037t 1.50• .963•
6.00• .580• 10.0• .5S0•

0.40, .871• 0.60, .995•
l.lO,l.150t 1.50•1.090t
6.00• .71l• lO.O• .675,

0.40,1.000• 0.60•1.115•
1.10,1.245• 1.50•1.195•
6.00• .8S8• 10.0, .80St

0.40•1.000• 0.60t1.115

1.10tl.24S, 1.50•1.195
6.00• .858, 10.0, .805

0.70• .340,
1.20• .432,
30.0, .132•

0.70• .466t
1.60• .492•
30.0• .190•

0.70• .618•
1.60• .638,
30.0• .290•

0.80• .841•
2.00, .720,
30.0• .388,

0.80• .978•
2.00• .865,
30.0• .490•

0.80•1.101•
2.00 •1.010•
30.0• .610•

0.80•1.205,
2.00•1.125,
30.0, .722t

• 0.80•1.205t
, 2.00,1.125,
• 30.0• .722t

• 2•6HMACH tSHALPHA ,15,14•1•1,1,1•1,1t1,1,

0.90• .0_2• 1.00, .037,
1.70t .OSSt 2.00• .046t
6.00,-.021• 10.0t-.028,

0.20• .06S•
1.60, .052•
4.00•-.013t

0.90, .052• 1.00, .037,
1.70• .052• 2.00• .046•
6.00t-.021• 10.0•-.028•

0.20, .065t
h60• .052•
4.00•-.013•

0.80, .220• 0.90• .?lTt
1.45• .169• 1.60, .180•
4.50• .OSOt 10.0• .027•

0.20• ,220•
1.2S• .162•
3.30• .O?Ot

0.80t .382• 0.90• .378,
1.60, .280• 2.00, .250,
7.50, .100• 10.0• .088•

0.20, °384•
1.30• .294•
4.50• .120•

Figure 32.- Continued

1.10• .020•
2.50• .018,
30.0 ,-.0281,

1.10, .020,
2.50• .018,
30.0,-.028,

1.00• .200•
1.90• .161•
30.0• .005,

1.00• .362,
3.00, .160,
30.0, .055•
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O.OOt .530t 0.20, .530t O.80t .530, 0.90, .525t 1.00, .490t
1.10t .463t ].80t .372t 2.00t .350t 2.40, .300t 2.60, .278,
3.|0, .230, 3.70, .200t 4.80, .280, 10.0, .155, 30.0, .125t

16.00,
0.00, .660t 0.20t .660t 0.50, .650, 0.90, .628t 1.00, .608,
1.20, .Sb8, h60, .573t 1.80, .484, 2.00, .4S5, 2.80, .347t
3.30, .310, A.OOt .285, 6.00, .2S5t lO.Ot .233, 30.0t .188t

20.00,
0.00, .?60t 0.20, .760t 0.60, .?37t 0.80, .719, 1.00, .693,
1.20, .66"/9 1o50, .622t 1.80, .579t 2.00, .547t 2.50, .4"/8,
3.00, .4?0, 4.00, .382, 6.00, .343t 10.0, .308, 30.0, .240,

2,4..00,
0.00, .838, 0.20, .835t O.60w .808, 0.80, .790, 1.00, .'J'?O,
1.20, .'/51, 1.50, .'FIB, 1.80, .b-r?, 2.00, .646, 2.50, .569,
3.00, .528, 4.00, .483t b.O0, .441t 10.0, .400, 30.0, .313,

28.00t
O.OOt .906, 0.20, .900, 0.60, .872, 0.80, .860, 1.00, .842,
1.20_ .82S, 1.50, .797, 1.80, .'/60, 2.00, .'/35t 2.50, .675,
3.00, .632, 4.00t .5?3, 6.00, .530, I0.0, .491t 30.0, .k23,

32.00,
0.00, .9"/0, 0.?0, .961, 0.60, .930, 0.80, .917, 1.00, .900,
1.20, .880, 1.50, .860, 1.80, .838, 2.00, .820, 2.$0, .76S,
3.00t .?20t 4.00, .670, 6.00, .626, 10.0, .584, 30.0, °534,

)6.00,
0.00t2.020, 0.20,1.0|0, O.60t .9?8, 0.80, .962, 1.00, .969,
1.21), .933, 1.50, .910, 1.80, .890t 2.00, .877, 2.50, .860,
3.00, .808, 4.00t .761, 6.00, .71"/, 10.0, .670, 30.0t .577,

40.00,
0.00t2.055, 0.20t2.042, O.bO,l.015t 0.80,1.001, 1.00, .990,

1.20, .9?9, 1.50, .962, 1.80, .947, 2.00, .934t 2.50t .910t
3.00, .882, 4.00, .842, 6.00, .794, 10.0, .752, 30.0, .663,

44.00t
0.00,1.070, 0.20,1.060, 0.60,1.037, 0.80,1.027, 1.00,1.018t
!.20tl.010, l. SOt .998, 1.80, .987, 2.00, .980, 2.50, .961t
3.00, .942t 4.00, .910, b.O0, .867, 10.0, .821, 30.0, .760,

90.OOe
0.00t1.0"10, 0.20,1.060, 0.60,1.037, 0.B0,1.027, 1.00t1.018,
1.20t1.010, 1.50, .998, 1.80, .987, 2.00, .980, 2.50, .961,
3.00t .942, 4.00, .910t b. O0_ .8_'/, 10.0, .821, 30.0, .740t

ENDPHS = 1,

P$GENDAT EVENT(|) = 95.t 1.t
NPC(2) = 2,
CRITR = 6HALTITO,
VALUE = 102000.
TIMRF |1) = 0.,
_DL = 3,
NPC(26) " O,
ITAP = 1,1,1,1,1,1, ltltl,1,
ARP = 328B*t Z955.t 803., 1844., 29?°, 1408.t 980.e 240.t 140., 0.,
HRAT = .06, *17, .43, *78t .97, 1.12, 1.62, 2.5, 3.5, O.t

Figure 32,- Continued
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$
P$TBLMLT

WUAIM f 1.25t
$
PSTAB TABLE = 61#dUAIT , 2 • 6HTHTPL • 6HTIME , bt3t|tltltltl,ltltI9

1500. •
_o_9_to_?9 _0_10889 eo_l?tlo_t 90219106_t 9090_91096t 10o46_t2._1•

18000•
50858jo50• 6o908•.91• 80294•1o47t 9.2191o85• 9.903•2020• 10._•2.489

2700 • •
5,,737•064, 6.908ti.23, 8029491.94e 9.21,2.45t 9o903,208"r• 10.404,3.20,

ENOPHS= 1 •
S

P$GENDAT EVENT(l) " 98.t 1°•
CRZTR = 6HALTTTO•
TTHRF(1) = 0.•
VALUE = 90000.9
MDL = 3•
NPC(15) = O•
NPC(26) = O•
ENDPHS = 19
$

PSGENDAT EVENT(l) m 100.•
CRITR = 6HALTZTO•
VALUE = 50000°•
NDL = 3•
ENDPH$ =|•
ENOPRB=I•

$

PSSEARCH

OPTVAR
OPTPH

PCTCC

NINDV

INDVR

INDPH

U

= 6HTIMRF1,

= 60.9

= ,19

= At

= 6HDBANK t6HDBANK t6HDBANK ,6HCRZTR g

= 60°t 70.9 750t 6Oct

= -26.7182816,
-23.6650460t

"11.1222061t

lO0.t
PERT = O.O01tO.OOltO.OOltO.Olt

NDEPV = ],

DEPVR = 6HCRRNG •

DEPPH = lOO.,

DEPVAL = -1200.,
DEPTL • 5.•

ENDJOB m It

$

SEARCH DATA

} FOR

SECOND PROBLEM

Figure 32.- Concluded
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Example 3. Orbital Maneuvers

This example illustrates the application of POST to a finite-burn orbit

transfer problem. The basic problem is to determine the optimal location, dur-

ation, and attitude of two thrusting maneuvers that transfer an orbital vehicle

(Transtage) from a near-Earth park-orbit to a geostationary orbit. Final weight

is again used as the optimization variable. However, as demonstrated in Example

i, this is the same as maximizing the deliverable payload. A simplified version

of this problem could be easily set up using the impulsive option. The more

detailed simulation is presented, however, to illustrate a number of specific

flight phases that naturally occur in orbital analysis problems. These phases

are: (i) non-Keplerian coast segments using tNe Krogh integrator, (2) attitude

reorientation maneuvers that simulate the kinematics (not dynamics) of the RCS,

(3) propellant settling via thrusting maneuvers, and (4) long-duration finite-

thrust orbital maneuvers.

The basic transfer geometry is illustrated in Figure 33. As indicated, the

problem starts at booster burnout, which occurs 483.893 second into the flight.

The first phase, Event 1.0 to Event 125.0, is a non-Keplerian coast to the

first equatorial crossing. The occurrence of the equatorial crossing is de-

mined by specifying "latitude equals zero" as an event criteria. This is accom-

plished via the $GENDAT input shown below.

P$GENDAT }

EVENT = 125.,

CRITR = 5HGCLAT,

VALUE = 0.0,

ENDPHS = i,

$

represents the crossing condition

Event 125.0 is used to "trigger" a sequence of (i) reorientation, (2) pro-

pellant settling, and (3) main engine start-up transient phases. The primary

main engine burn starts at Event 148.0 and ends some 325 seconds later at Event

150.0. Event 150.0 also initiates the coast-to-apogee defined by Event 260.0.

At apogee the same basic sequence of maneuvers are used again to simulate the

final circularization maneuver, which ends at Event 280.0. A long coast tra-

Jectory is then propagated until the vehicle reaches its fourth equatorial

crossing at the final event, Event 300.0.

The POST input deck for this problem is shown in Figure 34. Comments are

placed on each important data card to assist the reader in understanding the

input set up. The ability to place comments on actual data cards is a feature

unique to the POST NAMELIST processor, and is not available on most standard

system NAMELIST routines.

The targeting and optimization formulation and input set up used in this

case deserves some explanation. First, the optimization variable is WEIGHT at

Event 300.0. This is also the WEIGHT at Event 280.0 because the variable WEIGHT

does not change during the coast phase between Events 280.0 and 300.0. New

users often think this practice to be inefficient. However, in this case it is

not because the orbital conditions (constraints) are also defined at the fourth

equatorial crossing, and so the trajectory must be propagated to Event 300.0 to

calculate the dependent variables.
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P$SEARCH
C
C

LISTIN

ZDEB
MAX I TR

SRCHM

I PRO

Cooo •

NINOV
INOVR

INDPH

U

PERT

Coooo

NPAD
PDLNAX
MODEW
WU

Coooo

NDEPV
DEPVR

DEPPH

OEPVAL

DEPTL

Coooo

OPT

=lt / INPUT NAMELIST AND TABLE
/ SUMMARY

-1, / PRINT TRIAL STEP SUMMARY
=3t / MAXIMUM PERMISSIBLE NUMBER OF

/ ITERATIONS

=6or / USE ACCELERATED PROJECTED-
/ GRADIENT ALGORITHM

=Or / PRINT INITIAL AND FINAL
/ NOMINAL TRAJECTORIES

CONTROL VARIABLE SPECIFICATION
/ NUMBER OF CONTROL VARIABLES

6HPITPClt 6HYAWPC19
6HCRITR ,
6HPITPCI9 6HYAWPCI9

=9t
=bHCRITR •

6HPITPC2t
6HCRITR •
6HCRITR ,

=140o•
148.•
260.•
280.,

=6.90142019t
-.04689AS159t
180o136723•
109.526823,

=.01,
.001•
.01,
.01•

140.• 140.•
150.•
2bO.• 260.•

-3.67420779•
321.8870579
1.69258A20t

-7.93809841•

43o79B'T715•

.Ol• .1•

.01,
• 01• .01,

CONSTANTS CONTROLLING AUTOMATIC PERT SELECTION
=9• 5, 13t
=29
=0•
=1., .I, 1.,

lOo• .I•

1., 1.• .1,
o19

CONSTRAINT VARIABLE SPECIFICATION
=5•
=6HSEMJAX• 6HECCEN •

6HARGP • 6HLONG •
=300o• 300o,

300.• 300.,
=138973648._ 003•

180.• 58.96•
= 10000. t .0001 •

.01• .01,
OBJECTIVE SPECIFICATION
Z_o 9

6HINC

300.,

5°•

o01,

/ MAXIMIZE OBJECTIVE

Figure 34.- Input Data Deck for Orbital Maneuver Sample Case
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OPTVAR
OPTPH

PCTCC

STPMAX

Coooo

COMERS

PIMIN

=6HWE IGHT •

=300. •

=eI •

I OPTIMIZATION VARIABLE

I OPTIMIZATION PHASE

I MAXIMUM RELATIVE CHANGE

/ ALLOWED IN MAGNITUDE OF

/ WEIGHTED CONTROL VECTOR

=I,• / MAXIMUM AESOLUTE CHANGE

/ ALLOWED IN MAGNITUDE OF

/ WEIGHTED CONTROL VECTOR

ITERATION CONVERGENCE TOLERANCES

=B9.9• I.OE-20•

I.OE-OSt 1.OE-20t
_2e9

C .... CURVE FITTING TOLERANCES

CONSEX =I.OE-OSt 1.0E-05•

FITERR =IoOE-'Ob• loDE-03•
$

PSGENDAT EVENT(I)=|.•
TITLE (1)=50H 2015
TITLEIbI=50H STAGE III INITIALIZATION

FESN =300.,

C .... TRAJECTORY ABORT SPECIFICATION

MAXTIN
ALTMIN

Cooe°

NPC(2)

1.0E-IO,

/ VALUE OF SUM OF SQUARES

/ OF ERRORS BELOW WHICH

/ ITERATION IS CONSIDERED

/ TARGETED

= 50000. •
zO° •

PROPAGATION SPECIFICATION

=It

/ MAXIMUM TRAJECTORY TIME

/ MINIMUM ALTITUDE

EPSINT =-1•
PRNT(63)=6HOT

DT =100o,

PINC =IO.EIO•
C .... VEHICLE WEIGHT SPECIFICATION

WPROPI =23379. •

NPC (S| =0,
NPC(I) =3,

NPC(q) = O•
C .... STEERING SPECIFICATION

IGUID(II=4,

IGUID(16)--O,

IGUID(_I=I,

Coooe

NPC(3)

/ VARIABLE STEP/ORDER PREDICTOR

/ CORRFCTOR

/ DESIRED INTEGRATION ACCURACY

/ PRINT INTEGRATION STEP SIZE
/ INITIAL ESTIMATE OF

/ INTEGRATION STEP SIZE

/ INTERVAL BETWEEN PRINT BLOCKS

/ INITIAL PROPELLANT LOAD

/ NO ATMOSPHERE

/ CALCULATE CONIC ELEMENTS AT
/ EACH INTEGRATION STEP

/ NO ROCKET THRUST

/ PITCH PLANE STEERING

/ DETERMINE PITCH EULER ANLGE

/ DIRECTLY FROM INPUT
/ ATTITUDE ANGLES ARE INPUT

, / POLYNOMIALS WITH INPUT

/ CONSTANTS

INITIALIZE STATE VECTOR FROM BOOST TRAJECTORY

=2, / INITIALIZE VELOCITY VECTOR

/ THROUGH INERTIAL COMPONENTS

/ IN G-FRAME

Figure 34.- Continued
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VELI =26032.975t
GAMMA] =0.•

AZVELI =105o04684•

NPCI4) =2•

GCLAT =25.310029t

LONG] =297.99561t
GCRAD =21411784°•

TIME =48_°893•

WGTSG =30840.331•

TIMEO = -3.•

LATL =28.56205•

LONL =279.42ZST•

AZL =100,170556• '
NPCiI6) = O•

Ceoo°

GO

J2

MU

J3

J4

OMEGA
RE
RP

Cool°

/ INITIALIZE POSITION VECTOR

/ THROUGH INERTIAL SPHERICAL

/ COORDINATES

SNITHSONIAN EARTH MODEL

=32.174,

=oO01082639t

=1.4076457994E+16•

=-2.565E'-06•

=-|°608E-06•

=?°292115146E-OB•

=20925662°7•

.=20855502.4•
SPECIAL PURPOSE PRINT BLOCK

/ TIME AT WHICH ECI FRAME IS
"/ INITIALIZED

/ LATITUDE OF L-FRAME ORIGIN

/ LONGITUDE OF L-FRAME ORIGIN

/ AZIMUTH OF L-FRAME Z-AXIS
/ OBLATE PLANET GRAVITY MODEL

/ CONVERSION FACTOR FROM SLUGS

/ TO LBM
/ 2ND ZONAL HARMONIC COEFFICIENT

/ IN EARTH POTENTIAL FUNCTION

/ NEWTONIAN GRAVITATIONAL
/ CONSTANT

/ 3RD ZONAL HARMONIC COEFFICIENT

/ IN EARTH POTENTIAL FUNCTION
/ 4TH ZONAL HARMONIC COEFFICENT

/ IN EARTH POTENTIAL FUNCTION

/ EARTH ROTATIONAL RATE

/ EARTH EQUATORIAL RADIUS
/ EAPTH POLAR RADIUS

PRNT(1) = bHTIME • 6HALTITOt 6HVELI
PRNT(7) = 6HTIMES • 6HGCRAD • 6HVELR

PRNT(13)= 6HTOURP • 6HGDLAT • bHGCLAT • 6HLONG
PRNT(19)= 6HIBI1

PRNT(25)= 6HIB21

PRNT(31) = 6HIB31
PRNT(37 ) = 6HASX I

PRNT(43)= 6HASYI

PRNT(4q)= bHASZ r
PRNT(55)= bHFTXB

• 6HIB12 • 6HIB13

• 6HIB22 • 6HIB23
• 6HIB32 • 6HIB33

• 6HROLI • 6HROLR

t bHYAWI • 6HYAWR
• 6HPITI , 6HPITR

• bHFTYB • bHFTZB

• bHOTPRNT(61)= 6HTIMRFI• bHW
ENDPHS = I.•
S

PSGENDAT EVENT(1)=125°t

TITLEIb)=50H FIRST EQUATORIAL CROSSING

CRITR =6HGCLAT ,

VALUE =0,•
ENDPHS =1.•
S

t 6HGAMMAI• 6HWEIGHT• 6HTHRUST•
• 6HGAMMAR• 6HWDOT • 6HASM •

• 6HWPROP • 6HAZVELI•

• 6HXI • 6HVXI • 6HAXI •

• 6HYI • 6HVYI , 6HAYI •

• 6HZI • 6HVZI • 6HAZI •
• 6HURX • 6HUNX e bHXF •

• 6HURY • 6HUNY • 6HYF •
• 6HURZ • 6HUNZ • 6HZF •

• 6HAXB • 6HAYB • 6HAZB 1

• 6HPSTOP •

Figure 34.- Continued
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PSGENDAT EVENT(l| " 140.t
TITLE(6):SOH REORIENT TRANSTAGE ATTITUDE FOR 1ST BURN

CRITR :6HGCLAT •

VALUE =5. •

NOL =3,
Co... STEERING MOOE

IGUID(I)=2•

IGUIO(13)'3,

/ RELATIVE FULER ANGLES

/ INERTIAL VELOCITY VECTOR AS

/ YAW REFERENCE
PITPC(I)=O.,

YAWPC(I)=-I.A576t

ROLPC(I)=O.t

C .... PROPAGATION SPECIFICATION

OT =2.•

ENDPHS = 1o•
$

PSGENDAT EVENT(lI=lAbot

TITLE (6 )=50H TRANSTAGE IST PROPELLANT SETTLING BURN

CRITR = 6HTDURP •

VALUE =0*•
MOL =1•

C .... "PROPULSION SPECIFICATION

NPC[9) :It

NENG =1,
C .... VEHICLE WEIGHT SPECIFICATION

WJETT =6.,
C .... STEERING SPECIFICATION

IGUID(1)=4,

IGUID(4 )=0•

/ INITIAL STEP SIZE EXTIMATE

/ ROCKET THRUST

/ NUMBER OF ROCKET ENGINES

/ JETTISON ACS PROPELLANT

/ PITCH-PLANE STEERING

/ CARRY-OVER ATTIIUOE FROM
/ PREVIOUS PHASE

$

P$ TB LN LT

S

C .... PROPELLANT SETTLING THRUST

PSTAB TABLE =6HTVCIT • O.t 206.83,
S

C.... PROPELLANT SETTLING FLOW RATE

PSTAB TABLE = AHWOIT• 0°•
ENDPHS = 1o•
S

PSGENOAT EVENT(1)=14T. t
TITLE(b)=50H T/S FIRST BURN START-UP (1ST 3 SECONDS) 138FS1-1 ,

0.93333333,

CRITR =bHll)URP •

VALUE =15.•
$

PSTBLMLT
S

C .... TRANSTAGE FIRST BURN THRUST

PSTAB TABLE =6HTVCIT •
$

Cooo.

Oo• 16000.•

TRANSTAGE FIRST BURN FLOWRATE (FLONRATE IS 16000 LB / 302 SEC

Figure 34.- Continued
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C
PSTAB TABLE :6HWD IT j

ENDPHS = 1.,
$

P$GENDAT EVENT( 1 )=148.,
TITLE(6)=50H TRANSTAGE FIRST BURN
CRITR =6HTDUR P ,
VALUE =3.,

C;..o o STEERING SPECI FIC,ATION

P ITPC (2) =--.0 °06746 t
ENOPHS = 1o,
$

P$GENDAT EVENT(1)=150.t

PLUS 20 LB / 325 SEC FOR ABLATION
Oot

(STEADY STATE)

53°04167091,

/ FIRST BURN PITCH RATE

TITLE (6 I=50H FIRST BURN SHUTDOWN (13BFS2-1)
CRITR =6HTDURP ,
VALUE =325.663005t

C..°. PROPAGATION SPECIFICATION

DT = 200. •
C .... STEERING SPECIFICATION

PITPC (Z)=O. ,
C..,.. PROPULSION SPECIFICATION

NPC |9) = O-t
ENDPHS =1o •
$

PSGENDAT EVENT =260.•
TITLE (6 )=50H REORIENT TRANSTAGE ATTITUDE FOR 2NO BURN

CRITR =6HTRUAN ,
VALUE =IBO.•

C .... PROPAGATION SPECIFICATION
DT =2. •

C .... STEERING SPECIFICATION
IGUIO(I):2t
IGUID(13 ) =3•
IGUID(4)=I,

/ INITIAL STEP SIZE ESTIMATE

/ ELIMINATE PITCH RAT E

/ NO ROCKET THRUST

/ INITIAL STEP SIZE ESTIMATE

/ RELATIVE EULER ANGLES
/ INERTIAL VELOCITY VECTOR

/ ATTITUDE ANGLES ARE INPUT
/ POLYNOMIALS WITH INPUT
/ CONSTANTS
/ IS YAW REFERENCE

PITPCil)=2.9242t
YAWPCf|)=50.639•
ROLPC(I)=O.t
ENDPHS =1.•
$

PSGENDAT EVENT =265o•
TITLE(6)=50H TRANSTAGE 2ND PROPELLANT SETTLING BURN
CRITR =6HTOUR P •
VALUE =0o •

C .... PROPULSION SPECIFICATION
NPCIg) =1•
NENG = 1 •

Co.°. VEHICLE WEIGHT SPECIFICATION
WJETT =43. •

/ ROCKET THRUST
/ NUMBER OF ROCKET ENGINES

/ JETTISON ACS PROPELLANT

Figure 34.- Continued
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C...- STEERING SPECIFICATION
IGUID(I)=4,
IGUID(4)=O9

/ PITCH PLANE STEERING
/ CARRY OVER ATTITUDE FROM
/ FROM PREVZOUS PHASE

$
P$TBLMLT

$
C°o°o TRANSTAGE 2ND BURN PROPELLANT-SETTLING THRUST
PSTAB TABLE =6HTVC1T t 0°9 187.23t

$
C**o. TRANSTAGE 2ND BURN PROPELLANT-SETTLING HEIGHT FLOW RATE

P$TAB TABLE =6HWDIT • 0o• °83333333t
ENOPHS =I.•
$

PSGENDAT EVENT t270.•
TITLE(b)=50H TRANSTAGE 2NO BURN CONSTANT ATTITUDE PHASE
CRITR =6HTDURP 9
VALUE =6.•
$

P$TBLMLT
S

C .... TRANSTAGE 2ND BURN VACCUUM THRUST
PSTAB TABLE =6HTVCIT _ Oot

$
Ce°°° TRANSTAGE 2ND BURN HEIGHT FLOW RATE TABLE
PSTAB TABLE =6H_DIT t 0o9

ENOPHS =1o9
$

PSGENDAT EVENT =280.t
TITLE(b)=50H TRANSTAGE 2NO BURN SHUTDOWN (138FS2-2)

=6HTDURP •
=118.19t
PROPAGATION SPECIFICATION
=1000o •
PROPULSION SPECIFICATION
=0,
=1°9

CRITR
VALUE

CQeO°

OT
COOOO

NPC(9|
ENDPHS
$

16000.,

53.05285_T2,

/ INITIAL STEP SIZE ESTIMATE

/ NO ROCKET THRUST

PSGENDAT EVENT =300°,
TITLE(6I=50H 4TH EOUATORIAL CROSSING
CRITR =bHGCLAT 9
VALUE =0.,
ENOPHS =l-t
ENDPRB =1°,
ENOJOB =l.t
$

Figure 34.- Concluded
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Second, there are five orbital "target" conditions defined that describe
the desired final orbit. The first four constraints are the standard Keplerian

orbital elements specifying semimaJor axis, eccentricity, inclination, and

argument of perigee. The last constraint is longitude at Event 300.0. Now

Event 300.0 defines the fourth equatorial crossing, which in this case is an

ascending crossing. As a result, the final constraint is mathematically equal

to the longitude of the ascending node. At first this seems a rather obtruse

procedure for computing the longltude of node. However, this special technique

is generally required to eliminate the problems encountered in targeting to

very low inclination orbits, where as a result of small changes in the maneuver,

the ascending node can discontinuously change by 180 deg. This is because

during a long thrust maneuver a "seemingly" ascending node can be changed to a

descending node with only minor changes in the yaw-turn steering parameters.

Third, there is a total of nine independent variables defined in this sample

case. The first five of these variables are, because of their event numbers,

associated with the first main engine apogee-raising burn. The first control

variable in the event criteria at Event 140. Review of the data deck reveals

that CRITR at Event 140.0 is latitude. Thus, this first control variable is the

latitude at which the apogee raising maneuver is started. The second and third

control variables are the initial relative pitch and yaw attitude angles, re-

spectively. The fourth variable is the pitch rate during the burn, and the

fifth variable can be shown to be the burn time of the main engine. The final

four control variables are similarly defined, and apply to the final circular-

ization maneuver. Notice Jn the final maneuver a constant relative attitude is

maintained because the pitch rate coefficient PITPC2 has been omitted from the

final set of control parameters.

The mathematical formulation of this orbital transfer problem may be sum-

marized as follows:

Determine the values of the nine control parameters

e = (_i, 81, _I, 61, TBI, _2, 82, _2, TB21 (41)

that maximize: Wf,

subject to the final orbital conditions (constraints);

a(tf) - 13 893 648 ft

e(tf) - 0.030 = 0,

i(tf) - 5.0 meg = 0,

(tf) - 180 meg = 0,

8R(tfl - 58.96 deg = 0,
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f

p

where _ is geocentric latitude, e is relative Euler pitch angle, _ is relative

Euler yaw angle measure from the azimuth of the inertial velocity vector,

is the time derivative of e, TB is the burn time of the main engine, a is semi-

major axis, e is eccentricity, i is inclination, m is argument of perigee, eR

is the longitude of ascending node, and W is total spacecraft weight. The

subscripts i, 2, and f denote the first and second maneuvers and the final con-

ditions, respectively. The relationship between this mathematical formulation

and the required $SEARCH inputs can be distilled by studing Figure 34. There

are a number of additional inputs in $SEARCH that are optimization algorithm

control parameters, and are not related to the problem formulation. Brief de-

scriptions of these parameters are given in the comments on the individual data

cards. More complete definitions are contained in reference i.

Example 4. Hypersonic Aircraft Point Performance

This example is presented to illustrate the application of the POST pro-

gram to aircraft point performance problems. This is a unique application of

POST in that the trajectory time history is not generated. Instead, the com-

plete optimization takes place at a single fixed point in time--hence, the

term point performance. See Figure 35.

The basic problem is to determine the maximum cruise velocity of a hyper-

sonic aircraft such as the X-24C. The maximum velocity, of course, depends on

the configuration and the particular propulsion system used. For a particular

configuration and engine, the problem may be stated more precisely as follows:

to
Determine the cruise altitude, velocity, and angle of attack h, VR,

maximize: VR

subject to: VR 0

YR = 0

The constraints on the total derivative of relative velocity and flight path

angle are used instead of the standard cruise conditions of "thrust equals

drag" and "llft equals weight." This is due to two important accelerations

that cannot be ignored in the hypersonic flight regime: (i) the thrust com-

ponent in the lift direction, and (2) the centripetal acceleration.

The complete input deck for this example is presented in Figure 36. There

are only two events in this case: EVENT = 1.0, the first event, and EVENT =

i00.0, the final event. The final event criteria, CRITR = 5HTDURP, is the

elapsed time between EVENT = 1.0 and EVENT = i00.0. Notice that the value of

the final event criteria is zero, i.e., VALUE = 0.0. This means that zero time

evolves between events 1.0 and I00.0. This type of event is referred to as a

"zero-length event" in POST terminology.
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PSSEARCH
CONEPS(I| = 89.•
MAXITR = 10,
OPT = 1 •
SRCHM = 5 •
PERT = .Ott loE--_t 1.E--69
OPTVAR = 6NVELR •
OPTPH = 100.•
NOEPV " 2,
DEPVR = 6HVELAO • 6HGAMAD •
ZDEPVR = 0•0•
OEPPH = 2sIO0o •
OEPVAL = 0.09 0.09
DEPTL = 0o001, 0o0019
NINDV : 3 •
INDVR = bHALTITO, 6HVELR •OHALPPClt
INDPH = 3_1.•
U : 90000.• 4500o, 10.,
PCTCC : °O2 •
$

PSGENDAT EVENT(l) " 1.09
TITLE : OH_SET-UP FOR HAX. CRUISE RANGE --- POINT PERFORMANCES,

NSPEC(2) = 19
FESN = 100.0,
WPROP! = 9000. t
WGTSG = 27500.,

SREF : 569.2•
MAXTIM : 600.0 •

C q_qr_qn_ NPC(2) SELECTS INTEGRATION SCHEME

NPC (2) " 1•
PINC = 10. •
DT = 5.•

C _t_t_ NPC(3) SELECTS VELOCITY INITIALIZATION
C _ COMPONENTS IN LOCAL HORIZONTAL FRAME

NPC(3| "* &•
VELR = 6500°•

GAMNAR == O° •
AZVELR = 90o•

C SS_t_tm NPC(4) SELECTS POSITION INITIALIZATION
C S_ 2 = SPHERICAL COOROZNATES

NPC (_) " 2•
TIME ,t O. •
ALTITO : 100000.,
GOLAT "* 0.0,
LONG : 0o0,
NPC (9| : 1•
NPC (91 "_ 59
NENG " 19

C
C

4 : EARTH RELATZVE

e_,_8_ EARTH MODEL PER JPL REPORT 32-13069 15 JULY 1968.
ses_ NPC(5) SELECTS ATMOSPHERE MODEL ( 2 = 1962 STANOARO )

Figure 36.- Input Data Deck for Hypersonic Aircraft Sample Case

RF,pRO_UC!I_rLITY OF
ORI_L PAGB 18 POOI_
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_C (5)
C _

NPC {8)
LREF
RN

NPC(12)
C • _-e_l_

JGUID
NPC(22)
ETAPC (1)
P_:NT [ 91 )

P$'rB LHLT
AEIH
$

= 2t
NPC(8I SELECTS AERODYNAMIC INPUT OPTION I1-"INPUT CAT AND CNAT|

=It
= 23*0t
" let

NPC(12) SELECTS RANGE CALCULATION (1 = GREAT CIRCLE RELATZVE)

NPC(22) DEFINES ENGINE THROTTLING | 2 = ETA CURVE )
GUIDANCE COMMANDS

- O,Otlt
z 1,

1.9

= 6HVELA9 , 6HSPECV3,

= 25._

C _ CA TABLE X26C-T bS: CG 5/30/'73
PSTAB TABLE = 3HCAT, 2t 4HMACH, 5HALPHA, 12t

0,.,
5,1,1,1,1,1,1,1,1,

O.O,.0467,.6,.0468,.8t.O483,l.Ot.OBSb, l.2,.O944,1.St.O735,2.Ot.Ob_3,
3.0toOS14t4.O,.O461tS.O,.O414,6.0t.Ok03,100.,.0403,

4.,

O.,.0347,.6,.0348,°8,°0390,1.0,.O'r?5,1.2,.O842t1.St.Ob60,2.0,.0561•
3.0•.0446_4.0,.0386,5o0,.0359•6.0•.0348,100o0•.0348t

O.O,.0257,.6•.0258,.8•.0325•l.0,.O?43tl.2,.O?gB,1.5,.Ob22t2.0•.OSO3t
3°Ot. O400•4.0,.O343,5.0,.O319,6.0t.0311•lO0.O,.0311,

I2.•
O.O,.0177,.6,.01?8t.8•.O290•1.0t.O73B,1°2,.OBOg,1.5,.ObO9,2.0t.0463•
3.0,.0363,6.0 •.0316, 5°0,.0299,6.0t.0289,100.0•.0289•

20.,
O.Ot.O077,.6, °O078•DB•.O310•l.0,.O794•l.2,.O912tl.5•.Ob28t2.0,.O41?t
3.0 ,. 0313 •4.0 ,.031 ltS*O • .0334,6.0, .0312,100. • .0312,

$
C _ CN TABLE X24C-7 65= CG 5/30/'r3
FSTAB TABLE = 4HCNATt2• 4HMACH• 5HALPHA• 12, 5,1•1,1,1t1,1•1,1,

0_0•'-.04• .6• -.04, .8t -.047• 1.0t -.033, 1.2, -.0St 1.5• -°0321
2.0,-.032, 3.0,-.032, 4.0•-.032_ 5.0,-.032, 6.0,-.032t 100.0,-°032_

,_0, .04, .6, .04t .8t .039, ;-Or .05, 1.2• .033, |.St .038•
2.0, .029• 3.0, .025t 4.0• .025t 5.0t .019, 6.0• .016• lO0.Ot °01h_
8.•
0.0, .125, .6, .125• °8, .125, 1.0• .137, 1.2• .12, 1.5• .12,
2.0, .105, 3.0t .093• 4.0• .091• 5.0, .08• 6.0• .0?6, 100.0_ .OT6,

_.0, .205, .6, .205, .8, .21• 1.0, .222t 1.2, .205, 1.5t .21t
2.0, .191, 3°0• .172, 4.0• .161• 5.0• .148, 6.0• .141, 100o0• .141_
20.•
0.0, .366t .6• .366, .B, .383, 1.0• .395• 1.2• .37T• 1.5_ .409,

Figure 36.- Continued
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2.Or .39t 3.0, .35, 4.0, .3]L?t 5.0, .297, 6.Ot .28?, |O0.Ot .287t
S

PSTAB TABLE = 6HWDIT t 1• bHMACH
2.5t 6.390E"4• 3.0• 6.364E"4 •
3o5• 6.45"rE-4• &.O• 6.3/,4E"4 •
4o5t 6.311E-4• 4.65t 6. 667E--Z*,
S

PSTAB TABLE = 6HTVCIT • 19 6HIqACH
2.St 1.33• 3*Or 1.32, 3.5t 1.27t
4.Or 1.19, 4.25•1.13• 4.40•1.08•
4.50,1.03, 4.60,0.95, 4.65,0.90,
$

PSTA8 TABLE = 4HAEIT, O•
ENDPHS = | •
$

PSGENDAT EVENT - 100.0,
CR][TR : 6HTOURP •
VALUE " O.,
ENDPHS " | •
ENDPRB - 1•
ENOJOB z 1,
S

l*O,

• 6• 3,1,1,

• 9, 3,1tl,

Figure 36.- Concluded

TABLE 14,- ITERATION SUMMARY FOR HYPERSONIC AIRCRAFT

POINT PERFORMANCE SUMMARY

Iteration

Optimization

Variable,

Velocity

Constraint

Error, _ P2

Optimization

Indicator

4188

4284

4401

4455

4507

4506

4521

4535

4534

4536

1.90 x i0 3

1.60 x 10-2

8.21 x i0-I

1.23 x i0-I

8.56 x 100

1.72 x i0-_

1.34 x i0 -I

9.444 x i00

2.11 x 10 -3

1.05 x i0 -I

46.419

55.373

71.232

81.197

85.659

87.019

89.026
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The iteratlve optimization begins by the user estimating an initial "guess"
for the independent variables.

u =(h, vR, =)= (90000, 4500, i0.) (42)

This initial guess, input in $SEARCH (see Figure 36) generally does not satisfy

the constraints (cruise conditions). The projected gradient algorithm then

determines the proper correction to this initial guess to satisfy the constraints.

This correction is based upon numerical approximations to the partial derivatives

of the constraints. This set of partials, called the sensitivity (or more pre-
cisely the Jacoblan) matrix is given as

[S]2x3: lh,

_R _R _R

_h _V R _s

(43)

After a feasible solution is attained, that is, one that satisfies the constraints,

the algorithm is designed to "move along" the constraint manifold and improve the

cruise speed at each iteration. Conceptually, this is accomplished by projecting
the gradient of cruise speed to the plane defined by the normals to the con-

straints. This mathematical operation determines the direction of "steepest

ascent (descent)" in a plane that approximates the constraints. However, be-

cause of nonlinearities in the constraints, as the control parameters are varied

along this direction of search the cruise condition becomes increasingly violated.

The extent to which the control parameters are incremented is then determined by

maximizing a composite function (called estimated net performance), which is the

sum of the cruise speed and an estimate of the loss in cruise speed associated

with this violation of the cruise conditions. After each such optimization step

a constraint restoration step is taken to remove this induced constraint error.

As a result, once a feasible solution is found, the optimization proceeds in a

sequence of two steps: first, optimization; and second, constraint restoration.

Significant, however, is the fact that in most normal restoration steps, the

sensitivity matrix is not recomputed. This procedure substantially reduces the

overall computer solution time required to optimize the problem. A brief sum-

mary of this iteration process is given in Table 14. Notice that after a feas-

ible solution is achieved in iteration i, all subsequent iterations satisfy the
cruise equations.

This simple application of POST solved this "point" performance problem

in a matter of only a few seconds on the CDC 6500. As a result, it eliminates

the requirement of plotting families of thrust required and thrust available

curves to determine graphically the cruise performance of a hlgh performance
aircraft configuration.
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Example5. Trajectory Decomposition

• ",. .

The optimization of an eastern hemisphere geostationary mission using the

decomposition option is presented as Example 5. This mission, illustrated in

Figure 37, has two basic flight regimes and is typical of the problems that can

be efficiently optimized with the decomposition approach. It is important to

note that the decomposition option is contained in a special version of 3D POST.

However, the utilization procedures are available in reference i. A general

problem statement and the two formulations are given in Table 15. The standard

nondecomposition formulation is a constrained discrete parameter optimization

problem containing eight constraints and ten independent variables. Let this

problem be denoted as PI(8xI0). The data deck is presented in Figure 38. The

inputs required by the decomposition appear first in the deck. The remainder

of the data deck is the same as the standard nondecomposition input. As indi-

cated, the complete mission was decomposed to three trajectory segments:

Ascent;

Apogee Raising Burn;

Final Circularization and Plane Change.

This problem could be decomposed differently; for example, the two orbital seg-

ments could easily be combined in a single subproblem. The master problem, as

formulated, has only one constraint and three control variables; let the prob-

lem be denoted as MPI(Ix3). It is important to note that in MPI(Ix3) two of

the three control variables are constraint values in the subproblems. This en-

ables the master algorithm to optimize the burnout velocity of the ascent leg

and the inclination of the transfer orbit. These are two important geosta-

tionary mission design variables. The constraint that zero propellant remains

at final burnout is really the active inequality constraint Wpr _ 0. This is

to ensure that the program will not simulate consumption of more propellant

than can be loaded in the tanks. This constraint is defined at the master level

because it couples the subproblems due to the fact that Stage III is used in

all three of the trajectory segments. The subproblems, represented as SPI(3x3),

SP2(2x2), and SP3(4x4), are all relatively small targeting problems. Clearly,

this sequence of subproblems is much easier to solve than Pl(gxl0). However,

a computational tradeoff is involved because the sequence of subproblem

(SP i : i = i, 2, 3) must be solved on every trial step in univariate searches

used to solve MPI(Ix3). This fact emphasizes the importance of rapid subprob-

lem solution.

Computational results for each formulation are presented in Table 16 and

17. The accelerated gradient projection option was used to solve the standard

formulation. On iterations 3 and 7, it had to be restarted and did not con-

verge in ten iterations. In comparison, the decomposition algorithm did not

require manual restarting and converged in only six iterations. The increased

reliability is probably more significant than the reduction in the number of

iterations. This is because each iteration at the master level represents con-

siderably more computational effort than does each iteration in the standard

formulation.
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Stage II Shutdown

Stage III First Burn Start

Stage III First Burn End

Stage III Second Burn Start

Stage III Second Burn End

Payload Release Sequence

Typical Eastern Hemisphere Geostatlonary Mission in Earth Centered

Relative Coordinates

Figure 37.- Mission Profile for Decomposition Sample Case

Example 6. 6DOF Space Shuttle Entry Simulation

A typical data deck for a 6DOF closed-loop simulation of the Space Shuttle

entry trajectory is presented. The changes, additions and modifications re-

quired to convert a "typical" 3D POST Space Shuttle entry data deck to this 6D

POST data deck are highlighted in Figure 39. As indicated, the primary changes

are related to the additional data cards required for (i) mass properties, (2)

aerodynamics, and (3) the flight control system (FCS). More significant than

these minor data additions are the vehicle-dependent subroutines that must be

supplied by the user to model the FCS. Development, coding, and checkout of

these subroutines represent the vast majority of the engineering effort in using

6D POST. However, this requirement is certainly not unique to 6D POST, but

rather is required by all 6DOF simulation programs. The key issue then is

really related to the ease in which these routines can be implemented into the

program. These procedures, described in reference 5, have been made as simple

as possible to reduce the "start-up" costs of using 6D POST. This simplistic

simulation of Space Shuttle entry requires about i00 000 octal cells of com-

puter memory, and executes in about three-times realtime on the CDC 6500.
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DEPPHM
OEPVLM
DEPTLN

C
N][NDVIq

P$SEARCH
c
c

SGFESN = 100.
SRCHMM= 1 •
MAX ][TM= 1,
OPTVR M = GHWPLD
OPTPHM = 10.0 •
OPVEIM".O2t
NDEPVM = 1
OEPVRM = 6HWPROP

= 400.
-- 0.0

= .02•

NASTER PROBLEM

• 250.

C IF MOOEWM = O, USE INPUT WUM AS WEIGHTING
MODEWN = O•

C
NOPTVM = 1 •
IPROz-lt
IPRO=-2t
NPADt2Ot0,
CONEPM(1)=+Sq.q999•
CONEPM(2}= 1.0E-4• 1.0E--4t 1.0E-_• 1.0E-6•
CONSXMfl)= |.OE-5•
CONSX_(2)= I.OE-S•
FITERM(1)= I.OE-S,
FITERM(2)= 1.0E-St
STMPIM = oGI•
STIqP2M = .01•
STPMXM = 10o0•

IDEBM=I,
NENDVM = 3•
]NDVRle":6HDEPVL1,6HWPLD •

6HDEPVLI•
INDPHM= lO0.O , 1..0 •

250.0 ,
UM =_2.Sb78997933142E+4•42.TOOOOOOOOOOOOOE+3•

400.

+2.8 50000000000 IE+I •
WUM=I.O•.01•I.O •
PERTM = 0.0 •.02 •

0.0 •

C, TRAJECTORY GENERATOR
SRCHM = 4t
MAXITR : 3 •
GANAX=20.•
NDEPV = 8 •
DEPVR : 6HVEL| • 6HGCRAD • 6HGAMMAI

6HINC • 6HALTA •

Figure 38,- Input Deck for Trajectory D Composition
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DEPPH

DEPVAL

DEPTL

C
NINDV
INDVR

INDPH

U

6HVELI t 6HGAMMAI
= 100. • 100.

250. , 250.
400. • 400.

= 2.Sb?86659E+4 • 2o14119741E+?
2.64999998E+| , 1.93229q30E+4
1.00874510E+4 • 0o0

=.07 ,20.
2.6E-5 • o07

°0| tl.i-5

= 8 •
= 6HPITPC2 • bHCRITR

6HB ETPC 1 • 6HDVIMAG
6H6 ETPC 1 • 6HALPPC 1

= 10. • 100.
200. • 200.
300. , 300.

="6.48967861E-1 • 6.37783102E +1
10. • 7800.

-40. , 1.0

• 6HAZVEL I •
• 100. •

• 400. •
• -6.04529803E-4 •

9

• 90,0 •
• l.E-06 •

,1.0E-4,

PERT = -.00001•-o001•-.00001, -.00001• -.001•
C IF MODEW = Ot USE INPUT MU WEIGHTING

WU = 20°• .5• 20.,
1., 001•
°2, 10.• o01•
MOOEW = 0
S

PSGENDAT EVENT =1.0,
TITLE

MAXTIM = 30000. •
ALTMIN =-I.E6 •
NPC (2) = 1•

DT = 10 •
PINC =I°EIO,
FESN " 450. •
NPC (3) = 4•
NPC (&) = 2•
GDLAT - 28o56•
LONG = 279o4 •
LATL = 28.56•
LONL = 279.4•
AZL = 93. •
NPC (5| " 2 •
NPC f8) • I •
SREF = 78.5•
NPC (9) = I •

WGTSG = 1400000,
WPLD = 2700•
WPROP I = 8912|0o•

C

• 6HPI TPC2

• hHDVIMAG •
• 200 9

• 3000 •
,-4.30642829E-1 ,

• 4800. •
-. 00001 ,-. 001 ,-. 001,

/LIFT-OFF STG 0 /

: OH_SIMPLIFIED T-IIIC FLT/PLN-VII N SUBPROBLEN 1 M ASCENT _,
/200 -300 APOGEE RAISING AND TRANSFER

/300 - 400 CIRCULARIZATION BURN
/RUNGE-KUTTA INTEGRATION/
/_NTEGR ATION STEPSIZE/
/PRINT ONLY ATPSGENDAT EVENTS/

/VELOCITY INITIALIZATION = ZERO/
/POSITION INITIALIZATION/
/GEODETIC LATITUDE/
/RELATIVE LONGITUDE/
/ OR I EN TAT I ON /
/ OF /
/ LAUNCH FRAME /
/SELECTS ATMOSPHERE MODEL/

/SELECTS CA•CN•CY AERO COEF° INPUT/
/AERODYNAMIC REF.AREA /
/SELECTS ONE ROCKET ENGINE/
/INITIAL HEIGHT OF VEHICLE/
/PAYLOAD WEIGHT /
/INITAIL PROPELLANT WEIGHT /

Figure 38.- Continued
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NPC(16) = 1 t
IGUID(I) = I t
IGUID(4) = 1 t
S

PST_LMLT
$

C
PSTAB TABLE

S
P$TAB TABLE

$
P$TAB TABLE

S
PSTAB TABLE

ENOPHS = l •
S

PSGENDAT EVENT
CRZTR
VALUE
IGUIO(4 t
PITPC (2)
ENDPHS
S

P$GENOAT EVENT
VALUE
CR I TR
VALUE
PITPC (2)
ENDPHS
S

/SELECTS SPHERICAL EAP, TH/
/SELECTS INERTIAL EULER ANGLE STCER_N r"

/CONSTANT VALUES ARE INPUT /

=6HTVC1T •0, 1899300o•

=6HWOIT ,097305o t

=6HAE1T t0,124.•

=6HCAT ,Or 2. •

= I0._
= 6HTDURP •
= I0•
= 0 •
= -1.4•
=| •

= 20or
= I0°•
= 6HTDURP •
= 20,

= It

PSGENDAT EVENT" = 30t
CRITR = 6HT IME ,
VALUE = 122.t
NPC(5| = O,
NPC (B) = O•
P ITPC ( 2 ) =-2 °9298587316579E-01•

/ TABLE DATA DECRIBING STG O /
/ THRUST TABLE /

/ FLO_ATE TABLE/

/ EXIT AREA TABLE /

/ AXIAL AERO COEFF./

/ END VERTICAL RISE AND STARTS/
/ PITCH OVER MANEUVER /
/END VERTICAL FLIGHT AT 10 SEC /
/ CARRY ATTITUOE OVER FROM /
/ PREVIOUS PHASE /

/DURATION OF PITCH RATE /
/EQUALS 20 SEC /

/ STGO BURNOUT /
/ STG I IGNITION /

/ TURNS OFF ATMOSPHERE /
/ TURNS OFF THE AERODYNAMIC CALCULATIONS

/ 30.0 /
DT = 20.,
WJETT = 145k00o9
WPROPI = 230380.•
WEICON = 0o0•
$

PSTBL_LT
$

PSTAB TABLE = 6HTVCIT 90t518500.9
S

P$TAB TABLE = 6HWDIT •0t1740.•
$

PSTAB TABLE = 6HAEIT 90_0.0•
ENDPHS : 19
$

PSGENDAT EVENT = 40.,

/ STG I THRUST

Figure 38.- Cont£nued
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D

L

'k

CRITR -- 6HTDURP •

VALUE = 237.t

PITPC (2 | =-2.228 099AOO8965E-02 •
WJETT

WPROP I

WEICON
$

PSTBLMLT

$

PSTAB TABLE

$
P$TAB TABLE

ENOPHS = 1 •

$

PSGENDAT EVENT

CRITR

VALUE
WJETT

WPROPI

WEICON

NPC ( 1 )
IGUID

S

PSTBLNLT

$

PSTAB TABLE
$

PSTAB TABLE

ENDPHS " I •
$

C
C

= 16500. •

= 71595.,

= 0.0,

=6HTVCIT •0, 103230. •

=6HWDIT ,0, 333. •

= 50.•

= 6HTDURP •

= 215.,

= 8140. ,

= 24975. •
= 0.0•

= 3t

= 3,0•1•

=6HTVC 1T •0 • 16000.,

=6HWO 1T •0•53. •

C

C

PSGENOAT EVENT
TITLE

CRITR

VALUE
NPC(9)

NPC (?)

OT
ENDPHS

$

P$GENOAT EVENT

CRITR
VALUE

NPC (2)

DT

PINC
N PC (9)

ISPV

= 100,

/ 40.0 /

/ STG I JETTISON WEIGHT /

/ APPROXINATE STGII THRUST /

/ TURNS ON CONIC PRINT /
/ STEER ON INERTIAL AERO ANGLES /

/ STG III = TRANSTAGE /

END OF SUBPROBLEN I
BEGIN SUBPROBLEN II

= OH*SIMPLIFIED T-IIIC FLT/PLN-VII -- SUBPROBLEM II- TRANSFER*,

=bHTDURP • / 1ST TRANSTG SHUTDOWN/
= 15. ,

= 0°• / TURNS OFF ENGINE /

== 3m•

-- 60Oct

= l•

=200•
= 6HGCLAT •

= 0°0•
= 3•

= 5000. •

= I°EIOt

=3•

= 310.t

Figure 38.- Continued
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NPC ( 16 ) - I t
NPC(2S! ':
IGUID = 3tOtlt
IGUID(Z3) t 3t
ALPPC (1):0009
ENDPHS : It
S

39

/20fl.O /

C _m END OF SUBPROBLEN II '_
C ......... BEGIN SUBPROBLEH III
C
PSGENDAT EVENT =300.t / START OF CIRCULARIZATION BURN/

TITLE=OH_SIMPLIFIED T-IIIC FLT/PLN-VII N SUBPROBLEN III-ClRCULARIZE st

/300°0 /

END OF SUBPROBLEM III m----

/ THE END OF PROBLEM /

Figure 38.-Concluded

CRITR : 6HGCLAT •
VALUE : 0o0•
NPC(9) : 3•
ALPPC(1)=O.Ot
ENDPHS :It
$

PSGENOAT EVENT = 400.•
CRITR = 6HTDURP •
VALUE = 0°0•
WJETT = 3800.•
ENDPH$ : 19
$

C
C
C
PSGENDAT fVENT s 450.•

CRITR = 6HTDURP •
VALUE : O.Ot
ENDPHS : 1•
ENDPRB : It
ENDJOB : 1•
$
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TABLE 16.- NONDECOMPOSITION ITERATION SUMMARY

Key Optimization Parameters Key Trajectory Variable

Park Orbit Transfer
Optimization Constraint Optlmi_ation h x h n.ml.
Variable, Error Indicator, p a Inclination,

Iteration Payload, ib P2 CTHA, deg x n.ml. dee

0

i

2

3

4

5

6

7

8

9

I0

2500.00

2507.20

2507.30

2.79E-5

1.03E-5

1.20E-3

2507.33

2757.82

2757.55

2751.48

3030.51

3029.80

30 29.43

3028.56

1.33E-3

3.28E-3

6.23E-I

4.63E-2

i. 09E-6

1.89E-5

i. 49E-5

i. 19E-5

2.12

8.18

-99 x 80.02

80.02 x Ii0

26.928

26.14

TABLE 17.- DECOMPOSITION ITERATION SUMMARY

Key Optimization Parameters Key Trajectory Variable

Master Optimization Constraint Optimization Park Orbit !Transfer
Level Variable, Error Indicator, h x h n.mi. Incl, Subproblemp a
Iteration Payload, ib P2 CTHA, deg x n.mi. Ide8 Iterations

•- ^ ,,

°

0

I

2

3

4

5

6

7

8

9

10

2500.00

2674,80

2773.91

2781,03

2782.67

2783.70

2784.71

2784.40

2784.51

2784.62

2784.66

I.15E-8

2.89E-2

4.33E-3

i.08E-2

1.04E-3

3.85E-5

2.09E-4

6.20E-5

i.20E-7

5.78E-8

3.15E-8 °

54.44

79.72

87.60

86.19

88. O1

89.15

8R.20

89.33

80.0 x 101.5

80.0 x 90.7

65.6 x 80.0

44.5 x 80.0

48.1 x 80.0

44.5 x 80.0

28.6

29.37

25.79

26.58

26.28

26.58

26.494

26.59

26.55

26.68

26.53

2, 3, 3

4, 6, 5

I0, 17, 14

6, i0, 8

I0, 9, 9

7, 9, 7

13, i0. ]I

6, 9, 7

9, 7, 7

7, 9, 7

7, 9, 7
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PSSEARCH

S NO TARGETING/OPTIMIZATION, SIMULATION ONLY
PSGENOAT EVENT " l.t

TITLE(l) = 50HbD POST REENTRY CHECK CASE
FESN = 10. •
MAXTIM = 2000. •
DT = °0625 •
DTG = .0625 •
TIME ': 1500.•
TIMRF(1) = 1500.,
DTIMR fl) = 1.,
DTIMR (2 | ': 1.•
NPC |3| : At
NPC (4) : 2•
ALTITO = 152488.89,
._CLAT : 39er500_ 829

LONG : -121.21400,

VELR = 873_.5313•
GAMMAR = -.$28962"r5 •
AZVELR : 153.9&194•
AZL " 153.94194•

C ATMOSPHERE
NPC |5) : 2•
NK(8) " 2,
SREF : 2690.•
DREFR : 78.OSb66667•"

DREFP : 39,5666667, _ / /

DREFY = 78.05666bb?• ) /
LREF = 110.7,
WGTSG : 182986.,

C PROPULSION
NPC |91 != Ot

C RANGE CALCULATION _"
NPC (121 " 1,
LATRE F " 34.55577617,
LONREF : -120.5338t
AZREF : 154.•

C GRAVITY
NPC (16) s 1•
mU " 1 .&O766268bE|6• /
OMEGA " 7.29211515E-5,_
RE • 20902910.,

C AUTOPI LOT
NAUTOP : 2 •

C GUIDANCE
C INITIALIZE OUATERNIONS

IGUID(121 " 1,
IGUIO(12) " 3•
YAWR " |78°88212, PITR = l?.3Tosg2t
ROLBD - 0.• PITBO • 0°•

Additional 6D

POST Input

ROLR • 5b.46•
YAt_D • 0.•

Figure 39.- Required Additions and Modifications to Convert

3D POST Input to 6D POST Input
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C USE CLOSED LOOP REENTRY GUIDANCE
IGUID(14) = 2,
XGUID(17) = 2,

C TLATCO = TARGET GEOCENTRIC LATITUDE
TLATCD = 34.55577617t

C TLONGD = TARGET LONGZTUDE
TLONGD = -120.5338t
ITRANS = It

C CONTROLS
KRDA = l-t KRDE = O.t
KPDA = 0., KPDE = 1o•
KYDA = Oot KYDE = 0o•
DAMXN =-15°• DAMAX = 15°•
DEMXN -- -40.t DEMAX = 15.•
DRNIN = -22°8t DRHAX = 22.8•
DELEC] = -5.• DELE = -5.•
EREFL = 19047.•

C PR INTOUT
PINC = |°0•
PRNT(115) =

$
I_I"BLNLT

CLLBNM
CLLOAN
CMDENM
CMBNM
CWOANM
CYBNN
CYOANM
CDDENN
CLF]N
CDFIN
CHFIN
CYFIN
CMFIN
CLLFIN
CLF2N

KRDR = 0.•
KPDR = Oot
KYDR = 1.•

6D POST

Input

6HT|MRFI•bHTIMRF2•6HGTZME t6HATINE •6HDELT •6H_ •
6HDELAZ •6HLOD1 •_HRDTREF•6HRK2ROLt6HTRANGE•6HORAGGCt
6HSLECT •6HGASM •bHGLOD •6HGRDOT tbHDRAGRP•bHALDREF•
6HALPGC •6HALPERR•AHROLRGC•6HROLRER•6HALPERIt6HDELECI•
6HTROLN t6HTROLP •6HTPITN •6HTPITP •6HTYANN •6HTYAWP •
6HTONT •6HWDOTJ •6HWPCONJe6HRCS_XB•6HRCSMYEt6HRCSMZB•
6HDELAC •6HDELEC •6HDELRC •6HDELAD •6HDELED t6HDELRD •
6HOELA •6HDELE •6HDELR t6HDELF| •6HOELF2 ,6HUDCTR •
6HCKA t6HCKE •6HCKR t6HHMA t6HHME •6HHMR t
6HCLA •6HCDA •6HCMA •6HCYB •6HCWB •6HCLLB •

6HCYDR •6HCLLDR •_HCWDR •6HCLDE •6HC_DE •6HCMDE •
6HCYOA •6HCLLDA _6HCWOA •6HCLF| •6HCDF| tbHC_F| t
6HCYF1 •6HCWF| •6HCLLF| •6HCHE •6HCMO •6HCWR •
6HCLLR •6HCWP •6HCLLP •6HCLF2 t6HCDF2 •6HCMF2 t

= 6HBETA •
= 6HDELA •
= 6HDELE •
= 6HBETA •
= 6HDELA •
t 6HBETA •
= 6HOELA •
= 6HDELE •
= 6HONE •
= 6HONE •
= 6HONE •
= 6HBETA •
: 6HBETA •
= 6HB ETA •
: 6HONE •

C LLDRN = 6HDELR •

CWORNM = 6HOELR •

CYDRNM = 6HOELR •

CLDENH = 6HDELE •
6D POST

Input

Figure 39.- Continued
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CDFiN " 6HONE •
CMFiN • 6HONE •
S

P•TAB TABLE • 6HGENVITt 3t4HMACHt4HDYNPtAHT][IqEt2 •2t2 • | t24_| t
1700. • 0.•5.•1° •6.t10- •

1800. •

P•TAB TABLE
$

PSTAB TABLE
S

PSTAB TABLE
$

PSTAB TABLE

PSTAB TABLE

S
P$TAB TABLE

S
PSTAB TABLE

$
PSTAB TABLE

PSTAB TABLE
S

PSTAB TABLE
$

PSTAB TABLE

PSTAB TABLE
S

PSTAB TABLE
S

PSTAB TABLE
$

PSTAB TABLE

PSTAB TABLE
S

PSTAB TABLE
t

PSTAB TABLE
S

PSTAB TABLE
S

PSTAB TABLE
$

PSTAB TABLE
$

5°,5,ti. t6.•?O.•
O,•5.t3. t6.t3G.t
5.,5.t4.•_.•40.•

= 6HC LT

= 6HCDT

= 6HCIqA T

= 6HCY_T

= 6HCWBT

tO • °6"/2662268 t

• 0•._567881B|,

tO •-.030422"rT&T •

t0•-.0054•

• 0 •-.00184 •

= 6HCLLBT tOt-°OO1L62•

= 6HCYORT tO•.OOO4t

= 6HCLLDRTtO t .00015 t

• bHCI4DRT t0•-.00028•

= 6HCLDET tOti.3662_?BE-3t

= 6HCDDET tOtl.S8043E-3;

= 6HCMDET eO•-2.84346E-3t

- 6HCYOAT tOtl.323394E'-k•

= 6HC LLDAT•O • | .07534E-3 •

" 6HCWOAT tO•-3.5OBAE-A•

• 6HCLF|T •0•0o•

= 6HCOFIT tO•O°•

= 6HCIqF]T tO•O*•

= 6HCYFIT •0•0.•

= 6HCk'FIT tO,O.•

= 6HCLLFIT•O•O. •

6D POST

Znput

Figure 39.- Continued

120



° ,

.

, ,°

PSTAB TABLE
S

PSTAB TABLE
S

PSTAB TABLE
S

PSTAB TABLE
S

P$TAB TABLE
$

P$TAB TABLE
$

PSTAB TABLE
S

P$TAB TABLE
$

PSTAB TABLE
$

: 6HCHET tot.046 t

: 6HCMQT t0,-2.8,

: 6HCWRT tOt-.O5t

: 6HCLLRT tOt.OSt

: 6HCWPT tOt-.O22t

: 6HCLLPT tOt-.2SIt

= 6HCLF2T tOt-1.0195E-?,

= 6HCDF2T tOt-b.312E-3,

= 6HCNF2T tOtl.6234E-2t

C DELF1 : SPEED BRAKE DEFLECTION
PSTAB TABLE : 6HDELFITtl,6HMACH ,5t1,1,I_

O. tSS*t 4. tSS.t S.,85. t B.tSS. t 10. t55.,
S

C OELF2 = BOOY FLAP DEFLECTION
C BODY FLAP DEFLECTION FOR FbR) CG CONDITION
PSTAB TABLE = 6HDELF2T,O,-11.7,

S
PSTAB TABLE : 6HRHPJT tOt9952-t

$
PSTAB TABLE = 6HPNPJT t0,33622.,

$-
PSTAB TABLE : 6HYMPJT tOt34072.,"

$
PSTAB TABLE = 6HPNPJZT,I,bHDYNP t6tltltlt

O.t.'r8t 5.,.62, 10.,.53, I5.,.SOp 20.,.4Bt 200.t.4B,
S .

PSTAB TABLE = 6HPYJIT tl,bHDYhlP ,6,1tltlt
O°tO°t 5.,.1, 10.t.16, 15o,o18, 20°,.19, 200°,.19,

S
PSTAB TABLE = 6HPRJIT ,ltbHDYNP t6,1,1,1t

O.t.14t 5. t°23, 10.t.26, 15.,.2"r, 20.,.2B, 200.,.28,
$

PSTAB TABLE = 6HRRJ][T tltbHDYNP ,6,1tltlt
0.,.77t 5.,°59t lO.t.50t 15.t.45, 20.,.42, 200.,.42,

$
PSTAB TABLE = 6HRYJTT tl,bHDYNP t6,1,1tlt

O°t-.70, 5°t-°32, 10. t-.32, 15.,-.30, 20. ,- .28,200. t-.28,
$

P$TAB TABLE = 6HYRJ][T ,1,6HDYNP ,6,1tit1,
0. t-.11, 5°,-.12t lO.t-.12t 15°t-.13, 20. ,-.13t?OG. ,-. l:),

$
PSTAB TABLE : 6HYYJ][T ,O,|.Ot"

Figure 39.- Continued

> 6D POST
Input
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$
PSTAB TABLE

$
PSTAB TABLE

$
PSTAB TABLE

$
P$TAB TABLE

: 6HPPPJIT_O,I.Ot

: 6HCKET ,1,6HMACH. ,&tltlt|t
0.96., 10.96., [2-t_qt lOOet2.t

= 6HCKRT ,|t6HMACH ,4,1,1919

0.,2., 2.,2o, 2.01,4., 30-94-t

: 6HCKAT ,I,_HDYNP t_,ltltl•
0.910., 10-910-t 30.•_.59 200eldeSt

$
PSTAB TABLE = 6HYCGT

$
PSTAB TABLE : 6HIXXT

$
PSTAB TABLE : 6HIYYT

$
PSTAB TABLE = _HZZZT

$
PSTAB TABLE : 6HZXZT

ENDPHS z 19
$

PSGENDAT EVENT : 10.•
CRITR : 6HT_MRF|•
VALUE : 1510.•
MDL = 1 •
ENDPHS = I •
ENDPRB = 1•
ENDJOB = 1_
$

,0,0.125,

,0•759000.,

•0,5765000.•

t0,5912000.•

eO,|31000.,

Figure 39.- Concluded

6D POST
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COMPUTER REQUIREMENTS

Machine Configurations

POST was originally developed for the CDC 6000 series computers. 3D POST

has since been converted to the IBM 370/165/0S and the UNIVAC II08/EXEC 8 com-

puters. Both 3D POST and 6D POST are coded exclusively in FORTRAN IV and are

compatible with the FORTRAN IV EXTENDED compiler. The 6D POST is not available

on any computer/system other than the CDC 6600/NOS. The minimal computer re-

quirements for 3D and 6D POST are given in Table V-I.

TABLE 18.- MINIMAL POST COMPUTER REQUIREMENTS

Computer Operating Precision 3D Storage, 6D Storage,
' System Words Words

CDC

6400

6500

6600

IBM

370/165

UNIVAC

NOS, SCOPE

3.4

OS

EXEC 8

Single

Double

Do ub le

140 0008*

50 000

55 000

140 0008

70 000

65 000

*Nonoverlayed version.

As with any larger computer program, special operating system-dependent

techniques can be used to reduce core requirements or increase execution speed.

For example, the overlay structure can be tailored to any given computer/system

to reduce core size and execution time. The specific compiler used can also

significantly impact execution speed. For example, the CDC 6600 POST executes

about two times faster using the FTN compiler than it does using the RUN com-

piler. These system-dependent program tradeoffs and modifications can easily

be made once the standard version is operating correctly on any particular com-

_uter system.

Computer Precision

There are two important numerical techniques used in POST that require con-

siderable computational precision to function properly. These techniques are

(I) numerical differentiation, and (2) numerical integration. The most diffi-

cult computational problem encountered in POST combines both numerical tech-

niques, that is, the approximation of trajectory partial derivatives by numeri-

cal differentiation of numerically integrate d trajectories. This numerical

process dictates the computer precision requirements for POST. Computational

experience indicates that a 64-bit word is usually adequate for the numerical

differentiation of various trajectory variables. This means that double

123



preclsion is required to run POSTon any computer that has a 32-bit single pre-
cision word. As a result, the program must be executed in double precision on
IBM and UNIVACcomputers. Single precision is adequate on all CDC6000 series
computers because CDChas a 60-blt single precision word.

To numerically differentiate the dependent variables (target conditions,
inequality constraints, and the optimization variable) with respect to the in-
dependent variables, the user must input the perturbation to be used for each
independent variable. The user must also select the integration method and the
initial integration step size. Generally, the numerical truncation error asso-

ciated with the numerical integration process tends to cancel itself in the dif-

ference quotient; however, propagation of local round-off error does not cancel.

Fortunately in most trajectory problems, the number of integration steps is

sufficiently small so round-off error is not a major problem. As a result, the

selection of the integration method and step size, although important in terms

of run time and accuracy, is not critical to the numerical differencing tech-

niques employed. Critical, however, is the proper selection of the control vari-

able perturbations that are used in the divided difference formula. If the

perturbations are excessively large, accuracy is lost because of truncation

error in the first and second difference formulas. If the perturbations are too

small, accuracy is lost due to subtraction of the nominal value from the per-

turbed value on a finite word length computer. Problems associated with the

word length can, and have for the most part, been eliminated by using either CDC

computers or by using double precision arithmetic on computers with smaller

single precision word length. However, control of the truncation error in the

difference formula is difficult and numerical experience on a given problem/

computer/operating system is sometimes required. To alleviate this problem an

automatic perturbation step size controller is incorporated in the latest ver-

sions of the programs. This routine requires an initial guess for the perturba-

tions in each independent variable. The initial guess is used unless the re-

sulting divided difference quotient is judged to be sufficiently inaccurate as

to require modification. Modification is accomplished by first rerunning the

perturbation with its sign changed to obtain a symmetric difference for those

variables with incorrect perturbations. The symmetric differences are then

used on the present iteration. On the next iteration, the perturbations are

adjusted to ensure the proper amount of variation in the dependent variables

to secure adequate accuracy in the sensitivities.

Runtime

The runtime, as measured by the Central Processor Unit (CPU) clock, is a

key input to all computer charging algorithms. As a result, it is important to

understand what factors contribute to the CPU time requirements when running

POST. Understanding will enable users to make reasonable estimates of computer

budgets associated with using POST programs.

The CPU time for a POST run depends on numerous factors. The most impor-
tant are as follows:
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Computer hardware and system software characteristics;

Type of trajectory and vehicle being simulated;

Accuracy requirements;

Number of degrees of freedom in the targeting/optimization formulation.

The computer and the operating system used clearly play a primary role in

determining the runtime of any program. In addition, the CPU time is not the

only variable used in determining the cost-effectiveness of a given program/

computer system interface. For example, the CPU time required to run a POST

input deck on the CDC 6600/NOS/FTN may be only a fraction of that required to

run the same deck on the CDC 6400/SCOPE 3.4/RUN; however, it may be less ex-

pensive to use the older and slower computer because of the charging algorithms

involved and the demand on each system. The point being made is that the only

practical way to estimate computer costs is through computational experimenta-

tion with POST on your computer system/problem. Generally, minor changes can

be made to the program executive structure (overlays) to eliminate any severe

incompatibilities between POST and the host computer system.

A second key factor impacting runtime is the type of trajectory and ve-

hicle being simulated in any given problem. For example, exoatmospheric tra-

Jectories can be integrated more rapidly than atmospheric ascent of entry

trajectories. Also problems that require large amounts of tabular data to de-

scribe the mass properties, the aerodynamics, and the propulsion system will

require longer corresponding runtimes. The total flight time of the trajectory

being simulated is a prime driver in the computational costs. Experience indi-

cates that long duration flights generally require more computer time than

shorter flights because of the direct increase in the number of required inte-

gration steps. The amount and frequency of printout data requested are also an

important consideration that can always be controlled by the user. In extreme

cases, runtime can double or even triple when the full 198 variable printblock

is requested at every integration step. Thus, to reduce runtime, only the mini-

mal amount of data required to accurately model the vehicle should be input and

only the minimal amount of data required to interpret the results should be

output.

Accuracy, which is directly related to the selection of the integration

method and the integration stepsize, is an important consideration in every

problem. Generally speaking, the standard fourth order Runge-Kutta algorithm

with the appropriate stepsize is the most cost effective numerical integration

method; however, under special circumstances higher order methods may be faster.

For example, Keplerian orbits can be integrated ten times faster with the Krogh

method than with Runge-Kutta. The best approach to determining the impact

stepsize on accuracy and CPU time is to run several single pass trajectories.

A compromise stepsize can then be determined from plots of integration error

and CPU time versus stepsize.
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The final factor influencing runtime is the numberof degrees of freedom
in the targeting and optimization formulation. The number is computed as the

difference_between the number of independent variables, m, and the average

number of active constraints, H a . The number of degrees of freedom can be use,.

to establish an estimate of the number of iterations, N, required by the accc]

erated projected gradient algorithm to achieve the optimum trajectory. This

estimate is given by the formula

N = m - E + K (l_,
a

where K is the number of iterations required to achieve a feasible, targeted

trajectory. For example, if there are ten independent variables, three target

conditions, and two inequalities, one of which is active, then

N = (i0 - (3 + i)) + K = 6 + K (2)

is generally a reasonable estimate of the total number of iterations required

to achieve an optimum trajectory. The number of iterations required to achie_ ....

a feasible trajectory, K, varies as a function of the initial guess. For a

reasonably accurate initial guess, K can be estlmated as the intege[ part of

/2. In the case where there are no inequality constraints, then n is equal
a a

to the number of target conditions defined by the user.

The total CPU time can then be approximated as

CPU = N(T/I) (3j

where T/I is the average time required to make a single iteration. T/I can be

estimated in terms of the single pass CPU time, _, as

T/I = (i + m + 6)

where 1 + m trajectories are required to obtain the sensitivity matrix, and si_

trajectories are required (on the average) to perform the univariant searches

(minimum is two and the maximum is i0) 0 This estimate for CPU per iteration if

conservative due to the fact that POST does not integrate the complete trajec-

tory on each of the m perturbed runs. As a result, it is generally more ac-

curate to determine T/I directly from actual computations. For this reason, tl0

CPU time used per iteration is computed and included in the iteration summary

printout as CP/ITR. The calculation of CP/ITR requires a machine-dependent

subroutine that usually must be modified for each computer/system.
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