## General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

# CORNELL UNIVERSITY 

Center for Radiophysics and Space Research
ITHACA, N. Y.



CENTER FOR RADIOPHYSICS AND SPACE RESEARCH CORNELL UNIVERSITY ITHACA, NEW YORK

January, 1977

A PRACTICAL HADAMARD TRANSFORM SPECTROMETER
FOR
ASTRONOMICAI APPLICATION
by
Ming-Hing Tai

## DEDICATION

To my parents

謪给 㮤㮤，妈妈

This project is by no means one man's product. Many peopie have devoted their talents to the completion of this project. I am just the one to make a summary of it.

My special thanks go to Prof. Martin Harwit, my thesis advisor. Marin set himself up as an admirable examgle: he always moved the heaviest equipment himself; tackled the most difficult jobs in the experiment so that he himself was res-. ponsible for any misfortunes; was earnest in discussions about problems with his student; and was modest in sharing the credit for the results. Above all, he truly expressed concern about his student, as a respectable advisor and as a warm frizend.

My second thanks go to Dr. Daniel A. Briotta. Dan helped to automize the whole process and taught me the mini computer technique. Dan has shown me how to run the computer as though he were showing me how the lines in his palm run.

My thanks also go to the infrared astronomy group at Cornell. Prof. J. Houck has served on my committee and has always been available for discussion of astronomical and experimental problems. I especially thank him for his help in finishing up my degree while Martin was on sabbatical leave. Dr. Phillips built the spectrometer. The late L. King modifiled it. G. Stasavage built some electronic parts and $H$. Kondracki built the dewer. G. Melick helped with the obser-
vation, deta processing and electronic parts, G. Gull with the field trip, and Drs. W. Forrest, Diward, and D. Shacck were involved in many valuable discussions. Thenks also go to Westy Dain for not only being always willing to help on chilly night's observations and tedious laboratory work, but also for proof reading my thesis.

I thank Prof. E.E. Salpeter for serving on my committee, Prof. A. Siever and Allen Chin for helping the He ${ }_{3}$ cooled dewer, and Prof. P. Gierasch for always being available for discussirig astronomical problems. I also thank G. Vincent for building many mechanical parts, B. Boettcher for figures and Eckelmaun for photographs.

The author thanks the staffs of the Kitt Peak National Observatory and McDonald Observatory for generous allotments of observing time and for assistance during the observing runs.

Finally, my thanks go to Divan Sun, Adeline Wu, and W.W. Chiu, for typing the thesis for me, and to N.H. Cheung, K.K. Mon, K.M. Lo and many of my Chinese friends for their continual help during these years.

Portions of this work were supported by the NGR 33-010-210 and NSG 1263.

## TABIE OF CONTENTS

PAGE
LIST OF FIGURES ..... vil
IIST OF TABLES ..... xi
ABSTRACT ..... xii
I. HISTORICAL INTRODUCTION TO HADAMARD TRANSFORM ..... 1 SPECTROMETRY
II. HADAMARD MATRICES ..... 10
(A). Weighing Designs ..... 10
(B). General Mathematical Formulation ..... 13
(C). Hadamard Matrix ..... 16
(D). Optical Realization of Hadamard Encoding ..... 20
(E). Errors in Hadamard Spectroscopy ..... 34
III. INSTRUMENTATION ..... 37
(A). Multislit Spectrometer ..... 37
(B). The Optics ..... 42
(C). The Electronics ..... 54
(D). Laboratory Calibration ..... 60
IV. COMPARISONS BEITEEN FOURIER TRANSFORM AND ..... 65
HADAMARD TRANSFORM SPECTROSCOPY
(A). Mathematicaly ..... 65
(B). Computer Requirements ..... 67
(c). Optics ..... 68
(D). Mechenical Requirements ..... 73
V. PROGRAMMING FOR HADAMARD TRANSFORM SPECTRAL ..... 75
DATA REDUCTION
(A). HTS Program ..... 75
(B). DHTS Pregram ..... 81
(C). Correction Progrem ..... 89
VI. ASTRONOMICAI OBSERVATION ..... 90
(A). Correction Procedure ..... 90
(B). Observation of $\alpha$-Orionis ..... 91
(C). Observation of Jupiter ..... 200
(D). Observation of Mercury ..... 121
APPENDIX A. ESTIMATE OF CODING ERROR FOR FOURIER ..... 136
TRANSFORM SPECTROMETRY
APPENDIX B. SINGIY HADAMARD TRANSFORM PROGRAM ..... 139
APPENDIXA C. DOUBLY HADAMARD TRANSFORM PROGRAM ..... 168
APPENDIX D. CORRECTION PROGRAM ..... 201
BIBLIOGRAPHY ..... 203

## IIST OF FIGURES

| FIGURE | TITLE | PAGE |
| :---: | :---: | :---: |
| 1-1 | An $8 \times 8$ Hadamard matrix and two $7 \times 7$ cyclic matrices that can be derived from it. | 3 |
| 2-1a | Hadamard transformation of a Sine wave input. | 21 |
| 2-1b | Hadamard transformation of a square wave input. | 22 |
| 2-Ic | Hedamard transformation of a straight line input. | 23 |
| 2-2 | Schematic representation of HTS using the S code. | 25 |
| 2-3 | The 509 exit slit mask and the 255element $\underline{S}$ code. | 26 |
| $2-4$ | Comparison spectrum of the mercury emission lines in the 1.4-1.8 1 m region: (a, bottom) as obtained in the Hadamardtransform mode, (b, top) as obtained under identical conditions using the same optical syistem as a conventional monochromator. This figure is taken from Decker, 1971b. | 28 |
| 2-5 | Schematic representation of DHTS. | 29 |
| 2-6 | The 29 entrance slit mask and the 15element S code. | 33 |
| 2-7 | (a) Spectrum of the 1.ium mercury vapor doublet showing negative peaks to the left at the emission peaks; (b) Shows the response we would obtain to a single spectral line with a perfect mask; (c) Shows the response for a single line with the radiation simulated as passing through a mask with slits too narrow because each opaque mask element protrudes into the adjacent transparent slot by a tenth of a slot width: (d) Shows the effect of simulating slits that are systematically too wide. Note that the main spectral line has deen placed in different positions for the synthetic runs (b), (c); and (d). | 36 |


| FIGURE | TTTLE | PAGE |
| :---: | :---: | :---: |
| 3-1 | The flow chart of the data taking process, starting with radiation from the telescope and ending with the output of the computer. | 41 |
| 3-2 | Optical path through the spectrometer. The dedisrerser and exit mask are shown rotated by $90^{\circ}$. | 43 |
| 3-3 | Grating diffraction efficiency as a function of slit position at 8 and $14 \mu \mathrm{~m}$. | 45 |
| 3-4 | Liquid helium cooled post optics. | 47 |
| 3-5 | HTS alignment circuit. | 55 |
| 3-6 | Logis diagram for mask motion and data processing. | 56 |
| 3-7 | HTS drive unit circuit. | 58 |
| 3-8 | Basic detector bias and preamplifier circuit. | 59 |
| 3-9 | Spectrum of the mercury vapor $7.7 \mu \mathrm{~m}$ line using the $1 \times 255$ mode. | 62 |
| 3-10 | Calibration spectra obtained for the mercury vapor emission lines at $1.69 \mu \mathrm{~m}$ and $1.71 \mu \mathrm{~m}:$ (a) The eighth of a series of fifteen individual spectra obtained; (b) An average of all fifteen spectra; (c) A diaplay of the fifteen spectra, each spectrum being displaced vertically from the next. The diagonal pattern near the right-hand edge represents a displacement of the peak between successive spectra. This represents the actual shift in spectral range between adjacent spatial elements. | 64 |
| 5-1 | The flow chart of the $1 \times 255$ inverse transform program. | 79 |
| 5-2 | The flow chart of the $15 x 255$ inverse transform program. | 83 |
| 5-3 | Matrices generated by the computer during the reduction of the spectral data. | 86 |


| FIGURE | titue | PAGE |
| :---: | :---: | :---: |
| 6-1 | The spectral emissivity of various regions as calculated from the flight data (Murcray et al, 1970). | 92 |
| 6-2 | The raw spectra of a-orionis and the Moon. | 94 |
| 6-3 | The ratio spectrum of $\alpha$-orionis to the Moon corrected for lunar temperature. | 95 |
| 6-4 | (a) Low resolution spectrum taken by Giliett et al (1969). Different symbols represent spectra taken on 31 f ferent nights. (b) High resolution spectrum taken by Treffers and Cohen (1973). | 99 |
| 6-5 | The raw spectrum or Jupiter and the Moon. | 101 |
| 6-6 | The ratio spectrum of Jupiter to the Moon corrected for lunar temperature. | 102. |
| 6-7 | The atmospheric profile of Jupiter for a solar-composition model. | 103 |
| 6-8 | (a) Schematic representation of the $\mathrm{NH}_{3}$ molecule.. The components of angular momentum and the motion in the V2 Vibrationel mode are also shown. (0) Energy levels of the $v_{2}$ vibrational mode of amonia. Superscripts a and $s$ refer to the entisymmetric and symmetric levels which erise due to inversion splitting. | 108 |
| 6-9 | Low resolution spectrum taken by Gillett et al (1969). Different symbols repre- Sent spectrum taken on different nights. This figure is taken from their paper. | 109 |
| 6-10 | (a) Room temperature absorption spectrum of ammonia, $p=0.06$ atmos, $w=0.6 \mathrm{~cm}$ atmos. (b) Brightness bemperature: <br> (c) Surface brightness of the central region of Jupiter from 8 to $13.5 \mu \mathrm{~m}$. <br> (Taken from Aitken and Jones). | 111 |


| 6-11a | Spectrum of the $N$ and $S$ polar regions of Jupiter at $3-4 \mathrm{~cm}^{-1}$ resolution divided by the spectrum of the Moon. Data points are shown as solid eireles, and the solid ine represents the best fitting syntheitic spectrum calculated from the model caiculated by Lacy et al (1975) (The graph is taken from Lacy et al). The dotted curve is our observed spectrum'by matching Lacy's spectrum at points $A$ and $B$. | 113 |
| :---: | :---: | :---: |
| 6-11b | Same as 6-11a except matching our spectrum with Lacy's at $A^{\prime}$ and $B^{\prime}$. | 114 |
| 6-12 | (a) Thermal emission spectrum of Jupiter corrected for absorytion in the earth's atmosphere observed by Ridgway (1973). <br> The dashed line is the predicted form of the $\mathrm{H}_{2}$ continuum. (b) The ratio of the <br> Jovian spectrum to the atmospheric absorption spectrum observed by Combes et a1 (1974). The solid and dashed Iines $120^{\circ} \mathrm{K}$ respectively. | 117 |
| 6-13 | The raw spectra of Mercury and the Sun. | 123 |
| 6-14 | Diurnal path of the Sun about Mexcury, drawn to scale. The relative positions of the Sun are marked at 11 day intervals with the pianet held as a fized reference. Planeto-graphic longitude are indicated for Mercury. (Taken from Soter and Ulrichs, 1967) | 126 |
| 6-15 | Two coordinate systems on the surface of Mercury. The unprimed system is the "solar system" with the Z-axis pointing towards the Sun. A is the subsolar point. The primed system is the "earth system" with the Z'-axis pointing towards the earth. $A^{\prime}$ is the subearth point. | 129 |
| 6-16 | The final Mercury spectrum, corrected for solat temperature, with a number of blackbody slopes shown to match. | 135 |

## LIST OF TABIES

TABLE TITLE ..... Page
2-1 The Value of $\Delta$ for Different Matrices ..... 18
2-2 Comparison of Three Different Grating ..... 34Spectrometer
3-1 A Brief Description of Each Filter ..... 48
6-1 The Main Constituents of The Jovian ..... 105
Atmosphere

## 忆 素 贱

娄 山 关
一九三五年二月

西风烈，
长空佐时嘟晨月。
霜晨月。
马䟽声碎，
濑叭声㸶。

> 雄兴還道真如铁。
> 而今迈步从头越。
> 从头越，
> 苍山如海，
> 残阳如血。

丢泽东主席
$\square$

CHAPTER J.

## HISTORICAL INTRODUCTION TO HADAMARD

 TRANSFORM SPECTRONETRY (HTS)The idea of modulating or encoding the optical output of a spectrometer goes back to the original work of Golay (1949) and Fellgett (1951). Its purpose is to allow many different wavelengths of radiation to fall on a detector simultaneously, and thereby to increase the signal-to-noise ratio (SNR) of the resulting spectrum. This improvement comes about because each element of the specirum is effectively viewed a larger fraction of the total available observing time. One idea is to encode or modulate each spectral wavelength eaiting the spectrometer output with an audio frequency that contains the optical wavelength information. The use of a conventional wave analyzer then allows recovery of the original optical spectrum. There are many variations of this technique.

In 2968, Ibbett et al and Decker et al Independentiy suggested the use of sequentially stepped multiplex spectrometers. In both systems raciation enters a dispersive instrument through a single slit and is analyzed at a number of exit slits. Decker et al pointed out that two constraints shoula be imposed on the encoding scheme:
(1) To obtain the optimum signal to noise ratio, each spectral element should be viewed during exactly half the step positions.
(2) To impose the smallest dynamic range requirements on the
detector amplifier system, each step position should pass light from exactly half the spectral elements. They also worked out a scheme that satisfied the two constraints for masks having elements $m=4 n+2$, where $n$ is an arbitrary integer or zero. Ibbett et al introduced the Hadamard pattern for the mask. As discussed below, this is a pattern based on a set of binary orthogonal matrices first studied by the French mathematician Jacques Hadamard. Ibbett et al also described the. application of their scheme to a real time computer aided measurement.

In 1969, Sloane et al worked out a number of binary cyciic coding schemes for multiplex spectrometry and evaluated the performance of each scheme in terms of a linear, least mean square, unbiased estimate. These schemes include a Hadamard matrix $H$, and various modified Hadamard matrices, which these authors refer to as $\underline{G}$ matrix and $S$ matrix (Fig. 1-1).

A Hadamard matrix $H$ of order $N$ is an $N X N$ matrix $H_{N}$ of tl's and -l's which satisfies:

$$
\mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{N}}^{\mathrm{T}}=\mathrm{N} \mathrm{I}_{\mathrm{N}}
$$

where $I_{N}$ is an $N \times N$ unit matrix
A modified Hadamard matrix $G$ of order $M$ is a partitioned matrix from the $H$ matrix:

$$
\underline{H}=\left[\begin{array}{lll}
\underline{1} & \cdots & \cdot  \tag{M=N-1}\\
\dot{0} & \underline{G} \\
\dot{i} & &
\end{array}\right]
$$

$$
\begin{aligned}
& H=\left[\begin{array}{l}
++++++++7 \\
+++\cdots--+- \\
++---+-+ \\
+---+-++ \\
+--+-++- \\
+-+-++-- \\
++-++--- \\
+-++--+
\end{array}\right] \\
& \underline{G}=\left[\begin{array}{l}
++\cdots--+- \\
+-\cdots-+\cdots+ \\
-\cdots-+-++ \\
--+-++- \\
-+-++-- \\
+-++--- \\
-++-\cdots-+
\end{array}\right] \\
& \underline{S}=\left[\begin{array}{lllllll}
0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Figure 1-I. An $8 \times 8$ Hadamard matrix and two $7 \times 7$ cyclic matrices that can be derived from it.
where the first row and first column of $H$ are all +1's. A feature of the $\underline{G}$ matrix is that it can be written in cyclic form-a a factor which we will show to be of considerable practical importance.

A modified Hadamard matrix $S$ is a matrix obtained from G by replacing $+I^{\prime} \mathrm{s}$ by $0^{\prime} \mathrm{s}$ and $-I^{\prime} \mathrm{s}$ by +1's.

The properties of $H, \underline{G}$, and $\underline{S}$ will be discussed in section 2-6.

When we talk of encoding by means of a Hadamard matrix we have the following in mind. A mask is used to modulate open of close - a series of entrance and exit slits in a spectrometer. If a certain slit location is open, we can designate it by a +1 ; if it is closed we can designate it by a 0 ; if it can be used to subtract from the signal incident on the detector, we designate it by -1 . The sequence of +1 's and - I's characterizing a mask in a given modulating position corresponds to a row of a matrix. The whole set of mask positions corresponds to the set of rows of the matrix. If the sequence of mask patterns corresponds to the rows of a Hadamard mairix we say we are encoding with a Hadamerd pattern. Sloane et al also introduced the idea of using a cyolic matrix for coding masks. This greatly decreases the experimental cost and facilitates operation, since any $N$ slits of a. single mask $2 N-1$ slits long can be used to provide one of the required mask patterns.

The first single entrance Hadamard spectrometer (HTS) was built by Decker and Harwit (1969). The spectrometer had
a single entrance slit and 19 exit slits. The exit mask was stepped manually. The authors used this spectrometer to take the spectrum of the mercury vapor $1.7 \mu$ band to demonstrate the Hadamard transformed spectrum's fidelity and freedom from systematic errors.

With 19 exit slits, the HTS had a theoretical signal-tonoise advantage of 2.18 over the conventional spectrometer, whitch is rather hard to verify experimentally, Decker (1971) therefore proceded to build a 255-slit HTS. In this spectrometer, the radiation, after being decoded by the exit mask, exits along the same path it comes in. This reverse pass dedisperses the beam and allows it to be brought to a focus at the entrance plane. Thus the dimensions of the focused image are roughly the same as the dimensions of the entrarce aperture, and the detector size can be minimized. This is important since sufficiently large detectors sometimes do not exist, and if available tend to be noisy. Decker experimentally verified the theoretically predicted multiplex advantage of an FFTS.

DeGraauw and Veltman (1970) were the first to use an HTS for astronomical work during the 1970 solar eclipse. Houck et al (1973) subsequently used an HTS to obtain near infrared spectra of Mars from airplane altitudes.

Besides putting an encoding mask at the exit plane, one can also put another encoding mask at the entrance plane of a spectrometer. In that way the radiation is modulated at both the entrance and exit apertures. Harwit et al (1970) worked out this scheme of doubly multiplexed dispersive spec-
trometry. The double multiplexing scheme allows one to increase the totel amount of radiation that can be transmitted through a spectrometer. Furthermore, by a proper reduction of the data, one can also obtain a one dimensional picture of the source at the entrance plane. For a spectrometer of m entrance slits and $n$ exit slits, one needs $\pi x n$ data points to recover m spatial spectra, with each spatial spectrum containing n spectral elements. For a homogeneous source one does not need the spatial information, so ( $n+m-1$ ) data points will be enough to recover the spectra. Harwit et al (1974a)describe two schemes for recovering the spectrum with (n + 耳 - 1) data points.

In 1975 Tai et ai (1975a) finished the construction of 2 doubly coded Hademard transform spectrometer. I .e spectrometer has 15 entrance slits and 255 exit slits, which oan simultaneously obtain 15 spatial spectra, each having 255 spectral elements. Tai et ai (19750) went on to give an anaIysis of the errors in Hadamard spectrometry caused by imperEect masks.

Besides coding the radiation at both the entrance and the exit aperture, one can go one step further and use a two dimensional mask at the entrance aperture (Harwit, 1971). This yields a two dimensional picture at the entrance aperture, Where each spetial point at the entrance has its own spectruf. To put it $a$ different way, one obtains a two dimensional picture of the source at the entrance aperture for each color of the spectral elements.

Harwit (1973) experimentaliy verified the operation of Imaging spectrometry; and Swift et al (1976) constructed the first Hadamari imaging spectronetex.

There are other discussions of Hadamard transform spectrometry in the Interature, mostiy of theoretical aspects. Nelson and Fredman (1970) give a more complete theoretical treatment of Hadamard matrix encoding. Thes also rediscovered a theorem due inftially to Hotelling (1944) showing that the Hedamard matrix is the best design for a singly coding mask. Sloane and Harmit (1976) show the connection between Hadamard spectrometry and the mathematies of weighing designs in statistics.

There have been various comparisons of Hadamerd transform spectrometry with other spectrometry. Larson et en (1974) makes a theoretical comparison of singly multiplexed Hadamara transform spectrometers and scanning spectrometers. Tney present a general mathematical fremework for the comparison of relative performence and also verify their prediction by computer simulation of various characteristic spectra. Their results show that where the noise level is constant and independent of the incident photon flux, the determined multiplex aduantege is $\sqrt{N / 2}$, as predicted py Fellgett (1951). This is usualiy the case in a low energy region, such as the infrared. For a noise level that is signal-dependent, such as in the iv energy region, the detector is characterized by an output with statistics approaching a Poisson distribution and variance therefore proportional to the input signal. In that case the

HTS technique will be advantageous only for spectra that are characterized by a few well-defined and intense peaks on a very low intensity background. For spectra with high background, for dense spectra, or for spectra having very weak spectral features, the HTS will have no advantage over the conventional single slit (SS) technique.

Hirschfeld and Wyntjes (1973) compare Fourier transform and Hadamard transform spectrometry. They also describe various limitations of Hadamard transform spectrometry. This paper was followed by an exchange of notes between Decker (1973) and Hirschfeld and Wyntjes (1973) in the journal Applied Optics in which some of these limitations are disputed. These papers concern themselves with a number of practical matters on which opinions can vary. Here we mention these controversial papers mainly for completeness. Their contents will be discussed further below.

Wyatt and Esplin (1974) analyzed the effect of band width on noise equivalent power (NEP) for multiplex spectrometry with cryogenically cooled, cooled-background extrinsic long wavelength infrared detectors. They find that the NEP is directly proportional to band width, so muitiplex schemes that require increased band width are not of real advantage. They further conclude that doubly encoded systems that are based on m $+\mathrm{n}-\mathrm{l}$ measurements would have a real throughput advantage

- Various other aspects of Hadamard matrices and Hadamard transform spectrometry which have not been mentioned above are covered in articles by: Baumert, Pratt et al (1969), Hirschy
et al (1971), Allen et al (1972,1973), Kowalski et al (1973), Planky et al (1974), Oliver et al (1974).

In this thesis Chapter II will describe the mathematical properties of Hadamard matrices and their application to spectroscopy. Chapter ITI describes the Hadamard transform spectrometer, and gives results on laboratory performance. Chapter IV gives a comparison of Hadamard transform and Fourier transform encoding in spectrometry. The output of an HTS is fed into a mini computer. The computer performs a real time inverse Hadamard transform to recover the spectrum. Chapter $V$ describes the algorithm and programming of inverse Hadamard transform. Chapter VI discusses observational results and their interpretation.

## CHAPTER II

## HADAMARD MATRICES

(A) Weighing Designs

In order to understand the mathematical advantage of Hadamard transform encoding, let us look at the following examples (Sloane et al, 1976).

Suppose four objects are to be weighed, using a spring balance which makes an error e each time it is used. Assume that $e$ is a random variable with mean zero and variance $\sigma^{2}$.

First suppose the objects are weighed separately. If the unknown weights are $\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}$, the measurements are $\eta_{1}$, $\eta_{2}, \pi_{3}, \pi_{4}$, and the errors made by the balance are $e_{1}, e_{2}, e_{3}$, $e_{4}$, then the four weighings give four equations:

$$
\begin{array}{ll}
n_{1}=\psi_{1}+e_{1} & n_{2}=\psi_{2}+e_{2} \\
\eta_{3}=\psi_{3}+e_{3} & n_{4}=\psi_{4}+e_{4}
\end{array}
$$

The best estimate of the unknown weights are the measurements themselves:

$$
\hat{\psi}_{1}=n_{1}=\psi_{1}+e_{1}
$$

$$
\hat{\psi}_{2}=\eta_{2}=\psi_{2}+e_{2}
$$

These are unbiased estimates:

$$
\begin{aligned}
& E \hat{\psi}_{1}=\psi_{1} \\
& \hat{E \hat{\psi}_{2}}=\psi_{2}
\end{aligned}
$$

(E denotes expected value)
with variance or mean square error

$$
E\left(\hat{\psi}_{1}-\psi_{1}\right)^{2}=E \sigma_{1}^{2}=\sigma^{2}
$$

On the other hand, suppose the balance is a chemical balance with two pans, and the four weightings are made as follows:

$$
\begin{align*}
& \eta_{1}=\psi_{1}+\psi_{2}+\psi_{3}+\psi_{4}+e_{1} \\
& \eta_{2}=\psi_{1}-\psi_{2}-\psi_{3}-\psi_{4}+e_{2} \\
& \eta_{3}=\psi_{1}+\psi_{2}-\psi_{3}-\psi_{4}+e_{3} \\
& \eta_{4}=\psi_{1}-\psi_{2}-\psi_{3}+\psi_{4}+e_{4} \tag{2-1}
\end{align*}
$$

This means that in the first weighing all four objects are placed in the left hand pan, and in the other weightings two objects are in the left pan and two in the right. (Note that the e are independent of the weights on the balance. This point is crucial). It is easy to solve for $\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}$, as long as the coefficient matrix for $\psi$ is not singular. Thus the best estimate for $\psi 1$ is

$$
\begin{aligned}
\hat{\psi}_{1} & =\pi_{4}\left(\pi_{1}+\eta_{2}+\eta_{3}+\eta_{4}\right) \\
& =\psi_{1}+3_{4}\left(e_{1}+e_{2}+e_{3}+e_{4}\right)
\end{aligned}
$$

The variance of Ce , here C is a constant, is $\mathrm{C}^{2}$ times the variance of $e$, and the variance of a sum of independent random variables is the sum of the individuals variances. Therefore ${ }_{2}$ the variance of $\hat{\psi}_{1}$ (and also of $\hat{\psi}_{2}, \hat{\psi}_{3}, \hat{\psi}_{4}$ ) is $\frac{4 \sigma^{2}}{16}=\frac{\sigma^{2}}{4}$

Weighing the objects together has reduced the mean square error by a factor of 4. In effect the signal to noise ratio (SNR), which is given by the root mean square (rms) error is reduced by a factor of 2.

Finally, suppose the balance is a spring balance with only one pan, so only coefficients 0 and 1 can be used. A good method of welghing the four objects is:
$\eta_{1}=\psi_{2}+\psi_{3}+\psi_{4}+e_{1}$
$\eta_{2}=\psi_{1}+\psi_{2}$
$\eta_{3}=\psi_{1}$
$\eta_{4}=\psi_{1}$

In this case the variances of $\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}$, are $\frac{4 \sigma^{2}}{9}, \frac{7 \sigma^{2}}{9}$, $\frac{7 \sigma^{2}}{9}, \frac{7 \sigma^{2}}{9}$ respectively, a smaller improvement than in the previous case.

The theory of weighing designs is of immediate interest to multiplex optics, since. the simultaneous measurement of the intensities of different bundles of rays is completely ana-
logous to the simultaneous weighing of different groups of weights. In measuring the intensity of radiation passed through slits in a mask, we are effertively 'weighing' that radiation.

## (B) General Mathematical Formulation

One can put the problem into a more general form. Let $\psi_{i}$ be the $i^{\text {th }}$ unknown, $\eta_{j}$ be the $j^{\text {th }}$ measurement, $e_{j}$ be the error associated with the $j^{\text {th }}$ measurement. Let $w_{j i}$ be the weighing coefficient of the $j^{\text {th }}$ measurement with the $i^{\text {th }}$ unknown. Then

$$
\eta_{j}=w_{j i} \psi_{i}+e_{j} \quad \begin{align*}
& i=1 \cdots \cdot n  \tag{2-3}\\
& j=1 \cdots \cdots n
\end{align*}
$$

In matrix notation:

$$
\begin{equation*}
\underline{n}=W \underline{W}+\underline{e} \tag{2-4}
\end{equation*}
$$

With the notation $<>$ for ensemble averages, the error $e_{i}$ has the following properties:
(1) $\left\langle e_{i}\right\rangle=0$
(2) $e_{1}$ is independent of $\psi$
(3) $\left.<e_{i} e_{j}\right\rangle=0$ if errors are assumed to be uncorrelated.

$$
=\sigma^{2} \text { if } 1=j
$$

The problem now is the following: (i) For a particular coding matrix $W$, what should be the decoding matrix A? 1.e. What is A such that $\hat{\underline{\psi}}=\underline{A} \underline{\underline{1}}$ where $\hat{\underline{\psi}}$ is an unbiased estimate of $\underline{\psi}$.
(ii) What is the best choice of $W$ (or A) that will minimize the error of measurement i.e. What is $\underline{W}$ such that

$$
\varepsilon=\left\langle\sum_{j=1}^{n}\left(\dot{\psi}_{j}-\Psi_{j}\right)^{2}\right\rangle
$$

is a minimum.
In the absence of noise, ie. $n=0$, it is clear from (2-4) that

$$
\underline{w}=\underline{w}^{-1} \underline{n}
$$

and therefore

$$
A=\underline{W}^{-1}
$$

and

$$
\hat{\psi}=\underline{A} n=\psi
$$

In the presence of noise,

$$
\begin{aligned}
\hat{\underline{\psi}} & =\underline{A} \cdot \underline{n} \\
& =\underline{A} \underline{W}+\underline{\underline{n}} \underline{n}
\end{aligned}
$$

and with the assumed properties of the noise < $\psi\rangle=\psi$, one obtans

$$
\begin{aligned}
\langle\hat{\underline{\psi}}\rangle & =\underline{A} \underline{W}\langle\underline{\psi}+\underline{A}\langle\underline{e}\rangle \\
& =\underline{A} \underline{W} \underline{\psi}
\end{aligned}
$$

Assuming no prior knowledge of the unknowns, one may use the unbiased condition $\langle\hat{\psi}\rangle=\psi$. This again implies

$$
\underline{A}=\underline{W}^{-1}
$$

So with the assumed properties of noise and unbiased condiction, the decoding matrix is just the inverse of the coding matrix.

One still has to find a coding matrix which will minimize
the uncertainty, $\varepsilon$.
The second question can be solved in the following way: Let $\hat{n}_{1}$ be the $i^{\text {th }}$ measurement in the absence of noise, then for each measurement

$$
\begin{aligned}
\eta_{i}= & W_{i 1} \psi_{1}+W_{i 2} \psi_{2}+\cdots+W_{i n} \psi_{n}+e_{i} \\
= & \hat{\eta}_{i}+e_{1} \\
\psi_{j}= & A_{j 1} n_{1}+A_{j 2} n_{2}+\cdots+A_{j n} n_{n} \\
= & A_{j 1}\left(n_{1}+e_{I}\right)+A_{j 2}\left(\hat{n}_{2}+e_{2}\right)+\cdots \\
& +A_{j n}\left(\hat{\eta}_{n}+e_{n}\right) \\
= & \left(A_{j 1} \eta_{1}+\cdots+A_{j n} n_{n}\right)+\left(A_{j 2} e_{2}+\cdots+A_{j n} e_{n}\right) \\
= & \psi_{j}+\text { noise }
\end{aligned}
$$

The mean square of the noise term corresponding to the $j$ th unknown is therefore

$$
\begin{align*}
\varepsilon_{j} & =\left(A_{j 1}^{2}+\cdots+A_{j n}^{2}\right) \sigma^{2} \\
& =\Delta_{j}^{2} \sigma^{2} \tag{2-7}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta_{j}=\left(A_{j 1}^{2}+\cdots+A_{j n}^{2}\right)^{\frac{1}{2}} \tag{2-8}
\end{equation*}
$$

and $\Delta_{j}$ represents the improvement in the SNR for the weighing design, compared to the SNR for individual weighings.

Hence, the problem of maximizing the signal to noise ratio becomes the problem of minimizing $\varepsilon_{j}$; or $\Delta_{j}$ (Nelson and Fredman (1970)).

Sloane et $2 l$ (1969) independently developed an expression for $\varepsilon / \sigma^{2}$ where

$$
\begin{align*}
\varepsilon / \sigma^{2} & =\text { Trace } \underline{W}^{-1}\left(\underline{W}^{-1}\right)^{T} \\
& =\text { Trace } \underline{A} \underline{A}^{T} . \tag{2-9}
\end{align*}
$$

Equation (2-8) and (2-9) amounts to the same thing because it can be seen very easily that

$$
\text { Trace } \underline{A} \underline{A}^{T}=\sum_{j=1}^{n} \Delta_{j}^{2}
$$

The question of minimizing E had been answered by Hotelling (Hotelling, 1944) and nediscovered by Nelson and Fredman. Hotelling has shown that for any choice of mask with $\left|W_{j}\right| \leq 1$, the $\varepsilon_{i}$ are bounded by $\varepsilon_{1} \geq \frac{\sigma^{2}}{N}$, and that it is possible to have $\varepsilon_{i}=\frac{\sigma^{2}}{N}$ for $i=1, \ldots N$ if and only if a Hedamard Matrix $H_{N}$ of the order $N$ exists (by taking $W=H_{N}$ ). This leads to the discussion of the Hadamard Matrix.

## (C) Hadamara Matrix

A Hadamard matrix of order $N$ is an NxN matrix $H_{N}$ of +1 's and -l's which satisfies:

$$
\begin{equation*}
\mathrm{H}_{\mathrm{N}} \mathrm{H}_{\mathrm{N}}^{\mathrm{T}}=\mathrm{HI}_{\mathrm{N}} \tag{2-10}
\end{equation*}
$$

where $I_{N}$ is an NxN unit matrix.
A Hadamard matrix has following properties: (Golomb(1964))
(I) Its row vectors (or equivalently, its column vectors) are mutually orthogonal.
(2) The Hadamard properties will not be disturbed by:
a. Interchanging rows,
b. Interchanging columns,
c. Changing the sign of every element in a row, or
d. Changing the sign of every element in column. These properties enable the first row and colum of every Hadamard matrix to be normalized to contain only ti's. If $\underline{G}$ represents the remiaining $M \times M \operatorname{matrix}(M=\mathbb{N}-1$ ), then $H$ can be partitioned into

$$
\underline{H}=\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & \cdots & \cdots & \cdots \\
1 & & & & & \\
1 & & G & & & \\
\cdot & & & & & \\
\cdot & & & & & \\
\cdot & & & & &
\end{array}\right] \quad(M=N-1)
$$

It is conjectured that Hadamard matrices exist for all multiples of four. Further, if one of the following conditions is also satisfied, .
(1) $N=P+1$

P prime
(2) $N=P(P+2)+1$
$P$ and $P+2$ prime
(3) $n=2^{m}$
$m$ an integer
then $G$ can be made cyclic. That is, the $(j+I)^{\text {th }}$ row can be generated by shifting the $j^{\text {th }}$ row one position to the left. For example, when $N=8$, we have matrices of the form shown in Fig. I-I. Note that $H$ and. $\underline{G}$ are symmetrix.

Another choice for $W$ is the matrix $S$ obtained from $G$ by replacing ti's by 0 's and -I's by il's.

The properties of the $\underline{H}, \underline{G}$ and $\underline{S}$ are discussed by Sloane et aI. If rows $i$ and $j$ are any two rows of $\underline{H}$, $\underline{G}$ or $\underline{S}$, it can be shown that their dot product is:

$$
\begin{aligned}
& \text { In } G_{M} \text { : row } i \cdot \text { row } j=\frac{-1}{M} \underset{i=j}{i \neq j} \\
& \text { In } S_{M}: \text { row } i \text { row } j=\begin{array}{cc}
M / 4 \\
M / 2, j \\
i=j
\end{array}
\end{aligned}
$$

The inverse of each matrix is:

$$
H_{N}^{-1}=\frac{1}{N} H_{N} ; G_{M}^{-1}=\frac{1}{M+1}\left(G_{M}-J_{M}\right) ; S_{M}^{-1}=\frac{2}{M+1}\left(2 S_{M}{\underset{U}{M}}\right)
$$

Where $J$ is a $M \times M$ matrix consisting entirely of -I's and $N=M+1$.

Table 2-1 gives the value of $\Delta$ for different matrices. The matrix I represents the weighing scheme weighing each object separately. This corresponds to a conventional single slit spectrometer or to a wedge filter monochromator. .

Table 2-I
MATRIX A
elements of a
$\Delta^{-1}$
(FOR LARGE N)

| $I$ | $1,-0$ |
| :--- | :--- |
| $\underline{H}$ | $1,-1$ |
| $\underline{E}$ | $1,-1$ |
| $\underline{S}$ | 1,0 |
| \#F | cosine squared <br> functions |

I
$\sqrt{N}$ $\sqrt{N}\left(2-\frac{2}{N}\right)^{-\frac{1}{2}}$
$\sqrt{\mathrm{N}}\left(2-\frac{2}{\mathrm{~N}}\right)^{-1}$
$\frac{N}{4} \frac{2}{N+1}$

1
$\sqrt{\mathrm{N}}$
$\sqrt{\frac{N}{2}}$
$\sqrt{\frac{\pi}{2}}$
$\sqrt{\frac{N}{8}}$

[^0]If the number of measurements $N$ is a multiple of 4 , and the matrix coefficients are +1 , the best weighing scheme is the Hadamard matrix $H$. $E$ will be reduced by a factor $\frac{1}{\sqrt{N}}$ compared to weighing the unknown separately. This is the maximum advantage a weighing scheme can obtain with weighing coefficient $\left|W_{i j}\right| \leq 1$. If $N$ is.not a multiple or 4 , or if the weighing coefficients are 0 's and l's, it is not possible to simultaneousiy minimize $\varepsilon_{I} \ldots \ldots \varepsilon_{n}$ and some other criterion must be used (Sioane et al, 1976). Also the errors are uniformly larger than for the $H$-matrix, as shown for the $G$ and S meirices in Table 2-1 above.

It is interesting to see that a spectrometer using the Fourier Transform, such as a Michelson interferometer, has a multiplex advantage a factor of $\sqrt{8}$ lower than the $H$-matrix and a factor of $\sqrt{2}$ lower than the S~matrix encoding instrument.

Following are some computer simulations for S-matrix transformations with various inputs (See Fig. 2-1(a) to (c)).

INPUT

1. Constant
2. Hadamard code: representing single line emission
3. Single Ine: 1 at the $1^{\text {st }}$ element and 0 for the rest. This represents an unknown impilse coming in during the

OURPUT
Constant
Single line

Hadamard code. Note, unlike the monochromater, the error propagates to other

INPUT
observation.
4. Sine wave.
5. Square wave.

The input is not a perfect wave because we have an odd number of elements. The input values have amplitudes 0 or 1 for each element.
6. Straight line at a slope 1/255. Refer to figure (2-10). This may represent a shift in baseline.
(D) Optical Realization of Hadamard Encoding

We have made use of (modified Hadamard) S-matrices in two optical instruments: One is a Hadamard transform spectrometer having an encoding mask at the exit aperture. The other is a doubly encoded HIS which has encoding masks at both the entrance and exit apertures.
$S$ codes can be used for both the entrance and exit masks for the HTS, with +1 standing for an open slot through which radiation is transmitted, and with 0 standing for a closed slot where radiation is blocked.

The cyclic property of the $S$-matrix is very desirable, for then only a single mask $2 N-1$ slots wide need be constructed. Successive encoding positions are generated by stepping the mask one slot width along its length. This avoids the consturction of $N$ masks with $N^{2}$ slots.


Figure 2-1a. Hadamard transformation of a Sine wave input.


Figure 2-1b. Hadamard transformation of a square wave input.


Figure 2-1c. Hadamard transformation of a straight line input.

Although $H$ and $G$ matrices have better coding efficiency than the $s$ matrix, they introduce technical difficulties when used for spectrometer coding schemes. To utilize $H$ and $G$ matraces, one must measure the reflected as well as the transmitted radiation. In this case tl's represent reflecting slots and -l's represent transmitting slots. Therefore a minimum of two detectors must then be used, one in a subtracting mode, the other in the normal mode. The use of two detectors, however, increases the noise. Furthermore, the $H$ matrix, with 211 elements +1 in the first row, makes the dynamic range of the detector system change by about a factor of two. Also its lack of the cyclic property does not allow one to generate the rest of the masks by the simple stepping technique mentioned above.

## 1. Hadamard Transform Spectrometer (HTS)

For the singly encoded HTS, we use the following optical arrangement (figure 2-2). Radiation passing through the single entrance slot is rendered parallel and directed to the disversing element. The dispersed radiation is then de-collimated and focused upon the multi-slot mask at the exit aperture. The spectral elements transmitted by the mask pass through suitable post-optics and are collected onto a detector. One then makes $N$ (in our case $N=255$ ) measurements by sequentially stepping the mask $N$ times. The inversion procedure $\hat{\psi}=\mathcal{S}^{-1} \underline{n}$ recovers the spectrum. Figure (2-3) gives a 255 cyclic $S$ matrix code for the exit mask.

Theoretically, the mean square error in the spectrum


Figure 2-2. Schematic representation of HTS using the S code.
||

| 00000 | 00101 | 10001 | 11101 | 00001 | 11111 | 11001 | 00001 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 01001 | 11110 | 10101 | 01110 | 00001 | 10001 | 01011 | 00110 |
| 01011 | 11110 | 11110 | 01101 | 11011 | 10010 | 10100 | 10100 |
| 01001 | 01101 | 00011 | 00111 | 00111 | 10001 | 10110 | 00010 |
| 00101 | 11010 | 11110 | 11011 | 11100 | 00110 | 10011 | 01011 |
| 01101 | 01000 | 00100 | 11101 | 10010 | 01001 | 10000 | 00111 |
| 01001 | 00011 | 10001 |  |  |  |  |  |

Figure 2-3. The 509 exit slit mask and the 255-element S code.
given by a monochromator is $\sigma^{2}$. For an HTS using the $S$ code, this error is $\frac{1}{N}\left(2-\frac{2}{N}\right)^{2} \sigma^{2}$ (Sloane et $\left.\frac{a 1}{}, 1969\right)$. Hence the rms gain in $S / N$ for the HTS is $G=\frac{N \sigma^{2}}{\left(2-\frac{2}{N}\right)^{2} \sigma^{2}}=\frac{N}{2-\frac{2}{N}}$. For $N=255$, G~8.0 (figure 2-4 gives Decker's results. The experimental gain was measured as $8.0 \pm 0.3$ ). Note that the scale in figure (2-4) are in arbitrary units, and the zero point appears to be shifted between parts (a) and (b).

## 2. Doubly Encoded Hadamard Transform Spectrometer (DHTS)

Figure (2-5) is a schematic representation of an optical system which has a number of entrance as well as exit slits. Instead of passing radiation through only ons entranse slit, a mask $M$ slits wide is placed at the entrance aperture. Radiation passed into the spectrometer through different combinations of open and closed slits. The dispersed radiation at the exit plane is analyzed in the same fashion as in the HTS. Encoding is accomplished by sequentially stepping one of the masks through its $N$ different positions for each position of the other mask.

In a DHTS the entrance aperture is modulated by a $P \times P$ $S$ matrix.

Let $\varepsilon=\varepsilon_{i r}$ be the $P \times P$ matrin whose rows represent $P$ different entrance masks. $\varepsilon_{i r}=1$ for open slots and 0 for closed slots ( $1 \leq i \leq P, 1 \leq r \leq P$ ). Similarly let $x=x_{i j}$ represent the exit mask. When the entrance mask is in position 1 and the exit mask is in position $j$, the detector measurement $\eta_{i j}$ is

Mercury Emission Spectrum - Monochromator


Figure 2-4. Comparison spectrum of the mercury emission lines in the $1.4-1.8 \mu \mathrm{~m}$ region: ( a , bottom) as obtained in the Hadamard-transform mode, ( $b$, top) as obtained under identical conditions using the same optical system as a conventional monochromator. This figure is taken from Decker, 1971 b .


Figure 2-5. Schematic representation of DHTS.

$$
\begin{equation*}
n_{i j}={\underset{r}{\Sigma}=1}_{\stackrel{p}{\Sigma} \underset{s}{N} \varepsilon_{i r} \psi_{r s} x_{s j}+v_{i j},{ }^{N},} \tag{2-11}
\end{equation*}
$$

where $\psi_{r s}$ is the spectral element produced by radiation passing through the $r^{\text {th }}$ entrance slot and the $s^{\text {th }}$ exit slot, $v_{i j}$ is the noise in the $(1, j)^{\text {th }}$ measurement; it has the following properties:

$$
\left\langle v_{i j}\right\rangle=0 \quad\left\langle v_{i j}, v_{k \ell}\right\rangle=\sigma^{2} \delta_{i k} \delta_{j \ell}
$$

If the instrument has no optical magnification, the spectrum of radiation that passes solely through the $r^{\text {th }}$ entrance slot to first order is shifted by $r$ spectral channels from the spectrum passing solely through the first entrance slot. Hence, only $\mathrm{P} \div \mathrm{N}-\mathrm{I}$ distinct spectral elements exist:

$$
\psi_{-(P-1)}, \cdots \psi_{-1}, \psi_{0}, \psi_{1}, \ldots \psi_{N-1}
$$

where

$$
\psi_{r s} \equiv \psi_{r-s} \equiv \psi_{t} \quad(t=r-s)
$$

In matrix notation one may write

$$
\begin{equation*}
\underline{\underline{n}}=\underline{E} \underline{\underline{w}} \underline{X}^{T}+\underline{v} \tag{2-12}
\end{equation*}
$$

Employing the same analysis as one does for the HTS, i.e. using the unbiased condivion $\langle\underline{\psi}\rangle=\Psi$ and the properties of $\underline{v}$,
one obtains

$$
\hat{\Psi}=\varepsilon^{-1} n\left(x^{T}\right)^{-1}
$$

where

$$
\begin{array}{ccc}
\hat{\psi}_{0} \cdots \cdots \cdots & \hat{\psi}_{-N+1} \\
\hat{\psi}= & \hat{\psi}_{1} \cdots \cdots \cdots & \hat{\psi}_{-N} \\
\vdots & \hat{\psi}_{\underline{P}-1} & \hat{\psi}_{P-2} \cdots \cdots \cdots
\end{array}
$$

Each row $i$ of $\hat{\Psi}$ represents a spectrum at the exit mask for radiation that enters the instrument through the $i^{\text {th }}$ entrance position. Hence the $j^{\text {th }}$ diagonal gives a one-dimensional spatial picture across the entrance aperture for the spectral element $j$.

One may obtain an average spectrum ${\underset{\sim}{i}}^{i}$ by averaging all the elements in each diagonal.

$$
\begin{aligned}
\hat{\psi}_{i} & =\frac{1}{N-|t|} \sum_{r=1}^{P} \psi_{r, r-t} & & t \geq 0 \\
& =\frac{1}{N-|t|} \sum_{r=1}^{P} \psi_{r, r-t} & & t<0
\end{aligned}
$$

Harwit et al (1970) showed that if both the entrance and exit masks are $S$ matrices and we define

$$
\sigma_{t}^{2}=\left\langle\left(\underline{\Psi}_{t}-\hat{\Psi}_{t}\right)^{\dot{2}}\right\rangle
$$

Then

$$
\begin{align*}
\sigma_{t}^{2}= & \frac{16}{(N+1)} \frac{N^{2}-1}{N-|t|} \cdot \sigma^{2} \\
& i \frac{16 \sigma^{2}}{(N-|t|) N^{2}} \quad \text { for } N \text { large } \tag{2-13}
\end{align*}
$$

where

$$
t \quad=\quad-(N-1), \ldots .(N-1)
$$

If the total mean square error for the unknown is

$$
\varepsilon=\frac{t=\frac{N-1}{2}}{t=\frac{\Sigma N-1}{2}} \sigma_{t}^{2}
$$

where one sums only the central element, then for the S-code

$$
\varepsilon=\sigma^{2}\left[\frac{22.18}{N} \because 0\left(\frac{1}{N^{2}}\right)\right] \quad N \text { large }
$$

where. $\sigma^{2}=$ constant $\frac{N}{T}$.
There are two points that should be made about the DHTS.
(1) It has not been shown that Hadamard codes are the best codes for such an instrument. In fact some evidence suggests that Hadamard codes are not precisely optimum for this "twoended" operation (Harwit et al, 19740). (2) For PxN data points the spectrum yields only $P+N-I$ spectral elements, plus a onedimensional image. It is also possible to reconstruct the ( $\mathrm{P}+\mathrm{N}-1$ ) elements with ( $\mathrm{P}+\mathrm{N}-\mathrm{l}$ ) data points only (Harwit et al, 1974b). Fig. (2-6) gives a 15 element cyclic S-matrix code for the entrance mask.


## 111101011001000

Figure 2-6. The 29 entrance slit mask and the 15-element $\underline{S}$ code.

Table 2-2 compares three aifferent grating spectrometers. The first column represents the conventional single entrance and exit slot instrument. $N$ measurements are made in time $T$, with a mean square error $\sigma^{2}$ in each. The second column is for a singly multiplexed instrument with an exit masis $S$, and is taken from Sloane et al (1969). The last column is for the doubly multiplexed system, using Equation (2-13) for $\sigma_{t}^{2}$, and has been multiplied by a factor of $N$ to allow for having to. make $N^{2}$ measurements in time $T$.

Table 2-2

|  | NO MASK | $\cdot \operatorname{SHT}$ | DHT |
| :---: | :---: | :---: | :---: |
| $\Delta^{-1}$ | 1 | $\frac{\sqrt{N}}{2}$ | $\frac{N}{\sqrt{22.2}}$ |

## (E) Errors in Hadamard Spectroscopy

During the manufacture of the masks, whether by deposition of metal or by removal of metal through an etching process, 1t is possible to obtain a systematic error that leaves each of the opaque portions of the mask either too wide or too narrow by a.fixed amount. This will cause a systematic variation in signal passing through the slit. For example if the open sist is too narrow by a fixed amount $\varepsilon$, the light passing through an open slit position will be

$$
\begin{aligned}
& \text { Io when the open slit is bounded by two open } \\
& \text { slits. . }
\end{aligned}
$$

$I_{0}(I-\varepsilon)$ when the open silit is bounded by one open slit and one closed slit.
$I_{0}(1-2 \varepsilon)$ when the open slit is bounded by two closed slits.

A similar analysis holds for open silts that are too wide, except that the minus sign in these expressions is replaced by a plus sign.

The spectrum of a single (spectral line resulting from such imperfect masks) is remarkably simple (Tai et al, 1975 b). Independent of the particular S-matrix mask to be used, there are always precisely four false blips present in the final spectrum. The amplitude of these blips is always the same for a fixed narrowing or widening of the transmitting slits. Two of the blips always surround the main spectral line, and a pair of adjacent blips always are some distance removed from that Ine. For the 255 element S-matrix, these two are located 24 and 25 elements away to the left of the parent line. The amplitude of the displaced blips is positive when the transparent slits are too wide and is negative when the slits are too narrow. In contrast, the two blips surrounding the parent line always are positive. Figure (2-7) shows the negative features accompanying the $1.7 \mu \mathrm{~m}$ mercury vapor doublet and the computer simulation of a pure spectral line input and its distorted spectrum. For the general case the reader may refer to Tai et al (1975 b) 。


Figure 2-7. (a) Spectrum of the $1.7 \mu m$ mercury vapor doublet showing negative peaks to the left at the emission peaks; (b) Shows the response we would obtain to a single spectral line with a perfect mask; (c) Shows the response for a single line with the radiation simulated as passing through a mask with slits too narrow because each opaque mask element protrudes into the adjacent transparent slot by a tenth of a slot width; (d) Shows the effect of simulating slits that are systematically too wide. Note that the main spectral line has been placed in different positions for the synthetic runs (b), (c), and (d).

## CHAPTER III

## INSTRUMENTATION

## (A) Multislit Spectrometer

A conventional spectrometer has four essential elements, an entrance slit, 2 dispersive device such as a grating or prism, a set of imaging optics, and an exit slit.

Such a spectrometer has two important parameters. The first is the "resolution" $R$, which is a measure of how well the spectrometer can separate two neighboring lines. The second parameter is the "throughput" E. This is a measure of the light gathering capability of the system. The two parameters, $R$ and $E$, are lumped together into what is called "quminosity" J, defined as (Vanasse, 1974).

$$
I=E \cdot R \cdot
$$

For a conventional grating spectrometer having a grating of area $A_{5}$ given by $W H$, where $W$ and $H$ are the width and height respectively of the grating, the throughput is determined by the product of $A_{g}$ with the solid angle a subtended by the slit at the collimating mirror (or lens). The solid angle is given by

$$
\Omega=\frac{\dot{W} \cdot I}{F^{2}}
$$

Where $w$ and 1 are the width and height respectively of the slit
and $F$ is the focal length of the collimating mirror

$$
\begin{equation*}
E \sim W \cdot \mathrm{H} \cdot \frac{\mathrm{~W} \cdot \mathrm{~h}}{\mathbb{F}^{2}} . \tag{3-1}
\end{equation*}
$$

The resolution of this instrument is

$$
\begin{align*}
\mathrm{R} & =\frac{\lambda}{\Delta \lambda} \\
& =\mathrm{nN} \\
& =\mathrm{n} \cdot \frac{\mathrm{~W}}{\mathrm{~d}} \tag{3-2}
\end{align*}
$$

where $\lambda$ is the wavelength, $\Delta \lambda$ the closest wavelength that can be separated, $n$ the order, $N$ the total number of lines on the grating, $W$ the width of the grating and $\overline{0}$ the spacing between rulings.

Since $d \sin \alpha=n \lambda$
substitute (3-2) into (3-3)

$$
\begin{equation*}
\frac{W}{R} \sin \alpha=n \lambda \tag{3-4}
\end{equation*}
$$

if the slit width is limited by diffraction, which is the minimum slit width, then

$$
\begin{equation*}
w i \frac{F \lambda}{W \cos \alpha} \tag{3-5}
\end{equation*}
$$

substituting (3-5) into (3-4) one gets

$$
R \quad i \frac{F}{w} \text { an } \alpha
$$

Comparing equation (3-1) and (3-6) one sees immediately that, for a fixed grating area $\mathrm{W} \cdot \mathrm{H}$, and fixed optical system, $E$ is proportional to the slit width $w$ and $R$ is inversely proportional to the slit width w. This means that an increase in luminosity of the system by increasing the slit width is made at the sacrifice of resolution, and vice versa.

From (3-1) and (3-6) one obtains

$$
\begin{array}{llll}
L & \sim & E \cdot R \\
& i & W \cdot H \cdot \frac{I}{F}
\end{array}
$$

Another feature of a conventional spectrometer is that it transmits only one narrow spectral range of light to the detector, and all other spectral elements are wasted. As a resuit, the instrument is inefficient.

Within the past two decades there has been much research done in an effort to design new spectrometric systems with a view to maximizing the luminosity L , and to observe a number of spectral elements simultaneously. This can provide a mulltiplex advantage, or a wide aperture advantage. Two quite distinct modulation techniques have been employed in the past. The first depends on the wave nature of radiation, and makes use of interferometry. The Fabry-Perot interferometer, Michelson interferometer, and Mach-Zehnder interferometer (Jacquinot, 1954, 1960; Vanasse and Sakai, 1967) are instru-
ments of this type. The other technique employs dispersing spectrometers in which entrance and exit slits are replaced by opaque or transmitting masks. Golay's.multislit spectrometer, Girard's Grill spectrometer and Hademard spectrometers (Harwit et al, 1974a) are representative of these instruments.

A spectrometer, whether interferometric os mask-multiplexed, yields a multiplex advantage mainly for detector noise or amplifier noise limited applications. In these cases it can be shown that for $N$ spectral elements, one can achieve of the order $N^{\frac{7}{2}}$ improvement in the overall spectral signal-to-noise ratio, $S / \mathbb{N}$, over a conventional spectrometer (Chapter II).

For photon noise limited applications, the multiplexing advantage is cancelled by the $N$-fold increase in the photon noise attributed to the $N$-fold increase in the energy falling onto the detector. Nevertheless, for photon noise limitations, the throughput advantage can still be realized. The large throughput will become a disadvantage when the noise is background noise which increases faster than the noise due to the source (Harwit et el 1974a).

In this chapter we will describe the experimental study of a Hadamard transform spectrometer (HTS) and calibration in the laboratory. Figure (3-1) is the flow chart or the whole process, starting with radiation from the telescope and ending with the output of the computer. Each component will be described.


Figure 3-1. The flow chart of the data taking process, starting with radiation from the telescope and ending with the output of the computer.

## (B) The Optics

1. Spectrometer

Fig. (3-2) shows the basic spatial design of the spectrometer. It works in the Ebert-Fastie mode. Radiation passing through the entrance aperture $S$ falls upon the spherical mirror M which, in turn, renders it parallel and directs it to the grating $G$. The dispersed radiation is collimated by the other half of the spheroid and focused upon the exit aperture s'.. A 255-slot encoding mask is located at this position. The exit focal plane is positioned in sueh a way that it bisects a $90^{\circ}$ corner reflection. The corner reflector returns the radiation through the spectrometer again and displaces the beam from the center of the principal plane to one side. This reverse process dedisperses the beam and allows it to be brought to a focus at the entrance plane. The dimensions of the focused image are roughly the same as the dimensions of the entrance aperture (Decker 1971). These procedures allow one to use a smaller detector.

A diagonal mirror at the entrance directs the dedispersed radiation to the liquid helium cooled post optics.

The entrance mask can be a single entrance slit with any width between zero to 1.5 mm for the $1 \times 255$ program, or it can be a fifteen S-matrix code with each slit having wiath 0.1 mm for the $15 \times 255$ element program. In normal use the height of of entrance slit is 3.5 mm . It can be increased up to 10 mm .
$M_{l}$ is a spherical mirror with a 49.5 cm focal length. On its back it is held in place with three teflon-tippled


Figure 3-2. Optical path through the spectrometer. The dedisperser and exit mask are shown rotated by $90^{\circ}$.
screws. Three teflon-tippled springs bear on the front edges of the mirror. This design allows one to make slight adjustments in the position of $M$ when aligning the instrument. The central part of the mirror is blocked off to reduce stray radiation.
$G$ is a $75 \mathrm{~mm} \times 75 \mathrm{~mm}$ grating $w t h 20$ lines $/ \mathrm{mm}$ and blaze angle $5^{\circ} 1 l^{\prime}$. The corresponding blaze wavelength at first order is 9.03u. Figure (3-3) is the calculated grating efficiency as a function of slit position, at two wavelengths. At $8 \mu$ the energy imaged within one slit width is $80 \%$ of the total. For $14 \mu$ the energy within one slit is $52 \%$. The grating is mounted on a yoke which allows it to be adjusted in three mutually perpendicular directions. It is located at 0.82 focal length from the primary mirror M.

All mirrors inside the spectrometer are silver coated with a protective coating of $\mathrm{SiO}_{2}$. The reflectivity of silver coating at $10 \mu$ is better than $97 \%$.

For a multiplexing spectrometer which has $N$ entrance and $N$ exit slits, one wishes to image entrance slits $S_{1}, S_{2}, \ldots .$, $S_{n}$ onto exat slits $s_{1}^{\prime}, s_{2}^{\prime}, \ldots ., S_{n}^{\prime}$ such that $S_{1}$ is imaged onto $S_{1}^{\prime}, \ldots . ., S_{n}$ onto $S_{n}^{\prime}$ at a particular wavelength $\lambda$. Let $\delta$ be the angle subtanded by $S$. Where $\delta$ and $\delta^{\prime}$ a ee measured from the center of $M$. The grating equation for imaging $S$ onto $S^{\prime}$ is

$$
\begin{equation*}
\sin a+\sin B=\frac{m \lambda}{a} \tag{3-7}
\end{equation*}
$$



Figure 3-3. Grating diffraction efficiency as a function of slit position at 8 and $14 \mu \mathrm{~m}$.

Differentiating (3-7) with respect to a gives

$$
\begin{equation*}
\frac{d B}{d a}=-\frac{\cos \alpha}{\cos B} \tag{3-8}
\end{equation*}
$$

The minus sign indicates that $\alpha$ and $\beta$ change in opposite directions. $d \alpha$ is the width of the entrance slit and $d \beta$ is the width of exit silt, so ffít unless $\alpha=\beta$.

In our spectrometer, the exit slit wiath is $0.1024 \mathrm{~mm}, 2.4 \%$ larger than the entrance slit width. This is the effect of anamorphic dispersion- a magnification produced by the grating (3-8), when the lower limit on the slit width is set by diffraction. The total number of spectral elements that can be observed simultaneously is limited by the optical aberrations of any particular optical system, which set a limit on the total useful width over which the spectrum can be displayed.

## 2. Post Optics

The post optics consist of a liquid helium cooled Arsenicdoped silicon (As:Si) detector, with appropriate optics for focusing the radiation onto the detector (Fig. 3-4). Radiation enters the evacuated dewar through a barium fluoride window, passing through a filter with pre-selected band-width. The filtered radiation then passes through a cooled barium-fluoride filter and is focused onto the detector inside the housing by a gold coated mirror. A light baffle is partitioned in front of the detector housing.

Below is a brief discussion of each of the cryogenic components


Figure 3-4. Liquid helium cooled post optics.
(a) Barium Fluoride Window

The barium fluoride window is 2 mm thick and $0.75^{\prime \prime}$ in diameter. It is used to cut off wavelengths longer than $14 \mu$. It has a transmission efficiency of around $90 \%$ out to 1 lly before it starts to cut off. At $14.291\left(700 \mathrm{~cm}^{-1}\right)$, its transmission efficiency is $50 \%$.
(b) Filters

A liquid helium cooled filter wheel with 8 iflter positions is housed inside the dewar. Table 3-1 gives a brief description of each filter.

## Table 3-1



Filter positions 1 and 2 are for testing purposes.
The filter wheel is held in place by a spring-loaded screw.

[^1],

## 

.
$\cdots \cdots+1$

The wheel was originally connected to the outside world through a stainless steel rod and could be changed to different positions by turning the rod. It was found that the stainless steel rod conducts too much heat from the outside into the helium containing can. When the stainless steel is replaced by a G-10 Glass Epoxy Lamitex rod, the holding time for the liquid helium of the dewar increases from 9 hours to 15 hours.
(c) Field Mirror

A gold coated mirror with focal length 7 mm and $\mathrm{f} / 0.41$ is used as a field mirror to focus the radiation onto the detector. The reflection efficiency for gold mirrors at $10 \mu$ is over $99 \%$. The mirror has 3 degrees of freedom of adjustment, one translational and two rotational adjustments.
(a) Liquid Helium Cooled Barium Fluoride Filter

This barium fluoride window is also used to cut off the radiation longer than $14 \mu$. Although the filter barium flueride window cuts off radiation longer than $14 \mu$ from the outside world, it will emit radiation of its own because it is at room temperature. Since all the interference filters have a long wavelength leak between $20 \mu$ to $26 \mu$, and since the detector will cut off radiation longer than $24 \mu$ only, there is still radiation from $20 \mu$ to $24 \mu$ that gets into the detector as background radiation. The insertion of the liquid helium cooled barium fluoride filter eliminates this peak. It was found to cut down the background radiation by a factor of four.
(e) Detector

An arsenic doped silicon detector with dimension $1.2 \mathrm{~mm} \pi$
3.2 mm is positioned inside a housing, which has a baffie at its entrance.

Arsenic doped silicon is a N-type extrinsic semiconductor. When the detector absorbs radiation, free carriers are provided for the conduction band, thus changing the resistence of the detector. The following discussion follows the work of Putley. For further details, one can refer to Putley (1964) and Kittel (1966).

Let $\sigma$ be the conductivity of the detector
e be the electric charge of the carrier
t be the life time of free carriers
$N$ be the density of free carriers, and
$\mu$ be the mobility of free carriers
Then,

$$
\begin{equation*}
\sigma_{D}=N e P \mu \tag{3-9}
\end{equation*}
$$

and

$$
\begin{align*}
\Delta \sigma_{D} & =\Delta J e \tau \mu \eta . \\
& =\frac{\Delta P}{h \nu} \text { e } \tau \mu \eta \tag{3-10}
\end{align*}
$$

where
$\Delta \sigma_{D}$ is the change in conductivity of the detector
$\Delta J$ is the number of photons incident in unit time
$\Delta P$ is the radiation power incident
$v$ is the frequency of the incoming photons, and
$\eta$ is the quantum efficiency, i.e. nmuber of electrons freed per photon. .

Since

$$
\begin{equation*}
R_{D}=\frac{1}{\sigma_{D}} \frac{\ell}{A} \tag{3-11}
\end{equation*}
$$

where $R_{D}$ is the resistance of the detector
\& is the length of the detector, and
A is the area of the detector
Then

$$
\begin{align*}
\Delta R_{D} & =-\frac{\ell}{A} \frac{\Delta \sigma_{D}}{\sigma_{D}^{2}} \\
& =-\frac{\ell}{A} \frac{\Delta P}{h \nu} \frac{\eta}{N^{2} e \mu \tau} \tag{3-12}
\end{align*}
$$

Let

$$
\begin{equation*}
I_{D}=\frac{V_{B}}{R_{D}} \tag{3-13}
\end{equation*}
$$

where $I_{D}$ is the detector current, and

$$
V_{B} \text { is the bias voltage across the detector }
$$

Then

$$
\begin{align*}
\Delta I_{D} & =-\frac{V_{B}}{R_{D}} \Delta R_{D} \\
& =\frac{V_{B}}{R_{D}} \frac{\ell}{A} \frac{\Delta P}{h \nu} \frac{\eta}{N^{2} e \mu \tau} \tag{3-14}
\end{align*}
$$

Let

$$
\begin{align*}
V_{O} & =I_{D} R_{L} \\
& =\frac{R_{L}}{R_{D}} V_{B} \tag{3-15}
\end{align*}
$$

where $V_{0}$ is the voltage across the load resistor $R_{\text {I }}$ is the load resistance
Then

$$
\begin{align*}
\Delta V_{O} & =\Delta I_{D} R_{L} \\
& =R_{L} V_{B} \frac{\Delta P}{h \nu} \frac{A}{\ell} \cdot n \dot{e} \mu \tau \tag{3-16}
\end{align*}
$$

From equation (3-16) one can calculate $\Delta P$ from $\Delta V_{0}$.
(f) Procedures for Alignment of the Optics
i) Place all components in their respective positions and line them up visually. Be sure there is no mechanical binding in the mask and in the driving mechanism.
ii) Using a laser, put the spot from the entrance slot on the middie of the grating. It is suggested that only one entrance slot be used.

1i1) Adjust the grating tilt until the line of dispersed dots exits at the proper position at exit. As the grating is rotated, this line of spots should remain level, not displaced normal to itself.
iv) Put one half of the dedispersing mirror combination in place. Use a $I$ square to line it up roughly. At this point, use a mercury emission lamp with proper f-number to simulate the beam coming from the telescope. A number of colored image of the single entrance slot will be seen at the exit.
v) Adjust the spherical mirror for coarse adjustment and the position of the dedispersing mirror as a fine adjustment to bring the image to a focus on the exit plane.
vi) Adjust the grating position in its yoke until the
color image from the mercury lamp is parallel to the exit slit length.
vi1) Adjust the angle of the dedisperser so that the color image reflected by it is perpendicular to the exit mask. viii). Put in the other half of the dedisperser and line 1t up at an angle so the radiation falls back upon the grating. Adjust with fine adjustment screws so the grating is fully illuminated. The image of the grating will appear on itself when viewed from the diagonal, $45^{\circ}$, mirror which diverts the radiation to the dewar.
ix) Place the dewar on the spectrometer using ${ }_{4}$ " spacers to represent the thickness of the dewar bottom cover. Adjust the $45^{\circ}$ mirror so that the dedispersed image (with color) Ialls on the center of the filter on the filter wheel.
x) Turn the filter wheel to position one (no filter), so that radiation can fall on the field mirror. Adjust the field mirror until the dedispersed radiation impinges upon the detector. Be sure that all the light falls onto the detector. Be sure that the mirrors accept all the radiation.
xi) Insert the housing. Be sure that the incoming radiation is clear of the housing.
xii) Put in the liquid helium shield, and the radiation shield. Put on the nose. Use $G E$ varnish and aluminum foil to reduce openings in the baffles so that they will transmit only the bright white fringes.
xiI1) When the spectrometer is on the telescope, maximize the signal by tilting and rotating the dewar.

## (c) The Electronics

The data-taking process is controlled electronically to ensure a smooth process. The operator only needs to turn the switch on. The spectrometer will then automatically take date in, process it, and stop at the end of the transform indicated by the operator. All the operator has to do in the whole observation is to keep the astronomical object in the beam. Figure 3-5 shows the block diagram of electronic and computer set up. The following are brief descriptions of the electronic parts incorporated in the system.

## 1. Alignment Sensor

The alignment sensor (figure. 3-6) is used to synchronize a Monsanto electronic counter, and the computer with the spectrometer. The circuit is shown in figure. (3-6). The exit mask is continuousiy moving. When the exit mask is at its starting position, i.e. the first 255 slots are at the exit aperture, a light pulse goes through an alignment slot on the exit mask and is detected by a photo-cell on the other side of the exit mask. Two transistors amplify the output light curve and two IC chips change the light curve into an alignment pulse. This alignment pulse, through the drive unit, readies the counter for counting, readies the computer to accept data, and to turn on an indicator light showing that the system is taking data. One can adjust the starting position of the exit mask by adjusting the intensity of the light. After 255 data points have been obtained, the exit mask is at its other end, and another alignment pulse turns off the counter and the indicator light.


Pigure 3-5. HTS drive unit block diagram.


Figure 3-6. HTS alignment circuit.

ORIGLNAL PaGE IS
DNGOR QUALITY

The computer after taking 255 readings checks that the indicator light is off. This step ensures the synchronization of computer and spectrometer.
2. Drive Unit

A drive unit (Fig. 3-7) is used to drive the entrance and exit masks of the spectrometer. It can be set to be adjusted by pulse streams at $100 \mathrm{~Hz}, 200 \mathrm{~Hz}$, or 400 Hz . The unit performs the following functions:
(a) It receives an alignment pulse from the sensor circuit (18) and generates a pulse to reset the counter for counting(17). The pulse will also ready the computer for taking the data.
(b) It drives the exit mask in a continuous mode at a displacement rate of one slot for every 41 pulses(18).
(c) After each set of 4 pulses the unit instructs the the mini-computer to read the integrated signal off the counter and then reset the counter for the next data integration.
(d) After 255 reset pulse the unit advances the entrances mask by one slot by sending the entrance mask advance motor 40 pulses (11).
3. Preamplifier

The circuit (Fig. 3-8) shows a transimpedance amplifier implemented with a Burr Brown operational amplifier. The circuit has the advantage of high speed, low susceptibility to microphonics, and detector operation at constant voltage with a high resistance load resistor.

Neglecting the voltage noire and current noise in the


Figure 3-7. Logic diagram for mask motion and data processing.

dis


Figure 3-8. Basic detector bias and preamplifier
first order approximation, the current through the detector, $I_{D}$, also goes through the load resistor $R_{F}$ because the input impedance of the operational amplifier can be taken to be very large, so

$$
\begin{aligned}
V_{O} & =I_{D} \stackrel{R}{F} \\
& =V_{B} \frac{R_{F}}{R_{D}}
\end{aligned}
$$

where $V_{0}$ is the output voltage,
$V_{B}$ is the constant bias voltage, and
$R$ is the load resistance
(D) Laboratory Calibration

## 1. Calibration of Post Optics

Liquid nitrogen is used to calibrate the efficiency and sensitivity of the post optics. Liquid nitrogen is in a dewar with black paper along the wall to simulate a blackbody. Through a chopping device, the post optics will alternately see radiation from the liquid nitrogen and from the room. The difference between these two radiations gives the A.C. signal. D.C. measurements are obtained by putting liquid nitrogen directiy in front of the dewar window. The following are the results of the calibration:

| Dewar profile: | $f_{\mathrm{H}}=7.6$ |
| :--- | :--- |
|  |  |
| Wavelength region: | $f_{V}=10.3$ |
|  | $8.7 \mu-11.1 \mu$ |


where $P_{B G}$ is the D.C. power
$v$ is the frequency that is assumed to be $10 \mathrm{H}_{\mathrm{z}}$.
The system is a factor of 3.57 away from background imited.
2. Test of the Spectrometer

A mercury vapor lamp with emission at $1.7 \mu$ is used with the spectrometer to test the computer program. A PbS detector and an appropriate blocking filter isolates the $1.7 \mu$ doublet of mercury. The slit width and length for each mask is 0.15 mm and 3.5 mm . Fig. (3-9) Is the mercury vapor spectrum at $1.7 \mu$ for the $1 \times 255$ mode. Fig. (3-10) is the mercury vapor spectrum


Figure 3-9. Spectrum of the mercury vapor I.7 7 m line using the lx255 mode.
for $15 \times 255$ mode. Figure (3-10a) shows the eighth of a series of iffteen individual spectra. Figure (3-10b) shows an average of all fiffeen spectra, and ( $3-10 c$ ) shows all 15 spectra, each spectrum being displaced vertically from the next. The diagonel pattern near the right-hand edge represents a displacement of the peak between successive spectra. This represents the actual shift in spectral range between adjacent spatial elements.

Once it was clear that the instrument with the computer program worked properly in the $1.7 \mu$ region, the spectrometer was tested with the cryogenically cooled, arsenic-doped silicon detector. The transmission spectrum of polystyrene with a soldering fron as the source was obtained. The shap ef the fillter profile and the transmission spectrum of polystyrene showed thet the instrument worked in the $10 \mu$ region.

The wavelength calibration of the spectrometer is obtained by comparing the polystyrene transmission spectrum obtained by the spectrometer and the spectrum obtained by a Perkin-Elmen monochromator. The wavelength calibration is then checked against the moon spectra at $9.5 \mu$ where the atmosphere has strong absorption features.

(b).

(c)

Figure 3-10.
Calibration spectra obtained for the mercury vapor emission lines at $1.69 \mu \mathrm{~m}$ and 1.71 $\mu \mathrm{m}$ : (a) The eighth of a series of fifteen individual spectra obtained;
(b) An average of all fifteen spectra;
(c) A display of the fifteen spectra, each spectrum being displaced vertically from the next. The diagonal pattern near the right-hand edge represents a displacement of the peak between successive spectra. This represents the actual shift in spectral ranze between adjacent spatial elements.

## CCMPARISONS BETWEEN FOURIER TRANSFORM AND HADAMARD TRANSFORM SPECTROSCOPY

Since the Michelson interferometer spectrometer (MIS) and Hadamard transform spectrometer (HTS) both have the multiplex advantage and the advantage of large through-put, there are a number of comparisons between them in the literature. In this chapter the comparisons are carried out in four different aspects: mathematically, computationally, optically and mechanically.
(A) Mathematically

Fourier transforms and Hadamard transforms can be viewed as using two different weighing schemes. Appendix A gives the mathematical analysis of the coding error for Fourier transform.

Let $\bar{\xi}$ be the path difference in a two beam interferometer. $P(v)$ is the power at wave number $\nu$ (i.e. the spectral density function). $v$ here is taken to be the inverse of wavelength, then $S(\xi)$, the power received for path difference $\xi$, is:

$$
\begin{array}{rlll}
S(\xi) & =\int_{0}^{\infty} P(v) \cos ^{2}(2 \pi \xi v) d v & A-1 \\
& =1 / 2 P_{0}+1 / 2 \int_{0}^{\infty} P(v) \cos (4 \pi \xi v) d v & A-2
\end{array}
$$

In the Fourier transform each spectral element can be viewed as having a phase modulation by a cosine squared term. Its argument depenas on the stepped distance and the particular
wavelength. In the Fiadamard transfiorm each spectral element is modulated by a step function of 1 and 0 for a $s$-matrix coding.

One cen ask oneself whether these modulating or encoding schemes are equally efficient?

In table 2-1 we stated that for large $N$ the multiplex advantage, or the efficiency, of the H-matrix coding of elements $I$ and -1 is $\sqrt{N}$, the $s$ matrix coding of element 1 and 0 is $\frac{\sqrt{N}}{2}$, and for a single detector MIS the Fourier coding is $\sqrt{N / 8}$. , This last figure is based on calculations shown in Appendix A. The other two values were described by Sloane et al (1968). The H-matrix is an orthornormal matrix. The element -1 means "subtrect" the radiation, while the tl element means "ada" the Padiation. No radiation is wasted and thus the coding scheme has the highest efficiency. For S-matrix coding half the slits are open, 1 , letting light pass through; and helf the slits are 0 , blocking the light. Half the radiation is therefore wasted each time and one can intuitively see why the efficiency of the $S-m a t r i x$ is only half that of the k-matrix.

Although the S-matrix is less efficient, it has the important advantage that it is cyclic; that is, the $(i+1)^{\text {th }}$ column of the S-matrix is obtained by shifting the $i^{\text {th }}$ column cyclically one place downwards. Instead of constructing a mask of $N^{2}$ sifts for $N$ spectral elements, one constructs only one mask with $2 N-I$ slits: Such a mast has two advantages. First, the cost of mesk construction is reduced by $u N / 2$ and the design of the advance mechanism is considerably simplified,
since the total wetght of the mask also decreases as $\sim \mathrm{N} / 2$. Secondly, it can be self-supporing and therefore permits the construction of a spectrometer which requires no transmission materials. In operation the mask is stepped one slit width along the length of the mask- for each successive encoding position.

In the Fourier case, equation (A-2) of Appendix A

$$
\begin{equation*}
S(\xi)=1 / 2 P_{0}+1 / 2 \int_{0}^{\infty} P(v) \cos (4 \pi \xi v) d v \tag{A-2}
\end{equation*}
$$

shows that half the power goes into $1 / 2 F_{0}$, the first term on the right hand side, which is not modulated at ail. This reduces the efficiency by a factor of two as in the S-matrix case. The other half of the power is modulated by a cosine term. Cosine modulation gives a factor $1 / \sqrt{2}$ because cosines functions do not form an orthronormal set themselves. The total Fourier modulation efficiency is therefore $1 / 2(\sqrt{N} / 2)$. Mathematically, the $S$-matrix is a factor of $\sqrt{2}$ better in SNR than the Fourier transform. The true Hadamard code, which cannot be realized experimentally, as yet, is a factor of $\sqrt{8}$ better that the Fourfer code.

## (B) Computer Requirements

Both MIS and HTS require a digital computer to decode the data. However, in the HTS case this reduces to nothing more than a series of additions and subtractions. Hence, as much as an order of magnitude in computer time can be gained over
the Fourler decoding procedure required by MIS (Decker, 1971). In addition, HTS do not have the large zero path-length spike which is characteristic of MIS, and hence can be operated with a substantially lower dynamic range.
(C) Optics

HTS attempts to "liberate" the grating instrument from its inferior position and offers a possibility to convert a conventional scanning spectrometer into a multiplex instrument at a moderate cost. However, it is also the grating and opilics that limit the capabilities of HTS.

1. Resolution

The resolution of a grating instrument is

$$
\begin{align*}
\mathrm{R} & =\frac{\lambda}{\Delta \lambda} \\
& =\mathrm{mN}  \tag{4-1}\\
& =m \frac{\mathrm{~W}}{\mathrm{~d}} \tag{4-2}
\end{align*}
$$

where m is the order of dirfraction. N is the total number of rulings in the grating. $W$ is the width of the grating. $d$ is the separation of lines.

The MIS introduces variable path differences between two interfering beams. The resolution is determined by the maximum permissible path difference in the interferogram.

$$
\begin{align*}
\Delta v & =\frac{1}{2 x}  \tag{4-3}\\
& =\frac{1}{4 \xi} \tag{4-4}
\end{align*}
$$

where x is the maximum path difference between interfering beams.
$\xi$ is the displacement of one of the two mirrors from the white light fringe position, and
$\Delta v$ is the increment in wavenumber.
Since

$$
\begin{align*}
R & =\frac{\lambda}{\Delta \lambda} \\
& =\frac{1}{\lambda \Delta \nu} \\
& =\frac{2 x}{\lambda} \tag{4-5}
\end{align*}
$$

(Mertz a, P.5)
f MIS can have a resolutuion as high as $\mathfrak{n} 0^{6}$.
2. Slit Width

In the HTS, the minimum usable slit width is determined by the diffraction pattern

$$
\begin{equation*}
w \sim \frac{\lambda}{W} F \tag{4-6}
\end{equation*}
$$

where $F$ is the focal length of the imaging mirror.
It has been argued that a boxcar profile is a poor match to a sine diffraction pattern(Hirschfeld, et al, 1973, Mertz, 1976 b). In the presence of diffraction, the transmission at each point of the mask will be a complex function of the spectral distribution, the mask position, and the relative width of the nearby, transparent and opaque slits.

One way to correct this is to make the silts, wider than the diffraction limit, allowing the mask's transmission to
approach the geometric optical limit. This way, however, not only the resolution of the instrument is reduced, but the total number $N$ of spectral elements that can be observed simultaneously, also decreases.

There is another way to look at the same problem. The grating is an operator that changes the irequency domain into the spatial domain, so that intensity as a function of frequency, after passage by the grating, becomes 2 function of position. With diffraction effects included, the intensity has a new functional dependence on distance. The Hadamart mask code and the subsequent decoding process just translate this spatial distribution function back into its spectral domain. Therefore, an intensity pattern which is complicated by the diffraction patiern, after the Hadamard coding and decoding, should still show up the same intensity pattern. Since one knows the diffraction pattern for a given optical system, the diffraction effect on the spectral intensity distribution can be computed and corrected, so that the sine ${ }^{2}$ diffraction effect would not make the slit width any larger than the diffraction limit. One point, however, should still be noted. The correction that would have to be applied is wavelength dependent because difiraction is wavelength dependent.

A similar problem exists in MIS (Stewart P.296) because the moveable mirror must be stopped when its maximum displacement is reached.

The sidelobes in the interferometric case is of the form

$$
\begin{equation*}
S\left(\omega^{\prime}\right)=\frac{\left.\sin (\omega-\omega)^{\prime}\right)}{\omega-\omega^{\prime}} \tag{4-7}
\end{equation*}
$$

$$
\omega \approx \omega^{\prime}
$$

(Stewart P.295)
which has considerably stronger side lobes than the diffraction pattern. Here, $\mathbb{T}$ is the time for the mirror to travel from one end to the other, and $\omega$ is the central frequency. Various schemes of apodization have been introduced to compensate for the side lobes in the interferometric case.
3. Multiplex Number

The total number of elements N that can be observed simultaneousiy yields the multiplex advantages. In HTS, the total aperture size is limited by aberrations largely due to off axis radiations. The aperture width is (Hirschfeld, 1973)

$$
\begin{equation*}
\mathrm{w}=F \cdot S_{W} \tag{4-8}
\end{equation*}
$$

where $F$ is the instrument focal length and $S_{W} / 2$ is a factor of the order of $0.05 \sim$ 0.J, that describes how far off axis one can go before the aberration pushes the individual slit width up to the point where no further gain in $N$ is possible. Bince the minimum slit widih, determined by diffraction effects, is $\sim$ l. 22גf, the total number $N$ is

$$
\begin{equation*}
N=\frac{F S_{W}}{I .22 \lambda f} \tag{4-9}
\end{equation*}
$$

and is of the order of $10^{3}$.
For our HTS at Cornell, we have

$$
F=49.5
$$

$$
\begin{aligned}
& S_{W} \sim 0.08 \text { (assume } \sim \text { medium value) } \\
& \lambda=10.0 \mu \mathrm{~m} \\
& f=7.5 \\
& N \sim 250
\end{aligned}
$$

Actually, however, Hertz and Flamand (1976) suggested that $S_{w}$ values $>=0.1$ may be realized in practice.

The MIS has a very large effective value cf N. This is its main gain. The total wave number range observed in MIS is

$$
\begin{aligned}
v_{\max }-v_{\min } & =\frac{1}{4 \Delta} \\
& =\frac{1}{4 \Delta \delta}
\end{aligned}
$$

where $\Delta$ is the step size of the mirror, $\sigma$ is the resolution in wave number. N for the MIS can be $10^{6}$.

## 4. Spectral Range

The MIS also has a broad free spectral range. Its range is limited by the beam splitter efficiency which usually varies approximately as the cosine of the wavelength. HTS free spectrail range is usually about one grating order. Its free spectrail range can be increased by using order sorting, but this increases the technical difficulty. Although the HTS has a smaller spectral free range, it can be set to recover only those spectral bands of particular interest throughout any. spectral regions (Decker, 1971). This is impractical with a MSS.
5. Throughput

The throughput is defined in section l-A as the product of aperture $A$ and angular acceptance $\Omega$

$$
E=A \Omega
$$

For a MIS it can be shown that $\Omega R=2 \pi$ and

$$
E_{M I S}=A_{m}=\frac{2 \pi}{R}
$$

where $R$ is the resolution of the instrument. $A_{m}$ is the area of the interferoneter mirror. Typically, $A \sim \mathrm{~cm}^{2}$, and for $R^{2} 10^{3}, E_{M I S}{ }^{26} \times 10^{-3}$.

For the HTS, from equation (3-1) one obtains

$$
\mathrm{E}_{\mathrm{HTS}}=\mathrm{A}_{\mathrm{g}}\left(\frac{\mathrm{~W} \cdot \mathrm{~h}}{\mathrm{~F}^{2}}\right)
$$

where $h$ and $w$ are slit height and width and $F$ is the focal length. For a double multiplexed spectrometer, the throughput of MIS and DHTS are about the same, of the order $10^{-2} \mathrm{~cm}^{2}$. For the same throughput, the HTS may have a worse system transmission because the HTS requires a dedispersing process.

DHTS has the additional advantage that one can construst a one dimensional picture of the source.
(D) Mechanical Requirements

The HIS mask can be made self-supporting hence no beamsplitters or transmission optics, are required. Furthermore, in the MIS, construction tolerances usually involve dimensions
and motions that have to be maintained to within fractions of wavelengths. For a HTS, the corresponding tolerances are fractions of a slit width, and these tolerances are normally two orders of magnitude more relaxed, so that this instrument will be more suitable for rugged applications and less costly.

It is clear from the above comparison that the MIS has the advantages of highest resolution, very large multiplex number and free spectral range. The HTS has the mechanical advartages and computational advantages for large N. The HTS can have on the order of $10^{3}$ spectral elements and a resolution sufficient to resolve the rotational lines of many molecules. For most IR astronomical observations this will be sufficient. Furthermore, its potential for modifying the existing sacming spectrometer at a moderate cost make this a very worthwhile field for further study.

## CHAPTER V

## PROGRAMMING FOR HADAMARD TRANSFORM <br> SPECTRAL DATA REDUCTION

An 8 K Computer Automation minicomputer model L.S.I. or model Alpha-16 can be used to interface with the output of a Monsanto scalar counter which digitized the output of the detector used with the Hadamard transform spectrometer. The computer processes each data point as soon as it recejves it and when the data gathering run is completed, the computed spectrum is also ready within a fraction of a second. The final spectrum can be displayed on a cathode ray tube for quick visualization, or printed on paper by a teletype machine for more detailed analysis. Also, it can be stored on paper tape for future use.

There are two inverse transformation programs: l x 255 for the single entrance slit and 255 exit slit Hadamard trarsform specirometer, HTS, and $15 \times 255$ for the 15 entrance slit and 255 exit slit instrument, DHTS.

## (A) HTS Program

The inverse HTS program processes the raw data obtained by the combination of a single entrance slit and 255 exit slit. This program is in double precision format. Two areas in the memory are reserved by the program to store the final spectrum. The firal spectrum can be stored in either the plus beam or the
minus beam area. The plus and minus beams are arbitrarily named.

Data can come in at a rate of 10 data points per sec, 5 data points per sec., or 2.5 data points per sec., depending on how the clock driving the spectrometer is set. Since a complete pass has 255 points, each pass takes $25.5 \mathrm{sec}, 51$ sec., or $102 \mathrm{sec} .$, depending on the data rate. Each pass ylelds one spectrum. One can take as many passes as one wants until one is satisfied with the SNR of the spectrum.

The whole program (Appendix B) is linked by the following subprograms: COMMAND, TRANSFORM, INPUT/OUTPUT, READ, CLEAR, PUNCH, GRAPH, DISPLAY, MATHMATICAL PACKAGE and MASK. The function of each subprogram is described briefly in the following sections.

1. COMMAND: This subprogram performs two function's. (a) It commands the computer to do one of the following functions: TRANSFORMATION, CLEAR, READ, PUNCH, GRAPH or DISPLAY. (b) If two distinct spectra are stored in two different beam areas, the COMMAND program can take the difference and ratio of the two spectra.
2. INVERSE TRANSFORM: This is the most important subprogram In the whole program. It will take data points from the counter, transform them and enter them into either the plus or minus beam areas, or it will read the data points from the paper tape into one beam area, transform them and enter them into the other beam area. This program is called the inverse transform, since It inverts the trar.sformation performed by the coding mask, and
yields a spectrum. The program also performs the Hadamard transform, ie. transforms the spectrum back to raw data, from either input.

The algorithm is based on the following idea: Let $\psi_{j}$ be the $j^{\text {th }}$ spectral. element and $w_{1 j}$ be the weight of the $j^{\text {th }}$ elemont of the $1^{\text {th }}$ mask. $w_{i j}$ equals 1 for transmitted radiation and 0 for blocked radiation. Each measurement then has a value

$$
n_{i}=\sum_{i=1}^{255} s_{i j} \psi_{j}+v_{i}
$$

where $v_{i}$ is the random detector noise satisfying the properties mentioned in Section II-B. S is the $255 \times 255$ matrix. $n_{1}$ is the $i^{\text {th }}$ data point entered into the computer. The computer's $j o b$ is to decode $n_{i}$ to reconstruct the original spectral values $\psi_{j}$. Therefore

$$
\hat{\psi}_{j}=\sum_{i=1}^{255} s_{j i}^{-1} n_{i}
$$

where $\hat{\psi}_{j}$ is the unbiased estimate of $\psi_{j}$ and $\underline{S}^{-1}$ is the inverse of the $S$ matrix.
According to the relation

$$
\underline{s}^{-1}=\frac{2}{N}(2 \underline{s}-\underline{J})
$$

one obtains $\underline{S}^{-1}$ by keeping all +I's in the S-matrix and replacing all 0's by -1 . The matrix obtained in this way is the

Inverse matrix of $\underline{S}$ except for a constant factor $\frac{2}{255}$, which only gives a different normalization.

To reconstruct the spectral values $\psi_{j}$ one needs to add or subtract each measured value to $\eta_{i}$ different bins, according to whether $\underline{S}^{-1}$ is pius or minus. Fig. (5-1) is a flow chart for the $1 \times 255$ transform program.

By a Hadamard transform we mean a program that transforms the spectrum back to its raw data*. This procedure is useful because by inspecting the raw data display which usually appears quite smooth, any bad data point can be easily identified, and for example, replaced by the average of its two adjacent data points. This procedure will improve the final spectrum.

The Hadamard transform turns out to be extremely easy. All one has to do is to change one statement in the inverse transform program. When $S_{i j}^{-1}$ is -1 , instead of negating the data, one just sets it to zero.

Data points are taken both with the exit mask moving in a forward and in a reverse direction. The inverse transform program takes care that when the exit mask moves in the forward direction, the spectrum is transformed into the plus beam area. When the exit mask moves in the reverse direction, the final spectrum is stored in the minus area. Not adding the

[^2]

Figure 5-1. The flow chart of the Ix255 inverse transform program.

forward and backward spectrum eliminates a degradation of the final spectrum due to any asymmetry between the data taking for different directions of motion of the mask.
3. INPUT/OUTPUT: This program links up the computer, the teletype and high speed reader. It consists of the following functions: Keyboard Input, Paper Tape Input, Output to Teletype, Output Text from Buffer, Output Floating Point Number, Wait for Execute Signal, Command Error Exit, Carriage ReturnLine Feed.
4. READ, CLEAR, PUNCH: This program reads the spectrum from the paper tape into either plus or minus beam areas for further manipution, or punches the spectrum out from the beam area; it also can clear the beam area. The speed of teletype for reading is 100 words per sec. Hence it takes about 12 min. to read the spectrum. Punching has the same rate.
5. GRAPH: This program plots the graph on teletype paper, with its numerical value in floating point format. This procedure offers one the chance to inspect the spectrum in detail if it is needed. It takes about fifteen to twenty minutes to finish a spectrum, depending on the complexity of the spectrum.
6. CRT: A cathode ray display is interfaced with the output of the computer. It takes about 2 sec . to display the spectrum, with a factor of 5 higher resolution than the graph printed by the teletype on paper. One can display the spectrum at the end of any pass to see how good it is.
7. MATHMATICAL PASKAGE: This package is supplied by the Computer Automation library tape, with a little modification
from our own on its double precision part.
8. MASK: This part contains the $\underline{S}^{-1}$ matrix, the 255 elements exhibited in the first mask position plus an additional 254 elements representing the further cycling of this mask.
(B) DHTS

The doubly encoded Hadamard transform program processes the data obtained by the various combinations of fifteen entrance slots and 255 exit slots. It is a single precision program. It can accept data at a rate of 5 data points per sec. and 2.5 data points per sec. on ${ }^{\circ}$ hecause it takes a longer time to process each data F . We whe transform takes about 14 minutes. The final um consists of 15 separate spectra, representing a one-dimensional color picture across the spectrometer entrance aperture. Each separate pectrum contains 255 spectral elements. The program can co-add all fifteen separate spectra yielding a sum spectrum with improved SNR.

The program consists of the following subprograms: COMMAND, TRANSFORM, DATA, INPUT/OUTPUT, READ, CLEAR, PUNCH, GRAPH, DISPLAY, ENTRANCE MASK, EXP ppencix C). Since most of the subprograms are Paso le same function as their counterpart in the $1 \times 255 \mathrm{c}=\mathrm{pt}$ written in single precision format, their descr* $\because \quad$ - 1 not be repeated here. Only the TRANSFORM, DATA, oni "....... programs will be discussed because they are different from those in the $1 \times 255$ scheme.

1. INVERSE TRANSFORM: The program can accept data eigher from the counter or from paper tape. In order to eliminate any asymmetry due to the di: Serent directions of motion of the exit mask, the computer will accept data only when the mask is moving in a given direction, either forward or backward, depending on the operator. If one wants to save time, one can still choose the mode in which the computer will accept data in both directions of mask motion. Hence, the program provides six modes for operation: accepting data from the counter, in the forward, backward, or both directions, and accepting data stored on the paper tape, in the forward, backward and both directions. Figure (5-2) shows the flow chart for $15 \times 255$ program.

Let both the entrance and the exit masks be linear arrays encoded by Reed-Muller codes. Then the matrix of spatialspectral elements $\psi$ is related to the matrix of measurements $n$ by

$$
\underline{s} \psi \underline{S}=\underline{\eta}
$$

To obtain the spatial-spectral intormation about the viewed scenc we solve this equation by premultiplying the data matrix by $\underline{S}^{-1}$ and postmultiplying by $\underline{S}^{-1}$

$$
\underline{\underline{w}}=\underline{s}^{-1} \underline{n} s^{-1}
$$

Now consider the element $\eta_{11}$. It is multiplied only by elements of the first column of $\underline{s}^{-1}$; and in turn it multiplies only the elements of the first row of $\underline{S}^{-1}$. To a given spectral-


Figure 5-2. The flow chart of the $15 \times 255$ inverse trans-
 form program.
spatial element $\psi_{1 j}$, it therefore contributes an amount $s_{i 1} \eta_{11} S_{1 j}$. But the elements $s_{i l}^{-1}$ and $s_{i j}^{-1}$ all have values, either +1 or -1 , and the result is that each element $\psi_{1 j}$ of the matrix $\psi$ receives a contribution $+_{I I}$, or $\underline{\eta}_{11}$ from the reading, $\eta_{11}$.

This procedure is generally valid. Any reading $\eta_{k d}$ will make additive contributions that can only have values $+\eta_{k \ell}$ or $-\eta_{k \ell}$ to each element $\psi_{1 j}$ of the $\psi$ matrix.

For real time decoding we therefore need the following:
(a) A memory that consists of bins containing the contributions to the elements $\psi_{i j}$ accumulated up to any given time in the cycle of measurements. For a device that can resolve $m$ spatial and $n$ spectral elements, this memory reruires mn bins and of the order of min memory words.
(b) For each acquired reading $\eta_{k \ell}$ we perform a series of additions of velues efther $+\eta_{k \ell}$ or $-\eta_{k \ell}$, one to each o: the $\psi_{i j}$ memory bins. But before that can be done, we need to decide on the assignment of + or - needed for a given bin. This is done in the following way.

We store the sequence of + and - signs in one column of $\underline{s}^{-1}$ and in one row of $\underline{S}^{-1}$ and in one cycled permutation of each of these vectors. Let us designate these signs by their positions in these two vectors, as $\underline{s}_{i}^{-1}$ and $\underline{S}_{j}^{-1}$, respectively, $1=1, \ldots m ; j=1, \ldots n$. (Since each of these sequences is cyclic it can, respectively, be brought into its kth and eth cycling position after a measurement $\eta_{k \ell}$ ). The elements of the two vectors then are multiplied in all possible combinations to
give a matrix having mn elements.

$$
s_{i j}=s_{i}^{-1} s_{j}^{-1} \quad i=1 \ldots m ; j=1 \ldots n
$$

Each element $\Sigma_{i j}$ is either + or - depending only on whether the signs $s^{-1}$ and $S_{j}^{-1}$ are similar or dissimilar for a particular combination of 1 and $j$ values.

The additions $+\eta_{k \ell}$ or $-\eta_{k \ell}$ to the bins $\psi_{i j}$ are made as successive elements, $\Sigma_{i j}$ are computed, so. that the elements $\Sigma_{i j}$ need never be stored. Figure (5-3) shows the relation of $\Sigma_{i j}$ to a superarray containign the set of all elements that are constructed at various stages of the computation.

When only a restricted number of spectral elements are of interest, we need to compute elements $\psi_{i j}$ representing only selected $j$ values. This might be useful, for example, if only certain atmospheric $\mathrm{CO}_{2}$ absorption Iines needed to be studied, and the spectral elements between were of lesser interest. In that case only $\Sigma_{k+i-I_{3} \ell+j-1}$ elements corresponding to given $j$ values need to be used, and the computing time decreases as $\mathrm{p} / \mathrm{n}$, where n is the total number of avallable spectral elements, and $p$ is the actual number of interest.

One starts with the inverse of the codes, $s^{-1}$ and $s^{-1}$, for the entrance and exit masks stored in the computer. One stores 509 elements of the exit mask, 1.e., the 255 elements exhibited in the first mask position plus an additional 254 elements representing the further cycling of this mask. Similarly one stores twenty-nine elements for the entrance mask,


Figure 5-3. Matrices generated by the computer during the reduction of the spectral data.
representing the first fifteen elements used, plus the further cycing of fourteen elements.

For each reading $\eta_{k i}$ one essentially makes use of the matrix (figure 5-3) making use of elements k to k+14 of the stored entrance code and elements \& to $\&+254$ of the stored exit code. This matrix consists of + and - signs. When $s_{i k}^{-1}$ and $s_{l j}^{-1}$ have the same sign, both being + or both being -, the matrix position if is assigned a sign, and the reading $\eta_{k j}$ is added to the accumulatively stored value oi $\psi_{i j}$. In the elements $s_{i j}^{-1}$ and $S_{\ell j}^{-1}$ have dissimilar signs, $a-\operatorname{sign}$ is assigned to $4 j$ and the reading $\pi_{k g}$ is subtracbed from the stored $\psi$ f. values. This whole process takes 0100 msec , and is carried out while the succeeding intensity measurement is being made.

In pratice, we start with the first spatial element, $i=1$ and add or subtract the contributions to all the $\psi_{1 y}$ values, successively going from $j=1$ to $j=255$. We then repeat this procedure for $i$ values going from 2 to 15. This whole procedure is carried out while the exit musk is moving from posiiton $\ell$ to $\ell+1$ depending on whether the exit mask is moving forward or back. The entire process is then repeated for the next reaciing $\eta_{k, \ell+1}$. When the exit mask reaches its 255 th position, \& remains unchanged, but the entrance mask moves from the position $k$ to $\mathrm{k}+\mathrm{I}$.

For odd values of $k$, the exit mask moves in the direction of increasing \& values, and for even values of $k$, it moves toward decreasing values. In short, the exit mask moves back and forth as readings are taken. After the entrance mastr has
moved.through all. Its fifteen positions, and the total. 3825 . readings have been taken and added onto or subtracted from the $\psi_{i f}$ elements, the run is completed.
2. DATA: Instead of processing a data point immediately as it comes in, this program stores the data in the memory, so one can display the raw data points first, correct them if there are any obvious bad points, and then transform them. This program serves the same function as the inverse transform in the I x 255 system.
3. DISPLAY: The display program allows one to display the information in a number of different ways:
(a) One can call for the spectrum corresponding to any one of the entrance slit positions and display it individually.
(b) One can display the sum of the different spectra. In order to do this, one has to take into account that the spectrum for a given entrance slit is displaced by one spectral position from adjacent entrance slit position. In other words, the wavelength for element $\psi_{i j}^{-1}$ corresponds to the wavelength for element $\psi_{\ell+1, j+1}$, because of the slightiy displaced light paths through the spectromever.
(c) Finally one can display ail fifteen of these spectra simultaneousily, with the zero baseline of each spectrum vertically displased from the next one. While this format is somewhat crowded, it does allow a quick comparison of the individual spectra.

## (C) Correction Program:

This program is shown in Appendix $D$ written in BASIC language. It corrects the error introduced by the imperfect mask. Instead of correcting the mask which in practice is not possible, the program corrects the rinal spectrum. That is much easier.

As seen in section II-D, for any spectral line $I_{0}$, the distorted spectrum shows a line $I_{0}^{\prime}=I_{0}(I-\varepsilon)$, two positive blips with amplitude ( $1 / 2$ ) ( $\varepsilon I_{0}^{1 / 1-\varepsilon)}$ adjacent to the line on both sides, and two negative blips with same amplitude, i.e. ( $\varepsilon / 2$ ) $\left(I_{0}^{\prime} / 1-\varepsilon\right)$ at 24,25 elements to the left. The correction prom gram takes the intensity of every element, $I_{0}^{\prime}$, multiplies it by $\varepsilon / 2$, adds it to the elements 24 and 25 positions to the left, and subtracts it from the two adjacent elements, one on each side of the line. The final spectrum is complete except for a different normalization factor. This is a linearized correction procedure valid only for small values of $\varepsilon, \varepsilon \ll l$.

## ASTRONOMICAL OBSERVATION

## (A) Correction Procedure

The correction of the spectra for telluric absorption and for instrumental response is a critical procedure. the correction is carried out by comparing the source spectrum (either stellar or planetary) with a lunar on solar spectrum which is taken on the same day at an airmass as close as possible. to the star. The following procedures are used in the data reduction:
(1) Correct the raw star spectrum and lunar spectrum (or sun) for negative dip due to the imperfect mask as described in section II-D.
(2) Correct for different entrance slit width if necessary because different slit widths will give different resoIution.
(3) Most of the astronomical infrared sources to be observed are weak sources, hence a positive offset is always added to the signal to prevent the signal becoming negative. (The electronics are confused by negative signals.) The corm rection procedure shown previously also take out this offset. One can take out the offset from the raw spectrum if one knows how large the offset is. Another way to correct this is by substracting a constant intensity from the stellar spectrum until the ratio of the stellar spectrum over the Noon spectrum,
around"any large telluric absorption reigon, such as the ozone band, is optimally corrected. By optimal correction we mean that the atmospheric feature appears as neither a positive, nor a negative band. The Moon is a strong Infrared signal and does not require an offset, so the result can be used as a calibretion for base line.
(4) Align the stellar spectrum and the lunar spectrum by the telluric absorption feeture. The final stellar spectrum is obtained by taking the ratio of the stellar spectrum and the lunar spectrum and multiplying it by the black body temperature of the Moon. The lunar temperature is obtained by noting the phase angle of the lunar east limb where it has usually been observed, and extrapolating the temperature from the value given by Linsky (1973). This procedure assumes the Iunar infrared emissivity at $8-14 \mu \mathrm{~m}$ as unity, which is not true. Nuroray Et $21^{\prime \prime} \mathrm{s}$ (1970) results for the Iunar emissivity of 8-14pm region are shown in figure $(6-1)$. The observation was done from a balloon. The strong feature centered at $9.6 \mu \mathrm{~m}$ is a result of telluric ozone absorption. Nurcray's result has not been used in our analysis because in the region to be discussed, $8.5 \mu \mathrm{~m}$ I4 $\mu \mathrm{m}$, the Moon's emissivity is about constant except for the ozone absorption.

## (B) Observation of a-ortonis

- The observations of $\alpha$-orionis were carried out with the $50^{\prime \prime}$ Infrared telescope at Kitt Peak National observatory, Arizona, In Mey 1974. The Deam size $1518 \mathrm{sec} . x 47 \mathrm{sec}$. The Kitt Peak 50" telescope bolometer was used whth the Hadamard spectrometer. The dewer has a band pass of $8-14 \mu \mathrm{~m}$. The spec-
$\qquad$ $\therefore$


Figure 6-1. The spectral emissivity of various regions as calculated from the flight data (Murecray et al, 1970).
trometer operated in the $8-11 \mu m$ region with a resolution $\lambda / \Delta \lambda$ around 500. The chopping frequency was 10 cycles per second.

Three runs were taken. Each run consisted of 10 scans of the sources. Two Iunar spectra were taken on the same day for correction purposes. For the lunar 也emperature we used $383^{\circ} \mathrm{K}$. Figure ( $6-2$ ) shows the raw spectra of a-orionis and the Moon. The a-orionis spectrum is the sum of two independent rums.

Figure (6-3) shows the ratio spectrum of a-orionis corrected for lunar temperature. Except for the region immediately around the ozone band all the telluric absorption features are gone. The region between $9.35 \mu \mathrm{~m}$ to $9.7 \mu \mathrm{~m}$ is unreliable because the ozone band has a very low transmission.
$\alpha$-orionis is a late type super-giant with temperature around $3000^{\circ} \mathrm{K}$. A stellar continuum corresponding to a $3000^{\circ} \mathrm{K}$ blackbody is also shown in figure(6-3), normalized to arbitrary units. The broad emission feature around $10 \mu \mathrm{~m}$, which is due to silisate emission, is clearly shown in the spectrum. This 10 $\mu$ m 'silicate' emission feature of $\alpha$-orionis has been previousIy discussed by others.

Woolf and Ney (1969) renormalized Gillett et al's spectra (1968) of $\alpha$-arionis and interpreted the $10 \mu m$ emission as coming from circumsteliar dust which absorbs starlight and reradiates at infrared wavelengths. Since the emission is far more sharply peaked than a black body, the wavelength dependence of the emission probabiy closely mimics the wavelength dependence of the opacity of the material. In the same paper, Woolf and Ney

Relative $F$ lux



Figure 6-3. The ratio spectrum of a-orionis to the Moon corrected for lunar temperature.
also proposed that it is silicate grains which one is observing in the circumstellar dust cloud. This suggestion has been strengthened by high resolution spectra of Gamown et al (1972) with resolution $\lambda / \Delta \lambda=250$ from $850 \mathrm{~cm}^{-1}$ to $1100 \mathrm{~cm}^{-1}$. The emissivity of silicate grains should have a second peak near $20 \mu \mathrm{~m}$. This second emission feature was observed by Low and Swamy (1970) in narrow-band photometry of $\alpha$-orionis. Another supporting plece of evidence for the silicate model of the crorionis dust cloud comes from observations of siljcon monoxide (SiO). Silicon monoxide is expected to be among the most abundant molecules present in the atmospheres of cool stars of normal composition. It is also a reagent in the condensation mechanism thought to produce circumstellar silicate grains (Mass et al. 1970). The presence of silicon monoxide in a-orionis was confirmed by Cuduback et aI (1971). They observed sio absorption features around $4 \mu \mathrm{~m}$.

The silicates are expected to form from the material ejected by cool stars. Gilman (1969) calculated what solids would condense from gas of stellar composition as it moved away from a star and cooled. This is critically dependent on the ratio of oxygen to carbon in the gas. These elements first combine to form carbon monoxide; the subsequent development depends on which of the two is left over when all the other has been used up in this way. If carbon predominates, graphite will be the principal condensate, or under certain circumstances silicon carbiae. If oxygen wins, the grains which should form are the silicates of calcium, magnesium, aluminium and iron;
combinations of these are responsible for the 10 and $20 \mu \mathrm{mpec}$ tral features. Alminium and calcium silicate may be rare because of the low cosmic abundance of aluminium and calcium. Woolf and Ney (1969) expected magnesium silicate, $\mathrm{MgSiO}_{3}$, with some iron silicate, $\mathrm{FeSiO}_{3}$, to be most abundant. For recent work on dust grains one can refer to Salpeter's paper (1974 a) on the theory of nucleation and dust grains in carbon-rich stellar atmosphere and his paper (1974 b) on formation and flow of dust grains in cool stellar atmospheres.

Laboratory spectra exist for silicate absorption features (Day; 1974). Any fine feature of the astronomically observed silicate emission may be washed out by different particle sizes and shapes, uncertainty in temperature and mixture of composition. Gammon et al (1972) examined the excess in XY Seg and 0 Cet and concluded that the type of silicates involved are basic rather then acidic. Day (1974) synthesized the amorphous magnesium silicate and obtained an absorption band quite similar to the material causing the interstellar $10 \mu \mathrm{~m}$ absorption feature. He suggested that the existance of disordered structures seems a more reasonable expectation than crystalline terrestrialotype minerals. For the momnet, the nature of the silicates is certainly at an unsettled stage.

Penman (1976) had measured the middle infrared refzectivities of five silicate minerals, and used Kramers-Konig analysis to obtain the optical constants of the samples. He then used the optical constants in Mie computations of the absorption properties of very small mineral grains. The final absorption
eross-section spectra compared to the observed $10 \mu \mathrm{~min}$ silcate of the source W3/IRS5. AII the calculated spectra have sharper Peatures than the astronomical features due to the application of Mie theory. However, the hydrated silicate, Chloritite (hydrated Mg/Fe/AI silicate) and serpenlenite (hydrated $\mathrm{Mg} / \mathrm{Fe}$ silicate) fits the observed astronomicel positions correctiy. They fall almost exactiy at the center of the astronomical features.

To the author's knowledge only two spectra of a-orionis in $8-14 \mu$ exist in the Interature. Gillett et al (1968) (figure 6-4a) obtained results in the wavelength region from 2.8 to $14 \mu \mathrm{~m}$, with a resolution $\lambda / \Delta \lambda=50$. Treffers and Cohen (1973) (figure6-4b) obtained a spectrum from 8-14 m, and in the $20 \mu \mathrm{~m}$ region with resolution 1000 . Gillett's and Treffers and Cohen's spectra are shown in figure ( $6-4$ ). Compared with our result, all show the $20 \mu \mathrm{~m}$ emission feature if Gillett's black body curve is lowered instead of iening drawn tengent to the observed data at $10 \mu \mathrm{~m}$. Our spectrum shows a rather rapid dip at wavelengths beyond 10um while Tresfers and Cohen show a slower nearly constant decine. Further high resolution observations should clear this matter up. Our own instrument now operates at a resolution similar to that of Tleffers and Cohen, and if used on a telescope as large as the 120 inch Lick Observatory reflector that they used, sufficientiy high signal to noise ratios should be obtained.



Figure 6-4. (a) Low resolution spectrum taken by Gillett et a1(1969). Different symbols pepresent spectra taken on different nights. (b) High resolution spectrum taken by Treffers and Cohen (1973).
(c) Observations of Jupiter

The observations of Jupiter were also carried out with the 50" infrared telescope at Kitt Peak. The beam size is 18" $\times 47^{\prime \prime}$. The Kitt Peak bolometer assigned to the 50" telescope with band pass $8-14 \mu \mathrm{~m}$ was used with the Hadamard spectrometer. For our Jupiter observations, the spectrometer operated in the $10.8-13.4 \mu \mathrm{~m}$ region with an effective resolution $\lambda / \Delta \lambda$ around 250. The chopping frequency was 10 cycles. per second.

Two runs were taken. Each run consisted of twelve scans of the whole Jovian disk. Two lunar spectra were taken on the same day for correction purposes. For the Iunar temperature we used a value of $383^{\circ} \mathrm{K}$. Figure (6-5) shows the raw spectrum of Jupiter and the Moon. Both the Jovian and Iunar spectra are the sums of two independent runs. Figure (6-6) shows the ratio spectrum of Jupiter corrected for lunar temperature. The errows labeled by $\mathrm{H}_{2} \mathrm{O}$ show the position of telluric water vapor features. Most of the telluric features have been canceliled properly.

Jupiter is covered by clouds which in the visible part of the spectrum are seen from earth. Current models show three distinct cloud layers (figure 6-7, Ingersoll). The lowest Iayeir is water ice, with maximum density at about $270^{\circ} \mathrm{K}$. The midale cloud is solid amonfum hydrosulfide ( $\mathrm{NH}_{4} \mathrm{SH}$ ) at about $200^{\circ} \mathrm{K}$. Lews and Prinn (1970) suggested that ultraviolet ram alation from 2200 to 2700 A is not absorbed by $\mathrm{H}_{2}$, $\mathrm{He}, \mathrm{CH}_{4}$ and absorbed a little by $\mathrm{NH}_{3}$. Therefore, the radiation in this


Figure 6-5. The raw spectrum of Jupiter and the Moon.


Figure 6-6. The ratio spectrum of Jupiter to the Moon corrected for lunar temperature.


Figure 6-7. The atmospheric profile of Jupiter for a
solar-composition model.
region may reach the amontum hydrogen cloud and photolyze hydrogen sulfide there into hydrogen polysulfides ( $\mathrm{H}_{2} \mathrm{~S}_{\mathrm{x}}$ ), elemental sulfur, and ammonium polysulfides $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{\mathrm{x}}\right]$. All of these species are yellow; orange, or brown and may explain the color of zones. However, Sagan and Salpeter (1976) suggested that even under the most optimistic assumption that every $\mathrm{H}_{2} \mathrm{~S}$ photo dissociation event leads to polymerics, the implied optical depth falls short by two orders of magnitude from matching the observed values. Moreover, pure polymeric sulfur fits the observed optical properties of the Jovian red chromophores only poorly (Rages and Sagan,1977). The upper cloud is solid ammonia at around $150^{\circ} \mathrm{K}$. Solia ammonia is whitish and probably forms the white zones on the Jovian disk. The color of the Great Red Spot may be due to high altitude ultraviolet photolysis of phosphine $\left(\mathrm{PH}_{3}\right)$ into $\mathrm{P}_{2} \mathrm{H}_{4}$ and amorphous red phosphorus. The total depth of the cloud system is about 70 Km , and the pressure range probably runs from about 0.5 bar at the top to 4.5 bar at the cloud base. It is the cloud tops and above where the $10 \mu m$ infrared radiation originates. Our spectrum measures a.color temperature of $135^{\circ} \mathrm{K}$ which is consistent with Ingersoli's picture. The radiation should come from the cloud tops because the Jovian atmosphere at 10.5 to $13 \mu m$ has appreciable opacity, as discussed in the next paragraph.

The main constituents of the Jovian atmosphere are hydrogen molecules, helium molecules, methane and amonia, with minor constituents.hydrogen sulpide, water, ethane and acetylene. Table 6-1 shows their observed abundance ratio by number.

## TABLE 6~1

Solar composition atmosphere (fraction by number)

| Species | (1) | (2) |
| :--- | :--- | :--- |
| $\mathrm{H}_{2}$ | 0.886 | 0.870 |
| He | 0.112 | 0.128 |
| $\mathrm{H}_{2} \mathrm{O}$ | $1.05 \times 10^{-3}$ | $8.80 \times 10^{-4}$ |
| $\mathrm{CH}_{4}$ | $6.30 \times 10^{-4}$ | $6.17 \times 10^{-4}$ |
| $\mathrm{NH}_{3}$ | $1.52 \times 10^{-4}$ | $1.49 \times 10^{-4}$ |
| $\mathrm{H}_{2} \mathrm{~S}$ | $2.90 \times 10^{-5}$ | $2.56 \times 10^{-5}$ |

(1) Weidenschiliing and Lewis (1973).
(2) Podolak and Cameron (1974): Cameron (1973). The table is taken from Ingrosell.

The abundances of hydrogen, methane, ammonia, and helium seem consistent judged from solar atomic abundances. For detailed Information one can refer to Mcerroy (1973).

The opacity due to hydrogen molecules is caused by pressure induced dipole absorption. The hydrogen molecule has no permanent dipole moment, and consequently, no permanent dipole spectrum. Gaseous $\mathrm{H}_{2}$, however, has a weat pressure - induced dipole spectrum which absorbs significantly over the long path lengths and low pressure of the Jovian atmosphere. The induced dipole moment results from two distinct physical process (Kranendonk and Kiss, 1959). The first takes place when the permanent quadrapole moment of one molecule induces a dipole moment in another molecule by virtue of the neighbor's polarizability. This is a long range interaction. The second physical process takes place when the overlap forces of the two adjacent molecules cause an asymmetrical distortion of their electronic charge clouds. The net inducea dipole moment is modulated by the relative translational and rotational motion of the colliding pair and this modulation produces the absorption of infrared radiation. The translational spectrum is predominant at long wavelengths with its peak at $100 \mu \mathrm{~m}$ at $100^{\circ} \mathrm{K}$ (Trafton and Munch, 1969). In our wavelength region (10.5-13um) its contribution to the opacity is negligible. The rotational hydrogen collisional spectrum, however, has its peak at $17 \mu \mathrm{~m}$ and contributes a continuous opacity in our wavelength region (Th. Encrenaz, 1972).

The helium molecule also has no permanent dipole moment.

Its opacity comes from the collision with the hydrogen molecules and resembles the $\mathrm{H}_{2}-\mathrm{H}_{2}$ colilision process. The collision is less important due to the smaller abundances of helium.

Ammonia is an important source of opacity at loym under Jovian atmospheric conditions. The $10 \mu \mathrm{~m}$ band of ammonia arises from transitions through the $v_{2}$ mode. In the $v_{2}$ mode of vibration, the nitrogen atom oscillates verically relative to the plane of the hydrogen atoms (figure 6-8a). The nitrogen atom is able to penetrate through the potential barisier to the other side of the hydrogen plane. This inverted position leads to Inversion splitting of the levels of the ammonia molecuies. The splitting generates both symmetric and antisymmetric energy levels with a given vibrational quantum number.. The $10 \mu m$ band of ammonia arises from transitions from the ground vibrational state to the first excited state in the $\nu_{2}$ mode (figure 6 mb ). Another transition, from the first excited symmetric vibrational state to the second excited asymmetric state is also in loum range, but the contribution due to this "hot band" is small for the low temperature in the Jovian atmosphere.

The ammonia is clearly seen in abosrption in the spectrum. The centers of the bands are shown by the arrows labeled $\mathrm{NH}_{3}{ }^{\circ}$ The anmonia absorption has been observed by different groups. Gillett et al (1969) (figure 6-9) observed Jupiter from 2: $8-14 \mu \mathrm{~m}$ with low resolution $\lambda / \Delta \lambda=50$. Briefly, their results show the following: The spectrum has a depression at $3.3 \mu \mathrm{~m}$ caused by $\mathrm{CH}_{4}$. Solar heating of the upper atmosphere vita this band results in warming of the upper atmospheric layers. This

$\nu_{2}$ vibration


Figure 6-8. (a) Schematic representation of the $\mathrm{NH}_{3}$ molecule. The components of angular momentum and the motion in the $v_{2}$ vibrational mode are also shown. (b) Energy levels of the $v_{2}$ vibrational mode of ammonia. Superscripts a and s refer to the antisymmetric and symmetric levels which arise due to inversion splitting.


Figure 6-9. Low resolution spectrum taken by Giliett et al. (1969). Different symbols represent spectrum taken on dif--ferent nights. This figure is taken from their paper.
proceeds until energy is radiated at the same rate via the 7.7 wh band of $\mathrm{CH}_{4}$. Ammonia absorption around $10 \mu \mathrm{~m}$ was also detected. Juaging from the $\mathrm{CH}_{4}$ emssion, these authors were the first to suggest a temperature tnversion on Jupiter caused by solar heatine of the $3.3 \mu \mathrm{~m}$ band of $\mathrm{CH}_{4}$. They also showed that the $\mathrm{NH}_{3}$ band at $I 0 \mu \mathrm{~m}$ is saturated, and calculated that the $\mathrm{H}_{2}$ abundance at $12.5 \mu \mathrm{~m}$, assuming a temperature of $125^{\circ} \mathrm{K}$, is 12 km -atm. with a pressure $P_{H_{2}} \sim 1 / 4 a t m$.

Aitken and Jones (1972) obtained a Jovian spectrum from 8-13 1 m at a resolution $\lambda / \Delta \lambda n 143(f i g u r e ~ 6-10)$. The amonia absorption band is again seen. They estimated that the ammonia abundance in the band is about 2.7 cm -atm. and a lapse rate $r=\frac{\partial T}{\partial h}$ at $13 \mu \mathrm{~m}$ given $b y$. $H=-30 K$, where $H$ is the scale height ~20kin.

The most recent published infrared spectrum is by Lacy et al (1975) who used the Lick Observatory $120^{\prime \prime}$ "elescope. High resolution spectra were obtained at $890 \mathrm{~cm}^{-1}(11.24 \mu \mathrm{~m})$ with $\lambda / \Delta \lambda=1780$. Medium resolution data were observed from $1000 \mathrm{~cm}^{-1}$ to $350 \mathrm{~cm}^{-1}(10 \mathrm{n} 12.75 \mu \mathrm{~m})$ with $\lambda / \Delta \lambda$ from 250 to 333 (figure 6-11 a,b). The authors also calculated synthetic spectra, assuming that $\mathrm{NH}_{3}$ and $\mathrm{H}_{2}$ are the only sources of opacity. Theix conclusions from comparison between observed and computed spectra follow: All of the prominent ines in their observed. spectrum are saturation $\mathrm{NH}_{3}$ bands broadened to a width many times the pressure - broadened line width. The observed $135^{\circ} \mathrm{K}$ continum is primarily formed by the wings of the $\mathrm{NH}_{3}$ IIne. The $\mathrm{H}_{2}$ opacity may be important if $\mathrm{NH}_{3}$ is unsaturated


Figure 6-10. (a) Room temperature absorption spectrum or ammonia, $p=0,06$ atmos, $w=0.6 \mathrm{~cm}$ atmos. (b) Brightness temperature; (c) Surface brightness of the central region of Jupiter from 8 to $13.5 \mu \mathrm{~m}$. (Taken from Aitken and Jones).
near $135^{\circ} \mathrm{K}$. A pressure of 0.125 atm. at $135^{\circ} \mathrm{K}$ is required to form the continuum. The minimum temperature in their synthetic model is $118 \pm 5^{\circ} \mathrm{K}$ while the observed minimum temperature is $123^{\circ} \mathrm{K}$, about $5^{\circ} \mathrm{K}$ larger than the derived temperature due to incomplete resolution of the features. The lapse rate at $135^{\circ} \mathrm{K}$ is $7.5 \pm 2.5^{\circ} \mathrm{K} / \mathrm{SH}$. Gillett et al (1969) estimated the lapse rate at the $\mathrm{NH}_{3}$ saturation level is $4^{\circ} \mathrm{K} / \mathrm{SH}$. A discrepancy occurs in the comparision of the medium resolution data between 870 and $890 \mathrm{~cm}^{-1}$. In this region the Jovian spectrum seems to be depressed by about $2^{\circ} \mathrm{K}$ relative to the calculated curve. The authors suggested that it may be due to an as yet unidentified minor constituent of the Jovian atmosphere.

Our spectrum has about the same resolution as the medium spectra of Lacy et aI 's and so the two spectra can be compared. The line positions match well. The vertical matching shows a drift towards longer wavelength. Figure (6-11a) is obtained by matching points $A$ and B. The short wavelength side matches but the end of the long wavelength side is about 1.5 times higher. Also our spectrum seems to match the theoretical curve better at 870 to $890 \mathrm{~cm}^{-1}$. Figure ( $6-11 \mathrm{~b}$ ) is obtained by matching $A$, and $B^{\prime}$. Then the long wavelength side matches better than before but the short wavelength side is different. Also now our spectrum matches better with Lacy et al's observed result at $870-890 \mathrm{~cm}^{-1}$. A conclusion about the discrepancy at $870 \mathrm{~cm}^{-1}$ between Lacy's observed and calculated spectra can not be reached at present until there is a better way for matching our and Lacy's et al's spectrum. Also it is not clear


Figure 6-11a. Spectrum of the $N$ and $S$ polar regions of Jupiter at $3-4$ cm -1 resolution divided by the spectrum of the Moon. Data points are shown as solid circles, and the solid line represents the best fitting synthetic spectrum calculated from the model calculated by Lacy et al (1975) (The graph is taken from Lacy et al). The dotted curve is our observed spectrum by matching Lacy's spectrum at points $A$ and $B$.


Figure 6-11b. Same as 6-11a except matching our spectrum witn Lacy 's at $A$ : and $B^{\prime}$.

Whether the difference in matching of our spectrum and Lacy et al's between Iong wavelength and short wavelength is real or not. There could be several reasons for the difference. It could be due to the inaccuracy of the end of the spectra, because the short wavelength side is the end of our spectrum and the long wavelength side is the end of Lacy's spectrum; or it may just be due to the matching technique. More effort is needed to clearify this point.

The Finsorption due to $\mathrm{NH}_{3}$ is much less important beyond $I 2 \mu$, so one may be able to use the $H_{2}$ opacity to estimate the lapse rate in that region. The lapse rate can be estimated by the equation

$$
T_{B}\left(\lambda_{1}\right)-T_{B}\left(\lambda_{2}\right)=\frac{\Gamma H}{2} \operatorname{lu} \frac{a\left(\lambda_{1}\right)}{a\left(\lambda_{2}\right)}
$$

Where $T_{B}\left(\lambda_{1}\right)$ is the brightness temperature at $\lambda_{I}$
$T_{B}\left(\lambda_{2}\right)$ is the brightness temperature at $\lambda_{2}$
I is the lapse rate
$a\left(\lambda_{1}\right)$ is the absorption coefficient at $\lambda_{1}$
$a\left(\lambda_{2}\right)$ is the absorption coefficient at $\lambda_{2}$
$H$ is the scale height
If one chooses $\lambda_{1}=11.95, \lambda_{2}=12.34$ with measured brightness temperature $T_{1}=133.94, T_{2}=133.64, \alpha\left(\lambda_{1}\right), a\left(\lambda_{2}\right)$ are taken from Calpa and Ketebaar (1957), one obtains a result $\Gamma H=-43.2^{\circ} \mathrm{K}$ for an $H_{2}$ opacity dominated atmosphere. Gillett et al (1969) calculated the adiabatic lapse rate ( rH ) ad $=-42^{\circ} \mathrm{K}$ for an $\mathrm{H}_{2}$ atmosphere, while Aitken and Jones (1972) measured a value of $P H=-30^{\circ} \mathrm{K}$ from their speotrum. Our value seems closer to the
value calculated by Gillett rather than to Aitken's. It is emphasized here that the estimate is based on the assumption that the $H_{2}$ opacity is the dominant opacity at wavelengths $11.95 \mu$ and $12.34 \mu$, which may not be true.

Methane has a strong emission band at 7.74 but does not have any band structure in our region. Methane has two important contribution to the overall thermal structure of the Jovian atmosphere. The first one is that methane has an absorption band at $3.3 \mu \mathrm{~m}$ which absorbs solar energy and reradiates at $7.7 \mu \mathrm{~m}$ producing an inversion temperature layer with a maximum temperature of $150^{\circ} \mathrm{K}$ at an altitude $160-200 \mathrm{~km}$. Secondly, methane is photo dissociated by ultraviolet light in the upper atmosphere. This results in products such as ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$, and ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$. Strobel (1973) estimated that column densities of $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ above the cloud top are approximately $10^{21}, 3 \times 10^{16}$, $3 \times 10^{15} \mathrm{~cm}^{-2}$ respectively. $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ were first observed by Ridgway (1973) using the 60" Kitt Peak solar telescope in the $750-875 \mathrm{~cm}^{-1}$ (11.42-13.33 4 mi )range with resolution $\lambda / \Delta \lambda=770^{\circ}$ (figure 6-12a). The lines are shown in strong emission at the $140^{\circ} \mathrm{K}$ temperature. The apparent lines are superpositions of many lines, each group corresponding to a subband. Ridgway calculated that the mixing ratios are $N\left(C_{2} \mathrm{H}_{6}\right) /$ $\mathrm{N}\left(\mathrm{H}_{2}\right)=4 \times 10^{-3}$ and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right) / \mathrm{N}\left(\mathrm{H}_{2}\right)=8 \times 10^{-5}$. The ratio $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right) /$ $N\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)=50$ where Strobel predicts about 200. Combes et al (1974)'s (figure 6-12b) observation confirms the presence of very strong emission lines of $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$. The abundance of


Flgure 6-12. (a) Thermal emission spectrum of Jupiter corrected for absorption in the earth's atmosphere observed by Ridgway (1973). The dashed line is the predicted form of the $\mathrm{H}_{2}$ continuum. (b) The ratio of the Jovian spectrum to the atmospheric absorption spectrum observed by Combes et at (1974). The solid and dashed lines are the blackbody. curves at $135^{\circ} \mathrm{K}$ and $120^{\circ} \mathrm{K}$ respectively.
ethane estimated from Ridgway's spectra depends strongly on the distribution of. gas temperature, which is not well-determinded. If the temperature in the mesospheric inverssion layer turns out to have a maximum value of $150^{\circ} \mathrm{K}$, the observations indicate $n$ (Ridgway 1974) $2 \times 10^{-2} \mathrm{gm} \mathrm{cm}^{-1}$ of ethane in this high temm perature region. Sagan and Salpeter (1976) estimate the column density of ethane molecules to be $3 \times 10^{-3} \mathrm{gm} \mathrm{cm}^{-2}$ by assuming that ethane is produced by photolysis' of methane by solar ultraviolet photon and destroyed mainly by eddy diffusion into the troposphere, followed by pyrolysis in deeper, hotter layers. This would be in very serious conflict with the observations, especially since only a small fraction of the theoretical column density refer to the hotter inversion region.

The ethane emission band is also show in our spectrum (figure 6-6). In the ifgure the indicated emission line position was extrapolated from Ridgway's spectrum, and the laboratory observed position by Smith (1949) are also shown for comparison. Our positions agree with Ridgway's reasonable well, while Smith's seem displaced from ours by $0.01 \mu m$,possibly due to a uncertannty in position calibration. Only a portion of the $\mathrm{C}_{2} \mathrm{H}_{2}$ spectrum can be seen in our spectral coverage. The abundance of $\mathrm{C}_{2} \mathrm{H}_{6}$ is not estimated here because the absolute amplitude of our spectrum is not well calibrated.

Our spectrum contains both ammonia and ethane features while other odservers have not shown both. This will be useIul because one can compute the synthetic spectra incluaing both. Ammonia will provide us with information about the top
of the cloud layer while ethane provides us with the information about the inversion layer. A synthetic spectrum inciuding both ethane and acetylene would be interesting because the inclusion of these new gases would affect the models, especially around the inversion. Acetylene would appear around $13 \mu \mathrm{~m}$. The absorption of solar radiation by $\mathrm{CH}_{4}$ at $3.3 \mu \mathrm{~m}$ used to be thought to be radiated solely by $\mathrm{CH}_{4}$ at $7.7 \mu \mathrm{~m}$. The $7.7 \mu \mathrm{~m}$ emission intensity is a critical test of a temperature inversion model and the emission intensity calculated by Wallace et al (1974) is within $25 \%$ of the value observed by Glllett et al (1969). If ethane and acetylene do contribute to emission in the thermal infrared, there must be some additional source of solar absorption in order to produce the observed Inversion temperature. Additional absorption at this altitude, perhaps due to particles, is suggested by the low ultraviolet albedo of Jupiter in the wavelength region 2100 to $3600 \AA$ (Wallace, Caldwell and Savage, 1972).

Terrile and Westphal (1976) had imaged Jupiter at high spatial resolution at $8-14 \mu \mathrm{~m}$. All images reveal a belt and zone structure similar to visible photographs. In the 8- $14 \mu \mathrm{~m}$ broad-band data, belts appear to be about $2^{\circ} \mathrm{K}$ hotter than the zone. The lowest belt-zone contrast is found in the hydrogen opacity dominated region at $12.5 \mu \mathrm{~m}_{\text {, }}$ while images at $9.5 \mu \mathrm{~m}$ have the greatest contrast. This is consistant with the dynamic picture that zones are rising colums of air and belts are sinking colums oi air. Amnonia gras being carried upward in zones will freeze out and form a thick cloud on top of the zones,
giving a low infrared temperature to the zones, and the crystalized $\mathrm{NH}_{3}$ particle will be carried down to the deep atmosphers in the belt where they will get sublimated. One can look deeper into clouds in the belt because of the lack of the ammonia cloud on top of it and therefore see a higher infrared temperature. Although there are a number of high resolution spectra of good spectra for methane. The observation of methane will be interesting not only because it provides us with information about the inversion layer, it is also useful to find out the temperature profile. If the temperature profile of the Jovian atmosphere is known, one can use it to find the ammonia abundance profile. Ammonia itself is not a very good tool for probing the temperature profile because it has a low vapor pressure and its variation is very sensitive to temperature changes. Observations of methane at $3.3 \mu \mathrm{~m}$ and $7.7 \mu \mathrm{~m}$, shoula be able to accomplish this.

The Hadamard transform spectrometer described in this thesis would be able to make these observations, with small modifications that would permit observations to be made at these wavelength. In addition, observations should be undertaken at 8.0 to 9.5 microns where neither ammonia nor methane have strong absorption features. At these wavelengths one would be observing the clouds. In this 8.0 to 9.5 micron region our instrument should be able to image the bands and zones of Jupiter, to probe for spectral differences and cloud features. Such observations should increase our understanding of Jupiter's cioud structure.

## (D) Observations of Mercury

The observations of Mercury were made with the newly built Cornell 25" telescope at Mount Pleasant, Ithaca, New York. The telescope has a focal ratio $\mathbb{f} / 13.5$. The spectrometer's acceptance beam size is $7.8^{\prime \prime} \times 78$. The dewar described in section III-B was used with the spectrometer. The spectrometer operated in the $10.5 i 13 \mu m$ region with a resolution $\lambda / \Delta \lambda$ around 300. The chopping frequency was 10 cycles per second.

The observational procedure was carried out a little differentiy from the observations of $\alpha$-orionis and Jupiter. First, Sun spectra were used for correction spectra rather than Iunar spectra. There are no known molecular lines in this region. Its temperature at $11.10 \mu \mathrm{~m}$ is $5030^{\circ} \mathrm{K}$ (Saildy \& Goody). The observations were made on August 3, 1976. At that time the Sun was about an hour away from Mercury, and was observed through roughly the same air mass as Mercury. Secondly, Mercury is so faint in broad day light that we were unable to see it in visible light. The way to inind Mercury was the following: We pointed the telescope in the correct region and scanned for the infrared signal. The signal is so strong that one can see it go off scale on the symehronous demodulator. The pointing accuracy of the telescope is 6 sec . of time in right ascension and 25 sec , of arc in declination. Thirdly, since we could not see Mercury visually for tracking, we adapted a different method for tracking Mercury. Since our computer programming is set up in such a way that the data taken when the mask is moving forward and moving backward are stored in different
$\square$
areas, we only took data when the mask was moving forward. When the mask was moving backward we maximized the signal to assure correct pointing and waited for the next forward pass. Any noise introduced when moving the telescope for maximizing the signal would have gone into the backward-pass data bins. and those data points were thrown away anyway. Since each pass takes 51 sec. only, Mercury remained at essentially the same position during the forward data taking pass.

Two runs of Mercury and two runs of the sun were taken. Each run consisted of ten scans of the sources. Figure (6-13) shows the raw spectra of Mercury and the Sun. Since Ithaca has a lot of moisture in the zir auring the summer time, the correction for atmospheric features is more difficult than at Kitt Peak and is done in a different way. A constant was added to the Mercury spectra such that atmospheric features in the Mercury/Sun ratio spectrum were minimized. This step ensures that the atmospheric features are largely corrected. The Mercury spectrum which has a constant added to it was then multiplied by another constant to make its amplitude as close to that of the solar spectrum as possible. The solar spectrum was then subtracted from the modified Meroury spectrum. The multiplication of the Mercury spectrum by a constant assured that atmospheric features in the two spectra had similar amplitudes before the subtraction step. This difference spectrum was then added to a "perfect" solar spectrum whtich is calculated according to the blackbody function appropriate to the solar temperature. What one gets from these procedures is:


Figure 6-13. The raw spectra of Mercury and the Sun.

Final Mercury Spectrum
= observed corrected Mercury spectrum - observed solar spectrum + perfect solar spectrum
$=$ ("perfect" Mercury spectrum + noise in the Mercury spectrum) - ("perfect" solar spectrum + noise in the solar spectrum) + "perfeet" solar spectrum
$=$ "perfect" Mercury spectrum + (nolse in the Mercury spectrum - nolse in the solar spectrum)

Any systematic noise such as enission and absorption due to the sky or to the telescope will be subtracted away. The advantage of this method ie that the final spectrum is obtained through subtraction rather than by division. Division, in the low signal portion of the spectrum, produces deceptive high noise. spikes in the ratio spectrum. The method we have used tends to eliminate these.

Since this will be the first high resolution Mercury spectrum obteined, we will calculate Mercury's disk integrated infrared temperature and compare this temperature with the observed one. Morrison and Sagan (1967) had calculated the infrared brightness temperature of the center-of-disk as a function of phase angle and heliocentric longitude, but there is no cisk integrated infrared temperature available in the Ifterature. In the following we wIll discuss the factors that may affect the brightness temperature, and then present a method of calculatirg the disk integrated infrared brightness and compare it with our observation. A good review of thermophysics of Mexcury is given by Morrison (1970).

In 1965, Pettingill and Dyce (1965) used radar to discover that Mercury has a rotation period of 59 days, two thrids of the orbital period, instead of an 88 day synchronous rotation around the Sun. This implies that Mercury has a solar day, on the planet, about 176 terrestrial days long, equal to two orbital revolutions in three rotations. Mercury's non-synchronous rotation leads to time-dependent thermal emission of the planet due to the diurnal variation of the insolation. This diurnal variation would not happen for a synchronously rotating Mercury. The diurnal variation changes the brightness teaperature as a function of both phase angle and heliocentric longitude. It also allows a measurement of the thermal properties of Mercury's surface.

Because of the high eccentricity of Mercury's orbit, ( $e=0.2$ ), the diurnal cycle of insolation is markediy different from longitude to longitude, and can differ by a factor of 2.5 . The eccentricity enters in two ways. First, the variation in distance from the Sun produces a solar constant that varies by more than a factor of 2 from perihelion to aphelion. Second, the changing orbital angular velocity causes the apparent speed of the Sun across the sky to vary; near perihelion the angular velocity of revolution actually silghtly exceeds the angular velocity of rotation, and the apparent planetocentric solar motion is retrograde (figure 6-14, Soter and Ulrichs, 1967). The two effects of the eccentricity reinforce one another, with the larger flux coming at a time when the angular rate of the Sun across the sky is largest. The two Iongitudes ( $180^{\circ}$ apart)


Figure 6-14. Diurnal path of the Sun about Mercury, drawn to scale. The relative positions of the Sun are marked at 11 day intervals with the planet held as a fixed reference. Planeto-graphic longitude are indicated for Mercury. (Taken from Soter and Ulrichs, 1967).
that see the Sun overhead at perinelion receive more than two and a half as much energy per period as the longitude $90^{\circ}$ away, where the Sun is always small and rapidly moving while near the zenith.

Besides the insolation geometry, a possible atmosphere on Mercury will also affect the thermal emission. $\mathrm{CO}_{2}$ is a major product for a possible secondary atmosphere, furthermore, since $\mathrm{CO}_{2}$ could have been photodissociated and reduced to CO by preferential loss of oxygen, Fink et al (1973) had set up a search for a possible Mercury atmosphere of $\mathrm{CO}_{2}$ and CO . They set up an upper limst $1.0 \times 10^{-4} \mathrm{mb}$ surface pressure for $\mathrm{CO}_{2}$ and 2.0 x $10^{-5} \mathrm{mb}$ for CO . Mariner 10 's results also suggest that Mercury has no atmosphere although it may have a thin layer of He and other inert gas trapped by Mercury's magnetic field.

The optical observations of Mercury show that the integral spectral reflectivity of Mercury is quite similar to that for the integral moon (McCord and Adams, 1972). The Bond albedo of Mercury (de Vancouleurs, 1964) is 0.058.

In ous model calculation we assume the following things. This model has been described by Murdock (1974):

1. The emission from the dark side at the phase angle we observed is negilgible. On the day we made our observations, August 3, 1976, the illuminated portion amounted to 0.973 of the total disk and the dark portion was 0.017 . The dark side temperature is about $110^{\circ} \mathrm{K}$, which at $10 \mu \mathrm{~m}$ has a flux 6.7181 x $10^{-8}{\text { Watt }-\mathrm{cm}^{-2}-\mu^{-1}-\mathrm{sr}^{-1}}$. The flux for $500^{\circ} \mathrm{K}$ at $10 \mu \mathrm{~m}$ is 7.1007 x $10^{-3}$ watt $-\mathrm{cm}^{-2}-\mu^{-1}-\mathrm{sr}^{-1}$, so the contribution from the dark side
is negligible.
2. At infrared wavelengths, the radiation that reaches the observer originates very near the surface, so the infrared temm perature is assumed equal to the insolation temperature. Soter and Ultichs' (1967) results show that the day time temperature is independent of the thermal properties of the surface material and determined largely by the insolation temperature.
3. The infrared emissivity we assumed was 0.9 , which is the lunar value. We choose this value since Mercury's surface may be similar to the lunar surface.

In figure (6-15) we choose two coordinate systems on Mercury surface. The unprimed system is the "solar system" with the z-axis pointing towards the Sun. A is the subsolar point. The hemisphere above the plane BCD facing the Sun is the illuminated part. The primed system is the "earth system' with the z'-axis pointing towards the earth. $A^{\prime}$ is the subearth point. The hemisphere above the plane B'C'D' facing the earth is the portion that is being seen from earth. The two systems are different by an angle $\alpha$ with the x -axis as the common axis.

If the surface is in equilibrium with sunifght and cannot conduct heat away, the subsolar point temperature is:

$$
\begin{equation*}
\mathbb{T}_{0}=\frac{S(1-A)}{\sigma \in R^{2}} \quad 1 / 4 \tag{6-1}
\end{equation*}
$$

where $S$ is solar constant at earth, equal to $1.360 \times 10^{6} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$
A is the Bond albedo for Mercury, assumed to be 0.058 .
$\sigma$ is the stefanmboltzmann constant equal to $5.67 \times 10^{-5}$ erg cm ${ }^{-2} \mathrm{~s}^{-1}$


Fleure 5-15. Two coordinate systems on the surface of Nercury. The unprimed system is the "solar system" with the $Z$-axis pointing towards the Sun. A is the subsolar point. The primed system is the "earth system" with the Z'-axis pointing towards the earth. $A$ is the subearth point.
$\varepsilon$ is the infrared emissivity at $20 \mu m$ from the surface, assumed to be 0.9
$R$ is the distance between Mercury and the Sun in astronomical units

Mercury's subsolar point temperature varies with distance from the Sun as $\mathrm{R}^{-1 / 2}$ and therefore is a function of heliocentric longitude due to the eccentricity we discuss above.

In the unprimed system the temperature distribution on the surface will be concentric isothermal bands around the subsolar point. The temperature of a band at colatitude $\theta$ is given by

$$
\begin{equation*}
\mathbb{T}(\theta)=\mathbb{T}_{0} \cos ^{1 / 4} \theta \tag{6-2}
\end{equation*}
$$

The total intensity at any wavelength region will be composed of the contributions at that wavelength from many isothermal regions each with its own apparent area.

Since one is interested in the flux coming to the earth one will have,

$$
\begin{align*}
d F_{\lambda}^{\prime} & =I_{\lambda}\left(\theta^{\prime}, \phi^{\prime}\right) d A^{\prime}  \tag{6-3}\\
& =I_{\lambda}\left(\theta^{\prime}, \phi^{\prime}\right) r^{2} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}  \tag{6-4}\\
& =E_{\lambda}\left(\theta^{\prime}, \phi^{\prime}\right) \cos \theta^{\prime} r^{2} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime} \tag{6-5}
\end{align*}
$$

where $d F i$ is the flux at wavelength $\lambda$ coming from the area $d A^{\prime}$
$I_{\lambda}$ is the intensity at ( $\theta^{\prime}, \phi^{\prime}$ )
dA, is the differential area on Mercury
$r$ is the radius of Mercury

$$
\begin{aligned}
\Xi_{\lambda^{\prime}}\left(\theta^{\prime}, \phi^{\prime}\right)= & I_{\lambda}\left(\theta^{\prime}, \phi^{\prime}\right) / \cos \theta^{\prime} \\
& \text { is the component of flux } \\
& \text { that radiates toward the } \\
& \text { earth. }
\end{aligned}
$$

$\bar{z}_{\lambda}\left(\theta^{\prime}, \phi^{\prime}\right)$ is a complicated function of ( $\theta^{\prime}, \phi{ }^{\prime}$ ) bacause the temperature distribution is a complicated function of ( $\theta^{\circ}, \phi^{\prime}$ ). However, one can convert the system to the "sun coordinate" where $E_{\lambda}(\theta, \phi)$ is a simple function.
equation(6-5) becomes

$$
d F_{\lambda}=\Xi_{\lambda}(\theta)[\cos \theta \cos \alpha-\sin \theta \sin \phi \sin \alpha] r^{2} \sin \theta d \theta \alpha \phi
$$

where

$$
\begin{equation*}
\Xi_{\lambda}(\theta)=\frac{C_{1}}{\lambda^{5}} \frac{1}{e^{C_{2} / k T(\theta)}-1} \tag{6-8}
\end{equation*}
$$

where

$$
G_{1}=1.1909 \times 10^{4} \text { watt } \mathrm{cm}^{-1} \mu^{-1} \mathrm{sr}^{-1}
$$

$$
C_{2}=1.4388 \times 10^{4} \mu \mathrm{~K}
$$

and $T(\theta)$ is given by ( $6-2$ )
so .

$$
\begin{equation*}
F_{\lambda}=r^{2} \int d \theta \int \alpha \phi \equiv_{\lambda}(\theta)\left(\sin \theta \cos \theta \cos \alpha-\sin ^{2} \theta \sin \phi \sin \alpha\right) \tag{6-9}
\end{equation*}
$$

The integral ( $6-9$ ) can be separated into two parts, for $\theta \leq \theta$ where $\theta=\frac{\pi}{2}-\infty$
is the limit of the cap shared by both the sun and the earth, 1.e. the limit of integration over at can $\phi$ go from 0 to $2 \pi$. For $\theta>\theta$, the Imit of the integral over d is constrained by

$$
\begin{align*}
& \text { Since - } \mathrm{dA} \text { : } \mathrm{dA}  \tag{6-6}\\
& \cos \theta^{\prime}=\cos \theta \cos \alpha-\sin \theta \sin \phi \sin \alpha \tag{6-7}
\end{align*}
$$

the physical condition that some part on $\phi$ that is illuminated by the Sun can not be seen from the earth.

So (6-9) becomes

$$
\begin{align*}
& F_{\lambda}=r^{2} f_{0}^{\theta} d \theta \int_{0}^{2 \pi} d \phi E_{\lambda}(\theta)\left(\sin \theta \cos \theta \cos \alpha-\sin ^{2} \alpha \sin \phi \sin \alpha\right) \\
& +r^{2} f_{\theta}^{\frac{\pi}{2}} \alpha \theta \delta_{\phi_{1}(\theta)}^{\phi_{2}(\theta)} d \phi \Xi_{\lambda}(\theta)\left(\sin \theta \cos \theta \cos \alpha-\sin ^{2} \theta \sin \phi \sin \alpha\right) \tag{6-11}
\end{align*}
$$

To find $\phi_{1}(\theta)$ and $\phi_{2}(\theta)$ one notices that $\phi$ is given when $\theta=90^{\circ}$. From (6-7)

$$
\cos \theta^{\prime}=\cos \theta \cos \alpha-\sin \theta \sin \phi \sin \alpha
$$

$$
\begin{equation*}
\theta^{\prime}=\frac{\pi}{2} \Rightarrow \sin \phi=\cot \alpha \cot \theta \tag{6-12}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi:=\sin ^{-1}(\cot \alpha \cot \theta) \tag{6-Is}
\end{equation*}
$$

Since $\phi$ will also be symmetric about the y-axis, equation (6-11) can be rewritten as:

$$
\begin{aligned}
& F_{h}=r^{2} f_{0}^{\cdot \frac{\pi}{2}-\alpha}{ }_{d \theta} \int_{0}^{2 \pi} d \dot{E_{\lambda}}(\theta)\left(\sin \theta \cos \theta \cos \alpha-\sin ^{2} \theta \sin \phi \sin \alpha\right)
\end{aligned}
$$

After evaluating the integral one obtains the following:

$$
F_{\lambda}=2 \pi r^{2} \cos \alpha\left[E_{\lambda}(\theta) \frac{\sin ^{2} \theta}{2}\right]_{0}^{\frac{\pi}{2}-\alpha}+\pi r^{2} \cos \alpha\left[E_{\lambda}(\theta) \frac{\sin ^{2} \theta}{2}\right]_{\frac{\pi}{2}-\alpha}^{\frac{\pi}{2}}
$$

$$
\begin{aligned}
& +2 r^{2} f^{\frac{\pi}{2}} \alpha \theta \sin ^{-1}(\cot \alpha \cot \theta) \sin \theta \cos \theta \cos \alpha \Xi_{\lambda}(\theta) \\
& +r^{2}\left[\overline{E_{\lambda}(\theta)\left(\cos \theta \sin ^{-2} \alpha-\cos ^{2} \theta+\sin ^{-2} \alpha \sin ^{-1} \frac{\cos \theta}{|\sin \alpha|}\right]}\right]_{\frac{\pi}{2}}^{\frac{\pi}{2}-\alpha}
\end{aligned}
$$

where

$$
\begin{equation*}
\left[\overline{\Xi_{\lambda}(\theta) \frac{\sin ^{2} \theta}{2}}\right]_{0}^{\frac{\pi}{2}-\alpha} \tag{6-15}
\end{equation*}
$$

is the mean of ( $\left.E_{\lambda}(\theta) \frac{\sin ^{2} \theta}{2}\right)$ in the interval of $\theta$ from 0 to $\frac{\pi}{2}-\alpha$. The same meaning applies to the third term of ( $6-15$ ). As a check of equation ( $6-15$ ), if $\alpha=0$, that means when subsolar point and subearth point coinside, jet $\Xi(\theta)=$ constant evaluating ( $6-15$ ) gives:

$$
F=\pi r^{2} E
$$

If $\alpha=\frac{\pi}{2}$, that means the subsolar point and subearth point are $90^{\circ}$ apart. With $\equiv(\theta)$ assumed to be constant, equation (6-15) gives

$$
F=\frac{\pi r^{2}}{2} E
$$

which is as one expects since one is seeing half of Mercury.
Equation ( $6-15$ ) can be readily integrated on a computer. $\dot{\text { It }}$ is applied to our case with the following physical parameters: Date: August 3, 1976 . Phase Angle: $53^{\circ}$

Radius vector: $0.414 \mathrm{~A} . \mathrm{U}$
Orbital longitude: $198.09^{\circ}$
Mercury perihelion point: 0.3075 A.U.
Subsolar temperature at perihelion point: $700^{\circ} \mathrm{K}$ Subsolar temperature at $\alpha=53^{\circ}: 603^{\circ} \mathrm{K}$

Equation (6-15) was computed on a LSI mini computer at each wavelength, from 10.6 to $13.2 \mu \mathrm{~m}$. The program and the result are shown in the Appendix D. The integral was divided into twenty steps. E( 0 ) was evaluated from equation (6-8)

$$
E_{\lambda}(\theta)=\frac{C_{1}}{\lambda^{5}} \frac{1}{e^{C_{2} / \operatorname{kT}(\theta)}-1}
$$

where $T(\theta)=T_{0} \cos ^{1 / 4} \theta$

The calculated spectrum is a measure of color temperature and is used to compare with the observed spectrum. Figure (6-16) shows the final Mercury spectrum conected for solar temperature, with a number of blackbody slopes shown to match. The calculated spectrum (cross) matches the blackbody temperature $525^{\circ} \mathrm{K}$, which also matches the observed spectrum. We concluded that the best fit lies in the $500^{\circ} \mathrm{K}$ region. Murdock (1974) measured a effective brightness temperature at $10.8 \mu \mathrm{~m}$ at the same phase angle to be around $650^{\circ} \mathrm{K}$. Our results disagree with his results.


Figure 6-16. The final Mercury spectrum, corrected for solar temperature, with a number of blackbody slopes shown to match.

Let $\xi$ de the path difference in a two beam interferometer. $P(v)$ is the power at wavelength v, (i.e. the spectral density function) $v$ here is taken to. be $1 / \lambda . S(\xi)$ is the power received for path difference $\xi$. Then (p. 96 Stewart)

$$
\begin{aligned}
S(\xi) & =\int_{0}^{\infty} P(v) \cos ^{2}(2 \pi \xi v) d v \\
& =I / 2 P_{0} \div 1 / 2 f_{0}^{\infty} P(v) \cos (4 \pi \xi v) d v a-2
\end{aligned}
$$

The reciprocal Fourier property is (Morse and Feshback P.454) that if

$$
F(\xi)=\sqrt{\frac{\varepsilon}{\pi}} \int_{0}^{\infty} \cos (\xi v) f(v) d v
$$

Then $f(v)=\sqrt{\frac{\Sigma}{\pi}} \int_{0}^{\infty} \cos (\xi v) F(\xi) d \xi$
which implies, neglecting the constant term, that

$$
P(v)=16 \int_{0}^{\infty} \cos (4 \pi \xi v) s(\xi) d \xi \quad A-3
$$

Suppose we take measurement at ( $N+1$ ) equally separated steps in the variable $\varepsilon$. Let the step length be 5 , then

$$
\xi=n \tau
$$

In general $\tau$ is chosen such that

$$
\tau=\frac{1}{4\left(v_{\max }-v_{\min }\right)}: \quad A-4
$$

Which, if $v_{\min } \ll v_{\max }$, effectively implies sampling twice per cycle (Stewart, p.303).

One can now write the integral for $P(v)$ as

$$
P(v)=\frac{16 \Sigma}{n=0} \tau S(n \tau) \cos (4 \pi v n \tau)
$$

Now consider frequency $v=v_{m i n}+m \delta$

$$
\text { where } \quad \delta=\frac{v_{\max }-v_{\min }}{N}
$$

and $m$ is an integer. $m=0, I \cdots N$
The $\delta P(v)$ is the power in the resolved spectral band width o about frequency $v$

$$
\delta P(v)=1 \sigma_{\tau} \sum_{n=0}^{N} S\left(n_{\tau}\right) \cos \left(4 \pi \nu n_{\tau}\right) \quad A-7
$$

but

$$
\begin{align*}
\tau \delta & =\frac{\delta}{4\left(v_{\max }-v_{\min }\right)} \\
& =\frac{\delta}{4 N \delta} \\
& =\frac{1}{4 N}
\end{align*}
$$

Therefore

$$
\delta P(v)=\frac{4}{N} \sum_{n=0}^{N} S(n t) \cos (4 \pi v n T)
$$

Writing this out in matrix form, with $\theta_{1}=4 \pi r v_{\min }, \theta_{2}=4 \pi \tau\left(v_{\min }+\delta\right)$ and with $\pi\left(v_{\text {min }}\right) \equiv \delta P\left(v_{\text {min }}\right)$ we have

or

$$
\pi=W^{-1} S
$$

$$
A-10
$$

From (2-8)

$$
\begin{aligned}
\Delta_{j} & =\left(A_{j I}+\cdot \cdot+A_{j N}\right)^{1 / 2} \\
& =\sqrt{\frac{16}{N^{2}}\left(I+\cos ^{2} \theta_{j}+\cdots+\cos ^{2} N \theta_{j}\right)^{1 / 2}} \\
& =\frac{4}{N}\left(\sum_{n=0}^{N} \cos ^{2} n \theta_{j}\right)^{1 / 2} \\
& n \frac{4}{N} \sqrt{\frac{1 N+1}{2}} \\
& \approx \sqrt{\frac{8}{N}} \quad \text { for } N \gg I \quad A-11
\end{aligned}
$$

The SNR improvement is the reciprocal of this quantity.




```
    LAP : 8D
```

    LAP : 8D
    ```
    LAP : 8D
```

    LAP : 8D
    JST GTL
    JST GTL
    JST GTL
    JST GTL
    DATA ZERO
    DATA ZERO
    DATA ZERO
    DATA ZERO
    LDA *XC CLEAR BAD ELEMENT
    ALA 1
    ALA 1
    ALA 1
    ALA 1
    ADD TP
    ADD TP
    ADD TP
    ADD TP
    TAK
    TAK
    TAK
    TAK
    ZAR
    ZAR
    ZAR
    ZAR
    STA @0
    STA @0
    STA @0
    STA @0
    STA El
STA El
STA El
STA El
GKM IMS *KC
GKM IMS *KC
GKM IMS *KC
GKM IMS *KC
IMS CNT
IMS CNT
IMS CNT
IMS CNT
JMP MLP
JMP MLP
JMP MLP
JMP MLP
LD: TP
LD: TP
LD: TP
LD: TP
JWP DKB+1
JWP DKB+1
JWP DKB+1
JWP DKB+1
OFB J5T XEQ WAIT FGR GO
JST *FUNC CALL FLNCTIGN
JST *FUNC CALL FLNCTIGN
JST *FUNC CALL FLNCTIGN
JST *FUNC CALL FLNCTIGN
JHP CMND+!
JHP CMND+!
JHP CMND+!
JHP CMND+!
TRANS REF
TRANS REF
TRANS REF
TRANS REF
READ REF
READ REF
READ REF
READ REF
GLEAR REF
GLEAR REF
GLEAR REF
GLEAR REF
PUNCH REF
PUNCH REF
PUNCH REF
PUNCH REF
GRAPH REF
GRAPH REF
GRAPH REF
GRAPH REF
FSB REF
FSB REF
FSB REF
FSB REF
FDU REF
FDU REF
FDU REF
FDU REF
CRT REF
CRT REF
CRT REF
CRT REF
TP DATA : 1400
TP DATA : 1400
TP DATA : 1400
TP DATA : 1400
FUNC DATA 0
FUNC DATA 0
FUNC DATA 0
FUNC DATA 0
ONT DATA O
ONT DATA O
ONT DATA O
ONT DATA O
MATH DATA O
MATH DATA O
MATH DATA O
MATH DATA O
STATUS CID
STATUS CID
STATUS CID
STATUS CID
ZAR
ZAR
ZAR
ZAR
JST GTL
JST GTL
JST GTL
JST GTL
DATA TATUS
DATA TATUS
DATA TATUS
DATA TATUS
JST OFPA
JST OFPA
JST OFPA
JST OFPA
NP DATA : 1000
NP DATA : 1000
NP DATA : 1000
NP DATA : 1000
ZAR
ZAR
ZAR
ZAR
JST GTL
JST GTL
JST GTL
JST GTL
DATA NMM
DATA NMM
DATA NMM
DATA NMM
JST ØFPA
JST ØFPA
JST ØFPA
JST ØFPA
NM DATA : 1200
NM DATA : 1200
NM DATA : 1200
NM DATA : 1200
JNP CNNDH1
JNP CNNDH1
JNP CNNDH1
JNP CNNDH1
KCF RES 2,0
KCF RES 2,0
KCF RES 2,0
KCF RES 2,0
NAME DATA : BDSA: 8AAO
TEXT - 'HTS: !X255*
TEXT - 'HTS: !X255*
TEXT - 'HTS: !X255*
TEXT - 'HTS: !X255*
KILL PGNIC SWITCH
KILL PGNIC SWITCH
KILL PGNIC SWITCH
KILL PGNIC SWITCH
OFB J5T XEQ WAIT FGR GO
GMM IMS *スC
GMM IMS *スC
GMM IMS *スC
GMM IMS *スC
AR
AR
AR
AR
ST DIL
ST DIL
ST DIL
ST DIL
JTM

```
            JTM
```

            JTM
    ```
            JTM
```

| 0058 | $014 F$ | $C 63 D$ |
| :--- | :--- | :--- |
| 0089 | 0150 | $F 900$ |
|  |  | 0000 |

                \(\begin{array}{lll}0119 & 016 \mathrm{D} & 4006 \\ 0119 & 016 \mathrm{E} & 0110\end{array}\)
                    \(\begin{array}{lll}0120 & 016 F & F 900 \\ & 0000\end{array}\)
                    \(\begin{array}{lll}0120 & 016 F & F 900 \\ & 0000\end{array}\)
                    \(\begin{array}{lll}0121 & 0170 & 0141 \\ 0122 & 0171 & F 900\end{array}\)
                    \(\begin{array}{lll}0121 & 0170 & 01 A 1 \\ 0122 & 0171 & F 900\end{array}\)
    $0123 \quad 0172 \quad 1000$
$\begin{array}{lll}0126 & 0175 & 0147 \\ 0127 & 0176 & F 900\end{array}$
0000
$0128 \quad 0177 \quad 1200$
$0129 \quad 0178 \quad \mathrm{~F} 673$
$01.30 \quad 0179 \quad 0000$
0131017 B 8DBA
017C 8 AAO
$0132 \cdot 017 \mathrm{D}$ C8D4
017E D3BA
$\begin{array}{lll}0104 & 015 F & \text { FBOA } \\ 0105 & 0160 & \text { FG5B }\end{array}$
01060161 TRANS
01070162
$\begin{array}{ll}0103 & 0163 \\ 0109 & 0164\end{array}$
$\begin{array}{ll}0103 & 0163 \\ 0109 & 0164\end{array}$
0110.0165
01110166
$0112 \quad 0167$
01130168
$0114 \quad 0169 \quad 1400$
$0115 \quad 0164 \quad 0000$
$\begin{array}{lll}0116 & 016 B & 0000 \\ 0117 & 0160 & 0000\end{array}$
$\begin{array}{lll}0116 & 016 B & 0000 \\ 0117 & 016 C & 0000\end{array}$
0118016 D 4006
$\begin{array}{lll}0090 & 0151 & 0197 \\ 0091 & 0152 & 5707 \\ 0002 & 0153 & 1050\end{array}$
009201531050
$0093 \quad 0154 \quad 8 \mathrm{Al4}$
009 月 01550043
009501560110
$0096 \quad 0157 \quad 900$
$0097 \quad 0.58 \quad 9 \mathrm{CO1}$
0098 O159 DFOE
$\begin{array}{lll}0100 & 015 \mathrm{~B} & \mathrm{~F} 623 \\ 0101 & 015 \mathrm{C} & \mathrm{E} 20 \mathrm{C}\end{array}$
0102 015D F201
0103 015E F900
0000
$0124 \quad 01730110$
$0125 \quad 0174 \quad F 900$
0000


| 0001 | － |  |  | NAM <br> NAM | TRANS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0002 |  |  |  |  | RTTR R |  |
| 0003 |  |  | ＋ | EKTR | DI 5P |  |
| 0004 |  |  |  | EXTR | IKB， 0 TL | FFPA CRL F，ERR |
| 0005 |  |  |  | ETR | DPACC， | 上T |
| 0006 |  |  |  | EXTR | DFN：，D | JB：，DPDI Vi，DPSM： |
| 0007 |  |  |  | EXTR | X $\mathrm{B}_{8} \times \mathrm{C}$ ， | D |
| 0008 |  |  |  | EXTR | DPFIX |  |
| 0009 | 0000 |  |  | RE | 0 |  |
| 0010 |  |  | ＊ |  |  |  |
| 0011 |  |  | ＊1X255 | HTS P | PROCESS |  |
| 0012 |  |  | ${ }^{*}{ }^{\circ}$ |  |  |  |
| 0013 | 0000 | 08.00 | TRAN 5 | ENT |  |  |
| 0014 | 0001 | E2BC |  | LDK | BPNT | 「 |
| 0015 | 0002 | 1328 |  | LLX | $!$ | INDIPECT ETT ON |
| 0016 | 0003 | 1400 |  | 50 V |  |  |
| 0017 | 0004 | $11.8 B$ |  | RPX | 1 |  |
| 0018 | 0005 | EAB8 |  | STX | BEAM |  |
| 0019 | 0006 | EA88 |  | $57 \times$ | $\mathrm{BESM}+1$ |  |
| 0020 | 0007 | B2A0 | ． | L DA | Z CT | CLEAR BUFFERS |
| 0021 | 0005 | 9 AAO |  | STA | Cin $T$ |  |
| 0022 | 0009 | E2A1 |  | L DK | NT |  |
| 0023 | O00A | 0110 |  | ZAR |  |  |
| 0024 | 000E | 9000 | CR | 57A | e0 |  |
| 0025 | OOOC | 0128 |  | IXR |  |  |
| 0026 | OOOD | DAS B |  | IMS | CNT |  |
| 0027 | OOOE | F603 |  | JMP | CRR |  |
| 0026 | OOOF | C6BF |  | L．$A P$ | ＇？${ }^{\text {a }}$ |  |
| 0029 | 0010 | F900 |  | JST | 6 6T |  |
| 0030 | 0011 | 0137 |  | DATA | MODE |  |
| 0031 | 0012 | F900 |  | ${ }^{\text {J ST }}$ | IKS |  |
| 0032 | 0013 | COCD |  | CAI | ＇M＇ | ． |
| 0033 | 0014 | F205 |  | JMP | MoN |  |
| 0034 | 0015 | COD4 |  | CAI | ＇T＇ |  |
| 0035 | 0016 | F208 |  | JMP | TAPE |  |
| 0036 | 0017 | $\mathrm{COC9}$ |  | CAI | －I＇ | － |
| 0037 | 0018 | F209 |  | JHP | IN05 |  |
| 0035 | 0019 | F900 |  | JST | ERR |  |
| 0039 | 001A | 0110 | MON | Z AR |  |  |
| 0040 | 001E | 0210 |  | CAR |  |  |
| 0041 | 0010 | 9 AAO |  | STA | TETR |  |
| 0042 | 0010 | 0110 |  | $Z A R$ |  |  |
| 0043 | OOLE | F20D |  | dil $P$ | NEXT |  |
| 0044 | 001F | 0110 | TAPE | Z AR |  |  |
| 0045 | 0020 | 9 Ag |  | STA | TETR |  |
| 0046 | 0021 | F202 |  | JMP | $T 4$ |  |
| 0047 | 0022 | C601 | INVS | $\underline{L A F}$ | 1 |  |
| 0048 | 0023 | 9199 |  | STA | TETR |  |
| 0049 | 0024 | 0108 | T 4 | 2XR |  |  |
| 0050 | 0025 | F900 |  | J ST | IKB |  |
| 0051 | 0026 | COAB | － | CAI | ＇t．＇ |  |
| 0052 | 0027 | 0.408 |  | EKR |  |  |
| 0053 | 0025 | COAD |  | CAI | 「－${ }^{\prime}$ |  |
| 0054 | 0029 | 0108 |  | ZXR |  | － |


| 0055 | D02A | EABE |  | STX | TREM |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0056 | 0023 | 0110 |  | ZAR |  |  |
| 0057 | 002C | E292 | NEXT | 1 DX | MASK |  |
| 0055 | 002D | 0128 |  | IXR |  |  |
| 0059 | 009E | 0210 |  | CAR |  | CHANGE DIRECTI ON |
| 0060 | D02F | 9A7F |  | STA | DIR |  |
| 0061 | 0030 | COFF |  | CAI | : FF |  |
| 0062 | 0031 | F203 |  | JM? | FOWD |  |
| 0063 | 0032 | 0030 |  | TXA |  |  |
| 0064 | 0033 | 8A7A |  | ADD | H255 |  |
| 0065 | 0034 | 0048 |  | TAX |  |  |
| 0066 | 0035 | EA76 | FOWD | 5TX | M SK1 |  |
| -0067 | 0036 | C7F5 |  | LAM | 245 |  |
| 0068 | 0037 | 9 A79 |  | 5TA | DCTE |  |
| 0069 | 0038 | G7FF |  |  | 255 | START DATA CGINT |
| 0070 | 0039 | 9 A76 |  | STA | DCT |  |
| 0071 | D03A | FAB1 |  | JST | TURIN DN | WAIT FER LIGHT |
| 0072 |  |  | *INPUT | LOQP |  |  |
| 0073 | 003B | FASB | ILP | JST | MBNS | INPUT |
| 0074 | 0035 | 9A6C |  | STA | CNT | \& SAVE |
| 0075 | 003D | EA6C |  | STK | $\mathrm{CNT}+1$ |  |
| 0076 | O03E | C7FF |  | $1 \mathrm{~A} \cdot \mathrm{~L}$ | 255 | SPECTRUM CGUNT |
| 0077 | 0035 | 9 A 72 | . | STA | SCT |  |
| 0078 | 0040 | B26B |  | $1 . \mathrm{DA}$ | M SK 1 | RESET MASK PGINTER |
| 0079 | 0041 | 9 ABB |  | STA | MSK2 |  |
| 0080 | 0042 | B271 |  | L DA | 13 | GET BUFFER PGINTER |
| 0051 | 0043 | 9A0F |  | STA | 1 BF |  |
| 0082 |  |  | * TRANS | FGPa | COL USIN | INPUT BUFEER |
| 0053 | 0044 | E265 | TLP | $\underline{L T}$ | $\mathrm{CNF}^{\prime 2}+1$ |  |
| 0084 | 0045 | 0110 |  | $\cdots A R$ |  |  |
| 0085 | 0046 | D366 |  | Cus | *9 5K2 |  |
| 0036 | 0047 | F206 |  | JMP | T1A |  |
| 0087 | 0048 | B274 |  | L DA | TETR |  |
| 0088 | 0049 | 2163 |  | JAL | $5+4$ |  |
| 0039 | 004A | 0110 |  | Z AR |  | . |
| 0050 | 0043 | 0108 |  | 2XR |  |  |
| 0091 | 004C | F204 |  | JnP | T1 |  |
| 0092 | 004 D | B25B | - | $1 . \mathrm{DA}$ | CAT |  |
| 0093 | 004E | F900 |  | J5T | DPN: | - |
| 0094 | 004F | F201 |  | JMP | T1 |  |
| 0095 | 0050 | B253 | T1A | L DA | CNT |  |
| 0096 | 0051 | DA5S | T1 | IMS | MSK2 |  |
| 0097 | 0052 | F900 |  | JST | DPACC | ADD |
| 0098 | 0053 | 0000 | IBP | DATA | 0 |  |
| 0099 | 0054 | C202 |  | AXI | 2 | BUTP PGINTER |
| 0100 | 0055 | EEO2 |  | STX | I BP |  |
| 0101 | 0056 | DA53 | . | IM S | SCT | DONE? |
| . 0.102 | 0057 | F613 |  | JMP | T2P | ND |
| 0103 | 0058 | E2S3 |  | L Dit | M SK 1 | YE5, MOUE COL MN |
| 0104 | 0059 | 0128 |  | IXR |  | +1IF FWD |
| 0105 | D05A | B254 |  | LDA | DIR |  |
| 0106 | 0058 | C000 |  | CAI | $0 \cdot$ | * * |
| 0107 | 0050 | C302 |  | 5KI | 2 | -IIF REV. |
| 0106 | 005D | EA4E |  | STK | MSIE |  |


| 0109 | 005E | DA52 |  | IMS | DCTE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0110 | 005F | F201 |  | JMP | $5 * 2$ |  |
| 0111 | 0060 | 4007 |  | SEL | 24,7 |  |
| 0112 | 0061 | DA4E |  | IIS | DCT | END GF ROW? |
| .0113 | 0062 | F627 |  | JMP | ILP | N0 |
| 0114 |  |  | * N ND | GF ROW | STGP TE |  |
| 0115 | 0063 | E259 |  | L DA | TET: |  |
| 0116 | 0064 | 2081 |  | J Ari | $5+2$ |  |
| 0.117 | 0065 | F2L: |  | JMP | $\operatorname{stg}$ |  |
| 0118 | 0066 | 3408 |  | USS | STGP | 55 DEWN? |
| 0119 | 0067 | 48 c 7 |  | SSN | : 67 | NO. STOP DSUN? |
| 0120 | 0065 | F206 |  | JMP | STGP | YES |
| 0121 | 0069 | FA56 |  | UST | ACC | NO. SAUE DATA |
| 0122 | 006A | E24D |  | LTH | NBEA |  |
| 0123 | 0063 | 0110 |  | ZAR |  |  |
| 0124 | .0066 | F100 |  | JWP | DI SP |  |
| 0125 | 006D | 8241 | RTTR | LDA | DIR |  |
| 0126 | 0065 | F642 |  | JMP | NEST |  |
| 0127 | 006F | E243. | 5 TBP | L DX | NI |  |
| 0128 | 0070 | C601 |  | LAP | 1 |  |
| 0129 | 0071 | F100 |  | UMP | DI SP |  |
| 0130 | 0072 | C6BF | $\operatorname{mTgP}$ | LAP | '? |  |
| 0131 | 0073 | F900 |  | J ST | 6TL | - |
| 0132 | 0074 | 0117 |  | DATA | MSG |  |
| 0133 | 0075 | F900 |  | JST | IKB |  |
| 0134 | 0076 | COCE |  | CAI | 'N: | AEDRT LAST PASS? |
| 0135 | 0077 . | F203 |  | JMP | N0" | N0 |
| 0136 | 0078 | CODP |  | CAI | ${ }^{\prime Y}$ | YES |
| 0137 | 0079 | F203 |  | JNP | YES | YES |
| 0135 | 007A | F608 |  | JMP | RTGP | WRONG ENTRS |
| 0139 | 007B | FA44 | NG | JST | ACC | SAVE DATA |
| . 0140 | 0070 | F203 |  | JMP | Y2 |  |
| 0.141 | 007D | CGAC | YES | LAP | "' | PRINT ABGRT |
| 0.142 | 007E | F900 |  | S ST | BIL |  |
| 0143 | 007F | 0128 |  | DATA | AET |  |
| 0144 | 0080 | B234 | Y2 | L DA | CT | SET COUSTER |
| 0145 | 0051 | 9 930 |  | STA | SCT |  |
| 0146 | 0082 | 0350 |  | ARP |  | RESET SUBSCRIPTS |
| 0147 | 0083 | 9900 |  | STA | XB |  |
| 0148 | 0084 | 9900 |  | STA | XC |  |
| 0149 | 0085 | E230 |  | L DK | N PEM |  |
| 0150 |  |  | * $A D D$ | T0 BEAM | I ARRAY |  |
| 0151 | 0036 | EE33 | $A L P$ | STK | $\pm \mathrm{EP}$ |  |
| 0152 | 0037 | 8400 |  | L DA | 00 | GET DATA |
| 0153 | 0038 | E401 |  | LDK | e! |  |
| 0154 | 0039 | F900 |  | J5T | DPFTT | FDAT IT |
| 0155 | व08A | 9A21 |  | STA | M SK1 | SAVE IT |
| 0156 | 003.B | EAC1 |  | STX | MSK2 |  |
| 0157 | 003 C | F900 |  | ${ }^{\text {J ST }}$ | FAD | ADD TD BEAM |
| 0158 | 008D | OOAC |  | DATA | MSK! |  |
| 0159 | OOBE | 0000 | BEAM | RES | 2, $0^{\circ}$ |  |
| 0160 | 0090 | D900 | - | IMS | X宜 | BUMP SUBSCRI PTS |
| 0161 | 0091 | D9 00 |  | IMS | $\chi \mathrm{C}$ |  |
| 0162 | 0092 | E63F. |  | L. DX | I 9 P |  |


| 0163 | 0093 | C202 |  | AXI | 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0164 | 0094 | DA1D |  | IMS | SCT | DONE? |
| 0165 | 0095 | FEOF |  | JMP | Al. ${ }^{\text {P }}$ | NO |
| $0 \$ 66$ |  |  | *PRINT | PASS | COUN ${ }^{\text {T }}$ |  |
| 0167 | 0096 | F900 |  | J ST | CPR |  |
| 0160 | 0097 | C702 |  | LAM | 2 |  |
| 0169 | 0098 | 9823 |  | STA | CON 1 |  |
| 0170 | 0099 | こ210 |  | LIX | NPEN |  |
| 0171 | 009A | 0110 | MK | Z AR |  |  |
| 0172 | 009 B | E401 |  | L | e1 |  |
| 0173 | 009 C | F900 |  | ¢5T | DPFmT |  |
| 0174 | 009 D | 9 AOE |  | STA | MSK1 |  |
| 0175 | 009E | EADE |  | STX | MSE2 |  |
| 0176 | 009F | F900 |  | J ST | @FPA |  |
| 0177. | OOAO | OOAC |  | DATA | MSK1 |  |
| 0178 | OOA1 | 0110 |  | $Z A R$ |  |  |
| 0179 | OOA2 | F900 |  | JST | 071 |  |
| 0180 | OOA3 | 0130 |  | DATA | RLNS |  |
| 0181 | 00A4 | E212 |  | LIX | NMB4 |  |
| 0182 | 0045 | DA16 |  | IMS | CON 1 |  |
| 0183 | 00A6 | F60C |  | SMP | 12K |  |
| 0184 | 00A7 | F7A7 | T2 | RTN | . TRANS |  |
| 0185 |  |  | * DATA | STORAC |  |  |
| 0186 | OOAB | FAOO | ZCT | DATA | -1536 |  |
| 0187 | 00A9 | 0000 | CNT | DATA | $0 \div 0$ |  |
|  | OOAA | 0000 |  |  |  |  |
| 0188 | OOAB | 1400 | NT | DATA | $: 1400$ |  |
| 0189 | OOAC | 0000 | MSK1 | DATA | $0^{-}$ |  |
| 0190 | OOAD | 0000 | MSK2 | DATA | 0 |  |
| 0191 | ODAE | OOFF | H255 | DATA | 255 |  |
| 0192 | DOAF | 0000 | DIR | DATA | 0 |  |
| 0193 | OOEO | 0000 | DCT | DATA | 0 |  |
| 0194 | 00B1 | 0000 | DETE | DATA | 0 |  |
| 0195 | 0032 | 0000 | SCT | DATA | 0 |  |
| 0196 | 00B3 | 1800 | NI | DATA | : 1800 |  |
| 0197 | 0034 | 1802 | IB | DATA | : 1802 |  |
| 0198 | 0035 | FEOO | CT | DATA | - 512 |  |
| 0199 | OOB6 | 1400 | N PEM | DATA | $\because 1400$ |  |
| 0200 | 0037 | 1600 | NHES | DATA | : 1600 |  |
| 0201 | 0088 | 0000 | NOEM | DATA | $0^{\circ}$ |  |
| 0202 | 0089 | 0000 | TREM | DATA | 0 |  |
| 0203 | 00BA | 9002 | FL 5 | DATA | : 9002 |  |
| 0204 | OOSB | 9202 | MINS | DATA | -9202 |  |
| 0205 | OOBC | 0000 | CDN | DATA | 0 |  |
| 0206 | OOBD | 0000 | TETR | DATA | 0 |  |
| 0207 | OOBE | 1000 | BFNT | DATA | $: 1000$ |  |
| 0208 | 00Es |  | MASK | REF |  |  |
| 0209 |  |  | * |  |  |  |
| 0210 |  |  | * ADD I | INPUT | AFRAY TD | TPUP ARRAY |
| .0211 |  |  | * |  |  |  |
| 0212 | OOCO | 0800 | $A C C$ | ENT | - |  |
| 0213 | 00c1 | B604 |  | LDA | TETR |  |
| O214 | 00c2 | 2083 |  | JAM | $5+4$ |  |
| 0215 | 0003 | \#60A |  | LDA | TREM |  |


|  | . |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0216 | 0004 | 0210 |  | CAR | $\because$ |  |
| 0217 | 0005 | F201 |  | JMP | $5+2$ |  |
| 0218 | 0006 | E617 |  | LDA | DIR |  |
| 0219 | 0007 | C000 |  | CAI | 0 |  |
| 0220 | 00cs | F202 |  | JMP | $5+3$ |  |
| 0221 | 00C9 | E613 |  | LIK | NPEM |  |
| 0222 | OOCA | F201 |  | JMP | $5+2$ |  |
| 0223 | OOCB | E614 |  | LIK | NMEM |  |
| 0224 | -0cc | Ex14 |  | STK | NGEM |  |
| 0225 | OOCD | DCOI |  | IMS | E1 | BUMP COLSTER |
| 0226 | OOCE | C202 |  | $A K I$ | 2 |  |
| 0227 | OOCF | EA12 |  | STX | TEP | SAVE TEMP PGINTER |
| 0228 | OODD | C7FF |  | Lem | 255 | DATA CELT |
| 0229 | OOD! | 9 E 28 |  | 5TA | CNT |  |
| 0230 | OOD2 | E61F |  | L. IX | NI | INPUT PGINTER |
| . 0231 | 0003 | C202 | A1 | AXI | 2 | BUMP COLNTER |
| 0232 | 00084 | EES 1 |  | 5 TX | I 5 P | + SAVE |
| 0233 | 00D5 | B618 |  | L DA | TETR |  |
| 0234 | 0006 | 2188 |  | JAL | T5 |  |
| 0235 | 00D7 | 3400 |  | LDA | 00 |  |
| 0236 | 0005 | E401 |  | L DK | Q1 |  |
| 0237 | 0009 | 1328 |  | LLJ | 1 |  |
| 0238 | 00DA | 1386 |  | LLR | 7 |  |
| 0239 | OODE | 13 AB |  | 2 PK | 1 |  |
| 0240 | OODC | 1356 |  | LLA | 7 |  |
| 0241 | OODD | 1006 |  | ARA | 7 |  |
| 0242 | OODE | F202 |  | UMP | T6 |  |
| 0243 | OODF | B400 | T5 | LDA. | ¢0 |  |
| 0244 | OOE0 | E401 |  | L D | E1 |  |
| 0245 | 00E1 | F900 | I6 | JST | DPACC |  |
| 0246 | 00E2 | 0000 | 7 | DATA | 0 |  |
| 0247 | OOE3 | c202 |  | AXI | 2 | Bump tegr |
| 0248 | 00E4 | EEO2 |  | 578 | TBP |  |
| 0249 | 0055 | E692. |  | 1. DR | I BP |  |
| 0250 | 0086 | 0110 |  | 2 AR |  |  |
| 0251 | OOE7 | 9 COO |  | STA | e0 |  |
| 0252 | OOE8 | 9 CO 1 |  | STA | E1 |  |
| 0253 | 0059 | DE40 |  | IMS | Cos ${ }^{\text {T }}$ | DEN E? |
| 0254 | OOEA | F617 |  | JMP | A1 | NV |
| 0255 | ODEB | F72B |  | RTN | ACC |  |
| 0256 |  |  | * |  |  |  |
| 0257 |  |  | * WAI T. | FgR AL | I GNMENT | PLH SE |
| 0258 |  |  | * |  |  |  |
| 0259 | OOEC | 0800 | TURADN | ENT |  |  |
| 0260 | OOED | 4006 |  | CID |  | di Sal e AUTg |
| 0261 | OOEE | 4501 |  | S.SN | : 01 | LIGHT GFF? |
| 0262 | OOEF | F601 |  | JHP | S-1 | N6 - |
| 02.63 | OOFO | OEOO |  | SES |  | YES BYTE GN |
| 0264 | OOF | 49 Cl |  | SEN | : CI | LIEHT QN? |
| 0265 | OOFS | F601 |  | UMP | S-1 | NG |
| 0266 | OOF3 | OFOO |  | Stu | $\cdot$ | YES, EYTE OFF |
| 0267 | 00 F 4 | 4004 |  | SEI | : 04 | CLEAR FIAG |
| 0268 | OOF5 | 4005 |  | CIE |  | ENAESE AUTG |
| 0269 | OOFG | F70A |  | RTiN | TURN®N |  |


| 0270 |  |  | * |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0271 |  |  | ＊INPUT FROM MGNSANTO |  |  |  |
| 0272 |  |  | ＊Con | UERT | BCD Tb | BINARY |
| 0273 |  |  | ＊ |  |  |  |
| 0274 | 00F7 | 0800 | MONS | ENT |  |  |
| 0275 | DOF8 | B633 |  | L DA | TETR |  |
| 0276 | 00F9 | 208F |  | J AM | 73 |  |
| 0277 | 00FA | C6FF |  | $L A P$ | 255 |  |
| 0278 | 00F3 | BE4B |  | ADD | DC＇ |  |
| 0279 | DOFC | 1050 |  | Al A | 1 |  |
| 0280 | OOFD | E644 |  | LIK | TREM |  |
| 0281 | OOFE | 3802 |  | JXN | $5+3$ |  |
| 0282 | OOFF | BAOB |  | ADD | DVTR |  |
| D28 3 | 0100 | F201 |  | JMP | $5+2$ |  |
| 0284 | 0101 | 8405 |  | ADD | DPTR |  |
| 0285 | 0102 | 0048 |  | TAX |  |  |
| 0286 | 0103 | 3400 |  | L DA | 60 |  |
| 0287 | 0104 | E401 |  | L DK | E1 |  |
| 0288 | 0105 | F900 |  | J5T | DPFIX |  |
| 0289 | 0106 | F70F | ， | RTN | M6iv |  |
| 0290 | 0107 | 1002 | DPTR | DATA | ： 1002 |  |
| 0291 | 0103 | 1202 | ［4TR | DATA | ： 1202 |  |
| 0292 | 0109 | 4906 | T3 | SEN | ：C6 | FAG |
| 0293 | O10A | $\overline{5601}$ |  | UMP | 5－1 | N6 |
| 0294 | 0108 | 5AC6 |  | INK | － C ¢ | YES， 5 NPUT TO X |
| 0295 | 0100 | 28.43 |  | JイZ | 5－3 | I ENORE Z EROES |
| 0296 | O10D | C704 |  | L AM | $4^{\circ}$ | SET DIGIT COUNT |
| 0297 | O10E | SE65 |  | STA | ．CNT |  |
| 0298 | O10F | 0110 |  | $Z \mathrm{AR}$ |  | GEEAR TALLY |
| 0299 | 0110 | 9E63 |  | STA | MSK2 |  |
| 0300 | 0111 | F206 |  | J以P | M2 |  |
| 0301 | 0112 | 1350 | M1 | LLA | 1 | X： 10 |
| 0302 | 0113 | 9E66 |  | STA | MSK2 |  |
| 0303 | 0114 | 1351 |  | LLA | 2 |  |
| 0304 | 0115 | 8玉68 |  | ADD | ．M SK2 |  |
| 0305 | 0116 | 9 E 69 |  | STA | MSK2 |  |
| 0306 | 0117 | 0110 |  | ZAR |  |  |
| 0307 | 0118 | 1303 | M2 | LLL | 4 | GET NEXT DIGIT |
| 0308 | 0119 | 8E60 |  | ADD | MSK2 | ADD TG TALLY |
| 0309 | O11A | DE71 |  | IH5 | CNT | LAST DIGIT？ |
| 03.10 | 0118 | F609 |  | UHP | M I | NG |
| 0311 | 0110 | 0048 |  | TAX |  |  |
| 0312 | O110 | 0110 |  | ZAR |  | － |
| 0313 | O11E | F727 |  | RTN | UGNS | YES |
| 0314 |  |  | ＊TEKT | STERA | GE |  |
| 0315 | 0115 | 6DSA | MSG | DATA | ： 8 DSA |  |
| 0316 | 0120 | CIC2 |  | TExT | －AB07T | LAST RUN？${ }^{\text {a }}$ |
| ： | 0121 | CFD2 |  |  |  |  |
|  | 0122 | D4A0 |  | － |  |  |
|  | 0123 | CCC1 |  |  |  |  |
|  | 0124 | D3D4 | － |  |  |  |
|  | 0125 | ADDE |  |  |  |  |
| ． | 0126 | D5CE |  |  |  |  |
|  | 0127 | BFAO |  |  |  |  |



0001
0002
0003
0004
0005
0006
0007
00080000 FB00
0009
0010
0011
0012
0013
001400034038
001500044039
$00160005 \quad 5939$
$0017 \quad 0006 \quad 403 \mathrm{C}$
00180007 F705
$0019-0008 \quad 0500$
00200009 FEOT
0021 DOOA CODF
0022 OODS FFOA
0023 000C C05 A
0024 000D FFOC
0025 OOOE F706
0026
0027
0028
0029
0030
0031 000F 0300
$00320010 \quad 5301$
00330011 1350
0034 0012 220A
00350013 493B
00360014 F604
00370015 403A
$0033 \quad 0016 \quad 4839$
$00390017 \quad$ F203
$0040 \quad 00180150$
$0041 \quad 0019 \quad 2149$
0042 001A F604
$0043 \quad 001 \mathrm{~B} \quad 5838$
0044 001C F70D
$0045001 D \quad 4933$
0046 OO1E F60E
0047 001F 4032
$0048 \quad 0020 \quad 4535$ $0049 \quad 0021$ F203 005000220150 005100232153 $0052 \quad 0024 \quad 5604$ $0530025 \quad 5335$

NAM
NAM NAM REL

IKB，IER，BIPT，XEQ
OTT，ERRO CRL F
0 TL，GFPA
0
＊PANIC SWITCH
＊
JST＊CMiND
CGND REF
＊
rKEYBGARD INPUT
＊
IKB ENT
SE 7， 0 AUTD－ECHE
SEL 7．1 KBD MODE
RDA 7，1 READ ON FLAG
SEL 7．4 RESET
ENT IKB
CAI $\vdots \mathrm{DF}$
JST＊CMND
CAI ：8A LINE FEED？
」ST＊CMND YES
RTN IER NEITHERAPETURN
＊PAPER TAPE INPUT
＊ $\mathrm{DSO}=0 \mathrm{FgR} \mathrm{TTY}$
＊ 1 For HSR
＊
BIFT ENT
BI P2 ISA
LRA 1
JஜS HSR
SEN 7，3
JIMP BIP2
5区 7，2
SSN 7．1
$\mathrm{JMP} \quad \mathrm{IT}^{\circ}$
IAR
JAZ BIP2
JMP UT
IT INA 7．0
PTN BIPT
HSR SEN 6， 3
JMP BIP2
明
SH
SSN
JMP
IAR
JAZ ．BIP2
GMP WH
IH INA 6，5

READ SULTCHES
DSO UP FgR TTY D的 FOR HSR
TTY BUSY？
YES
NG，STEP READER
FAG？
YES
NO．BUTP COUNT
RESTART IF TIME UP
EnSE CHECK FLAG AGAIN
INPUT FROM TTY
\＆RETURN
HSR BUSY？
YES
NO，STEP READER
FLAG？
YES
ND：BLMP CDUNT
RESTART IF TIME UP
HiSE CHECK FLAG AGAIN INPUT FROM HSR



| 0001 |  |  |  | NAM | READ，CI |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0002 |  |  |  | N AL4 | PUNCH， | APH |  |  |
| 0003 |  |  |  | EXTR | IKB，$¢ T \mathrm{~T}$ | EIPT |  |  |
| 0004 |  |  |  | EXTR | $0 \mathrm{~T}, \mathrm{CPL}$ | FPLOT，ØFPA |  |  |
| 0005 |  |  |  | EXTE | X $A_{0} \times 8$, | FAD |  |  |
| 0006 | 0000 |  |  | REL | 0 |  |  |  |
| 0007 |  |  | ＊ |  |  |  |  |  |
| 0008 |  |  | ＊F | D PAPEP | TAPE \＆A | D Tg BuFFER |  |  |
| 0009 |  |  | 当 |  |  |  |  |  |
| 0010 | 0000 | 0800 | REA | EvT |  |  |  |  |
| 0011 |  |  | ＊IN | ALIZE | VARI ABLES |  |  |  |
| 0012 | 0001 | 1128 |  | FLS | 1 | SET INDEK E | BIT |  |
| 0013 | 0002 | 1400 |  | SOV |  |  |  |  |
| 0014 | 0003 | 1143 |  | RPY： | 1 |  |  |  |
| 0015 | 0004 | EA33 |  | STK | R 5 | \＆SAVE POIN | NTER |  |
| 0016 | 0005 | EA34 |  | STX | $R 5+2$ |  |  |  |
| 0017 | 0006 | 0528 |  | XRP |  | RESET SUBSC | CRIFTS |  |
| 0018 | 0007 | E900 |  | STK | XA |  |  |  |
|  |  | 0000 |  |  |  |  |  |  |
| 0019 | 0008 | E900 |  | STK | XB， |  |  |  |
|  |  | 0000 |  |  |  |  |  |  |
| 0020 | 0009 | E900 |  | STK | XC |  |  |  |
|  |  | 0000 |  |  |  |  |  |  |
| 0021 | O00A | B236 |  | L DA | TP | SET INPUT | BUFFER | POINTER |
| 022 | OOOB | 9 938 |  | STA | MPT |  |  |  |
| 0023 | 000］ | B235 |  | L DA | CT | SET INPUT | codet |  |
| 0024 | 000D | 9 A37 |  | STA | CNT |  |  |  |
| 0025 |  |  | 穴SK | LEADEP | \＆LABE |  |  |  |
| 0026 | O00E | C63A |  | LAP | ：8A | LINE FEED |  | ． |
| 0027 | OOOF | F900 |  | UST | GTT |  | － |  |
|  |  | 0000 |  |  |  |  |  |  |
| 0028 | 0010 | F900 |  | J ST | BIPT |  |  |  |
|  |  | 0000 |  |  |  |  |  |  |
| 0029 | 0011 | 2141 |  | $J A Z$ | 5－1 | SKIP LEADEP |  |  |
| 0030 | 0012 | F900 | R1 | J ST | ETT | ECHO LABE |  |  |
|  |  | 0000 |  |  |  |  |  |  |
| 0031 | 0013 | F900 |  | JST | BIPT | READ TAPE |  |  |
|  |  | 0000 |  |  |  |  |  |  |
| 0032 | 0014 | C092 |  | CAI | ： 92 | END OF LABE | 回？ |  |
| 0033 | 0015 | F201 |  | JMP | 32 | YES |  |  |
| 0034 | 0016 | $F 604$ |  | JMP | RI | ND |  |  |
| 0035 | 0017 | F900 | $R 2$ | JST | BIPT | READ TAPE |  |  |
|  |  | 0000 |  |  |  |  |  |  |
| 0036 | 0018 | COFF |  | CAI | ：FF | FILE MARK？ |  |  |
| 0037 | 0019 | F201 |  | JMP | R3 | YES ${ }^{-}$ |  |  |
| 0038 | 001A | F603 |  | JinP | R2 | 小回 |  |  |
| 0039 |  |  | ＊RE | L可P |  |  |  |  |
| 0040. | 001B | F900 | F3 | J ST | BIPT | LGUER BYTE |  |  |
|  |  | 0000 |  |  |  |  |  |  |
| 0041 | 001C | 1587 |  | LLR | 8 | SAVE |  |  |
| 0042 | 001D | $F 900$ |  | UST | BI PT | UPPER EYTE |  |  |
|  |  | 0000 |  |  |  |  |  |  |
| 0043 | 001E | 1507 |  | LL．L | 8 | RESTORE |  |  |





0001
0002 0003
0004
0005 0006 0007 0008 0009 0010
0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025

0026 0027 0028

0000 0000 0001 9A4C 0002 9A4C 0003 B703 0004 9AIF 0005 9A．24 0006 A249 0007 9A05 00059 9．03 00090350 000A 9B4F 0005 F204 000C F34E 000D 0000 000E 0051 OOOF 2183 0010 FB4B 00110000 00120051 $0029 \quad 0013 \quad$ D546 0030 0031 จ0．32 0033 0034 0035 0036 0037 0033 0014 0015 F609 0016 F541 0017 FB40 － 0013 C6BD 0019 FB3F 00140061 001 C 0055 00100051 001E 0053 001F FB40 00200053 0021 FB36 0022 FE35 0023 FB3C 00240000 0025 DE01 0026 DE02 0027 C6AO 0028 FB2E 0029 FB34

FRET－FLGATING PGINT FLGTTER
＊Calling sequence：
＊LDA HDIM

＊
＊
＊
＊

| NAM | $F$ |
| :--- | :--- |
| REL | 0 |
| ENT |  |

FFLOT ENT
STA NRØW
STA CNT
LDA $\quad$ FFPGT
STA RP3
STA RP4
IGR B15
STA RP1
STA RPZ
ARP
STA＊XA
JMP MOVE
JST＊FGP
DATA OMMAK
JAL INC
MOVE JST＊FMV

RPE DATA O，MAX
INC IMS＊スA
ImS Cit
$\operatorname{sMP} L P 1$
UST＊CREF
JST＊CPLF
LAP $\quad$＝
JST 雨荷TL
DATA SF
JST＊FDV
DATA F50，MAK，SCALE

| JST | ＊QFPA |
| :--- | :--- |
| DATA | SCALE |
| JST | ＊CRLF |
| JST | $* C R L F$ |
| JST | ＊DFPA |
| DATA | 0 |
| IMS | RP3 |
| IMS | RP3 |
| LAP | T |
| UST | WGTT |
| JST | ＊FMP |





| 0050 |  |  | * |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0051 | 002B | FE46 |  | JST | $\cdots F S B$ |
| 0052 | 002C | 0067 |  | DATA | MAK, MIN, MAR |
|  | OO2D | 0065 |  |  |  |
|  | OO2E | 0067 |  |  |  |
| 0053 | 002F | FE43 |  | J ST | *FDV |
| 0054 | 0030 | 006 C |  | DATA | F250, M. 2 K, SCAL E |
|  | 0031 | 0067 |  |  |  |
|  | 0032 | 0069 |  |  |  |
| 0055 | 0033 | FB44 |  | JST | *GFPA |
| 0056 | 0034 | 0069 |  | DATA | SCALE |
| 0057 | 0035 | FE40 |  | J ST | \% CDIF |
| 0058 |  |  | $\cdots$ |  |  |
| 0059 | 0036 | FE3D |  | J ST | $\cdots \mathrm{FMP}$ |
| 0060 | 0037 | 0069 |  | DATA | SCALEMIN,MAK |
|  | 0038 | 0065 |  |  |  |
|  | 0039 | 0067 |  |  |  |
| 0061 | 003A | F33A |  | J ST | * FIX |
| 0062 | 003B | 0067 |  | DATA | MAK, MIN |
|  | 003C | 0065 |  |  |  |
| 0063 | 003D | B227 |  | L DA | MIN |
| 0064 | 003E | $0310^{\circ}$ |  | NAR |  |
| 0065 | 003F | 3081 |  | JAP | $5+2$ |
| 0066 | 0040 | 0110 |  | ZAF |  |
| 0067 | 0041 | 9 AE2 |  | STA | X |
| 0068 | 0042 | 0350 |  | ARP |  |
| 0069 | 0043 | 9E2B |  | STA | *KA |
| 0070 |  |  | * |  |  |
| 0071 | 0044 | FB2F | LP2 | JST | * MP |
| 0072 | 0045 | 0000 | RP5 | DATA | O, SCAL EMAX |
|  | 0046 | 0069 |  |  |  |
|  | 0047 | 0067 |  |  |  |
| 0073 | 0048 | DB26 |  | IMS | * $\times$ A |
| 0074 | 0049 | FBEB |  | JST | *FIX |
| 0075 | 004A | 0067 |  | DATA | $\mathrm{MAR}, \mathrm{CNT}$ |
|  | 004B | 0063 |  |  |  |
| 0076 | 004 C | E217 |  | L EX | X |
| 0077 | 004D | B215 |  | LDA | CNT |
| 0078 | 004E | $49 \mathrm{C4}$ | DOT | SET | 24, 4 |
| 0079 | 004F | F601 |  | JMP | 5-1 |
| 0080 | 0050 | 49 C 2 |  | SEN | 24, 2 |
| 0081 | 0051 | F601 |  | JMP | S-1 |
| 0082 | 0052 | 6EC2 |  | ØTK | 24;2 |
| 0083 | 0053 | 2107 |  | d $A Z$ | DDIE |
| 0084 | 0054 | 3183 |  | JAG | PGS |
| 00035 | 0055 | 00AB |  | DKR |  |
| 0056 | 0056 | 0150 |  | IAP |  |
| 0087 | 0057 | F609 |  | JMP | DOT |
| 00038 | 0058 | 0128 | PGS | IKR |  |
| 0089 | 0059 | OODO |  | DAR |  |
| 0090 | 005A | F60C |  | JMP | DOT |
| 0091 | 0053 | B208 | DGNE | $\underline{L} \mathrm{DA}$ | $\cdots$ |
| 0092 | 005C | 8A11 |  | ADD | H256 |


| 0093 | 005D | 9A06 |  | STA | x |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0094 | 005E | DAO3 |  | IMS | NROU |
| 0095 | 005: | F61B |  | JMP | LP2 |
| 0096 | 0060 | FB15 |  | J ST | * CRL F |
| 0097 | 0061 | F761 |  | RTW | CRT |
| 0098 |  |  | * |  |  |
| 0099 | 0062 | 0000 | inrov | data | 0 |
| 0100 | 0063 | 0000 | CivT | DATA | 0 |
| 0101 | 0064 | 0000 | X | DATA | 0 |
| 0102 | 0065 | 0000 | MIN | RES | 2, 0 |
| 0103 | 0067 | 0000 | MAK | RES | 2,0 |
| 0104 | 0069 | 0000 | SCALE | RES | 2,0 |
| 0105 | 006B | 8000 | B15 | DATA | :8000 |
| 0106 | 006C | 447A | F250 | DATA | $: 447 \mathrm{~A} 0$ |
|  | $006 \pm$ | 0000 |  |  |  |
| 0107 | 006E | 0100 | H256 | DATA | 256 |
| 0108 |  |  | * |  |  |
| 0109 | 006F |  | XA | REF |  |
| 0110 | 0070 |  | FCP | REF |  |
| 0111 | 0071 |  | FMV | PEF |  |
| 0112 | 0072 |  | FSB | REF |  |
| 0113 | 0073 |  | FDV | REF |  |
| 0114 | 0074 |  | FnP | PEF |  |
| 0115 | 0075 |  | FIX | REF |  |
| 0116 | 0076 |  | CRL F | REF |  |
| 0117 | 0077 |  | ETL. | REF |  |
| 0113 | 0078 |  | QFPA | REF |  |
| 0119 |  |  | * |  |  |
| 0120 | 0079 | D3C3 | SF | TEST | 'SCALE FACTOR = ' |
|  | 007A | cicc |  |  |  |
|  | 007B | C5AO |  |  |  |
|  | 007C | C6C1 |  |  |  |
|  | 007D | C3D4 |  |  |  |
|  | 007E | CFD2 |  |  |  |
|  | 007F | AOBD |  |  |  |
| 0121 |  |  | * |  |  |
| 0122 |  |  |  | END |  |
| 0000 | ERRGRS |  |  |  |  |




| 0104 | 005D | 3 A16 |  | ADD | H256 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0105 | 005E | $9 \mathrm{Al3}$ |  | STA | 3 |
| 0106 | 005 F | E20B |  | L. DX | RP2D |
| 0107 | 0060 | C202 |  | AXI. | 2 |
| 0108 | 0061. | EA09 |  | ST\% | FPRD |
| 0109 | 0062 | DA09 |  | IMS | NROW |
| 0110 | 0063 | F61E |  | JMP | LPD |
| 0111 | 0064 | B20E |  | LDA | VEUR |
| 0112 | 0065 | 2101 |  | $J A Z$ | $5+?$ |
| 0113 | 0066 | F100 |  | JMP | RTOP |
|  |  | 0000 |  |  |  |
| 0114 | 0067 | F100 |  | JMP | RTTR |
|  |  | 0000 |  |  |  |
| 0115 | 0068 | F768 |  | RTN | VI EW |
| 0116 | 0069 | 0000 | TM | DATA | 0 |
| 0117 | 006A | 0000 | RP1D | DATA | 0 |
| 0118 | 006B | 0000 | RPED | DATA | 0 |
| 0119 | 006C | 0000 | NROW | DATA | 0 |
| 0120 | 006D | 0000 | MIN | RES | 2,0 |
| 0121 | 006F | 0000 | M $\mathrm{SV}_{2}$ | RES | 2,0 |
| 0122 | 0071 | 0000 | CNT | DATA | 0 |
| 0123 | 0072 | 0000 | X | DATA | 0 |
| 0124 | 0073 | 0000 | VEVR | DATA | 0 |
| 0125 | 0074 | 0100 | H256 | DATA | 256 |
| 0126 |  |  |  | END |  |
| 0000 | ERPGRS |  |  |  |  |



| 0053 | 0028 | 8205 |  | AND | DP:1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0054 | 0029 | A202 |  | IOR | SIGIJ |
| 0055 | 002A | F716 | DPF4 | RTN | DPFLT |
| 0056 | 002B | 0000 | BITS | DATA | 0 |
| 0057 | 0026 | 0000 | SI GN | DATA | 0 |
| 0058 | 002D | OCAO | D160 | DATA | 160 |
| 0059 | DORE | 8000 | DP4 | DATA | : 8000 |
| 0060 | 002F | 0800 | DPFIX | ENT |  |
| 0061 | 0030 | 9 EO 4 |  | STA | SI GN |
| 0062 | 0031 | 821C |  | AND | DPP |
| 0063 | 0032 | 13 D 6 |  | LPA | 7 |
| 0064 | 0033 | 9606 |  | SUB | D160 |
| 0065 | 0034 | 9509 |  | STA | BITS |
| 0066 | 0035 | B609 |  | LDA | SIGN |
| 0067 | 0036 | 8218 |  | AND | MANT |
| 0068 | 0037 | A218 |  | IGR | SBIT |
| 0069 | 0038 | SEOD |  | EMA | BITS |
| 0070 | 0039 | 2109 |  | $J A Z$ | DPFX2 |
| 0071 | 003A | 3190 |  | JAG | DPFR4 |
| 0072 | 0035 | DE10 |  | ElA | BITS |
| 0073 | 0036 | 1807 |  | LLL | B |
| 0074 | 003D | 1330 | DPFX 1 | LLA | 1 |
| 0075 | OO3E | DE 13 |  | IMS | BITS |
| 0076 | 003F | F602 |  | JMP | DFFX 1 |
| 0077 | 0040 | 1800 |  | LLL | 1 |
| 0073 | 0041 | 13 AB |  | L PR | 1 |
| 0079 | 0042 | F201 |  | Jinf | $5+\varepsilon$ |
| 0080 | 0043 | BE18 | DPFR2 | EMA | SITS |
| 0081 | 0044 | EE18 |  | EIA | SI GN |
| 0082 | 0045 | 3083 |  | JAP | DPFX3 |
| 0083 | 0046 | EE1A |  | EMA | SIGN |
| 0034 | 0047 | $\overline{5900}$ |  | J ST | DPN: |
|  |  | 0000 |  |  |  |
| 0085 | 0048 | F201 |  | JMP | 5 +2 |
| 0086 | 0049 | BE1D | DPFX 3 | E:A | SI GN |
| 0037 | 004A | F71B |  | RTN | DPFIK |
| 0038 | 004B | 0118 | DPFX4 | $2 A T$ |  |
| 0059 | 004C | 1400 |  | 50் V |  |
| 0090 | 004D | F71E |  | FTH | DPFIX |
| 0091 | 004E | 7FFF | DPP | DATA | : 7FFF |
| 0092 | 004F | 007F | MANT | DATA | : 7F |
| 0093 | 0050 | 0050 | SBIT | DATA | :80 |
| 0094 |  |  |  | END |  |
| 0000 | ERROPS |  |  |  |  |

0001
0002 0003 00040100 0005 $00060100 \quad 0110$ $00070101 \quad F 900$ 0000
00080102012 B
$00090103 \quad \mathrm{~F} 201$

0010 0011 $\begin{array}{lll}0012 & & \\ 0013 & 0104 & 0800\end{array}$ 00140105 OAOO 001501064005 $0016 \quad 0107 \quad$ F900 0000

## $0017 \quad 0108 \quad \mathrm{C} 687$

 00150109 F900 0000| 0019 | $010 A$ | C6AA |
| :--- | :--- | :--- |
| 0020 | 0103 | $F 900$ |
|  |  | 0000 |

0021 010C 0103
0022 010D F900 0000 0023 010E COD4
0024 O10F E213

00250110 COD2
00260111 E212
$0027 \quad 0112 \quad \operatorname{coc} 3$
$0028 \quad 0113 \quad$ E211
00290114 380A
00300115 CODO
00310116 E2OF
$0032 \quad 0117 \quad \operatorname{COC7}$
00330113 E20F
$0034 \quad 0119$ COD6
0035 OIIA E20E
0036 O1IB COC4 0037 O11C E2OA 0033 011D 3801 0039 DIIE F900 0000
0040 011F EAOA $.00410120 \quad F 900$ 0000000 00430122 F61D 00440123 00450124 00460125

NAM
EXTR IEROTT, GTL, CRLF
EKTR ERRKEQ
$\mathrm{ABS}: 100$
*PRINT
NAME
ZAR
JST 0TL
DATA NAIAE
JMP $5+2$
*

* COMMAND INTERPRETER
* 

CMiND ENT
EIN
CIE ENARLE PANIC BUTTDN
JST CRLF PRINT PROMPT CHARACTER
LAP :87
JST ØTT
LAP "*'
JST ØTT
$2 \times R$
JST IER INPUT COMMAND
CAI 'T'
LDK TRENS
CAI 'R'
LDK READ
CAI 'C'
LIX CLEAR
JXN gKF
CAI 'P'
LDE PUNGG
CAI ${ }^{\circ} \mathrm{G}$ '
LDK FPLGT
CAI 'V'
LDK CRT
CAI 'D'
LDK DATUM
JXN CKF
JST ERR
gKF STX FUNC
XEQ
SAVE CALL ADDRESS
WAIT FOR Gg
CALL FUNCTIDN
trans ref
READ REF
CLeAr REf

```
0047 0126
0043 0127
0049 012%
0050 0129
0051 012A 0000
0052 012B B1B5
    012C AAB2
    O12D B5B5
    OL2E AOCG
    O12F D5CC
    0130 CCAO
    0131 COD4
    0132 D3AO
0053 0133 8D3A
    0134 0000
0054
```

0000 ERRDRS

| 0001 |  |  |  | N AM | TRANS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0002 |  |  |  | NAM | RTTE |
| 0003 |  |  |  | EXTR | DISP |
| 0004 | 0000 |  |  | RD | 0 |
| 0005 | 0000 | 0800 | TRANS | EVT |  |
| 0006 | 0001 | C6BF |  | LAP | ＇？＂ |
| 0007 | 0002 | F900 |  | JST | 細T |
|  |  | 8127 |  |  |  |
| 0008 | 0003 | 013E |  | DATA | MOTA |
| 0009 | 0004 | F900 |  | JST | ＊IKB |
|  |  | 8128 |  |  |  |
| 0010 | 0005 | 1200 |  | RDV |  |
| 0011 | 0006 | COCD |  | CAI | ＇M＇ |
| 0012 | 0007 | F203 |  | Jil P |  |
| 0013 | 0008 | COD4 |  | CAI | ${ }^{*} \mathrm{~T}^{\prime \prime}$ |
| 0014 | 0009 | F204 |  | JMP | TAP |
| 0015 | 000A | F900 |  | JST | ＊ERR |
|  |  | 812A |  |  |  |
| 0016 | OOOB | F900 | MON | J ST | ＊CRLF |
|  |  | 8129 |  |  |  |
| 0017 | 0006 | 0108 |  | Z $\times \mathrm{R}$ |  |
| 00.10 | OOOD | F20F |  | UMP | BEG |
| 0019 | OOOE | F9 00 | TAP | J ST | ＊CRL F |
|  |  | 8129 |  |  |  |
| 0020 | OOOF | C63A |  | LAP | ：8A |
| 0021 | 0010 | F900 |  | J ST | ＊gTT |
|  |  | 6126 |  |  |  |
| 0022 | 0011 | F900 |  | JST | ＊BI PT |
|  |  | 6125 |  |  |  |
| 0023 | 0012 | 2141 |  | $J A Z$ | 5－1 |
| 0024 | 0013 | F900 | Tl | J ST | ＊GTT |
|  |  | 8126 |  |  |  |
| 0025 | 0014 | $F 900$ |  | J ST | ＊BIPT |
|  |  | 8125 |  |  |  |
| 0026 | 0015 | $\mathrm{CO92}$ |  | CAI | ：92 |
| 0027 | 0016 | F201 |  | J：1P | T2 |
| 0023 | 0017 | F604 |  | USP | T1 |
| 0029 | 0013 | F900 | T2 | UST | ＊BIPT |
|  |  | 8125 |  |  |  |
| 0030 | 0019 | COFF |  | CAI | ：FF |
| 0031 | 001A | F201 |  | JMP | T4 |
| 0032 | 001B | F603 |  | JMP | T2 |
| 0033 | 001 C | C401 | T4 | LNP | 1 |
| 0034 | 001 D | E9 00 | BEG | STX | TETR |
|  |  | 0129 |  |  |  |
| 0035 | 001E | B100． |  | L DA | MASKO |
|  |  | 0122 |  |  |  |
| 0036 | 001F | 9 AF 3 |  | STA | MASK |
| 0037 | 0020 | F900 |  | J ST | ＊CRLF |
|  |  | 8129 |  |  |  |
| 0038 | 0021 | C6BF |  | $L A P$ | ＇？${ }^{\text {P }}$ |
| 0039 | 0022 | F900 |  | $J S T$ | 来四T， |

$\}$
1
11

| 0040 | 0023 | 0130 |  | DATAJ ST | $\begin{aligned} & \text { DIRE } \\ & \text { WIKB } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0041 | 0024 | F900 |  |  |  |
|  |  | 8123 |  |  |  |
| 0042 | 0025 | C0C6 |  | CAI | ' F ' |
| 0043 | 0026 | F205 |  | JMP | FORD |
| 00.44 | 0027 | COC2 |  | CAI | 'B' |
| 0045 | 0028 | F203 |  | JMP | BACK |
| 0046 | 0029 | COCF |  | CAI | - 0 " |
| 0047 | 002A | F20A |  | JMP | B6TH |
| 0045 | 002B | FbFE |  | JST | * ERR |
| 0049 | 002C | C71E | FQRD | LAM | 30 |
| 0050 | 002D | 9 AE2 |  | STA | CNT2 |
| 0051 | 002E | 0103 |  | $2 \times \mathrm{R}$ |  |
| 0052 | 002F | 0403 |  | CXR |  |
| 0053 | 0030 | F207 |  | JMP | TKF |
| 0054 | 0031 | C71E | BACK | Lay | 30 |
| 0055 | 0032 | 9ADD |  | STA | CNT2 |
| 0056 | 0033 | 0103 |  | Z<R |  |
| 0057 | 0034 | F203 |  | JMP | TKF |
| 0055 | 0035 | C70F | EGTH | LeM | 15 |
| 0059 | 0036 | 9AD9 |  | STA | CNT2 |
| 0060 | 0037 | 0358 |  | AXP |  |
| 0061 | 0038 | EAF5 | TKF | STK | DIR1 |
| 0062 | 0039 | E2F1 |  | L. Dit | TETR |
| 0063 | 003A | 2302 |  | UXZ | S+3 |
| 0064 | 003B | C70F |  | LAM | 15 |
| 0065 | 0030 | $\bigcirc \mathrm{AD} 3$ |  | STA | CNT2 |
| 0066 | 003D | E2D4 |  | L DA | 2 CT |
| 0067 | 003E | 9 ADC |  | STA | CNT3 |
| 0063 | O03F | E2E3 |  | L Dis | I SC |
| 0069 | 0040 | 0110 |  | ZAR |  |
| 0070 | 0041 | 9000 | CLR | STA | ¢0 |
| 0071 | 0042 | 0123 |  | IXR |  |
| 0072 | 0043 | DȦCD |  | IMS | CNT3 |
| 0073 | 0044 | F603 |  | Jilp | CLP |
| 0074 | 0045 | EAD1 |  | STK | I BP |
| 0075 | 0046 | E2E4 |  | LD: | TETP |
| 0076 | 0047 | 2303 |  | JXZ | NEXT |
| 0077 | 0048 | E2E5 |  | L DK | DIR1 |
| 0078 | 0049 | 3501 |  | SXN | NEXT |
| 0079 | 004A | 0210 |  | CAR |  |
| 0030 | 004B | E2D3 | NEXT | LIK | MASK |
| J03 1 | 004C | 0123 |  | INR |  |
| 0032 | 004D | 0210 |  | CAR |  |
| 0033 | 004E | COOO |  | CAI | 0 |
| 0034 | 004F | C2FF |  | $A \times I$ | 255 |
| 0035 | 0050 | EAB8 |  | STK | HSK1 |
| 0036 | 0051 | 9ABA |  | STA | DIR ${ }^{\text {. }}$ |
| 0037 | 0052 | C7F5 |  | Lem | 245 |
| 0055 | 0053 | 9ACC |  | STA | DCTE |
| 0039 | 0054 | C7FF |  | L A:1 | . 255 |
| 0090 | 0055 | 9 A37 |  | STA | DCT |
| 0091 | 0056 | E2D4 |  | L DA | TETR |


| 0092 | 0057 | 2107 |  | $J A Z$ | TUR1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0093 | 0058 | FBCC | T3 | JST | * BI PT |
| 0094 | 0059 | 1357 |  | LLA | 8 |
| 0095 | 005A | 9 AD4 |  | STA | TEMT |
| 0096 | 005B | FBC9 |  | J 5T | * B1PT |
| 0097 | 005C | A2D2 |  | IGR | TEAT |
| 0098 | 005D | 9 ABO |  | STA | VAL |
| 0099 | 005E | F209 |  | JMP | PROC |
| 0100 | 005F | FAS9 | TUR1 | UST | TURNGN |
| 0101 | 0060 | FA9 3 | LLP | J ST | MONS |
| 0102 | 0061 | 9AAC |  | STA | VAL |
| 0103 | 0062 | B2CB |  | LDA | DIFI |
| 0104 | 0063 | C001 |  | CAI | 1 |
| 0105 | 0064 | FeO 3 |  | JMP | PROC |
| 0106 | 0065 | D2A6 |  | C.15 | DIR |
| 0107 | 0066 | F235 |  | JMP | FINONE |
| 0108 | 0067 | F234 |  | JMP | FIUGNE |
| 0109 | 0068 | C70F | PROC | LAM | 15 |
| 0110 | 0069 | 9 AA5 |  | STA | CVT 1 |
| 0111 | 006A | B2A3 |  | L DA | MASK1 |
| 01:2 | 006B | 9 A.AB |  | STA | MASK2 |
| 0112 | 006C | B2B6 |  | LDA | I BC |
| 0114 | 006D | 9AAS |  | STA | 13 |
| 0115 | OO6E | C7FF | SPA | LAM | 255 |
| 0116 | 006F | 9AA5 |  | STA | SCT |
| 0117 | 0070 | B293 |  | L DA | M SK1 |
| 0118 | 0071 | 9 A98 |  | STA | MSK2 |
| 0119 | 0072 | B2A3 |  | i, DA | $1 B$ |
| 0120 | 0073 | 9 AA3 |  | STA | I BP |
| 0121 | 0074 | O110 |  | ZAR |  |
| 0122 | -075 | D39E |  | CiS | HMASK2 |
| 0123 | 0076 | F201 |  | JiNP | $5+2$ |
| 0124 | 0077 | F213 |  | JMP | TL P2 |
| 0125 | 0078 | E295 | $\Pi \mathrm{PI}$ | LIR | VAL |
| 0126 | 0079 | 0110 |  | ZAR |  |
| 0127 | 007A | D38F |  | OS | *MSK2 |
| 0128 | 007B | T201 |  | Jll P | $5+2$ |
| 0129 | 007C | 0508 |  | W/2R |  |
| 0130 | 007D | 0030 |  | TXA |  |
| 0131 | 007E | 8598 |  | ADD | * I BP |
| 0132 | 007F | $9 \mathrm{B9} 7$ |  | STA | * I BP |
| 0133 | 0080 | DA39 |  | I! 1 S | MSK2 |
| 0134 | 0081 | DA9 5 |  | IMS | IRP |
| 0135 | 0082 | DA9 2 |  | IMS | SCT |
| 0136 | 0033 | F60B |  | JMP | TLPI |
| 0137 | 0034 | DAS F |  | IM S | MASK2 |
| 0138 | 0085 | C6FF |  | $L A P$ | 255 |
| 0139 | 0036 | SABF |  | ADD | IB |
| $0 \$ 40$ | 0037 | $9 A S E$ |  | STA | I B |
| 0141 | 0088 | DAS 6 |  | IMS | CNT1 |
| 0142 | 0089 | F61B |  | JMP | SPA |
| C143 | 008 A | F211 |  | JMP | - FIN@NE |
| 0144 | 008B | E282 | TLP2 | LDK | VAL |


| 0145 | 008 C | 0110 |  | 2 AR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0146 | 008 D | D37C |  | CM 5 | *以SK2 |
| 0147 | 008E | 0508 |  | inXR |  |
| 0143 | 003F | 0030 |  | TXA |  |
| 0149 | 0090 | 8886 |  | ADD | * 1 BP |
| 0150 | 0091 | 9 935 |  | STA | * I BP |
| 0151 | 0092 | DA77 |  | IMS | HSK2 |
| 0152 | 0093 | DA3 3 |  | IMS | I BP |
| 0153 | 0094 | DAB 0 |  | IMS | SCT |
| 0154 | 0095 | roua |  | JMP | TLP2 |
| 0155 | 0096 | DA7D |  | IMS | MASK2 |
| 0156 | 0097 | C6FF |  | LAP | 255 |
| 0157 | 0098 | SA7D |  | $\triangle D D$ | IB |
| 0155 | 0099 | 9A7C |  | STA | IB |
| 0159 | 009 A | DA74 |  | IHS | Civ 11 |
| 0160 | 009 B | F62D |  | JMP | SPA |
| 0161 | 009 C | E26C | FINGive | L Dí | MSK1 |
| 0162 | 009 D | 0128 |  | IXP |  |
| 0163 | 009E | B26D |  | L DA | DIR |
| 0164 | 009F | C000 |  | CAI | 0 |
| 0165 | OOAO | C302 |  | SXI | 2 |
| 0166 | OCF: 1 | EA67 |  | STX | HSK1 |
| 0167 | 00.2 | DA7D |  | IMS | DCT2 |
| 0168 | 00.43 | F201 |  | JMP | $5+2$ |
| 0169 | 00A4 | 4007 |  | SEL | 24, 7 |
| 0170 | 00.45 | DA67 |  | IMS | DCT |
| 0171 | 0046 | F201 |  | J@P | TUR2 |
| 0172 | 00. 7 | $\mathrm{F}_{2} 04$ |  | JMP | TUR3 |
| 0173 | OOAS | B23 2 | TUR2 | L. DA | TETR |
| 0174 | 0049 | 2101 |  |  | $5+2$ |
| 0175 | OCAA | F652 |  | JMP | T3 |
| 0176 | OOAB | F64E |  | UidP | ILP |
| 0177 | OCAC | C7FF | TUR3 | L AM | 255 |
| 0178 | OOAD | 9A6E |  | STA | CNT7 |
| 0179 | OGGE | E263 |  | L Dr | I BP |
| 0180 | OOAF | 0110 |  | Z AR |  |
| 0131 | OCEO | 9000 | CLFI | STA | E0 |
| 0182 | OCE1 | 0123 |  | IXR |  |
| 0133 | 0032 | DA69 |  | IMS | CNT 7 |
| 0184 | 0083 | F603 |  | dil P | CLR1 |
| 0185 | 0084 | C7F1 |  | L. AM | 241 |
| 0186 | OOE5 | 9 A63 |  | STA | CNT 4 |
| 0187 | OOE6 | C70F |  | LALi | 15 |
| 0188 | 00E7 | 9 A62 |  | STA | Cis 75 |
| 0189 | 0058 | $9 \mathrm{A62}$ |  | STA | CNT 6 |
| 0190 | 0089 | B269 |  | L DA | I BC |
| 0191 | 00BA | 9 963 |  | STA | 1 BD |
| 0192 | OOEB | C70E |  | L AM | 14 |
| 0193 | OCBC | $9 \mathrm{A60}$ |  | STA | Mil4 |
| 0194 | OOED | B260 | NXBIN | L DA | I BD |
| 0195 | OOBE | 9 A 60 |  | STA | $I B E$ |
| 0196 | 00SF | B35F | N:AROU | L DA | *IBE |
| 0197 | 0000 | 10D3 |  | ARA | 4 |


| 0198 | 0001 | 8855 |  | ADD | * I BP |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0199 | 00C2 | 9854 |  | STA | *IBP |
| 0200 | 0003 | B254 |  | $1 . \mathrm{DA}$ | H256 |
| 0201 | 00c4 | 8A5A |  | ADD | IBE |
| 0202 | 00C5 | 9A59 |  | STA | I BE |
| 0203 | D0C6 | DA53 |  | IMS | CNT5 |
| 0204 | 00 C 7 | F603 |  | JMP | NXROU |
| 0205 | 00068 | B252 |  | LDA | CNT 6 |
| 0206 | 00C9 | 9.950 |  | STA | CNT5 |
| 0207 | 00CA | DA53 |  | IMS | I BL |
| 0208 | DOCB | DA4B |  | IMS | I BP |
| 0209 | DOCC | DA4C |  | IMS | CNT4 |
| 0210 | OOCD | F610 |  | JMP | NXBIN |
| 0211 | DOCE | B24B |  | L DA | CNT5 |
| 0212 | OOCF | 0150 |  | I AR |  |
| 0213 | OODO | 9A4A |  | STA | CNT 6 |
| 0214 | OOD1 | 9A48 |  | STA | CNT5 |
| 0215 | 00D2 | C701 |  | LAM | 1 |
| 0216 | OOD3 | 9445 |  | STA | CNT4 |
| 0217 | OOD4 | DA48 |  | IMS | HM 14 |
| 0218 | OOD5 | F618 |  | JMP | NKBIN |
| 0219 | 0086 | 0110 |  | ZAR |  |
| 0220 | 00D7 | 9A49 |  | STA | ©FFSET |
| 0221 | 0053 | F100 |  | HMP | DI SP |
|  |  | 0000 |  |  |  |
| 0222 | OOD9 | B251 | RTTR | L DA | TETR |
| 0223 | CODA | 2104 |  | $J A Z$ | T5 |
| 0224 | OODB | B252 |  | LDA | DIR1 |
| 0225 | OODC | 3184 |  | JAG | T6 |
| 0226 | OODD | 0210 |  | CAR |  |
| 0227 | OODE | F206 |  | JMP | T7 |
| 0228 | OCDF | B24E | T5 | L DA | DIR1 |
| 0229 | OOEO | 2182 |  | J AL | 5+3 |
| 0230 | 00 E 1 | 322A | TE | L DA | DIR |
| 0231 | 00玉2 | F202 |  | JMP | T7 |
| 0232 | 00E3 | B228 |  | L DA | DIf |
| 0233 | 00E4 | 3101 |  | Jen | $5+2$ |
| 0234 | 00E5 | DȦ2D | T7 | IMS | MASK1 |
| 0235 | 0056 | DA29 |  | IMS | CNT2 |
| 0236 | 00E7 | F69C |  | JMP | NEXT |
| 0237 | 00 ES | F7E3 |  | RTN | Traijs |
| 0238 | 00E9 | 0300 | TURNGN | ENT |  |
| 0239 | O0EA | 4006 |  | CID |  |
| 02.40 | OOEB | 45 Cl |  | 5SN | : Cl |
| 0241 | OOEC | 5601 |  | JMP | \$-1 |
| 0242 | OOED | OEOO |  | SEM |  |
| 0243 | OOEE | 49 CI |  | SEN | : Cl |
| 0244 | DOEF | F601 |  | JMP | \$-1 |
| 0245 | OOFO | OFOO |  | 5 WM |  |
| 0246 | 00F1 | 4004 |  | SE | : C4 |
| 0247 | 00F2 | 4005 |  | CIE |  |
| 0248 | 00F3 | F70A |  | RTN | TURNEN |
| 0249 | 00F4 | 0300 | MONS | ENT |  |


| 0303 | 012A. |  | ERR | REF | - |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0304 | O12B | 0000 | TETR | DATA | 0 |
| 0305 | 012C | 0000 | TEDA | DATA | 0 |
| 0306 | 012D | OFFO | TCT 1 | DATA | 4030 |
| 0307 | O12E | 0000 | DIR1 | DATA | 0 |
| 0305 | 012F | 0000 | TEAT | DATA | 0 |
| 0309 | 0130 | 8 DSA | DIRE | DATA | : 8 DS A |
| 0310 | 0131 | C6CF |  | TENT | 'FgRWARD, BACKVARD, 0 R BETH? ${ }^{\text {c }}$ |
|  | 0132 | D2D7 |  |  |  |
|  | 0133 | C1D2 |  |  |  |
|  | 0134 | C4AC |  |  |  |
|  | 0135 | C2C 1 |  |  |  |
|  | 0136 | C3Cs |  |  |  |
|  | 0137 | D7C1 |  |  |  |
|  | 0133 | D2C4 |  |  |  |
|  | 0139 | ACCF |  |  |  |
|  | 013A | D2AO |  |  |  |
|  | 0138 | C3CF |  |  |  |
|  | 0130 | D4CS |  |  |  |
|  | 013 D | BFAO |  |  |  |
| 0311 | O13E | 8D3A | M®TA | DATA | : 8 D3 A |
| 0312 | 013 F | CGDS |  | TEKT | 'FROM MON San TG GR Frgen tape?' |
|  | 0140 | CFCD |  |  |  |
|  | 0141 | AOCD |  |  |  |
|  | 0142 | CFCE |  |  |  |
|  | 0143 | D3C 1 |  |  |  |
|  | 0144 | CED4 |  |  |  |
|  | 0145 | CFAO |  |  |  |
|  | 0146 | CFD2 |  |  |  |
|  | 0147 | AOC6 |  |  |  |
|  | 0148 | D2CF |  |  |  |
|  | 0149 | CDAO |  |  |  |
|  | 014A | D4C 1 |  |  |  |
|  | 014B | DOC5 |  |  |  |
|  | 014C | BFAO |  |  |  |
| 0313 |  |  |  | END |  |
| 0000 | ERRERS |  |  |  |  |


| 0001 |  |  |  | NAM | DATUA, RTDA |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0002 |  |  |  | EXTR | VI SD |
| 0003 | 0000 | 0300 | DATUM | ENT |  |
| 0004 | 0001 | C6BF |  | LAP | '?' |
| 0005 | 0002 | FB63 |  | J ST | 为他 |
| 0006 | 0003 | 0067 |  | DATA | DIRE |
| 0007 | 0004 | FE7! |  | J ST | *IKB |
| 0008 | 0005 | c0c6 |  | CAI | ${ }^{\prime} \mathrm{F}$ ' |
| 0009 | 0006 | F205 |  | JMP | FgRD |
| 0010 | 0007 | COC2 |  | CAI | 'B' |
| 0011 | 0003 | F208 |  | JMP | BACK |
| 0012 | 0009 | COCF |  | CAI | ${ }^{6} 0^{\prime \prime}$ |
| 0013 | 000A | F20A |  | . $\mathrm{MP}^{\text {P }}$ | BOTH |
| 0014 | OOOB | FB6C |  | JST | * ERR |
| 0015 | 000C | C71E | FORD | L AM | 30 |
| 0016 | 000D | 9A73 |  | STA | DNT2 |
| 0017 | OOOE | 0103 |  | 2XR |  |
| 0018 | O00F | 0408 |  | CKP |  |
| 0019 | 0010 | F207 |  | JMP | PKF |
| 0020 | 0011 | C71E | BACK | LAM | 30 |
| 0021 | 0012 | 9A6E |  | STA | DNT2 |
| 0022 | 0013 | 0108 |  | ZXR |  |
| 0023 | 0014 | F203 |  | UMP | PKF |
| 0024 | 0015 | C 70 F | BO TH | L AM | 15 |
| 0025 | 0016 | 9 A6A |  | STA | Divt2 |
| 0026 | 0017 | 0353 |  | AXP |  |
| 0027 | 0018 | EA60 | PKF | STX | DIR1 |
| 0023 | 0019 | B260 |  | L DA | ZCT1 |
| 0029 | 001A | $9 \mathrm{Ab0}$ |  | STA | CT 1 |
| 0030 | 001E | E25B |  | L DX | I BC |
| 0 O 31 | 001C | EA5F |  | STK | I B |
| 0032 | 201D | 0110 |  | Z AP |  |
| 0033 | OOLE | 9000 | CLR | STA | E0 |
| 0034 | 001F | 0.128 |  | IXR |  |
| 0035 | 0020 | DESA |  | IMS | CT 1 |
| 0036 | 0021 | F603 |  | JMP | CLF |
| 0037 | 0022 | 9A61 |  | STA | RGN |
| 0035 | 0023 | 0210 | NEXT | CAR |  |
| 0039 | 0024 | 9A58 |  | STA | DIRO |
| 0040 | 0025 | C7F5 |  | LAM | 245 |
| 0041 | 0026 | 9A55 |  | STA | DDT2 |
| 0042 | 0027 | C7FF |  | L. AM | 255 |
| 0043 | 0028 | 9 A55 |  | STA | DDT |
| 0044 | 0029 | FA19 |  | JST | DURNGN |
| 0045 | 002A | FAE 3 | D. P | J ST | DON 5 |
| 0046 | 002B | 9 A54 |  | STA | DAT |
| 0047 | 002C | B24C |  | $1+\mathrm{DA}$ | DIRI |
| 0048 | 002D | COO1 |  | CAI | 1 |
| 0049 | 002E | F203 |  | JMP | ST0 |
| 0050 | 002F | D24D |  | CM 5 | DIRO |
| 0051 | 0030 | F232 |  | JMP | DLP2 |
| 0052 | 0031 | F231 |  | JMP | - DLP2 |
| 0053 | 0032 | B24D | ST0 | L DA | DAT |


| 0054 | 0033 | E248 |  | L DK | IB |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0055 | 0034 | 9 COO |  | STA | 00 |
| 0056 | 0035 | DA46 |  | ITAS | IB |
| 0057 | 0036 | DA43 |  | IMS | EDT2 |
| 0053 | 0037 | F201 |  | JMP | 5+2 |
| 0059 | 0038 | 4007 |  | SE | 24, 7 |
| 0060 | 0039 | DA44 |  | IMS | DDT |
| 0061 | 003A | F610 |  | JMP | [LP |
| 0062 | 003B | DA48 |  | ins | R6N |
| 0063 | 003C | B247 | DLPI | L DA | RGN |
| 0064 | 003D | 2101 |  | $J A Z$ | $5+2$ |
| 0065 | D03E | F100 |  | JMP | DISD |
|  |  | 0000 |  |  |  |
| 0066 | D03F | B23D | RTDA | LDA | DI RO |
| 0067 | 0040 | DA40 |  | INS | DVT 2 |
| 0063 | 0041 | F61E |  | JMP | NEST |
| 0009 | 0042 | F742 |  | RTN | DATUM |
| 0070 | 0043 | 0500 | DURN6N | ENT |  |
| 0071 | 0044 | 4006 |  | CID |  |
| 0072 | 0045 | 43 Cl |  | SSiv | : 61 |
| 0073 | 0046 | F601 |  | JMP | 5-1 |
| 0074 | 0047 | OE00 |  | SB4 |  |
| 0075 | 0043 | 49 Cl |  | SEN | : C1 |
| 0076 | 0049 | F601 |  | JMF | 9-1 |
| 0077 | 004A | OFOO |  | SW4 |  |
| 0078 | 004B | 40 C 4 |  | SEL | : C 4 |
| 0079 | 004C | 4005 |  | CIE |  |
| 0030 | 004D | F70a |  | FTN | DURNGN |
| 0081 | 004E | 0300 | DON 5 | 时 T |  |
| 0082 | 004F | $49 \mathrm{C6}$ |  | SEN | : 66 |
| 0033 | 0050 | F601 |  | JMP | S-1 |
| 0084 | 0051 | 5AC6 |  | INX | : C 6 |
| 0055 | 0052 | 2843 |  | JXZ | \$-3 |
| 0086 | 0053 | C704 |  | LAM | 4 |
| 0057 | 0054 | 9A2D |  | STA | CNT |
| 0088 | 0055 | 0110 |  | ZAR |  |
| 0089 | 0056 | 9A2C |  | STA | MSK2 |
| 0090 | 0057 | F206 |  | JMP | M 2 |
| 0091 | 0053 | 1350 | M 1 | LLA | 1 |
| 0092 | 0059 | 9 A29 |  | STA | M SK2 |
| 0093 | 005A | 1351 |  | LLA | 2 |
| 0094 | 35B | 8A27 |  | ADD | MSK2 |
| 0095 | 005C | 9 A26 |  | STA | MSK2 |
| 0096 | 005D | 0110 |  | 2 AR |  |
| 0097 | C05E | 1 1803 | M2 | LLL | 4 |
| 0098 | 005F | B A23 |  | ADD | MSK2 |
| 0099 | 0060 | DAE 1 |  | EMS | CNT |
| 0100 | 0061 | F609 |  | JMP | M ! |
| $00^{\circ} 01$ | 0062 | F714 |  | RTN | DENS |
| 0102 | 0063 | DA1A | [LP P 2 | IMS | DDT |
| 0103 | 0064 | F63A |  | JMP | DLP |
| 0104 | 0065 | F629 |  | JMP | D. P1 |
| 0105 | 0066 |  | DTL | REF |  |


| 0106 | 0067 | BD3 | DIRE | DATA | $: 8 \mathrm{DS}$ A |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0107 | 0068 | C6CF |  | TEXT | 'FORTVARD, BACKWARD ØR BGTH? ${ }^{\text {a }}$ |
|  | 0069 | D2D? |  |  |  |
|  | 006A | C1D2 |  |  |  |
|  | 006B | C4AC |  |  |  |
|  | 006C | C2C1 |  |  |  |
|  | . 006 D | C3CB |  |  |  |
|  | 006E | D7C1 |  |  |  |
|  | 006F | D2C4 |  |  |  |
|  | 0070 | AOCF |  |  |  |
|  | 0071 | D2A0 |  |  |  |
|  | 0072 | C2CF |  |  |  |
|  | 0073 | D4C8 |  |  |  |
|  | 0074 | BFAO |  |  |  |
| 0108 | 0075 |  | CRL, F | REF |  |
| 0109 | 0076 |  | IKE | REF |  |
| 0110 | 0077 |  | IBC | REF |  |
| 0111 | 0078 |  | ERR | REF |  |
| 0112 | 0079 | 0000 | DIR1 | DATA | 0 |
| 0113 | 007A | FOOB | zCTI | DATA | $-4065$ |
| 0114 | 007B | 0000 | CT1 | DATA | 0 |
| 0115 | 007C | 0000 | IB | DATA | 0 |
| 0116 | 007D | 0000 | DIRO | data | 0 |
| 0117 | 007E | 0000 | DDT | DATA | 0 |
| 0115 | 007F | 0000 | DDTE | data | 0 |
| 0119 | 0030 | 0000 | DAT | DATA | 0 |
| 0120 | 0081 | 0000 | Dint2 | data | 0 |
| 0121 | 0032 | 0000 | CNT | data | 0 |
| 0122 | 0033 | 0000 | MSK2 | data | 0 |
| 0123 | 0034 | 0000 | RON | DATA | 0 |
| 0124 |  |  |  | END |  |
| 0000 | Erross |  |  |  |  |








| 0091 | 0054 | $F 707$ |  | RTN | LEAD |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0092 |  |  | * |  |  |
| 0093 | 0055 | 0300 | 0TV | ENT |  |
| 0094 | 0056 | 1107 |  | RRA | 3 |
| 0095 | 0057 | F900 |  | JST | 日1T |
|  |  | 0000 |  |  |  |
| 0096 | 0058 | 1157 |  | RL A | 8 |
| 0097 | 0059 | F900 |  | JST | ØTT |
|  |  | 0000 |  |  |  |
| 0098 | 005A | F705 |  | RTN | QTW |
| 0099 |  |  | * CL EAR | PROGRA |  |
| 0100 | 005B | 0800 | CLEAR | En $T$ |  |
| 0101 | 005C | F900 |  | JST | CRL, F |
|  |  | 0000 |  |  |  |
| 0102 | 005D | F900 |  | Ј ST | IER |
|  |  | 0000 |  |  |  |
| 0103 | 005E | coso |  | CAI | '0. |
| 0104 | 005F | F203 | , | JMP | CLZE |
| 0105 | 0060 | COC7 |  | CAI | -G* |
| 0106 | 0061 | F204 |  | JMP | C. 5 N |
| 0107 | 0062 | F900 |  | JST | ERR |
|  |  | 0000 |  |  |  |
| 0109 | 0063 | E63B | CLZE | L DX | 1 BC |
| 0109 | 0064 | B63B |  | LDA | Z CTO |
| 0110 | 0065 | F204 |  | JMP | CLLP |
| 0111 | 0066 | B63E | CL. SN | LDA | I BC |
| 0112 | 0067 | 8E3C |  | ADD | SN 0 |
| 0113 | 0068 | 0048 |  | TAK |  |
| 0114 | 0069 | B63F |  | L. DA | ZCT1 |
| 0115 | 006A | 9E3E | CLLP | STA | CNT |
| 0116 | 0CEB | 0110 |  | 2 AR |  |
| 0117 | 006C | 9000 | CR | STA | EO |
| 0.118 | 006D | 0128 |  | IKR |  |
| 0119 | 006E | DE42 |  | IMS | CivT |
| 0120 | 006F | F603 |  | JMP | CR |
| 0121 | 0070 | F7! 5 |  | RTN | CLEAR |
| 0122 |  |  |  | END |  |
| 0000 | ERRORS |  |  |  |  |


| 0001 |  |  |  | NAM | FROT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0002 | 0000 |  |  | REL | 0 |
| 0003 | 0000 | 0500 | FPLGT | Ent |  |
| 0004 | 0001 | C70F |  | LAM | 15 |
| 0005 | 0002 | 9 ABB |  | STA | NROW |
| 0006 | 0003 | B2DO |  | LDA | IBC |
| 0007 | 0004 | 9 ABA |  | STA. | IB |
| 0008 | 0005 | 0108 |  | ZKR |  |
| 0009 | 0006 | FBCF |  | J ST | * CRL F |
| 0010 | 0007 | FBD1 |  | UST | *IER |
| 0011 | 0008 | COBO |  | CAI |  |
| 0012 | 0009 | F221 |  | JMP | F2 HD |
| 0013 | 000A | COB1 |  | CAI | 1 1' |
| 0014 | 0008 | F222 |  | JMP | FGive |
| 0015 | 000c | COB2 |  | CAI | '2' |
| 0016. | 0000 | F222 |  | JMP | FTVD |
| . 0017 | 000E | COB3 |  | CAI | 13' |
| 0018 | 0005 | F222 |  | JMP | FTHRE |
| 0019 | 0010 | COB4 |  | CAI | '4* |
| 0020 | 0011 | F222 |  | JMP | FFOUR |
| 0021 | 0012 | COB5 |  | CAI | '5' |
| 0022 | 0013 | F222 |  | JMP | FFIUE |
| 0023 | 0014 | C056 |  | CAI | \%' |
| 0024 | 0015 | F222 |  | JMP | FSIX |
| 0025 | 0016 | COB7 |  | CAI | $17 \%$ |
| 0026 | 0017 | F222 |  | JMP | FSEVE |
| 0027 | 0018 | COB8 |  | CAI | '8. |
| 0028 | 0019 | F222 |  | JMP | FEI GH |
| 0029 | 001A | COB9 |  | CAI | '9' |
| 0030 | 001B | F222 |  | SMP | FNINE |
| 0031 | 0016 | COC1 |  | CAI | 'A' |
| 0032 | 0010 | F222 |  | JMP | FTEN |
| 0033 | 001E | COC2 |  | CAI | 'B' |
| 0034 | 001F | F222 |  | JMP | FELE |
| 0035 | 0020 | coc3 |  | CAI | ${ }^{\circ} \mathrm{C}$ ' |
| 0036 | 0021 | F222 |  | JMP | FTRUE |
| 0037 | 0022 | COC4 |  | GAI | 'D' |
| 0038 | 0023 | F222 |  | JMP | FTHD |
| 0039 | 0024 | COC5 |  | CAI | 'E' |
| 0040 | 0025 | F222 |  | JMP | FFRTN |
| 0041 | 0026 | COC6 |  | CAI | $15!$ |
| 0042 | 0027 | F222 |  | JMP | FFOTN |
| 0043 | 0028 | COC7 |  | CAI | 'G: |
| 0044 | 0029 | F222 |  | JMP | FSKTN |
| 0045 | 002A | FBAF |  | JST | 本ERR |
| 0046 | 002B | 0110 | FZRC | ZAR |  |
| 0047 | 002C | 9 ASC |  | STA | CALL |
| 00.48 | 002D | Fcea |  | JMP | FOEP 1 |
| 0049 | 002E | C601 | FCAE | LAP |  |
| 0050 | 002F | Ste |  | JMP | FSTC |
| 0051 | 0030 | C 602 | FTW0 | LAP | 2 |
| 0052 | 0031 | F21C |  | JnP | FSTG |
| 0053 | 0032 | C603 | FTHRE | LAP | 3 |


| 0054 | 0033 | FE1A |  | $J M P$ | FST0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0055 | 0034 | C604 | FFOUR | LAP | 4 |
| 0056 | 0035 | F218 |  | JMP | FST0 |
| 0057 | 0036 | C605 | FFIVE | LAP | 5 |
| 0058 | 0037 | F216 |  | UHF | FSTD |
| 0059 | 0038 | C606 | FSIX | LAP | 6 |
| 0060 | 0039 | F214 |  | JMP | FST0 |
| 0061 | 003 A | C607 | FSEVE | LAP | 7 |
| 0062 | 003B | F212 |  | JMP | FST0 |
| 0063 | 003C | C608 | FEI GH | LAP | 8 |
| 0064 | 0030 | F210 |  | JMP | FSTD |
| 0065 | 003E | C609 | FNINE | LAP | 9 |
| 0066 | 003 F | F20E |  | JinP | FSTG |
| 0067 | 0040 | C60A | FTEM | $\triangle A P$ | 10 |
| 0063 | 0041 | F20C |  | JMP | FSTG |
| 0069 | 0042 | ;0B | FEL | $L A P$ | 11 |
| 0070 | 0043 | F20A |  | JMP | FSTD |
| 0071 | 0044 | C600 | FTWVE | $L A P$ | 12 |
| 0072 | 0045 | F208 |  | JMP | FST0 |
| 0073 | 0046 | C60D | FTHD | LAF | 13 |
| 0074 | 0047 | F206 |  | JMP | FSTG |
| 0075 | 0048 | C60E | FFRTN | LAP | 14 |
| 0076 | 0049 | F204 |  | JMP | FST0 |
| 0077 | 004A | C60F | FFVTiN | LAP | 15 |
| 0078 | 0043 | F202 |  | UMP | FST0 |
| 0079 | 004C | C610 | FSXTN | LAP | 16 |
| 0030 | 004D | F200 |  | JMP | FSTD |
| 0081 | 004E | 9A7A | FST0 | STA | CALL |
| 0082 | 004F | 0310 |  | NAR |  |
| 0083 | 0050 | 9 8179 |  | STA | FROV |
| 0084 | 0051 | B26D |  | L DA | IE |
| 0035 | 0052 | DA77 | FRONO | IMS | FRGW |
| 0086 | 0053 | F201 |  | JMP | $5+2$ |
| 0037 | 0054 | F202 |  | JMP | $5+3$ |
| 0088 | 0055 | 8 875 |  | ADD | H255 |
| 0089 | 0056 | F604 |  | JMP | FRON0 |
| 0090 | 0057 | 9.467 |  | STA | IB |
| 0091 | 0058 | B270 | FOロPI | L DA | CALL |
| 0092 | 0059 | 2101 |  | $\pm A Z$ | \$+2 |
| 0093 | 005A | F204 |  | JMP | g+5 |
| 0094 | 005B | 8260 |  | L, DA | Z GT |
| 0095 | 005C | 0150 |  | IAR |  |
| 0096 | 005D | 9A63 |  | STA | CNT |
| 0097 | 005E | F203 |  | UMP | $9+4$ |
| 0098 | 005F | C7FF |  | L ALI | 255 |
| 0099 | 0060 | 0150 |  | IAR |  |
| 0100 | 0061 | 9A5F |  | STA | CNT |
| 0101 | 0062 | B25C |  | LDA | IB |
| 0102 | 0063 | 9A5E |  | STA | IPBI |
| 0103 | 0064 | B35D |  | L DA | *IPB1 |
| 0104 | 0065 | 9A5E |  | STA | MAX |
| 0105 | 0066 | DA5B | LODP2 | IMS | IPB1 |
| 0106 | 0067 | B35A |  | L DA | * ${ }^{\text {\% P P }} 1$ |


| 0107 | 0068 | D25B |  | CM S | MAX |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0108 | 0069 | F201 |  | JHP | S＋2 |
| 0109 | 006A | 9 A59． |  | STA | MAX |
| 0110 | 106B | DA55 |  | IMS | CNT |
| 0111 | 006C | F606 |  | JMP． | LOEP2 |
| 0112 | 006D | 0350 |  | ARP |  |
| 0113 | 006E | 9 A56 |  | STA | SCAL E |
| 0114 | 006F | 9 A56 |  | STA | ROUND |
| 0115 | 0070 | B256 |  | L DA | H50 |
| 0116 | 0071 | D252 |  | CMS | MeK |
| 0117 | 0072 | F202 |  | JMP | $5+3$ |
| 0118 | 0073 | F20C |  | JMP | Lロ̆P |
| 0119 | 0074 | F20E |  | JMP | L00P |
| 0120 | 0075 | B24E |  | LDA | MAK |
| 0121. | 0076 | 0108 |  | ZKR |  |
| 0122 | 0077 | 924F |  | SUB | H50 |
| 0123 | 0078 | 0128 |  | LKR |  |
| 0124 | 0079 | 3102 |  | JAG | \＄－2 |
| 0125 | 007A | EABA |  | STX | SCALE |
| 0126 | 007B | 1200 |  | RGV |  |
| 0127 | 007C | 11 AB |  | RRK | 1 |
| 0128 | 007D | 3201 |  | J 0 R | \＄+2 |
| 0129 | 007E | 0128 |  | I $\times$ R |  |
| 0130 | 007 F | EA46 |  | STX | RgUND |
| 0131 | 0080 | FB55 | Lagr | J ST | ＊CRLF |
| 0132 | 0051 | FB54 |  | J ST | ＊CRLF |
| 0133 | 0082 | C6ED |  | LAP | ${ }^{\prime}=1$ |
| 0134 | 0083 | FB54 |  | J ST |  |
| 0135 | $0084^{\text { }}$ | OOCD |  | data | SF |
| 0136 | 0085 | C6A0 |  | LAP |  |
| 0137 | 0086 | FB50 |  | J ST | 束仿T |
| 0138 | 0087 | B23D |  | L DA | SCALE |
| 0139 | 0088 | FB4C |  | J ST | ＊ 0 DEC |
| 0140 | 0089 | C601 |  | LAP | 1 |
| 0141 | 003A | $9 \mathrm{A4} 1$ |  | STA | RONG |
| 0142 | 003 B | FB4A |  | J ST | ＊CRLF |
| 0143 | 008 C | FB49． |  | J ST | ＊CRLF |
| 0144 | 003 D | B23E |  | L DA | RONO |
| 0145 | OOSE | F348 |  | JST | ＊ØTT |
| 0146 | 008 F | C7FF |  | LAil | 255 |
| 0147 | 0090 | 9A2F |  | STA | NCOL |
| 0148 | 0091 | B22D |  | L DA | IB |
| 0149 | 0092 | 9 A 30 |  | STA | $\pm \mathrm{PB} 2$ |
| 0150 | 0093 | FB42 | LOOP1 | JST | ＊CRLF |
| 0151 | 0094 | B32E |  | LDA | ＊IPB2 |
| 0152 | 0095 | FB3F |  | JST | ＊ØDEC |
| 0153 | 0096 | C6A0 |  | LAP | ， 1 |
| 0154 | 0097 | FB3F |  | J ST | ＊gTT |
| 0155 | 0098 | C680 |  | LAP | ＇0： |
| 0156 | 0099 | FB3D |  | JST | ※ロTT |
| 0157 | 009 A | B328 |  | L DA | ＊I PB2 |
| 0155 | 009B | 2192 |  | JAL | CLgSE |
| 0159 | 009 C | 0108 |  | ． $2 \times \mathrm{R}$ |  |


| 60 | 009 D | 9227 |
| :---: | :---: | :---: |
| 0161 | 009 E | 0128 |
| 0162 | O09F | 31.2 |
| 0163 | OOAO | SA24 |
| 0164 | OOA1 | OOAS |
| 0165 | OOA2 | D223 |
| 0166 | OOA3 | F202 |
| 0167 | 00.44 | 0000 |
| 0165 | 00A5 | 0128 |
| 0169 | 00A6 | 0030 |
| 0170 | 0047 | 2166 |
| 0171 | 0088 | CGAA |
| 0172 | OOA9 | 0503 |
| 0173 | OOAA | EA16 |
| 0174 | 00AB | FB2B |
| 0175 | OOAC | DA14 |
| 0176 | OOAD | F602 |
| 0177 | OOAE | DA14 |
| 0178 | OOAF | 0000 |
| 0179 | 00B0 | DAOF |
| 0180 | 0081 | F61E |
| 0181 | 0032 | FE23 |
| 0182 | OOB3 | E215 |
| 0183 | 0084 | 2101 |
| 0184 | O0B5 | F206 |
| 0165 | 0036 | C6FF |
| 0186 | 0087 | 8 A07 |
| 0187 | OOES | 9 A06 |
| 0188 | 0089 | DA12 |
| 0139 | OOBA | DAO3 |
| 0190 | OOBB | F628 |
| 0191 | OOBC | FE19 |
| 0192 | OOBD | F7BD |
| 0193 | OOBE | 0000 |
| 0194 | OOBF | 0000 |
| 0195 | OOCO | 0000 |
| 0196 | 0001 | 0000 |
| 0197 | 0002 | 0000 |
| 0198 | 0003 | 0000 |
| 0199 | 00C4 | 0000 |
| 0200 | 0005 | 0000 |
| 0201 | 0006 | 0000 |
| 0202 | 0067 | 0032 |
| 0203 | 0003 | F10F |
| 0204 | . 00009 | 0000 |
| 0205 | OOCA | 0000 |
| 0206 | OOCB | OOFF |
| - 0807 | OOCC | 0000 |
| 0203 | OOCD | D3C3 |
|  | OOCE | ClCC |
|  | OOCF | C5AO |
|  | OODO | CbC1 |
|  | OOD |  |


| 0001 |  |  |  | NAM | CRT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0002 |  |  |  | N Aif | DI SP. |
| 0003 |  |  |  | NSM | DISD |
| 0004 |  |  |  | EitR | RTDA |
| 0005 |  |  |  | ExTR | RTTR |
| 0006 | 0000 |  |  | REL | 0 |
| 0007 | 0000 | 0500 | CRT | 酎T |  |
| 0008 | 0001 | C70F |  | LEM | 15 |
| 0009 | 0002 | 9900 |  | STA | NPGV |
|  |  | 0112 |  |  |  |
| 0010 | 0003 | $49 \mathrm{C4}$ |  | SEN | 24.4 |
| 0011 | 0004 | F601 |  | JMP | 5-1 |
| 0012 | 0005 | 4007 |  | SEI | 24.7 |
| 0013 | 0006 | 0110 |  | Z AR |  |
| 0014 | 0007 | 9900 |  | STA | gFFSET |
|  |  | 0113 |  |  |  |
| 0015 | 0008 | C601 |  | LAP | 1 |
| 0016 | 0009 | 9900 | DI SP | STA | TRI |
|  |  | 0116 |  |  |  |
| 0017 | 000A | 3106 |  | J AiN | \$+7 |
| 0018 | OOOB | B100 |  | LDA | AD1 6 |
|  |  | 0126 |  |  |  |
| 0019 | 0000 | 8900 |  | ADD | 1 BC |
|  |  | 0133 |  |  |  |
| 0020 | OOOD | 9900 |  | STA | 1 B |
|  |  | 0114 |  |  |  |
| 0021 | OOOE | 0110 |  | 2 AR |  |
| 0022 | 000F | 9900 |  | STA | CALL |
|  |  | 0117 |  |  |  |
| 0023 | 0010 | F25F |  | JMP | MXMI |
| 0024 | 0011 | B100 |  | L. DA | IBC |
|  |  | 0133 |  |  |  |
| 0025 | 0012 | 9900 |  | STA | IB |
|  |  | 0114 |  |  |  |
| 0026 | 0013 | 0103 |  | ZKR |  |
| 0027 | 0014 | F900 |  | JST | * CRL $\bar{F}$ |
|  |  | 8138 |  |  |  |
| 0023 | 0015 | F900 |  | J ST | * I ER |
|  |  | 8134 |  |  |  |
| 0029 | 0016 | COBO |  | CAI | $10 \cdot$ |
| 0030 | 0017 | F221 |  | JMP | Z ERD |
| 0031 | 0018 | cos 1 |  | CAI | ©1' |
| 0032 | 0019. | F2ed |  | MP | ONE |
| 0033 | 001 A | COB2 |  | CAI | '2' |
| 0034 | 0018 | F222 |  | JMP | TVE |
| 0035 | 0016 | C0s3 |  | CAI | ${ }^{3}$ |
| 0036 | 0010 | F222 |  | JMP | THFEE |
| 0037. | 001E | C0B4 |  | CAI | $4{ }^{4}$ |
| 0038 | 001 F | F222 |  | JMP | FgOR |
| 0039 | 0020 | COB5 |  | CAI | 5 |
| 0040 | 0021 | F222 |  | JMP | FIVE |
| 0041 | 0022 | COB6 |  | CAI | '6" |
| 0042 | 0023 | Fe2e |  | JnP | SIX |


| 0043 | 0024 | COB7 |  | CAI | '7\% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0044 | 0025 | F222 |  | JMP | SECEN |
| 0045 | 0026 | COBS |  | CAI | $88^{\circ}$ |
| 0046 | 0027 | F222 |  | Jup | EI GHT |
| 0047 | 0028 | COB9 |  | CAI | '9' |
| 0048 | 0029 | F222 |  | JMP | NINE |
| 0049 | Onea | COC1 |  | CAI | ' A ' |
| 0050 | OLEB | F222 |  | JMP | TET |
| 0051 | 002c | coce |  | CAI | 'B' |
| 0052 | 002D | F222 |  | JMP | ELE |
| 0053 | 002E | coc3 |  | CAI | ${ }^{8} 0^{\prime}$ |
| 0054 | 002F | F222 |  | JMP | Tvoe |
| 0055 | 0030 | COC4 |  | CAI | 'D' |
| 0056 | 0031 | F222 |  | JMP | THD |
| 0057 | 0032 | cocs |  | CAI | ${ }^{9} \mathrm{E}$ ' |
| 0058 | 0033 | F222 |  | JMP | FRTIN |
| 0059 | 0034 | coc6 |  | CAI | 'F' |
| 0060 | 0035 | F222 |  | JMP | FVTN |
| 0061 | 0036 | COC7 |  | CAI | - ${ }^{\text {P }}$ |
| 0062 | 0037 | F22a |  | jMP | 5 STN |
| 0063 | 0038 | FBFC |  | J ST | \% ERR |
| 0064 | 0039 | 0110 | Z ERG | Z AR |  |
| 0065 | 003A | 9ADC |  | STA | CALL |
| 0066 | 003B | F2EE |  | JMP | LØOP! |
| 0067 | 0036 | C601 | @nE | L.AP | 1. |
| 0068 | 003D | F222 |  | JMP | STORE |
| 0069 | -003E | C602 | TW0 | LAP | 2 |
| 0070 | 003F | F220 |  | IMP | STORE |
| 0071 | 0040 | 6603 | THREE | LGP | 3 |
| 0072 | 0041 | F21E |  | JMP | STORE |
| 0073 | 0042 | C604 | FøUR | LAP | 4 |
| 0074 | 0043 | F2ic |  | JMP | STORE |
| 0075 | 0044 | C605 | FIVE | LAP | 5 |
| 0076 | 0045 | F21A |  | JMP | STgRE |
| 0077 | 0046 | C606 | SIX | LAP | 6 |
| 0078 | 0047 | F218 |  | JMP | STORE |
| 0079 | 0048 | C607 | SEVEN | LAP | 7 |
| 0080 | 0049 | F216 |  | JMP | STGAE |
| 0031 | 004A | C608 | EIGHT | LAP | 8 |
| 0032 | 004B | F214 |  | JMP | STORE |
| 0083 | 004C | C609. | NINE | LAP | 9 |
| 0084 | 004D | F212 |  | SMP | STGRE |
| 0085 | 004E | C60A | TEN | LAP | 10 |
| 0086 | $004 F$ | F210 |  | JMP | STGRE |
| 0087 | 0050 | C603 | ELE | LAP | 11 |
| 0088 | 0051 | F20E |  | JMP | STGRE |
| 0089 | 0052 | C600 | TWVE | LAP | 12 |
| 0090 | 0053 | F20C |  | JMP | STORE |
| 0091 | 0054 | C60D | THD | LAP | 13 |
| 0092 | 0055 | F20A |  | JMP | STgRE |
| 0093 | 0056 | C60E | FRTN | L AP | 14 |
| 0094 | 0057 | F208 |  | JMP | - STGRE |
| 0095 | 0055 | C60F | FUTN | LAP | 15 |


| 0096 | 0059 | F206 |  | J:4P | STGRE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0097 | 005A | C610 | SXTN | LAP | 16 |
| 0098 | 005E | F204 |  | Jip | STGRE |
| 0099 | 005C | 0108 | DI 5D | ZKR |  |
| 0100 | 005D | EABE |  | STX | TRI |
| 0101 | OO5E | E2D4 |  | 1 LK | I BC |
| 0102 | 005F | EAB4 |  | STX | 1 B |
| 0103 | 0060 | $9 \mathrm{AB6}$ | STGRE | STA | CALL |
| 0104 | 0061 | 0310 |  | NAR |  |
| 0105 | 0062 | $9 \mathrm{AB5}$ |  | STA | R0WVA |
| 0106 | 0063 | E2B0 |  | LDA | IB |
| 0107 | 0064. | DAB3 | ROWNO | IMS | ROWVA |
| 0108 | 0065 | F201 |  | JMP | $5+2$ |
| 0109 | 0066 | F202 |  | JMP | $5+3$ |
| 0110 | 0067 | 8 ABB |  | ADD | H255 |
| 0111 | 0068 | F604 |  | JHP | ROWNO |
| 0112 | 0069 | 9 AAA |  | STA | IB |
| 0113 | 006A | B2AC | LOEP1 | L DA | CALL |
| 0114 | 006B | 2101 |  | $J A Z$ | $5+2$ |
| 0115 | 006C | F203 |  | JMP | $5+4$ |
| 0116 | 006D | B2AC |  | LDA | Z CT |
| 0117 | 006E | 9 AAC |  | STA | CNT |
| 0118 | 006F | F202 |  | JMP | S+3 |
| 0119 | 0070 | C7FF | MXIII | LAM | 255 |
| 0120 | 0071 | 9AA9 |  | STA | CNT |
| 0121 | 007 2̇ | B2A1 |  | LDA | IB |
| 0122 | 0073 | 9AAS |  | STA | I BP 1 |
| 0123 | 0074 | 0110 |  | ZAR |  |
| 0124 | 0075 | 9AAS |  | STA | MIN |
| 0125 | 0076 | 9 AAS |  | STA | MAK |
| 0126 | 0077 | B3A4 | LOOP2 | LDA | * I BP 1 |
| 0127 | 0078 | D2A6 |  | CMS | MAX |
| 0128 | 0079 | F202 |  | J $\mathrm{H} P$ | $5+3$ |
| 0129 | 007A | $9 \pm .44$ |  | STA | M AY |
| 0130 | 007B | F203 |  | JNP | $5+4$ |
| 0131 | 0070 | D2A1 |  | CMS | MIN |
| 0132 | 007D | 9AAO |  | STA | MIN |
| 0133 | 007E | 0000 |  | NOP |  |
| 0134 | 007 F | DA9 C |  | IMS | I BP 1 |
| 0135 | 0080 | DA9 A |  | IWS | CNT |
| 0136 | 0031 | F60A |  | UMP | LGOP2 |
| 0137 | 0082 | 0350 |  | APP |  |
| 0138 | 0033 | 9 99C |  | STA | SCAL E |
| 0139 | 0084 | 9 990 |  | STA | RGUND |
| 0140 | 0085 | B299 |  | LDA | MAK |
| 0141 | 0086 | 9297 |  | SUB | MIS |
| 0142 | 0087 | 9 997 |  | STA | MAX |
| 0143 | 0088 | B2SD |  | L. DA | TR1 |
| 0144 | 0089 | 2106 |  | $J A Z$ | SCA |
| 0145 | 008 A | B28 C |  | LDA | GALL |
| 0146 | 008E | 2101 |  | $J A Z$ | $5+2$ |
| 0147 | 008 C | F203 |  | JMP | $5+4$ |
| 0148 | 008 D | B294 |  | L. DA | H100 |



| 0202 | 0003 | 8 805 |  | ADD | X |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0203 | 0004 | 9 A66 |  | STA | TØTĢFF |
| 0204 | 0005 | B357 |  | L DA | * I BP2 |
| 0205 | 0006 | 1200 |  | ROV |  |
| 0206 | 00c7 | 1150 |  | RLA | 1 |
| 0207 | 0008 | 2207 |  | J®S | NEG |
| 0208 | 0069 | 1100 |  | RRA | 1 |
| 0209 | OOCA | 0108 |  | Z 2 R |  |
| 0210 | OOCB | 9254 |  | SUB | SCALE |
| 0211 | OOCC | 0128 |  | IXR |  |
| 0212 | OOCD | 3102 |  | JAG | 5-2 |
| 0213 | OOCE | 8A51 |  | ADD | SCALE |
| 0214 | OOCF | F206 |  | JMP | $5 \times 7$ |
| 0215 | OODO | 1400 | NEG | SOV |  |
| 0216 | OOD1 | 1100 |  | RRA | 1 |
| 0217 | OOD2 | 0108 |  | ZXR |  |
| 0218 | OOD3 | 8A4C |  | ADD | SCALE |
| 0219 | OOD4 | 00A3 |  | DKf |  |
| 0220 | OOD5 | 20C2 |  | $J A M$ | S-2 |
| 0221 | OOD6 | 9249 |  | SUB | SGALE |
| 0222 | 0007 | 00.48 |  | DRR |  |
| 0223 | 0003 | D248 |  | CMS | ROUND |
| 0224 | 0009 | F202 |  | JMP | $5 \div 3$ |
| 0225 | OODA | 0000 |  | SDD |  |
| 0226 | OODB | 0128 |  | IRP |  |
| 0227 | OODC | 0030 |  | TKA |  |
| 0228 | OODD | 9 A 4 C |  | STA | DOTNO |
| 0229 | OODE | E24C |  | L DS: | TOTOFF |
| 0230 | OODF | 4964 | DOT | SEN | 24, 4 |
| 0231 | 0050 | F601 |  | JMP | 5-1 |
| 0232 | OOE1 | 49 C 2 |  | SEN | 24;2 |
| 0233 | OOE2 | F601 |  | JMP | 5-1 |
| 0234 | 00E3 | 6 EC 2 |  | 0 TK | 24:2 |
| 0235 | OOE4 | B231 |  | L DA | TR1 |
| 0236 | OOE5 | 2103 |  | JAZ | \$+9 |
| 0237 | 0056 | B230 |  | L DA | CALL |
| 0235 | 0027 | 2101 |  | $J A Z$ | ¢ +2 |
| 0239 | 00E8 | F205 |  | JMP | \$+6 |
| 0240 | OOE9 | B240 |  | LDA | DOTN0 |
| 0241 | OOEA | 8 A40 |  | ADD | TOTQFF |
| 0242 | OOEB | 0043 |  | TAX |  |
| 0243 | OOEC | 6EC2 |  | $\square \mathrm{TX}$ | 24, 2 |
| 0244 | OOED | F20日 |  | JMP | DONE |
| 0245 | OOEE | B23E |  | LDA | DOTNO |
| 0246 | OOEF | 2109 |  | $J \triangle Z$ | DONE |
| 0247 | OOFO | 3134 |  | JAG | P6S |
| 0243 | OOF1 | OOAS |  | ERR |  |
| 0249 | OOF2 | 0150 |  | IA. |  |
| 0250 | OOF3 | 9A36 |  | STA | DOTND |
| 0251 | OOF4 | F615 |  | JMP | DOT |
| 0252 | 00F5 | 0128 | PGS | IKR |  |
| 0253 | OOF6 | OOD0 |  | DAR |  |
| 0254 | 00F7 | 9832 |  | STA | DOTNO |


| 0255 | 0073 | F619 |  | JMP | DØT ${ }^{\text {: }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0256 | 00F9 | B22F | DGNE | 1 DA | X |
| 0257 | OOFA | 8 A2A |  | ADD | i5256 |
| 0253 | 00FB | 9A2D |  | STA | X |
| 0259 | OOFC | DA20 |  | IMS | I BP2 |
| 0260 | OOFD | DA1B |  | IHS | N COL |
| 0261 | OOFE | F63C |  | JMP | LODP3 |
| 0262 | OOFF | B216 |  | LDA | TR1 |
| 0263 | 0100 | 3104 |  | JAN | S+5 |
| 0264 | 0101 | B215 |  | $\perp \mathrm{DA}$ | CALL. |
| 0265 | 0102 | 2101 |  |  | St2 |
| 0266 | 0103 | F100 |  | JMP | RTDA |
|  |  | 0000 |  |  |  |
| 0267 | 0104 | F100 |  | $J M P$ | PTTR |
|  |  | 0000 |  |  |  |
| 0263 | 0105 | B211 |  | L DA | CALL |
| 0269 | 0106 | 2101 |  | $J \mathrm{AZ}$ | \$+2 |
| 0270 | 0107 | F203 |  | J14P | FIN |
| 0271 | 0108 | C60A |  | $L A P$ | 10 |
| 0272 | 0109 | 8 A09 |  | ADD | DFFSET |
| 0273 | O10A | 9 A 03 |  | STA | GFFSET |
| 0274 | O10B | B217 |  | L DA | H255 |
| 0275 | O1SC | 6 A07 |  | ADD | I B |
| 0276 | 0100 | 9 A 06 |  | STA | IB |
| 0277 | O10E | DA03 |  | IMS | NROW |
| 0278 | O10F | F653 |  | JMP | LOOP4 |
| 0279 | 0110 | FB27 | FIN | JST | * CRL F |
| 0230 | 0111 | F100 |  | RTN | CRT |
|  |  | 8000 |  |  |  |
| 0231 | 0112 | 0000 | NREW | DATA | 0 |
| 0282 | 0113 | 0000 | QFFSET | DATA | 0 |
| 0253 | 0114 | 0000 | 18 | DATA | 0 |
| 0284 | 0115 | 0000 | 1 5 Q | DATA | 0 |
| 0285 | 0116 | 0000 | TR1 | DATA | 0 |
| 0236 | 0117 | 0000 | CALL | DATA | 0 |
| 0267 | 0118 | 0000 | RGUVA | DATA | 0 |
| 0238 | 0119 | 0000 | NCOL | DATA | 0 |
| 0289 | 011 A | F10E | ZCT | DATA | -3826 |
| 0290 | 011B | 0000 | CNT | DATA | 0 |
| 029! | 0110 | 0000 | I BPI | DATA | 0 |
| 0292 | O11D | 0000 | IBP2 | DATA | 0 |
| 0293 | O1IE | 0000 | MUN | DATA | 0 |
| 0294 | 011 F | 0000 | MAX | DATA | 0 |
| 0295 | 0120 | 0000 | SGALE | DATA | 0 |
| 0296 | 0121 | 0000 | RUUND | DATA | 0 |
| 0297 | 0122 | 0064 | H100 | DATA | 100 |
| 0298 | 0123 | OOFF | H255 | DATA | 255 |
| 0299 | 0124 | $00 \mathrm{C8}$ | H200 | DATA | 200 |
| 0300 | 0125 | 0100 | H256 | DATA | 256 |
| 0301 | 0126 | OEF 1 | AD16 | DATA | 3825 |
| 0302 | 0127 | 0000 | T0TDのT | DATA | 0 |
| 0303 | 0128 | 0000 | $\times 1$ | DATA | 0 |
| 0304 | 0129 | 0000 | X | DATA | 0 |


| 0305 | 012A | 0000 | D®TNG | data | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0306 | 012B | 0000 | T0TgFF | data | 0 |
| 0307 | 012C | D3C3 | SF | TEXT | *SCALE FACT0R= ${ }^{\text {e }}$ |
|  | 0120 | CICC |  |  |  |
|  | 012 E | C5AO |  |  |  |
|  | 012F | C6C1 |  |  |  |
|  | 0130 | C3D4 |  |  |  |
|  | 0131 | CFD2 |  |  |  |
|  | 0132 | BDAO |  |  |  |
| 0308 | 0133 |  | I BC | REF |  |
| 0309 | 0134 |  | IER | REF |  |
| 0310 | 0135 |  | ERr | REF |  |
| 0311 | 0136 |  | ©TT | REF |  |
| 0312 | 0137 |  | 『at | REF |  |
| 0313 | 0133 |  | CRL F | REF |  |
| 0314 | 0139 |  | ODEC | REF |  |
| 0315 |  |  |  | END |  |
| 0000 | ERRORS |  |  |  |  |

PAGE 0001

| 0001 |  |  |  | NAM | MASKO |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0002 | 0000 |  |  | RD. | 0 |
| 0003 | 0000 | 0001 | MASKO | Deta | 1 |
| 0004 | 0001 | 0001 |  | DeTA | 1 |
| 0005 | 0002 | 0001 |  | DATA | 1 |
| 0006 | 0003 | 0001 |  | DATA | 1 |
| 0007 | 0004 | FFFF |  | data | $-1$ |
| 0008 | 0005 | 0001 |  | data | 1 |
| "0009 | 0006 | FFFF |  | data | -1 |
| 0010 | 0007 | 0001 |  | DATA | 1 |
| 0011 | 0008 | 0001 |  | data | , |
| 0012 | 0009 | FFFF |  | DATA | -1 |
| 0013 | 000 | FFPF |  | DATA | $\because 1$ |
| 0014 | OOOE | 0001 |  | DATA | 1 |
| 0015 | 000C | FFFF |  | data | -1 |
| 0016 | 000D | FFFF |  | dATA | $-1$ |
| 0017 | ODOE | SFFF |  | DATA | $-1$ |
| 0018 | 000F | 0001 |  | DATA | 1 |
| 0019 | 0010 | 0001 |  | data | 1 |
| 0020 | 0011 | 0001 |  | data | 1 |
| 0021 | 0012 | 0001 |  | data | 1 |
| 0022 | 0013 | FFFF |  | data | -1 |
| 0023 | 0014 | 0001 |  | DATA | 1 |
| 0024 | 0015 | FFFF |  | DATA | -1 |
| 0025 | 0016 | 0001 |  | DATA | 1 |
| 0026 | 0017 | 0001 |  | DATA | 1 |
| 0027 | 0016 | FFFF' |  | DATA | -1 |
| 0028 | 0019 | FFFF |  | DATA | -1 |
| 0029 | 001A | 0001 |  | DATA | 1 |
| 0030 | 0013 | FFFF |  | DATA | -1 |
| 0031 | 001 C | FFFF |  | DATA | $\because 1$ |
| 0032 |  |  |  | END |  |
| 0000 | ERRORS |  |  |  |  |


| 0091 |  |  |  | NAM | IBU |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0952 | 0000 |  |  | FEL | 0 |
| 0003 | 0000 | 0003 | IBC | DATA. | 0090 |
| 0.904 |  |  |  | END |  |
| 0000 | Efrors |  |  |  |  |

## APPENDIX D

```
    1. DEF FNR(X)=INT(100*X+0.5)/100
10 DIM: G(255);F(255),X(255)
20 PRINT "SFECTRUN CORRECTED FOR NEGETIVE DIP"
25 PRINT
26 PRINT
30 CALL (2O)
40 CALL (5, D(0),256,2)
50. LET F(O)=G(0)
60 FOR N=1 TU 255
70 LET II=N-1
75 IFII>0.THEN S5
BO LET I I=25S
85 LET I 2=N+1
90 IFI2<256 THEN 10C
95 LET I 2=I 2-255
100 LET I 3=N+24
105 1FI 3<256 THEN 115
110 LET 2 3=1 3-255
115 LET I4=N+25
120 IF I 4< 256 THEN 130
125 LET I 4=I4-255
130 LET C= (D(I3) + O(I4)-D(I1)-D(I2))/20
140 LET F(N)=Q(N)+C
150 ivENT N
160 FRINT "A: 1 FGR DISPLAY, 2 FGR GRAPH, 3 FGR TAPE"
170 PRINT "B: O FOR ERIGINAL, 1 F苗R FINAL"
130 PRINT
200 PRINT "A=";
210 INPUT A
220 PRINT "E= ";
230 INPUT B
240 PRINT "RESGLUTIGN D=";
250 INPUT D
260 PRINT "INITIAL WAVE LENGTH LO=";
270 INPUT LD
250 PRINT
300 IF A= T TH゙EN 730
310 LET Z=0
320 LET M=1E10
330 FOR N=1 TG
255
```

350 IF $B=1$ THEN 400
360 LETX(N)= Ø(N)
370 GOTO 410
400 LET $K(N)=F(N)$
410 IF X(N)>=i4 TiEN 430
420 LET $\mathrm{M}=\mathrm{X}(\mathrm{N})$
430 IF $X(N)<=Z$ THEN 450
440 LET $Z=X(N)$
450 NEXTN
460 IF $\mathrm{H} / \mathrm{y}=0$ TIIEN 510
470 LET $S 0=255 /(Z-M)$
450 LET Sl=43/(Z-M)
490 LET YG=-M*S
500 G®T0 540
510 LET $50=255 / 2$
520 LET $51=48 / 2$
530 LET Y $0=0$

550 IF A=2 THEN 630
560 FRINT "SCALE FACTOR=": SO
$570 \quad \mathrm{FOR} \mathrm{N}=1$ TD 255
530 LET $E=I N T(S O * X(N)+0.5)$
590 CALL ( $3, \mathrm{~N}, Y(0,2, E$ )
600 NEXT N
620 GOTD 160
630 PRINT "SCALE FACTDR="; S1
635 PRINT
636 PRINT
640 FOR iN=1 TU 255
650 LET $E=I N T(S 1 * K(N)+0.5)$
660 LET L-L O+(N-I) *D.
670 PRINT FNR(L); TAB(B); X(N)
715 NEXT N
730 IF $B=0$ THEN 760
740 IF E=1 THEN 780
750 GETg 200
760 CALL ( $6,0(0), 256,2)$
770 G0T0 790
$780 \operatorname{CALL}(6, F(0), 256,2)$
790 CALL ( $6,0,0,3)$
800 ST0P

## BIBLIOGRAPHY

I. Aitken, D.K., and Jones, B., (1972), Nature, 240, 230. 2. Allen, J.D., Jr., and Schweitztr, G.K., (1972, I973), J. Electron Spectroscopy 1, 509.
3. Baumert, L.D., (1964), Digital Communication with Space Application, Prentice-Hail Inc., Canada, S.W. Golomb; Ed. pp.17-32.
4. Combes, M., Encrenaz, TH., Vapillon, L., and Ze'au, Y., (1974), Astron \& Astrophys, 34, 33.
5. Colpa, J.P., and Keltelaar, J.A.A., (I958), Mol. Phys., 1, 14 .
6. Cudaback, D.D., and Gaustad, J.E., (1971), 166, L49.
7. Day, K.L., (1974), Ap.J., 192, L15.
8. Decker, J.A., Jr., and Harwit, M., (1968), Appl. Opt., I, 2205.
9. Decker, J.A., Jr., (1969), Appi. Opt., 8, 2552.
10. Decker, J.A., Jr., (1971), Appl. Opt., 10, 510.
11. Decker, J.A., Jr., (1974), Appl. Opt., 13, 1296.
12. Encrenaz, Th., (1972), Astron and Astrophys, 16, 237.
13. Fellgett, P., (1951), Cambridge Univ., PH.D. thesis.
14. Fellgett, P., (1958), J. Phys., 19, 187.
15. Fink, U., Larson, H.P.s and Poppen, R.F., (1974), Ap.J., 187, 407.
16. Finkbeiner, D.T., II(1960), Introduction to Matrices and Linear Transformations, W.H. Freeman and Co., San Francisco.
17. Gamown, R.F., Gaustad, J.E., :and Treffers, R.R., (1973), Ap.J., 175, 687.
18. Gillett, F.C., Low, F.J., and Stein, W.A., (1968), Ap.J., 154, 677.
19. Gillett, F.C., Low, F.J., and Stein, W.A., (1969), Ap.J., 157, 925.
20. Gilman, R.C., (1969), Ap.J., 155, L185.
21. Golay M.J.E., (1949), J. Opt. Soc. Amer. 39, 437.
22. de Graauw, Th., Veltman, B.P. Th., (1970), Appl. Opt., 2, 2658.
23. Hall, M., Jr., (1967), Combinational Theory, Blaisdell Publ. Co., Waltham, Mass., 204.
24. Harwit, M., Phillips, P.G., Fine, T., and Sloane, N.J.A., (1970), Appl. Opt., 9, 1149.
25. Harwit, M., (1971), Appl. Opt., 10, 1415.
26. Harwit, M., (1973), Appl. Opt., 12, 285.
27. Harwit, M., Phillips, P.G., King, L.W., and Briotta, D.H., (1974a), App1. Opt., 13, 2669.
28. Harwit, M., and Decker, J.A., Jr., (1974b), Progress in Optics XII, North-Holland.
29. Hirschfeld, T., and Wijntjes, G., (1973), Appl. Opt., 12, 2876.
30. Hirschield, T., and Wijntjes, G., (1974), Appl. Opt., 13, 2740.
31. Hirschy, V.I., and Aldridge, J.P., (1971), Rev. Sci. Inotrum. 42, 381.
32. Hoteling, H., (1944), Ann. Math. Stat. 15, 297.
33. Houck, J., Pollack, J.B., Schaack, D., Sagan, C., and Decker, J.A., (1973), Icarus; 18, 470.
34. Ibbett, R.N., Aspinall, D., Grainger, J.F., (1968), App1. Opt., 7, 1089.
35. Ingersoll, A.P., submitted to space Sci. Rev. July, 1975.
36. Jacquinot, P., (1954), J.0.S.A., $44,761$.
37. Jacquinot, P., (1960), Rep. Prog. Phys., 23, 267.
38. Kittel, C., (1966), Introduction to Solid State Physics, John Wiley and Soris, N.Y., 548.
39. Kowalski, B.R., and Bender, C.F., (1973), Anal. Chem. 45, 2234.
40. Kranendonk, J.Van. and Kiss, Z.J., (1959), Can. J. Phys., 37. 1187.
41. Lacy, J.H., Larrabee, A.I., Wollman, E.R., Geballe, T.R., Townes, L.H., Bregman, J.D., and Rank, D.M., (1975), AD. J., 198, L145.
42. Larson, N., Crosmun, R., and Taimi, Y., (1974), App1. Opt., 13, 2662.
43. Lewis, J.S., and Prinn, R.G., (1970), Bcience, $169,472$.
44. Linsky, J.L., (1973), Ap.J., Supp., 216, 25, 163.
45. Low, F.J., and Swamy, K.S.K., (1970), Nature, 227, 1333.
46. Mass, R.W., Ney, E.F., and Woolf, N.J., (7970), Ap.J., letters, 160, L101.
47. McCord, T.B., and Adams, J.B., (1972), Icarus, $17,585$.
48. McEITcy, M.B., (1973), Space Sci. Rev., 14, 460.
49. Mertz, L., (1965), Transformation in Optics, John wiley and Sons, Inc., N.Y.
50. Mertz, L., (1976) Private communication.
51. Mertz, L., and Flamand, J., (1976), Private communication.
52. Morrison, D., and Sagan, C., (1967), Ap.J., 150, 1105.
53. Morrison, D., (1970), Spa. Sci. Rev., 11, 271.
54. Murcray, F.H., Murcray, D.G., and Williams, W.J., (1970), J. Geo. Res. 75, 14, 2662.
55. Murdock, T.L., (1974), Ap.J., 79, 1457.
56. Nelson, E.D., and Fredman, M.I., (1970), J.O.S.A., 60, 1664.
57. Oliver, C., and Pike, E., (1974), App1. Opt., 13, 158.
58. Penman, (1976), Mon. Not. R. Astr.Soc., 175, 149.
59. Pettingill, G.H., and Dyce, R.B., (1965), Nature, 206, 1240. 60. Phillips, P.G., and Harwit, M., (1971), Appl. Opt., 10 , 2415.
61. Planky, F.W., Winefordner, J.D., (1974), paper No.200, Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy.
62. Podolak, M., and Cameron, A.F.W., (1974), Icarus, 22, 123.
63. Pratt, W.K., Kane, J., and Andrew, H.C., (1969), Proc IEEE, 57, 58.
64. Putley, E.H., (1964), Phys, Stat. Solidi, 6, 571.
65. Rage and Sagan, 0., (1977), in preparation.
66. R1dgway, S.T., (1974), Ap.J., 187, L41.
67. Sagan, C., and Salpeter, E.E., (1976), Ap.J., Suppl 76.
68. Saiedy, Fo, and Goody, R.M., (1959) R.A.S.M.N. 119, 213.
69. Salpeter, E.E., (1974a), Ap.J., 193, 579.
70. Salpeter, E.E., (1974B), Ap.J., $193,585$.
71. Sloane, N.J.A., Fine, T., Phillips, P.G., and Harwit M., (1969), Appl. Opt., 8, 2103.
72. Sloane, N.J.A., and Harwit, N., (1976), Appl. Opt., 15, 107.
73. Smith, L.G., (1949), J. Chem. Phys., 17, 139.
74. Soter, S.I., and Ulrichs, J., (1967), Nature, 214, 1315.
75. Stewart, J.E., (1970), Infrared Spectroscopy: Experimental Methods and Techniques, Marcel Dekper, Inc., N.Y.
76. Strobel, D.F., (1973), J. Atmos, Sci., 30, 489.
77. Swift, R.D., Wattson, R.B., Decker, J.A., Paganetti, R., and Harwit, M., (1976), Appl. Opt., 15, 1595.

7R. Tai, M.H., Briotta, D.A., Kamath, N.S., and Harwit, M., (1975a), Appi. Opt., 14, 2533.
79. Tai, M.H., Harwit, M., and Sloane, N.J.A., (1975b), Appl. Opt., 14, 2678.
80. Terrile, R.J., and Westphal J.A., (1976), preprint.
81. Trafton, L.M., and Münch, G., (1969), J. Atm. Se£., 26, 813.
82. Treffers, R., and Cohen, M., (1974), Ap.J., 188, 545.
83. Vanasse, G.A., Sakai, H., (1967), Progress in Optics, 7, 298, E. Volf, Ed., Wiley-Interscience, N.X.
84. Vanasse, G.A., (1974), Application of Walsh Functions and Sequency Theory. The Institute of Electronic Engineering, Inc., New York, N.Y. 10017.
85. de Vancouleurs, G., (1964), Icarus, 3, 187.
86. Wallace, L., Caldwell, J.J., and Savage, B.D., (1972), Ap. J., 272, 755.
87. Wallace, L. Prather, M., and Belton, M.J.S., (1.974), Ap.J., 193, 481.

88. Weidenschilling, S.J., and Lewis, J.S., (1973), Icarus, 20, 465.
89. Woolf, N.J., and Ney, E.P., (1969), Ap.J., 155, L181.
90. Wyatt, C., and Esplin, R., (1974), Appl. Opt., 13, 2651.


[^0]:    * $F$ is the Fourier Transform case which will be discussed in Chapter IV.

[^1]:[^2]:    * The notation here may be a bit confusing. We use the $\underline{S}^{-1}$ to transform the raw data into an intensity spectrum. The inverse transform uses $\underline{S}$ to transform the intensity spectrum back into raw data.

