General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

CENTER FOR RADIOPHYSICS AND SPACE RESEARCH

CORNELL UNIVERSITY

ITHACA, NEW YORK

January, 1977

A PRACTICAL HADAMARD TRANSFORM SPECTROMETER

FOR

ASTRONOMICAL APPLICATION

by

Ming-Hing Tai

DEDICATION

.

To my parents

献给 爸爸、妈妈

...

ACKNOWLEDGEMENTS

This project is by no means one man's product. Many people have devoted their talents to the completion of this project. I am just the one to make a summary of it.

My special thanks go to Prof. Martin Harwit, my thesis advisor. Martin set himself up as an admirable example: he always moved the heaviest equipment himself; tackled the most difficult jobs in the experiment so that he himself was responsible for any misfortunes; was earnest in discussions about problems with his student; and was modest in sharing the credit for the results. Above all, he truly expressed concern about his student, as a respectable advisor and as a warm friend.

My second thanks go to Dr. Daniel A. Briotta. Dan helped to automize the whole process and taught me the mini computer technique. Dan has shown me how to run the computer as though he were showing me how the lines in his palm run.

My thanks also go to the infrared astronomy group at Cornell. Prof. J. Houck has served on my committee and has always been available for discussion of astronomical and experimental problems. I especially thank him for his help in finishing up my degree while Martin was on sabbatical leave. Dr. Phillips built the spectrometer. The late L. King modified it. G. Stasavage built some electronic parts and H. Kondracki built the dewer. G. Melick helped with the obser-

iv

vation, data processing and electronic parts, G. Gull with the field trip, and Drs. W. Forrest, Diward, and D. Shacck were involved in many valuable discussions. Thanks also go to Westy Dain for not only being always willing to help on chilly night's observations and tedious laboratory work, but also for proof reading my thesis.

I thank Prof. E.E. Salpeter for serving on my committee, Prof. A. Siever and Allen Chin for helping the He₃ cooled dewer, and Prof. P. Gierasch for always being available for discussing astronomical problems. I also thank G. Vincent for building many mechanical parts, B. Boettcher for figures and Eckelmaun for photographs.

The author thanks the staffs of the Kitt Peak National Observatory and McDonald Observatory for generous allotments of observing time and for assistance during the observing runs.

Finally, my thanks go to Divan Sun, Adeline Wu, and W.W. Chiu, for typing the thesis for me, and to N.H. Cheung, K.K. Mon, K.M. Lo and many of my Chinese friends for their continual help during these years.

Portions of this work were supported by the NGR 33-010-210 and NSG 1263. TABLE OF CONTENTS

			PAGE
LIS	T OF FI	GURES	vii
LIS	T OF TA	BLES	xi
ABS	TRACT		xii
I.	HISTO	RICAL INTRODUCTION TO HADAMARD TRANSFORM	l
a.	SPECI	ROMETRY	
II.	· HADAM	IARD MATRICES	10
	(A).	Weighing Designs	10
	(B).	General Mathematical Formulation	13
	(C).	Hadamard Matrix	16
	(D).	Optical Realization of Hadamard Encoding	20
	(E).	Errors in Hadamard Spectroscopy	34
III	. INSTR	RUMENTATION	37
	(A).	Multislit Spectrometer	37
۰.,	(B).	The Optics	42
	(C).	The Electronics	54
	(D).	Laboratory Calibration	60
IV.	COMPA	ARISONS BETWEEN FOURIER TRANSFORM AND	65
	HADAM	1ARD TRANSFORM SPECTROSCOPY	
	(A)	Mathematically	65
	(B).	Computer Requirements	67
	(0).	Optics	68
	(D).	Mechanical Requirements	73

84

vi

PROGRAMMING FOR HADAMARD TRANSFORM SPECTRAL v. 75 DATA REDUCTION (A). HTS Program 75 (B). DHTS Program 81 (C). Correction Program 89 90 VI. ASTRONOMICAL OBSERVATION (A). Correction Procedure 90 (B). Observation of α -Orionis 91 (C). Observation of Jupiter 100 (D). Observation of Mercury 121 136 APPENDIX A. ESTIMATE OF CODING ERROR FOR FOURIER TRANSFORM SPECTROMETRY APPENDIX B. SINGLY HADAMARD TRANSFORM PROGRAM 139 APPENDIX C. DOUBLY HADAMARD TRANSFORM PROGRAM 168 APPENDIX D. CORRECTION PROGRAM 201 203 BIBLIOGRAPHY

vii

LIST OF FIGURES

FIGURE	TTTLE	PAGE
1-1	An 8x8 Hadamard matrix and two 7x7 cyclic matrices that can be derived from it.	3
2-1a	Hadamard transformation of a Sine wave input.	21
2-1b	Hadamard transformation of a square wave input.	22
2-1c	Hadamard transformation of a straight line input.	23
2–2	Schematic representation of HTS using the <u>S</u> code.	25
2-3	The 509 exit slit mask and the 255-element S code.	26
2-4	Comparison spectrum of the mercury emi- ssion lines in the 1.4-1.8µm region: (a, bottom) as obtained in the Hadamard- transform mode, (b, top) as obtained under identical conditions using the same optical system as a conventional monochromator. This figure is taken from Decker, 1971b.	28
2-5	Schematic representation of DHTS.	29
2–6	The 29 entrance slit mask and the 15-element \underline{S} code.	33
2-7	(a) Spectrum of the l. (um mercury vapor doublet showing negative peaks to the left at the emission peaks; (b) Shows the res- ponse we would obtain to a single spectral line with a perfect mask; (c) Shows the response for a single line with the ra- diation simulated as passing through a mask with slits too narrow because each opaque mask element protrudes into the adjacent transparent slot by a tenth of a slot width: (d) Shows the effect of simu- lating slits that are systematically too wide. Note that the main spectral line has been placed in different positions for the systematic rest.	36

FIGURE	TITLE	PAGE
3-1	The flow chart of the data taking pro- cess, starting with radiation from the telescope and ending with the output of the computer.	41
3-2	Optical path through the spectrometer. The dedisterser and exit mask are shown rotated by 90°.	43
3-3	Grating diffraction efficiency as a func-tion of slit position at 8 and $14\mu\text{m}$.	45
3-4	Liquid helium cooled post optics.	47
3-5	HTS alignment circuit.	55
3-6	Logie diagram for mask motion and data processing.	56
3-7	HTS drive unit circuit.	58
3–8	Basic detector bias and preamplifier circuit.	59
3-9	Spectrum of the mercury vapor 1.7 μ m line using the 1x255 mode.	62
3-10	Calibration spectra obtained for the mercury vapor emission lines at 1.69µm and 1.71µm: (a) The eighth of a series of fifteen individual spectra obtained; (b) An average of all fifteen spectra; (c) A diaplay of the fifteen spectra, each spectrum being displaced vertically from the next. The diagonal pattern near the right-hand edge represents a displacement of the peak between suc- cessive spectra. This represents the actual shift in spectral range between adjacent spatial elements.	64
5-1	The flow chart of the 1x255 inverse transform program.	79
5–2	The flow chart of the 15x255 inverse transform program.	83
5-3	Matrices generated by the computer during the reduction of the spectral data.	86

FIGURE	. TITLE	PAGE
6-1	The spectral emissivity of various re- gions as calculated from the flight data (Murcray <u>et al</u> , 1970).	. 92
6–2	The raw spectra of a-orionis and the Moon.	94
6–3	The ratio spectrum of a-orionis to the Moon corrected for lunar tem- perature.	95
6-4	(a) Low resolution spectrum taken by Gillett et al (1969). Different sym- bols represent spectra taken on dif- ferent nights. (b) High resolution spectrum taken by Treffers and Cohen (1973).	99
6-5	The raw spectrum of Jupiter and the Moon.	101
6–6	The ratio spectrum of Jupiter to the Moon corrected for lunar temperature.	102 [.]
6-7	The atmospheric profile of Jupiter for a solar-composition model.	103
6–8	(a) Schematic representation of the NH_3 molecule. The components of angular momentum and the motion in the v_2 vibrational mode are also shown. (b) Energy levels of the v_2 vibrational mode of ammonia. Superscripts a and s refer to the antisymmetric and symmetric levels which arise due to inversion splitting.	108,
6–9	Low resolution spectrum taken by Gillett et al (1969). Different symbols repre- sent spectrum taken on different nights. This figure is taken from their paper.	109
6-10	 (a) Room temperature absorption spec- trum of ammonia, p=0.06 atmos, w=0.6 cm atmos. (b) Brightness temperature; (c) Surface brightness of the central region of Jupiter from 8 to 13.5µm. (Taken from Aitken and Jones). 	111

X

6-11a	Spectrum of the N and S polar regions of Jupiter at 3-4 cm ⁻¹ resolution di- vided by the spectrum of the Moon. Data points are shown as solid circles, and the solid line represents the best fitting synthetic spectrum calculated from the model calculated by Lacy <u>et</u> <u>al</u> (1975)(The graph is taken from Lacy <u>et al</u>). The dotted curve is our ob- served spectrum by matching Lacy's spectrum at points A and B.
6-115	Same as 6-lla except matching our spec- trum with Lacy's at A' and B'.
6-12	 (a) Thermal emission spectrum of Jupiter corrected for absorption in the earth's atmosphere observed by Ridgway (1973). The dashed line is the predicted form of the H₂ continuum. (b) The ratio of the Jovian spectrum to the atmospheric absorption spectrum observed by Combes et

y Combes et al (1974). The solid and dashed lines are the blackbody curves at 135°K and 120°K respectively.

The raw spectra of Mercury and the Sun. 123

Diurnal path of the Sun about Mercury, drawn to scale. The relative positions of the Sun are marked at 11 day intervals with the planet held as a fixed reference. Planeto-graphic longitude are indicated for Mercury. (Taken from Soter and Ulrichs, 1967)

Two coordinate systems on the surface of 129 Mercury. The unprimed system is the "solar system" with the Z-axis pointing towards the Sun. A is the subsolar point. The primed system is the "earth system" with the Z'-axis pointing towards the earth. A' is the subearth point.

6-16 The final Mercury spectrum, corrected 135 for solar temperature, with a number of blackbody slopes shown to match.

FIGURE

6-13

6-14

6-15

ጥጥጥርድ

PAGE 113

114

117

LIST OF TABLES

TABLE	TITLE	PAGE
2-1	The Value of Δ for Different Matrices	18
2-2	Comparison of Three Different Grating	34
	Spectrometer	
3-1	A Brief Description of Each Filter	. 48
6-1	The Main Constituents of The Jovian	105
	Atmosphere	

忆秦娥

娄 山 关

一九三五年二月

西风烈, 长空雁叫霜晨月。 霜晨月, 马蹄声碎, 喇叭声咽。

雄关漫道真如铁, 而今迈步从头越。 从头越, 苍山如海, 残阳如血。

毛泽东主席

CHAPTER I

HISTORICAL INTRODUCTION TO HADAMARD TRANSFORM SPECTROMETRY (HTS)

The idea of modulating or encoding the optical output of a spectrometer goes back to the original work of Golay (1949) and Fellgett (1951). Its purpose is to allow many different wavelengths of radiation to fall on a detector simultaneously, and thereby to increase the signal-to-noise ratio (SNR) of the resulting spectrum. This improvement comes about because each element of the spectrum is effectively viewed a larger fraction of the total available observing time. One idea is to encode or modulate each spectral wavelength exiting the spectrometer output with an audio frequency that contains the optical wavelength information. The use of a conventional wave analyzer then allows recovery of the original optical spectrum. There are many variations of this technique.

In 1968, Ibbett <u>et al</u> and Decker <u>et al</u> independently suggested the use of sequentially stepped multiplex spectrometers. In both systems radiation enters a dispersive instrument through a single slit and is analyzed at a number of exit slits. Decker <u>et al</u> pointed out that two constraints should be imposed on the encoding scheme:

(1) To obtain the optimum signal to noise ratio, each spectral element should be viewed during exactly half the step positions.(2) To impose the smallest dynamic range requirements on the

I.

detector amplifier system, each step position should pass light from exactly half the spectral elements. They also worked out a scheme that satisfied the two constraints for masks having elements m=4n+2, where n is an arbitrary integer or zero. Ibbett <u>et al</u> introduced the Hadamard pattern for the mask. As discussed below, this is a pattern based on a set of binary orthogonal matrices first studied by the French mathematician Jacques Hadamard. Ibbett <u>et al</u> also described the application of their scheme to a real time computer aided measurement.

In 1969, Sloane <u>et al</u> worked out a number of binary cyclic coding schemes for multiplex spectrometry and evaluated the performance of each scheme in terms of a linear, least mean square, unbiased estimate. These schemes include a Hadamard matrix <u>H</u>, and various modified Hadamard matrices, which these authors refer to as G matrix and S matrix (Fig. 1-1).

A Hadamard matrix <u>H</u> of order N is an N x N matrix H_N of +l's and -l's which satisfies:

$$H_N H_N^T = N I_N$$

where I_N is an N x N unit matrix

A modified Hadamard matrix \underline{G} of order M is a partitioned matrix from the H matrix:

$$\underline{H} = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \underline{G} \\ \vdots & \vdots \\ 1 \end{bmatrix} \qquad (M = N-1)$$

+ + + + + + + -+ + - -+ - - -+ - - +

+

+

+

+

<u>G</u> =

<u>S</u>

<u>H</u>

	+	+	-	-	-	+	
0	0	1	1	1	0	1	Ì
0	1	l	1	0	1	0	
1	1	1	0	1	0	0	
1	1	0	1	0	0	1	
1	0	1	0	0	1	1	
Ö	1	0	0	1	1	1	
1	0	0	1	1	1	0	

- +

Figure 1-1. An 8 x 8 Hadamard matrix and two 7 x 7 cyclic matrices that can be derived from it.

where the first row and first column of <u>H</u> are all +1's. A feature of the <u>G</u> matrix is that it can be written in cyclic form-- a factor which we will show to be of considerable practical importance.

A modified Hadamard matrix \underline{S} is a matrix obtained from \underline{G} by replacing +1's by 0's and -1's by +1's.

The properties of <u>H</u>, <u>G</u>, and <u>S</u> will be discussed in section 2-6.

When we talk of encoding by means of a Hadamard matrix we have the following in mind. A mask is used to modulate open or close - a series of entrance and exit slits in a spectrometer. If a certain slit location is open, we can designate it by a +1; if it is closed we can designate it by a 0; if it can be used to subtract from the signal incident on the detector, we designate it by -1. The sequence of +1's and -1's characterizing a mask in a given modulating position corresponds to a row of a matrix. The whole set of mask positions corresponds to the set of rows of the matrix. If the sequence of mask patterns corresponds to the rows of a Hadamard matrix we say we are encoding with a Hadamard pattern.

Sloane <u>et al</u> also introduced the idea of using a cyclic matrix for coding masks. This greatly decreases the experimental cost and facilitates operation, since any N slits of a single mask 2N-1 slits long can be used to provide one of the required mask patterns.

The first single entrance Hadamard spectrometer (HTS) was built by Decker and Harwit (1969). The spectrometer had

a single entrance slit and 19 exit slits. The exit mask was stepped manually. The authors used this spectrometer to take the spectrum of the mercury vapor 1.7μ band to demonstrate the Hadamard transformed spectrum's fidelity and freedom from systematic errors.

With 19 exit slits, the HTS had a theoretical signal-tonoise advantage of 2.18 over the conventional spectrometer, which is rather hard to verify experimentally, Decker (1971) therefore proceeded to build a 255-slit HTS. In this spectrometer, the radiation, after being decoded by the exit mask, exits along the same path it comes in. This reverse pass dedisperses the beam and allows it to be brought to a focus at the entrance plane. Thus the dimensions of the focused image are roughly the same as the dimensions of the entrance aperture, and the detector size can be minimized. This is important since sufficiently large detectors sometimes do not exist, and if available tend to be noisy. Decker experimentally verified the theoretically predicted multiplex advantage of an HTS.

DeGraauw and Veltman (1970) were the first to use an HTS for astronomical work during the 1970 solar eclipse. Houck <u>et al</u> (1973) subsequently used an HTS to obtain near infrared spectra of Mars from airplane altitudes.

Besides putting an encoding mask at the exit plane, one can also put another encoding mask at the entrance plane of a spectrometer. In that way the radiation is modulated at both the entrance and exit apertures. Harwit <u>et al</u> (1970) worked out this scheme of doubly multiplexed dispersive spec-

trometry. The double multiplexing scheme allows one to increase the total amount of radiation that can be transmitted through a spectrometer. Furthermore, by a proper reduction of the data, one can also obtain a one dimensional picture of the source at the entrance plane. For a spectrometer of m entrance slits and n exit slits, one needs m x n data points to recover m spatial spectra, with each spatial spectrum containing n spectral elements. For a homogeneous source one does not need the spatial information, so (n + m - 1) data points will be enough to recover the spectra. Harwit <u>et al</u> (1974a)describe two schemes for recovering the spectrum with (n + m - 1) data points.

In 1975 Tai <u>et al</u> (1975a) finished the construction of a doubly coded Hadamard transform spectrometer. I e spectrometer has 15 entrance slits and 255 exit slits, which can simultaneously obtain 15 spatial spectra, each having 255 spectral elements. Tai <u>et al</u> (1975b) went on to give an analysis of the errors in Hadamard spectrometry caused by imperfect masks.

Besides coding the radiation at both the entrance and the exit aperture, one can go one step further and use a two dimensional mask at the entrance aperture (Harwit, 1971). This yields a two dimensional picture at the entrance aperture, where each spatial point at the entrance has its own spectrum. To put it a different way, one obtains a two dimensional picture of the source at the entrance aperture for each color of the spectral elements.

Harwit (1973) experimentally verified the operation of imaging spectrometry, and Swift <u>et al</u> (1976) constructed the first Hadamard imaging spectrometer.

There are other discussions of Hadamard transform spectrometry in the literature, mostly of theoretical aspects. Nelson and Fredman (1970) give a more complete theoretical treatment of Hadamard matrix encoding. They also rediscovered a theorem due initially to Hotelling (1944) showing that the Hadamard matrix is the best design for a singly coding mask. Sloane and Harwit (1976) show the connection between Hadamard spectrometry and the mathematics of weighing designs in statistics.

There have been various comparisons of Hadamard transform spectrometry with other spectrometry. Larson <u>et al</u> (1974) makes a theoretical comparison of singly multiplexed Hadamard transform spectrometers and scanning spectrometers. They present a general mathematical framework for the comparison of relative performance and also verify their prediction by computer simulation of various characteristic spectra. Their results show that where the noise level is constant and independent of the incident photon flux, the determined multiplex advantage is $\sqrt{N/2}$, as predicted by Fellgett (1951). This is usually the case in a low energy region, such as the infrared. For a noise level that is signal-dependent, such as in the UV energy region, the detector is characterized by an output with statistics approaching a Poisson distribution and variance therefore proportional to the input signal. In that case the

HTS technique will be advantageous only for spectra that are characterized by a few well-defined and intense peaks on a very low intensity background. For spectra with high background, for dense spectra, or for spectra having very weak spectral features, the HTS will have no advantage over the conventional single slit (SS) technique.

Hirschfeld and Wyntjes (1973) compare Fourier transform and Hadamard transform spectrometry. They also describe various limitations of Hadamard transform spectrometry. This paper was followed by an exchange of notes between Decker (1973) and Hirschfeld and Wyntjes (1973) in the journal <u>Applied</u> <u>Optics</u> in which some of these limitations are disputed. These papers concern themselves with a number of practical matters on which opinions can vary. Here we mention these controversial papers mainly for completeness. Their contents will be discussed further below.

Wyatt and Esplin (1974) analyzed the effect of band width on noise equivalent power (NEP) for multiplex spectrometry with cryogenically cooled, cooled-background extrinsic long wavelength infrared detectors. They find that the NEP is directly proportional to band width, so multiplex schemes that require increased band width are not of real advantage. They further conclude that doubly encoded systems that are based on m + n - l measurements would have a real throughput advantage

Various other aspects of Hadamard matrices and Hadamard transform spectrometry which have not been mentioned above are covered in articles by: Baumert, Pratt et al (1969), Hirschy

<u>et al</u> (1971), Allen <u>et al</u> (1972,1973), Kowalski <u>et al</u> (1973), Planky <u>et al</u> (1974), Oliver <u>et al</u> (1974).

In this thesis Chapter II will describe the mathematical properties of Hadamard matrices and their application to spectroscopy. Chapter III describes the Hadamard transform spectrometer, and gives results on laboratory performance. Chapter IV gives a comparison of Hadamard transform and Fourier transform encoding in spectrometry. The output of an HTS is fed into a mini computer. The computer performs a real time inverse Hadamard transform to recover the spectrum. Chapter V describes the algorithm and programming of inverse Hadamard transform. Chapter VI discusses observational results and their interpretation.

9.

CHAPTER II

HADAMARD MATRICES

(A) <u>Weighing Designs</u>

In order to understand the mathematical advantage of Hadamard transform encoding, let us look at the following examples (Sloane <u>et al</u>, 1976).

Suppose four objects are to be weighed, using a spring balance which makes an error e each time it is used. Assume that e is a random variable with mean zero and variance σ^2 .

First suppose the objects are weighed separately. If the unknown weights are ψ_1 , ψ_2 , ψ_3 , ψ_4 , the measurements are η_1 , η_2 , η_3 , η_4 , and the errors made by the balance are e_1 , e_2 , e_3 , e_4 , then the four weighings give four equations:

> $\eta_1 = \psi_1 + e_1$ $\eta_2 = \psi_2 + e_2$ $\eta_3 = \psi_3 + e_3$ $\eta_4 = \psi_4 + e_4$

The best estimate of the unknown weights are the measurements themselves:

10

 $\psi_1 = \eta_1 = \psi_1 + e_1$

 $\psi_2 = \eta_2 = \psi_2 + e_2$

These are unbiased estimates:

$$\hat{E\psi}_1 = \psi_1$$

 $E\psi_2 = \psi_2$ (E denotes expected value)

with variance or mean square error

$$E(\hat{\psi}_1 - \psi_1)^2 = E\sigma_1^2 = \sigma^2$$

On the other hand, suppose the balance is a chemical balance with two pans, and the four weighings are made as follows:

ຖາ	22	Ψ1	+	Ψ2	+	ψз	+	Ψų	+	eı	
η ₂	Ħ	Ψı		Ψ2	-	ψз	-	ψų	+	e ₂	
nз	· =	Ψı	÷	Ψ2		ψ́з	-	Ψų	+	e3	
դդ	=	ψı	-	Ψ2	-	ψз	+	Ψų	÷	e4	(2-1)

This means that in the first weighing all four objects are placed in the left hand pan, and in the other weighings two objects are in the left pan and two in the right. (Note that the e are independent of the weights on the balance. This point is crucial). It is easy to solve for ψ_1 , ψ_2 , ψ_3 , ψ_4 , as long as the coefficient matrix for ψ is not singular. Thus the best estimate for ψ_1 is

$$\psi_1 = \frac{1}{4}(\eta_1 + \eta_2 + \eta_3 + \eta_4)$$

= $\psi_1 + \frac{1}{4}(e_1 + e_2 + e_3 + e_4)$

The variance of Ce, here C is a constant, is C^2 times the variance of e, and the variance of a sum of independent random variables is the sum of the individuals variances. Therefore the variance of $\hat{\psi}_1$ (and also of $\hat{\psi}_2$, $\hat{\psi}_3$, $\hat{\psi}_4$) is $\frac{4\sigma^2}{16} = \frac{\sigma^2}{4}$

Weighing the objects together has reduced the mean square error by a factor of 4. In effect the signal to noise ratio (SNR), which is given by the root mean square (rms) error is reduced by a factor of 2.

Finally, suppose the balance is a spring balance with only one pan, so only coefficients 0 and 1 can be used. A good method of weighing the four objects is:

> e₁ Ψ2 η1 η_2 ψ1 Ψ2 e, ÷ ψз e₃ ψı Πg (2-2)eu ካፋ ψı

In this case the variances of ψ_1 , ψ_2 , ψ_3 , ψ_4 , are $\frac{4\sigma^2}{9}$, $\frac{7\sigma^2}{9}$, $\frac{7\sigma}{9}$, $\frac{7\sigma}{9}$, $\frac{7\sigma}{9}$, $\frac{7\sigma}{9}$, respectively, a smaller improvement than in the previous case.

The theory of weighing designs is of immediate interest to multiplex optics, since the simultaneous measurement of the intensities of different bundles of rays is completely ana-

logous to the simultaneous weighing of different groups of weights. In measuring the intensity of radiation passed through slits in a mask, we are effectively 'weighing' that radiation.

(B) General Mathematical Formulation

One can put the problem into a more general form. Let ψ_i be the ith unknown, η_j be the jth measurement, e_j be the error associated with the jth measurement. Let w_{ji} be the weighing coefficient of the jth measurement with the ith unknown. Then

$$n_{j} = w_{ji}\psi_{i} + e_{j} \qquad j=1\cdots n \qquad (2-3)$$

In matrix notation:

$$n = W \psi + e \qquad (2-4)$$

With the notation < > for ensemble averages, the error e has the following properties:

- (1) <e_j> = 0
- (2) e_{i} is independent of $\underline{\psi}$
- (3) $\langle e_i e_j \rangle = 0$ if errors are assumed to be

uncorrelated.

$$= \sigma^2$$
 if i=j

The problem now is the following: (i) For a particular coding matrix W, what should be the decoding matrix A? i.e. What is A such that $\hat{\psi}=\underline{A}$ n where $\hat{\psi}$ is an unbiased estimate of ψ .

(ii) What is the best choice of \underline{W} (or \underline{A}) that will minimize the error of measurement i.e. What is \underline{W} such that

$$\varepsilon = \langle \sum_{j=1}^{n} (\hat{\underline{\psi}}_{j} - \underline{\psi}_{j})^{2} \rangle$$

is a minimum.

In the absence of noise, i.e. n=0, it is clear from (2-4) that

$$\underline{\psi} = \underline{W}^{-1}\underline{n}$$

and therefore

$$\underline{W} = \underline{W}^{-1}$$

anđ

$$\underline{\psi} = \underline{A} \underline{n} = \underline{\psi}$$

In the presence of noise,

 $\frac{\tilde{\Psi}}{\tilde{\Psi}} = \underline{A} \cdot \underline{n}$ $= \underline{A} W \Psi + \underline{A} \underline{n}$

and with the assumed properties of the noise $\langle \underline{\psi} \rangle = \underline{\psi}$, one obtains

$$\langle \underline{\psi} \rangle = \underline{A}, \underline{W} \langle \underline{\psi} \rangle + \underline{A} \langle \underline{e} \rangle$$

= $\underline{A}, \underline{W}, \underline{\psi}$

Assuming no prior knowledge of the unknowns, one may use the unbiased condition $\langle \hat{\psi} \rangle \approx \psi$. This again implies

$$\underline{A} = \underline{W}^{-1}$$

So with the assumed properties of noise and unbiased condition, the decoding matrix is just the inverse of the coding matrix.

One still has to find a coding matrix which will minimize

the uncertainty, ε .

The second question can be solved in the following way: Let $\hat{n_i}$ be the ith measurement in the absence of noise, then for each measurement

$$\begin{aligned} \eta_{i} &= W_{i1}\psi_{1} + W_{i2}\psi_{2} + \cdots + W_{in}\psi_{n} + e_{i} \\ &= \hat{\eta}_{i} + e_{i} \\ \psi_{j} &= A_{j1}\eta_{1} + A_{j2}\eta_{2} + \cdots + A_{jn}\eta_{n} \\ &= A_{j1}(\hat{\eta}_{1} + e_{1}) + A_{j2}(\hat{\eta}_{2} + e_{2}) + \cdots \\ &+ A_{jn}(\hat{\eta}_{n} + e_{n}) \\ &= (A_{j1}\eta_{1} + \cdots + A_{jn}\eta_{n}) + (A_{j2}e_{2} + \cdots + A_{jn}e_{n}) \\ &= \psi_{j} + \text{noise} \end{aligned}$$

The mean square of the noise term corresponding to the jth unknown is therefore

$$j = (A_{jl} + \cdots + A_{jn}) \sigma^{-}$$
$$= \Delta_{j}^{2} \sigma^{2} \qquad (2-7)$$

where

$$\Delta_{j} = (A_{j1}^{2} + \cdots + A_{jn}^{2})^{\frac{1}{2}}$$
 (2-8)

and Λ_j represents the improvement in the SNR for the weighing design, compared to the SNR for individual weighings.

Hence, the problem of maximizing the signal to noise ratio becomes the problem of minimizing ε_j ; or Δ_j (Nelson and Fredman (1970)).

Sloane et al (1969) independently developed an expression for ϵ/σ^2 where

$$\epsilon / \sigma^2 = \text{Trace } \underline{W}^{-1} (\underline{W}^{-1})^{\mathrm{T}}$$

= Trace $\underline{A} \underline{A}^{\mathrm{T}}$ (2-9)

Equation (2-8) and (2-9) amounts to the same thing be-

$$\operatorname{Trace} \underline{A} \underline{A}^{\mathrm{T}} = \sum_{j=1}^{n} \Delta_{j}^{2}$$

The question of minimizing ε had been answered by Hotelling (Hotelling, 1944) and rediscovered by Nelson and Fredman. Hotelling has shown that for any choice of mask W with $|W_j| \le 1$, the ε_i are bounded by $\varepsilon_i \ge \frac{\sigma^2}{N}$, and that it is possible to have $\varepsilon_i = \frac{\sigma^2}{N}$ for i=1,... N if and only if a Hadamard Matrix H_N of the order N exists (by taking W=H_N). This leads to the discussion of the Hadamard Matrix.

(C) Hadamard Matrix

A Hadamard matrix of order N is an NxN matrix H_N of +1's and -1's which satisfies:

$$\underline{\mathrm{H}}_{\mathrm{N}}\underline{\mathrm{H}}_{\mathrm{N}}^{\mathrm{T}} = \underline{\mathrm{H}}_{\mathrm{N}}$$
(2-10)

where I_N is an NxN unit matrix.

A Hadamard matrix has following properties: (Golomb(1964))

- (1) Its row vectors (or equivalently, its column vectors) are mutually orthogonal.
- (2) The Hadamard properties will not be disturbed by:
 - a. Interchanging rows,

b. Interchanging columns,

c. Changing the sign of every element in a row, or

d. Changing the sign of every element in column.

These properties enable the first row and column of every Hadamard matrix to be normalized to contain only +1's. If <u>G</u> represents the remaining M x M matrix (M= N-1), then <u>H</u> can be partitioned into

		[1 1]1	. 1	1	•	•	•	•	•	1	
H	=	1		G							(M= N-1)
		•									
		•							•		
		•									
		11									

It is conjectured that Hadamard matrices exist for all multiples of four. Further, if one of the following conditions is also satisfied,

(1)	N =	Ρ	+	1	Ρ	prime

(2)	N =	P(P +	2)	+	1	P	,	and	Р	+	2	prime
(3)	n =	2 ^m				m	1	an i	int	eg	(e)	

then <u>G</u> can be made cyclic. That is, the $(j + 1)^{th}$ row can be generated by shifting the jth row one position to the left. For example, when N=8, we have matrices of the form shown in Fig. 1-1. Note that <u>H</u> and <u>G</u> are symmetrix.

Another choice for <u>W</u> is the matrix <u>S</u> obtained from <u>G</u> by replacing +l's by 0's and -l's by +l's.

The properties of the <u>H</u>, <u>G</u> and <u>S</u> are discussed by Sloane <u>et al</u>. If rows i and j are any two rows of <u>H</u>, <u>G</u> or <u>S</u>, it can be shown that their dot product is:

In H_N : row i · row j = $\begin{array}{c} 0 & i \neq j \\ N & i = j \end{array}$ In G_M : row i · row j = $\begin{array}{c} -1 & i \neq j \\ M & i = j \end{array}$ In S_M : row i · row j = $\begin{array}{c} M/4 & i \neq j \\ M/2 & i = j \end{array}$

The inverse of each matrix is:

 $\underline{\mathrm{H}}_{\mathrm{N}}^{-1} = \frac{1}{\mathrm{N}} \underline{\mathrm{H}}_{\mathrm{N}} ; \underline{\mathrm{G}}_{\mathrm{M}}^{-1} = \frac{1}{\mathrm{M}+1} (\underline{\mathrm{G}}_{\mathrm{N}} - \underline{\mathrm{J}}_{\mathrm{M}}) ; \underline{\mathrm{S}}_{\mathrm{M}}^{-1} = \frac{2}{\mathrm{M}+1} (2\underline{\mathrm{S}}_{\mathrm{M}} \underline{\mathrm{J}}_{\mathrm{M}})$

where \underline{J} is a M x M matrix consisting entirely of -1's and N= M+1.

Table 2-1 gives the value of Δ for different matrices. The matrix <u>I</u> represents the weighing scheme weighing each object separately. This corresponds to a conventional single slit spectrometer or to a wedge filter monochromator.

Table 2-1

MATRIX A	ELEMENTS OF A	∆ ⁻¹	(FOR LARGE N)
I	1,-0	1	1
<u>H</u>	1,-1	√N	\sqrt{N}
G	1,-1	$\sqrt{N}(2-\frac{2}{N})^{-\frac{1}{2}}$	$\int_{\frac{N}{2}}^{\frac{N}{2}}$
<u>s</u>	1, 0	$\sqrt{N}(2-\frac{2}{N})^{-1}$	
* <u>F</u>	cosine squared functions	$\frac{N}{4} \frac{2}{N+1}$	$\sqrt{\frac{N}{B}}$

* F is the Fourier Transform case which will be disscussed in Chapter IV.

If the number of measurements N is a multiple of 4, and the matrix coefficients are +1, the best weighing scheme is the Hadamard matrix H. ε will be reduced by a factor $\frac{1}{\sqrt{N}}$ compared to weighing the unknown separately. This is the maximum advantage a weighing scheme can obtain with weighing coefficient $|W_{ij}| \leq 1$. If N is not a multiple of 4, or if the weighing coefficients are 0's and 1's, it is not possible to simultaneously minimize $\varepsilon_1 \dots \varepsilon_n$ and some other criterion must be used (Sloane <u>et al</u>, 1976). Also the errors are uniformly larger than for the H-matrix, as shown for the <u>G</u> and <u>S</u> matrices in Table 2-1 above.

It is interesting to see that a spectrometer using the Fourier Transform, such as a Michelson interferometer, has a multiplex advantage a factor of $\sqrt{8}$ lower than the H-matrix and a factor of $\sqrt{2}$ lower than the S-matrix encoding instrument.

Following are some computer simulations for S-matrix transformations with various inputs (See Fig. 2-1(a) to (c)).

INPUT

- 1. Constant
- 2. Hadamard code: representing single line emission
- 3. Single line: 1 at the 1st element and 0 for the rest. This represents an unknown impulse coming in during the

OUTPUT Constant Single line

Hadamard code. Note, unlike the monochromater, the error propagates to other

INPUT

observation.

- 4 Sine wave.
- 5. Square wave.

The input is not a perfect wave because we have an odd number of elements. The input values have amplitudes 0 or 1 for each element.

6. Straight line at a slope 1/255. Refer to figure (2-1C). This may represent a shift in baseline.

OUTPUT.

elements. sine wave with different phase. Not a perfect square wave.

(D) Optical Realization of Hadamard Encoding

We have made use of (modified Hadamard) S-matrices in two optical instruments: One is a Hadamard transform spectrometer having an encoding mask at the exit aperture. The other is a doubly encoded HTS which has encoding masks at both the entrance and exit apertures.

S codes can be used for both the entrance and exit masks for the HTS, with +1 standing for an open slot through which radiation is transmitted, and with 0 standing for a closed slot where radiation is blocked.

The cyclic property of the S-matrix is very desirable, for then only a single mask 2N-1 slots wide need be constructed. Successive encoding positions are generated by stepping the mask one slot width along its length. This avoids the consturction of N masks with N² slots.

۰.

• • • •

Figure 2-1b. Hadamard transformation of a square wave input.

Although H and G matrices have better coding efficiency than the S matrix, they introduce technical difficulties when used for spectrometer coding schemes. To utilize H and G matrices, one must measure the reflected as well as the transmitted radiation. In this case +1's represent reflecting slots and -1's represent transmitting slots. Therefore a minimum of two detectors must then be used, one in a subtracting mode, the other in the normal mode. The use of two detectors, however, increases the noise. Furthermore, the H matrix, with all elements +1 in the first row, makes the dynamic range of the detector system change by about a factor of two. Also its lack of the cyclic property does not allow one to generate the rest of the masks by the simple stepping technique mentioned above.

1. Hadamard Transform Spectrometer (HTS)

For the singly encoded HTS, we use the following optical arrangement (figure 2-2). Radiation passing through the single entrance slot is rendered parallel and directed to the dispersing element. The dispersed radiation is then de-collimated and focused upon the multi-slot mask at the exit aperture. The spectral elements transmitted by the mask pass through suitable post-optics and are collected onto a detector. One then makes N (in our case N=255) measurements by sequentially stepping the mask N times. The inversion procedure $\psi=\underline{s}^{-1}\underline{n}$ recovers the spectrum. Figure (2-3) gives a 255 cyclic Smatrix code for the exit mask.

Theoretically, the mean square error in the spectrum

~

ł

THE REPORT OF TH			The second s	and the second		A REAL PROPERTY AND A REAL PROPERTY.	CONTRACTOR OF THE OWNER	
00000	00101	10001	11101	00001	11111	11001	00001	:
01001	11110	10101	01110	00001	10001	01011	00110	
01011	11110	11110	01101	11011	10010	10100	10100	
01001	01101	00011	00111	00111	10001	10110	00010	
00101	11010	11110	11011	11100	00110	10011	01011	
01101	01000	00100	11101	10010	01001	10000	00111	
01001	00011	10001						

Figure 2-3. The 509 exit slit mask and the 255-element \underline{S} code.

ŧ

given by a monochromator is σ^2 . For an HTS using the S code, this error is $\frac{1}{N}(2-\frac{2}{N})^2\sigma^2$ (Sloane <u>et al</u>, 1969). Hence the rms gain in S/N for the HTS is $G = \frac{N\sigma^2}{(2-\frac{2}{N})^2\sigma^2} = \frac{\sqrt{N}}{2-\frac{2}{N}}$. For N=255, $G \sim 8.0$ (figure 2-4 gives Decker's results. The experimental gain was measured as 8.0 ± 0.3). Note that the scale in figure (2-4) are in arbitrary units, and the zero point appears to be shifted between parts (a) and (b).

2. Doubly Encoded Hadamard Transform Spectrometer (DHTS)

Figure (2-5) is a schematic representation of an optical system which has a number of entrance as well as exit slits. Instead of passing radiation through only one entrance slit, a mask M slits wide is placed at the entrance aperture. Radiation passed into the spectrometer through different combinations of open and closed slits. The dispersed radiation at the exit plane is analyzed in the same fashion as in the HTS. Encoding is accomplished by sequentially stepping one of the masks through its N different positions for each position of the other mask.

In a DHTS the entrance aperture is modulated by a P x P S matrix.

Let $\varepsilon = \varepsilon_{ir}$ be the P x P matrix whose rows represent P different entrance masks. $\varepsilon_{ir} = 1$ for open slots and 0 for closed slots ($1 \le i \le P$, $1 \le r \le P$). Similarly let $\chi = \chi_{ij}$ represent the exit mask. When the entrance mask is in position i and the exit mask is in position j, the detector measurement η_{ij} is

Figure 2-4. Comparison spectrum of the mercury emission lines in the 1.4-1.8µm region: (a, bottom) as obtained in the Hadamard-transform mode, (b, top) as obtained under identical conditions using the same optical system as a conventional monochromator. This figure is taken from Decker, 1971b.

ORIGINAL' PAGE IS OF POOR QUALTRY

S. 1. 1. 1

Figure 2-5.

Ch.M.

Schematic representation of DHTS.

ŧ

29

.

$$n_{ij} = \sum_{r=1}^{P} \sum_{s=1}^{N} \epsilon_{ir} \psi_{rs} \chi_{sj} + v_{ij} \qquad (2-11)$$

where ψ_{rs} is the spectral element produced by radiation passing through the rth entrance slot and the Sth exit slot, v_{ij} is the noise in the (i,j)th measurement; it has the following properties:

$$\langle v_{ij} \rangle = 0 \langle v_{ij} \rangle kl \rangle = \sigma^2 \delta_{ik} \delta_{jk}$$

If the instrument has no optical magnification, the spectrum of radiation that passes solely through the rth entrance slot to first order is shifted by r spectral channels from the spectrum passing solely through the first entrance slot. Hence, only P+N-1 distinct spectral elements exist:

$$\Psi_{-}(P-1), \dots, \Psi_{-1}, \Psi_{0}, \Psi_{1}, \dots, \Psi_{N-1}$$

where

$$\psi_{\mathbf{rs}} \equiv \psi_{\mathbf{r-s}} \equiv \psi_{\mathbf{t}} \qquad (\mathbf{t}=\mathbf{r-s})$$

In matrix notation one may write

 $n = \underline{e} \underline{\psi} \underline{x}^{\mathrm{T}} + \underline{v} \qquad (2-12)$

Employing the same analysis as one does for the HTS, i.e. using the unbiased condition $\langle \psi \rangle = \psi$ and the properties of ν ,

one obtains

ψ

$$= \underline{\varepsilon}^{-1} \underline{\eta} (\underline{x}^{\mathrm{T}})^{-1}$$

where

Each row i of $\hat{\Psi}$ represents a spectrum at the exit mask for radiation that enters the instrument through the ith entrance position. Hence the jth diagonal gives a one-dimensional spatial picture across the entrance aperture for the spectral element j.

One may obtain an average spectrum $\hat{\psi}_1$ by averaging all the elements in each diagonal.

$$\hat{\Psi}_{i} = \frac{1}{N-|t|} \sum_{r=1}^{P} \Psi_{r,r-t} \qquad t \ge 0$$
$$= \frac{1}{N-|t|} \sum_{r=1}^{P} \Psi_{r,r-t} \qquad t < 0.$$

Harwit <u>et al</u> (1970) showed that if both the entrance and exit masks are S matrices and we define

$$\sigma_t^2 = \langle (\underline{\psi}_t - \underline{\psi}_t)^2 \rangle$$

Then

$$\sigma_t^2 = \frac{16}{(N+1)} \frac{N^2 - 1}{N - \lfloor t \rfloor} \sigma^2$$

 $\sqrt{\frac{16\sigma^2}{(N-|t|)N^2}}$

for N large

(2-13)

where

$$= -(N-1), \dots, (N-1)$$

If the total mean square error for the unknown is

where one sums only the central element, then for the S-code

$$\varepsilon = \sigma^2 \left[\frac{22.18}{N} + O(\frac{1}{N^2}) \right]$$
 N large

where $\sigma^2 = \text{constant } \frac{N}{T}$.

There are two points that should be made about the DHTS. (1) It has not been shown that Hadamard codes are the best codes for such an instrument. In fact some evidence suggests that Hadamard codes are not precisely optimum for this "twoended" operation (Harwit <u>et al</u>, 1974b). (2) For PxN data points the spectrum yields only P+N-1 spectral elements, plus a onedimensional image. It is also possible to reconstruct the (P+N-1) elements with (P+N-1) data points only (Harwit <u>et al</u>, 1974b). Fig. (2-6) gives a 15 element cyclic S-matrix code for the entrance mask.

*. · · . · . . ORIGINAL PAGE IS DE POOR QUALITY 111101011001000 Figure 2-6. The 29 entrance slit mask and the 15-element \underline{S} code. ω

ł

•

Table 2-2 compares three different grating spectrometers. The first column represents the conventional single entrance and exit slot instrument. N measurements are made in time T, with a mean square error σ^2 in each. The second column is for a singly multiplexed instrument with an exit mask S, and is taken from Sloane <u>et al</u> (1969). The last column is for the doubly multiplexed system, using Equation (2-13) for σ_t^2 , and has been multiplied by a factor of N to allow for having to make N² measurements in time T.

	Table 2-2				
	NO MASK	· SHT	DHT		
۵ ⁻¹	l	<u>ک</u> ک	<u>N</u> √22.2		

(E) Errors in Hadamard Spectroscopy

During the manufacture of the masks, whether by deposition of metal or by removal of metal through an etching process, it is possible to obtain a systematic error that leaves each of the opaque portions of the mask either too wide or too narrow by a fixed amount. This will cause a systematic variation in signal passing through the slit. For example if the open slit is too narrow by a fixed amount ε , the light passing through an open slit position will be

I when the open slit is bounded by two open slits.

 $I_0(1-\epsilon)$ when the open slit is bounded by one open slit and one closed slit

 $I_0(1-2\varepsilon)$ when the open slit is bounded by two closed slits.

A similar analysis holds for open slits that are too wide, except that the minus sign in these expressions is replaced by a plus sign.

The spectrum of a single (spectral line resulting from such imperfect masks) is remarkably simple (Tai et al, 1975 b). Independent of the particular S-matrix mask to be used, there are always precisely four false blips present in the final spectrum. The amplitude of these blips is always the same for a fixed narrowing or widening of the transmitting slits. Two of the blips always surround the main spectral line, and a pair of adjacent blips always are some distance removed from that For the 255 element S-matrix, these two are located 24 line. and 25 elements away to the left of the parent line. The amplitude of the displaced blips is positive when the transparent slits are too wide and is negative when the slits are too narrow. In contrast, the two blips surrounding the parent line always are positive. Figure (2-7) shows the negative features accompanying the 1.7 µm mercury vapor doublet and the computer simulation of a pure spectral line input and its distorted spectrum. For the general case the reader may refer to Tai et al (1975 b).

Figure 2-7. (a) Spectrum of the 1.7µm mercury vapor doublet showing negative peaks to the left at the emission peaks; (b) Shows the response we would obtain to a single spectral line with a perfect mask; (c) Shows the response for a single line with the radiation simulated as passing through a mask with slits too narrow because each opaque mask element protrudes into the adjacent transparent slot by a tenth of a slot width; (d) Shows the effect of simulating slits that are systematically too wide. Note that the main spectral line has been placed in different positions for the synthetic runs (b),(c), and (d).

CHAPTER III

INSTRUMENTATION

(A) <u>Multislit Spectrometer</u>

A conventional spectrometer has four essential elements, an entrance slit, a dispersive device such as a grating or prism, a set of imaging optics, and an exit slit.

Such a spectrometer has two important parameters. The first is the "resolution" R, which is a measure of how well the spectrometer can separate two neighboring lines. The second parameter is the "throughput" E. This is a measure of the light gathering capability of the system. The two parameters, R and E, are lumped together into what is called "luminosity" L, defined as (Vanasse, 1974).

 $L = E \cdot R -$

For a conventional grating spectrometer having a grating of area A_g given by WH, where W and H are the width and height respectively of the grating, the throughput is determined by the product of A_g with the solid angle α subtended by the slit at the collimating mirror (or lens). The solid angle is given by

$$\Omega = \frac{W \cdot 1}{F^2}$$

where w and 1 are the width and height respectively of the slit

and F is the focal length of the collimating mirror

$$E \sim W \cdot H \cdot \frac{W \cdot h}{F^2}$$
 (3-1)

The resolution of this instrument is

$$R = \frac{\lambda}{\Delta \lambda}$$

= nN
= n \cdot \frac{W}{d} (3-2)

where λ is the wavelength, $\Delta\lambda$ the closest wavelength that can be separated, n the order, N the total number of lines on the grating, W the width of the grating and d the spacing between rulings.

Since $d \sin \alpha = n\lambda$ (3-3) substitute (3-2) into (3-3)

$$\frac{W}{B}\sin\alpha = n\lambda \qquad (3-4)$$

if the slit width is limited by diffraction, which is the minimum slit width, then

$$W \sim \frac{F\lambda}{W \cos \alpha}$$

substituting (3-5) into (3-4) one gets

(3-5)

$$R \sim \frac{F}{w}$$
 an α (3-6)

Comparing equation (3-1) and (3-6) one sees immediately that, for a fixed grating area W·H, and fixed optical system, E is proportional to the slit width w and R is inversely proportional to the slit width w. This means that an increase in luminosity of the system by increasing the slit width is made at the sacrifice of resolution, and vice versa.

From (3-1) and (3-6) one obtains

L ~ E · R · W · H · <u>1</u> F

Another feature of a conventional spectrometer is that it transmits only one narrow spectral range of light to the detector, and all other spectral elements are wasted. As a result, the instrument is inefficient.

Within the past two decades there has been much research done in an effort to design new spectrometric systems with a view to maximizing the luminosity L, and to observe a number of spectral elements simultaneously. This can provide a multiplex advantage, or a wide aperture advantage. Two quite distinct modulation techniques have been employed in the past. The first depends on the wave nature of radiation, and makes use of interferometry. The Fabry-Perot interferometer, Michelson interferometer, and Mach-Zehnder interferometer (Jacquinot, 1954, 1960; Vanasse and Sakai, 1967) are instru-

ments of this type. The other technique employs dispersing spectrometers in which entrance and exit slits are replaced by opaque or transmitting masks. Golay's multislit spectrometer, Girard's Grill spectrometer and Hadamard spectrometers (Harwit et al, 1974a) are representative of these instruments.

A spectrometer, whether interferometric os mask-multiplexed, yields a multiplex advantage mainly for detector noise or amplifier noise limited applications. In these cases it can be shown that for N spectral elements, one can achieve of the order $N^{\frac{1}{2}}$ improvement in the overall spectral signal-to-noise ratio, S/N, over a conventional spectrometer (Chapter II).

For photon noise limited applications, the multiplexing advantage is cancelled by the N-fold increase in the photon noise attributed to the N-fold increase in the energy falling onto the detector. Nevertheless, for photon noise limitations, the throughput advantage can still be realized. The large throughput will become a disadvantage when the noise is background noise which increases faster than the noise due to the source (Harwit <u>et al</u>, 1974a).

In this chapter we will describe the experimental study of a Hadamard transform spectrometer (HTS) and calibration in the laboratory. Figure (3-1) is the flow chart of the whole process, starting with radiation from the telescope and ending with the output of the computer. Each component will be described.

Figure 3-1.

The flow chart of the data taking process, starting with radiation from the telescope and ending with the output of the computer.

ORIGINAL PAGE IS OF POOR QUALITY

(B) The Optics

1. Spectrometer

Fig. (3-2) shows the basic spatial design of the spectrometer. It works in the Ebert-Fastie mode. Radiation passing through the entrance aperture S falls upon the spherical mirror M which, in turn, renders it parallel and directs it to the grating G. The dispersed radiation is collimated by the other half of the spheroid and focused upon the exit aperture S'... A 255-slot encoding mask is located at this position. The exit focal plane is positioned in such a way that it bisects a 90° corner reflection. The corner reflector returns the radiation through the spectrometer again and displaces the beam from the center of the principal plane to one side. This reverse process dedisperses the beam and allows it to be brought to a focus at the entrance plane. The dimensions of the focused image are roughly the same as the dimensions of the entrance aperture (Decker 1971). These procedures allow one to use a smaller detector.

A diagonal mirror at the entrance directs the dedispersed radiation to the liquid helium cooled post optics.

The entrance mask can be a single entrance slit with any width between zero to 1.5 mm for the 1x255 program, or it can be a fifteen S-matrix code with each slit having width 0.1 mm for the 15x255 element program. In normal use the height of of entrance slit is 3.5 mm. It can be increased up to 10 mm.

M_l is a spherical mirror with a 49.5 cm focal length. On its back it is held in place with three teflon-tippled

Figure 3-2. Optical path through the spectrometer. The dedisperser and exit mask are shown rotated by 90°.

screws. Three teflon-tippled springs bear on the front edges of the mirror. This design allows one to make slight adjustments in the position of M when aligning the instrument. The central part of the mirror is blocked off to reduce stray radiation.

G is a 75 mm x 75 mm grating with 20 lines/mm and blaze angle 5°ll'. The corresponding blaze wavelength at first order is 9.03μ . Figure (3-3) is the calculated grating efficiency as a function of slit position, at two wavelengths. At 8μ the energy imaged within one slit width is 80% of the total. For 14μ the energy within one slit is 52%. The grating is mounted on a yoke which allows it to be adjusted in three mutually perpendicular directions. It is located at 0.82 focal length from the primary mirror M.

All mirrors inside the spectrometer are silver coated with a protective coating of SiO_2 . The reflectivity of silver coating at 10μ is better than 97%.

For a multiplexing spectrometer which has N entrance and N exit slits, one wishes to image entrance slits S_1, S_2, \ldots, S_n onto exit slits S'_1, S'_2, \ldots, S'_n such that S_1 is imaged onto S'_1, \ldots, S'_n onto S'_n at a particular wavelength λ . Let δ be the angle subtanded by S. Where δ and δ' are measured from the center of M. The grating equation for imaging S onto S' is

 $\sin \alpha + \sin \beta = \frac{m\lambda}{a}$

44

(3-7)

Differentiating (3-7) with respect to a gives

$$\frac{d\beta}{d\alpha} = -\frac{\cos \alpha}{\cos \beta}$$
(3-8)

The minus sign indicates that α and β change in opposite directions. d α is the width of the entrance slit and d β is the width of exit slit, so $\delta \neq \delta'$ unless $\alpha = \beta$.

In our spectrometer, the exit slit width is 0.1024 mm, 2.4% larger than the entrance slit width. This is the effect of anamorphic dispersion- a magnification produced by the grating (3-8), when the lower limit on the slit width is set by diffraction. The total number of spectral elements that can be observed simultaneously is limited by the optical aberrations of any particular optical system, which set a limit on the total useful width over which the spectrum can be displayed.

2. Post Optics

The post optics consist of a liquid helium cooled Arsenicdoped silicon (As:Si) detector, with appropriate optics for focusing the radiation onto the detector (Fig. 3-4). Radiation enters the evacuated dewar through a barium fluoride window, passing through a filter with pre-selected band-width. The filtered radiation then passes through a cooled barium-fluoride filter and is focused onto the detector inside the housing by a gold coated mirror. A light baffle is partitioned in front of the detector housing.

Below is a brief discussion of each of the cryogenic components

Figure 3-4. Liquid helium cooled post optics.

(a) Barium Fluoride Window

The barium fluoride window is 2 mm thick and 0.75" in diameter. It is used to cut off wavelengths longer than 14μ . It has a transmission efficiency of around 90% out to 11μ before it starts to cut off. At 14.29μ (700 cm⁻¹), its transmission efficiency is 50%.

(b) Filters

A liquid helium cooled filter wheel with 8 filter positions is housed inside the dewar. Table 3-1 gives a brief description of each filter.

Table 3-1

Filter position	Range	Band-width	efficiency
. 1	no filter		
2	closed (blocked b aluminum f	y oil) .	
3	8µ - 9.	9µ 1.9µ	71%
4	8.7µ - 11.	lµ 2.4µ	83%
5	11µ - 12.	4ս 1.4ս	82%
6	11.1µ - 13.	8μ 2.7μ	86%
7	8.4µ — 15µ	6.0µ	85%
. 8	glass	shorter t	han 2μ

Filter positions 1 and 2 are for testing purposes.

The filter wheel is held in place by a spring-loaded screw.

The wheel was originally connected to the outside world through a stainless steel rod and could be changed to different positions by turning the rod. It was found that the stainless steel rod conducts too much heat from the outside into the helium containing can. When the stainless steel is replaced by a G-10 Glass Epoxy Lamitex rod, the holding time for the liquid helium of the dewar increases from 9 hours to 15 hours.

(c) Field Mirror

A gold coated mirror with focal length 7 mm and f/0.41 is used as a field mirror to focus the radiation onto the detector. The reflection efficiency for gold mirrors at 10μ is over 99%. The mirror has 3 degrees of freedom of adjustment, one translational and two rotational adjustments.

(d) Liquid Helium Cooled Barium Fluoride Filter

This barium fluoride window is also used to cut off the radiation longer than 14μ . Although the filter barium fluoride window cuts off radiation longer than 14μ from the outside world, it will emit radiation of its own because it is at room temperature. Since all the interference filters have a long wavelength leak between 20μ to 26μ , and since the detector will cut off radiation longer than 24μ only, there is still radiation from 20μ to 24μ that gets into the detector as background radiation. The insertion of the liquid helium cooled barium fluoride filter eliminates this peak. It was found to cut down the background radiation by a factor of four.

(e) Detector

An arsenic doped silicon detector with dimension 1.2 mm x

3.2 mm is positioned inside a housing, which has a baffle at its entrance.

Arsenic doped silicon is a N-type extrinsic semiconductor. When the detector absorbs radiation, free carriers are provided for the conduction band, thus changing the resistence of the detector. The following discussion follows the work of Putley. For further details, one can refer to Putley (1964) and Kittel (1966).

Let σ be the conductivity of the detector

e be the electric charge of the carrier τ be the life time of free carriers N be the density of free carriers, and μ be the mobility of free carriers

Then,

 $\sigma_{\rm D} = {\rm NeP}\mu \qquad (3-9)$

and

 $\Delta \sigma_{D} = \Delta J e \tau \mu \eta$.

 $= \frac{\Delta P}{h\nu} e\tau \mu \eta \qquad (3-10)$

where

 $\Delta \sigma_{\rm D}$ is the change in conductivity of the detector ΔJ is the number of photons incident in unit time ΔP is the radiation power incident ν is the frequency of the incoming photons, and η is the quantum efficiency, i.e. number of electrons freed per photon. Since

$$R_{\rm D} = \frac{1}{\sigma_{\rm D}} \frac{\ell}{A}$$

where R_D is the resistance of the detector ℓ is the length of the detector, and

A is the area of the detector

Then

$$AR_{D} = -\frac{\pounds}{A} \frac{\Delta \sigma_{D}}{\sigma_{D}^{2}}$$
$$= -\frac{\pounds}{A} \frac{\Delta P}{hv} \frac{\eta}{N^{2} e \mu \tau}$$
(3-12)

Let
$$I_{\rm D} = \frac{V_{\rm B}}{R_{\rm D}}$$
(3-13)

where I_{D} is the detector current, and

 $\ensuremath{\mathbb{V}}_B$ is the bias voltage across the detector Then

$$\Delta I_{\rm D} = -\frac{V_{\rm B}}{R_{\rm D}} \Delta R_{\rm D}$$

$$= \frac{V_{\rm B}}{R_{\rm D}} \frac{\ell}{A} \frac{\Delta P}{h\nu} \frac{n}{N^2 e\mu\tau}$$
(3-14)

Let

$$v_{o} = I_{D}R_{L}$$
$$= \frac{R_{L}}{R_{D}} v_{B}$$

(3-15)

(3-11)

where V_{o} is the voltage across the load resistor

R_L is the load resistance Then

 $\Delta V_{o} = \Delta I_{D} R_{L}$

 $= R_{L} V_{B} \frac{\Delta P}{hv} \frac{A}{L} \eta e \mu \tau \qquad (3-16)$

From equation (3-16) one can calculate ΔP from ΔV_{0} .

(f) Procedures for Alignment of the Optics

i) Place all components in their respective positions and line them up visually. Be sure there is no mechanical binding in the mask and in the driving mechanism.

ii) Using a laser, put the spot from the entrance slot on the middle of the grating. It is suggested that only one entrance slot be used.

iii) Adjust the grating tilt until the line of dispersed dots exits at the proper position at exit. As the grating is rotated, this line of spots should remain level, not displaced normal to itself.

iv) Put one half of the dedispersing mirror combination in place. Use a T square to line it up roughly. At this point, use a mercury emission lamp with proper f-number to simulate the beam coming from the telescope. A number of colored image of the single entrance slot will be seen at the exit.

v) Adjust the spherical mirror for coarse adjustment and the position of the dedispersing mirror as a fine adjustment to bring the image to a focus on the exit plane.

vi) Adjust the grating position in its yoke until the

color image from the mercury lamp is parallel to the exit slit length.

vii) Adjust the angle of the dedisperser so that the color image reflected by it is perpendicular to the exit mask.

viii) Put in the other half of the dedisperser and line it up at an angle so the radiation falls back upon the grating. Adjust with fine adjustment screws so the grating is fully illuminated. The image of the grating will appear on itself when viewed from the diagonal,45°, mirror which diverts the radiation to the dewar.

ix) Place the dewar on the spectrometer using 4" spacers to represent the thickness of the dewar bottom cover. Adjust the 45° mirror so that the dedispersed image (with color) falls on the center of the filter on the filter wheel.

x) Turn the filter wheel to position one (no filter), so that radiation can fall on the field mirror. Adjust the field mirror until the dedispersed radiation impinges upon the detector. Be sure that all the light falls onto the detector. Be sure that the mirrors accept all the radiation.

xi) Insert the housing. Be sure that the incoming radiation is clear of the housing.

xii) Put in the liquid helium shield, and the radiation shield. Put on the nose. Use GE varnish and aluminum foil to reduce openings in the baffles so that they will transmit only the bright white fringes.

xiii) When the spectrometer is on the telescope, maximize the signal by tilting and rotating the dewar.

(C) The Electronics

The data-taking process is controlled electronically to ensure a smooth process. The operator only needs to turn the switch on. The spectrometer will then automatically take date in, process it, and stop at the end of the transform indicated by the operator. All the operator has to do in the whole observation is to keep the astronomical object in the beam. Figure 3-5 shows the block diagram of electronic and computer set up. The following are brief descriptions of the electronic parts incorporated in the system.

1. Alignment Sensor

The alignment sensor (figure .3-6) is used to synchronize a Monsanto electronic counter, and the computer with the spectrometer. The circuit is shown in figure (3-6). The exit mask is continuously moving. When the exit mask is at its starting position, i.e. the first 255 slots are at the exit aperture, a light pulse goes through an alignment slot on the exit mask and is detected by a photo-cell on the other side of the exit Two transistors amplify the output light curve and two mask. IC chips change the light curve into an alignment pulse. This alignment pulse, through the drive unit, readies the counter for counting, readies the computer to accept data, and to turn on an indicator light showing that the system is taking data. One can adjust the starting position of the exit mask by adjusting the intensity of the light. After 255 data points have been obtained, the exit mask is at its other end, and another alignment pulse turns off the counter and the indicator light.

Figure 3-6. HTS alignment circuit.

ORIGINAL PAGE IS OF POOR QUALITY

The computer after taking 255 readings checks that the indicator light is off. This step ensures the synchronization of computer and spectrometer.

2. Drive Unit

A drive unit (Fig. 3-7) is used to drive the entrance and exit masks of the spectrometer. It can be set to be adjusted by pulse streams at 100 Hz, 200 Hz, or 400 Hz. The unit performs the following functions:

(a) It receives an alignment pulse from the sensor circuit(18) and generates a pulse to reset the counter for counting(17). The pulse will also ready the computer for taking the data.

(b) It drives the exit mask in a continuous mode at a displacement rate of one slot for every 41 pulses(18).

(c) After each set of 41 pulses the unit instructs the the mini-computer to read the integrated signal off the counter and then reset the counter for the next data integration.

(d) After 255 reset pulse the unit advances the entrances mask by one slot by sending the entrance mask advance motor 40 pulses (11).

3. Preamplifier

The circuit (Fig. 3-8) shows a transimpedance amplifier implemented with a Burr Brown operational amplifier. The circuit has the advantage of high speed, low susceptibility to microphonics, and detector operation at constant voltage with a high resistance load resistor.

Neglecting the voltage noise and current noise in the

Figure 3-7.

Logic diagram for mask motion and data processing.

OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

-

first order approximation, the current through the detector, I_D , also goes through the load resistor R_F because the input impedance of the operational amplifier can be taken to be very large, so

$$v_{o} = I_{D} \frac{R_{F}}{R_{F}}$$
$$= v_{B} \frac{R_{F}}{R_{D}}$$

where V_0 is the output voltage, V_B is the constant bias voltage, and R is the load resistance

(D) Laboratory Calibration

1. Calibration of Post Optics

Liquid nitrogen is used to calibrate the efficiency and sensitivity of the post optics. Liquid nitrogen is in a dewar with black paper along the wall to simulate a blackbody. Through a chopping device, the post optics will alternately see radiation from the liquid nitrogen and from the room. The difference between these two radiations gives the A.C. signal. D.C. measurements are obtained by putting liquid nitrogen directly in front of the dewar window. The following are the results of the calibration:

Dewar profile:

 $f_{\rm H} = 7.6$ $f_{\rm V} = 10.3$ $8.7\mu - 11.1\mu$

Wavelength region:

Band-width:	2.4µ
Bias voltage:	15µ .
Load resistor at LH2 temperature:	1.2 MΩ
A.C. power:	9x10 ⁻¹⁰ watt.
A.C. signal:	272.7 mv
A.C. noise:	4.4µv
(NEP) A.C. detector:	5.2x10 ⁻¹³ H ² z
(NEP) A.C. system:	$1.25 \times 10^{-12} H_z^{\frac{3}{2}}$
A.C. responsivity:	1.2 amp/watt.
D.C. power:	3.05x10 ⁻⁶ watt.
D.C. signal:	11.32V
D.C. noise:	4μ v
(NEP) D.C. system:	$1.47 \times 10^{-12} H_z^{\frac{1}{2}}$
D.C. responsivity:	2.58 amp/watt.
Background noise:	$NEP_{Blip} = \sqrt{2} P_{BG}hv$
	=3.5x10 ⁻¹³

where P_{BG} is the D.C. power

is the frequency that is assumed to be 10Hz. ν The system is a factor of 3.57 away from background limited.

2. Test of the Spectrometer

A mercury vapor lamp with emission at 1.7 μ is used with the spectrometer to test the computer program. A PbS detector and an appropriate blocking filter isolates the 1.7 μ doublet of mercury. The slit width and length for each mask is 0.15 mm and 3.5 mm. Fig. (3-9) is the mercury vapor spectrum at 1.7μ for the 1 x 255 mode. Fig. (3-10) is the mercury vapor spectrum

for 15 x 255 mode. Figure (3-10a) shows the eighth of a series of fifteen individual spectra. Figure (3-10b) shows an average of all fifteen spectra, and (3-10c) shows all 15 spectra, each spectrum being displaced vertically from the next. The diagonal pattern near the right-hand edge represents a displacement of the peak between successive spectra. This represents the actual shift in spectral range between adjacent spatial elements.

Once it was clear that the instrument with the computer program worked properly in the 1.7μ region, the spectrometer was tested with the cryogenically cooled, arsenic-doped silicon detector. The transmission spectrum of polystyrene with a soldering iron as the source was obtained. The shap e of the filter profile and the transmission spectrum of polystyrene showed that the instrument worked in the 10μ region.

The wavelength calibration of the spectrometer is obtained by comparing the polystyrene transmission spectrum obtained by the spectrometer and the spectrum obtained by a Perkin-Elmen monochromator. The wavelength calibration is then checked against the moon spectra at 9.5μ where the atmosphere has strong absorption features.

(a)

Figure 3-10. Calibration spectra obtained

for the mercury vapor emission lines at 1.69µm and 1.71µm: (a) The eighth of a series of fifteen individual spectra obtained;

(b) ·

(b) An average of all fifteen spectra;

(c) A display of the fifteen spectra, each spectrum being displaced vertically from the next. The diagonal pattern near the right-hand edge represents a displacement of the peak between successive spectra. This represents the actual shift in spectral range between adjacent spatial elements.

CHAPTER IV

CCMPARISONS BETWEEN FOURIER TRANSFORM AND HADAMARD TRANSFORM SPECTROSCOPY

Since the Michelson interferometer spectrometer (MIS) and Hadamard transform spectrometer (HTS) both have the multiplex advantage and the advantage of large through-put, there are a number of comparisons between them in the literature. In this chapter the comparisons are carried out in four different aspects: mathematically, computationally, optically and mechanically.

(A) Mathematically .

Fourier transforms and Hadamard transforms can be viewed as using two different weighing schemes. Appendix A gives the mathematical analysis of the coding error for Fourier transform.

Let ξ be the path difference in a two beam interferometer. P(v) is the power at wave number v (i.e. the spectral density function). v here is taken to be the inverse of wavelength, then S(ξ), the power received for path difference ξ , is:

$$S(\xi) = \int_{0}^{\infty} P(\nu) \cos^{2}(2\pi\xi\nu) d\nu \qquad A-1$$
$$= 1/2P_{0} + 1/2\int_{0}^{\infty} P(\nu) \cos(4\pi\xi\nu) d\nu \qquad A-2$$

In the Fourier transform each spectral element can be viewed as having a phase modulation by a cosine squared term. Its argument depends on the stepped distance and the particular

wavelength. In the Hadamard transform each spectral element is modulated by a step function of 1 and 0 for a S-matrix coding.

One can ask oneself whether these modulating or encoding schemes are equally efficient?

In table 2-1 we stated that for large N the multiplex advantage, or the efficiency, of the H-matrix coding of elements 1 and -1 is \sqrt{N} , the S matrix coding of element 1 and 0 is $\frac{\sqrt{N}}{2}$, and for a single detector MIS the Fourier coding is $\sqrt{N/8}$. This last figure is based on calculations shown in Appendix A. The other two values were described by Sloane <u>et al</u> (1968). The H-matrix is an orthornormal matrix. The element -1 means "subtract" the radiation, while the +1 element means "add" the radiation. No radiation is wasted and thus the coding scheme has the highest efficiency. For S-matrix coding half the slits are open, 1, letting light pass through; and half the slits are 0, blocking the light. Half the radiation is therefore wasted each time and one can intuitively see why the efficiency of the S-matrix is only half that of the H-matrix.

Although the S-matrix is less efficient, it has the important advantage that it is cyclic; that is, the $(i+1)^{th}$ column of the S-matrix is obtained by shifting the ith column cyclically one place downwards. Instead of constructing a mask of N² slits for N spectral elements, one constructs only one mask with 2N-1 slits. Such a mask has two advantages. First, the cost of mask construction is reduced by $^N/2$ and the design of the advance mechanism is considerably simplified,

since the total weight of the mask also decreases as N/2. Secondly, it can be self-supporting and therefore permits the construction of a spectrometer which requires no transmission materials. In operation the mask is stepped one slit width along the length of the mask- for each successive encoding position.

In the Fourier case, equation (A-2) of Appendix A

$$S(\xi) = 1/2P_{A} + 1/2\int^{\infty} P(v) \cos(4\pi\xi v) dv$$
 (A-2)

shows that half the power goes into $1/2P_o$, the first term on the right hand side, which is not modulated at all. This reduces the efficiency by a factor of two as in the S-matrix case. The other half of the power is modulated by a cosine term. Cosine modulation gives a factor $1/\sqrt{2}$ because cosines functions do not form an orthronormal set themselves. The total Fourier modulation efficiency is therefore $1/2(\sqrt{N}/2)$. Mathematically, the S-matrix is a factor of $\sqrt{2}$ better in SNR than the Fourier transform. The true Hadamard code, which cannot be realized experimentally, as yet, is a factor of $\sqrt{8}$ better that the Fourier code.

(B) Computer Requirements

Both MIS and HTS require a digital computer to decode the data. However, in the HTS case this reduces to nothing more than a series of additions and subtractions. Hence, as much as an order of magnitude in computer time can be gained over

the Fourier decoding procedure required by MIS (Decker, 1971). In addition, HTS do not have the large zero path-length spike which is characteristic of MIS, and hence can be operated with a substantially lower dynamic range.

(C) Optics

HTS attempts to "liberate" the grating instrument from its inferior position and offers a possibility to convert a conventional scanning spectrometer into a multiplex instrument at a moderate cost. However, it is also the grating and optics that limit the capabilities of HTS.

1. Resolution

The resolution of a grating instrument is

R	=	$\frac{\lambda}{\lambda}$			
	=	mN			(4-1)
	=	$m\frac{W}{d}$			(4-2)

where m is the order of diffraction. N is the total number of rulings in the grating. W is the width of the grating. d is the separation of lines.

The MIS introduces variable path differences between two interfering beams. The resolution is determined by the maximum permissible path difference in the interferogram.

4 ξ

$$\Delta v = \frac{1}{2x}$$
(4-3)
= $\frac{1}{2x}$ (4-4)

where x is the maximum path difference between interfering beams.

5 is the displacement of one of the two mirrors from the white light fringe position, and

 Δv is the increment in wavenumber.

Since

 $R = \frac{\lambda}{\Delta\lambda}$ $= \frac{1}{\lambda\Delta\nu} \qquad (Mertz a, P.5)$ $= \frac{2x}{\lambda} \qquad (4-5)$

A MIS can have a resolutuion as high as $\sim 10^6$.

2. Slit Width

In the HTS, the minimum usable slit width is determined by the diffraction pattern

 $w \sim \frac{\lambda}{W} F$ (4-6)

where F is the focal length of the imaging mirror.

It has been argued that a boxcar profile is a poor match to a sine diffraction pattern(Hirschfeld, <u>et al</u>, 1973, Mertz, 1976 b). In the presence of diffraction, the transmission at each point of the mask will be a complex function of the spectral distribution, the mask position, and the relative width of the nearby transparent and opaque slits.

One way to correct this is to make the slits, wider than the diffraction limit, allowing the mask's transmission to approach the geometric optical limit. This way, however, not only the resolution of the instrument is reduced, but the total number N of spectral elements that can be observed simultaneously, also decreases.

There is another way to look at the same problem. The grating is an operator that changes the frequency domain into the spatial domain, so that intensity as a function of frequency, after passage by the grating, becomes a function of position. With diffraction effects included, the intensity has a new functional dependence on distance. The Hadamard mask code and the subsequent decoding process just translate this spatial distribution function back into its spectral domain. Therefore, an intensity pattern which is complicated by the diffraction pattern, after the Hadamard coding and decoding, should still show up the same intensity pattern. Since one knows the diffraction pattern for a given optical system, the diffraction effect on the spectral intensity distribution can be computed and corrected, so that the sine² diffraction effect would not make the slit width any larger than the diffraction limit. One point, however, should still be noted. The correction that would have to be applied is wavelength dependent because diffraction is wavelength dependent.

A similar problem exists in MIS (Stewart P.296) because the moveable mirror must be stopped when its maximum displacement is reached.

The sidelobes in the interferometric case is of the form

$$S(\omega^{\dagger}) = \frac{\sin (\omega - \omega^{\dagger})T}{\omega - \omega^{\dagger}} \qquad \omega^{-\omega^{\dagger}} \qquad (4-7)$$
(Stewart P.295)

which has considerably stronger side lobes than the diffraction pattern. Here, T is the time for the mirror to travel from one end to the other, and ω is the central frequency. Various schemes of apodization have been introduced to compensate for the side lobes in the interferometric case.

3. Multiplex Number

The total number of elements N that can be observed simultaneously yields the multiplex advantages. In HTS, the total aperture size is limited by aberrations largely due to off axis radiations. The aperture width is (Hirschfeld, 1973)

$$w = F \cdot S_{u} \qquad (4-8)$$

where F is the instrument focal length and $S_w/2$ is a factor of the order of 0.05 \sim 0.], that describes how far off axis one can go before the aberration pushes the individual slit width up to the point where no further gain in N is possible. Since the minimum slit width, determined by diffraction effects, is $\sim 1.22\lambda f$, the total number N is

$$N = \frac{FS_{W}}{1.22\lambda f}$$
(4-9)

and is of the order of 10^3 .

For our HTS at Cornell, we have

F = 49.5

 $S_w \sim 0.08$ (assume \sim medium value) $\lambda = 10.0 \mu m$ f= 7.5

N∿250

Actually, however, Mertz and Flamand (1976) suggested that S, values >>0.1 may be realized in practice.

The MIS has a very large effective value of N. This is its main gain. The total wave number range observed in MIS is

$$v_{\max} - v_{\min} = \frac{1}{4\Delta}$$
$$= \frac{1}{4\Delta\delta}$$

where Λ is the step size of the mirror, σ is the resolution in wave number. N for the MIS can be $10^6.$

4. Spectral Range

The MIS also has a broad free spectral range. Its range is limited by the beam splitter efficiency which usually varies approximately as the cosine of the wavelength. HTS free spectral range is usually about one grating order. Its free spectral range can be increased by using order sorting, but this increases the technical difficulty. Although the HTS has a smaller spectral free range, it can be set to recover only those spectral bands of particular interest throughout any spectral regions (Decker, 1971). This is impractical with a MIS. 5. Throughput

The throughput is defined in section 1-A as the product of aperture A and angular acceptance Ω

 $E = A\Omega$

For a MIS it can be shown that $\Omega R=2\pi$ and

$$E_{MIS} = A_m \cdot \frac{2\pi}{R}$$

where R is the resolution of the instrument. A_m is the area of the interferometer mirror. Typically, Avl cm², and for $Rv10^3$, $E_{MTS}v6 \ge 10^{-3}$.

For the HTS, from equation (3-1) one obtains

$$E_{HTS} = A_g(\frac{w \cdot h}{F^2})$$

where h and w are slit height and width and F is the focal length. For a double multiplexed spectrometer, the throughput of MIS and DHTS are about the same, of the order 10^{-2} cm². For the same throughput, the HTS may have a worse system transmission because the HTS requires a dedispersing process.

DHTS has the additional advantage that one can construct a one dimensional picture of the source.

(D) Mechanical Requirements

The HTS mask can be made self-supporting hence no beamsplitters or transmission optics, are required. Furthermore, in the MIS, construction tolerances usually involve dimensions and motions that have to be maintained to within fractions of wavelengths. For a HTS, the corresponding tolerances are fractions of a slit width, and these tolerances are normally two orders of magnitude more relaxed, so that this instrument will be more suitable for rugged applications and less costly.

It is clear from the above comparison that the MIS has the advantages of highest resolution, very large multiplex number and free spectral range. The HTS has the mechanical advantages and computational advantages for large N. The HTS can have on the order of 10³ spectral elements and a resolution sufficient to resolve the rotational lines of many molecules. For most IR astronomical observations this will be sufficient. Furthermore, its potential for modifying the existing sacnning spectrometer at a moderate cost make this a very worthwhile field for further study.

CHAPTER V

PROGRAMMING FOR HADAMARD TRANSFORM SPECTRAL DATA REDUCTION

An 8K Computer Automation minicomputer model L.S.I. or model Alpha-16 can be used to interface with the output of a Monsanto scalar counter which digitized the output of the detector used with the Hadamard transform spectrometer. The computer processes each data point as soon as it receives it and when the data gathering run is completed, the computed spectrum is also ready within a fraction of a second. The final spectrum can be displayed on a cathode ray tube for quick visualization, or printed on paper by a teletype machine for more detailed analysis. Also, it can be stored on paper tape for future use.

There are two inverse transformation programs: 1 x 255 for the single entrance slit and 255 exit slit Hadamard transform spectrometer, HTS, and 15 x 255 for the 15 entrance slit and 255 exit slit instrument, DHTS.

(A) HTS Program

The inverse HTS program processes the raw data obtained by the combination of a single entrance slit and 255 exit slit. This program is in double precision format. Two areas in the memory are reserved by the program to store the final spectrum. The firal spectrum can be stored in either the plus beam or the

minus beam area. The plus and minus beams are arbitrarily named.

Data can come in at a rate of 10 data points per sec., 5 data points per sec., or 2.5 data points per sec., depending on how the clock driving the spectrometer is set. Since a complete pass has 255 points, each pass takes 25.5 sec., 51 sec., or 102 sec., depending on the data rate. Each pass yields one spectrum. One can take as many passes as one wants until one is satisfied with the SNR of the spectrum.

The whole program (Appendix B) is linked by the following subprograms: COMMAND, TRANSFORM, INPUT/OUTPUT, READ, CLEAR, PUNCH, GRAPH, DISPLAY, MATHMATICAL PACKAGE and MASK. The function of each subprogram is described briefly in the following sections.

<u>COMMAND</u>: This subprogram performs two functions.
 (a) It commands the computer to do one of the following functions: TRANSFORMATION, CLEAR, READ, PUNCH, GRAPH or DISPLAY.
 (b) If two distinct spectra are stored in two different beam areas, the COMMAND program can take the difference and ratio of the two spectra.

2. <u>INVERSE TRANSFORM</u>: This is the most important subprogram in the whole program. It will take data points from the counter, transform them and enter them into either the plus or minus beam areas, or it will read the data points from the paper tape into one beam area, transform them and enter them into the other beam area. This program is called the inverse transform, since it inverts the transformation performed by the coding mask, and

yields a spectrum. The program also performs the Hadamard transform, i.e. transforms the spectrum back to raw data, from either input.

The algorithm is based on the following idea: Let ψ_j be the jth spectral element and w_{ij} be the weight of the jth element of the ith mask. w_{ij} equals 1 for transmitted radiation and 0 for blocked radiation. Each measurement then has a value

$$n_{i} = \sum_{i=1}^{255} S_{ij}\psi_{j} + v_{i}$$

where v_i is the random detector noise satisfying the properties mentioned in Section II-B. S is the 255 x 255 matrix. n_i is the ith data point entered into the computer. The computer's job is to decode n_i to reconstruct the original spectral values ψ_i . Therefore

$$\hat{\psi}_{j} = \sum_{\substack{i=1\\ i=1}}^{255} S_{ji}^{-1} n_{i}$$

where $\hat{\psi}_j$ is the unbiased estimate of ψ_j and \underline{S}^{-1} is the inverse of the S matrix.

According to the relation

$$\underline{s}^{-1} = \frac{2}{N}(2\underline{s} - \underline{J})$$

one obtains \underline{S}^{-1} by keeping all +1's in the S-matrix and replacing all 0's by -1. The matrix obtained in this way is the

inverse matrix of S except for a constant factor $\frac{2}{255}$, which only gives a different normalization.

To reconstruct the spectral values ψ_j one needs to add or subtract each measured value to η_i different bins, according to whether <u>S</u>⁻¹ is plus or minus. Fig. (5-1) is a flow chart for the 1 x 255 transform program.

By a Hadamard transform we mean a program that transforms the spectrum back to its raw data^{*}. This procedure is useful because by inspecting the raw data display which usually appears quite smooth, any bad data point can be easily identified, and for example, replaced by the average of its two adjacent data points. This procedure will improve the final spectrum.

The Hadamard transform turns out to be extremely easy. All one has to do is to change one statement in the inverse transform program. When S_{ij}^{-1} is -1, instead of negating the data, one just sets it to zero.

Data points are taken both with the exit mask moving in a forward and in a reverse direction. The inverse transform program takes care that when the exit mask moves in the forward direction, the spectrum is transformed into the plus beam area. When the exit mask moves in the reverse direction, the final spectrum is stored in the minus area. Not adding the

* The notation here may be a bit confusing. We use the \underline{S}^{-1} to transform the raw data into an intensity spectrum. The inverse transform uses \underline{S} to transform the intensity spectrum back into raw data.

Figure 5-1. The flow chart of the 1x255 inverse transform program.

ORIGINALI PAGE IS OF POOR QUALITY

forward and backward spectrum eliminates a degradation of the final spectrum due to any asymmetry between the data taking for different directions of motion of the mask.

3. <u>INPUT/OUTPUT</u>: This program links up the computer, the teletype and high speed reader. It consists of the following functions: Keyboard Input, Paper Tape Input, Output to Teletype, Output Text from Buffer, Output Floating Point Number, Wait for Execute Signal, Command Error Exit, Carriage Return-Line Feed.

4. <u>READ, CLEAR, PUNCH</u>: This program reads the spectrum from the paper tape into either plus or minus beam areas for further manipution, or punches the spectrum out from the beam area; it also can clear the beam area. The speed of teletype for reading is 100 words per sec. Hence it takes about 12 min. to read the spectrum. Punching has the same rate.

5. <u>GRAPH</u>: This program plots the graph on teletype paper, with its numerical value in floating point format. This procedure offers one the chance to inspect the spectrum in detail if it is needed. It takes about fifteen to twenty minutes to finish a spectrum, depending on the complexity of the spectrum.

6. <u>CRT</u>: A cathode ray display is interfaced with the output of the computer. It takes about 2 sec. to display the spectrum, with a factor of 5 higher resolution than the graph printed by the teletype on paper. One can display the spectrum at the end of any pass to see how good it is.

7. <u>MATHMATICAL PACKAGE</u>: This package is supplied by the Computer Automation library tape, with a little modification

from our own on its double precision part.

8. <u>MASK</u>: This part contains the \underline{S}^{-1} matrix, the 255 elements exhibited in the first mask position plus an additional 254 elements representing the further cycling of this mask.

(B) DHTS

The doubly encoded Hadamard transform program processes the data obtained by the various combinations of fifteen entrance slots and 255 exit slots. It is a single precision program. It can accept data at a rate of 5 data points per sec. and 2.5 data points per sec. only because it takes a longer time to process each data p ______ me whole transform takes about 14 minutes. The final _______ um consists of 15 separate spectra, representing a one-dimensional color picture across the spectrometer entrance aperture. Each separate pectrum contains 255 spectral elements. The program can co-add all fifteen separate spectra yielding a sum spectrum with improved SNR.

The program consists of the following subprograms: COMMAND, TRANSFORM, DATA, INFUT/OUTPUT, READ, CLEAR, PUNCH, GRAPH, DISPLAY, ENTRANCE MASK, EXIT and opendix C). Since most of the subprograms are proved the same function as their counterpart in the 1 x 255 c and pt written in single precision format, their description and programs will be discussed because they are different from those in the 1 x 255 scheme.

1. <u>INVERSE TRANSFORM</u>: The program can accept data eigher from the counter or from paper tape. In order to eliminate any asymmetry due to the different directions of motion of the exit mask, the computer will accept data only when the mask is moving in a given direction, either forward or backward, depending on the operator. If one wants to save time, one can still choose the mode in which the computer will accept data in both directions of mask motion. Hence, the program provides six modes for operation: accepting data from the counter, in the forward, backward, or both directions, and accepting data stored on the paper tape, in the forward, backward and both directions. Figure (5-2) shows the flow chart for 15 x 255 program.

Let both the entrance and the exit masks be linear arrays encoded by Reed-Muller codes. Then the matrix of spatial-spectral elements ψ is related to the matrix of measurements n by

$\underline{s} \underline{\psi} \underline{S} = \underline{n}$

To obtain the spatial-spectral information about the viewed scenc we solve this equation by premultiplying the data matrix by \underline{s}^{-1} and postmultiplying by \underline{s}^{-1}

 $\underline{\psi} = \underline{s}^{-1}\underline{n} s^{-1}$

Now consider the element η_{11} . It is multiplied only by elements of the first column of \underline{s}^{-1} ; and in turn it multiplies only the elements of the first row of \underline{s}^{-1} . To a given spectral-

. The flow chart of the 15x255 inverse transform program.

spatial element ψ_{ij} , it therefore contributes an amount $s_{i1}n_{11}S_{1j}$. But the elements s_{i1}^{-1} and s_{ij}^{-1} all have values, either +1 or -1, and the result is that each element ψ_{ij} of the matrix ψ receives a contribution $+n_{11}$, or $-n_{11}$ from the reading, n_{11} .

This procedure is generally valid. Any reading η_{kl} will make additive contributions that can only have values $+\eta_{kl}$ or $-\eta_{kl}$ to each element ψ_{ij} of the ψ matrix.

For real time decoding we therefore need the following:

(a) A memory that consists of bins containing the contributions to the elements ψ_{ij} accumulated up to any given time t in the cycle of measurements. For a device that can resolve m spatial and n spectral elements, this memory reruires mn bins and of the order of mn memory words.

(b) For each acquired reading η_{kl} we perform a series of additions of values either $+\eta_{kl}$ or $-\eta_{kl}$, one to each of the ψ_{ij} memory bins. But before that can be done, we need to decide on the assignment of + or - needed for a given bin. This is done in the following way.

We store the sequence of + and - signs in one column of \underline{s}^{-1} and in one row of \underline{S}^{-1} and in one cycled permutation of each of these vectors. Let us designate these signs by their positions in these two vectors, as \underline{s}_{1}^{-1} and \underline{S}_{1}^{-1} , respectively, i=1,... m; j=1,... n. (Since each of these sequences is cyclic it can, respectively, be brought into its kth and ith cycling position after a measurement η_{kl}). The elements of the two vectors then are multiplied in all possible combinations to

give a matrix having mn elements.

 $\Sigma_{ij} = s_i^{-1} s_j^{-1}$ i=1···· m; j=1···· n

Each element Σ_{ij} is either + or - depending only on whether the signs s⁻¹ and S_j⁻¹ are similar or dissimilar for a particular combination of i and j values.

The additions $+\eta_{kl}$ or $-\eta_{kl}$ to the bins ψ_{ij} are made as successive elements, Σ_{ij} are computed, so that the elements Σ_{ij} need never be stored. Figure (5-3) shows the relation of Σ_{ij} to a superarray containing the set of all elements that are constructed at various stages of the computation.

When only a restricted number of spectral elements are of interest, we need to compute elements ψ_{ij} representing only selected j values. This might be useful, for example, if only certain atmospheric CO₂ absorption lines needed to be studied, and the spectral elements between were of lesser interest. In that case only $\Sigma_{k+i-1,k+j-1}$ elements corresponding to given j values need to be used, and the computing time decreases as p/n, where n is the total number of available spectral elements, and p is the actual number of interest.

One starts with the inverse of the codes, s^{-1} and S^{-1} , for the entrance and exit masks stored in the computer. One stores 509 elements of the exit mask, i.e., the 255 elements exhibited in the first mask position plus an additional 254 elements representing the further cycling of this mask. Similarly one stores twenty-nine elements for the entrance mask,

Figure 5-3.

- 2

86

Matrices generated by the computer during the reduction of the spectral data.

representing the first fifteen elements used, plus the further cycling of fourteen elements.

For each reading n_{kl} one essentially makes use of the matrix (figure 5-3) making use of elements k to k+14 of the stored entrance code and elements l to l+254 of the stored exit code. This matrix consists of + and - signs. When s_{ik}^{-1} and S_{lj}^{-1} have the same sign, both being + or both being -, the matrix position ij is assigned a + sign, and the reading n_{kl} is added to the accumulatively stored value of ψ_{ij} . If the elements s_{ij}^{-1} and S_{lj}^{-1} have dissimilar signs, a - sign is assigned to ij and the reading n_{kl} is subtracted from the stored ψ_{ij} . This whole process takes ~100 msec, and is carried out while the succeeding intensity measurement is being made.

In pratice, we start with the first spatial element, i=1 and add or subtract the contributions to all the ψ_{1j} values, successively going from j=1 to j=255. We then repeat this procedure for i values going from 2 to 15. This whole procedure is carried out while the exit mask is moving from posiiton ℓ to $\ell+1$ depending on whether the exit mask is moving forward or back. The entire process is then repeated for the next reading $\eta_{k,\ell+1}$. When the exit mask reaches its 255th position, ℓ remains unchanged, but the entrance mask moves from the position k to k+1.

For odd values of k, the exit mask moves in the direction of increasing 1 values, and for even values of k, it moves toward decreasing values. In short, the exit mask moves back and forth as readings are taken. After the entrance mask has

ŏγ

moved through all its fifteen positions, and the total 3825 readings have been taken and added onto or subtracted from the $\psi_{i,i}$ elements, the run is completed.

2. <u>DATA</u>: Instead of processing a data point immediately as it comes in, this program stores the data in the memory, so one can display the raw data points first, correct them if there are any obvious bad points, and then transform them. This program serves the same function as the inverse transform in the 1 x 255 system.

3. <u>DISPLAY</u>: The display program allows one to display the information in a number of different ways:

(a) One can call for the spectrum corresponding to any one of the entrance slit positions and display it individually.

(b) One can display the sum of the different spectra. In order to do this, one has to take into account that the spectrum for a given entrance slit is displaced by one spectral position from adjacent entrance slit position. In other words, the wavelength for element ψ_{ij}^{-1} corresponds to the wavelength for element $\psi_{l+1,j+1}$, because of the slightly displaced light paths through the spectrometer.

(c) Finally one can display all fifteen of these spectra simultaneously, with the zero baseline of each spectrum vertically displaced from the next one. While this format is somewhat crowded, it does allow a quick comparison of the individual spectra.

(C) <u>Correction Program</u>:

This program is shown in Appendix D written in BASIC language. It corrects the error introduced by the imperfect mask. Instead of correcting the mask which in practice is not possible, the program corrects the final spectrum. That is much easier.

As seen in section II-D, for any spectral line I_o , the distorted spectrum shows a line $I_o^{!=I_o(1-\varepsilon)}$, two positive blips with amplitude $(1/2)(\varepsilon I_o^{!/1-\varepsilon})$ adjacent to the line on both sides, and two negative blips with same amplitude, i.e. $(\varepsilon/2)(I_o^{!/1-\varepsilon})$ at 24, 25 elements to the left. The correction program takes the intensity of every element, $I_o^{!}$, multiplies it by $\varepsilon/2$, adds it to the elements 24 and 25 positions to the left, and subtracts it from the two adjacent elements, one on each side of the line. The final spectrum is complete except for a different normalization factor. This is a linearized correction procedure valid only for small values of ε , $\varepsilon<<1$.

CHAPTER VI

ASTRONOMICAL OBSERVATION

(A) Correction Procedure

The correction of the spectra for telluric absorption and for instrumental response is a critical procedure. The correction is carried out by comparing the source spectrum (either stellar or planetary) with a lunar or solar spectrum which is taken on the same day at an airmass as close as possible to the star. The following procedures are used in the data reduction:

(1) Correct the raw star spectrum and lunar spectrum (or sun) for negative dip due to the imperfect mask as described in section II-D.

(2) Correct for different entrance slit width if necessary because different slit widths will give different resolution.

(3) Most of the astronomical infrared sources to be observed are weak sources, hence a positive offset is always added to the signal to prevent the signal becoming negative. (The electronics are confused by negative signals.) The correction procedure shown previously also take out this offset. One can take out the offset from the raw spectrum if one knows how large the offset is. Another way to correct this is by substracting a constant intensity from the stellar spectrum until the ratio of the stellar spectrum over the Moon spectrum,

around any large telluric absorption reigon, such as the ozone band, is optimally corrected. By optimal correction we mean that the atmospheric feature appears as neither a positive, nor a negative band. The Moon is a strong infrared signal and does not require an offset, so the result can be used as a calibration for base line.

(4) Align the stellar spectrum and the lunar spectrum by the telluric absorption feature. The final stellar spectrum is obtained by taking the ratio of the stellar spectrum and the lunar spectrum and multiplying it by the black body temperature of the Moon. The lunar temperature is obtained by noting the phase angle of the lunar east limb where it has usually been observed, and extrapolating the temperature from the value given by Linsky (1973). This procedure assumes the lunar infrared emissivity at 8-14µm as unity, which is not true. Murcray et al's (1970) results for the lunar emissivity of 8-14µm region are shown in figure (6-1). The observation was done from a balloon. The strong feature centered at 9.6µm is a result of telluric ozone absorption. Murcray's result has not been used in our analysis because in the region to be discussed, 8.54m-14µm, the Moon's emissivity is about constant except for the ozone absorption.

(B) Observation of α -Orionis

The observations of α -orionis were carried out with the 50" infrared telescope at Kitt Peak National Observatory, Arizona, in May 1974. The beam size is 18 sec. x 47 sec. The Kitt Peak 50" telescope bolometer was used with the Hadamard spectrometer. The dewer has a band pass of 8 - 14µm. The spec-

Figure 6-1.

The spectral emissivity of various regions as calculated from the flight data (Murcray <u>et al</u>, 1970). trometer operated in the 8-11 μ m region with a resolution $\lambda/\Delta\lambda$ around 500. The chopping frequency was 10 cycles per second.

Three runs were taken. Each run consisted of 10 scans of the sources. Two lunar spectra were taken on the same day for correction purposes. For the lunar temperature we used 383° K. Figure (6-2) shows the raw spectra of α -orionis and the Moon. The α -orionis spectrum is the sum of two independent runs.

Figure (6-3) shows the ratio spectrum of α -orionis corrected for lunar temperature. Except for the region immediately around the ozone band all the telluric absorption features are gone. The region between 9.35µm to 9.7µm is unreliable because the ozone band has a very low transmission.

 α -orionis is a late type super-giant with temperature around 3000°K. A stellar continuum corresponding to a 3000°K blackbody is also shown in figure(6-3), normalized to arbitrary units. The broad emission feature around 10µm, which is due to silicate emission, is clearly shown in the spectrum. This 10µm 'silicate' emission feature of α -orionis has been previously discussed by others.

Woolf and Ney (1969) renormalized Gillett <u>et al</u>'s spectra (1968) of α -orionis and interpreted the $10\mu m$ emission as coming from circumstellar dust which absorbs starlight and reradiates at infrared wavelengths. Since the emission is far more sharply peaked than a black body, the wavelength dependence of the emission probably closely mimics the wavelength dependence of the opacity of the material. In the same paper, Woolf and Ney

93.

also proposed that it is silicate grains which one is observing in the circumstellar dust cloud. This suggestion has been strengthened by high resolution spectra of Gamown et al (1972) with resolution $\lambda/\Delta\lambda=250$ from 850 cm⁻¹ to 1100 cm⁻¹. The emissivity of silicate grains should have a second peak near 20µm. This second emission feature was observed by Low and Swamy (1970) in narrow-band photometry of α -orionis. Another supporting piece of evidence for the silicate model of the α -orionis dust cloud comes from observations of silicon monoxide (SiO). Silicon monoxide is expected to be among the most abundant molecules present in the atmospheres of cool stars of normal composition. It is also a reagent in the condensation mechanism thought to produce circumstellar silicate grains (Mass et al, 1970). The presence of silicon monoxide in α -orionis was confirmed by Cuduback et al (1971). They observed SiO absorption features around 4um.

The silicates are expected to form from the material ejected by cool stars. Gilman (1969) calculated what solids would condense from gas of stellar composition as it moved away from a star and cooled. This is critically dependent on the ratio of oxygen to carbon in the gas. These elements first combine to form carbon monoxide; the subsequent development depends on which of the two is left over when all the other has been used up in this way. If carbon predominates, graphite will be the principal condensate, or under certain circumstances silicon carbide. If oxygen wins, the grains which should form are the silicates of calcium, magnesium, aluminium and iron;

combinations of these are responsible for the 10 and 20µm spectral features. Aluminium and calcium silicate may be rare because of the low cosmic abundance of aluminium and calcium. Woolf and Ney (1969) expected magnesium silicate, MgSiO₃, with some iron silicate, FeSiO₃, to be most abundant. For recent work on dust grains one can refer to Salpeter's paper (1974 a) on the theory of nucleation and dust grains in carbon-rich stellar atmosphere and his paper (1974 b) on formation and flow .of dust grains in cool stellar atmospheres.

Laboratory spectra exist for silicate absorption features (Day, 1974). Any fine feature of the astronomically observed silicate emission may be washed out by different particle sizes and shapes, uncertainty in temperature and mixture of composition. Gammon <u>et al</u> (1972) examined the excess in XY Seg and O Cet and concluded that the type of silicates involved are basic rather than acidic. Day (1974) synthesized the amorphous magnesium silicate and obtained an absorption band quite similar to the material causing the interstellar 10µm absorption feature. He suggested that the existance of disordered structures seems a more reasonable expectation than crystalline terrestrial-type minerals. For the momnet, the nature of the silicates is certainly at an unsettled stage.

Penman (1976) had measured the middle infrared reflectivities of five silicate minerals, and used Kramers-Konig analysis to obtain the optical constants of the samples. He then used the optical constants in Mie computations of the absorption properties of very small mineral grains. The final absorption

cross-section spectra compared to the observed 10µm silicate of the source W3/IRS5. All the calculated spectra have sharper features than the astronomical features due to the application of Mie theory. However, the hydrated silicate, Chloritite (hydrated Mg/Fe/Al silicate) and serpenlenite (hydrated Mg/Fe silicate) fits the observed astronomical positions correctly. They fall almost exactly at the center of the astronomical features.

To the author's knowledge only two spectra of a-orionis in 8-14µm exist in the literature. Gillett et al (1968) (figure 6-4a) obtained results in the wavelength region from 2.8 to 14µm, with a resolution $\lambda/\Delta\lambda=50$. Treffers and Cohen (1973) (figure 6-4b) obtained a spectrum from 8-14µm, and in the 20µm region with resolution 1000. Gillett's and Treffers and Cohen's spectra are shown in figure (6-4). Compared with our result, all show the 10µm emission feature if Gillett's black body curve is lowered instead of being drawn tangent to the observed data at 10µm. Our spectrum shows a rather rapid dip at wavelengths beyond 10µm while Treffers and Cohen show a slower nearly constant decline. Further high resolution observations should clear this matter up. Our own instrument now operates at a resolution similar to that of Treffers and Cohen, and if used on a telescope as large as the 120 inch Lick Observatory reflector that they used, sufficiently high signal to noise ratios should be obtained.

Figure 6-4. (a) Low resolution spectrum taken by Gillett et al(1969). Different symbols represent spectra taken on different nights. (b) High resolution spectrum taken by Treffers and Cohen (1973).

(C) Observations of Jupiter

The observations of Jupiter were also carried out with the 50" infrared telescope at Kitt Peak. The beam size is $18" \ge 47"$. The Kitt Peak bolometer assigned to the 50" telescope with band pass 8-14µm was used with the Hadamard spectrometer. For our Jupiter observations, the spectrometer operated in the 10.8-13.4µm region with an effective resolution $\lambda/\Delta\lambda$ around 250. The chopping frequency was 10 cycles per second.

Two runs were taken. Each run consisted of twelve scans of the whole Jovian disk. Two lunar spectra were taken on the same day for correction purposes. For the lunar temperature we used a value of 383° K. Figure (6-5) shows the raw spectrum of Jupiter and the Moon. Both the Jovian and lunar spectra are the sums of two independent runs. Figure (6-6) shows the ratio spectrum of Jupiter corrected for lunar temperature. The arrows labeled by H₂O show the position of telluric water vapor features. Most of the telluric features have been cancelled properly.

Jupiter is covered by clouds which in the visible part of the spectrum are seen from earth. Current models show three distinct cloud layers (figure 6-7, Ingersoll). The lowest layer is water ice, with maximum density at about 270° K. The middle cloud is solid ammonium hydrosulfide (NH₄SH) at about 200° K. Lewis and Prinn (1970) suggested that ultraviolet radiation from 2200 to 2700 Å is not absorbed by H₂, He, CH₄ and absorbed a little by NH₂. Therefore, the radiation in this

1 1⁴

1

7 4

Figure 6-7.

The atmospheric profile of Jupiter for a solar-composition model.

region may reach the ammonium hydrogen cloud and photolyze hydrogen sulfide there into hydrogen polysulfides (H2S,), elemental sulfur, and ammonium polysulfides $|(NH_{4})_2S_r|$. All of these species are yellow, orange, or brown and may explain the color of zones. However, Sagan and Salpeter (1976) suggested that even under the most optimistic assumption that every H2S photo dissociation event leads to polymerics, the implied optical depth falls short by two orders of magnitude from matching the observed values. Moreover, pure polymeric sulfur fits the observed optical properties of the Jovian red chromophores only poorly (Rages and Sagan, 1977). The upper cloud is solid ammonia at around 150°K. Solid ammonia is whitish and probably forms the white zones on the Jovian disk. The color of the Great Red Spot may be due to high altitude ultraviolet photolysis of phosphine (PH₃) into P_2H_4 and amorphous red phosphorus. The total depth of the cloud system is about 70 Km, and the pressure range probably runs from about 0.5 bar at the top to 4.5 bar at the cloud base. It is the cloud tops and above where the 10µm infrared radiation originates. Our spectrum measures a color temperature of 135°K which is consistent with Ingersoll's picture. The radiation should come from the cloud tops because the Jovian atmosphere at 10.5 to 13µm has appreciable opacity, as discussed in the next paragraph.

The main constituents of the Jovian atmosphere are hydrogen molecules, helium molecules, methane and ammonia, with minor constituents hydrogen sulfide, water, ethane and acetylene. Table 6-1 shows their observed abundance ratio by number.

TABLE 6-	1
----------	---

				1	4
Solar	composition	atmosphere	(fraction	by	number)

	and the second	
Species	(1)	(2)
H ₂	0.886	0.870
He	0.112	0.128
H ₂ O	1.05×10^{-3}	8.80×10^{-4}
CH ₄	6.30×10^{-4}	6.17×10^{-4}
NH ₃	1.52×10^{-4}	1.49×10^{-4}
H ₂ S	2.90×10^{-5}	2.56 x 10 ⁻⁵

(1) Weidenschilling and Lewis (1973).

(2) Podolak and Cameron (1974); Cameron (1973). The table is taken from Ingrosell.

The abundances of hydrogen, methane, ammonia, and helium seem consistent judged from solar atomic abundances. For detailed information one can refer to McElroy (1973).

The opacity due to hydrogen molecules is caused by pressure induced dipole absorption. The hydrogen molecule has no permanent dipole moment, and consequently, no permanent dipole Gaseous H₂, however, has a weak pressure - induced spectrum. dipole spectrum which absorbs significantly over the long path lengths and low pressure of the Jovian atmosphere. The induced dipole moment results from two distinct physical process (Kranendonk and Kiss, 1959). The first takes place when the permanent quadrapole moment of one molecule induces a dipole moment in another molecule by virtue of the neighbor's polarizability. This is a long range interaction. The second physical process takes place when the overlap forces of the two adjacent molecules cause an asymmetrical distortion of their electronic charge clouds. The net induced dipole moment is modulated by the relative translational and rotational motion of the colliding pair and this modulation produces the absorption of infrared radiation. The translational spectrum is predominant at long wavelengths with its peak at 100µm at 100°K (Trafton and Munch, 1969). In our wavelength region $(10.5 - 13\mu m)$ its contribution to the opacity is negligible. The rotational hydrogen collisional spectrum, however, has its peak at 17µm and contributes a continuous opacity in our wavelength region (Th. Encrenaz, 1972).

The helium molecule also has no permanent dipole moment.

Its opacity comes from the collision with the hydrogen molecules and resembles the H₂-H₂ collision process. The collision is less important due to the smaller abundances of helium.

Ammonia is an important source of opacity at 10µm under Jovian atmospheric conditions. The 10µm band of ammonia arises from transitions through the v_2 mode. In the v_2 mode of vibration, the nitrogen atom oscillates vertically relative to the plane of the hydrogen atoms (figure 6-8a). The nitrogen atom is able to penetrate through the potential barrier to the other side of the hydrogen plane. This inverted position leads to inversion splitting of the levels of the ammonia molecules. The splitting generates both symmetric and antisymmetric energy levels with a given vibrational quantum number. The $10\mu m$ band of ammonia arises from transitions from the ground vibrational state to the first excited state in the v_2 mode (figure 6-8b). Another transition, from the first excited symmetric vibrational state to the second excited asymmetric state is also in 10µm range, but the contribution due to this "hot band" is small for the low temperature in the Jovian atmosphere.

The ammonia is clearly seen in abosrption in the spectrum. The centers of the bands are shown by the arrows labeled NH_3 . The ammonia absorption has been observed by different groups.

Gillett <u>et al</u> (1969)(figure 6-9) observed Jupiter from 2.8-14µm with low resolution $\lambda/\Lambda\lambda=50$. Briefly, their results show the following: The spectrum has a depression at 3.3µm caused by CH₄. Solar heating of the upper atmosphere via this band results in warming of the upper atmospheric layers. This

Figure 6-8. (a) Schematic representation of the NH₃ molecule. The components of angular momentum and the motion in the v_2 vibrational mode are also shown. (b) Energy levels of the v_2 vibrational mode of ammonia. Superscripts a and s refer to the antisymmetric and symmetric levels which arise due to inversion splitting.

proceeds until energy is radiated at the same rate via the 7.7µm band of CH_{4} . Ammonia absorption around 10μ m was also detected. Judging from the CH_{4} emission, these authors were the first to suggest a temperature inversion on Jupiter caused by solar heating of the 3.3µm band of CH_{4} . They also showed that the NH₃ band at 10μ m is saturated, and calculated that the H₂ abundance at 12.5µm, assuming a temperature of 125° K, is 12 km-atm. with a pressure $P_{H_{2}} \sim 1/4$ atm.

Aitken and Jones (1972) obtained a Jovian spectrum from $8 - 13\mu m$ at a resolution $\lambda/\Delta\lambda \sqrt{43}$ (figure 6-10). The ammonia absorption band is again seen. They estimated that the ammonia abundance in the band is about 2.7 cm-atm. and a lapse rate $\Gamma = \frac{\partial T}{\partial h}$ at 13 μm given by H=-30K, where H is the scale height $\sqrt{20}$ km.

The most recent published infrared spectrum is by Lacy <u>et al</u> (1975) who used the Lick Observatory 120" telescope. High resolution spectra were obtained at 890 cm⁻¹(11.24µm) with $\lambda/\Delta\lambda$ =1780. Medium resolution data were observed from 1000 cm⁻¹ to 350 cm⁻¹(10 \sim 12.75µm) with $\lambda/\Delta\lambda$ from 250 to 333 (figure 6-11 a,b). The authors also calculated synthetic spectra, assuming that NH₃ and H₂ are the only sources of opacity. Their conclusions from comparison between observed and computed spectra follow: All of the prominent lines in their observed spectrum are saturation NH₃ bands broadened to a width many times the pressure - broadened line width. The observed 135°K continuum is primarily formed by the wings of the NH₃ line. The H₂ opacity may be important if NH₃ is unsaturated

Figure 6-10.

(a) Room temperature absorption spectrum of ammonia, p=0.06 atmos, w=0.6 cm atmos.
(b) Brightness temperature; (c) Surface brightness of the central region of Jupiter from 8 to 13.5µm. (Taken from Aitken and Jones).

near 135° K. A pressure of 0.125 atm. at 135° K is required to form the continuum. The minimum temperature in their synthetic model is $118\pm 5^{\circ}$ K while the observed minimum temperature is 123° K, about 5° K larger than the derived temperature due to incomplete resolution of the features. The lapse rate at 135° K is $7.5\pm 2.5^{\circ}$ K/SH. Gillett <u>et al</u> (1969) estimated the lapse rate at the NH₃ saturation level is 4° K/SH. A discrepancy occurs in the comparision of the medium resolution data between 870and 890 cm^{-1} . In this region the Jovian spectrum seems to be depressed by about 2° K relative to the calculated curve. The authors suggested that it may be due to an as yet unidentified minor constituent of the Jovian atmosphere.

Our spectrum has about the same resolution as the medium spectra of Lacy <u>et al</u>'s and so the two spectra can be compared. The line positions match well. The vertical matching shows a drift towards longer wavelength. Figure (6-11a) is obtained by matching points A and B. The short wavelength side matches but the end of the long wavelength side is about 1.5 times higher. Also our spectrum seems to match the theoretical curve better at 870 to 890 cm⁻¹. Figure (6-11b) is obtained by matching A' and B'. Then the long wavelength side matches better than before but the short wavelength side is different. Also now our spectrum matches better with Lacy <u>et al</u>'s observed result at 870 - 890 cm⁻¹. A conclusion about the discrepancy at 870 cm⁻¹ between Lacy's observed and calculated spectra can not be reached at present until there is a better way for matching our and Lacy's <u>et al</u>'s spectrum. Also it is not clear

Figure 6-11a.

Spectrum of the N and S polar regions of Jupiter at $3-4 \text{ cm}^{-1}$ resolution divided by the spectrum of the Moon. Data points are shown as solid circles, and the solid line represents the best fitting synthetic spectrum calculated from the model calculated by Lacy <u>et al</u> (1975)(The graph is taken from Lacy <u>et al</u>). The dotted curve is our observed spectrum by matching Lacy's spectrum at points A and B.

. 1

Figure 6-11b.

Same as 6-11a except matching our spectrum with Lacy's at A' and B'.

114

whether the difference in matching of our spectrum and Lacy <u>et al</u>'s between long wavelength and short wavelength is real or not. There could be several reasons for the difference. It could be due to the inaccuracy of the end of the spectra, because the short wavelength side is the end of our spectrum and the long wavelength side is the end of Lacy's spectrum; or it may just be due to the matching technique. More effort is needed to clearify this point.

The fisorption due to NH_3 is much less important beyond 12μ , so one may be able to use the H_2 opacity to estimate the lapse rate in that region. The lapse rate can be estimated by the equation

$$T_B(\lambda_1) - T_B(\lambda_2) = \frac{TH}{2} lu \frac{a(\lambda_1)}{a(\lambda_2)}$$

where $T_B(\lambda_1)$ is the brightness temperature at λ_1 $T_B(\lambda_2)$ is the brightness temperature at λ_2 Γ is the lapse rate $a(\lambda_1)$ is the absorption coefficient at λ_1 $a(\lambda_2)$ is the absorption coefficient at λ_2 H is the scale height

If one chooses λ_1 =11.95, λ_2 =12.34 with measured brightness temperature T_1 =133.94, T_2 =133.64, $\alpha(\lambda_1)$, $\alpha(\lambda_2)$ are taken from Calpa and Ketebaar (1957), one obtains a result ΓH =-43.2°K for an H₂ opacity dominated atmosphere. Gillett <u>et al</u> (1969) calculated the adiabatic lapse rate (ΓH)ad=-42°K for an H₂ atmosphere, while Aitken and Jones (1972) measured a value of FH=-30°K from their spectrum. Our value seems closer to the

value calculated by Gillett rather than to Aitken's. It is emphasized here that the estimate is based on the assumption that the H_2 opacity is the dominant opacity at wavelengths 11.95 μ and 12.34 μ , which may not be true.

Methane has a strong emission band at 7.7u but does not have any band structure in our region. Methane has two important contribution to the overall thermal structure of the Jovian atmosphere. The first one is that methane has an absorption band at 3.3µm which absorbs solar energy and reradiates at 7.7µm producing an inversion temperature layer with a maximum temperature of 150°K at an altitude 160 - 200 km. Secondly, methane is photo dissociated by ultraviolet light in the upper atmosphere. This results in products such as ethane (C_2H_6) , acetylene (C_2H_2) , and ethylene (C_2H_4) . Strobel (1973) estimated that column densities of C_2H_6 , C_2H_2 , C_2H_4 above the cloud top are approximately 10^{21} , 3 x 10^{16} , $3 \times 10^{15} \text{cm}^{-2}$ respectively. $C_2^{H_6}$ and $C_2^{H_2}$ were first observed by Ridgway (1973) using the 60" Kitt Peak solar telescope in the 750 - 875 cm⁻¹ (11.42 - $13.33\mu m$)range with resolution $\lambda/\lambda\lambda=770$, (figure 6-12a). The lines are shown in strong emission at the 140°K temperature. The apparent lines are superpositions of many lines, each group corresponding to a subband. Ridgway calculated that the mixing ratios are $N(C_2H_6)/$ $N(H_2)=4 \ge 10^{-3}$ and $N(C_2H_2)/N(H_2)=8 \ge 10^{-5}$. The ratio $N(C_2H_6)/1$ $N(C_2H_2)=50$ where Strobel predicts about 200. Combes et al (1974)'s (figure 6-12b) observation confirms the presence of very strong emission lines of C_2H_2 and C_2H_6 . The abundance of

Figure 6-12. (a) Thermal emission spectrum of Jupiter corrected for absorption in the earth's atmosphere observed by Ridgway (1973). The dashed line is the predicted form of the H₂ continuum. (b) The ratio of the Jovian spectrum to the atmospheric absorption spectrum observed by Combes <u>et</u> at (1974). The solid and dashed lines are the blackbody curves at 135°K and 120°K respectively.

ethane estimated from Ridgway's spectra depends strongly on the distribution of gas temperature, which is not well-determinded. If the temperature in the mesospheric inversion layer turns out to have a maximum value of 150° K, the observations indicate \sim (Ridgway 1974) 2 x 10^{-2} gm cm⁻¹ of ethane in this high temperature region. Sagan and Salpeter (1976) estimate the column density of ethane molecules to be 3 x 10^{-3} gm cm⁻² by assuming that ethane is produced by photolysis' of methane by solar ultraviolet photon and destroyed mainly by eddy diffusion into the troposphere, followed by pyrolysis in deeper, hotter layers. This would be in very serious conflict with the observations, especially since only a small fraction of the theoretical column density refer to the hotter inversion region.

The ethane emission band is also shown in our spectrum (figure 6-6). In the figure the indicated emission line position was extrapolated from Ridgway's spectrum, and the laboratory observed position by Smith (1949) are also shown for comparison. Our positions agree with Ridgway's reasonable well, while Smith's seem displaced from ours by 0.01 μ m,possibly due to a uncertainty in position calibration. Only a portion of the C₂H₂ spectrum can be seen in our spectral coverage. The abundance of C₂H₆ is not estimated here because the absolute amplitude of our spectrum trum is not well calibrated.

Our spectrum contains both ammonia and ethane features while other observers have not shown both. This will be useful because one can compute the synthetic spectra including both. Ammonia will provide us with information about the top

of the cloud layer while ethane provides us with the information about the inversion layer. A synthetic spectrum including both ethane and acetylene would be interesting because the inclusion of these new gases would affect the models, especially around the inversion. Acetylene would appear around 13µm. The absorption of solar radiation by CH, at 3.3µm used to be thought to be radiated solely by CH_{μ} at 7.7 µm. The 7.7 µm emission intensity is a critical test of a temperature inversion model and the emission intensity calculated by Wallace et al (1974) is within 25% of the value observed by Gillett et al (1969). If ethane and acetylene do contribute to emission in the thermal infrared, there must be some additional source of solar absorption in order to produce the observed inversion temperature. Additional absorption at this altitude, perhaps due to particles, is suggested by the low ultraviolet albedo of Jupiter in the wavelength region 2100 to 3600 Å (Wallace, Caldwell and Savage, 1972).

Terrile and Westphal (1976) had imaged Jupiter at high spatial resolution at $8 - 14\mu m$. All images reveal a belt and zone structure similar to visible photographs. In the $8 - 14\mu m$ broad-band data, belts appear to be about 2° K hotter than the zone. The lowest belt-zone contrast is found in the hydrogen opacity dominated region at $12.5\mu m$, while images at $9.5\mu m$ have the greatest contrast. This is consistant with the dynamic picture that zones are rising columns of air and belts are sinking columns of air. Ammonia gas being carried upward in zones will freeze out and form a thick cloud on top of the zones,

giving a low infrared temperature to the zones, and the crystalized NH, particle will be carried down to the deep atmosphers in the belt where they will get sublimated. One can look deeper into clouds in the belt because of the lack of the ammonia cloud on top of it and therefore see a higher infrared temperature. Although there are a number of high resolution spectra of good spectra for methane. The observation of methane will be interesting not only because it provides us with information about the inversion layer, it is also useful to find out the temperature profile. If the temperature profile of the Jovian atmosphere is known, one can use it to find the ammonia abundance profile. Ammonia itself is not a very good tool for probing the temperature profile because it has a low vapor pressure and its variation is very sensitive to temperature changes. Observations of methane at 3.3µm and 7.7µm, should be able to accomplish this.

The Hadamard transform spectrometer described in this thesis would be able to make these observations, with small modifications that would permit observations to be made at these wavelength. In addition, observations should be undertaken at 8.0 to 9.5 microns where neither ammonia nor methane have strong absorption features. At these wavelengths one would be observing the clouds. In this 8.0 to 9.5 micron region our instrument should be able to image the bands and zones of Jupiter, to probe for spectral differences and cloud features. Such observations should increase our understanding of Jupiter's cloud structure.

(D) Observations of Mercury

The observations of Mercury were made with the newly built Cornell 25" telescope at Mount Pleasant, Ithaca, New York. The telescope has a focal ratio f/13.5. The spectrometer's acceptance beam size is $\widehat{7.8"} \times \widehat{78"}$. The dewar described in section III-B was used with the spectrometer. The spectrometer operated in the 10.5x13µm region with a resolution $\lambda/\Delta\lambda$ around 300. The chopping frequency was 10 cycles per second.

The observational procedure was carried out a little differently from the observations of α -orionis and Jupiter. First, Sun spectra were used for correction spectra rather than lunar spectra. There are no known molecular lines in this re-Its temperature at 11.10µm is 5030°K(Saildy & Goody). gion. The observations were made on August 3, 1976. At that time the Sun was about an hour away from Mercury, and was observed through roughly the same air mass as Mercury. Secondly, Mercury is so faint in broad day light that we were unable to see it in visible light. The way to find Mercury was the following: We pointed the telescope in the correct region and scanned for the infrared signal. The signal is so strong that one can see it go off scale on the synchronous demodulator. The pointing accuracy of the telescope is 6 sec. of time in right ascension and 25 sec. of arc in declination. Thirdly, since we could not see Mercury visually for tracking, we adapted a different method for tracking Mercury. Since our computer programming is set up in such a way that the data taken when the mask is moving forward and moving backward are stored in different

areas, we only took data when the mask was moving forward. When the mask was moving backward we maximized the signal to assure correct pointing and waited for the next forward pass. Any noise introduced when moving the telescope for maximizing the signal would have gone into the backward-pass data bins and those data points were thrown away anyway. Since each pass takes 51 sec. only, Mercury remained at essentially the same position during the forward data taking pass.

Two runs of Mercury and two runs of the Sun were taken. Each run consisted of ten scans of the sources. Figure (6-13) shows the raw spectra of Mercury and the Sun. Since Ithaca has a lot of moisture in the air during the summer time, the correction for atmospheric features is more difficult than at Kitt Peak and is done in a different way. A constant was added to the Mercury spectra such that atmospheric features in the Mercury/Sun ratio spectrum were minimized. This step ensures that the atmospheric features are largely corrected. The Mercury spectrum which has a constant added to it was then multiplied by another constant to make its amplitude as close to that of the solar spectrum as possible. The solar spectrum was then subtracted from the modified Mercury spectrum. The multiplication of the Mercury spectrum by a constant assured that atmospheric features in the two spectra had similar amplitudes before the subtraction step. This difference spectrum was then added to a "perfect" solar spectrum which is calculated according to the blackbody function appropriate to the solar temperature. What one gets from these procedures is:

Final Mercury Spectrum

- = observed corrected Mercury spectrum observed solar spectrum + perfect solar spectrum
 - ("perfect" Mercury spectrum + noise in the Mercury spectrum) - ("perfect" solar spectrum + noise in the solar spectrum) + "perfect" solar spectrum
 - "perfect" Mercury spectrum + (noise in the Mercury spectrum - noise in the solar spectrum)

Any systematic noise such as emission and absorption due to the sky or to the telescope will be subtracted away. The advantage of this method is that the final spectrum is obtained through subtraction rather than by division. Division, in the low signal portion of the spectrum, produces deceptive high noise spikes in the ratio spectrum. The method we have used tends to eliminate these.

Since this will be the first high resolution Mercury spectrum obtained, we will calculate Mercury's disk integrated infrared temperature and compare this temperature with the observed one. Morrison and Sagan (1967) had calculated the infrared brightness temperature of the center-of-disk as a function of phase angle and heliocentric longitude, but there is no cisk integrated infrared temperature available in the literature. In the following we will discuss the factors that may affect the brightness temperature, and then present a method of calculating the disk integrated infrared brightness and compare it with our observation. A good review of thermophysics of Mercury is given by Morrison (1970). In 1965, Pettingill and Dyce (1965) used radar to discover that Mercury has a rotation period of 59 days, two thirds of the orbital period, instead of an 88 day synchronous rotation around the Sun. This implies that Mercury has a solar day, on the planet, about 176 terrestrial days long, equal to two orbital revolutions in three rotations. Mercury's non-synchronous rotation leads to time-dependent thermal emission of the planet due to the diurnal variation of the insolation. This diurnal variation would not happen for a synchronously rotating Mercury. The diurnal variation changes the brightness temperature as a function of both phase angle and heliocentric longitude. It also allows a measurement of the thermal properties of Mercury's surface.

Because of the high eccentricity of Mercury's orbit, (e=0.2), the diurnal cycle of insolation is markedly different from longitude to longitude, and can differ by a factor of 2.5. The eccentricity enters in two ways. First, the variation in distance from the Sun produces a solar constant that varies by more than a factor of 2 from perihelion to aphelion. Second, the changing orbital angular velocity causes the apparent speed of the Sun across the sky to vary; near perihelion the angular velocity of revolution actually slightly exceeds the angular velocity of rotation, and the apparent planetocentric solar motion is retrograde (figure 6-14, Soter and Ulrichs, 1967). The two effects of the eccentricity reinforce one another, with the larger flux coming at a time when the angular rate of the Sun across the sky is largest. The two longitudes (180° apart)

Figure 6-14.

Diurnal path of the Sun about Mercury, drawn to scale. The relative positions of the Sun are marked at 11 day intervals with the planet held as a fixed reference. Planeto-graphic longitude are indicated for Mercury. (Taken from Soter and Ulrichs, 1967).

that see the Sun overhead at perihelion receive more than two and a half as much energy per period as the longitude 90° away, where the Sun is always small and rapidly moving while near the zenith.

Besides the insolation geometry, a possible atmosphere on Mercury will also affect the thermal emission. CO_2 is a major product for a possible secondary atmosphere, furthermore, since CO_2 could have been photodissociated and reduced to CO by preferential loss of oxygen, Fink <u>et al</u> (1973) had set up a search for a possible Mercury atmosphere of CO_2 and CO. They set up an upper limit 1.0 x 10^{-4} mb surface pressure for CO_2 and 2.0 x 10^{-5} mb for CO. Mariner 10's results also suggest that Mercury has no atmosphere although it may have a thin layer of He and other inert gas trapped by Mercury's magnetic field.

The optical observations of Mercury show that the integral spectral reflectivity of Mercury is quite similar to that for the integral moon (McCord and Adams, 1972). The Bond albedo of Mercury (de Vancouleurs, 1964) is 0.058.

In our model calculation we assume the following things. This model has been described by Murdock (1974):

1. The emission from the dark side at the phase angle we observed is negligible. On the day we made our observations, August 3, 1976, the illuminated portion amounted to 0.973 of the total disk and the dark portion was 0.017. The dark side temperature is about 110° K, which at 10µm has a flux 6.7181 x 10^{-8} watt-cm⁻²-µ⁻¹-sr⁻¹. The flux for 500°K at 10µm is 7.1007 x 10^{-3} watt-cm⁻²-µ⁻¹-sr⁻¹, so the contribution from the dark side

is negligible.

2. At infrared wavelengths, the radiation that reaches the observer originates very near the surface, so the infrared temperature is assumed equal to the insolation temperature. Soter and Ultichs' (1967) results show that the day time temperature is independent of the thermal properties of the surface material and determined largely by the insolation temperature.

3. The infrared emissivity we assumed was 0.9, which is the lunar value. We choose this value since Mercury's surface may be similar to the lunar surface.

In figure (6-15) we choose two coordinate systems on Mercury surface. The unprimed system is the "solar system" with the z-axis pointing towards the Sun. A is the subsolar point. The hemisphere above the plane BCD facing the Sun is the illuminated part. The primed system is the "earth system' with the z'-axis pointing towards the earth. A' is the subearth point. The hemisphere above the plane B'C'D' facing the earth is the portion that is being seen from earth. The two systems are different by an angle α with the x-axis as the common axis.

If the surface is in equilibrium with sunlight and cannot conduct heat away, the subsolar point temperature is:

$$T_{o} = \frac{S(1-A)}{\sigma \epsilon R^{2}} \frac{1/4}{(6-1)}$$

where S is solar constant at earth, equal to $1.360 \times 10^{6} \text{erg cm}^{-2} \text{s}^{-1}$ A is the Bond albedo for Mercury, assumed to be 0.058. σ is the stefan-Boltzmann constant equal to 5.67×10^{-5} . erg cm⁻²s⁻¹

Figure 6-15.

Two coordinate systems on the surface of Mercury. The unprimed system is the "solar system" with the Z-axis pointing towards the Sun. A is the subsolar point. The primed system is the "earth system" with the Z'-axis pointing towards the earth. A' is the subearth point.

 ε is the infrared emissivity at 10µm from the surface, assumed to be 0.9

R is the distance between Mercury and the Sun in astronomical units

Mercury's subsolar point temperature varies with distance from the Sun as $R^{-1/2}$ and therefore is a function of heliocentric longitude due to the eccentricity we discuss above.

In the unprimed system the temperature distribution on the surface will be concentric isothermal bands around the subsolar point. The temperature of a band at colatitude θ is given by

 $T(\theta) = T_0 \cos^{1/4}\theta \qquad (6-2)$

The total intensity at any wavelength region will be composed of the contributions at that wavelength from many isothermal regions each with its own apparent area.

Since one is interested in the flux coming to the earth one will have,

 $dF_{\lambda}^{\dagger} = I_{\lambda}(\theta^{\dagger}, \phi^{\dagger}) dA^{\dagger}$ (6-3)

= $I_{\lambda}(\theta', \phi') r^2 \sin\theta' d\theta' d\phi'$ (6-4)

$$= \Xi_{\lambda}(\theta', \phi') \cos\theta' r^2 \sin\theta' d\theta' d\phi' \qquad (6-5)$$

where dF_{λ}^{i} is the flux at wavelength λ coming from the area dA^{i} I_{λ} is the intensity at (θ^{i}, ϕ^{i}) dA^{i} is the differential area on Mercury

r is the radius of Mercury
$\Xi_{\lambda}(\theta^{\dagger},\phi^{\dagger}) = I_{\lambda}(\theta^{\dagger},\phi^{\dagger})/\cos\theta^{\dagger}$ is the component of flux that radiates toward the

earth.

 $\Xi_{\lambda}(\theta^{\dagger},\phi^{\dagger})$ is a complicated function of $(\theta^{\dagger},\phi^{\dagger})$ bacause the temperature distribution is a complicated function of $(\theta^{\dagger},\phi^{\dagger})$. However, one can convert the system to the "sun coordinate" where $\Xi_{\lambda}(\theta,\phi)$ is a simple function.

Since
$$dA' = dA$$
 (6-6)

 $\cos\theta' = \cos\theta\cos\alpha - \sin\theta\sin\phi\sin\alpha$ (6-7)

equation(6-5) becomes

 $dF_{\lambda} = \Xi_{\lambda}(\theta) \left[\cos\theta\cos\alpha - \sin\theta\sin\phi\sin\alpha\right] r^{2}\sin\theta d\theta d\phi$

where

$$\Xi_{\lambda}(\theta) = \frac{C_{1}}{\lambda^{5}} \frac{1}{e^{C_{2}/kT(\theta)} - 1}$$
(6-8)

where $G_1 = 1.1909 \times 10^4 \text{ watt } \text{cm}^{-1} \mu^{-1} \text{sr}^{-1}$ $C_2 = 1.4388 \times 10^4 \mu \text{K}$ and $T(\theta)$ is given by (6-2)

SO

$$F_{\lambda} = r^{2} \int d\theta \int d\phi = E_{\lambda}(\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$
(6-9)

The integral (6-9) can be separated into two parts, for $\theta \le \theta$ where $\theta = \frac{\pi}{2} - \alpha$ (6-10) is the limit of the cap shared by both the Sun and the earth, i.e. the limit of integration over d0 can ϕ go from 0 to 2π . For $\theta > \theta$, the limit of the integral over d is constrained by the physical condition that some part on ϕ that is illuminated by the Sun can not be seen from the earth.

So (6-9) becomes

$$F_{\lambda} = r^{2} \int_{0}^{\frac{\theta}{2}} d\theta \int_{0}^{2\pi} d\phi = \lambda(\theta) (\sin \theta \cos \theta \cos \alpha - \sin^{2} \alpha \sin \phi \sin \alpha)$$

$$\begin{array}{cccc} \pi & \phi & (\theta) \\ F r^{2} f^{2} d\theta f^{2} & d\phi \\ \underline{\theta} & \phi_{1}(\theta) \end{array}$$

To find $\phi_1(\theta)$ and $\phi_2(\theta)$ one notices that ϕ is given when $\theta^*=90^\circ$. From (6-7)

$$\theta' = \frac{\pi}{2} \Longrightarrow \sin_{\phi} = \cot_{\alpha}\cot\theta$$
 (6-12)

and

$$\phi := \sin^{-1}(\cot\alpha \cot\theta) \qquad (6-15)$$

Since ϕ will also be symmetric about the y-axis, equation (6-11) can be rewritten as:

$$F_{\lambda} = r^{2} \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2\pi} d\phi = \frac{\pi}{\lambda} (\theta) (\sin\theta \cos\theta \cos\alpha - \sin^{2}\theta \sin\phi \sin\alpha)$$

$$\frac{\pi}{2} \quad 2\pi + \sin^{-1}(\cot\alpha \cot\theta) \\ + \int^{2} d\theta \int \qquad \Xi_{\lambda}(\theta)(\sin\theta \cos\theta \cos\theta - \pi) \\ \frac{\pi}{2} - \alpha \qquad \qquad \sin^{2}\theta \sin\phi \sin\alpha)$$

After evaluating the integral one obtains the following:

 $F_{\lambda} = 2\pi r^{2} \cos\alpha \left[\frac{\Xi_{\lambda}(\theta)}{2} \frac{\sin^{2}\theta}{2} \right]_{0}^{\frac{\pi}{2} - \alpha} + \pi r^{2} \cos\alpha \left[\frac{\Xi_{\lambda}(\theta)}{2} \frac{\sin^{2}\theta}{2} \right]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$

is the mean of $(\Xi_{\lambda}(\theta) \frac{\sin^2 \theta}{2})$ in the interval of θ from 0 to $\frac{\pi}{2} - \alpha$. The same meaning applies to the third term of (6-15).

As a check of equation (6-15), if $\alpha=0$, that means when subsolar point and subearth point coinside, let $\Xi(\theta)=$ constant evaluating (6-15) gives:

 $F = \pi r^2 \Xi$

If $\alpha = \frac{\pi}{2}$, that means the subsolar point and subearth point are 90° apart. With $\Xi(\theta)$ assumed to be constant, equation (6-15) gives

 $\frac{\pi r^2}{2}$ =

which is as one expects since one is seeing half of Mercury.

Equation (6-15) can be readily integrated on a computer. It is applied to our case with the following physical parameters: Date: August 3, 1976 . Phase Angle: 53° Radius vector: 0.414 A.U. Orbital longitude: 198.09° Mercury perihelion point: 0.3075 A.U. Subsolar temperature at perihelion point: 700°K

Subsolar temperature at $\alpha=53^{\circ}:~603^{\circ}K$

Equation (6-15) was computed on a LSI mini computer at each wavelength, from 10.6 to 13.2 μ m. The program and the result are shown in the Appendix D. The integral was divided into twenty steps. $\Xi(\theta)$ was evaluated from equation (6-8)

$$E_{\lambda}(\theta) = \frac{C_{1}}{\lambda^{5}} \frac{1}{e^{C_{2}/kT(\theta)}-1}$$

where $T(\theta) = T_0 \cos^{1/4} \theta$

The calculated spectrum is a measure of color temperature and is used to compare with the observed spectrum. Figure (6-16) shows the final Mercury spectrum conected for solar temperature, with a number of blackbody slopes shown to match. The calculated spectrum (cross) matches the blackbody temperature 525° K, which also matches the observed spectrum. We concluded that the best fit lies in the 500° K region. Murdock (1974) measured a effective brightness temperature at 10.8μ m at the same phase angle to be around 650° K. Our results disagree with his results.

Figure_6-16.

1

The final Mercury spectrum, corrected for solar temperature, with a number of blackbody slopes shown to match.

APPENDIX A

ESTIMATE OF CODING ERROR FOR FOURIER

TRANSFORM SPECTROMETRY

Let ξ be the path difference in a two beam interferometer. P(v) is the power at wavelength v, (i.e. the spectral density function) v here is taken to be $1/\lambda$. S(ξ) is the power received for path difference ξ . Then (p.96 Stewart)

$$S(\xi) = \int_{0}^{\infty} P(v) \cos^{2}(2\pi\xi v) dv$$

=
$$1/2P_{0} \div 1/2\int_{0}^{\infty} P(v) \cos(4\pi\xi v) dv A-2$$

A-1

The reciprocal Fourier property is (Morse and Feshback P.454) that if

$$F(\xi) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \cos(\xi v) f(v) dv$$

Then

$$f(v) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \cos(\xi v) F(\xi) d\xi$$

which implies, neglecting the constant term, that

$$P(v) = 16 \int cos(4\pi \xi v) s(\xi) d\xi \qquad A-3$$

Suppose we take measurement at (N+1) equally separated steps in the variable ξ . Let the step length be τ , then

In general τ is chosen such that

which, if $v_{min} < v_{max}$, effectively implies sampling twice per cycle (Stewart, p.303).

One can now write the integral for P(v) as

$$P(v) = 16\Sigma \tau S(n\tau) \cos(4\pi v n\tau)$$

n=0

Now consider frequency $v = v_{\min} + m\delta$

where
$$\delta = \frac{v_{max} - v_{min}}{N}$$

τδ

and m is an integer. m=0,1···· N

The $\delta P(\nu)$ is the power in the resolved spectral band width δ about frequency ν

$$\delta P(v) = 16\tau \delta \Sigma S(n\tau) \cos(4\pi v n\tau)$$

n=0

- v_{min})

but

<u>1</u> 4N

A-8

137

A-4

A-5

A-6

A-7

Therefore

$$\delta P(v) = \frac{4}{N} \sum_{n=0}^{N} S(n\tau) \cos(4\pi v n\tau) \qquad A-9$$

Writing this out in matrix form, with $\theta_1 = 4\pi\tau v_{\min}$, $\theta_2 = 4\pi\tau (v_{\min} + \delta)$ and with $\pi(v_{\min}) \equiv \delta P(v_{\min})$ we have

$$\begin{bmatrix} \pi(\nu_{\min}) \\ \pi(\nu_{\min}+\delta) \\ \vdots \\ \vdots \\ \pi(\nu_{\max}-\delta) \\ \pi(\nu_{\max}) \end{bmatrix} = \delta \begin{bmatrix} P(\nu_{\min}) \\ P(\nu_{\min}+\delta) \\ \vdots \\ P(\nu_{\min}+\delta) \\ \vdots \\ P(\nu_{\max}-\delta) \\ P(\nu_{\max}-\delta) \\ P(\nu_{\max}) \end{bmatrix} = \delta \begin{bmatrix} 1 & \cos\theta_1 \cdots & \cos\theta_1 \\ 1 & \cos\theta_2 \cdots & \cos\theta_2 \\ \vdots \\ \vdots \\ 1 & \cos\theta_{N-1} \cdots & \cos\theta_{N-1} \\ 1 & \cos\theta_n \cdots & \cos\theta_N \end{bmatrix} \begin{bmatrix} S(0) \\ S(1) \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ S(N) \end{bmatrix}$$

or
$$\pi = W^{-1}S$$

۵_j

A-10

From (2-8)

 $= (A_{jl} + \cdots + A_{jN})^{1/2}$ $= \sqrt{\frac{16}{N^2}} (1 + \cos^2\theta_j + \cdots + \cos^2N\theta_j)^{1/2}$ $= \frac{4}{N} (\sum_{n=0}^{N} \cos^2n\theta_j)^{1/2}$ $\sim \frac{4}{N} \sqrt{\frac{N+1}{2}}$ $\approx \sqrt{\frac{8}{N}} \quad \text{for N>>1} \quad A-11$

The SNR improvement is the reciprocal of this quantity.

APPENDIX B

0001 0002 0003 0004			•	NAM EXTR EXTR EXTR	CMN 5 IEF,ØTT,Ø ERR,XEQ,Ø XA,XB,FIX	TL, CFLF FPA , FLT
0005	0100		*PRINT	ABS NAME	:100	
0007 0008	0100 0101	0110 F900		Z AR J ST	ØTL	
0009	0102	017B		DATA	NAME	
0010	0103	F201	ماه	JMP	5+2	
0012			т ж Симм Ар	INTE	PRETER	
0013			*			
0014	0104	05 0 0	CMN D	ENT		
0015	0105	0A00		EIN		
0016	0106	4005		CIE		ENABLE PANIC BUTTØN
0017	0107	F9 00		J ST	CRL F	PRINT PRØMPT CHARACTER
•		0000				
0018	0108	C687		LAP	:87	
0019	0109	F900 0000		JST	ØTT	
0020	010A	C6AA		LAP	** 1	
0021	010B	F9 00		រនា	ØTT	
	•	0000				
0022	0100	1200		røv		CLEAR MATH FLAG
0023	0100	0108		ZXR		
0024	010E	F9 00 0000		JST	IER	IN PUT COMMAND
0025	010F	COD3		CAI	'S'	
0026	0110	F25C		JMP	STATUS	
0027	0111	COD4		CAI	*T*	
0028	0112	E24E		L DX	(ran s	
0029	0113	COD2		CAI	'R'	
0030	0114	E24D		LDX	READ	
0031	0115	COC3		CAI		
0032	0116	E24C		LDX	CL. LAR	
0033	0117	38 09		JAN Fan	ØKF	
0034	0110	1400		DO V COT	101	SEI MAIN PLAG
0035	0119	5000 5000			5113 CH	
0030		6647 C0C7			PON ON PON ON	
0037		E273		L.DX	HG2330	
0039	0110	COD6		CAI	• V •	
0040	Olie	E249		LDX	CRT	
0041	011F	38 0 1		JXN	ØKF	
0042	0120	F900	BAD	JST	ERR	
	. –	0000				
0043	0121	EA48	ØKF	STX	FUN C	SAVE CALL ADDRESS
0044	0122	0103		ZXR	•	
0045	0123	F9 00		J ST	I ER	FETCH BEAM
	•	0000			•	•
0046	0124	COAB		CAI	۲ ۰ ۲	•

139B

0047	0125	E24C		LDK	NP	•
0048	0126	COAD		GAL		
0049	0127	E24F		۲۵ <u>۱</u> مل	INF1	
0050	0128	35 35		JXN	OKB	
6051	0129	3249		JØR	BAD	IF MATH FLAG CLEAR
0052	012A	0523		XRP		RESET INDICES
0053	012B	E9 0 0		STX	XA	
		0000				
0 <u>0</u> 54	0120	E9 UU		STX	ХВ	
		0000				
0055	0122	LB1D		STX	*XC	
0056	012E	CSFF		LXM	255	RESET CØUNT
0057	012F	ÉA3B		STX	CIJT	
00 58	0130	0108		ZXR		
0059	0131	C0C4		CAI	"D"	
0060	0132	E233		l dx	FSB	
0061	0133	COD2		CAI	'R'	
0062	0134	E232		LDX	FDV	
0063	0135	2855		.1307.	BAD	
0060	0100	E000		STX	MATH	SAVE MATH POINTER
0004	0100	TOUU		JIST	YEO	NANT FOR GO
0000	0137	0000		0.51	11 19	WHIT PER CO
0066		0000	-914 ATU	1 000		
0000	0107	0000		LUUF	ማ ለ ህር	
0067	0130	1 233	ML P	0.51 Domo	*14417	
0068	0139	9002		DATA	:9002;:	92025:9402
	013A	9202				
	0138	9402				
0069	0130	D9 0 0		IMS	XA	BOWL CROWLERS
		0000				
0070	013D	D9 0 0		IMS	ХВ	<u>.</u>
		0000				
0071	013E	211A		JAZ	ØKM	MATH ØK?
0072	013F	1340		SAØ		NØ 1
0073	0140	C6D2		LAP	*R*	PRINT ERRØR MSG.
0074	0141	3203		JØR	Øvfl	· · · ·
0075	0142	F900		JST	0 TL	
		0000				
0076	0143	0154		DATA	UN DER	
0077	0144	F202		JMP	FLØV	
0078	0145	F900	ØVFL	J ST	ø tl.	
	•	0000	•			
0079	0146	0187		DATA	ØVER	
008.0	0147	C600	FLØV	LAP	0	
005 1	0148	F9 00		JST	ØTL	
		0000			5.12	
008.9	01/9	0170		ΠΑΤΑ	MSG	
0002		2000M		.157	5.7	
0000	0144	0000		0.51	£ 2	-
008 4	0140	0000	ΧC	ਸੰਧਾਸ		
0094	0140	0170	ΛU	<u>הב</u> ר האידא	YCE	
000 3	0140	2000		.1 CT	AFDA	
000 0	0141)	10000		031	urrn.	
007 7	01.45	0000		ጠለሞለ	VCE	
UUB 7	014E	01.18		DAIA	ふしょ	

À

1

.

•							
0055 0059	014F 0150	C63 D F9 00		LAP JST	:8D 071.		
0007	0.00	0000		021			
009 0	0151	0197		DATA	Z ERØ		
009 1	0152	B707		L DA	*XC	CL EAI	r bad element
0092	0153	1050		AL A	1		
009 3	0154	8A14		ADD	TP		
009 /1	0155	0043		TAX			
009 5	0156	0110		Z AR			
0096	0157	9000		STA	@O		
0097	0158	9001		STA	@ 1		
0098	0159	DFOE	ØKM	IMS	*XC		
0099	015A	DAIO		IMS	CNT		
0100	0158	F623		IMP	MLP		
0101	0150	E20C		LDX	TP		
0102	0150	T201		JHP	0X B+ 1		
0102	0155	201 1201	AK B	JST	XEO	HAT T	RO ROT
0103	0101	0000	DICD	051	N 11¢	41524 1	
0104	0155			ICT	·· FINIC	CALL	FINCTION
0104	0160	FACD					FONGILEM
0105	0100	roop	TTD A11 C	5 H F			
0100	0101		IRANS	REF			
0107	0162		READ	REF			
0103	0163		CL EAR	REF			
0109	0164		PUNCH	REF			•
0110	0165		GRAPH	REF		•	
0111	0166		FSB	REF			
0112	0167		FDV	REF			
0113	0168		CRT	REF			
0114	0169	1400	TP	DATA	:1400		
0115	016A	0000	FUNC	DATA	0		
0116	016B	0000	CN T	DATA	0		-
0117	016C	0000	MATH	DATA	0		
0118	016D	4006	STATUS	CID		KILL	PANIC SWITCH
0119	016E	0110		Z AR			•
0120	016F	F900		JST	ØTL		
	•	0000					
0121	0170	01A1		DATA	TATUS		
0122	0171	F9 00		JST	ØFPA		
•	· •	0000					
0123	0172	1000	NP	DATA	:1000		
0124	0173	0110		ZAR			
0125	0174	F900		JST	ØT.		
	•	0000		• • • •			
0126	0175	0147		DATA	NMM		
0107	0176	FOUU		J CT	6 T D A		
0161	0.10	0000		0.51	DIIR		
01.28	0177	1000	LIM	ጉለጥለ	. 1000		
0120	0172	1200	141.1	DAIA IMD			•
01-20	0170	1010	V. C	DEC	OTRI D+ 1		
01-30	0179			RED DATA	29 U - 7 57 4	- 9	•
0131	0178	OUSA	WAME	DATA	: 0 D3 A3	:8AAU	
	0170	0 AA U					
0132	0170	US D4		TEXT	HTS:	1X255	
	017E	DBBA					

	017F	AOBI			
	0180	DS B2			•
	0131	B5B5			•
0133	0182	8 D8 A		DATA	:8D3A,0
•	0153	0000			
0134	0184	8 A D 5	UN DER	DATA	:8AD5
0135	0135	CEC4		TEXT	'N DER '
-	0186	C5D2			
0136	0187	8 ACF	ØVER	DATA	:8ACF
0137	0188	D6C5		TEXT	'VER'
	0189	D2A0			~ ~
0138	018 A	0000	MSG	TEXT	'FLØW ØCCURRED'
	0188	CFD7	-		~ ~
	018 C	AOCF			
	018 D	C3C3			
	018 E	D5D2			
	0185	D265			
	0190	C4A0			
0139	0191	C1D/		<u> ጉ ድሃ</u> ፕ	AT FLEMENT
0.02	0192	A005			
	0193	0005			
	0194	CDC5			
	0195	CED7			
01/0	0196			ΠΔΤΔ	: 0000
0140 01/1	0197	0000 0000	2 E B Ø	TEXT	· BEPLACED!
0141	0121	2000 10005	********		
	0199	DDCC			
	0194	C1C3			
	0198	C5CA			
01/10	0190	2000 2002		ጥ ምሃ ጥ	I BY Z FRAI
	0100	100E		12411	
	0105	DACS			
	0195	D202			
01/43	0100			ΠΔΤΔ	• AFS D
0140	0101	REO D	ጥልጥበር	TEX T	TATUS. MARTI
0144	0142	D401 D405	IMIOD	1201	TATOD: N+=
	0142	D4D3			
	0164	7002 7002			
	0144	ADDD			
0145	DIAS	ADOO		ኮለሞለ	
0145	01AO	ACAO	NT2626	DAIA	: A000
0140		AUAU CEAD	1414141	1 EA 1	
	0140				
01.47	OIA9	BUAU		ጉለጥለ	0
0147	UIAA	0000		DATA	0
0148				E44 D	
	P. K K () H \				

0001 0002 0003 0004 0005 0006 0007 0008 0007 0008 0009 0010	0000		*	NAM NAM EXTR EXTR EXTR EXTR EXTR EXTR REL	TRANS RTTR.RTØP DI SP IKB.ØTL.Ø DPACC.DPF DPN:DPSU XB.XC.FAL DPFIX 0	FPA, CRL F, ERR L T JB:, DPDI V:, DPSM:
0011	-		* 17522	HIS :	PROCESSOR	
0012	0000	08.00	TRANS	EN T		
0014	0001	E2BC	» 1 it 41 to	LDX	BPNT	r.
0015	0002	1328		LLX	1	INDIRECT LIT ØN
0016	0003	1400		SØV	•	- • • •
0017	0004	11A8		REX	1	
0018	0005	EA88		STX	BEAM	
0019	0006	EA88 ⁻		STX	BEAM+1	
0020	0007	B2A0	•	l da	Z CT	CLEAR BUFFERS
0021 .	0003	9 AA 0		STA	CN T	•
0022	0009	E2A1		LDX	NT	•
0023	000A	0110		ZAR		
0024	0008	9600	UL R	STA IVD	. eu	
0025	0000	0125		IVE	10 ترت	
0020	0000	DHA D		TWD	9100	
0027	0005	CABE		LAP	171	
0029	0010	F900		JST	ØTL	
0030	0011	0137		DATA	MØDE	
0031	0012	F900		JST	IKB	
0032	0013	COCD		CAI	"M "	
0033	0014	F205		JMP	Mon	
0034	0015	COD4		CAI	* <u>T</u> *	
0035	0016	F208		JMP	TAPE	
0036	0017	COC9		CAI	• <u>1</u> •	•
0037	0018	F209		JMP	INVS	
0038	0019	F9 00		JST	ERR	
0039	ALUU	0110	MUN	2 AR		
0040	0015	0210		CHA Sta	TTTO	
0041		- 0110		7.0R	* 1 * * * *	
0042	ODIE	F20D		.IMP	N FX T	
0040	0015	0110	TAPE	ZAR		
0045	0020	9 A9 C		STA	TETR	
0046	0021	F202		JMP	T4	
0047	0022	C601	INVS	LAP	1 .	
0048	0023	9 A9 9		STA	TETR	
0049	0024	0108	T4	ZXR		
0050	0025	F9 00		JST	IKB	
0051	0026	COAB	•	CAI	*+.*	
0052	0027	0408		CXR		
0053	0025	COAD	•	CAI	Tan T	
0054	0029	0108		ZXR		•

0055	002A	EAS E		STX	TREM	
0056	0023	0110		ZAR	• :	
0057	0020	E292	N EX T	L DX	MASK	
0058	002D	0128		IXR		
0059	002E	0210		CAR		CHANGE DIRECTION
0060	002F	9A7F		STA	DIR	
0061	0030	COFF		CAI	:FF	
0062	0031	F203		JMP	FØWD	
0063	0032	0030		TXA	•	
0064	0033	8A7A		ADD	H255	
0065	0034	0048		TAX		•
0066	0035	EA76	FØVD	STX	MSK 1	
.0062	0036	C7F5		lam	245	•
0068	0037	9 A79		STA	DCT2	,
0069	0038	C7FF		LAM	255	START DATA COUNT
0070	0039	9A76		STA	DCT	
0071	003A	FABI		JST	turn øn	WAIT FØR LIGHT
0072	•	• •	*INPUT	LØØP		
0073	003B	FABB	ILP	JST	MØNS	INPUT
0074	003C	9A6C	*.	STA	CNT	&SAVE ·
0075	003D	EA6C		STX	CN T+ 1	·
0076	003E	C7FF		L A'1	255	Spectrum Count
0077	003F	9A72	٠	STA	SCT	-
0078	0040	B26B		l da	M SK I	RESET MASK PØINTER
0079	0041	9A6B		STA	M SK 2	
0030	0042	B271	- •	l da	IB	GET BUFFER PØINTER
003 1	0043	9AOF		STA	1 BF	•. •
0082			* TRAN S	FØ RM	COLUAN TO	INPUT BUFFER
005 3	0044	E265	TL P	l dx	CN 77+1	· · · ·
0084	0045	0110		·Z AR		
008 5	0046	D366		CM 5	±M SK 2	-
003 6	0047	F208		JMP	TIA	
0087	0048	B274		l da	TETR	
0088	0049	2183		JAL	5+4	
0089	004A	0110		ZAR		
009 0	0043	0108		ZXR		
009 1	004C	F204		JMP	Tl	
0092	004D	B25B	•	l da	CNT	
009 3	004E	F9 00		JST	DPN:	•
0094	004F	F201		JMP	Tl	
009 5	0050	B258	TIA	l da	Cnt	
0096	0051	DA5B	TI	IMS	M SK 2	
0097	0052	F9 0 0		J ST	DPACC	ADD
0098	0053	0000	IBP	DATA	0	
0099	0054	C202		AXI	2	BUMP PØINTER
0100	0055	EE02		STX	IBP	
0101	0056	DA5B	•	IMS	SCT .	DØN E?
0102	0057	F613	,	JMP	Π.P	NØ
0103	0058	E253		L D	MSK 1	YES, MØVE CØLUMN
0104	0059	0128		IXR	•	+11F FWD
0105	005A	B254		l da	DIR	•
0106	0058	C000		CAI	01.	•
0107	0050	C302		SXI	2	-IIF REV.
0108	005D	EA4E		STX	M SK 1	• •

.

N.

	0109	005E	DA52		IMS	DCT2	
	0110	005F	F201		JMP	5+2	
	0111	0060	4067		584-	2457	
	0112	0061	DA42		1115	1001	END DF ROW:
	0113	0062	1627		JMP GD DGU	162	NO
	0114			* =N D	or Row	5102	1521
	0115	0063	E259		l da	1ETH	
	0116	0064	2051		0 A44	37 Z	
	0117	0065	FZC		9W5	SIUP	
	0118	0066	3408		J 55 6 77	5102	DD WN :
	0119	0067	4867		550	:07	NES SIGF LEWN:
	0120	0068	F206		JMP	210P	
	0121 ·	0069	FA56		151	AUU	NUS SAVE DATA
	0122	006A	E24D		1. D.	NDEW	
	0123	0063	0110		ZAR		
	0124	·006C	F100		JMP	DISP	
	0125	006D	B241	RTTR	L DA	DIR	
	0126	006E	F642	_	JMP	NEXT	•
	0127	006F	E243	STØP	LDX	NI	· ·
	0128	0070	C601		LAP	1	
	0129	0071	F100		JMP	DI SP	
	0130	0072	C6BF	RTØP	LAP	131	
	0131	0073	F9 00		J ST	ØTL	•
	0132	0074	011F		DATA	MSG	•
	0133	0075	F9 00		JST	IKB	
	0134	0076	COCE		CAI	'N '	ABØRT LAST PASS?
	0135	0077 .	F203		JMP	NØ T	NØ
	0136	0078	COD9		CAI	1Y I	YES
	0137	0079	F203		$_{ m JMP}$	YES	YES
	0135	007A	F608		JMP	RTCP	WRONG ENTRY
	0139	007B	FA44	NØ	JST	ACC	SAVE DATA
	0140	0070	F203		JMP	Y2	
	0141	007D	C6AC	YES	LAP	19 T .	PRINT ABØRT
	0142	007E	F9 0 0	•	J ST	ØTĽ	•
	0143	007F	0128		DATA	ABT	
	0144	0 05 0	B234	¥2	l da	CT	set counter
	0145	0031	9A30		STA	SCT	• •
	0146	0082	0350		ARP		RESET SUBSCRIPTS
	0147	0083	9900		STA	XB	• • •
	0148	0084	9900		STA	XC	
	0149	0035	E230		LDX	N PEM	
	0150			*ADD	TØ BEA	M ARR	AY
	0151	0036	EE33	AL P	STX	IBP	
	0152	0057	B400	•	L DA	eD	GET DATA
	0153	0038	E401		L DX	e1	
	0154	0039	F9 00		JST	DPFL.	t fløat it
	0155	008A	9A21		STA	M SK 1	SAVE IT
	0156	005.B	EA21		STX	M SK 2	•
•	0157	0 03 C	F9 00		J ST	FAD	add tø beam
	0158	0 08 D	DACO		DATA	M SK I	•
	0159	DOBE	0000	BEAM	RES	2,0	
	0160	0 009 0	D9 00	-	IMS	Хġ	BUMP SUBSCRIPTS
	0161	0091	D9 00		IMS	xc	•
	0162	0092	E63F		L DX	IBP	
		~~~ ~					

0163	0093	C202	_	AXI	2			
0164	0 09 4	DAID		IMS	SCT		DØN E	?
0165	0095	F60F		JMP	AL P		NØ	
0166			*PRINT	PASS	CØUNT			
0167	0096	F9 D()		JST	CPL F			
0168	0097	C702		L AM	·2			
0169	0098	9A23	•	STA	CØN 1			
0170	0099	E21C		LDX	NPEM			
0171	009A	0110	MK	ZAR				
0172	009B	E401		LDK	e1 ========			
0173	0090	F9 00		JST	DFLT			
0174	009 D	9 AOE		STA	MSKI			
0175	009 E	EAUE		SIA	MSKZ			
0176	009F	F9 00		451 50	9rFA			
0177	DOAD	JAUU		DATA	M SK 1			
0178	OUAL	0110		LAM	(3.97			
0179	00A2	F900		0.21 0.21				
018.0	UUA3	0130		DATA	NUN D			
0181	0044	EZIZ		1,100	COM 1			
0102	DOAS	DAID		JMD	WW 1			
0103	00A0 00A7	5000	<b>T</b> O	DTM	TRANS			
0104	UUHI	FIMI	ነር ታክለተለ	STARA	CE .			
0100	0008	2000	7 CT	DATA	- 1536			
0100	0040	0000	្រែក	DATA	0:0			
		0000	0.117	<i>D</i>				
0188	00AR	1400	NT	DATA	: 1400			
0189	00AC	0000	M SK 1	DATA	0			
0190	00AD	0000	M SK 2	DATA	Ō			
0191	OOAE	DOFF	H255	DATA	255			
0192	DOAF	0000	DIR	DATA	0			
0193	0020	0000	DCT	DATA	0			
019.4	00B1	0000	DCT2	DATA	0			
0195	0032	0000	SCT	DATA	0			
0196	00B3	18 00	NI	DATA	: 18 00	)		
0197	00B4	18 02	IB .	DATA	: 18 02			
0198	0035	FEOO	CT	DATA	-512			
0199	00B6	1400	NPEA	DATA	1400	)		
0200	0037	1600	NMEM	DATA	:1600	)		
0201	00B8	0000	NØEM	DATA	0			
0202	00B9	0000	TREM	DATA	. 0			
0203	00BA	9002	PL S	DATA	:9002	•		
0204	DOBB	9202	MINS	DATA	:9202	ļ		
0205	00BC	0000	Cøn i	DATA	. 0			
0206	OOBD	0000	TETR	DATA	. 0	_		
0207	OOBE	1000	BPNT	DATA	.:iooc	)		
0208	00BF	•	MASK	REF				
0209			*					
0210			* ADD I	TUYN	AKRAY	1.0	1 201 5	аппат
.0211			*					
0212	0000	08.00	AUU	LIVIT	TETT			
0213		B004			ILIK CL 4			
0214	0002	2003		1 DA	эт 4 Трам			
0215	00C3	BOUA		LUA	THEM			

					-	
0216	0004	0210		CAR	•	
0217	0005	F201		JMP	\$+2 [.]	
0218	0006	B617		l da	DIR	i i
0219	0007	C000		CAI	0	
0220	0008	F202		JMP	s+ 3	
0221	0009	E613		LDX	NPEM	
0222	00CA	F201		JMP	5+2	
0223	OOCB	E614		LDX	NMEM	
0224	0000	EE14		STX	NØEM	
0225	ODCD	DC01		IMS	e 1	BUMP COUNTER
0226	OOCE	C202		AXI	2	•
0227	OOCF	EA12		STX	TBP	SAVE TEMP POINTER
0228	0000	C7FF		L AM	255	DATA COUNT
0229	COD1	9 E28		STA	CNT	
0230	0002	E61F		L DX	NI	. INPUT PØINTER
0231	00D3	C202	A1	AXI	2	BUMP COUNTER
0232	0004	EE8 1	٠	STX	I BP	+ SAVE
0233	00D5	B618		LDA	TETR	• .
0234	DDĎ6	2188		J AL	Т5	
0235	0007	В400 [°]	•	l da	09	
0236	00D3	E401		L DX	01	
0237	0009	1328		LLX	1	
0238	OODA	1386		LLR	7	
0239	OODB	1 3A3		L PX	1	
0240	OODC	1356		LLA	7	
0241	0000	10D6	-	ARA	7	
0242	OODE	F202		JMP	T6	
0243	OODF	B400	T5	LDA .	60 ·	
0244	00E0	E401		L DX	61	
0245	00E1	F9 0 D	T6	J ST	DPACC	
0246	00E2	0000	1 コア	DATA	0	
0247	00E3	C202		IXA	2	BUMP TEMP
0248	00E4	EE02		5TX	TBP	
0249	00E5	E69 2 ·		L DX	IBP	
0250	00E6	0110		ZAR		
0251	OOE7	9000		STA	00	
0252	00E8	9001		STA	G1	
0253	00E9	DE40		IMS	CNT	DØN E?
0254	OOEA	F617		JMP	Al	NØ
0255	OOEB	F72B		RIN	ACC	
0256			*			
0257			≉WAIT.	FØR A	L I GNM EN	r pulse
0258			*			
0259	OOEC	08 00	TURNON	ENT		
0260	OOED	4006		CID		DI SAELE AUID
0261	DOEE	45 C 1		SSN	:01	LIGHI BFF7
0262	UDEF	F601		4140	S→ 1 	
0263	UOFO	UE00		251		ies bite on
0264	UDFI	49 C I		SEN	:01	TTEHI DNI
0265	UUF2	F601		JWP	î Denî	
0266	00F3	01.00		2 WP1		
0267	0014	4064		52	₹ <b>6</b> 4	ul lak flag That t alle
0268	00F5	4005		ULE	TTT.	ENHERE HOID
0269	UUF6	F7UA		RIN	IOHNON	

027 027 027	70 71 72			* *INPUT * Can	FRØM VERT 1	MØN SAN	TØ BINABY		
027	23			* 001	V	· ••• •••	LA 19 63118		
. 027	1.4	0057	02.00	MANC	ד זעם				
027	75	001.1	0000	14014 D		イェイフ			
027	16	0010	0000		LDA	TEIR			
021	777	0019	2007 C(FF			13			
027		OOFA			LAP	200			
027		OULR	8£48		ADD	DUT			
027	(9	OUFC	1050		AL A	1			
028	50	DOFD	E644		L DX	TREM			
028		OOFE	38 02		JXN	5+3			
028	52	OOFF	8A05		ADD	DMTR			
028	53	0100	F201		JMP	S+2			
028	\$4	0101	8A05		ADD	DPTR			
028	5	0102	0048		TAX				
028	6	0103	B400		L DA	e0			
028	57	0104	E401		L DX	e 1			
028	88	0105	F900		JST	DPFIX			
028	9	0106	F70F		RTN	MØN S			
029	0	0107	1002	DPTR	DATA	: 1002			
029	1	0105	1202	DMTR	DATA	: 1202			
029	2	0109	49.06	T3	SEN	: 06	FJ. 4	AG AG	
029	3	0100	F601		.IMP	5-1	1363		
022	, U . /i	0102	5001		TMX	- C 6	. YF(		т т <i>м</i> '
000		0100	2400		.127	< <u>-</u> 3	T (2N	10 DF 7 F	
	10	0100	6704		1 0M	M D∼ O	5 5 1 2 (21)	C DICIT	Caint
027		0100	0704		L F11 CT 0		261		08.04
029		0105	9263		SIA		~ -		6.P
029	0	DIUF	0110		ZAR		لاسلنا	AR I AL	aI
029	9	0110	9263		STA	MSK2			
030	00	0111	F206		JMP	MS		_	
030	1	0112	1350	мі	LLA	1	XI	3	
030	02	0113	9E66	•	STA	m SK 2	-		
030	33	0114	1351		LLA	2			
030	04	0115	8 E68		ADD	. M SK 2			
030	)5	0116	9 E69		STA	M SK 2			
030	)6	0117	0110		ZAR				
030	)7	0118	1B03	M2	LLL	4	GET	NEXT 1	DIGIT
030	38	0119	8 E6 C		ADD	MSK2	ADI	) tø tai	LY
030	39	011A	DE71		IMS	CNT	LAS	ST DIGI'	Τ?
03	10	0118	F6D9		JMP	M 1	NØ	•	
03	11	0110	0048		TAX	•	•		
03	12		0110		ZAR				•
03	13	0112	8727	•	RTN	MONS	Y ES	5	
00. N31	1 /	-		* T T X T	STARA	GE		-	
00.	19	0112	8 m2 A	MEG	TATA	- 272A		-	
03	10	0111	CICO	MBG		1000A	1 ACT	DINIO	•
03.	.0	0120	0102			MODUI		11014 1	·
•	· .	0121	0102						,
•		0125	D4AU					•	
		0123	6661						
		0124	D3D4			. •			
		0125	ADD2					-	
•		0126	D5CE						
		0127	BEAD						

x. , N T

0317 0128 8 DGA ABT DATA :8D3A 0318 0129 BIAO TEXT 1 RUN ABORTED. ASIO D2D5 012B CEAO 0120 C1C2 012D CFD2 012E D4C5 012F C4AC 0319 0130 A0D2 RUN S TEXT ' RUNS KEPT' 0131 D5CE . 0132 D3A0 · 0133 CBC5 0134 DOD4 0320 0135 8 DS A DATA :8D8A,0 0136 0000 0321 0137 8D8A MØDE DATA :8D8A 032Ż 0138 TEXT 'MØNSANTØ, TAPE ØR INVERSE?' CDCF 0139 CED3 013A CICE 013B D4CF 0130 ACD4 013D CIDO 013E C5A0 013F CFD2 0140 A0C9 ·0141 CED6 0142 C5D2 0143 D3C5 0144 BFAO 0323 END 0000 ERRØRS

0001 NAM IKB, IER, BIPT, XEQ 0002 NAM ØTT, ERR, CRLF N AM ØTL, ØFPA 0003 0004 REL n 0000 0005 0006 * PANIC SWITCH 0007 × 00.08 0000 FBOO J ST * CMN D 0009 0001 CMN D REF 0010 * 0011 *KEYBØARD INPUT 0012 * 0013 0002 0800 IKB ENT 7, 0 0014 0003 4038 SEL AUTØ-ECHØ SEL 7.1 0004 4039 KBD MØDE 0015 RDA 7,1 0005 5939 READ ØN FLAG 0016 4030 RESET SEL 7,4 0017 0006 0018 0007 F705 RTN IKB 0019 EN T 0008 05 0 0 I ER 0020 0009 FE07 J ST IKB : DF * CMN D : 8 A 000A CODF 0021 CAI BACK ARRØW? J ST YES 0022 000B FFOA CAI LINE FEED? 0023 0000 C 05 A JST * CMN D YES 0024 000D FFOC 0025 000E F706 RTN I ER NEI THER, RETURN 0026 * 0027 *PAPER TAPE INPUT * DSO = O FOR TTY 0028 * 0029 1 FØR HSR 0030 * 000F 0300 BIFT 0031 ENT 0032 0010 5301 BI P2 I SA 1 READ SWITCHES 0011 13D0 0012 220A 0033 0011 LRA DSO UP FØR TTY HSR DØWN FØR HSR 0034 រøន 0035 7,3 TTY BUSY? 0013 493B SEN 0036 0014 F604  $_{\rm JMP}$ BI P2 YES 0037 0015 403A SEL 7,2 NØ, STEP READER SSN 7.1 JMP IT 0038 0016 48 39 WT SSN FL AG? 0039 0017 F203 YES 0040 0018 0150 I AR NØ BUMP CØUNT RESTART IF TIME UP 2149 BIP2 0041 0019 JAZ JMP 0042 001A F604 JMP WT INA **7.**0 ELSE CHECK FLAG AGAIN 0043 001B 5538 IT INPUT FRØM TTY RTN BIPT 0044 001C F70D & RETURN 6,3 BI P2 0045 001D 4933 HSR BUSY? HSR SEN 0046 001E F60E JMP YES 6, 2 NØ, STEP READER 0047 001F 4032 SEL SSN 6, 5 0048 0020 4835 WH FLAG? 0021 F203 JMP IH YES 0049 NØ. BUMP CØUNT 0050 0022 0150 IAR 0051 0023 2153 JAZ BIP2 RESTART IF TIME UP JMP WH ELSE CHECK FLAG AGAIN 0052 0024 F604 INFUT FRØM HSR 0053 0025 58 35 IH INA 6, 5

0054	0026	F717		RTN	BIPT	a return
0055 0056			* *VAIT	FØR EXE	CUTE SIGN.	AL.
0057		00.00	*			
0058	0027	0800	XEQ	ENT	1	T NT TO 1 100
0059	0028	FE20		151	LER	
0060	0029	COBD		CAI	:8D	CARRIAGE RETURN?
0061	002A	F703		RTN	XEQ	YES, RETURN
0062	002B	F603		JMP	X EQ+ 1	NØ,GET MØRE
0063			*			
0064			*ØUTPU	JT TØ TT	Y	
0065			*			
0066	0020	08 0 0	ØTT	ENT		
0067	002D	403C		SEL	7 <u>,</u> 4	RESET INTERFACE
0068	002E	6D3B	•	WRA	7,3	VRITE ØN NØT BUSY
0069	002F	49 3B		SEN	7,3	DØN E?
0070	0030	F601		JMP	<b>S-1</b>	NØ
0071	0031	F705		RTN	ØTT	YES
0072			*			
0073			* Cømm A	ND ERRØ	R EXIT	
0074			*		· ·	
0075	0032	03 0 0	ERR	ENT		
0076	0033	C6DF		LAP	: DF	PRINT ARRØW
0077	0034	FE08		ป ST	ØTT	
0078	0035	FF34		JST	* CMN D	RESTART CØMMAND
0079			*			•
008 0			* CAPRI	AGE-RET	URN, LINE	FEED
008 1			*			
008 2	0036	08 0 0	CRL F	10JT		
008 3	0037	C 68 D		LAP	:8D	CR
0084	0038	FEOC		JST	ØTT	
008 5	0039	C68 A		LAP	:8A	LF
008 6	003A	FEOE		JST	ØTT	
0087	003B	F705		RTN	CRL F	
0088			*			•
0089			*0UTPI	JT TEXT	FRØM BUFF	ER
0.09			- <b>-</b>			-
009 1	0030	08 0 0	ØTL	EN T	$(x_i,y_i) \in \{x_i\} \in \mathcal{F}$	
S 600	0030	SAOF	<i></i>	ADD	CAI	MAKE COMPARE INSTRUCTION
009.3	003E	9 4 0 6		STA	ØT2	LSAVE IT
0094	0035	9 6 0 9	•	STA	ØT3	
0025	0001	F70/		I TX	жатт.	GET TEXT PAINTER
0020	0040	5705	en e	IMS	aT.	SET RETURN ADDRES
0020	0041	B/00	ØTI		en .	GET MODD
0097	0042	1107	Атт	DRA	2 2	DDINT FIDET BYTE
0090	0040			TCT	a ጥጥ	FRINT FIRDI DITE
0099	0044	1010	ለጥር	0.51	0.11	LACT ON P
0100	0043	5000	212	UF:L DTNI	0 0.771	LASI DNE
0101	0040	r I UA		IT IN	41 × 14	I EDJ KEIUHN
0102	0047	1137		RLA ICT	0.	FRINT SEUNN BYTE
0103	0048	FE1U	amo -	J 51	0.1.1	1 A 777 / / 1 T 1 T 1
0104	0049	0000	013	UAI	U	LAST ON E?
0105	004A	FYUE		HIN	DIL	ILS RETURN
0106	U04B	0128		IXR		BUMP POINTER

÷

0107 004C F60A JMPØT1 LØØP 0108 004D 0000 CAI CAI 0 0109 * 0110 **#ØUTPUT FLØATING PØINT NUMBER** 0111 * 0112 EN T 004E 08 00 ØFPA 0113 004F E701 LDX *ØFPA GET PØINTER 0050 SET RETURN ADDRESS 0114 DE02 IMS ØFPA 0115 0051 EA01 STX ØPT SAVE PØINTER 0116 0052 FBOE JST *FAS CØNVERT TØ ASCII 0117 0053 00.00 ØPT DATA 0 0118 0054 0059 DATA BUF 0119 0055 0110 ZAR SET END FLAG 0120 0056 FEIA JST ØTL PRINT NUMBER BUF 0121 0057 0059 DATA 0122 0058 F70A RTN ØFPA 0123 0059 0000 BUF RES 8.0 0124 0061 FAS REF 0125 EN D 0000 ERRØRS

0001 NA4 READ, CL EAR 0002 NA4 PUNCH, GRAPH 0003 EXTR IKB, ØTT, BIPT EX TR OTL, CRL F, FPLOT, OFPA 0004 0005 EXTR XA, XB, XC, FAD 0 0006 0000 REL 0007 * READ PAPER TAPE & ADD TØ BUFFER 0008 0009 * 0000 05 00 READ ENT 0010 *INITIALIZE VARIABLES 0011 0012 0001 1128 PLX1 SET INDEX BIT 0013 0002 1400 SØV 0014 0003 11AS RRX 1 0015 0004 ÈA33 STX Ŕ5 & SAVE PØINTER 0016 0005 **EA34** STX R5+2 0017 0006 0528 XRP RESET SUBSCRIPTS 0018 0007 E9 00 STX XΑ 0000 0019 0008 STX ΧВ E9 0 0 0000 0020 0009 E9 0 0 STX ХC 0000 0021 A000 B236 LDA TP SET INPUT BUFFER PØINTER 0022 000B MPT 9 A 38 STA 0023 000C B235 LDA CT SET INPUT COUNT 0024 000D 9A37 STA CNT 0025 * SKIP LEADER & LABEL 0026 000E C63 A LAP :8A LINE FEED 0027 000F F900 JST ØTT 0000 0028 0010 F9 00 J ST BIPT 0000 0029 0011 2141 JAZ 5-1 SKIP LEADER 0030 ØTT 0012 F9 00 JST ECHØ LABEL R10000 BIPT 0031 0013 F9 00 JST READ TAPE 0000 0032 0014 C 09 2 CAI :92 END ØF LABEL? 0033 0015 F201 JMP R2YES 0034 0016 F604 NØ JMP RI 0035 0017 F9 00 R2 JST BIPT READ TAPE 0000 0036 0018 COFF CAI :FF FILE MARK? 0037 0019 F201 JMP R3 YES 0038 001A F603 JMP R2 NØ 0039 *READ LØØP 001B F900 BIPT 0040 R3 JST LØWER BYTE 0000 0041 001C 1E87 LLR 8 SAVE 0042 001D F9 00 J ST BIPT UPPER BYTE 0000 0043 001E 1807 LLL 8 RESTØRE

MPT: SAVE LØV BITS 001F L DX 0044 E224 0045 0020 9001 STA @1 · LØVER BYTE 0021 F900 J ST BIPT 0046 0000 8 0047 0022 1 B8 7 LLR UPPER BYTE 0048 0023 F900 J ST BIPT 0000 8 0049 0024 1807 LLL * CØN VERT BASI C-F.P. TØ CAI-F.P. 0050 0= 0≓ 0 ```  $Z 1^{-1}$ 0051 0025 2109 JAZ 0026 0048  $T \ge X$ SAVE SIGN 0052 0027 0053 3051 JAP 5+2 ABS. VAL. 0028 0310 NAR 0054 ខ 0055 0029 1 BS 7 LLR REMØVE MSB 0056 002A 1328 LLX 1 D64 FIX CHARACTERISTIC 0057 002B 8A17 ADD **CO**58 002C 1807 LLL 8 0059 002D 1300 LAØ RECOVER SIGN 0060 002E-1100 RRA 1 *MPT SAVE HI BITS 0061 002F 9E14 Z 1 STA MPT BUMP PØINTER 0062 0030 DA13 IMS 0063 0031 **DA12** MPT TWICE! IMS 0032 DA12 CNT MØRE? 0064 IMS 0065 0033 F618 R3 YES JMP 0066 *ADD INPUT BUFFER TØ BEAM ARRAY 0067 *PANIC SWITCH DISABLED FØR DURATIØN 0068 0034 4006 CID DI SAELE AUTØ 0069 0035 B20C CT RESET COUNTER LDA 0070 0036 9A0E STA CIN T 0071 0037 F900 R4 J ST FAD F.P. ADD 0000 0072 0038 0000 R5DATA 0,:9400,0 0039 9400 003A 0000 0073 003B D9 0 0 IMS XA BUMP SUBSCRIPTS 0000 0074 0030 D9 0 0 IMS XB 0000 0075 003D D9 00 IMS XC 0000 0076 003E DA06 IMS CNT MØRE? 0077 003F F603 YES JMPR4 0078 0040 F740 READ RTN 0079 *STØRAGE 008.0 0041 1400 TP DATA :1400 -256 0081 0042 **FFOO** CT DATA 0082 0043 0040 D64 DATA 64 008.3 0044 0000 MPT DATA 0 0034 0045 0000 CNT DATA 0 0CG 5 * 0086 * CL EAR BEAM ARRAY 0037 * 0046 0088 08 0 0 CL EAR EN T

					:		
0089	0047	B605		LDA	ст [:]	SET COUNT	
0090	0048	9 E 0 3		STA	CNT		
0091	0049	0110		ZAR		CL EAR	
009.2	004A	9000	C1	STA	eo	HI BITS	
0093	004E	9001	~ ~	STA	@1	LØ BITS	
0094	0040	C202		AXI	2	BUMP POINTER	
0095	004D	DE08		IMS	CN T	DØN E?	
009 6	004E	F604		JMP	C1	NØ	
0097	004F	F709		RTN	CL EAR		
0098		- • - •	*				
0099			* PUN CH	BEAM	ARRAY - F	BASIC FØRMAT	
0100			*		•		
0101	0050	08 0 0	PUNCH	EN T			
0102	0051	FA22		JST	L EAD	L EADER	
0103	0052	B610		L DA	CT	START CØUNTER 🤿	
0104	0053	9 E0E		STA	CNT	~	u
0105	0054	F9 00	P1	JST	IKB	ECHØ LABEL	
•		0000				٠	
0106	0055	C 09 2		CAI	:92	CTRL/TAPE?	
0107	0056	F201		JMP	P2	YES	
0103	0057	F603		JMP	P1	NØ	
0109	0058	C6FF	P2	LAP	:FF	PUNCH FILE MARK	
0110	0059	F900		JST	ØTT		
•		0000					
0111	005A	B401	P3	LDA	@ 1	PUNCH LØ BITS	
0112	005B	F9 00		J ST	ØTT	1	
		0000					
0113	005C	1307		LRA	8		
0114	005D	F900		JST	ØTT		
. ,		0000					
0115	005E	B400		LDA	@O	GET HI BITS	
0116	005F	C202		AXI	2	BUMP PØINTER	
0117	0060	EEIC		STX	MPT	AND SAVE	
0118			* CØN VE	RT CA	-F.P. TØ	BASIC-F.P.	
0119	0061	210A		JAZ	. Z 5 .	0=0	
0120	0062	0048		TAX		SAVE SIGN	
0121	0063	1350		LLA	1	CLEAR A15	
0122	0064	1 BS 7		LLR	8	SPL I T	
0123	0065	9622		SUB	D64	FIX CHARACTERISTIC	
0124	0066	1400		SØ V		INSERT MSB	
0125	0067	1150		RL A	1		
0126	0068	<b>1</b> B06		LLL	7	RE-FØR4AT	
0127	0069	1329		LLX	2	RECØVER SIGN	
0128	006A	3201		JØR	5+2	CØRRECT FØR IT	
0129	006B	0310		NAR			
0130	0060	F9 00	Z 2	JST	ØTT	PUNCH HI BITS	
		0000				·	
0131	006D	1 B8 7		LLR	8		
0132	006E	F9 00		JST	ØTT		
		0000					
0133	006F	E62B		LDX	MPT	RECOVER POINTER	
0134	0070	DE2B		IMS	CN T	DØN E?	
0135	0071	F617		JMP	P3	NØ	

0136 0137 0135	0072 0073	FA01 F723	* PUN CH	JST RTN 5"ØF	l Ead Pun Ch L Eader	YES,	PUNCH LEADER
0139	0074	08 0 0	LEAD	EN T			
0140	0075	C732		L AM	50_		
0141	0076	9E31		STA	CN T		
0142	0077	0110		ZAR			
0143	0078	F900	L2	J ST	ØTT		
		0000					
0144	0079	DE34		IMS	CNT		
0145	007A	F602		JMP	L2		
0146	007B	F707		RTN	L EAD		
0147			*				
0148			*PLØT	DATA AF	RRAY		
0149			*				
0150	0070	0300	GRAPH	ENT	~		
0151	0070	EA06		5172	1	SAVE	COUNT POINTER
0152	007E	0202		AA I	2		
0153	0071	EAOS		STX	PT	SAVE	DATA POINTER
0154	0080	0110		ZAR		PRIN	T COUNT
0155	0081	F900		ป ST	0 TL		
0154	0.07 0	0000		~ ~ ~ ~ ~	amt		
0156	0082	A 80 U		DATA	UIX «ED»		
0157	0083	1900		121	ØFPA		
0150	0.07 /	0000	~	<b>D 4 7 4</b>	<u>^</u>		
0158	0084	0000	1	DATA			
0128	0055	19.00		121			
0140	0.02.6	0000		7 054	055	παπ	' <b>ה</b> אתא
0161	0000	2000 0111		LAN	200 TR 107	LPAI	DAIA
0101	0007	0000		051	F FLAU I		•
0162	0.08.8	0000	DT	ኮለዋለ	n		
0163	0000	5700	<b>T T</b>	DAIA	GRADH		
0164		8020	CTX	TATA	• 8 03 0		
0165	008 8	C3CF	0 IA	TET	COUNT =		
0105	2 200	0505		1 2 2 4 5 4		~	
	0.08 5	D000					
	0035	BDADO					
0166	008 F	0000		DATA	n		
0167	0001	0000		En D	v		
0000	ERRORS						
0000							

0001			* * FFL	ØT - FL	.ØATING PØINT	F PLØTTER
0003			ጥ ታ	CALLEN	IG SEQUENCE.	
0004						
0005			4-			
0006			*			UDI #FPLUI
0007			*			DATA AHRAT
0008			*			(REIURN)
0009			*			
0010				n am	FPLØT	
0011	0000			REL.	0	
0012	0000	08 00	FPLØT	EUT		
0013	0001	9A4C		STA	NRØW	
0014	0002	9A4C		STA	CN T	
0015	0003	B703		l da	*FPLØT	
0016	0004	9AIF		STA	RP3	
0017	0005	9A24		STA	RP4	
0018	0006	A249		IØR	B15	
0019	0007	9A05		STA	RP1	
0020	0005	9 A 03		STA	RP2	
0021	0009	0350		ARP		
0022	000A	9 B 4 F		STA	*XA	
0023	0003	F204		.IMP	MØVE	
0020	0000	FBAF	LPI	.15T	* 70 7	
0025	0000	0000	801		0. M AX	
0023	0000	0051	171 T	1777 1 51	05 11 192	
0004	0005	0122		1.01	TNC	
0020	0001	2100	MANE	JCT	TIN C	
0027	0010	r 545	DDO	0.01	77 I'I V	
0023	0011	0000	RPZ	DAIA	US M AN	
0000	0012	0001	1110	7 M C	1.38 A	
0029	0013	D546	INC	IMS	та См.т.	
(0030	0014	DAJA		IMS	1 5 1	
0031	0015	1009		JMP	LPI	
0032	0016	r 541		151	* 652. F	
0033	0017	FB40		JST	* CRL F	
0034	0018	C6BD		LAP		
0035	0019	FB3F		JST	*01L	
0036	001A	0061		DATA	SF	
0037	001B	FB43		JST	*FDV	
0033	0010	0055		DATA	F50, MAX, SCA	al e
	001D	0051			•	
	001E	0053				
0039	001F	FB40		JST	*ØFPA	
0040	0020	0053		DATA	SCALE	
0041	0021	FB36		J ST	* CRL F	
0042	0022	FB35		J ST	* CRL F	
0043	0023	FB3C	LP2	JST	*ØFPA	
0044	0024	0000	RP3	DATA	0	
0045	0025	DE01		IMS	RP3	
0046	0026	DE02		ÌMS	RP3	
0047	0027	C6A0		LAP	- T - T	
0048	0028	FB2E		JST	· føtt	
0049	0029	FB34		JST	*FMP	

#### ، مر

0050 [.]	002A 002B	0000 0053	RP4	DATA	O, SCALE, MAX
0051	0200	0001		⊤ ம ⊂	PD/
0051	002D	DECC		IMS	RPA
0053	0025	FROD		TCT.	* EIX
0054	0030	0051		DATA	MAX, CNT
	0031	004F			
0055	0032	B21C		LDA	CNT
0056	0033	0048		TAA	Dac
0057	0034	3055		1 AP	PUS
0050	0035	1250 10040		JST	- ፍøዮተ
0060	0037	C680		LAP	101 *011
0061	0035	FBIE		JST	*øTT
0062	0039	F20E		JMP	ØUT
0063	003A	C6A0	PØS	LAP	1 1
0064	003B	FBIB		JST	føtt
0065	0030	28 09		JXZ	MARK
0066	003D	C6B0		LAP	101
0067	003E	FB18		J ST	₩ØTT
0063	003F	0503		NXR	
0069	0040	EAOE		STX	CN T
0070	0041	C6AA		LAP	** *
0071	0042	F201		JMP	S+2
0072	0043	1813 1813		JST	*OTT
0073	0044	DAUA T400		IMD	
0074	0045	1002 0600		JNP	ರ=೭ ಕತಕ
0076	0040	FROF	titutur.	JST	ድ ሰ ተ ጥ
0077	0048	FBOF	ØUT	JST	* CBL F
0078	0049	DA04		IMS	NRØV
0079	004A	F627		JMP	LP2
008.0	004B	FBOC		JST	* CRL F
008 1	004C	DE4C		IMS	FPLØT
005 2	004D	F74D		RTN	FPLØT
008 3	004E	08 0 0	n Rø V	HLT	
008 4	004F	03 0 0	CN T	HL T	
0085	0050	8000	B15	DATA	:8000
008.6	0051	0000	MAX	RES	2,0
0057	0055	0000	SUALE	RES	2,0
0000	0055	4040	rsu	DATA	:4348.0
0089	0057	0000	ልጥጥ	ਕਿਰ	
009.0	0058		CRI.F	REF	
0091	0059		ØTL	REF	
0092	005A		XA	REF	
0093	0053		FCP	REF	
0094	005C		FM V	REF	
009 5	005D		FIX	REF	
009 6	005E		FMP	REF	
0097	005F		FDV	REF	•
0098	0060		ØFPA	REF	

.

0099	0061	D3C3	SF	T EX T	SCAL FACTOR = '
	0062	CICC			
	0063	85C6			
	0064	C1C3			
	0065	D4CF			
	0066	D2A0			
	0067	BDA0			
0100				EN D	

0001			*		•	
0002			*CRT -	FLGATI	ING POINT	PLØTTER
0003			40			
0004			*	CALLIN	IG SEQUEN(	CE:
0005			*			JST *CRT
0006			*			(RETURN)
0007			*			•
8000				n am	CRT	
0009	0000			RE.	0	
0010	0000	08 0 0	CRT	EN T		
0011	0001	C7FF		L AM	255	
0012	0002	9A5F		STA	NRØV	
0013	0003	9A5F		STA	ĊN T	
0014	0004	49 C 4		SEN	24,4	
0015	0005	F601		JMP	5-1	
0016	0006	4007		SEL	2457	
0017	0007	C202		AX I	2 .	
0018	0008	0030		TXA	-	
0019	0009	A261		IØR	B15	
00.20	000A	9 A 0 B		STA	RPI	
0021	000B	9A0E		STA	RP2	
0022	0000	9A10		STA	RP3	
0023	0000	9A13		STA	RP4	
0024	000E	9A36		STA	EP5	
0025	000F	0110		ZAR		
0026	0010	9454		STA	MIN	
0027	0011	9 6 5 4		STA	MTN+1	
0028	0012	0350		ARP		
0029	0013	0250		STA	*X 0	
0030	0014	F204		.MP	MAUE	
0031	0015	FB54	1.P1	.1 5T	* FCP	
0032	0016	0000	RP1	DATA	0.MAX	
	0017	0067	••••	6 <b>44 5 6 6 6</b> 6	07.11.21	
0033	0018	2183		I AL	INCL	
0034	0019	FB57	MAVE	JST	* FM U	
0035	0014	0000	222	DATA	0.MAX	
	nois	0067	*** (4	474 + A 2'A	0911191	
00.36	0010	FR53	TNCI	157	* F C P	
0637	0010	0000	2923	DATA	O-MIN	
0001	0015	0000	111 0	<i>Late</i> * ***	OP PI LIV	
00.38	0015	3083		JAP	TNCO	
00.39	0011	FB50		JAI JZT	1 N O Z. 4 FM V	
0000	0020	0000	804	ο 51 Γλτα	O-MIN	
0040	0021	0000	<u> </u>	<i>D</i> 63447	0317114	
00//1	0022	0000	TNCO	TMC	<b>ቀ</b> ያ ለ	
0041	0020		-	TMC	ው እንደ የእንም	
0042	0024	5610		1013 CINI		
0043	0020	1010	4	UNF	له که هبل •	
0044	0004	<b>FD</b> ^F	ŝ	1.57		
0043	0020	rdar Toat		164	4 UNL F	
0040	0021	r 045 C4 DD		1 45	ホレバムド	
0047	0020			1655 167		
0040	0029	r 1941) 0.070		0.21	701L	
1111/19	11120	EBE 754		110 0 0	<b>W</b> (1)	

.

0050			*		1
0051	002B	FB46		J ST	*FSB
0052	0020	0067		DATA	MAX,MIN,MAX
	002D	0065			
	002E	0067			
0053	002F	FE43		JST	* F DV
0054	0030	006C		DATA	F250, M.X., SCAL E
	0031	0067			
	0032	0069			
0055	0033	FB44		J ST	*ØFPA
0056	0034	0069		DATA	SCAL E
0057	0035	FE40		JST	* CPL F
0058			*		
0059	0036	FB3D		JST	*F4P
0060	0037	0069		DATA	SCALEMIN, MAX
	0038	0065			
	0039	0067			
0061	003A	FB3A		JST	*FIX
0062	003B	0067		DATA	MAX, MIN
	0030	0065			
0063	003D	B227		LDA	MIN
0064	003E	0310		NAR	
0065	003F	308 1		JAP	5+2
0066	0040	0110		ZAR	
0067	0041	9A22		STA	x
0068	0042	0350		ARP	
0069	0043	9 E 2 B		STA	*XA
0070	0044	FROM	*		
0071	0044	r B2r	L P2	JST	*****
0072	0045	0000	RP5	DATA	Us SUAL Es MAK
	0046	0069			
0070	0047	0067			
0073	0048	DB26		IMS	***
0075	0049	r BZB		121	TIA MAY CHT
0075	0046	0067		DATA	MAAS UN I
0076	0048			1 584	v
0070	0040	DO15			ሌ ርክ ፕ
0078	0040	10CH	ኮራሞ	LDA	
0070	0045	4904 5601	רשם		24 <b>)</b> 4 5 - 1
0075	0041	1001		014 F 6 553	3-1 GA O
0080	0050	4702 T601			249 2 Sml
0001	0051	62001		0 M F	0.V ; 0 2- 1
000 2	0052	0107		107	Dali F
002 /	0050	2183		UP2 IAG	DAG
0085	0054	0003		DYP	603
008.6	0055	0045			
0087	0057	5100 F600		.IMD	ኮልፕ
0038	0007	0198	Pac	IXD	* 6294
0020	0000	0000	<b>س لا د</b>		
009.0	0052	F60C			יהאת
0091	0052	B208	DAME	L DA	· · · ·
009 2	0050	8A11	يتل ياولوني		H256
	~~~~				

					:
009 3	005D	9A06		STA	x
0094	005E	DA03		IMS	NRØV
009 5	005F	F61B		JMP	LP2
009.6	0060	FB15		J ST	* CRL F
0097	0061	F761		RTN	CRT
0098			*		
0099	0062	0000	in rø v	DATA	0
0100	0063	0000	Civ T	DATA	0
0101	0064	0000	X	DATA	0
0102	0065	0000	MIN	RES	2,0
0103	0067	0000	M AX	RES	2,0
0104	0069	0000	SCAL E	RES	2 , 0
0105	006B	8000	B15	DATA	:8000
0106	006C	447A	F250	DATA	: 447A, 0
•	006D	0000			
0107	006E	0100	H256	DATA	256
0108		•	*		
0109	006F		XA	REF	
0110	0070		FCP	REF	
0111	0071		FM V	REF	
0112	0072		FSB	REF	
0113	0073		FDV	REF	
0114	0074		FIP	REF	
0115	0075		FIX	REF	
0116	0076		CRL F	REF	
0117	0077		g tl.	REF	
0113	0078		ØFPA	REF	
0119			*		
0120	0079	D3C3	SF	TEXT	SCALE FACTØR = '
-	007A	CICC			
	007B	C5A0			
	007C	C6C1			
	007D	C3D4			
	007E	CFD2			
	007F	AOBD			
0121			*		
0122				EN D	
0000	ERRØRS				

0001 0002 0003 0004				NAM EXTR NAM EXTR	VI EW DPN:, DPSU DI SP RTTR, RTØF	IE:, DPDI	V:, DPSH:		
0005	0000	03 0 0	VI EV	EN T					
0006	0001	9A71	DI SP	STA	VEVR				
0007	0002	C202		AXI	2				
0008	0003	EA66		STX	RPID	PØINTER			
0009	0004	EA66		STX	RP2D				
0010	0005	C7FF		L AM	255				
0011	0006	9A6A		STA	CNT				
0012	0007	9A64		STA	NRØV				_
0013	0008	0110		z ar		IN I TI AL	IZE MAX	AM D	ИIN
0014	0009	9A63		LTA	MIN				
0015	000A	9A63		STA	MIN+1				
0016	000B	9A63		STA	MAX				
0017	0000	9A63		STA	MAX+1				
0018	0000	B400	STCH	LDA	00				
0019	000E	D260		CM 5	MAX				
0020	000F	F20A		JMP	MINI	AI <max< td=""><td></td><td></td><td></td></max<>			
0021	0010	F205		JMP	MAXI	A1>MAX			
0022	0011	B401		LDA	61	Al=MAA			
0023	0012	D25D		CMS	MAR+1	A 1-14 AV	0.0.434.000	•	
0024	0013	F206		JMP	MINI	A I=M AX	A2 <max+< td=""><td>1</td><td></td></max+<>	1	
0025	0014	9A5B		STA	MAA+1	AI=MAA	HZ>MHA+	7	
0026	0015	F211		JHP				•	
0027	0016	9 A 58	MAXI	SIA	MAA 61				
0028	0017	5401 0 4 5 7			el Movel				
0029	0010	200D		DIA MD	MARTI FICM				
0030	0019	r200	1.4 T NT 1		PI UN PO			•	
0031	0018	5400 5951		CM C	MIN				
0032	0010	F2016		.IMP	MINO	A I <m i="" n<="" td=""><td></td><td></td><td>•</td></m>			•
0030	0010	F200		JMP	FICM	A1>MIN			
0035	001E	B401		1. DA	61	A1=MIN			
0036	0015	D24E		Ci4 S	MIN+1				
0037	0020	F202		JMP	MIN2	Al=MIN	A2 <min+< td=""><td>1</td><td></td></min+<>	1	
0038	0021	F205		JMP	FICM	Al=MIN	A2>MIN+	1	•
0039	0022	F204		JMP	FI CM	Al=41N	A2=MIN+	1	
0040	0023	B400	MIN2	L DA	60				
0041	0024.	9 A 48	•	STA	MIN				
0042	0025 '	B401		LDA	@1				
0043	0026	9A47		STA	MIN+1				
0044	0027	E242	FI CM	L DX	RPID				
0045	0028	C202	• •	AXI	2				
0046	0029	EA40		STX	RP1D				
0047	002A	DA46		IMS	CN T		•		
0048	002B	F61E		J MP	STCM				
0049		·	*						
0050	0020	B242		l da	MAX				
0051	002D	E242		l dx	MAX+1				
0052	002E	F900		J ST	DPSUB:				
		0000							

0053 0054 0055 0056 0057 0058 0059 0060 0061	002F 0030 0031 0032 0033 0034 0035 0036	006D 1050 1329 3201 0150 13A3 9A39 EA39	**	DATA ALA LLX JØR IAR LRX STA STX	MIN 1 2 5+2 1 MAX MAX+1
0062 0063 0064	0037 0038 0039	B235 E235 F900 0000		l da L dx J st	MIN MIN+1 DPDIV:
0065 0066 0067 0068 0069 0070 0071	003A 003B 003C 003D 003E 003F	006F 9A2D 10D1 0310 8A2A 10D5	*	DATA STA ARA N AR ADD ARA	MAX Tem 2 Tem 6
0072 0073 0074 0075 0076	0040 0041 0042 0043	0310 3031 0110 9A2E	*	N AR J AP Z AR STA	5+2 X
0077 0078 0079 003 0	0044 0045 0046 0047	E226 B400 E401 F900	LPD	L DX L DA L DX J ST	RP2D 60 61 DPDI V:
005 1 003 2 003 3 003 4 005 5 003 6 003 7	0048 0049 004A 004B 004C 004D	006F 9A1F 10D1 0310 8A1C 10D5	-te	DATA STA ARA N AR ADD ARA	MAX Tem 2 Tem 6
0087 0088 0089 0090 0091 0092 0093 0094 0095 0096 0097	004E 004F 0050 0051 0052 0053 0054 0055 0056 0057	E223 49 C4 F601 49 C2 F601 6EC2 2107 318 3 00A8 0150	* D9T	L DX SEN JMP SEN JMP ØTX J AZ J AG DXR I AR	X 24,4 5-1 24,2 5-1 24,2 DØN E PØ S
0098 0099 0100 0101	0053 0059 005A 005B	F609 0128 00D0 F60C	PØ S	JMP IXR DAR JMP	do t do t
0102	005C	B215	* DØN E	L DA	Σ

					1 - E - E - E - E - E - E - E - E - E -
0104	005D	8A16		ADD	н256
0105	005E	9A13		STA	X
0106	005F	E20B		L DX	RP2D
0107	0060	C202		ax I	2
0103	0061	EA09		STX	RP2D
0109	0062	DA09		IMS	NRØV
0110	0063	F61E		$_{\rm JMP}$	LPJ
0111	0064	B20E		L DA	VEVR
0112	0065	2101		J AZ	S+ 2
0113	0066	F100		JMP	RTØP
		0000			
0114	0067	F100		JMP	RTTR
• •		0000			
0115	0068	F768		RTN	VI EW
0116	0069	0000	TEM	DATA	0
0117	006A	0000	RPID	DATA	0
01 18	006B	0000	RPŻD	DATA	0
0119	0060	0000	NRØW	DATA	0
0120	006D	0000	MIN	RES	2,0
0121	006F	0000	MAX	RES	2,0
0122	0071	0000	CN T	DATA	0
0123	0072	0000	X	DATA	0
0124	0073	0000	VEVR	DATA	0
0125	0074	0100	H256	DATA	256
0126		•		EN D	• · · ·
0000	FDDABES				
.

0001 0002 0003 0004 0005 0006	0000		4	N AM N AM N AM EX TR EX TR REL	DPACC DPFLT DPFIX DPN: DPN: 0	
00.08			* DØ UBL	E PRECI	SIØN AC	Cum ul ate
0010 0011 0012	0000 0001 0002	0300 9A10 0030	DPACC	EN T STA TX A	TEMP	
0013	0003	E703 1200		l DX RØ V	* DPACC	
0015 0016 0017	0005 0006 0007	8 CD1 8 20C 9 CO1		add An d Sta	ei Másk ei	
0018 0019	0008	B209. 3204		L DA JØR DØN	TE4P DC1	
0020 0021 0022	000A 000B 000C	0150 3201		i ar Jør	DC1	
0023 0024 0045	000D 000E 000E	0110 8000 8000	DC1	Z AR ADD	00 00	
0026 0027	0010 0011	DE10 F711		IMS RT.	DPACC DPACC	
0028 0029 0 3	0012 0013	0000 7FFF	TEMP MASK *	data Data	0 : 7FF+	
0031 0032			* DØUEL *	E PRECI	SIØN TØ	CAI-F. F
0033 0034	0014 0015	08 00 38 0 1	DPFL T	EN T JXN	DPF1	
0035	0016 0017	2113 BA13	DPF 1	JAZ EMA	DPF4 BITS	н
0038 0039	0019 001A	BA11 9A11		EMA STA	BITS SIGN	
0040 0041	001B 001C	3051 F900	•	J AP J ST	DPF2 DPN:	
0042 0043	001D 001E	1328 1800	DPF2 DPF3	LLX LLL	1 1	el :
0044 0045 0046	001F 0020 0021	DAOB 3242 1888		IMS JØR LLR	BITS DPF3 9	
0047 0048	0022	BA08 0310		EMA NAR	BITS	
0049	0024 0025 0026	8 A08 1356 A204	• • • •	ADD LLA IMR	D160 7 ·BITS	· .
0052	0027	BA04	• •	ÉMA	SIGN	· · ·

0070	0.007	0.005			
0053	0028	8205		AND	DPM
0054	0029	A202		10R	SIGN
0055	002A	F716	DPF4	RTN	DPFL T
0056	0028	0000	BITS	DATA	0
0057	0020	0000	SIGN	DATA	0
0058	002D	0A00	D160	DATA	160
0059	DOSE	8000	DPH	DATA	:8000
0060	002F	08 0 0	DPFIX	EN T	
0061	0030	9 E04		STA	SIGN
0062	0031	821C		AN D	DPP
0063	0032	13D6		LPA	7
0064	0033	9606		SUB	D160
0065	0034	9 E09		STA	BITS
0066	0035	B609		l da	SIGN
0067	0036	8218		AN D	M AN T
0068	0037	A2 18		IØR	SBIT
0069	0038	BEOD		EMA	BITS
0070	0039	2109		JAZ	DPFX 2
0071	003A	3190		JAG	DPFX 4
0072	0C3B	BE10		EI1A	BITS
0073	0030	1807		LLL	6
0074	003D	1 B3 O	DPFX 1	LLR	1
0075	003E	DE13		IMS	BITS
0076	003F	F602		JMP	DFFX 1
0077	0040	1800		LLL	1
0078	0041	13A8		LPX	1
0079	0042	F201		JMP	S+ 2
008.0	0043	BE18	DPFX 2	EMA	BITS
003 1	0044	BE18		EMA	SIGN
008 2	0045	308 3		JAP	DPFX 3
008 3	0046	BEIA		E4A	SI GN
005 4	0047	F900		រ ST	DPN:
		0000			
008 5	0048	F201		JMP	\$÷2
008.6	0049	BEID	DPFX 3	E:1A	SIGN
003 7	004A	F71B		RTN	DPFIX
0038	004B	0118	DPFX 4	ZAX ·	-
0089	0040	1400		SơV	
009 0	004D	F71E		RTN	DPFIX
009 1	004E	7FFF	DPP	DATA	: 7FFF
0092	004F	007F	MANT	DATA	:7F
0093	0050	0050	SBI T	DATA	:80
009 4				EN D	
0000	ERRØRS			-	

APPENDIX C

168A

168B

0001 0002 0003 0004	0100			N AM EX TR EX TR ABS	CMN D I ER, ØTT, Ø ERR, X EQ : 100	ITL, CRI	- F	
0005			* PRINT	NAME				
0006	0100	0110		Z AR				
0007	0101	F900		JST	Ø TL			
		0000						
0008	0102	012B		DATA	N A14 E			
0009	0103	F201		JMP	\$+2			
0010			*					
0011			* CØMM AN	JD INTEN	RPRETER			
0012			*	•				
0013	0104	08 0 0	CMIN D	ENT				
0014	0105	00A0		EIN				
0015	0106	4005		CIE		ENABL	E PANIC	Buttan
0016	0107	F900		J ST	CRL F	PRINT	PRØM PT	CHARACTER
		0000	1					
0017	0108	C 68 7		LAP	:87			
0018	0109	F900		J ST	ØTT			
		0000						
0019	010A	C6AA		LAP	•* •			
0020	0103	F900		JST	ØTT			
		0000						
0021	0100	0108		ZXR				_
0022	010D	F9 00		JST	IER	INPUT	CØMMANI	D
_	_	0000						
0023	010E	COD4		CAI	• T •			
0024	010F	E213		LDX	TRANS			
0025	0110	COD2		CAI	'R'			14.
0026	0111	E212		LDX	READ			
0027	0112	C0C3		CAI				
0028	0113	E211		LDX	CL EAR		•	
0029	0114	38 0A		JXN	ØKF			
0030	0115	CODO		CAI	• p •			
0031	0116	E20F			PUNCH			
0032	0117	0007		GAL	*G* *****			
0033	0115	E20F			r PLUI			
0034	0119	COD6			· v ·			
0035	011D	E20E		CAL	URI			
0035	OTTR	5004		LAL	- D.			
0037	0110	E20A			DATON			
0030		20 01	12 A D	JAN	UN F FDD			
0039	UTIE	0000	BHD	051	LRA			
00/0	0115	50000	ave	cmy	TINC	SAUE		חשדככ
0040	0111	EAUA	ØRF	51A 1 CT	YEO	UATT	TAP CA	02603
.0041	0120	1200		0.51	A LO	WPHL 1	FOR GO	
00.40	0191	50000 FD02		197	* FINC	CALL	FINCTO	M
0042	0122	F610		TWD			100001100	• •
0040	0122	1010	TRAVIC	ਸਤਸ	OUTIN DAY 1			
0044	0120		ELVU TUST	REF	•			
0045	0125		CL EAR	REF				
0040	0120							

•

0047 0048 0049 0050 0051 0052	0126 0127 0123 0129 012A 012B 012C 012D 012E 012F 0130 0131 0132 0133	0000 B1B5 AAB2 B5B5 A0C6 D5CC CCA0 C3 D4 D3A0 8 D3 A	PUN CH DATUM FPLØT CRT FUN C N AME	REF REF REF DATA TEXT	0 '15*255	FULL	HTS'
0000	0134	0000		DAIA	.01049.0		
0054 0000	ERRØRS			en d			

0001 0002 0003 0004 0005 0006 0007	0000 0000 0001 0002	03 00 C6BF F9 00	TRAN S	NAM NAM EXTR REL ENT LAP JST	TRANS RTTR DISP O '?' %0TL
00 08 00 09	0003 0004	013E F900 8128		DATA J ST	MØTA ∗IKB
0010 0011 0012 0013 0014 0015	0005 0006 0007 0008 0009 000A	1200 COCD F203 COD4 F204 F900		RØV CAI JMP CAI JMP J ST	'M ' Møjj 'T ' Tap * Err
0016	000B	F900	MØN	JST	* CRL F
0017 0018 0019	000C 000D 000E	0108 F20F F900	TAP	ZXR JMP J ST	BEG * CRL F
0020 0021	000F 0010	C63A F900		L AP J ST	:8A *0TT
0022	0011	F900 8125		J ST	*BIPT
0023 0024	0012 0013	2141 F900 8126	T1	J AZ J ST	5- 1 *ØTT
0025	0014	F900 8125		JST	*BIPT
0026 0027 0023 0029	0015 0016 0017 0013	C092 F201 F604 F900	T2	CAI JMP JMP J ST	:92 T2 T1 *BIPT
0030 0031 0032 0033 0034	0019 001A 001B 001C	COFF F201 F603 C401	T4 BEG	CAI JMP JMP LXP STX	: FF T4 T2 1 TFTP
0035	001E	012B B100		L DA	MASKO
0036 0037	001F 0020	0122 9AF3 F900 8129		STA J ST	MASK 1 * CRL F
00 38 00 39	0021 0022	C6BF F900 8127		L AP J ST	. '?' ¥ØTL

0040 0041	0023 0024	0130 F900		DATA J ST	DI RE *1KB
00 / 0	0005	8123		CAT	151
0042	0025	5005		INP	FARD
0043	0020	r205 COC2		CAT	181
0044	0027	F202		IMP	BACK
0046	0020	COCF		CAI	• 0 •
0047	002A	F20A		JMP	BØTH
0045	002B	FBFE		JST	* ERR
0049	0020	C71E	FØRD	LAM	30
0050	002D	9 AE2		STA	CN T2
0051	002E	0103		ZXR	
0052	002F	0403		CXR	
0053	0030	F207		JMP	TKF
0054	0031	C71E	BACK	LAM	30
0055	0032	9ADD		STA	CN T 2
0056	0033	0103		ZXR	
0057	0034	F203	D a b i	JMP	TKF
0055	0035	0 0 0 0	By in	LAM	
0059	0035	9 A D 9 0 2 5 2		AVD	CN 12
0060	0037	0000	ጥረ ፍ	EA F CTY	וקזת
0061	0030	EALO FOLI	117.1	1 155	TETE
0063	0034	28.02		IXZ	\$+3
0064	003R	C70F		L AM	15
0065	0030	9 AD3		STA	CN T2
0066 .	003D	E2D4		L DA	ZCT
0067	003E	9 A D 2		STA	CN T 3
0068	003F	E2E3		L DK	IBC
0069	0040	0110		Z AR	
0070	0041	9000	CL R	STA	60
0071	0042	0123		IXR	
0072	0043	DÁCD		IMS	CN T 3
0073	0044	F603		JHP	CL R
0074	0045	EAD1		STX	IBP
0075	0046	E2E4			TETR
0070	0047	2003		276	NEAI
0077	0040	2501		L LA L VAI	NEYT
0079	0045	0210		CAR	10 275 1
003.0	004R	5210 5213	NEXT	LDX	MASK
JO3 1	0040	0123		IXR	
003 2	004D	0210		CAR	
003 3	004E	0000		CAI	0
003 4	004F	C2FF		AXI	255
003 5	0050	EAB8		STX	MSK 1
003 6	0051	9 ABA		STA	DIR
003 7	0052	C7F5		L AM	245
0055	0053	9ACC		STA	DCT2
0039	0054	C7FF		L A'1	.255
0 900	0055	9AB7		STA	DCT
0091	0056	B2D4		LDA	TETR

G

0092	0057	2107		JAZ	TURI
009 3	0058	FBCC	T3	JST	*BI PT
009 4	0059	1357		LLA	8
009 5	005A	9 A D 4		STA	TEMT
009.6	005B	FBC9		JST	* BI PT
0097	0050	A2D2		IGR	TEAT
0098	0050	9480		STA	VAL.
0020	0055	F000		JMP	2 8 9 9
0100	0055	F 200	TIPI	JCT	TURMAN
0101	0000	F AG 3	ĭι Ρ	.15T	MANS
0101	0000	0 A A C		CTA	TINI
0102	0060	2 AAU 2002		1 00	
0103	0002	C001		CAT	
0104	0000	2001			1
0105	0004	F203		0MF	FRUU
0108	0005	DZAG		0.15	DIR
0107	0066	1235		JMP	FINDNE
0108	0067	F234		JULA	FINDNE
0109	0068	CYOF	PRØC	LAM	15
0110	0069	9 A A 5		STA	CNT1
0111	006A	B2A3		L DA	MASK I
0175	006B	9 AA8		STA	MASK 2
0113	006C	B2B6		LDA	IBC
0114	006D	9 AAS		STA	IΒ
0115	006E	C7FF	SPA	L AM	255
0116	006F	9 A A 5		STA	SCT
0117	0070	B293		L DA	M SK 1
0118	0071	9 A9 8		STA	M SK 2
0119	0072	B2A3		L DA	18
0120	0073	9AA3		STA	IBP
0121	0074	0110		ZAR	
0122	0075	D39 E		CM S	*MASK2
0123	0076	F201		JMP	S+2
0124	0077	F213		JMP	TL P2
0125	0078	E295	TL P1	L DX	VAL.
0126	0079	0110		ZAR	
0127	007A	D38 F		ON S	*M SK 2
0128	607B	7201		.114 P	5+2
0129	0076	0508		MZB	0.17
0130	0070	0030		TXΔ	
0131	0075	grog			4-1 20
0132	0075	0 20 7		STA	~ 1 D D
0132	0071			THE	ALDF MCVO
0133	0000	DADS		IMC	11202
0134	0001	DA9 D		1.4.5	IBP
0135	0082	DAY 2		IMS	SUT
0136	0003	FOUB		JMP	11.121
0137	0034	DASF		IMS	MASK2
0138	0085	CGFF		LAP	255
0139	0036	5 A8 F		ADD	IB
0140	0037	9 A8 E		STA	IB
0141	0038	DAS 6		IMS	CN T 1
0142	0089	F61B		JMP	SPA
C143	0 08 A	F211		JMP	FINØNE
0144	0 08 B	E282	TL P2	L DX	VAL

£

0145	0 08 C	0110		ZAR	
0146	005 D	D37C		CM S	*M SK 2
0147	008 E	0508		NXR	
0143	003 F	0030		TX A	
0149	0 0 0 0	8 B8 6		ADD	*IBP
0150	0.09.1	9 83 5		STA	*IBP
0151	0092	DA77		IMS	M SK 2
0152	0093	D43.3		IMS	IBP
0153	0000	0 840		TMS	SCT
0150	0094			IMP	TL P2
0154	0095	100A		IMS	MASK2
0155	0090	CATE		1 AP	255
0120	0097	00FF 9 670		400	IB
0157	0090	0 4 7 0		CTA	TR
0155	0099	9A10		51M 114C	CMT 1
0159	009A	DA (4		THD	
0160	0098	F62D		JUIP	SFA MCV 1
0161	009 C	E260	FINGNE		PI SN 1
0162	009 D	0128		IXH	
0163	009E	B26D		LDA	DIR
0164	009 F	C000		CAI	0
0165	00A0	C302		SXI	2
0166	1A00	EA67		STX	M SK I
0167	00A2	DA7D		IMS	DCT2
0168	00A3	F201		JMP	S+2
0169	00A4	40C7		SEL	24 , 7
0170	00A5	DA67		IMS	DCT
0171	00A6	F201		JMP	TUR2
0172	00A7	F204		JMP	TUR3
0173	00A8	B232	TUR2	L DA	TETR
0174	00A9	2101		JAZ	\$+2
0175	00AA	F652		JMP	ТЗ
0176	ODAB	F64E		JMP	ILP
0177	0A00	C7FF	TUR3	LAM	255
0178	00AD	9 A 6 E		STA	CNT7
0179	004E	E263		LDK	IBP
018.0	0000E	0110		ZAR	•
0100	0680	0000	CLEL	STA	eO
018.0	1900	0129	0	IXB	
0102	0051	DA40		TMS	CNT7
012.2	0052	FADA		.IMP	CLRI
0104	0000	1000		t AM	2/1
010 0		0 4 4 2		CTA	CNTA
0100	0025	9400			15
0187	UUEO	670r		5 ACA C T A	10
0188	0027	9A62		51A	CNTS
0189	0068	9A62		SIA	
0190	00B9	B269			1 BC
0191	00BA	9A63		STA	IBD
0192	OOEB	C70E		LAM	14
0193	OCBC	9A60		STA	HM 14
0194	OOED	B260	NXBIN	LDA	IBD
0195	OOBE	9A60		STA	IBE
0196	00BF	B35F	NIRØV	l da	*IBE
0197	0000	10D3		ARA	4

0198	0001	8B55		ADD	*IBP
0199	0002	9B54		STA	*IBP
0200	0003	B254		l da	H256
0201	00C4	8A5A		ADD	I BE
0202	0005	9 A 59		STA	IBE
0203	0006	DA53		IMS	CN T S
0204	0007	F603		JИР	NXRØV
0205	0008	B252		L DA	CNT6
0206	0009	9A50		STA	CN 17 5
0207	00CA	DA53		IMS	IBD
0208	OOCB	DA4B		IMS	IBP
02 09	0000	DA4C		IMS	CNT4
0210	OOCD	F610		JMP	NXBIN
0211	OOÇE	B24B		L DA	CN T 5
0212	OOCF	0150		IAR	-
0213	0000	9Å4A		STA	CN T 6
0214	00D1	9 A 48		STA	CNT5
0215	00D2	C701		L AM	1
0216	00D3	9A45		STA	CNT4
0217	00D4	DA48		IMS	HM 14
0218	00D5	F618		JMP	NXBIN
0219	00D6	0110		Z AR	
0220	00D7	9 A 4 9		STA	ØFFSET
0221	00D3	F100		JHP	DI SP
		0000			-
0222	00D9	B251	RTTR	L DA	TETR
0223	CODA	2104		JAZ	T5
0224	OODB	B252		LDA	DIRI
0225	OODC	3184		JAG	T6 (
0226	OODD	0210		CAR	
0227	OODE	F206		JMP	T7
0228	OCDF	B24E	T 5	l da	DIR1
0229	00E0	2182		JAL	5+3
0230	00E1	B22A	T 6	LDA	DIR
0231	00E2	F202		JMP	T7
0232	00E3	B223		l da	DIR
0233	00E4	3101		J AN	5+2
0234	00E5	DA2D	T7	IMS	MASK I
0235	00E6	DA29		IMS	CN T 2
0236	00E7	F69C		JMP	NEXT
0237	OOE8	F7E8		RTN	TRAN S
0238	00E9	00 50	TURNØN	ENT	
0239	OOEA	4006		CID	
0240	OOEB	48 C 1	•	SSN	: C1
0241	ODEC	F601		JMP	S-1
0242	OOED	0E00		SEM	
0243	OOEE	49 C I		SEN	: C1
0244	OOEF	F601		JMP	S-1
0245	OOFO	0F00		SWM	••-
0246	00F1	4004		SEL	: C4
0247	00F2	4005		CIE	±
0248	00F3	F70A		RTN	· TURNØN
0249	00F4	03 0 0	MØNS	ENT	

0250	OOFE	49 C 6		SEN	:06
0251	00F6	F601		JMP	5-1
0252	00F7	5AC6		INX	: 66
0253	00F3	28 4 3		JXZ	5-3
0254	00F9	C704		L AM	4
0255	OOFA	9A10		STA	CN T
0256	OOFB	0110		Z AR	
0257	OOFC	9 A 0 D		STA	M SK 2
0258	OOFD	F206		JMP	M2
0259	OOFE	1350	M 1	LLA	I
0260	OOFF	9A0A	-	STA	M SK 2
0261	0100	1351		LLA	2
0262	0101	SA03		ADD	M SK 2
0263	0102	9A07		STA	M SK 2
0264	0103	0110		ZAR	
0265	0104	1B03	M2	LLL	4
0266	0105	8A04	••-	ADD	M SK 2
0267	0106	DA04		IMS	CNT
02.63	0107	F609		IMP	MI
0269	0108	1000		BLU	MONS
0270	0100	0000	MSK 1	ΠΔΤΔ	0
0271	0104	0000	MSK2	DATA	0
0272	0109	0000	CNT	ΠΔΤΔ	ň
0273	0100	0000	פות	DATA	0
027/	0100	0000	DCT 0110	DATA	0
0275	0105	0000		DATA	0
0276	0105	0000	ርካታ ጥ 1	DATA	õ
0277	0110	0000	CNTŻ	ΠΔΤΔ	0
0278	0111	0000	CUTS	DATA	0
0279	0112	F010	ZCT	ΠΔΤΑ	- 4080
028.0	0113	0000	MASKI	ΠΑΤΑ	0
028 1	0114	0000	MASK 2	DATA	ñ
028 2	0115	0000	SCT	DATA	õ
028.3	0116	0000	IB	DATA	Ő
028.4	0117	0000	TRP	DATA	0 0
028 5	0118	0100	H256	DATA	256
028.6	0119	0000	CNTA	DATA	200 n
0287	0114	0000	CUT5	DATA	ñ
0288	0118	0000	CNT6	DATA	0 0
0289	0110	0000	CMT7	ΠΔΤΔ	Õ
029.0	0110	CTTT	HMIA	DATA	- 1/1
0291	OLIE	0000	IBD	ΠΔΤΔ	0
029.2		0000	IBF	DATA	0
0293	0120	0000	DCTO	DATA	0
029.4	0121	0000	AFFSFT	ΔΤΔΠ	Õ
0295	0121	0000	MASVA	DAIA	0
029.6	0122		סאכאמ	DEE	
02270	0120		1 DO M A SK	ner Der	
0298	0105		n Adr Dt Dt	ner Der	
0220	0120		ይነናነ ልጥጥ	nsr dee	
0200	0120		011 011	DEE VUL	
0301	0127		145	NET DTT	
0303	0120		LVD LVD	DEE DEE	
0002	0123		onu r	r te r	

ł

ţ

				DOF	
0303	012A -	0000	err Trtp	KEF DATA	0
0304	0125	0000	TEDA	DATA	0
0303	0120	00000	TCTI	DATA	2 4 05 0
0300	0125	0010	וסו	DATA	
0307	0125	0000	TEMT	DATA	0
0300	0120	8 02 0	DIRE	DATA	: 8 D8 A
0310	0131	060F	0-110	TEXT	'FØRWARD, BACKVARD, ØR BØTH?'
00.0	0132	D2D7			
	0133	CID2			
	0134	CAAC			·
	0135	C2C1			
	0136	C3CB			
	0137	D7C1			
	0138	D2C4			
	0139	ACCF			
	013A	D2A0			
	0138	C2CF			
	0130	D4CS			
	013D	BFAO			
0311	013E	A ED 8	MØTA	DATA	
0312	013F	C6D2		TEXT	FROM MONSANID DR FROM IAPE?
	0140	CFCD			
	0141	AUUD			
	0142				
	0143	0301			
	0144	0504			
	0145	CED2			
	0147				
	0148	DSCE			
	0149	CDAO			
	014A	D4C1			
	014B	DOC5			
	014C	BFAO			
0313	•			EN D	
0000	ERRØRS				

0001 0002				N AM EX TR	DATU4, RTDA DI SD
0003	0000	03 00	DATUM	ENT	
0004	0001	C6BF		LAP	1?'
0005	0002	FB63		J ST	¥0TL
0006	0003	0067		DATA	DIRE
0007	0004	FB71		J ST	*IKB
00.08	0005	C0C6		CAI	1E1
0009	0006	F205		JMP	FØRD
0010	0007	C0C2		CAI	'B'
0011	0008	F208		JMP	BACK
0012	0009	COCF		CAI	'Ø'
0013	A000	F20A		JMP	BØ TH
0014	000B	FB6C		JST	* ERR
0015	0000	C71E	FØRD	l am	30
0016	000D	9A73		STA	DN T2
0017	2000	0103		ZXR	
0018	000F	0408		CX P.	
0019	0010	F207		JMP	PKF
0020	0011	C71E	BACK	l am	30
0021	0012	9A6E		STA	DNT2
0022	0013	0103		ZXR	
0023	0014	F203		JMP	PK F
0024	0015	C70F	BØTH	l am	15
0025	0016	9 A6A		STA	DNT2
0026	0017	0353		AX P	
0027	0018	EA60	PKF	STX	DIR1
0023	0019	B260		L DA	Z CT 1
0029	001A	9A60		STA	CT 1
0030	001E	E25B		LDX	IBC
0031	001C	EA5F		STX	IB
0032	001D	0110		Z AR	
0033	001E	9000	CLR	STA	@ O
0034	001F	0125		IXR	
0035	0020	DASA		IMS	CT 1
0036	0021	F603		JMP	CLR
0037	0022	9A61		STA	RØN
0038	0023	0210	NEXT	CAR	
0039	0024	9 A 58		STA	DIRO
0040	0025	C7F5		l am	245
0041	0026	9 A 55		STA	DDT2
0042	0027	C7FF		l am	255
0043	0028	9A55		STA	DDT
0044	0029	FA19		JST	DURNØN
0045	002A	FA23	DL P	J ST	DØN S
0046	002B	9A54		STA	DAT
0047	0020	B24C		l da	DIR1
0048	002D	C001		CAI	1
0049	002E	F203		JMP	STØ
0050	002F	D24D		CM S	DIRO
0051	0030	F232		JMP	DLP2
0052	0031	F231		JMP	· DL P2
0053	0032	B24D	STØ	L DA	DAT

0054	0033	E248		LDX	IB
0055	0034	9000		JIA	12
0050	0035	DA40 DA40		THE	פדתת
0057	0030	DA43 5001		IMD	ET 0
0000	0037	r201 007		C TT	376
0059	0030	4007		JEL	24 3 1
0060	0039			IMD	זעע
0061	0038	LOIO LOIO		JMP	DAN
0062	0038	DA48	TO 1 1	1145	RUN
0063	0030	B247	DL P I		RUN
0064	0030	2101		JAZ	5+2
0065	0035	F100		JWP	DI 2D
	0000	0000			57 5 6
0066	003F	B23D	RTDA	LDA	DIRO
0067	0040	DA40		IMS	DALS
0068	0041	F61E		JMP	NEXT
0069	0042	F742		RTN	DATUM
0070	0043	05 0 0	DURNØN	ENT	
0071	0044	4006		CID	
0072	0045	43 C 1		SSIV	:01
0073	0046	F601		JMP	s- 1
0074	0047	0E00		SBM	•
0075	0043	49 C 1		SEN	:C1
0076	0049	F601		JMF	S-1
0077	004A	0F00		SW4	•
0078	004B	4004		SEL	:C4
0079	004C	4005		CIE	
003 0	004D	F70A		RTN	DURNØN
D08 I	004E	03 0 0	DØN S	EN T	
008 2	004F	49 C 6		SEN	: C6
003 3	0050	F601		JMP	5- 1
008.4	0051	5AC6		INX	:C6
008 5	0052	28 4 3		JXZ	s - 3
008 6	0053	C704		L AM	4
003 7	0054	9 A 2 D		STA	CN T
0088	0055	0110		Z AR	
0089	0056	9A2C		STA	MSK 2
009 0	0057	F206		JMP	M2
009 1	0053	1350	M 1	LLA	1
0092	0059	9 A 2 9		STA	M SK 2
009 3	005A	1351		LL A	2
009.4)5B	8 A 2 7		ADD	M SK 2
009 5	0050	9 A 2 6		STA	M SK 2
0096	005D	0110		Z AR	
0097	005E	1803	M2	لمامل	4
0098	005F	8 A 2 3		ADD	m sk 2
0099	0060	DA21		IMS	CN T
0100	0061	F609		JMP	MI
0101	0062	F714		RTN	DØNS
0102	0063	DAIA	DL P2	IMS	DDT
0103	0064	F63A		JMP	DL P
0104	0065	F629		JMP	DLPI
0105	0066		Ø TL	REF	

					1
0106 0107	0067 0068 0069 006A 006B 006C 006D 006E 006F 0070 0071 0072 0073 0074	8 D3 A C6CF D2D7 C1D2 C4AC C2C1 C3CB D7C1 D2C4 A0CF D2A0 C2CF D4C8 BFA0	DI RE	DATA TEX T	:8 D3 A • FØRWA
0108	0075		CFL F	REF	
0109	0076		IKB	REF	
0110	0077		IBC	REF	
0111	0078		ERR	REF	
0112	0079	0000	DI R1	DATA	0
0113	007A	FOOB	Z CT 1	DATA	-4085
0114	007B	0000	CT 1	DATA	0
0115	007C	0000	ΙB	DATA	Q
0116	007D	0000	DIRO	DATA	0
0117	007E	0000	DDT	DATA	0
0118	007F	0000	DDT2	DATA	0
0119	0030	0000	DAT	DATA	0
0120	0081	0000	DN T 2	DATA	0
0121	0082	0000	CN T	DATA	0
0122	0033	0000	14 SK 2	DATA	0
0123	0034	0000	røn	DATA	0
0124				EN D	
0000	EPRORS				

D3 A

ØRWARD, BACKWARD ØR BØTH? '

0001 IKB, IER, BIPT, XEQ NAM 0002 MAM ØTT, ERR, CRLF 0003 NAM ØTL.ØFPA,ØDEC 0004 0000 REL 0 0005 * 0006 * PANIC SWITCH 0007 * 0003 0000 FBOO JST * CMN D 0009 0001 CMN D REF 0010 * 0011 *KEYBØARD INPUT 0012 * 0013 0002 08 00 IKB ENT 0014 0003 SEL 4033 7,0 AUTØ-ECHØ 0015 0004 4039 SEL. 7, 1 KBD MØDE 0016 0005 59 39 RDA 7, 1 READ ØN FLAG 0017 0006 4030 SEL 7.4 RESET 0018 0007 F705 RTN IKB 0019 0003 08 0 0 ENT I ER 0020 0009 FE07 JST IKB 0021 A000 CODF CAI : DF BACK ARRØW? 0022 000B FFOA J ST * CMN D YES 0023 0000 C 08 A CAI :3A LINE FEED? 0024 000D FFOC **JST** * CMN D YES 0025 000E F706 RTN I ER NEITHER, RETURN 0026 * 0027 *PAPER TAPE INPUT 0028 * DSO = 0 FØR TTY 0029 1 FØR HSR * 0030 * 0031 000F 08 0 0 BIPT ENT 0010 0032 5801 BI P2 I SA READ SWITCHES 0033 0011 13D0 LRA 1 DSO UP FØR TTY 0034 0012 220A JØS HSR DØWN FØR HSR 0035 0013 49 3B SEN 7,3 TTY BUSY? 0056 0014 F604 JMP BIP2 YES 0037 0015 7,2 403A SEL NØ, STEP READER 0038 0016 48 39 WT SSN 7, 1 FL AG? 0039 0017 F203 JMP IT YES 0040 0018 0150 IAR NØ BUMP CØUNT 0041 0019 2149 JAZ BI P2 RESTART IF TIME UP WΤ 0042 001A F604 JMP ELSE CHECK FLAG AGAIN 0043 001B 58 08 INPUT FRØM TTY ΙT INA 7,0 0044 0010 F70D RTN BIPT & RETURN 0045 001D 4933 HSR SEN 6; 3 HSR BUSY? 0046 001E F60E JMP BIP2 YES 0047 001F 4032 NØ, STEP READER SEL 6,2 0048 6, 5 0020 4835 WΗ SSN FL AG? 0049 0021 F203 JMP IH YES 0050 0022 0150 IAR NØ, BUMP CØUNT 2153 BIP2 0051 0023 JAZ RESTART IF TIME UP 0052 0024 F604 JMP· WH ELSE CHECK FLAG AGAIN 0053 0025 58 35 INA 6,5 INPUT FRØM HSR 1 H

706

RTN BIPT & RETURN 0054 0026 F717 0055 * *WAIT FØR EXECUTE SIGNAL 0056 0057 * 08 00 X EQ 0027 EN T 0055 JST LER CAI :8D RTN XEQ INPUT 0028 FE20 0059 CARRIAGE RETURN? 0029 C 03 D 0060 YES, RETURN 002A F703 0061 NØ, GET MØRE JMP XEQ+1 0062 002B F603 0063 * *JUTPUT TO TTY 0064 0065 * 0066 0020 0800 ØTT ENT SEL 7,4 WRA 7,3 SEN 7,3 SEL RESET INTERFACE 0067 002D 4030 7, 4 WRITE IN NØT BUSY 002E 6D3B 0068 DØN E? 002F 49 3B 0069 **S- 1** 0070 0030 F601 JMP NØ RTN ØTT YES 0031 F705 0071 0072 沭 * CØMMAND ERRØR EXIT 0073 0074 * 0032 0800 ERR 0075 ENT LAP PRINT ARRØW 0076 0033 C6DF :DF 0034 FE03 JST ØTT 0077 0078 0035 FF34 JST *CMND RESTART COMMAND 0079 * *CARRIAGE-RETURN, LINE FEED 005 0 * 0081 005 2 0036 0800 CRLF ENT 0037 C68 D :8D LAP CR 0083 0054 0033 FEOC J ST ØTT 0039 C 68 A LAP :8A LF 008 5 003 6 003A FEOE JST ØTT 003B F705 CPL F 0057 RTN0033 * *ØUTPUT TEXT FRØM BUFFER 0089 009.0 * 0030 0300 ØTL 0091 ENT 003D 8A0F ADD MAKE CØMPARE IN STRUCTIØN 0092 CAI 003E 9A06 STA ØT2 CC 9CD &SAVE IT 0094 003F 9A09 STA ØT3 0040 E704 009 5 L DX *ØTL GET TEXT PØINTER SET RETURN ADDRESS 0041 IMS ØTL 009 6 DE05 0097 0042 B400 9T1 L DA @O GET WØRD RRA 8 JST ØTT 0093 0043 11D7 8 PRINT FÍRST BYTE 0099 0044 FE13 0100 0045 C000 ØT2 CAI 0 LAST ØN E 👘 0046 F70A ØTL 0101 RTN YES, RETURN RL A 0102 0047 1157 8 PRINT SECOND BYTE ØTT 0103 0048 FEIC J ST C000 ØT3 0049 CAI 0 0104 LAST ØNE? RTN 0105 004A F70E ØTL YES RETURN 0128 0106 004B IXR BUMP PØINTER

ØT1 004C F60A JMP LØØP 0107 0108 0C4D C000 CAI CAI 0 0109 * ***ØUTFUT FLØATING PØINT NUMBER** 0110 0111 * 0112 0C4E 08 0 0 ØFPA ENT 004F GET PØINTER E701 LDX *ØFPA 0113 ØFPA SET RETURN ADDRESS 0114 0050 DE02 IMS 0115 0051 EAOI STX ØPT SAVE PØINTER 0116 0052 FB0E JST *FAS CØNVERT TØ ASCII 0000 ØPT 0053 0117 DATA O 0118 0054 0059 BUF DATA 0119 0055 0110 SET END FLAG ZAR JST ØTL 0056 FÉIA PRINT NUMBER 0120 0121 0057 0059 DATA BUF 0122 0058 F70A RTNØFPA 0000 BUF RES 0123 0059 8,0 0124 0061 FAS REF 0125 * 0126 * ØDEC ØUTPUT DECIMAL (+/-DDDDDD) 0127 ** ØDEC CØNVERTS THE BINARY VALUE IN THE 0128 *A REG AND PRINTS IT AS A SIGNED 5 * DIGIT DECIMAL NUMBER ON THE TELETYPE. 0129 0130 * AR AND OV ARE DESTROYED. 0131 * 0132 * LDA VAL AR = VALUE * SVM MUST BE IN WORD MODE 0133 0134 * JST *ØDEC CALL RØUTINE 0135 * *** RETURN XR UNCHANGED 0062 0800 ØDEC ENT 0136 0063 EA19 STX SAVE XR 0137 S 141 0138 0064 C4AB LXP 0139 0065 3032 JAP 5+3 0140 0066 0310 NAR AXI 2 STA V MAKE VALUE + MAKE SIGN -0141 0067 C202 SAVE VALUE 0142 0068 9A15 0143 0069 0030 TX A 0144 006A FE3E 0145 006B B215 ØTT PRINT SIGN J ST STRT L DA STA 0146 006C 9A13 PTR INITIALIZE TEL PTR 0147 006D C705 L AM 5 006E 9A10 0148 Т SET FØR 5 DIGITS STA 0149 LDA V 006F B20E Ø1 LXP :AF SUB *PTR 0150 0070 C4AF ZERØ TØ -1 0151 0071 930E SUB 0152 0072 0128 IXR 0153 0073 30C2 JAP s- 2 *PTR 0154 0074 8B0B ADD 0155 0075 9A08 v STA 0156 0076 0030 TXA PRINT DIGIT 0157 0077 FE4B JST ØTT PTR 0158 0078 DA07 IMS 0159 0079 DA05 IMS T

0160	007A	F60B		JMP	Ø 1		
0161	007B	E201		L DX	S	RESTØ	RE XR
0162	0070	F71A		RTN	ØDEC	RETUR	N .
0163	007D	08 0 0	S	HL T		TEMP	FØR XR
0164	007E	08 00	V	HL T	Sec. 5	VALUE	
0165	007F	08 0 0	Т	HL T		CØUNT	·
0166	003.0	08:00	PTR	HL T		PØINT	ER
0167	0031	0082	STRT	DATA	TEL	TABL E	ADDR
0163	0052	2710	TBL	DATA	10000,	1000, 100	
-	0083	03E8			•	•	
	0084	0064				n de la composición d La composición de la c	
0169	0 08 5	A000		DATA	10-1		
÷	0086	1000		· · · · · ·	r han taga taga		1. S
0170		•	tan an a	EN D	•		
0000	ERRORS			17 J. 1			

•

25 - 1 - 1 1 •

	0001 0002	· · · . ·	· · ·		n am Ex tr	READ, PI IKB, ØT	un Ch, Clear T, Bipt, Øtl, Crlf, Ier, Err
	0003	0000			REL	0	
	0004	0000	03 0 0	READ	EN T		
	0005	0001	F900 0000	· · ·	JST	CRL F	
•	0006	0002	F9 00	ман — сол 1920 — солот •	JST	IER	
	0007	0003	0000		CAT	101	
	0007	0000	2003		IMP	BEZE	
		0004	1200		CAT	161	
	0009	0005	5001		IMP	DT Cat	
	0010	0000	F204		167	11221	
	UUII	0007	0000		031		
	0012	0008	E21F	REZE	LDX	IBC	
	0013	0009	B21F	· · · .	L DA	Z CTO	
	0014	000A	F204		JMP	RDL P	
	0015	000B	621C	RESN	L DA	IBC	
	0016	0000	SAIE		ADD	5N 0	
	0017	000D	0048		TAX		
	0018	000E	B21B		L DA	ZCTI	
	0019	000F	9A1C	RDLP	STA	Cin T	
	0020	0010	C68 A		LAP	:8A	
	0021	0011	F9 00		JST	ØTT	
	0021		0000				
	nnoo	0012	F9000		JST	BIPT	
	0022	0012	2000		0.0.		
	0002	0013	0.17.1		.1 47	s – 1	SKIP LEADER
	0023	0010	E000	to t	107	a TT	
	0024	0014	1900	nı	0.54	0.1	
	0005	0015	5000		167	די די	PEAD TAPE
	0025	0015	1900		051	DIFI	NERD IN L
	0004	0014	0000		CAT	• 0 0	
	0026	0016	0092		UAL	172	END OF LADES
	0027	0017	F201		JMP	R2	I £5
	0028	0018	F604		JWP	RI	
	0029	0019	F900	R2	JST	BIPT	READ TAPE
			0000				
	0030	001A	COFF		CAI	: FF	FILE MARK
	0031	001B	F201		JMP	R3	YES
	0032	0010	F603		JMP	R2	NØ
	0033	001D	F9 00 0000	R3	JST	BIPT	
	0034	001E	1357		LLA	3	
	0035	0015	9 A O E		STA	TEMP	
	0036	0020	F9 00		JST	BIPT	
	0000	0000	0000		000		
	00.27	0021	20000 2000		TØR	TEMP	
	0037	0021	8 C D O		400	60 60	•
	0030	0022	0000		200 2010	60	· .
	0039	0023	7600		2124 TAP 19	e'n	
	0040	0024	0150		LAR	CAL	
	0041	0025	DAU6		IMS	- UN I	
	0042	0026	r 609	an a	JWP	· KU	
	0043	0027	F727		RTN	read	

		•			÷		1
0044	0028		IBC	REF			
0045	0029	F010	ZCTO	DATA	-4030		
0046	AS00	FF01	ZCTI	DATA	-255		
0047	002B	OEF1	SN O	DATA	33 2 5		
0045	0020	0000	CNT	DATA	0		
0049	002D	0000	PN T	DATA	0		1
0050	002E	0000	TEMP	DATA	Û		
0051			*				
0052			* PUNCH	ł		•	÷.,
0053	002F	03 00	PUNCH	ENT			
0054	0030	F900		JST	CRL F		
		0000			•		
0055	0031	F9 00		921	I ER		
0054	0000	0000		CAT	101		
0056	0032	COBO			DNTE		
0057	0033	r203		JMF CAL	FN4 E		
0055	0034	5007			DAI CM		
0039	0035	F000		TGL	222		
0000	0030	0000		U ~).			•
0061	0037	560F	PNZ E	L DX	TBC		
0062	0037	BAOF	1 19 12 12		ZGTO		
0062	0030	F204		JMP	PAL P		
0060	0034	B612	Pol SN	LDA	IBC		
0065	0038	8 E 1 O		ADD	SNO		
0066	0030	0043		TAX			
0067	003D	B613		L DA	Z CT 1		
0068	003E	9E12	PNL P	STA	CN T		
0069	003F	FAOD		JST	L EAD		
0070	0040	F9 0 0	PI	JST	IKB	ECHØ LABE	L
		0000					
0071	0041	C 09 2		CAI	:92	CTRL/TAPE	
0072	0042	F201		JIAP	P2	YES	
0073	0043	F603		JMP	P1	NØ	
0074	0044	C6FF	P2	LAP	:FF	PUN CH FIL	E MARK
0075	0045	F900		JST	ØTT		
		0000					
0076	0046	B400	P3	L DA	e0	PUNCH BIT	`S
0077	0047	FAOD		JST	ØTW		
0078	0043	0123		IXR			
0079	0049	DEID		IMS	CNT		
008.0	004A	F604		JMP	P3		
0031	004(B	FA01		J 51 500	LEAD		
0082	0040	FYID	DINGU	RTN	PUNCA		
0083	0045	07.00	* PUN CH	5" Ør. TVT -	l eader		
0084	0040	0500	LEAD	ENI	E 0		
003 5	0045	0732		드 프 사 가 나카네			•
	0041	9622		DIH ZAP	PN 1	4	
0027	0050	E0 00	1.0	<u>с на</u> 15т	a ጥጥ	•	
0058	0021	0000 1200	La C.	031	50 I I		
ഫരറ	0050	0000		тмс	DAT 7		
0009	0052	5400 5400		THE D	10		

0054 F707 RTN L'EAD 0091 0092 * 03 0 0 ØTW EN T 009.3 -0055 0056 11D7 RRA ' 8 009.4 ØTT 009 5 **J**ST 0057 F900 0000 8: RL A 0096 0058 1157 JST ØTT 0097 0059 F900 0000 RTN ØTW 0098 005A F705 *CLEAR PRØGRAM 0099 08 0 0 CL EAR 0100 005B EN T J ST CRL F 0101 005C F900 0000 0102 005D F900 JST I ER 0000 101 0103 005E C0B0 CAI 005F JMP CLZE 0104 F203 'G' 0105 0060 CCC7 CAI CL SN 0106 0061 F204 -JMP ERR 0062 **J**ST 0107 F9 00 0000 0103 0063 E63B CLZ E LDX IBC 0109 LDA ZCTO 0064 B63B CLL P 0110 0065 F204 JMP 0111 0066 B63E IBC CL SN LDA 0112 0067 8 E3C ADD SN 0 0068 TAX 0113 0048 ZCTI L DA 0114 0069 B63F 0115 006A 9 E 3 E CLL P STA CN T 0116 0C6B 0110 ZAR 0117 006C 9000 CR STA €O 0118 006D 0128 IXR 0119 006E CN T **DE42** IMS 0120 006F F603 JMP CR 0121 0070 CL EAR F715 RTN 0122 EN D 0000 ERRØRS

	0001				MAM	TD.OT	
	0001	0000			REI.	0	
	0002	0000	08.00	TD.IT	FMT	•	
	0004	0001	C70F		LAM	15	
	0005	0002	9 ABB	· · · · · · · · · · · · · · · · · · ·	STA	NRØV	
	0006	0003	B2D0		LDA	IBC	
	0007	0004	9 ABA	· .	STA	IB	
	00.08	0005	0108		ZXR		
	0009	0006	FBCF	· · · ·	JST	* CRL F	ing ang tang tang kang sang sang sang sang sang sang sang s
	0010	0007	FBD1	•	JST	*IER	
	0011	0008	COBO		CAI	• 0 •	전 가장은 사람은 가슴을 감독하는 것을 통하는 것이 같다.
	0012	0009	F221	· · · ·	JMP	FZ RØ	
	0013	000A	COB1		CAI	11	
	0014	000B	F222		JMP	FØN E	
	0015	000C	COB2	t singu s Singu singu sing	CAI	121	
	0016	000D	F222		JMP	FTWØ	
	.0017	000E	COB3		CAI	131	a a substantia da substanti Anti-
	0018	000F	F222		JMP	FTHRE	
	0019	0010	COB4		CAI	4	
	0020	0011	F222		JMP	FFØUR	
	0021	0012	COB5		CAI	151	
	0022	0013	F222		JMP	FFIVE	
	0023	0014	C036		CAI	*6*	
	0024	0015	F222	· · · ·	JMP	FSIX	
	0025	0016	COB7		CAI	171	
	0026	0017	F222		JMP	FSEVE	
	0027	0018	COB8		CAI	181	
	0028	0019	F222		JMP	FEI GH	
	0029	001A	COB9		CAI	- 19 T	
	0030	0018	F222		JMP	FNINE	
	0031	0010	0001		0AT	A. Dr. Dat	
	0032	0010	F222		0ML CVI	F 1 E44	
	0033	0015				 ਸਿਜ਼~ਸ	하지 않는 것 이 가지 않는 것을 많이 많을까요?
	0034	0011	r 222		CAL	1 C 1	
	0035	0020	5000		IMP	ភ្លាពិក្រ	
	0030	0021	1666 COCA	· .	CAT	11472	
	0037	0022	F222	· · ·	IMP	FTHD	이 이 제가 있다. 이 가지가 한 것이 있는 것이 가지? 가지?
	0039	0020	C0C5	n na se	CAI	1 E1	
	0040	0025	F222	• •	.IMP	FFRIN	가 있는 법에 있는 것이 있는 것은 부분에 있는 것이 있는 것이 있다. 같은 것은 것이 있는 것은 것은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다.
	0041	0026	C0C6		CAI	171	
	0042	0027	F222	· · ·	JMP	FFVTN	가지 않는 것 같은 것 같
	0043	0028	C0C7		CAI	•G •	
	0044	0029	F222		JMP	F SX TN	
	0045	002A	FBAF		JST	*ERR	사람이 이 그 수요 있는 것은 것은 것은 것이 있는 것이 가지 않는 것이 가지 않는 것이 있는 것이 가지 않는 것이 있다. 같이 같은 것이 같은 것은 것이 같은 것이 같이
, te	0046	002B	0110	FZ RØ	ZAR	an an an an Anna an Anna. An an Anna an Anna an Anna	
	0047	0020	9 A9 C		STA	CALL	
	00,48	002D	F22A	an an an Anna Anna Anna Anna Anna Anna A	JMP	FØØP1	사는 가지 않는 것이 있는 것이 가지 않는 것이 있는 것이 있는 것이 있는 것이 있다. 같은 사람은 방법에 있는 것이 있는 것이 같은 것이 있는 것
	0049	002E	C601	Fene	LAP	1	
	0050	002F	FELE		JMP	FSTØ	
	0051	0030	C602	FTWØ	LAP	2	에 가지 않는 것이 가지 않는 것이 가지 않는 것이 있는 것이 있는 것이 있다. 이 같은 것이 같은 것이 있는 것이 있 같은 것이 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 없는 것
	0052	0031	F210		JMP	FSTØ	
	0053	0032	C603	FTHRE	LAP	3	이가 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이다. 같은 것이 같은 것이다.

• •, ^{*}

					:
0054	0033	F21A		JMP	FSTØ
0055	0034	C604	FFØUR	LAP	4 [·]
0056	0035	F218		JM₽	FSTØ
0057	0036	C605	FFI VE	LAP	5
0058	0037	F216		JAP	FSTØ
0059	0038	C606	FSIX	LAP	6
0060	0039	F214		JMP	FSTØ
0061	003A	C607	FSEVE	LAP	. 7
0062	003B	F212		JMP	FSTØ
0063	0030	C608	FEIGH	LAP	8
0064	003D	F210		JMP	FSTØ
0065	003E	C609	FNINE	LAP	9
0066	003F	F20E		JИР	FSTØ
0067	0040	C60A	FTEN	LAP	10
0063	0041	F20C		JMP	FSTØ
0069	0042	:60B	FELE.	LAP	Γ1
0070	0043	F20A	·	JMP	FSTØ
0071	0044	C60C	FTWVE	LAP	12
0072	0045	F208		JMP	FSTØ
0073	0046	C60D	FTH D	l ap	13
0074	0047	F206		JMP	FSTØ
0075	0048	C60E	FFRTN	LAP	14
0076	0049	F204		JM₽	FSTØ
0077	004A	C60F	FFVTN	LAP	15
0078	004B	F202		JMP	FSTØ
0079	004C	C610	F SX TN	LAP	16
008.0	004D	F200		JMP	FSTØ
003 1	004E	9A7A	FSTØ	STA	CALL
0082	004F	0310		NAR	
008 3	0050	9A79		STA	FRØW
008 4	0051	B26D		L DA	IB
008 5	0052	DA77	FRØNØ	IMS	FRØV
008 6	0053	F201	· · · ·	JMP	\$+2
0037	0054	F202		JMP	\$+3
0088	0055	8A75		ADD	H255
0089	0056	F604		JMP	FRØNØ
009.0	0057	9A67	··· .	STA	IB
009 1	0058	B270	FØØPI	LDA	CALL
009.2	0059	2101	· · ·	JAZ	5+2
0093	005A	F204		JMP	\$+5
0094	005B	B26C		LPA	ZCT
009 5	0050	0150		IAR	
0096	0050	9A63		STA	CNT
0097	005E	F203		JMP	5+4
0098	005F	C7FF	•	LAM	255
0099	0060	0150		LAR	
0100	0061	9 A5F		STA	UNT
0101	0062	B25C		LDA	IB
0102	0063	9A5E		STA	1PB1
0103	0064	B35D		LDA	*IFBI
0104	0065	9 A5E		STA	MAX
0105	0066	DA5B	LØØP2	IMS	IFBI
0106	0067	B35A		LDA	*IPB1

				•	•	
0107	0068	D25B		CM S	MAX	
0108	0069	F201		JMP	\$+2 [`]	
0109	006A	9 A 59		STA	MAX	
0110	006B	DA55		IMS	CNT	
0111	006C	F606		JWB	LØØP2	
0112	006D	0350		ARP		
0113	006E	9A56		STA	SCALE	
0114	006F	9A56		STA	ROUND	
0115	0070	B256		LDA	HSU	
0116	0071	D252		UMS	MAA C+ 3	
0117	0072	F202		UM P	C TG C D D	
0110	0073	F200		TMD	LOOT	
0179	0074	1205 29/5			M AX	
0120	0075	0108		ZXR	*****	
0121	0070	924F		SUB	H50	
0123	0078	0128		IXR	••	
0124	0079	3102		JAG	5- 2	
0125	007A	EA4A		STX	SCALE	
0126	007B	1200		RØV		
0127	007C	11A8		RRX	1	
0128	007D	3201		JØR	\$÷2	
0129	007E	0128		IXR		
0130	007F	EA46		STX	rø un d	
0131	008.0	FB55	LØØP	JST	* CRL F	
0132	0081	FB54		JST	* CRL F	
0133	0082	C6BD		LAP	•≡• -हिंद्राणी	
0134	0083	FB54		121 DATA	*015	
0135	0084				55	
0130	0005	LOAU FREO		TST.	£«ፕፕ	
0138	0.000	1823D		I.DA	SCALE	
0130	0038	FRAC		JST	*ØDEC	
0140	0089	C601		LAP	1	
0141	008 A	9A41		STA	RØNØ	
0142	008 B	FB4A		JST	* CRL F	
0143	0 08 C	FB49.		JST	* CRL F	
0144	0 08 D	B23E		L DA	RØNØ	
0145	008 E	FB48		JST	*ØTT	
0146	003 F	C7FF		L AM	255	
0147	0 09 0	9 A 2 F		STA	N CØL	
0148	0091	B22D		LDA	IB	
0149	0092	9A30		STA	IPB2	
0150	0093	FB42	LOOPI	JST	* UHL F	
0151	0094	BJZE			*1482	
0152	0095	r Bar Cean		1 4 5 1	*0050	
0153	0090	CONO		L ST	ፍልሞጥ	
0104	0097	L C C L C	entre en statue. N	LAP	101	
0156	0090 0090	LESU		TST	£øŤT	
0157	0099 009 A	B328		LDA	*IPB2	
0158	009B	2192		JAL	CLØSE	
0159	009 C	0108	· .·	ZXR		
-			• •			

							·.	· ·	· · · .		
,											
0160	0 09 D	9227		SUB	SCAL E	. 197	1 B.T			1997) 1997 - 1997	
0161	009 E	0128		IXR		· · ·					
0162	009 F	3102		JAG	s-2						1
0163	00A0	8A24		ADD	SCALE						
0164	00A1	EA00		DXR							
0165	00A2	D223		CI4 S	RØUND		- 1 - E	an a			
0166	00A3	F202		JMP	5+3						
0167	00A4	0000		NØP							e i e e e e e e e e e e e e e e e e e e
0168	00A5	0128		IXR							
0169	00A6	0030		TXA							
0170	00A7	2186		JAL	CLUSE						
0171	00A5	C6AA		LAP	*						· . ·
0172	00A9	0503		NAR	ONT OF						
0173	AAUU	EA16		517	UN I	14 C - 14		1.11			utet (
0174	OOAB	FB5B		151	*011	1997 - 1997 - 1997 1997 - 1997			· · · ·		
0175	DAUU	DAT4		1115							
0176	DOAD	F602		JAL	272	·					•
0177	UUAL	DAT4	CLØSE	1115	TLABS				ter en el el		
0178	OODO			NUP	N CON					a patra j	
0179	00001	DAOT		THD	I G G D 1				•		terre de la companya
010 0	0051	FDOD		1971 1977	A LDAL F	31 . t		a de la dela de	u tery	a da ser e	
010 1	0002	1023 0015		1 0 0						$= -\frac{\partial f_{1}^{(1)}}{\partial t}$	
0102	0000	0101				÷ 1.	•				
0103	0054	2101 5004		IMD	745 745						
0104	0000	CARR			255	e tak je		Hora de Hara			
018.6	0080	2007 2007			TB	1.			• •		
0187	0027	9000		STA	TR	1.11.14	· · ·				
0188	0089	DA12	· .	IMS	RØNØ						-
0189	DOBA	DA03		IMS	NRØV						
019 0	OOBB	F628		JMP	LØØPI			· · · · ·			
0191	OOBC	FB19	FSH	JST	* CRL F						
0192	OOBD	F7BD		RTN	FFLØT						
0193	OOBE	0000	NRØW	DATA	0						
0194	OOBF	0000	IB	DATA	0		6.200				$(1,1,2,1) \in \mathbb{R}^{d \times d}$
0195	0000	0000	NCØL	DATA	D		· · · ·				
0196	0001	0000	CNT	DATA	0						t selte i state. Na state ta state.
0197	0002	0000	IPBi	DATA	0	a 1943 -					
0198	0003	0000	IPB2	DATA	0						
0199	0004	0000	MAX	DATA	0		and the s	ω t. /	n i stal (A		
0200	0005	0000	SCALE	DATA	0						
0201	0006	0000	RØ UN D	DATA	0		et a spira.		an an an an Arraigh. An an Arraightean Arraightean Arraightean Arraightean Arraightean Arraightean Arraightean Arraightean Arraighte		an a
0202	0007	0032	H50	DATA	50						
0203	0008	FIOF	ZCT	DATA	- 38 25		en an ar ea ar an ar			i de service	
0204	0009	0000	CALL	DATA	0						
0205	ODCA	0000	FRØV	DATA	0						
0206	OUCB	OUFF	H255	DATA	255					4	
02,07	0000	0000	KONO	DATA		TADDO	17 - 1 17 - 1				41 (1993) - 1993 - 1998 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997
0205	0000	D303	51	I EA T	- Эц <i>н</i> ь ь	THOIN				n in the second	
an a' shekara Tarihin Tarihin	OUUE	0100			1997년 1997년 1993년 1997년 - 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1997년 1						
an a	0002	CACU		•							د. د میلوند و میداد در ا
	0000	0001									
	UUUI	บอย4									

	00D2	CFL2		
	00D3	BDA0		
0209	00D4	•	IBC	REF
0210	00D5		ØDEC	REF
0211	0006	÷	CRL F	REF
0212	00D7	<u>ч</u>	ØTT	REF
0213	0003		ØTL	REF
0214	0009		I ER	REF
0215	00DA		ERR	REF
0216				EN D
0000	ERRØRS			

1

. مردد و د

وند بغر

					1	•
0001				NI ALI	רסת	
0001				N FLY NI ASS		
0002				N AM		•
0003				NAM	DIZD	
0004				EXTR	RTDA	
0005				EXTR	RTTR	
0006	0000			REL	0	
0007	0000	05 0 0	CRT	ENT	2	
0008	0001	C70F		LAM	15	
00.09	0002	9900		STA	n rø v	
		0112				
0010	0003	49 64		SEN	24,4	
0011	0004	F601		JMP	5-1	
0012	0005	/007		SEI.	24,7	
0012	0000	0110		ZAR		
0013	0000	0000		STA	GEESET	
0014	0007	0112		9150		
0015	0000	0110		TAP	ĩ	
0015	0000	0001		STA	• ጥଇነ	
0010	0009	0116		JIM	****	
0017	0000	3106		.1.051	S+ 7	
0017		5100		LDA	AD16	
0010	000B	0104		LDA	ADIO	
00.10	0000			מתא	TRC	
0019	0000	0100		HDD	TDO	
0000	0000	0100		ሮጥለ	τœ	
0020	0000	9900	÷	JIM	- - - - - - - - - - -	
0001	0005	0114		ZAR		
0021	2000			STA	CALL.	
0022	0001	0117		0111	0144	
0023	noto	F25F		IMP	MXMT	
0023	0010	1201		L.DA	TRC	
0024 S	0011	0133				
0025	0010	0100	i i i	STA	TB	
0020	00.2	0114	÷ .			
0026	0013	0103		ZXB		· · · ·
0020	0010	5100	i di seri	TST	न । जिन्न क	
0021	0014	8138		021		
00.98	0015	5000		TST	*IFR	
0020	0010	8134		0.01		
0000	0016	0900		CAT	101	
0027	0010	F001		IMP	7 580	
0030	0017	7221 7001		CAT	τ j τ	
0031	0010	2000		IMP	វរស៍ គ	
00022	0015	2231 2000		CAT	101	
0033	0014				TUA	
0034	0018	1222		CAT	101	철학자 철학자 방법 위험을 가지 않는 것이 있는 것이 있는 것이 있는 것이 없다.
0035	0010	0000			U Tuðee	
0030		COD/		CVIL .	1/1	Environmental de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la const de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de la construcción de
0037	0015	UU54 T000	n an	UHL	en na	
0030	0001F	I ZZZ		CAT	IE1	별상에 가장 같은 것은 것이 있는 것은 것이다. 전체에 있는 것이 있는 것이다. 가지 않는 것이다. 같은 것은 것은 것이 같은 것이 있는 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이다. 것이 있는 것 같은 것이 같은 것이 같은 것이 있는 것이 없는 것
0039	0020	5000		UHL	5 17 17 17 17 17 17 17 17 17 17 17 17 17 1	
0040	0021	1222		UMP	LTAT.	
0041	0022	LOR0	alar dari da. Geografia		0' 87'9'	
0042	0023	1555	n tana 2007 dan dari Kabupatèn dari kabupatèn dari kabupatèn dari kabupatèn dari kabupatèn dari kabupatèn dari kabupatèn dari kabupat	9 M H	274	

ġ.

T95

					-	
0043	0024	C0B7		CAI	171	
0044	0025	F222		JMP	SEVEN	
0045	0026	COBS		CAI	181	
0046	0027	F222		JMP	EIGHT	
0040	0028	C089		GAI	191	
00/18	0020	F222		IMP	NINE	
0040	0022	COCI		CAT	101	
0049		20001		.IMP	Tim	
0051	0020	r0r9		CAT	121	
0053	0020	5000 5000		TMD	្រីក	
0052	0020	r 666		CAT	101	
0055	0025	8000		IMD	។ បើបាត	
0054	0021	<i>F 666</i>		CAT	1004	
0055	0030	5004 5000		UMD	ምህ ከ	
0055	0031	rzzz	•	CAT	160	
0057	0032	5000		UHI MD	- <u>E</u> -	
0058	0033	F222		OMP	P FLIN	
0059	0034	5055		UAL	E TTTL	
0060	0035	1222		JMF DAT	E V IN	
0061	0036			0AL TMD	The second	
0062	0037	F222		JMP	Sã IN	
0063	0038	FBFC		JST	* ERR	
0064	0039	0110	ZERØ	ZAR		
0065	003A	9 ADC		STA	CALL	• •
0066	003B	F22E		JMP	LØØPI	
0067	0030	C601	ØN E	LAP	1	
0068	003D	F222		JMP	STØRE	
0069	003E	C602	TWØ	LAP	2	
0070	003F	F220		JMP	STØRE	
0071	0040	C603	THREE	LAP	3	and the second
0072	0041	F21E		JMP	STØRE	
0073	0042	C604	FØUR	LAP	4	
0074	0043	F21C		JMP	STØRE	
0075	0044	C605	FIVE	LAP	5	terration and the second second second second second
0076	0045	F21A		JMP	STØRE	
0077	0046	C606	SIX	LAP	6.	and the second
0078	0047	F218		JMP	STØRE	
0079	0048	C607	SEVEN	LAP	7	
008 0	0049	F216		JMP	STØRE	
008 1	004A	C608	EIGHT	L AP	ឌ	
003 2	004B	F214		JMP	STØRE	and the second
008 3	004C	C609	NINE	LAP	9	
0084	004D	F212	•	JMP	STØRE	
003 5	004E	C60A	TEN	LAP	10	
008 6	004F	F210		JMP	STØRE	
0087	0050	C60B	EL E	LAP	11	n an
0088	0051	F20E	- •	JMP	STØRE	and a second
0089	0052	C60C	TWVE	LAP	12	
009.0	0053	F20C		JMP	STØRE	and the second
009 1	0054	C60D	THD	LAP	13	
0092	0055	F20A		JMP	STØRE	
0093	0056	CADE	FRTN	LAP	14	an an ann an tha ann an
0094	0057	F202		JMP	• 5 7 0 8 5	
	0051	ሮራስፑ	TUTM	T. AP	15	
	0000	0001	7 0 110	46°2. Rod	o.~	

STØRE JM₽ 0059 F206 009 6 LAP 16 0097 005A C610 SX'TN JMP STØRE 0098 005B F204 0108 DISD ZXR 0099 005C STX TR1 0100 005D EABS LIX IBC 0101 005E E2D4 STX İΒ EAB4 0102 005F CALL 9 AB6 STØRE STA 0103 0060 0104 0061 0310 N AR RØWVA 0105 9AB5 STA 0062 LDA IΒ 0106 0063 **B2B0** RØVVA IMS 0107 0064 DAB3 RØVNØ JMP 5+2 0108 0065 F201 F202 JMP S+ 3 0109 0066 H255 ADD 0110 0067 8 ABB RØWNØ $\operatorname{JM} P$ 0111 0068 F604 STA IΒ 0112 0069 9 A A A 0113 B2AC LØØP1 L DA CALL 006A \$+2 0114 006B 2101 JAZ JMP \$+4 0115 006C F203 Z CT L DA 0116 006D B2AC CN T 0117 9 AAC STA 006E $\mathbf{J}\mathbf{M}\mathbf{P}$ \$+3 0118 006F F202 LAM 255 0119 0070 C7FF MXMI STA 0120 0071 9 A A 9 CNT LDA IΒ 0121 007Ż B2A1 STA IBP1 012Ż 0073 9 A A S 0123 0110 Z AR 0074 0124 0075 9 À A 8 STA MIN STA MAX 9 A A 8 0125 0076 *IBP1 0126 B3A4 L00P2 LDA 0077 MAX CM S 0127 0078 D2A6 JMP5+3 0128 0079 F202 STA MAX 0129 007A 9 <u>A</u>A4 JMP S+4 0130 007B F203 CM S MIN 0131 0070 D2A1 0132 007D 9 A A O STA MIN NØP 0133 007E 0000 IMS IBPI 0134 DA9 C 007F CNT 0135 0 05 0 DA9 A IMS LØØP2 0136 F60A JMP 0031 0137 0082 0350 ARP 0138 SCAL E STA 0033 9 A9 C 0139 0084 9 A9 C STA RØ UN D 0140 0085 B299 LDA MAX SUB MIN 0141 0086 9297 MAX 0142 STA 0057 9 A9 7 LDA TR1 0143 0088 B28 D 0144 0089 2106 JAZ SCA 0145 CALL LDA 008A B28 C 0146 008 B 2101 J AZ 5+2 JMP 5+4 0147 008 C F203 H100 008 D L DA 0148 B294

0149	008 E	9 A 9 8		STA	TØTDØT
0150	008 F	F202		JMP	\$+3 [.]
0151	0090	B293	SCA	l da	H200
0152	0091	9 A9 5		STA	TØT DØT
0153	0 09 2	B294		l da	TØT DØT
0154	0093	D28 B		CM S	M AX
0155	0094	F202		JMP	5+3
0156	0095	F20C		JMP	LØØP
0157	0096	F20B		JMP	LØØP
0158	0097	B287		l da	MAX
0159	0098	0103		ZXR	
0160	0099	9 28 D		SUB	TØTDØT
0161	0 09 A	0128		IXR	
0162	009B	31C2		JAG	s- 2
0163	0 09 C	eas 3		STX	SCAL E
0164	009 D	1200		RØV	
0165	009 E	11A3		REX	1
0166	009 F	3201		JØR	\$+2
0167	00A0	0128		IXR	
0163	00A1	EA7F		STX	RØ UN D
0169	00A2	B273.	LØØP	l da	TRI
0170	00A3	210B		JAZ	MI
0171	00A4	FB9 3		JST	* CRL F
0172	00A5	FB9 2		JST	* CRL F
0173	00A6	C6BD		LAP	*≟ *
0174	00A7	FBS F		JST	≈øtl
0175	8A00	0120		DATA	SF
0176	00A9	C6A0		LAP	1 1
0177	00AA	FBS B		JST	¥ØTT
0173	00AB	B274		L DA	SCALE
0179	OOAC	FB8 C		JST	∗ØDEC
018 0	DADO	FBSA		JST	* CRL F
013 1	OOAE	FB39		JST	* CPL F
0162	OOAF	B26E	MI	LDA	MIN
018 3	0080	0310		NAR	
018 4	0031	0108		ZXR	
018 5	00B2	926D		SUB	SCALE
0186	0083	0128		IÄR	
0187	0084	3102		JAG	5-2
0188	0085	8 A6A		ADD	SUAL
0189	00B6	00A8		DX R	
0190	0057	D269		CMS	RUUND
0191	OOES	F202		JHP	ઝ+ ઉ
0192	0089	0000		NGP	•
0193	OOBA	0128		IXH	N7 1
0194	OOBB	EAGU		SIX	A I
0195	DOBC	8268	10024	LDA	A I
0196	OOBD	9 A 6 B		STA	A
0197	OOBE	UYFF		LAM	255
0198	OUBF	9 A59		5fA	N 60L
0123	0000	9523		L, DA	.1 <i>000</i> 19
0200	1000	AVPR		DIA DIA	IBFS
0201	0002	8250	100P3	ц ра	ØFF SET

					•
0202	0003	8A65		ADD	x
0203	0004	9A66		STA	TØTØFF
0204	0005	B357		L DA	*IBP2
0205	0006	1200		RØV	
0206	0007	1150		FL A	1
0207	0008	2207		JØS	N EG
0208	0000	1100		BBA	ŀ
0200	BOCA	ning		ZXB	
0209	000A	0200 0254		SIIB	SCALE
0210	0000	0100		IVP	
0010	0000	2100		.106	6- 9
0012	0000	2 AE1		ADD	5° AI F
0210	0005	EDOC			SCHLL CL7
0214	0005	1400	51 E.C	SGN	37 1
0215	0000	1400	NEG	50 V	•
0216	0001	1100		RKA	₽
0217	0005	0108		ZAR	and n
0218	0003	8A4C		ADD	SCAL E
0219	00D4	00A3		DXR	
0220	00D5	2002		JAM	S- 2
0221	00D6	9249		SUB	SCAL E
0222	00D7	00A8		DX R	
0223	0003	D248		CM S	RØ UN D
0224	00D9	F202		JMP	s+ 3
0225	OODA	0000		NØP	
0226	OODB	0128		IXR	
0227	OODC	0030		TXA	
02.28	00DD	9A4C		STA	DØ TN Ø
0229	OODE	E24C		L DX	tøtøff
0230	OODF	49 C 4	DØT	SEN	24,4
0231	00E0	F601		JMP	S-1
0232	00E1	49 C 2		SEN	24,2
0233	00E2	F601		JMP	S-1
0234	00E3	6EC2		ØTX	24,2
0235	00E4	B231		L DA	TRI
0236	0025	2108		J AZ	\$+9
0237	0056	8230		L DA	CALL.
0239	0027	2101		.1 47	5+2
0239	0058	F205		.IMP	S+ 6
0200	00100	8240			DATNA
0240	0050	8040			TATAFF
0242	0078	00440		TAX	
0242	0020	6200		7 TX	94.9
0240	0050	5005			DANE
0244	0055	1200		UMP	DANE
0645	0055	0100			DONE
0240	0027	2109		J H44	DONE
0247	0010	0104		JAG	PUS
0240		OUAS		DX H	
0249	0012	0150		T A T	DRIMAR
0250	0013	9A36		STA	NAL RU
0251	UUF4	F615		JMP	1001
0252	00F5	0128	PØS	IXR	
0253	00F6	0000		DAR	•
0254	00F7	9A32		STA	DØ TN Ø

0255	0053	F619		JMP	DØT
0256	00F9	B22F	DØN E	LDA	х
0257	OOFA	8 A 2 A		ADD	H256
0253	OOFB	9 A 2 D		STA	х
0259	OOFC	DA20		IMS	I BP2
0260	OOFD	DAIB		IMS	n cøl
0261	OOFE	F63C		JMP	LØØP3
0262	OOFF	B216		l da	TR1
0263	0100	3104		J AN	S+ 5
0264	0101	B215		L DA	CALL
0265	oioż	2101		JAZ	5+2
0266	0103	F100 0000		JMP	RTDA
0267	0104	F100		JMP	RTTR
23.00	0105	8211		L DA	CALL
02.00	0105	2101		JAZ	\$+2
0202	0100	F203		JMP	FIN
0270	0108	C60A		LAP	10
0272	0109	8 A 09		ADD	ØFFSET
0273	010A	9 A 03		STA	ØFFSET
0274	010B	B217		LDA	H255
0275	DICC	8 A07		ADD	IB
0276	010D	9 A 06		STA	IB
0277	010E	DA03		IMS	NRØV
0278	010F	F653		JMP	LØØP4
0279	0110	FB27	FIN	J ST	* CRL F
023 0	0111	F100		RTN	CRT
	•	8000			•
023 1	0112	0000	NRØV	DATA	0
028 2	0113	0000	ØFFSET	DATA	0
028 3	0114	0000	IB	DATA	0
028 4	0115	0000	IBQ	DATA	0
028 5	0116	0000	TRI	DATA	0
023 6	0117	0000	CALL	DATA	0
0267	0118	0000	RØWVA	DATA	0
0288	0119	0000	N CØL	DATA	0
0289	A110	FIOE	ZCT	DATA	- 38 2 6
029 0	011B	0000	CNT	DATA	0
029 1	0110	0000	IBPI	DATA	0
0292	0110	0000	IBP2	DATA	U D
029 3		0000	MIN	DATA	0
0294		0000	MAA	DATA	0
029.5	0120	0000	DGALL	DAIA	U O
0270		0000	HUDD	DATA	100
0271	0122	0004	H100 H100	DATA	100
0220	0120,	0011	1200	DAIA	200
0222	0124	0100	1200	DATA	250
0300	0124	0100.	AD16	DATA	38.25
0305	0120	0000	- 5510 TATIAT		0.20
0302	0102	0000	X1	DATA	Č
0304	0120	0000	x	DATA	0
~~~~					

0305 0306 0307	012A 012B 012C 012D 012E 012F 0130 0131	0000 0000 D3C3 C1CC C5A0 C6C1 C3D4 CFD2	døtnø tøtøff Sf	DATA DATA TEXT	O SCALE FACTØR= '	•
	0132	BDAO				
0308	0133		IBC	REF		۰.
0309	0134		IER	REF		
0310	0135		ERR	REF		
0311	0136		ØTT	REF		
0312	0137		Ø1ь	REF		
0313	0133		CRL F	REF		
0314	0139		ØDEC	REF		
0315				EN D		
0000	ERRØRS					

PAGE 0001

Ð

÷,

0001				N AM	MASK 0
0002	0000			REL	0;
0003	0000	0001	MASKO	DATA	1
0004	0001	0001		DATA	1
0005	0002	0001		DATA	1
0006	0003	0001		DATA	1
0007	0002	FFFF		DATA	- 1
0008	0005	0001		DATA	י <b>ז</b> '
0009	0006	FFFF		DATA	- 1
0010	0007	0001		DATA	1
0011	0008	0001		DATA	1
0012	0009	FFFF		DATA	- 1
0013	A000	FFFF		DATA	<b>≓1</b>
0014	000B	0001		DATA	1
0015	0000	FFFF		DATA	-1
0016	000Ď	FFFF		DATA	- 1
0017	000E	FFFF		DATA	-1
0018	000F	0001		DATA	1
0019	0010	0001		DATA	1
0020	0011	0001		DATA	1
0021	0015	0001		DATA	1
0022	0013	FFFF		DATA	- 1
0023	0014	0001		DATA	1
0024	0015	FFFF		DATA	- 1
0025	0016	0001		DATA	1
0026	0017	0001		DATA	1
0027	0018	FFFF		DATA	- 1
0028	0019	FFFF		DATA	-1
0029	001A	0001		DATA	1
0030	001B	FFFF		DATA	-1
0031	0010	FFFF		DATA	= 1
0032				EN D	• •
0000	ERRØRS				

200 0001 0002 0000 0003 0000 0004 0000 ERRORS NAM REL DATA END 185 0 0000 0000 0000 IBC n Či 1.1
1 DEF FNR(X)=INT(100*X+0,5)/100 10 DIM Ø(255), F(255), X(255) 20 PRINT "SPECTRUM CORRECTED FOR NEGETIVE DIP" 25 PRINT 26 PRINT CALL (20) 30 CALL (5,0(0),256,2) 40 50 LET  $F(0) = \mathcal{J}(0)$ 60 FØR N=1 TØ 255 70 LET II=N-1 75 IF II>O THEN 55 80 LET I 1=255 85 LET I 2=N+1 90 IF 12<256 THEN 10C 95 LET 12=12-255 100 LET I 3=N+24 105 IF 13<256 THEN 115 LET 13=13-255 110 115 LET 14=N+25 120 IF 14<256 THEN 130 125 LET 14=14-255 130 LET C=(0(13)+0(14)-0(11)-0(12))/20 LET F(N)=Ø(N)+C 140 150 NEXT N 160 PRINT "A: 1 FOR DISPLAY, 2 FOR GRAPH, 3 FOR TAPE" 170 PRINT "B: O FØR ØRIGINAL, I FØR FINAL" 15 0 PRINT 200 PRINT "A="; 210 INPUT A 220 PRINT "E="; 230 INPUT B PRINT "RESOLUTION D="; 240 250 INPUT D 260 PRINT "INITIAL WAVE LENGTH LO="; 270 INPUT LO 250 PRINT 29 0 PRINT 300 IF A= 3 THEN 730 310 LET Z=0

320

330

LET M=1E10

FØR N=1 TØ 255

APPENDIX D

350 IF B= 1 THEN 400 360 LET X(N) = O(N)370 GØT0 410 400 LET X(N) = F(N)410 IF X(N) > = M THEN 430 420 LET M=X(N) 430 IF  $X(N) \le Z$  THEN 450 LET Z=X(N)440 450 NEXT N 460 IF M>=0 THEN 510 470 LET SO= 255/(Z-M) 45 0 LET S1=48/(Z-M) 490 LET YO=-M*S 500 GØTØ 540 LET SO= 255/Z 510 520 LET SI=43/Z530 LET YO=O 540 PRINT 'MAX="JZ; MIN="M 550 IF A=2 THEN 630 560 PRINT "SCALE FACTØR="; SO 570 FØR N=1 TØ 255 53 0 LET E=INT(SO*X(N)+0.5)59 0 CALL (3, N, Y0, 2, E) 600 NEXT N 620 GØTØ 160 630 PRINT "SCALE FACTØR="; S1 635 PRINT 636 PRINT 640 FØR N=1 TØ 255 650 LET E=INT(S1 * X(N) + 0.5) LET L=LO+(N-1)*D -660 670 PRINT FNR(L) JTAB(8) JX(N) 715 NEXT N 730 IF B= 0 THEN 760 IF E= 1 THEN 780 740 750 GØTØ 200 760 CALL ( 6, Ø( 0), 256, 2) 770 GØTØ 790 78 0 CALL (6, F(0), 256, 2) 790 CALL (6, 0, 0, 3) 800 STØP

202

ï

## BIBLIOGRAPHY

- 1. Aitken, D.K., and Jones, B., (1972), Nature, 240, 230.
- Allen, J.D., Jr., and Schweitzer, G.K., (1972, 1973),
  J. Electron Spectroscopy <u>1</u>, 509.
- Baumert, L.D., (1964), Digital Communication with Space Application, Prentice-Hall Inc., Canada, S.W. Golomb, Ed. pp.17-32.
- Combes, M., Encrenaz, TH., Vapillon, L., and Ze'au, Y., (1974), Astron & Astrophys, <u>34</u>, 33.
- 5. Colpa, J.P., and Keltelaar, J.A.A., (1958), Mol. Phys., 1,14.
- 6. Cudaback, D.D., and Gaustad, J.E., (1971), 166, L49.
- 7. Day, K.L., (1974), Ap.J., <u>192</u>, L15.
- 8. Decker, J.A., Jr., and Harwit, M., (1968), Appl. Opt., <u>7</u>, 2205.
- 9. Decker, J.A., Jr., (1969), Appl. Opt., 8, 2552.
- 10. Decker, J.A., Jr., (1971), Appl. Opt., 10, 510.
- 11. Decker, J.A., Jr., (1974), Appl. Opt., 13, 1296.
- 12. Encrenaz, Th., (1972), Astron and Astrophys, 16, 237.
- 13. Fellgett, P., (1951), Cambridge Univ., PH.D. thesis.
- 14. Fellgett, P., (1958), J. Phys., 19, 187.
- 15. Fink, U., Larson, H.P., and Poppen, R.F., (1974), Ap.J., 187, 407.
- 16. Finkbeiner, D.T., II(1960), <u>Introduction to Matrices and</u> <u>Linear Transformations</u>, W.H. Freeman and Co., San Francisco.

- 17. Gamown, R.H., Gaustad, J.E., and Treffers, R.R., (1973), Ap.J., <u>175</u>, 687.
- 18. Gillett, F.C., Low, F.J., and Stein, W.A., (1968), Ap.J., <u>154</u>,677.
- 19. Gillett, F.C., Low, F.J., and Stein, W.A., (1969), Ap.J., 157, 925.
- 20. Gilman, R.C., (1969), Ap.J., <u>155</u>, L185.
- 21. Golay M.J.E., (1949), J. Opt. Soc. Amer. 39, 437.
- 22. de Graauw, Th., Veltman, B.P. Th., (1970), Appl. Opt., <u>9</u>, 2658.
- Hall, M., Jr., (1967), <u>Combinational Theory</u>, Blaisdell Publ. Co., Waltham, Mass., 204.
- 24. Harwit, M., Phillips, P.G., Fine, T., and Sloane, N.J.A., (1970), Appl. Opt., <u>9</u>, 1149.
- 25. Harwit, M., (1971), Appl. Opt., 10, 1415.
- 26. Harwit, M., (1973), Appl. Opt., 12, 285.
- 27. Harwit, M., Phillips, P.G., King, L.W., and Briotta, D.H., (1974a), Appl. Opt., <u>13</u>, 2669.
- 28. Harwit, M., and Decker, J.A., Jr., (1974b), Progress in Optics XII, North-Holland.
- 29. Hirschfeld, T., and Wijntjes, G., (1973), Appl. Opt., <u>12</u>, 2876.
- 30. Hirschfeld, T., and Wijntjes, G., (1974), Appl. Opt., <u>13</u>, 1740.
- 31. Hirschy, V.L., and Aldridge, J.P., (1971), Rev. Sci.
- Inotrum. <u>42</u>, 381.
- 32. Hotelling, H., (1944), Ann. Math. Stat. 15, 297.

Ŧ

	- <u> </u>	
		205
33	3.	Houck, J., Pollack, J.B., Schaack, D., Sagan, C., and
		Decker, J.A., (1973), Icarus, <u>18</u> , 470.
32	4.	Ibbett, R.N., Aspinall, D., Grainger, J.F., (1968), Appl.
		Opt., 7, 1089.
-35	5.	Ingersoll, A.P., submitted to space Sci. Rev. July, 1975.
36	6.	Jacquinot, P., (1954), J.O.S.A., <u>44</u> , 761.
31	7.	Jacquinot, P., (1960), Rep. Prog. Phys., 23, 267.
38	8.	Kittel, C., (1966), Introduction to Solid State Physics,
		John Wiley and Sons, N.Y., 548.
39	9.	Kowalski, B.R., and Bender, C.F., (1973), Anal. Chem. 45,
		2234.
4(	0:	Kranendonk, J.Van. and Kiss, Z.J., (1959), Can. J. Phys.,
		<u>37</u> , 1187.
4	1.	Lacy, J.H., Larrabee, A.I., Wollman, E.R., Geballe, T.R.,
		Townes, L.H., Bregman, J.D., and Rank, D.M., (1975), Ap.
		J., <u>198</u> , L145.
4	2.	Larson, N., Crosmun, R., and Taimi, Y., (1974), Appl. Opt.,
		<u>13</u> , 2662.
-4	3.	Lewis, J.S., and Prinn, R.G., (1970), Science, <u>169</u> , 472.
4	4,	Linsky, J.L., (1973), Ap.J., Supp., <u>216</u> , 25, 163.
4	5.	Low, F.J., and Swamy, K.S.K., (1970), Nature, 227, 1333.
4	16.	Maas, R.W., Ney, E.F., and Woolf, N.J., (1970), Ap.J.,
	- 	letters, <u>160</u> , L101.
4	17.	McCord, T.B., and Adams, J.B., (1972), Icarus, <u>17</u> , 585.
4	18.	McElrcy, M.B., (1973), Space Sci. Rev., <u>14</u> , 460.
<u>4</u>	19.	Mertz, L., (1965), Transformation in Optics, John Wiley and
		Sons, Inc., N.Y.
	1	

	•	206
	50.	Mertz, L., (1976) Private communication.
•	51.	Mertz, L., and Flamand, J., (1976), Private communication.
	52.	Morrison, D., and Sagan, C., (1967), Ap.J., <u>150</u> , 1105.
••••	53.	Morrison, D., (1970), Spa. Sci. Rev., <u>11</u> , 271.
	54.	Murcray, F.H., Murcray, D.G., and Williams, W.J., (1970),
		J. Geo. Res. <u>75</u> , 14, 2662.
	55.	Murdock, T.L., (1974), Ap.J., <u>79</u> , 1457.
	56.	Nelson, E.D., and Fredman, M.L., (1970), J.O.S.A., <u>60</u> , 1664.
-  -	57.	Oliver, C., and Pike, E., (1974), Appl. Opt., <u>13</u> , 158.
	58.	Penman, (1976), Mon. Not. R. Astr.Soc., <u>175</u> , 149.
	59.	Pettingill, G.H., and Dyce, R.B., (1965), Nature, 206, 1240.
	60.	Phillips, P.G., and Harwit, M., (1971), Appl. Opt., 10,
		·1415.
	61.	Planky, F.W., Winefordner, J.D., (1974), paper No.200,
		Pittsburgh Conference on Analytical Chemistry and Applied
		Spectroscopy.
	62.	Podolak, M., and Cameron, A.F.W., (1974), Icarus, 22, 123.
	63.	Pratt, W.K., Kane, J., and Andrew, H.C., (1969), Proc
•		IEEE, 57, 58.
1	64.	Putley, E.H., (1964), Phys, Stat. Solidi, <u>6</u> , 571.
	65.	Rage and Sagan, C., (1977), in preparation.
	66.	Ridgway, S.T., (1974), Ap.J., <u>187</u> , L41.
•	67.	Sagan, C., and Salpeter, E.E., (1976), Ap.J., Suppl 76.
- 14 - 14 - 14	68.	Saiedy, F., and Goody, R.M., (1959) R.A.S.M.N. <u>119</u> , 213.
•	69.	Salpeter, E.E., (1974a), Ap.J., <u>193</u> , 579.
	70.	Salpeter, E.E., (1974b), Ap.J., <u>193</u> , 585.
		그는 것 같은 것 같

71.	Sloane, N.J.A., Fine, T., Phillips, P.G., and Harwit M.,
	(1969), Appl. Opt., <u>8</u> , 2103.
72.	Sloane, N.J.A., and Harwit, M., (1976), Appl. Opt., <u>15</u> , 107.
73.	Smith, L.G., (1949), J. Chem. Phys., <u>17</u> , 139.
74.	Soter, S.L., and Ulrichs, J., (1967), Nature, <u>214</u> , 1315.
75.	Stewart, J.E., (1970), Infrared Spectroscopy: Experimental
	Methods and Techniques, Marcel Dekper, Inc., N.Y.
76.	Strobel, D.F., (1973), J. Atmos, Sci., <u>30</u> , 489.
77.	Swift, R.D., Wattson, R.B., Decker, J.A., Paganetti, R.,
	and Harwit, M., (1976), Appl. Opt., <u>15</u> , 1595.
78.	Tai, M.H., Briotta, D.A., Kamath, N.S., and Harwit, M.,
	(1975a), Appl. Opt., <u>14</u> , 2533.
79.	Tai, M.H., Harwit, M., and Sloane, N.J.A., (1975b), Appl.
	Opt., <u>14</u> , 2678.
80.	Terrile, R.J., and Westphal J.A., (1976), preprint.
81.	Trafton, L.M., and Münch, G., (1969), J. Atm. Sci., <u>26</u> , 813.
82.	Treffers, R., and Cohen, M., (1974), Ap.J., <u>188</u> , 545.
83.	Vanasse, G.A., Sakai, H., (1967), Progress in Optics, 7,
	298, E. Wolf, Ed., Wiley-Interscience, N.Y.
84.	Vanasse, G.A., (1974), Application of Walsh Functions and
	Sequency Theory. The Institute of Electronic Engineering,
	Inc., New York, N.Y. 10017.
85.	de Vancouleurs, G., (1964), Icarus, <u>3</u> , 187.
86.	Wallace, L., Caldwell, J.J., and Savage, B.D., (1972), Ap.
•	J., <u>172</u> , 755.
87.	Wallace, L. Prather, M., and Belton, M.J.S., (1974), Ap.J.,

<u>193</u>, 481.

Ē.

207

- Weidenschilling, S.J., and Lewis, J.S., (1973), Icarus, <u>20</u>, 465.
- 89. Woolf, N.J., and Ney, E.P., (1969), Ap.J., <u>155</u>, L181.
- 90. Wyatt, C., and Esplin, R., (1974), Appl. Opt., <u>13</u>, 2651.