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SUMMARY

Existing frequency domain modal freguency and dampilng analysis methods
are discussed. The effects of truncation in the Laplace and Fourler trans-
form data analysis methods are described in detail. Methods for eliminating
truncation errors from measured damping are presented. Implications of
truncation effects in fast Fourier transform analysis are discussed. Limited
comparison with test data is presented.

INTRODUCTION

Flight flutter testing 1s generally a time~consuming procedure. It
involves the installation of complex excitation generators such as vanes,
inertia exciters, or impulsive devices (ref, 1) as well as the response
transducers and the associated electronic equipment. During flight testing,
many flights are required to fully explore the aircraft critical flight spec-
trum, producing a large amount of test dats which must be” subsequently analyzed.

Considerable simplification in eguipment installation may be obtained if
turbulence excitation can be used instead of mechanical excitation. In any
event, atmospheric turbulence and buffet degrade the response data from all
types of mechanical excitation, except for random excitation, where it would
most probably help more than hinder (ref. 2). Thus, the availability of
suitable random response analysis methods, in addition to the existing har-
monic analysis methods, would be a great advantage. The random analysis
methods, like the current harmonic analysis methods, place the burden of data
reduction on the computer, which, when used in the interactive mode with the
test engineer, can provide a basis for real-time flutter testing.

The exciter installation and data acquisition and analysis problems are
further compounded in space shuttle type vehicles, where weight is of para~
mount importance and the cost of exploring the entire critical flight spectrum
with many flights prohibitive. The nonstationary nature of the flight envi~
ronment and the relatively short duration of each flight within the atmosphere
place a premium on the need for transmitting as much response data as possible,
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and as quickly as possible, to the ground station. An increase either in the

rate of sampling of the transducers, or in the number of transducers, is pos-

sible, if the data sample length can be reduced without a loss in the acecuracy
of the analysis.

A reduction in the sample length of the random response data is accom—
panied by a reduction in the statistical accuracy of the frequency domain
modal response spectra. The statistical accuracy can be restored at the
expense of resolution through a corresponding increase in the effective anal~
ysis bandwidth. This increase in analysis bandwidth produces a truncation
effect in the response spectra. The truncation effect can occur in the fre-
quency domain modal analysis derived from the Fourier transform of not only
the impulse response time history but also the cross-— and auto~correlation
functions of response due to random and impulse~type excitations.

The effect of truncation is studied by using a single-degree~of-freedonm
system. Existing frequency domain harmonic analysis methods are briefly
discussed as an introduction to the truncation effect and to illustrate the
format of the data presentation.

HARMONIC ANALYSIS

The simplest method for obtaining alrcraft modal frequency and damping
data is through stick pulse generated free decay data (figs. 1 and 2). How-
ever, narrow band filtering is required both to isolate each mode in turn and
to minimize noise due to the presence of turbulence. Computerized least
squares fit methods such as the Moving Block Analysis (ref. 3) can be used
to obtain damping data from the log decrement of the decay once the resonant
frequencies have been identified by spectral analysis.

Stick pulses, in general, may not excite all the modes of interest and
may produce an unconservative estimate of the damping. For close resonances,
narrow band filtering may not isclate each mode, resulting in a beating decay
response (fig. 1). Under such circumstances, it is possible to extract
meaningful data only if the modal damping and amplitudes are comparable in
each of the modes. It is, however, possible, through the Fourier transform,
to transform the decay data into the frequency domain (figs. 3 and L) and
thereby resolve the modes.

This Fourier transform process can be illustrated mathematically by

considering the relationship between the response y(t) of a linear system and
a general force x(t), given by

y(t) =f h(t) x (t=-7) dr (1)

0
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where h(T) is the impulse response function of the system at time T. For a
single-degree-of-freedom system, the impulse response function is given by

6w T
hir) = Sinw [1-86
T

(2)

where:

is the generalized mass,

W, is the angular resonant frequency, and

o] is the viscous damping coefficient.
If the force is of sufficiently short duration that it can be considered

to be an impulse I6(t), where 6(t) is the delta function, then the response
time history reduces to

y(t) = hn(t) I (3)

The response spectrum y(iw), obtained from Fourier transform of the
time history (eq. (1)), is related to the force spectrum x(iw) by

y(iw) = H(iw) x(iw) (W)

where H(iw) is the frequency response function of the system. For a single-
degree~of-freedom system,

H(iw) = = (5)

2 2 .
m - +
(wr w 216wrw).

The Fourier transforms of the response y(t) and the force x(t) are
defined by :

yliw) = % _ooy(t) e 1% (6)
and w
x(iw) = %—w (o) e (1)
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respectively. Again, if x(t) can be considered an impulse I&(t), then the
force spectrum reduces to 4

w) = L
x(iw) = 55 (8)
and the response gpectrum to
. _ Hiw) I
y(lw) - “——27'r_ (9)

which is simply the system frequency response function multiplied by a
constant.

Two formats can be used in the presentation of the frequency domain
response data. In the response modulus vs frequency presentation (fig. 3),
the resonant frequency is located approximately at the peak response, and the
viscous damping coefficient, which is twice the structure damping, is obtained
by dividing the half power point bandwidth by twice the resonant frequency.

It is accurate for well-separated modes. For close modes, as the modulus
represents the total response vector from the origin and not necessarily the
modal vector, errors in the measured modal frequency and the viscous damping
coefficient may result. The extraction of modal damping may even be prevented
by the failure to resolve the half power points (fig. 3).

To overcome these limitations, both amplitude and phase are retained and
presented in a format of a Nyquist plot (fig. L4) in which the real part of
the response is in phase and the imaginary part is out of phase relative to
the excitation. This method of modal analysis was first suggested by Kennedy
and Pancu (ref. 4). The resonant frequency is located at the point on the
curve where the rate of change in arc length with frequency is at a maximum.
The viscous damping coefficient is obtained from the half power points as
previously described or by first measuring the angle ¢ subtended at the modal
origin, by the arc between any frequency point f and the resonant frequency
point fr, and then using the relationship

fr - f
6 = —'}—“——" COt(¢) (lO)
r

A strong feature of the Nyquist plot response data representation is
that mode shapes can be identified by means of the modal response vector.

The more common method of generating the response Nyquist plots is by
means of a slow sine sweep using mechanical in-flight excitation, such as
inertia exciters, in which the force output is used as reference. This method
has been computerized for multimodal analysis (ref. 5), employing a least
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squares curve fit technique to minimize the effect of extraneous noise and
used in a computer/test engineer interactive mode for flutter testing.

In transforming the free decay data as previously discussed, no trunca-
tion effects were observed due to the relatively high modal damping and the
need for including one beat as a minimum in the decay sample. In the second
example of a stick pulse excited decay (fig. 2), the decay was prematurely
truncated after one and five seconds to 1llustrate the effect on the frequency
domain response (fig. 5). The Nyquist plots of the response become more oval
in appearance as the decay sample duration is progressively reduced. If the
Nyquist plots are analyzed by the conventional method described above, uncon-
servative estimates of the damping are obtained., (See table 1.) In order
to obtain useful damping data from these Nyquist plots, a method eliminating
the effect of truncation from the damping must first be developed.

TRUNCATION THEORY

Due to the similarity between the cross~correlation and the impulse~
response functions with the auto~correlation function Ryy (7) of a single-~
degree-of-freedom system excited by a constant spectrum force, Sp (ref. 2)
and defined by

-6w.. T
TS e T -
Ryy(’r) - p Cos w 1—627' + g Sin w l~627' (ll)
2m2 35 r / 2 v
@r 1-6

it is only necessary to describe the equations for any one of the above
functions, The impulse-response function and the cross-correlation function
of a single~degree-of-freedom system, when excited by constant spectrum force,
exist only for positive time.

If the Laplace transform or the single-sided Fourier transform of the
autocorrelation function of the response Ryy (T) is used, with limits of inte-
gration from zero to infinity, instead of the full Fourier transform, phase
information is retained in the response spectrum (ref. 2). The resulting
response spectrum S(iw) is given by

S .
i . .

s(iw) = —2— (2 H(iw) + 26 H(iw) (12)

2 w

bmw “6 r

T
s . 8(iw) . -
The characteristic response function 3 has properties similar to the
P

frequency response function H(iw). This method provides a powerful tool in
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modal response analysis of random as well as impulse response data in the
frequency domain. The previocusly described methods for extracting the modal

damping and frequency can be employed as long as no truncation effect is
present.

If we let y(t) represent any of the above time functions, with the
understanding that they exist only for positive time, the complex response
spectrum y(iw) is obtained from Fourier transform of y(t).

o0
v(iw) = % y(t) e @Pat (13)

- 00

where y(t) = 0 for t<0

In reality, the response time history is truncated at some finite
time Tp. The resulting estimated response spectrum ?(iwl) (ref. 6) is
given by the relationship

Tm ~iw t
Yaw) = =) y®) e Tas
VAL 27 Jg y
(1)
® -iwt
- 1 1
= 5 _doD(t) y(t) e dt

where D(t) is the weighting or the truncation function.

Three weighting functions (ref. T) are considered in this paper. They
are the "do-nothing" or the boxcar weighting, generally defined by

D(t) = 1  for - Tp<t<Tp
(15)
= 0 elsewhere
the Hanning weighting function defined by
D(t) = % (1 + Cos gi) for - T, <t <7,
" (16)
= 0 elsewhere
and the Bartlett weighting function defined by
- [t]
D(t) = (l-—Tm) for - T, <t< Ty
(17)
= 0 elsewhere
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The reverse Fourier transform for the respohse is given by

y(t) =/ y(iw) e ay (18)

- 00

On substituting for y(t) in equation (14) and rearranging the order of the
integration, the estimate of the spectrum becomes

i —i(w. ~Wt
A, 1 1 .
v(iw) = 5= D(t) e dt y(iw)dw
2 o’ O
(19)
[~}
= / Q (wl—-w) y(iw) dw
- 00
where T
n -i{w. -wt
1 1 (20)
- = — : dat
Q(w1 w) ) D(t) e
Qw.~w) is referred to as the spectral window. The weighting functions

defined %y equations (16) to (18) and the corresponding spectral windows are
illustrated in figure 6. In the application discussed in this paper, the
spectral windows are complex (ref. 6 and 8) since the weighting functions are
one sided and exist only in positive time from zero to T,

TRUNCATED DATA REDUCTION

For a linear system excited by random force (or impulse) of constant
spectral density, the response spectrum y(iw) is proportional to the frequency
response function of the system. Equation (19), with y(iw) replaced by the
frequency response function of a single-degree-of-freedom system and a
constant force spectrum, has been integrated by using contour integration
for the "do-nothing" and the Bartlett weighting in references 6 and 8, respec-
tively. It has recently been solved by the author for the Hanning weighting.
A typical effect of the truncation due to the Hanning weighting is illustrated
in figure 7. The single-degree-~of-freedom response plots have been normalized
relative to the untruncated plot. The other two weighting functions differ
only in the degree of truncation effect. The "do~nothing" weighting function,
while exhibiting the smallest truncation effect, suffers from the undesirable
side lobes (fig. 5) which may be mistaken for modes or may interfere with
other nearby modes. The Bartlett weighting function suffers a greater resolu-
tion loss, as can be seen by comparing figure 8 with figure 5.

The resonant frequency is still identified by the peak rate of change of

arc length with frequency, but the procedure for estimating the damping from
the truncated curves is different from the methods previously described. At
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first (ref. 6 and 8), the damping coefficient was extracted with the assist-
ance of a nondimensional parameter defined by the peak rate of change of arc
length with frequency, divided by the radius of curvature at the resonant
frequency, from theoretically predicted curves. In these curves, the above
parameter is plectted as a function of the resonant frequency multiplied by
the true damping coefficient. These curves were originally developed for
use in high frequency structural response studies and consequently are
unsuitable for flutter data analysis due to the relatively low aircraft
response frequencies.

A more useful graphical format, which provides direct damping readout,
is presented in this paper and illustrated in figure 9 for the Hamning trun-
cation. The measured damping coefficient 6% is plotted against the true
damping coefficient § as a function of the ratio of the effective data
analysis bandwidth Af divided by the resonant frequency. The effective
analysis bandwidth Af is related to the maximum truncation time Th by

AT = — (21)

%
The measured damping coefficient & is defined by

o -2 (%) (22)

where p is the radius of curvature at rescnance, and

ds is the arc length at resonancé contained within
the frequency interval of 4rf

It can be observed that as the maximum truncation time becomes large,
the measured viscous damping coefficient approaches the true value.

This method of obtaining the damping from the truncation-affected single~
degree~of~-freedom system Nyquist plots has been computerized for potential
use in real-time analysis. The number of iterations required to converge to
the correct damping from the estimated damping is illustrated in figure 10.
The convergence is carried out in two or three sequences and is very rapid.
The number of steps in the initial sequence is selected to speed up the
iteration, especially in cases of severe truncation.

The damping of the free decay record (fig. 2) as obtained by the comput-
erized method for the "do-nothing", Hanning, and Bartlett truncations, a
least squares fit to the free decay, and the restored Nyquist plot method
(fig. 11) are summarized in table 2. The method of restoring the Nyquist
(ref. 9) plot involves the weighting of the decay with a known exponential
weighting to meet the required 55 dB dynamic range criteria {ref, 10) for
the decay. Analysis is thereafter carried out conventionally and the damping
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corresponding to the exponential weighting is subtracted from the measured
damping to arrive at the true modal damping. It is more common to apply the
exponential weighting function to the correlation function. This method has
been used in flight flutter testing in BEangland (ref. 11). The results from
the analysis of the one~second decay record indicate the existence of a
lower bound on the accuracy for the above frequency domain analysis methods.

TRUNCATION IN POWER SPECTRAL DENSITY

A method based on the cross-spectral analysis previously discussed was
developed to predict the truncation effect in power spectral density (PSD)
analysis. The effect of the truncation on the normalized PSD is illustrated
in figure 12 for the Hanning weighting. A computer program was developed to
obtain the damping from the 3 dB points by using the quadratic curve fit.

A graphical method for obtaining the true damping coefficient & from the
A

measured damping coefficient 6 for various ratios of effective analysis
bandwidth to resonant frequency is illustrated in figure 13.

A Hanning smoothed power spectral density plot of a typical alrcraft
response to high-speed buffet is illustrated in figure 1L4. Due to the very
high speed, no reliable flutter test data are available for comparison. The
analysis bandwidth of 0.5 Hz produces a truncation error in the two predom-
inant modes at 10.2 Hz and 14.6 Hz. On allowing for the truncation effect,
the viscous damping coefficients from the measured 3 dB point values of 0.11
and 0.04h are reduced to 0.068 and 0.02 for the two frequencies, respectively.
This method suffers from the same inaccuracies as the modulus method pre-
viously discussed. It does, however, provide an indication of the damping
where none previously existed. .

FAST FOURIER TRANSFORM AND TRUNCATION

The above methods have been basically developed for the Blackman and
Tuckey type of analysis (ref. 7). Truncation effects occur also in the fast
Fourier transform (FFT) method of analysis. An indication as to the type of
truncation present in FFT analysis of cross spectra is obtained from refer-
ence 12. The expected cross—spectral estimate E [Sxy(f,T,k)] is given by

]

T
E [Sxy(f,T,k)] —2-17?./‘ (1 - —‘—:—’-) Rxy (1) e Tar (23)
-T

m

As the cross—correlation function of a single-degree-of-freedom system
excited by white noise is one sided, as previously discussed, it is concluded
that the estimated cross spectrum obtained from FFT analysis is subject to
Bartlett truncation errors.
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The effect of truncation on the normalized PSD and cross spectral peak
response 1s illustrated in figure 15 as a function of the resconant frequency
multiplied by the maximum time delay and the viscous damping coefficient,
fy Tp 6. It is observed that for the "do-nothing" truncation, the curve
reaches unity near f,.Tp 6= 1. This corresponds not only to the damping
criteria for cross-spectral anslysis established in reference 9, but also to
the rule of thumb for PSD resolution for the analysis bandwidth to be one~
fourth of the 3 dB point response bandwidth.

Attention is drawn to the fact that the Bartlett truncation curve con-
verges to unity very slowly. Thus the use of cross~correlation functions
obtained from the indirect method of first computing the spectra using the
FFT and then transforming to time domain, will not only have the Bartlett
truncation error but also an additional truncation error in transforming
from the frequency domain to the time domain. These truncation errors in
correlation functions are discussed in references 13, 1k and 15. Thus a very
large number of transformation points must be used in determining the correla-
tion function through the indirect method,

CONCLUSION

Methods for eliminating truncation errors from modal frequency and
damping data have been presented for the cross~ and power-spectral analysis.
These methods have the potential for use in a computer/test engineer inter-
active mode, for random and impulsive-type response data analysis. Future
work will include an evaluation of the methods against simulated and real
flutter test data with buffet and turbulence excitation and the study of
truncation effects in FFT-type analysis involving multiple Fourier transform
operations.
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TABLE 1.

VISCOUS DAMPING COEFFICIENT OF TRUNCATED
PLOTS DETERMINED BY USING EQUATION (10).

Decay
Time, "Do-Nothing" Hanning Bartlett
Seconds Truncation Truncation Truncation
1 0.186 0.336 0.248
5 0.048 0.073 0.068
TABLE 2., COMPARISON OF VISCOUS DAMPING
COEFFICIENT BY VARIOUS METHODS.
Decay Least Restored TRUNCATION THEORY
Time, Square Nyquist
Seconds Decay Plot "Do-Nothing" Hanning Bartlett
1 0.0L45 0.092 0.037 ~ 0.035-
0.059
5 0.038 0.040 0.030 0.037 0.0kLk
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Figure 3. Modulus of the Fourier Transform
of Beating Stick Pulse Excited Decay.
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Figure 6. Spectral Windows and Weighting Functions.
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Figure 7., The Effect of Truncation on the Normalized Cross

Spectrum of a Single-Degree~of-Freedom System Excited
by White Noise ~ Hanning Weighting.
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Figure 12. The Effect of Truncation on the Normalized PSD of a
Single~Degree-of-Freedom System Excited by White Noise -
Hanning Weighting Function.

138



>

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

r

p‘.)

i

oo

NN

_
e
e

_/

e
—
//
-
v
v

7

yd

P

o

0.01

:0.02 0.

03 0.04

0.05 0.06

Figure 13. Correction to 3 dB Point Measured Damping from
Single-Degree~of-Freedom System Response PSD -
Hanning Welghting.

139-



*qezJng poodg-uySty £q PIITOXH 3JBJIOIIY J0JF umaadedg esuodssy TeOTdAAL KT oan314

Z1Y3aH—ADNINDIHA

8T e 0T 9l (A" 8 ¥ 0

ap 0e

2

ALISNIQ TVH.LI3dS HaMOd

140



NORMALIZED PEAK PSD AND CROSS.SPECTRUM
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Figure 15. Effect of Truncation on the Peak PSD and Cross Spectral
Response Resolution of a Single-Degree-of-Freedom System
Excited by White Noise.
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