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SUMMARY

A detailed description is given of how the decoupling approximation known
as the doubly asymptotic approximation (DAA) can be implemented with NASTRAN to
solve shock problems for submerged structures. The general approach involves
locating the nonsymmetric terms (which couple structural and fluid variables)
on the right-hand side of the equations. This approach results in coefficient
matrices of acceptable bandwidth but degrades numerical stability, requiring
a smaller time step size than would otherwise be used. It is also shown how
the structure's added (virtual)mass matrix, a necessary ingredient to DAA, can
be calculated with NASTRAN. The version of NASTRAN used is NASA's standard
level 16 with one program modification, velocity-dependent nonlinear loads, for
which the FORTRAN changes are listed.

STATEMENT OF THE PROBLEM

The general class of problems known as fluid-structure interaction
problems includes the special case of determining the shock response of sub-
merged structures. This is of particular interest to naval engineers concerned
with the dynamic structural response of submarines (including the hull,
appendages, and internal equipment).

Consider the idealized situation consisting of a ring-stiffened cylindrical
shell with flat end caps which is deeply submerged in water, initially at rest,
and subjected to the shock of a distant underwater explosion (fig. 1). The
general problem is to compute the time-dependent elastic structural response of
the cylinder. We will further simplify the problem with the following
assumptions:

1. The shock wavefront in the vicinity of the cylinder is planar,
a reasonable assumption whenever the source of the shock is located far away.

2. The time history of the free-field incident pressure is a step
function. This assumption can be made without loss in generality since the
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structural response to an arbitrary time variation of the pressure history can
be easily obtained by a convolution integral involving the step response. (See
Appendix D.)

3. The shock wave hits the cylinder from the side rather than from
the end or from some more general oblique direction. This assumption results
primarily in simplifying the data deck which describes the problem. Removing
the restriction presents no conceptual difficulty.

BACKGROUND

In either the absence or the presence of the surrounding water, the
structure can be modeled with finite elements in the usual way: with plate or
shell elements for the unstiffened cylinder, and with beam elements for the
ring stiffeners.

The fluid is generally treated as an acoustic medium (e.g., see ref. 1):
a compressible, inviscid fluid which undergoes only small amplitude motion and
whose pressure p satisfies the wave equation

v2p = p/c? 1)

where dots indicate time differentiation and ¢ is the speed of sound. At an
interface between the fluid and a solid

ap - . .
In p U-n (2)

where n is the unit outward normal from the solid at the interface, o is the
fluid mass density, and u, is the outward normal component of displacement of
the interface.

In principle, the fluid part of the problem can be handled by modeling a
portion of the fluid with finite elements (refs. 2, 3). In reference 3, for
example, the analogy was drawn between the scalar wave equation (1) and the
elasticity equations so that a standard structural analysis computer program
like NASTRAN (refs. 4, 5) can be used to solve problems involving the wave
equation, Poisson's equation, or Laplace's equation. For finite fluid regions
such an approach presents no significant problems. However, for structures
submerged in infinite fluids, the analyst is faced with the additional problem
of truncating the fluid and applying a radiation condition at the artificial
boundary in order to absorb outgoing waves. Even if a reasonable radiation
condition could be formulated, the cost of explicit fluid modeling could be
prohibitive.

An attractive alternative to such modeling is provided by approximations
(refs. 6, 7) which uncouple the structural response from the fluid response in
.the sense that the fluid pressure at the fluid-structure interface is deter-
mined (approximately) from a knowledge of only the interface motion. Although
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several such decoupling approximations have been formulated, one which is
currently attracting attention is the doubly asymptotic approximation (DAA) of
Geers' (ref. 6). This paper shows how the DAA scheme can be cast in a form
which can be conveniently solved by NASTRAN. The version of NASTRAN used is
NASA's standard level 16 with one program modification: velocity-dependent non-
linear loads. The less efficient earlier version of NASTRAN, level 15, can
also be used, although at greater computer expense. The addition of velocity-
dependent nonlinear load capability is convenient, but not crucial, for the
NASTRAN implementation of DAA.

THE DOUBLY ASYMPTOTIC APPROXIMATION (DAA)

A submerged structure subjected to an underwater shock wave experiences,
at any given time t, a total dynamic pressure p which can be considered to
comprise two components: an incident pressure p; which would occur if no
obstacle (the structure) were present, and a scattered pressure pg which is the
difference between the total pressure and the incident pressure. Thus,

P=0p; *pg | (3)
The scattered pressure Py is sometimes further decomposed as

Pg = Ppg * Py (4)
where p__ 1is the scattered pressure which would result if the structure were
rigid ahd stationary and p,, the radiated pressure, is the remainder. Of the
three components of pressure, only py depends on the structural motion,

whereas both p; and pyg can be computed as if the structure were rigid and
stationary.

For the submerged ring-stiffened cylinder of interest (fig. 1), the plane

wave incident pressure pj is taken to be a step function (with wavefront moving
to the left):

P; (x,t) = poH(x - x4 + ct) (5)
where H is the dimensionless Heaviside unit step function (zero for negative
argument and unity for positive argument), x8-ct is the location of the wave-

an

front at time t, c is the speed of sound, Pp 1s a constant.

The scattered pressure pg, which depends on the structural motion and
hence cannot be precomputed as a function of time, is determined by the doubly
asymptotic approximation (DAA) (ref. 6) from

. -1 s
p * pCMa Aps = pCug (6)

where pg is the vector of unknown scattered pressures at the wet grid points of

209



the structure, M; is the (full) added mass matrix for the structure (see
Appendix A), p and c are the fluid mass density and sound speed, respectively,
A is a diagonal area matrix converting grid point pressures to grid point
forces, and Us is the vector of scattered wave particle accelerations normal to
the structure's surface. The bar is used to distinguish this vector from the
complete acceleration vector ug, which involves all structural degrees of
freedom rather than just the normal components at wet points. Surface normals
are taken as positive going into the fluid.

Surface normal accelerations, like pressures, are decomposed into incident
and scattered components; hence,

ug, = u - u (7N

where U is the vector of total normal accelerations at the wet grid points, and
U; is the vector of normal components (positive into the fluid) of incident
ftuid particle accelerations.

Equation (6) was designated '"doubly asymptotic' because it exhibits the
correct asymptotic behavior at both the low and high frequency limits: at the
low frequency limit (which normally corresponds to late time behavior for
transient situations), the first term of (6) is dominated by the second term,
and (6) reduces to

F =Ap_ = M u (8)

in which the fluid loading is due to added (virtual) mass effects alone. At the
high frequency limit (early time behavior), the first term of (6) dominates the
second term, and (6) reduces to

(9

Pg = pCUg
which is the usual radiation damping relation. Equations (8) and (9) are
referred to individually as the virtual mass and plane wave approximations,
respectively.

In general, the DAA, equation (6), yields better results than either of
the special cases, equations (8) or (9). Huang (ref. 8) compared a DAA
solution to an exact solution for a spherical shell and found that the DAA
solution had slightly faster oscillations and stronger damping. Nevertheless,
the DAA provides a good compromise between cost and accuracy for underwater
shock problems.

DAA WITH NASTRAN

The differential equation of motion for the ring-stiffened cylinder of
interest (fig. 1) is
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Mi+ Ku= -Ap = -A(p; +p,) (10)

S

where u is the vector of unknown displacements at the grid points, M and K are
the structure's finite element mass and stiffness matrices, respectively, p is
the vector (of dimension equal to the number of wet grid points) of fluid
pressures at the wet grid points, and A is an area matrix converting pressures
to forces. A is not square (and hence not diagonal) because the vectors u and
p are of different dimension. A contains non-zeros (equal to the area contri-
butions) only at the intersections of rows corresponding to wet structural
degrees of freedom with the columns of associated pressure variables. Thus, each
row and colum of A has at most one non-zero entry. A reduces to A if the zero
rows are deleted and if the wet structural degrees of freedom are sequenced in
the same order as the corresponding fluid pressure degrees of freedom. The
area matrices defined here are 'lumped" rather than ''consistent'. To switch to
consistent loading, one need only change the area matrices A and A.

In equation (10), the total dynamic fluid pressure p is decomposed into
incident and scattered pressures given by equations (5) and (6), respectively.
Since (6) is a differential equation, the complete problem involves solving (10)
and (6) simultaneously, where the right-hand side of (6) is replaced by its
equivalent from equation (7).

The incident fluid particle normal acceleration vector ﬁi is computed as
follows: In general, the ratio of the pressure to the volume strain defines
the bulk modulus k. Since k = pc? for the acoustic fluid, we have, for a plane
wave,

auX ) aux
P= kg T et 5 (11)

In particular, for the incident component,

au

xi
Py 7 -pc? 3X (12)
From (5) and (12), it follows that
p; = -eC U, (13)

where ﬁxi is the x-component of incident fluid particle velocity. The normal
component of incident particle velocity o is

ﬁi = U cos © (14)

Hence

p; €Os & = -pcC U, (15)
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Because p; as given by (5) is a step function, the ﬁi needed on the right-
hand side of (%) is a Dirac delta. This problem can be avoided by defining a
new variable q such that

a = p, (16)
and time integrating equation (6). Equations (10) and (6) then become
Mi + Ku = —Kpi -Aq
(17)

AgQ+pcC AMélAq = pcKTfH Ap; cos ©

where the second of equations (17) has also been multiplied by the area matrix
A to symmetrize the coefficient matrices, and

AT = K (18)

In matrix format, these equations are

RN EIH

K

(19)

u -Kpi—Kq

q

pcAM;llA pcKTﬁ + Ap; cos 6

which is the form of the equations which NASTRAN uses.

It is interesting to observe that the new variable q defined by equation
(16) is, in ecsence, the (scattered) velocity potential, since for an acoustic
fluid the velocity potential ¢ is related to the pressure p by (ref. 9)

p=-p4 (20)

Thus, as a consequence of trying to avoid the numerical problem of a Dirac
delta, the fundamental unknown for the fluid is switched from the pressure to

the velocity potential, thus returning to the established convention of fluid
dynamicists.

In equation (19), the unknowns u and q are defined using GRID cards. For
the variables q, only one degree of freedom per point is retained. The usual
finite element modeling of the structure yields M and K. The damping matrix is
created by attaching dashpots (CDAMPi) between each interface fluid point and
ground. The fluid matrix p cAMa! A can be assembled either by supplying it
directly (on DMIG or DMI cards) or by letting NASTRAN compute it using an

explicit finite element model of a portion of the fluid region. In Appendix A,
it is shown that
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pcAM:A = cH (21)

where H is the fluid stiffness matrix condensed to the wet degrees of freedom.
This condensation (using OMIT cards) is not necessary for the calculation but
may result in a faster integration. The multiplicative constant c in the term
cH, equation (21), can be automatically incorporated by setting the shear
modulus on the MAT1 card equal to ¢ rather than unity.

The right-hand side of (19) consists of both time-dependent and velocity-
dependent loads, which are supplied using TLOAD1 and NOLIN1 cards, respectively.
(See Appendix C.) The input of the incident pressure is particularly simple
since it is a step function. The input data can be further simplified by using
the DELAY card to indicate that the incident wavefront (which is traveling at
speed c) does not reach all points at the same time.

In equation (19), M and A are diagonal matrices, and K and H are positive
definite and symmetric. K is also large and banded. H can be either large and
banded, or small and full, depending on whether a static condensation (with
OMIT's) is applied to it.

The unknowns in equation (19) are arranged so that the structural and
fluid variables are uncoupled on the left-hand side, the only coupling
occurring on the right. Thus the grid points should be sequenced to maintain
the indicated partitioning and to give both K and H the smallest possible matrix
wavefront (refs. 10, 11).

The time step size needed to achieve numerical stability when the velocity-
dependent terms are on the right was found to be about 1/10 of the transit time
(the time required for a wave to travel one radius of the cylinder at speed c).

ALTERNATIVE DAA APPROACHES

Since the velocity-dependent loads in equation (19) are linear, they can
be moved to the left-hand side and incorporated in the damping matrix. Symmetry
(but not positive definiteness) is then retained by dividing the second equation
in (19) by -pc. Since this formulation causes fluid-structural coupling on
the left, the unknowns have to be sequenced taking into account this new _
connectivity. This approach is practical only if the fluid stiffness matrix H
is not condensed but left large and banded, so that the overall system can be

made banded. Otherwise, the added mass matrix coupling causes non-zeros far off
the matrix diagonals.

The principal advantage in placing the velocity-dependent terms on the left
is numerical stability, so that a larger integration time step can be used.
With those terms on the right, as in equation (19), the matrix bandwidth {(and
hence wavefront) is smaller, and the user has the option of condensing the fluid
"stiffness'" matrix cH into the smaller, but full, matrix pC}\M; A.

213




Another possible way to formulate the DAA is to make use of the decompo-
sition of scattered pressure pg into rigid body scattered and radiated compo-
nents (eq. (4)). Since only the radiation pressure py, depends on structural
motion, the rigid body scattered pressure prg can be precomputed and combined
with the incident pressure pi. In that case, the DAA (eq. (6)) must supply
only py, which satisfies

f)r + pCM—lAp =pcu (22)

where the normal component of fluid particle acceleration at the fluid-solid
interface is decomposed into

usu;fu ot (23)

For rigid stationary structures, equation (23) simplifies to

Ui * g = 0 (24)

at the interface, so that, in general,

u = ﬁr (25)

at the interface. Thus, (22) is equivalent to
f)r + pCMz;lApr =pcu (26)

The advantage of this general approach is that the rigid body scattered
pressure pyg can be computed in advance to whatever accuracy one wants, so that
the only approximation remaining involves the radiation pressure py. The dis-
advantage, however, is that the pre-calculation (a nontrivial one) has to be
done at all. The decision of whether to use equation (6) or (26) also depends
on the relative sizes of p.g and py, since if Py Were small it would not make
sense to compute it accurately. Unfortunately, the relative sizes are problem-
dependent and hard to estimate.

.EXPLICIT FINITE ELEMENT FLUID MODELING

The problem of computing the linear shock response of submerged structures
can, in principle, be solved by explicit finite element modeling of a portion
of the fluid volume. The purpose of this section is to formulate the problem
sufficiently so that it can be solved by NASTRAN once the user has picked a
suitable radiation condition to apply at the outer fluid boundary.

The total dynamic fluid pressure satisfies the wave equation (1) in the

field. This pressure can be decomposed into the sum of incident and scattered
pressures, p. and Dg, as in equation (3). Since 3 is defined to satisfy (1),
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pg must also satisfy the wave equation (1) At a fluid-solid interface, the
boundary condition (2) becomes

3p ap. )
S _ _ 1 _ —
;m . n PY (27)

where, for the finite cylinder of figure 1 subjected to a plane wave incident
pressure, equation (5), we have

3p; op;
Sn - Py DT g cos @ (28)
and
op.
i_1-
% - c P (29)
Thus, from (27),
ap
s _l .
o p cos 9 pll (30)

The above Neumann boundary condition is equivalent to specifying a ''load' on
each interface pressure variable pg equal to

AP, cos 8+ p U ) (31)

where A is the area associated with the interface point, so that the resulting
finite element equations take the form (ref. 3)

M o O L 1 R 2 L (32)
cQ q cH j(a Apicose+ pCA’u

where here q, defined as in equation (16), includes all fluid points, not just
interface points. The area matrices also have to be redefined slightly to
reflect the change in dimension of the vector q. The above formulation is
consistent with the definitions of fluid inertia Q and stiffness H given in
Apg?ndlx A, which differ from the definitions of ref. 3 by a constant factor

p Ct. :

Equation (32) is complete except for a radiation condition on the pressure
variable q. Once the user decides what radiation condition to use, it can be
incorporated into the matrix equation (32).

It is interesting to observe the similarity between the explicit finite
element formulation, equation {32), and that which arises from the doubly
asymptotic approximation, equation (19). The right-hand sides and the overall
stiffness matrices are the same in both cases. In (32), the overall mass
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matrix now includes the fluid inertia, which NASTRAN computes whenever the user
supplies a non-zero mass density, in this case equal numerically to 1/c. The
damping matrix in (19) also appears in (32) if a radiation condition involving
dashpots is used, although in (32) the dashpots comnect the outer boundary
points, rather than the interface pressure points, to ground.

Another approach using explicit fluid modeling was recently described by
Newton and Atchison (ref. 12), who elected to use the full fluid pressure p
(rather than pg) as the fundamental pressure unknown. In that case, the time-
dependent part of the right-hand side of the equations of motion is replaced by
a non-zero initial condition on p and p throughout the fluid region.

The main impediments to solving the shock problem by these approaches are
the potentially high cost of modeling a three-dimensional region of fluid and
the difficulty in determining the radiation condition. For one-dimensional
problems, the correct radiation condition merely involves attaching grounded
dashpots to the outer fluid boundary (ref. 2). However, for general three-
dimensional situations, the mathematically exact radiation condition is a more
complicated relation (which cannct be modeled using only masses, springs, and
dashpots) coupling all pressure variables at the outer boundary (ref. 13).
Since the implementation of such a condition is impractical, the analyst must
resort to approximate radiation conditions which will not absorb 100% of out-
going waves. It is for reasons like these that decoupling approximations such
as DAA are being used.
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APPENDIX A - ADDED MASS MATRICES

Consider an elastic structure submerged in a finite acoustic fluid, whose
pressure p satisfies the wave equation

v2p = p/c? (A1)

where ¢ is the speed of sound in the fluid. If both structure and fluid are
modeled with finite elements, the resulting matrix equations take the general

form (refs. 2, 3)
RN IR RN
-pA” Q P 0 H p 0

where M and K are the usual structural mass and stiffness matrices, Q and H
are the inertia and 'stiffness'matrices for the fluid, A is the area matrix
converting pressure to force at the fluid-structure interface nodes, and o is
the fluid's mass density.

In equation (A2), H can be assembled from standard 3-D elasticity finite
elements (ref. 3) if only the x-component of displacement at each point is
retained (to represent the scalar quantity p) and Hooke's law is specified as

— ] /

Tx ’ ; 1 -1 -1 € x
f -101 -1
Yy “yy
: . -
UZZ { t 1 1 1 /« €ZZ >
o T 1 \ oy (A3)
0YZ » : 1 i Tyz
o__ | ; 1 Y
XZ J L ] XZ /

In terms of the usual engineering constants, equation (A3) is equivalent
(numerically) to choosing the shear modulus G and Young's modulus E as
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"\ G=1

E

aG, o>>1

whose o must be large enough so that o+l is indistinguishable (numerically)
from a. On most computers, o = 1020 suffices. Equation (A4) applies only in
three dimensions. In two dimensions (plane stress), the corresponding constants
are
G=1
(A5)
E = BG, Bg<<1

where 8 should not be so small that 1+g is indistinguishable (numerically) from
unity. On most computers, 8 = 10™* suffices.

Equation (AS5) also applies to axisymmetric problems formulated in cylin-
drical coordinates with axisymmetric elements such as NASTRAN's CTRAPRG. How-
ever in this case only the z-component of displacement can be used to represent
pressure, in contrast to Cartesian coordinates in which any of the three trans-
lation components can be used.

In equation (A2), Q can be assembled from standard elasticity finite
elements (ref. 3) if the mass density assigned to the material is numerically
equal to 1/c2.

For an incompressible fluid, c+« (or the frequency w~0) and the wave
equation (Al) reduces to Laplace's equation

v2p = 0 (A6)
Q}so, Q = 0, so that p can be eliminated from (AZ) to yield
M+ o AR A G+ Ku = £ (A7)
thus defining the added mass matrix
(A8)
for the submerged structure.

We observe that the area matrix A is non-square since the vectors u and p
are of different dimension. In addition, A is such that each row or colum has
but one non-zero entry. This entry is the area assigned to a particular node
and located at the row corresponding to the nodal outward normal displacement
and column corresponding to the associated pressure variable. Thus, since A
involves only the interface variables, the fluid stiffness matrix H in equation
(A8) can be reduced by static condensation (Guyan reduction) prior to performing
the matrix product in (A8). If the condensed stiffness matrix is denoted H,
then the corresponding added mass matrix is

M, = o AH LA (A9)
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where A 1s the diagonal area matrix and M, involves only wet degrees of
freedom rather than all structural degrees of freedom as in Ma'

A physical interpretation of a particular ij entry in M, or Mé is that it
is the normal fluid force induced at point i (on the fluid-structure interface)
due to a unit normal acceleration at interface point j, with all other points
held fixed. Thus, it is clear that M, is a fully populated matrix. Since the
interface boundary condition is

p
an pu, (A10)

the specification of acceleration at the interface is equivalent to a Neumamn
boundary condition. Hence, the calculation of the added mass matrix is _
mathematically equivalent to solving Laplace's equation (A6) in the fluid region

with Neumann boundary conditions. For uniqueness, p must be specified somewhere.

This Neumann problem is also equivalent to a steady-state heat conduction
problem in which one seeks the temperatures at all mesh points (on the fluid-
solid interface) due to a unit heat source at each such point in turn. The
matrix H in equation (A8) is exactly the heat conduction "stiffness' matrix
computed by finite element heat transfer computer programs if the thermal
conductivity is specified as unity.

Since, in heat conduction problems, the extreme temperatures must occur
on the boundary, and uneven temperature distributions can be maintained only by
supplying heat at the warmest point on the boundary and removing heat from the
coolest point (ref. 14), it follows that the individual elements of the added
mass matrix are always positive.

Thus far, this discussion of added mass matrices has assumed the fluid
region to be finite. Of more interest in naval applications is the infinite
region. In this case one can define and model a finite region of fluid whose
outer boundary (where p=0) is "sufficiently far' from the structure. The major
problem facing the analyst is deciding where to locate this outer boundary. For
a given problem, one approach to insure that the outer boundary is distant
enough is to compute the added mass matrix M, (condensed to include only wet
degrees of freedom) with two different locations of the outer boundary and look
for convergence of the dominant terms in the matrix.

The calculation of added mass matrices for structures submerged in
infinite fluids would be more appealing if it did not involve the explicit
modeTing of a portion of the fluid. Since the problem to be solved is a
Neumann problem in the infinite region surrounding the structure, it can also
be formulated in terms of simple sources distributed over the fluid-solid
interface (ref. 15). For economy, the source density distribution is usually
assumed constant over each surface element. Consequently all matrices
(including the added mass matrix) refer to element centroids rather than to the
finite element grid points. One possible approach for transforming an added
mass matrix from element to grid point values is as follows: For simplicity
assume a rectangular mesh of surface elements (fig. 2), where a typical element
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(number 3} is shown connecting grid points 5, 6, 15, and 16. The simplest
relationship between the central and nodal displacements is the arithmetic
average

~

uy = (u5 U *ugc ulé)/4 (A11)

A more complicated relation taking into account the element shape function can
also be written. The complete transformation involving all elements is of the
form '

u=ru (A12)

where U is the displacement vector for the element centroids, u is the dis-
placement vector for the grid points, and T is the transformation matrix. The
added mass matrix can then be computed from

R Uy
Ma =T Ma r (A13)
which is the usual transformation relationship for finite element matrices

(ref. 16). In equation (Al3), M; is the added mass matrix referred to n
centroidal coordinates. The transformation (Al3) may result in converting My,
which is non-singular, into a singular matrix M,.

Virtual Mass

It is of interest to relate the added mass matrix (as used here) to the
added mass (virtual mass) defined by hydrodynamicists (e.g., ref. 17). Virtual
mass 1s a scalar quantity defined and computed for rigid structures oscillating
in a specific rigid body motion, e.g., heave of a ship hull form. Since the
added mass matrix is general enough to allow arbitrary elastic structural
motion, virtual mass is merely a special case.

Recall that a physical interpretation of the added mass matrix is that a
particular ij entry is the normal fluid force at point i due to a unit normal
acceleration at j, with all other points held ftixed. In computing virtual mass,
the acceleration at all points is specified, and the component of force in a
particular direction is desired. For example, if ¢ is a vector describing the
amplitude of the desired rigid body motion, the virtual mass m in the same
direction is

me= gl M, ¢ (A14)
where M; is the added mass matrix and each component of ¢ is equal to the
cosine of the angle between the surface normal at a point and the direction of
motion (assuming unit amplitude motion). FEquation (Al4) is identical in form
to the definition of generalized mass for vibration mode shapes (ref. 18).

In general, there exist six rigid body modes (three translations and three
rotations), each of which induces six components of force. Thus (Al4) can be
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generalized to define a 6x6 rigid body virtual mass matrix m whose ij entry is

. T
mij 95 Ma ¢j (A15)

where ¢j is the vector specifying the rigid body acceleration and ¢; is the
vector “describing the direction of the generalized force induced.

APPENDIX B - USE OF STRUCTURAL SYMMETRY

In general, it is economically advantageous to exploit as much structural
symmetry as possible when performing a structural analysis. This exploitation
is possible whenever the structure, in the absence of loads, possesses geometri-
cal and structural symmetry (ref. 19). Since time-dependent nonsymmetric
loads can always be decomposed into the sum of symmetric and anti-symmetric
parts, the overall problem can be decomposed in the same way. The purpose of
this appendix is to summarize how this decomposition works for the class of wave
problems arising in computing submerged shock response.

Consider the cylinder cross-section shown in figure 3 with a typical point
number 1 and its image point number 2. The applied loads at the two points can
be arbitrary functions of time.

The cylinder possesses numerous planes of symmetry, including the xz- and
yz-planes. Thus, only one-fourth of the circumference has to be modeled. (In
this particular case, the structure is axisymmetric and thus can be modeled
using axisymmetric elements with nonsymmetric loading.) The indicated loading
is symmetric with respect to the xz-plane and nonsymmetric with respect to yz.
Since the problem is linear, the loading can be decomposed as shown in figure 3.
with

F (1) = (Fy(t) + Fy(1))/2

(B1)

Fa(t) (Fl(t) - Fz(t))/z

where the decomposition results in one problem which is symmetric with respect
to the yz-plane and another problem which is anti-symmetric with respect to yz.
For each component part, it suffices to model but one quadrant (fig. 3) and

apply the appropriate boundary conditions (either symmetric or anti-symmetric)
for all points in the symmet:y planes.

For structural grid points (whose fundamental unknown is displacement)
lying in a plane of symmetry, the boundary conditions are that the points can
suffer no translation out of the plane of symmetry and no rotation about in-
plane lines. The anti-symmetry boundary conditions are that the complementary
degrees of freedom are constrained. For example, in figure 3, all points
lying in the yz-plane must satisfy
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c
1
(an)
1]

6, = 0 for symmetry
(B2)

(o
1]
=
n

y ;= 0 = 0 for anti-symmetry

where 6 denotes rotations.

For fluid grid points (whose fundamental unknown is pressure) lying in a
plane of symmetry or anti-symmetry, the boundary conditions are

P
N 0 for symmetry

(B3)
p = 0 for anti-symmetry

In finite element analysis, the above symmetry condition on p is a natural
boundary condition and thus automatically satisfied if the unknown p is left
free.

These conditions on fluid pressure grid points are applicable for any
pressure points lying in a plane of symmetry or anti-symmetry, including-those
occurring in an explicit modeling of the fluid volume for the purpose of
computing added mass matrices; i.e., the added mass matrix also has to exhibit

the proper symmetry.
APPENDIX C - VELOCITY-DEPENDENT NONLINEAR LOADS

The finite element formulation derived to implement the doubly asymptotic
approximation (DAA) with NASTRAN involves loads which, at each time step, depend
explicitly on the current structural motion rather than on time. The standard
versions of NASTRAN (levels 15 and 16) currently allow displacement-dependent
loads but provide no convenient way to specify loads which depend on velocity
or acceleration. (The implementation of such loads with a combination of
transfer function (TF) and nonlinear load (NOLINi) cards is not only inconven-
ient but also results in nonsymmetric matrices.)

NASTRAN can be easily modified to allow the user to apply velocity- and
acceleration-dependent loads using the NOLINi cards now used only for dis-
placement-dependent loads. This appendix summarizes the FORTRAN changes to
NASTRAN (level 16) needed to implement such loads.

The approach taken is compatible with that used in MSC/NASTRAN (ref. 20),
in which the user indicates velocity dependence by adding 10 to the displace-
ment component number CJ or CK on the NOLINi card. This modification is
extended here to allow acceleration dependence, which is indicated by adding 20
to CJ or CK. Acceleration dependence as implemented here, however, is not fully
general, since it does not allow a change in the time step size. The velocity
dependence is fully general.
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The finite difference formulas used to compute velocity and
acceleration at the nth time step are

ﬁn = (u, - u,_;)/at (C1)

. i 2
u = (un 2un_l + un_z)/At (C2)

where u, is the displacement vector at the nth time step and At is the time step
size.

The listing of the FORTRAN changes to NASTRAN (level 16) appears in
figure 4, in which the format of CDC's UPDATE utility is used. These modifica-
tions were adapted from similar changes made to NASTRAN's level 15 by Messrs.
James M. McKee and Myles M. Hurwitz of the David W. Taylor Naval Ship Research
and Development Center.

APPENDIX D - RESPONSE TO ARBITRARY TIME-DEPENDENT
LOADING BY CONVOLUTION

When the linear shock response of large complex structures is to be
computed with NASTRAN, it is often preferable to compute first the response to
a step function, because (1) input data preparation for NASTRAN is simplified
considerably, and (2) the response for any arbitrary time-dependent loading can
be easily computed later by a convolution (superposition) integral (e.g.,
ref. 21), the formulas for which are summarized here.

Consider the general equation
Lw(x,t) = £(t) (b1)
where L is a linear differential operator, w is some response variable (e.g.,
displacement, velocity, stress, etc.), and the forcing function f is considered
here to represent the incident free-field pressure which arises in underwater

shock problems.

If ws(x,t) is the response to a unit step function, then

t
w(x,t) = f(O)ws(x,t) + f'(T)WS(X,t-T)dT
o (02)
= £(t)w, (x,0) + i f(T)W;(X,t-T)dT
0
where we define
W!(x,1) = ;t_ws(x,t) (D3)
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Either of the quadrature formulas (DZ) can be used to compute the response to
an arbitrary forcing function f£(t). Since the two relations give different
results numerically, the convolution can be computed both ways and averaged.
For our work, a short computer program was written to compute w, given tabu-
lated values of f and LA for non-uniform spacing of the abscissas.
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*IDENT E=B42976
*COMPILE OPOuL,IFS1P,TRO1C+TRI1D
SDELETZ OPDW.70,0P04,78

VELOCITY- OR ACCELERATION-DZIPENOENT NL LOAD

LOOK FOR COMPONENTS ,GT. 6 FOR INDEPENOENT DOF AND PACK WITH
NOLIN CARO TYPE
VELOCITY (OR ACCELFRATION} IS INDICAYED BY ADDING 18 (OR 20) TO
COMPONENT

OQOQOVOOV

1UD0T=8
IF(BUF(6).LE.6) GO TO 1341
IUDOT=(BUF (657100 * 10
BUF (6) =BUF (6)-TUDOT
1341 IF(II.NE.2) GO YO 1345
IF(BUF(B) JLE.6) GO TO 1345
IGET=(BUF(8) /1) * 10
BUF (8)=8BUF (8)-IGET
TUBOYT=IUDOT+10*XIGET
SOELETE 0OPD4,87
8UF(2) = II ¢ IUDOT
POELETE OPD&, 1634 0P0u. 164
IGEY= BUF(4) - (AUF(1)/4M) * 19
IF(IGET.NE+ 2. AND.KK.EQ. 8) GO TO 1336
SOELETE IFS1P.243
IFC (M(AI/18) +67.2) GO TO 8
IFL (M(6)~ (1(6)710) * 18) .GT.6) GO TO &
®OELEYE IFS1P,.250
IFC (M(8)/10) ,GT,.2) GO TO 6
IFC (M(8)= (ME8)/10) * 30} .GT.6) GO 10 8
*INSIRT TROLC.20
s IU3
SINSERT TRO10.13
3 s IUL,OELTAT,IU3
c IN NL LOAD CALCULATIOMN, IU IS LATESY U, IUL IS ONE BACK, AND
¢ IU3 IS TWO 3ACK
SOSLETE TRD10.125
IGET=I2(L)=(1Z(LLI/ID) * 1)
IFC(IGET.NE. 1) GO TO 110
INSERT TRO10.451

VELOCITY= AND ACCELEPATION-DEPZINDENT NL LOADS

.
c
c
]
c STRIP VELOCITY OR ACCEL FLAGS FRCM NOLIN CARD TYPE AND COMPUTE
¢ VEL OR ACCEL FOR FLAGGED COMPONENTS o o+ . &

[ V00T = (UIN)«UIN=1)) /IELTAT

[ UDOTOOT= (UIN = 2 * t(N=1) ¢ U(N=2))/IELTAT**2

¢

c

c

c

c

c

c

SIS NG IUS IS ITIN SIS IIIS IS ST SIS IIIIIISIILII SIS IIEIITIIINIISIIIINS

NOTE = « = ACCELERATION=-DEPENDENT NL LOAOS 00 NOT WORK IF 4
CHANGF IN TIME STEP SIZE GCCURS.

T T T Ty Yy Yy Y Yy Y e Y TP YT Y TPR PR YN TYY Y YYY VYR TRY PYTTYY VY
H=l,0/0ELTA T
HHEN®H
SDCLETE TRO10.185,TRO10.18¢
MH=IUL+I2(1¢2)
MMMz IUSSIZ(I+2)
JFLG=IZ(I) 7108
IFLG3(YZ(I) ~JFLG*100) 710
LEIZ(I}=UFLG*100U-IFLG*2 0D
IFLG=IFLG+L
JFLG=JFLG+L
GO TO (192,193,194), IFLG
C DISPLACEMENT-DEPENDENT
192 x3Z(M)
GO TO 196
€ VELOCITY-DEPENDENT
193 X=(2(M)=Z(HM)I®H
GO TO 196
C  ACCELZRATION-DEPENDENT
194 x=n,
IF(ICOUNT,GT.1)
“XE(Z(M) =2, ¥Z(MM) +Z(MHM) } S HH
195 CONTINUE
*DELZTE TRO1N.197
MH=IUL+I2(I¢4)
MU IUSCIZ (I+4)
GO TO (212,213,214) JFLG
C DISPLACEMENT=-DEPENDENT
212 FX=X*Z(M)
60 TQ 2u8
C VELOCITY-DIPENDENT
213 FX=X*(Z(M) =2 (M) }*H
G0 TO 2640
C ACCILERATION-DEPENDENT
216 FX=0,
IFCILOOP.GT.1.0R. ICOUNT.GT,1)
«FX2X® (Z{M) =2,%7 (M%) ¢2{MWM) ) S HH

Figure 4. - Listing of FORTRAN Changes to NASTRAN Level
for Velocity- and Acceleration-Dependent Nonlinear
Loads
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