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Introduction•

The following algorithm has been suggested by Decell and

Smiley in (1) for optimal linear combinations in the feature

selection problem.

Let W be a continuous function from M k (see definition 1)

into Ri that is invariant under multiplication on the left

by kxk invertible matrices. Then there exists H 
14 

`4n
(see definition 2) such that

41 ( ( Ik l ZI H	 )	 l.u.b.	 ( L I I ZJ H ) .
1 He 'N 

n	
k

Now for each positive integer i, let the element H fr/n

be chosen such that

[I 
k 

I  Z] HiHi-1 • ..
 Hl ) = 1. 	 . w ( 

C Ik' Z] H • Hi-1... 
H1)

n

The question of whether or not the above process terminates

at an absolute w -extremum (rank k maximal statistic) appeared in

[1]. In this paper, we show that there exists a function W as above
for which the above process does not terminate at an absolute

W -extremum.

Let Hl ,...,Hp be the matrices representing Householder trans-

formations. Then for the matrix [I k I Z.1 H1 • • •Hp , let e ( CI k I Z] H 1 • • •Hp)
be the span in Rn of the k row	 vectors of that matrix. "Suppose

that v 1 ,...,vk are linearly independent vectors in R n . Then we show

in this paper that there exists some integer p c min(n,n-k) and

Householder transformations whose matrices are 11 1 ,...,H for which
p

(
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B(1Ik 'Z)Hl ••• HP ) s Spanfv l ,... ,vkl	 We also determine the minimum

Integer p having the above property.

Preliminaries:

Definition 1. Let Mn be the set of all kxn rank k matrices.

Definition 2. Let Wn denote the set of all Householder trans-

formations.

Definition 3. LetjS nd enote the collection of all vector

subspaces of Rn of dimension k.
i

Definition 4. Let Sn = €x E Rn ((x((

Definition 5. Let Cbe a closed subset of R n and x	 Then

there exists c x E e such that ((x-c x ^( A Ox-c# for any

cc C. Let (D(x;L°) _ G-e x # .
Definition 6. Let A and B be elements ofj nT hen there exists

an element a*f A()Sn having the property that

e(a*; Bn Sn) 4 e(a; Bn Sn ) for all aC A(1 Sn . The num-

ber e(a*; B(1S n ) will be called the distance from A to B

and will be denoted by the symbol d(A;B).

Proposition 1. For any elements A, B, and C in j kn
i) d(A;B) 4 0 and d(A;B)	 0 if and only if A = B.

ii) d(A;C) * d(A;B) + d(B;C).

iii) For any	 a 0 there exists a 6 a 0 such that whenever

d(A;B) e d , then d(B;A) 4 F .

Definition 7. For any Pc ,'S n and F x 0, let

ZQ^.(P) =	 XE,3n I d(X;P) a	 .

Definition 8. Let T be the topology on	 n determined by the

subbasis [ a F (P)	 0 and PE ,o n
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Definition 9. Let C! be a closed subset of	
n and let PE A k

Let	 D(P; ) g.l.b. €d(P;C)' CE (!3.

Proposition 2.	 ()S n,T) is normal.

Proof: Let l and 69 be two closed disjoint subsets of k.
n

Let t = ^ PE J n D(P; ^ ) t D(P; 16) and

^Q PC 'S nj D(P; )	 D(P; 45)	 By Proposition 1,2
we can determine that Z 1 and î 2 are both.open and are

disjoint. This completes the proof.

in Rn , let wU = 
( wl )Wk

wl
Definition 10. For any vector w - •

"'n

and wL =	
Wk+l .
e

"n

Proposition 3. Suppose that€ vl,...,vk is a collection of

linearly independent vectors in R n . Let p be the dimen-

sion of Span 1 v1 1 ... I V k	 and assume p -X 0. Then there

exists a vector x E R n such that fix/1 - 1, and if Hx is

the Householder transformation-determined by x, then the

dimension of Span I H x (v 1) 11 $...,Hx(vk )L 3 = p-1.

Pro f: Case i) Dimension of Span vi,...,vk	 is less

than k. We select a vector x L in Span f vi,...,vk such

that ^^x L11 _VT. Since Ivi-2(vi • xL )xLJ•xL - 0 for

i =l,...,k. It follows that the dimension of

Span€ v 1L-2(
1

-2tVL. xL )x L is p-1. Now by

assumption there exists a vector x U in Rk such that

11x U11 _ r, and vi . xU - 0 for i =1,...,k. Since

vi-2(v i •x)x L = vi-2(vi.x L )x L , then the dimension of

__ a



ME

4

Span €vL-2(vL •xL )xL ,...,vk-2(vL. XL)xL 	is p-1, for

xU
X i r

•Ux v

Case ii) The dimension of Span vi,...,V U 3 = k.

We select a vector xo in Span vi....,vk ]w ith lixoO=.

Then we have that the dimension of

Span vi-2(vL .XLo )xo,...,vk-2(vk .xo )xo j is p-1. We

assume then that x L = A xa for some L 1. We want a

vector xU in R  such that if x 	 then #xU112+
( XL

11x L 112 = 1 and vi-2(,,i .x)xL	vi-2(vi.xo)xo for

By substituting 	 xo	 into this equation in place of x L we

can determine that	 vU .xU	 OvL xL for 1=1,...,k.
o

By our assumption we can find a vector x U satisfying the

above equations whenever a choice of A	 is made.	 We ob-

serve that if A	 approaches 1, then	 IIx U II	 must approach

0, and Jj x L ^^	 must approach V7. 	 so that if A	 approaches

1, then IIxU II z +	 IIx L II2 	 must approach YT.	 If A approaches

0, then HAI	 approaches	 + 00 and II x L II	 approaches 0

IIxU ^It 	 ^^xL II2so	 +	 approaches	 +o* as A	 approaches 0.

It follows from this that there exists some A 	 for which

IIxU I1 2 + N 
xL112	 1.	 Thus we have the dimension of

Span vi-2(vis p-1 which is thel .x)xL ,...,vL_2(vk .x)xLj

required condition.	 This completes the proof of proposition

3.



Definition 11. For any M C Mk let 8(M) = Span vl,... ,vJ
where fvl ....,vki are the row vectors of M. a is easily

seen to be continuous.

Proposition 4. Suppose that e ((, Ik IZJH1 ...Hp ) = Span ^v 1 , .... vkt

for Householder transformations H l ,...,Hp . Then the	
j

dimension of Span€v i ,...,vk J cannot exceed p.

Proof: We observe first of all that for any collection

of vectors 
i
yl S. * .9 ym i and any Householder transformation

H. determined by the vector x that

Span 1Hx(y1),...,Hx(ym) C Span€y l ,... ) ym ,x ..

Now 041 k jZJHl ... H p ) 	 Span iH 
p— 

H 1 (el),..,,H p  
H 1 (ek)J

where e  is the vector with 1 in the i th place and 0

everywhere else. Thus by the above statements,

Span iv 
1 
'...'v 

kj 
C Span lel,...,ek,xl,...,xp i .

It follows that Span ivi ,...,vkJ C Span €x i , ... ,xp ^ .

Thus the dimension of Span€vi,...,vk
	

IS less than or

equal to p. This completes the proof of Proposition 4.

Proposition 5. For linearly independent vectors vl,...,vJ,

if p is the dimension of Span€vi ,...,vk J and p ^ 0, then-

there exists Householder transformations Hl,...,Hn

such that ® ([Ik IZ] Hl .. . Hp ) • Span €vl,...,vki and no

fewer than p Householder transformations can have this

property.

Proof: This is a consequence of Propositions 3 and 4 .
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Construction of the map W

Definition 12. For any PC k let P = Span €vi , ... ,vk and

define L(P) = the dimension of Spanfvi,...,vki

Definition 13. For O &p&n-k letup = jACjkjL(A)&pj.^

Proposition 6. XP is closed for p=0,...,n-k.

Proof: This is a consequence of the fact that if

€ul , ... ,um} is a collection of vectors in Rn-k and q

is the dimension of Span[u l ,...,um 1 then there exists a

real number f.%0 such that if llu i -u*ll	 for

then the dimension of Spanfui,...,um ^ is greater than or

equal to q. This completes the proof of Proposition 6.

Now for some PE* l there existst^0 such that if AE X 1 , then

`LPr(A) does not contain P. Let ^ be the closure injn of

U fV (A)]	 By Urysohns lemma, [2] there exists a continuous
AE Xi

function ^1 j k.#(0,17 C Rl such that 1 (P) = 1 and	 1(A)=0

for any AC-(?. Let I = Span fel....'e kj . Then ^(I) C (,^

since IE ^ 1 . Define a map 2J k—► CO,;^] by

(X)	 0 if X `LP^(I) and ^ 2 (X) _ -d X • I) if XE^CQp(I).

Let _ 	 + $2 and define -009. We observe that

X1 =6( €f Ik l ZJH I HE ^4n^) . Also if 8( [?kI Z] H 1 ) = I

for some HI 94n then for any HE Rn, a * k i ZJ H . H 1 )E 91.

That 41 has the desired properties follows from the fact that

the function 0 has a maximum value of 11 at I over the set 91

but 0 has a maximum value of 1 at P over the entire spacek.n
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