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A detailed description is given of how the decoupling approximation known

as the doubly asymptotic approximation (DAA) can be implemented with NASTRAN to

solve shock problems for submerged structures. The general approach involves

locating the nonsymnetric terms (which couple structural and fluid variables)

on the right-hand side of the equations. This approach results in coefficient
matrices of acceptable bandwidth but degrades numerical stability, requiring

a smaller time step size than would otherwise be used. It is also shown how

the structure's added (virtua_mass matrix, a necessary ingredient to DAA, can
be calculated with NASTRAN. The version of NASTRAN used is NASA's standard

level 16 with one program modification, velocity-dependent nonlinear loads, for

which the FORTRAN changes are listed.

STATEMENT OF THE PROBL_I

The general class of problems known as fluid-structure interaction
problems includes the special case of determining the shock response of sub-

merged structures. This is of particular interest to naval engineers concerned

with the dynamic structural response of submarines (including the hull,

appendages, and internal equipment).

Consider the idealized situation consisting of a ring-stiffened cylindrical

shell with flat end caps which is deeply submerged in water, initially at rest,

and subjected to the shock of a distant underwater explosion (fig. I). The

general problem is to compute the time-dependent elastic structural response of

the cylinder. We will further simplify the problem with the following

assumptions:

I. The shock wavefront in the vicinity of the cylinder is planar,

a reasonable assumption whenever the source of the shock is located far away.

2. The time history of the free-field incident pressure is a step

function. This assumption can be made without loss in generality since the

Sponsored in part by the joint DNA/Navy program in "Advanced Submarine

Shock Survivability in Underwater Nuclear Attack."
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structural response to an arbitrary time variation of the pressure history can
be easily obtained by a convolution integral involving the step response. (See
Appendix D.)

3. The shock wave hits the cylinder from the side rather than from
the end or from somemore general oblique direction. This assumption results
primarily in simplifying the data deck which describes the problem. Removing
the restriction presents no conceptual difficulty.

BACKGROUND

In either the absence or the presence of the surrounding water, the
structure can be modeledwith finite elements in the usual way: with plate or
shell elements for the unstiffened cylinder, and with beamelements for the
ring stiffeners.

The fluid is generally treated as an acoustic medium (e.g., see ref. I):
a compressible, inviscid fluid which undergoes only small amplitude motion and
whosepressure p satisfies the wave equation

V2p = p/C2 (1)

where dots indicate time differentiation and c is the speed of sound. At an
interface between the fluid and a solid

_p _
3n °Un (2)

where n is the unit outward normal from the solid at the interface, p is the

fluid mass density, and u is the outward normal component of displacement of
the interface, n

In principle, the fluid part of the problem can be handled by modeling a

portion of the fluid with finite elements (refs. 2, 3). In reference 3, for
example, the analogy was drawn between the scalar wave equation (I) and the

elasticity equations so that a standard structural analysis computer program
like NASTRAN (refs. 4, 5) can be used to solve problems involving the wave

equation, Poisson's equation, or Laplace's equation. For finite fluid regions
such an approach presents no significant problems. However, _ structures

submerged in infinite fluids, the analyst is faced with the additional problem
of truncating the fluid and applying a radiation condition at the artificial

boundary in order to absorb outgoing waves. Even if a reasonable radiation

condition could be formulated, the cost of explicit fluid modeling could be
prohibitive.

An attractive alternative to such modeling is provided by approximations

(refs. 6, 7) which uncouple the structural response from the fluid response in
_the sense that the fluid pressure at the fluid-structure interface is deter-

mined (approximately) from a knowledge of only the interface motion. Although
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several such decoupling approximations have been formulated, one which is
currently attracting attention is the doubly asymptotic approximation (DAA)of
Geers (ref. 6). This paper showshow the DAAschemecan be cast in a form
which can be conveniently solved by NASTRAN.The version of NASTRANused is
NASA's standard level 16 with one program modification: velocity-dependent non-
linear loads. The less efficient earlier version of NASTRAN,level 15, can
also be used, although at greater computer expense. The addition of velocity-
dependent nonlinear load capability is convenient, but not crucial, for the
NASTRANimplementation of DAA.

THEDOUBLYASYMPTOTICAPPROXIMATION(DAA)

A submergedstructure subjected to an underwater shock wave experiences,
at any given time t, a total dynamic pressure p which can be considered to
comprise two components: an incident pressure p: which would occur if no

were present, and a scattered pressure Ps which is theobstacle (the structure) ±
difference between the total pressure and the incident pressure. Thus,

P = Pi + Ps (3)

The scattered pressure Ps is sometimes further decomposedas

Ps = Prs + Pr (4)

where is the scattered pressure which would result if the structure were
rigid_ the remainder. Of thestationary and Pr, the radiated pressure, is
three componentsof pressure, only Pr dependson the structural motion,
whereas both Pi and Prs can be computedas if the structure were rigid and
stationary.

For the submergedring-stiffened cylinder of interest (fig. i), the plane
wave incident pressure Pi is taken to be a step function (with wavefront moving
to the left):

Pi(X,t) = P0H(x - x0 + ct) (s)

where H is the dimensionless Heaviside unit step function (zero for negative

argument and unity for positive argument), XQ-Ct is the location of the wave-
front at time t, c is the speed of sound, an_ P0 is a constant.

The scattered pressure Ps, which depends on the structural motion and

hence cannot be precomputed as a function of time, is determined by the doubly

asymptotic approximation (DAA) (ref. 6) from

aIA Ps =s + _ cM = p cu s (6)

where Ps is the vector of unknown scattered pressures at the wet grid points of
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the structure, _ is the (full) added mass matrix for the structure (see

Appendix A), p and c are the fluid mass density and sound speed, respectively,

A is a diagonal area matrix converting grid point pressures to grid point
forces, and us is the vector of scattered wave particle accelerations normal to
the structure's surface. The bar is used to distinguish this vector from the

complete acceleration vector Us, which involves all structural degrees of
freedom rather than just the normal components at wet points. Surface normals

are taken as positive going into the fluid.

Surface normal accelerations, like pressures, are decomposed into incident

and scattered components; hence,

oo ..

us = u - ui (7)

where _ is the vector of total normal accelerations at the wet grid points, and

_ is the vector of normal components (positive into the fluid) of incident
f_uid particle accelerations.

Equation (6) was designated "doubly asymptotic" because it exhibits the

correct asymptotic behavior at both the low and high frequency limits: at the

low frequency limit (which normally corresponds to late time behavior for

transient situations), the first te_ of (6) is dominated by the second term,
and (6) reduces to

oo

Fs = A Ps Maus (8)

in which the fluid loading is due to added (virtual) mass effects alone. At the

high frequency limit (early time behavior), the first term of (6) dominates the
second term, and (6) reduces to

Ps = p cus (9)

which is the usual radiation damping relation. Equations (8) and (9) are

referred to individually as the virtual mass and plane wave approximations,
respectively•

In general, the DAA, equation (6), yields better results than either of

the special cases, equations (8) or (9). Huang (ref. 8) compared a DAA

solution to an exact solution for a spherical shell and found that the DAA

solution had slightly faster oscillations and stronger damping. Nevertheless,
the DAAprovides a good compromise between cost and accuracy for underwater
shock problems.

DA_ WITH NASTRAN

The differential equation of motion for the ring-stiffened cylinder of
interest (fig. i) is

210



M6 + Ku = -Ap = -A(Pi + Ps ) (i0)

where u is the vector of unknown displacements at the grid points, M and K are

the structure's finite element mass and stiffness matrices, respectively, p is

the vector (of dimension equal to the number of wet grid points) of fluid

pressures at the wet grid points, and _ is an area matrix converting pressures

to forces. A is not square (and hence not diagonal) because the vectors u and

p are of different dimension. _ contains non-zeros (equal to the area contri-

butions) only at the intersections of rows corresponding to wet structural

degrees of freedom with the columns of associated pressure variables. Thus, each

row and column of _ has at most one non-zero entry. _ reduces to A if the zero

rows are deleted and if the wet structural degrees of freedom are sequenced in

the same order as the corresponding fluid pressure degrees of freedom. The
area matrices defined here are "lumped" rather than "consistent". To switch to

consistent loading, one need only change the area matrices A and A.

In equation (i0), the total dynamic fluid pressure p is decomposed into

incident and scattered pressures given by equations (5) and (6), respectively.

Since (6) is a differential equation, the complete problem involves solving (i0)

and (6) simultaneously, where the right-hand side of (6) is replaced by its
equivalent from equation (7).

The incident fluid particle normal acceleration vector _i is computed as
follows: In general, the ratio of the pressure to the volume strain defines

the bulk modulus k. Since k = p c2 for the acoustic fluid, we have, for a plane

wave,

3u _u

--- k_ = c2 x (ll)P 3x - p 3x

In particular, for the incident component,

3Uxi
Pi = - p c2 _x

(12)

From (5) and (12), it follows that

Pi = - p c Uxi (13)

where Uxi is the x-component of incident fluid particle velocity. The normal

component of incident particle velocity Gi is

ui = Uix cos @ (14)

Hence

Pi cos @ = -_c ui (15)
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Because Pi as given by (5) is a step function, the _ needed on the right-
1 °

hand side of (6) is a Dirac delta. This problem can be avoided by defzning a
new variable q such that

= Ps (16)

and time integrating equation (6). Equations (i0) and (6) then become

Mu + Ku = -APi -_

Aq+oc AMalAq = ocKT6+ APicos 0

(17)

where the second of equations (17) has also been multiplied by £he area matrix
A to sy_netrize the coefficient matrices, and

Au = KT 6 (18)

In matrix format, these equations are

oc AMalA q

which is the form of the equations which NASTRAN uses.

cos 81

(19)

It is interesting to observe that the new variable q defined by equation
(16) is, in ezsence, the (scattered) velocity potential, since for an acoustic

fluid the velocity potential 6 is related to the pressure p by (ref. 9)

p = - p $ (20)

Thus, as a consequence of trying to avoid the numerical problem of a Dirac

delta, the fundamental unknown for the fluid is switched from the pressure to

the velocity potential, thus returning to the established convention of fluid
dynamicists.

In equation (19), the unknowns u and q are defined using GRID cards. For

the variables q, only one degree of freedom per point is retained. The usual

finite element modeling of the structure yields M and K. The damping matrix is

created by attaching dashpots (CDAMPi) between each interface fluid point and

ground. The fluid matrix p cAM_ IA can be assembled either by supplying it

directly (on DMIG or DMI cards) or by letting NASTRAN compute it using an

explicit finite element model of a portion of the fluid region. In Appendix A,
it is shown that
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pcAM-IA = cH (21)
a

where H is the fluid stiffness matrix condensed to the wet degrees of freedom.

This condensation (using OMIT cards) is not necessary for the calculation but

may result in a faster integration. The multiplicative constant c in the term
cH, equation (21), can be automatically incorporated by setting the shear

modulus on the MAT1 card equal to c rather than unity.

The right-hand side of (19) consists of both time-dependent and velocity-

dependent loads, which are supplied using TLOADI and NOLINI cards, respectively.

(See Appendix C.) The input of the incident pressure is particularly simple

since it is a step function. The input data can be further simplified by using
the DELAY card to indicate that the incident wavefront (which is traveling at

speed c) does not reach all points at the same time.

In equation (19), M and A are diagonal matrices, and K and H are positive

definite and symmetric. K is also large and banded. H can be either large and

banded, or small and full, depending on whether a static condensation (with

OMIT's) is applied to it.

The unknowns in equation (19) are arranged so that the structural and

fluid variables are uncoupled on the left-hand side, the only coupling

occurring on the right. Thus the grid points should be sequenced to maintain

the indicated partitioning and to give both K and H the smallest possible matrix

wavefront (refs. i0, Ii).

The time step size needed to achieve numerical stability when the velocity-

dependent terms are on the right was found to be about i/i0 of the transit time

(the time required for a wave to travel one radius of the cylinder at speed c).

ALTERNATIVE DAA APPROACHES

Since the velocity-dependent loads in equation (19) are linear, they can

be moved to the left-hand side and incorporated in the damping matrix. Symmetry

(but not positive definiteness) is then retained by dividing the second equation

in (19) by - p c. Since this formulation causes fluid-structural coupling on

the left, the unknowns have to be sequenced taking into account this new

connectivity. _lis approach is practical only if the fluid stiffness matrix

is not condensed but left large and banded, so that the overall system can be

made banded. Otherwise, the added mass matrix coupling causes non-zeros far off

the matrix diagonals.

The principal advantage in placing the velocity-dependent terms on the left

is numerical stability, so that a larger integration time step can be used.

With those terms on the right, as in equation (19), the matrix bandwidth (and

hence wavefront) is smaller, and the user has the option of condensing the fluid

"stiffness" matrix c H into the smaller, but full, matrix p c AM_ 1A.
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Another possible way to formulate the DAA is to make use of the decompo-

sition of scattered pressure Ps into rigid body scattered and radiated compo-

nents (eq. (4)). Since only the radiation pressure Pr depends on structural

motion, the rigid body scattered pressure Prs can be precomputed and combined

with the incident pressure Pi. In that case, the DAA (eq. (6)) must supply

only Pr, which satisfies
°.

+ p cM -I = p cu (22)Pr a A Pr r

where the normal component of fluid particle acceleration at the fluid-solid

interface is decomposed into

.. °° .. .°

u = ui + Urs + Ur (23)

For rigid stationary structures, equation (23) simplifies to

+ u = 0 (24)ui rs

at the _terface, so that, in general,

U=U
r (25)

at the interface. Thus, (22) is equivalent to

b "alAp+ pC = pCU
r r

(26)

The advantage of this general approach is that the rigid body scattered

pressure Prs can be computed in advance to whatever accuracy one wants, so that

the only approximation remaining involves the radiation pressure Pr- The dis-

advantage, however, is that the pre-calculation (a nontrivial one) has to be

done at all. The decision of whether to use equation (6) or (26) also depends

on the relative sizes of Prs and Pr, since if p _ were small it would not maker
sense to compute it accurately. Unfortunately, _he relative sizes are problem-
dependent and hard to estimate.

EXPLICIT FINITE ELEMENT FLUID .MODELING

The problem of computing the linear shock response of submerged structures

can, in principle, be solved by explicit finite element modeling of a portion

of the fluid volume. The purpose of this section is to formulate the problem

sufficiently so that it can be solved by NASTRAN once the user has picked a

suitable radiation condition to apply at the outer fluid boundary.

The total dynamic fluid pressure satisfies the wave equation (i) in the
field. This pressure can be decomposed into the sum of incident and scattered

pressures, Pi and Ps' as in equation (3). Since Pi is defined to satisfy (i),
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Ps must also satisfy the wave equation (i).
boundary condition (2) becomes

At a fluid-solid interface, the

_Ps _Pi ""
_n _n p u (27)

where, for the finite cylinder of figure 1 subjected to a plane wave incident

pressure, equation (5), we have

_Pi _Pi

-vpi- n- cos o (28)_n _ . _x

and

_Pi_x - cl Pi (29)

Thus, from (27),

_Ps I ""
_--n-= - cPi cos 0 pu (30)

The above Neumannboundary condition is equivalent to specifying a "load" on

each interface pressure variable Ps equal to

A(1 • -.
cPi cos 0 + p u ) (31)

where A is the area associated with the interface point, so that the resulting

finite element equations take the form (ref. 3)

• I cos+
where here q, defined as in equation (16), includes all fluid points, not just

interface points. The area matrices also have to be redefined slightly to

reflect the change in dimension of the vector q. The above formulation is

consistent with the definitions of fluid inertia Q and stiffness H given in

Appendix A, which differ from the definitions of ref. 3 by a constant factor

p C 2 .

Equation (32) is complete except for a radiation condition on the pressure
variable q. Once the user decides what radiation condition to use, it can be

incorporated into the matrix equation (32).

It is interesting to observe the similarity between the explicit finite

element formulation, equation (32), and that which arises from the doubly

asymptotic approximation, equation (19). The right-hand sides and the overall
stiffness matrices are the same in both cases. In (32), the overall mass
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matrix now includes the fluid inertia, which NASTRANcomputes whenever the user
supplies a non-zero massdensity, in this case equal numerically to i/c. The
dampingmatrix in (19) also appears in (32) if a radiation condition involving
dashpots is used, although in (32) the dashpots connect the outer boundary
points, rather than the interface pressure points, to ground.

Another approach using explicit fluid modeling was recently described by
Newton and Atchison (ref. 12), who elected to use the full fluid pressure p
(rather than Ps) as the fundamental pressure unkno_l. In that case, the time-
dependentpart of the right-hand side of the equations of motion is replaced by
a non-zero initial condition on p and _ throughout the fluid region.

The main impediments to solving the shock problem by these approaches are
the potentially high cost of modeling a three-dimensional region of fluid and
the difficulty in determining the radiation condition. For one-dimensional
problems, the correct radiation condition merely involves attaching grounded
dashpots to the outer fluid boundary (ref. 2). However, for general three-
dimensional situations, the mathematically exact radiation condition is a more
complicated relation (which cannot be modeled using only masses, springs, and
dashpots) coupling all pressure variables at the outer boundary (ref. 13).
Since the implementation of such a condition is impractical, the analyst must
resort to approximate radiation conditions which will not absorb 100%of out-
going waves. It is for reasons like these that decoupling approximations such
as DAAare being used.
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APPENDIX A - ADDED MASS MATRICES

Consider an elastic structure submerged in a finite acoustic fluid, whose
pressure p satisfies the wave equation

V2p = p/c 2 (AI)

where c is the speed of sound in the fluid. If both structure and fluid are

modeled with finite elements, the resulting matrix equations take the general
form (refs. 2, 3)

(A2)

where M and K are the usual structural mass and stiffness matrices, Q and
are the inertia and "stiffnesW'matrices for the fluid, A is the area matrix

converting pressure to force at the fluid-structure interface nodes, and p is
the fluid's mass density.

In equation (A2), H can be assembled from standard 3-D elasticity finite
elements (ref. 3) if only the x-component of displacement at each point is

retained (to represent the scalar quantity p) and Hooke's law is specified as

/ O
XX

0
ZZ

xy

O

yz

i¸, __

i -i -i ---] /
EXX

I

-i I -I i eyy
q

-i -I I
/ zz

, {i _ _'xy '!

i
1 ! _'yz

i _ YxzXZ

(A3)

In terms of the usual engineering constants, equation (A3) is equivalent

(numerically) to choosing the shear modulus G and Young's modulus E as
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E = _G, _>>i

whose _ must be large enough so that c_+1 is indistinguishable (numerically)
from c_. On most computers, c_ -- 10 2o suffices. Equation (A4) applies only in

three dimensions. In two dimensions (plane stress), the corresponding constants
are

G=I
(AS)

E = BG, B<<I

where B should not be so small that l+B is indistinguishable (numerically) from

unity. On most computers, B = 10-4 suffices.

Equation (AS) also applies to axisy_netric problems formulated in cylin-
drical coordinates with axisymnetric elements such as NASTRAN's CTRAPRG. How-

ever in this case only the z-component of displacement can be used to represent

pressure, in contrast to Cartesian coordinates in which any of the three trans-

lation components can be used.

In equation (A2), Q can be assembled from standard elasticity finite

elements (ref. 3) if the mass density assigned to the material is numerically

equal to i/c2 .

For an incompressible fluid, c ÷ _ (or the frequency _ ÷ 0) and the wave

equation (AI) reduces to Laplace's equation

v2p = 0 (A6)

A_so, Q = 0, so that p can be eliminated from (A2) to yield

G+Ku : f (A7)

thus defining the added mass matrix

_ _-1 _T (A8)
a :

for the submerged structure.

We observe that the area matrix A is^non-square since the vectors u and p

are of different dimension. In addition, A is such that each row or column has

but one non-zero entry. This entry is the area assigned to a particular node

and located at the row corresponding to the nodal outward normal displacement

and column corresponding to the associated pressure variable. Thus, since A

involves only the interface variables, the fluid stiffness matrix H in equation

(A8) can be reduced by static condensation (Guyan reduction) prior to performing

the matrix product in (A8). If the condensed stiffness matrix is denoted H,

then the corresponding added mass matrix is

Ma = pAH -IA (A9)

219



where A is the diagonal area matrix and Ma involves only wet degrees of

freedom rather than all structural degrees of freedom as in Ma"

A physical interpretation of a particular ij entry in Ma or Ma is that it
is the normal fluid force induced at point i (on the fluid-structure interface)

due to a unit normal acceleration at interface point j, with all other points

held fixed. Thus, it is clear that Ma is a fully populated matrix. Since the
interface boundary condition is

Dp=
Dn - p Un (AI0)

the specification of acceleration at the interface is equivalent to a Neumann

boundary condition. Hence, the calculation of the added mass matrix is

mathematically equivalent to solving Laplace's equation (A6) in the fluid region

with Neumann boundary conditions. For uniqueness, p must be specified somewhere.

This Neumann problem is also equivalent to a steady-state heat conduction

problem in which one seeks the temperatures at all mesh points (on the fluid-

solid interface) due to a unit heat source at each such point in turn. The
matrix H in equation (A8) is exactly the heat conduction "stiffness" matrix

computed by finite element heat transfer computer programs if the thermal
conductivity is specified as unity.

Since, in heat conduction problems, the extreme temperatures must occur

on the boundary, and uneven temperature distributions can be maintained only by

supplying heat at the warmest point on the boundary and removing heat from the
coolest point (ref. 14), it follows that the individual elements of the added

mass matrix are always positive.

Thus far, this discussion of added mass matrices has assumed the fluid

region to be finite. Of more interest in naval applications is the infinite

region. In this case one can define and model a finite region of fluid whose

outer boundary (where p=0) is "sufficiently far" from the structure. The major

problem facing the analyst is deciding where to locate this outer boundary. For

a given problem, one approach to insure that the outer boundary is distant

enough is to compute the added mass matrix Ma (condensed to include only wet
degrees of freedom) with two different locations of the outer boundary and look
for convergence of the dominant terms in the matrix.

The calculation of added mass matrices for structures submerged in

infinite fluids would be more appealing if it did not involve the explicit

modeling of a portion of the fluid. Since the problem to be solved is a

Neumann problem in the infinite region surrounding the structure, it can also
be formulated in terms of simple sources distributed over the fluid-solid

interface (ref. 15). For economy, the source density distribution is usually
assumed constant over each surface element. Consequently all matrices
(including the added mass matrix) refer to element centroids rather than to the

finite element grid points. One possible approach for transforming an added

mass matrix from element to grid point values is as follows: For simplicity

assume a rectangular mesh of surface elements (fig. 2), where a typical element
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(number 4') is shown connecting grid points 5, 6, 15, and 16. The simplest

relationship between the central and nodal displacements is the arithmetic

average

u4 = (u5 + u6 + u15 + u16 )/4 (All)

A more complicated relation taking into account the element shape function can

also be written. The complete transformation involving all elements is of the

form

6 = Fu (AI2)

where u is the displacement vector for the element centroids, u is the dis-

placement vector for the grid points, and r is the transformation matrix. The

added mass matrix can then be computed from

M = rr r (Al3)
a a

which is the usual transformation relationship for finite element matrices

(ref. 16). In equation (Al3), _Ia is the added mass matrix referred to
centroidal coordinates. The transformation (AI3) may result in converting Ma,

which is non-singular, into a singular matrix Ma.

Virtual Mass

It is of interest to relate the added mass matrix (as used here) to the

added mass (virtual mass) defined by hydrodynamicists (e.g., ref. 17). Virtual

mass is a scalar quantity defined and computed for rigid structures oscillating

in a specific rigid body motion, e.g., heave of a ship hull form. Since the

added mass matrix is general enough to allow arbitrary elastic structural

motion, virtual mass is merely a special case.

Recall that a physical interpretation of the added mass matrix is that a

particular ij entry is the normal fluid force at point i due to a unit normal

acceleration at j, with all other points held fixed. In computing virtual mass,

the acceleration at all points is specified, and the component of force in a

particular direction is desired. For example, if _ is a vector describing the

amplitude of the desired rigid body motion, the virtual mass m in the same
direction is

m = _T Ma _ (AI4)

where Ma is the added mass matrix and each component of _ is equal to the
cosine of the angle between the surface normal at a point and the direction of

motion (assuming unit amplitude motion). Equation (AI4) is identical in form

to the definition of generalized mass for vibration mode shapes (ref. 18).

In general, there exist six rigid body modes (three translations and three

rotations), each of which induces six components of force. Thus (AI4) can be
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generalized to define a 6x6 rigid body virtual massmatrix m whose ij entry is

mij = _iT Ma Cj (AIS)

where _i is the vector specifying the rigid body acceleration and _i is the
vector "describing the direction of the generalized force induced.

APPENDIXB - USEOFSTRUCTURALSYMMETRY

In general, it is economically advantageousto exploit as muchstructural
symmetryas possible whenperforming a structural analysis. This exploitation
is possible whenever the structure, in the absenceof loads, possesses geometri-
cal and structural symmetry (ref. 19). Since time-dependent nonsymmetric
loads can always be decomposedinto the sumof symmetric and anti-symmetric
parts, the overall problem can be decomposedin the sameway. The purpose of
this appendix is to summarizehow this decomposition works for the class of wave
problems arising in computing submergedshock response.

Consider the cylinder cross-section shownin figure 3 with a typical point
number 1 and its image point number 2. The applied loads at the two points can
be arbitrary functions of time.

The cylinder possesses numerousplanes of symmetry, including the xz- and
yz-planes. Thus, only one-fourth of the circumference has to be modeled. (In
this particular case, the structure is axisy_netric and thus can be modeled
using axisymmetric elements with nonsymmetric loading.) The indicated loading
is sw_etric with respect to the xz-plane and nonsyr_netric with respect to yz.
Since the problem is linear, the loading can be decomposedas shownin figure 3.
with

Fs(t ) = (Fl(t) + Fz(t))/2

Fa(t ) = (Fl(t) - Fz(t))12

(BI)

where the decomposition results in one problem which is symmetric with respect

to the yz-plm_e and another probl_n which is anti-symmetric with respect to yz.
For each component part, it suffices to model but one quadrant (fig. 3) and

apply the appropriate boundary conditions (either symmetric or anti-symmetric)
for all points in the symmet_T planes.

For stn_ctural grid points (whose fundamental unknown is displacement)

lying in a plane of sNametrx, the boundary conditions are that the points can

suffer no translation out oF the plane of symmetry and no rotation about in-

plane lines. The anti-symmetry boundary conditions are that the complementary

degrees of freedom are const-r-aYned. For example, in figure 3, all points

lying in the yz-plane must satisfy
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ux = ey ez 0 for symmetry

Uy = uz ex = 0 for anti-sy_netry

(B2)

where o denotes rotations.

For fluid grid points (whose fundamental unknownis pressure) lying in a
plane of sy_netry or anti-symnetry, the boundary conditions are

_P = 0 for symnetry
_n

p = 0 for anti-sy_netry

(B3)

In finite element analysis, the above sy_netry condition on p is a natural

boundary condition and thus automatically satisfied if the unknown p is left
free.

These conditions on fluid pressure grid points are applicable for any

pressure points lying in a plane of sy_netry or anti-symmetry, including-those
occurring in an explicit modeling of the fluid volume for the purpose of

computing added mass matrices; i.e., the added mass matrix also has to exhibit

the proper synmetry.

APPENDIX C - VELOCITY-DEPENDENT NONLINEAR LOADS

The finite element formulation derived to implement the doubly asymptotic

approximation (DAA) with NASTRAN involves loads which, at each time step, depend

explicitly on the current structural motion rather than on time. The standard

versions of NASTRAN (levels 15 and 16) currently allow displacement-dependent

loads but provide no convenient way to specify loads which depend on velocity

or acceleration. (The implementation of such loads with a combination of

transfer function (TF) and nonlinear load (NOLINi) cards is not only inconven-

ient but also results in nonsy_netric matrices.)

NASTRAN can be easily modified to allow the user to apply velocity- and

acceleration-dependent loads using the NOLINi cards now used only for dis-

placement-dependent loads. This appendix sunmarizes the FORTRAN changes to

NASTRAN (level 16) needed to implement such loads.

The approach taken is compatible with that used in MSC/NASTR_N (ref. 20),
in which the user indicates velocity dependence by adding i0 to the displace-

ment component number CJ or CK on the NOLINi card. This modification is
extended here to allow acceleration dependence, which is indicated by adding 20

to CJ or CK. Acceleration dependence as implemented here, however, is not fully

general, since it does not allow a change in the time step size. The ve-l_city

dependence is fully general.
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The finite difference formulas used to computevelocity and
acceleration at the nth time step are

: (u n - Un_l)/At (C1)

{]n = (Un- 2Un_l + Un-2)/at2 (C2)

where un is the displacement vector at the nth time step and At is the time step
size.

The listing of the FORTRAN changes to NASTRAN (level 16) appears in

figure 4, in which the format of CDC's UPDATE utility is used. These modifica-

tions were adapted from similar changes made to NASTRAN's level 15 by Messrs.

James M. McKee and Myles M. Hurwitz of the David W. Taylor Naval Ship Research
and Development Center.

APPENDIX D - RESPONSE TO ARBITRARY TIME-DEPENDENT

LOADING BY CONVOLUTION

When the linear shock response of large complex structures is to be

computed with NASTRAN, it is often preferable to compute first the response to

a step function, because (i) input data preparation for NASTRAN is simplified

considerably, and (2) the response for any arbitrary time-dependent loading can
be easily computed later by a convolution (superposition) integral (e.g.,
ref. 21), the formulas for which are summarized here.

Consider the general equation

Lw(x,t) = f(t) (DI)

where L is a linear differential operator, w is some response variable (e.g.,

displacement, velocity, stress, etc.), and the forcing function f is considered

here to represent the incident free-field pressure which arises in underwater
shock problems.

If Ws(X,t ) is the response to a unit step function, then

t

w(x,t) = f(0)Ws(X,t ) + f f'(T)Ws(X,t-T)d_
0

t

: f(t)w s(x,O) + f f(T)W's(x,t-z)dT
0

(D2)

where we define

w'(x,t) - _ Ws(X,t )s (D3)
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Either of the quadrature formulas (D2) can be used to compute the response to
an arbitfary forcing function f(t). Since the two relations give different
results numerically, the convolution can be computed both ways and averaged.
For our work, a short computer program was written to compute w, given tabu-

lated values of f and ws for non-uniform spacing of the abscissas.
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Figure 4. Listing of FORTRAN Changes to NASTRAN Level 16
for Velocity- and Acceleration-Dependent Nonlinear

Loads


