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MODELING ERROR ANALYSIS OF STATIONARY

LINEAR DISCRETE-TIME FILTERS

RAIJNIKANT PATEL* AND MITSUHIKO TODA*

Ames Research Center, NASA, Moffett Field, Calif. 94035

Abstract. The performance of Kalman-type, linear, dis:rete-time
filters in the presence of modeling errors is considered. The discus-
sion is limited to stationary performance, and bounds are obtained for
the performance index, the mean-squared error of estimates for suboptimal
ard optimal (Kalman) filters. The computation of these bounds requires
information on only the model matrices and the range of errors for these
matrices. Consequently, a designer can easily compare the performance
of a suboptimal filter with that of the optimal filter, when only the
range of errors in the elements of the model matrices is available.

1. Introduction. One of the problems arising in the application
of the minimm variance optimal filter of Kalman and Bucy [8] is that a
design based on imperfect knowledge of the system configuration and noise
statistics often results in poor performance. Thus, there has been con-
siderable research on the effect of modeling errors on filter performance
(3,5,6,10,11]. 1In particular, errors in prior information on state
statistics and noise covariances {6,10,11] and in system models [3,5]
have been considered.

This paper is concerned with providing bounds on'the performance for

suboptimal as well as optimal discrete-time filters based on information

*NRC Postdoctoral Research Associate.



about the range of modeling errors. These results are useful from the
practical point of view, as a designer often has information on the range
of modeling errors rather than a precise knowledge of the modeling
errors. In this paper we limit the discussion to stationary conditions
and obtain performance bounds for discrete-time filters for two types of
errors: noise covariance errors and system configuration errors. Such
bounds were obtained for continuous-time filters in an earlier paper [12].
The results reported here and in [12] are quite different from those of
earlier work in that we do not limit the discussion to small-scale
(differential) analysis as in [5], nor do we assume sign definiteness of
the covariance errors as in {11].

This paper is organized as follows: the problem is formulated in
Sec. 2; in Sec. 3, two general bounds are obtained. These bounds are
analyzed in Sec, 4 to obtain practical expressions when the system configu-
ration is assumed to be known and, in Sec. 5 when the noise covariances
are assumed to be known. The results in Sec. 4 and 5 are illustrated
by an example in Sec. 6. Saction 7 concludes with some remarks on the
results and comments about future research.

2. Problem Statement. Consider a time-invariant process described
by

x(k + 1) = Ax(k) + Gw(k) ¢))

where the n-dimensional state vector x{k + 1) is measured by an
m-dimensional vector y(k + 1):

y(k + 1) = Hx(k + 1) + v(k + 1) (2)




The 2-dimensional process noise w(k) and the m-dimensional measure-~
ment noise v(k + 1) are assumed to be mutually independent Gaussian

noises with zero mean and

Ew(@w(™1 =08y, Q2 0F 3
Elv(v()T] =R§ 5, R> o0t (4)

where 6k,j denotes the Kronecker delta. The system matrices A, G,
and H are assumed to have appropriate dimensions, and A 1s assumed to
be a convergent matrix.
The optimal estimates x(k + 1lk 4+ 1) that minimizes
J(k +1) ZE Dli(k + 1k + 1) - x(k + 1)"?]*
with observations [y(0), y(1), ..., y(k + 1)], are given by [8]:
%(k + 1|k + 1) = AR(k|k) + R(k + 1) [y(k + 1) - HA%(k|k)] (5)

where K(k + 1) is the Kalman gain matrix specified by the recursive

relations:
K(k + 1) = P (k + 1|k)HT[HP,(k + 1]|i)BT + R]™! (6)
Po(k + 1|k) = AP (k|k)AT + GQGT ¢))
and
Po(k + 1k + 1) = [I, - K(k + 1)H]P (k + 1|k) (8)

with x(0) and P,(0) provided by prior infrrmation on x(0) and I,
the n x n identity matrix. The minimized index J(k + 1) is given

by

ta symmetric matrix W 1s denoted as W > 0 (W 2 0) when W 1is
positive definite (semidefinite). Also, W > Z (W > Z) denotes W - 2 > 0
wW-2z20).

f wll [llW”E(iz Iwijlz)llz] denotes the Euclidean norm of a vec-

?

tor w (matrix W).



Min J(k + 1) = tr[P (k + 1]k + 1)] (9

where tr(W) denotes the trace of a square matrix W.
We assume that complete information on the system matrices A and H
and the noise covariances Q and R 1is not available, and that the opti-

mal estimator is replaced by a suboptimal estimator based on a model:

R (k + 1k + 1) = A.MSEM(kI k) + Ky (k + 1) [y(k + 1) - HA &, (k K1 (10

where Ay = A+ AA and Hy = H + AH are model representations of A
and H, respectively, and AA and AH denote modeling errors. The gain
Ky(k + 1) can be computed from the model matrices using the following

relations:
Ry(k + 1) = B (k + llk)H.MT[HMPM(k + 1|k')'uMT +R,JT 0 av
Pk + 11) = a2 (k|0A" + co 6" (12)

afid

L}

By, (k + e+ 1) = [1_ - Ky (k + L)H,IP (k + 1/k) (13)

where Qy=Q+ AQ and Ry = R + AR are the model representations of

it

Q and R, respectively. The mean-squared error of this estimate is

expressed by

E[ll %, + ) - xtc+ D [|2] = exlp(e + D] (14)

In (14) and in the remainder of this section, the index (jlj) is
denoted by (j) wherever appropriate. The covariance matrix P(k + 1)

is described by [11]

P(k + 1) = LUOAP(OA, LT + ACOVIOA LM T + LioayoTacwm)”
+ AC0)UG)ACH T + [L(k) + K, () aHICQE [L(K) + Ky (k)an]”

+ K (ORK, (1) (15)



Vi + 1) = AVEALOOT + AUGAC0 T - GoeTiLG) + K0T (6)

Uk + 1) = AUGK)A" + GQGT : (17)
where B

LK) = I, - K (OH, ' (18)
AC(K) = L(k)AA = K (i) AHA, + K, (k) AHAA (19)
P(k) = E{%()&()T) |
V(K) = E[x(0K) ] |
U(k) = Elx(k)x(k) "]
x(k) = iM(k) ~ x(k)
P(0) = -V(0) = U(0) = E{[x<o> - %(0)1[x(0) - i(onT]
%(0) = E[x(0)]

Since the modeling error matrices AA, AH, AQ, and AR are generally
not known exactly, (15) to /17) cannot be solved to obtain tr[P(k + 1)],
the performance of the suboptimal filter. However, a designer usually
has estimates of the magnitude of errors in the model matrices, e.g.,
[AAijI in the (i,j)th element of Ay. Therefore, it is reasonable to
obtain upper bounds for tr[P(k + 1)] based on such estimates. It is
also helpful to obtain lower bounds for tr[P,(k + 1)] as functions of
the estimates so that tue designer can evaluate the performance degrada-
tion, tr[P(k + 1)] - tr[P (k + 1)], which he should expect with the
possibie modeling errors. Such bounds are obtained in later sections
for stationary conditions.

3. Performance Analysis for Stationary Conditions. The covariances
of estimation errors are constant matrices for stationary conditions, i.e.,
in (6) to (8), Po(k + 1|k) = Py(k|k - 1) and P (k + 1|k + 1) = B (k|k)

5



and, in (15) to (17), P(k + 1) = P(k), V(k + 1) = V(k), and
U(k + 1) = U(k) for stationary conditions. Hence the stationary filter-
ing error covariance matrix for the suboptimal filter is denoted by P
and the stationary ffltering and (one-step) prediction-error covariances
for the optimal filter are denoted by Pp and Pp, respectively. In this
section, general expressions for an upper bound for ¢tr(P) and a lower
bound for tr(Pp) are obtained. These are specialized in later sections
to obtain more practical expressions.

in the sequel, the notation W ®Z is used for the Kronecker
product of matrices W and Z. The column string of an n X n wmatrix W,
deacted by cs(W), is defined by the following n2-dimensional column
vector:

= T
C:S(W) = [wll s o 0 wnl, wlz o o an, e o oy Wln e o 0 Wnn]

where ik is the (j,k)th element of matrix W. Note that

tr(W) = [cs(1,)] cs(W) (20)
and
Hes | = llwi (21)
Theorem 1: An upper bound for tr(P) i1is given by
tr() s m =l + e o] (22)
where ‘
M=I,- 1A, ®LAM (23)

L=, - KA, (24)
is=s cs(In)
b = cs(B), B = LGQMGTLT + WcMT (25)




Dz LGQMGTAHTKMT + KMAHGQMGT(L + KMAH)T + ACVAMTLT + LAMVTACT + ACUACT
- (L + K AH)GAQGT (L + KMAH)T - xMAuMT (26)
AC = LAA - KyAHA, + K AHAA (27)

Remark: Note that in the expression for 1y, only D contains the
error matrices AA, AH, AQ, and AR. In Secs. 4 and 5, the term ||D|]
is analyzed further to obtain more explicit expressions.

Proof of Theorem 1: Equation (15) can be written as

P=LAMP(LAM)T+B+D

and, in Kronecker form, as

cs(P) = [(LA,) ® (LA )]cs(P) + cs(B) + cs(D)
Recalling (20), we obtain

tr(P) = 1Tcs(P) iTM'lb + 1TM'1cs(D)

A

1+ | ar)Te]] [ eso) |
where the Schwartz inequality was used to obtain the inequality. Noting
(21), we obtain (22), thereby completing the proof.

Next, we obtain a lower bound for the filtering error covariance

matrix of the optimal filter.

Theorem 2: A lower bound for tr(Pg) 1s given by

- 2
a, + ‘yaz + 4ala3

tr(PF) 2m, = 73, (28)
where
a, = || aTeTR-tpaf] 8 (29)
1 s
§|[w|l3 z max[)\(wa)]l/2 denotes the spectral norm (maximum singu-

lar value) of a matrix W; max A(W)[min A(W)] denotes the maximum
[minimum] eigenvalue of a symmetric matrix W.

7
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T T &
n + tr(d RTIHGQG) - 3 |2, (a) |2 (30)
i=]

[
N
i

and

£t {GQGY) (31)

a,

Proof of Theorem 2: from (6) to (8), we obtain

To=1 T Ty o p-1 T y
I,+HR H(APFA + GQG") PF (APFA + GQG™)

Taking the trace of bcth sides yields
n+ tr[HTR-lﬂ(ArFAT + GQEY)] = tr(P;lAPFAT) + tr(r;,lcQGT)

Applying Lemmas 1 and 2 (see Appendix), we obtain the following

ineqguality:

T
T, Ty-1 T, -1 T 2 2 tr(pﬂ(; )
n+ ||AERTIBA|| tx(P) + tr(HRTTHGQG) 2 i};llxi(A)l + S (32)

which can be rearranged in the form

al[tr(PF)]2 + aztr(PF) -a; 20

Solving the above inequality for tr(PF), we obtain (28), thereby com-
pleting the proof.

4. Performance Bounds with Incorrect Nuise Covariances. We now
consider the case for which A and H are known exactly, i.e., AA =0
and AH = 0, and we obtain bounds for tr(P) and tr(PF) in terms of
AQ and AR explicitly.

Theorem 3: If AA =0 and AH = 0, then an upper bound for
tr(P) is given by

ex(® s my = 000+ Lo el (I1iel 2l sall + 11k ]I 2] ar]l)

(33)



Proof of Theorem 3: Since AA =0 and AH = 0 in (26),

ol = |lLeaoe™” + K ark T |
2 2
< o2 flaall + 2] ar]
where the last inequality follows from the inequality ||Wz] < ||w]l I’Z”

{2, p. 37]). The result in (33) then follows from (22).
Theorem 4: If AA =0 and AH = 0, then a lower bound for

tr(PF) is given by

- "/ 2
az + (!2 + 4“1“3

tr(PF) z2m = 70, (34)
where
a2
o, = (35)
min A(RM) - “ARiI
lucll 2 (llQll . + Il 22l
a, =n+ ( H s )'ZIA ()2 (36)
min A(Ry) - ||aR]] 1=1
and
ey = tr(oqe) - sl el 21l aafi 37)

Proof of Theorem 4: In (28), 7, decreases monotonically as a,

and a, increase and as a, decreases. Hence, to obtain the bound
m,, we bound a, and a, from above and a, from below in terms of
laQ]] and ||AR||. This is done by bounding lIAT T 'IHAll and
tr(HTR71HGQGT) from above and tr(GQGT) from below.
T, T -1
An upper bound for ||A'H'R HAHs is given by

[l mal 2 || nafl 2
s " min \(R)

lIAHR’IHAII s [lua] 2zt
min AR - [[aR||



where Weyl's inequality [4, p. 157] is used to obtain the last inequality.
An upper bound for tr(HTRTIHGQGT) is given by

tr (HTR™1HGQGT)

A

< cr(GTHTR"lnG)IIQIIs

A

er(aee™®) | X1 _flall,

lacli2 (1o, Il + llaail)
min A(R) - 2R ]

A

(39

where Lemma 1(i) in the Appendix is used to obtain the first two

inequaliiies. A lower bound for tr(GQGT) is obtained as follows:
tr(6Q6") = tr[6(Q, - 4Q)C']

tr(CQMQT) - tr(GTGAQ)

tr(eq,eH) - ¢/ eaqll

er(6Q,8") - 2|6 || 2[j aqll (40)

v

v

where the first inequality follows since GTGAQ is an 2x2 matrix.
Using (38) to (40) in (29) to (31) results in (34), thereby completing
the proof.
Remark: For 4Q > 0 and AR > O (respectively, AQ £ 0 and AR < 0),

Nishimura [11] has given bounds on the matrix P of the form P P

M2
(respectively, P 2 gM). These results also hold for the nonstationary
case. Note that the results of Theorems 3 and 4 do not require any sign
definiteness for AQ and AR, although they are limited to the stationary
case. However, unlike the analysis in [11], the results of the theorems
do not require that the filter gain KM be obtained by a Kalman filter
design ((11) to (13)).

5. Performance Bounds with Incorrent Procese anfiguration. We now
assume that AQ = 0 and AR = 0, i.e., Q and R, are known exactly.

Theorems 5 and 6 then give an upper bound for tr(P) and a lower bound

10




for tr(PF),vrespectively. The analysis used to obtain the upper bound g

for tr(P) is more involved than that in Sec. 4 since (15) is coupled
with (16) and (17). To derive an vpper bound, we first analyze (17) for
the stationary case to obtain the following.

Lemma: If AM is diagonalizable, then, for stationary U,

lull s8=3 ol xp[z—z 1y - Byl 2(llaall2 + 2 call nAMus)]

(41)
where
§ By = (' + 17N - 1) (42)
% o = max|Re A(FM)] < 0 (real part of dominant eigenvalue of FM)
: K = ]‘TIISIIT'llls (spectral condition number of matrix T)

similarity transformation matrix to diagonalize AM

and UM is the solution of the Lyapunov equation:
T T\ ynT
Fy Uy * Upfy = -(I, - Fy Y6Q6 (T, - FM)
Remarks: (a) It is easy to show that a similarity transformation

! matrix T that diagonalizes AM also diagonalizes FM.

(b) The diagonalizability condition in the above lemma can be
removad by the following procedure: when a model matrix Aﬁ is not

diagonalizable, we can always find a diagonalizable matrix A\1 such

that IIAM - Aﬁlfs is as small as we wish [4, p.111]. The lemma can
? : then be used for such AM'
(c) The (Cayley) transformation in (42) maps the eigenvalues of AM

inside the unit circle to the left-half complex plane, Re(1) < 0.

11




Proof of Lemma: For stationary U, (17) can be written as

U - AHUAKT + AAUAAT - AAUAHT - A.“TUAA + GQGT (43)
From (42),
Ti-1 T
A= (@ - RO, + B (44)

Pre- and postmultiplying (43) by (In - FHT) and (In - FH) respectively,
and substituting for AM from (44) yields:

T 1 T T T T T
FMU+UFM:-E(I:1-FM)(GQG + AAUAA -AAUAM -AMUAA)(In-FM)

Therefore, U can be expressed by the following integral [1, p. 239]:
1 1L T T T T
U='2‘Uu—i‘£ [exp(FM t)](In— FH)(AAUAH +AHUAA

- 8aUAAT) (1, - F) [exp(F,p) lat

which yields the norm inequality

(- -]
1 _ z( 2
lull, <2 [uuuus+j; Iz, - 7l 2(f aal
2
s 20 all [[all ) llemEe 1200, ac]
Applying the Bellman-Gronwall lemma [7, p. 420] yields

1 !
ol g <5 oyl exe [l 1, - Byl 21 4012

+ 20 aall [la,ll ) f lexp,e) I 2 ae] (45)
Since T diagonalizes F,, it follows that
exp (FMt) =T exp(l\t:)'["1

where A 1is a diagonal matrix with the eigenvalues of FM on its

diagonal. Therefore,

lexe(Rye) | < Il Tl llexphe) || | = « exp(ot)

12




Hence

L i exp (Fyt) Il 2dt 5.’: k2 exp(20t)dt %

Substituting the above result into (45) yields (41).
We can now derive the following upper bound for tr(P) from
Theorenm 1.

Theorem 5: If AQ = 0 and AR = 0, then an upper bound for tr(P)

is given by
A tr(P) < wg = (“1 + u12 + u2)2 (46)
where
up = B e all (Ll faal
s Rl Nl el + Hrg Il llaml 1 aall
and

wp = 10+ el [8 (Ll laall + Il llayll, laull
+ gl Nanll Naall)z+ gy N2l coc™ || Il aul 2
+ 20k Il llieac™ || _ 1l au])
Proof of Theorem 5: Since AQ =0 and AR = 0 in (26),

2||LGQGTAHTKMTI| + I!KMAHGQGTAHTKMTII + 2]|ACVAMTﬂTH

A

il

+ || acuact|
(47)

IA

2]l eqe” | Il kIl g Ilamll + [kl 2 [l cae™ }l 1] ast]l 2

+2llacll VI Ieayll, + aclizull,

13
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—

From (27),

lacl < HLll Honll + gl Hagl faall + lix i eall Ifaxl

(48)
Since
P v i R
vV U - F % xx

is a covariance matrix, it is positive semidefinite, and with P > O,
Lemma 3 (see Appendix) yields

Hvllg < Wel2/2Hull /2 s tecey12/2ull /2 (49)

Using inequalities (47) to (49) in (22), we get a quadratic inequality

in [tr(p)]1/2:

tr(P) -~ 2u,[tr(®)11/2 - y, < 0
which yields (46).

Theorem 6: If AQ =0 and AR = 0, then a lower bound for tr(PF)

is given by
tr(Pp) 2 mg = 5 (50)
Y
where
vy= (Imgll, + Hanl)2 el (layl, + llaal)?
Y2 Eo Y (”HM”s + AH”)ZH R er(each)
1 n 2
-4 [ltr(AM)l - izllAAiil]
and
Y3 = tr(GQGT)

where AAii denotes the (i,i)th term of AA.

14



Proof of Theorem 6: As in the proof of Theorem 4, we bound a; and

from above and ay from below in (28) to obtain Te - Therefore,

2
a, = AR WAl < [lmfi2fRt) (a2
1 s - s ‘ 8 -]
s (lmgltg + Haml)2 e 2l _(lla,ll, + 1l sall)2 = v,
Tp~1 T = 2
a, = n+ tr(REGE) - 0|2 ()]

i=1

n+ ||ER"1H|| , tr(caeh) - L rerca)n2

A

A

n+ (sl + Narf)2|l& 1) ercoasD

- teray - eran2

where Lemma 1 (i) and Lemma 2 are used to obtain the first imequality for

a,. Since

) 2
[ex () - ex@m) 12 > [leriay] - fercan ]

and

n
|tr(aa)| < iZ:sllt\ltﬁl

it follows that a, <v,- Finally, we note that a, = v, and that in (28)

n, decreases monotonically as a; and a, 1increase. Consequently, the

2

BT T R —

above bounds suffice to obtain the bound "6'

i DR

6. Example. To illustrate the results presented in the preceding

sections, we consider a process with the following state space description:

M1 0 1

x(k + 1) = x() + | @
M s 0

y(k +1) = {1 Olx(k+ 1) + v(k + 1)

£
i
i

B
5

15

IR 50 e



The numerical values for a model are specified as ay, = -1/3, ay, = 1/10,
and 8y, = -1/4. The modeled noise variances of the zero mean white
noises are

= E[w(k)?]

=10 ; 1, = E[v(k)2] 5

Ay wodei model *
The parameters ay, and ay, are assumed to be correct and the modeling

error bounds for the parameters aMl’ Qe and ry are given by
laay, | 0.1, |ag] <1, and Jar| < 0.5

For the numerical values specified, Theorems 3 to 6 yield the
following bounds:

Theorem 3:

Case 1 LA 3.567 (3.519)

Case 2 3.748 (3.644)

=3
w
n

Theorem 4:

Case 1 ™, 2.206 (3.295)

2.432 (3.171)

Case 2 ™,

Theorem 5: 4,246 (3.450)

=
]

Theorem 6: 2.506 (3.390)
For comparison, the least upper bounds for tr(P) and the greatest
lower bounds for tr(PF) are given in parentheses. Cases 1 and 2 for

Theorems 3 and 4 denote the following:

A

Case 1: |aq| 1, 4Ar=0

Case 2: |Ar| 0

1A

0.5, Aq

16



7. Conclusions. The performance of Kalman-type, stationary, linear,

discrete-time filters in the presence of modeling errors has been analyzed.

The mean-square error of the estimates was used as cle performance mea-

sure; modeling errors in the system configuration (AA and AH) and in the

noise covariances (AQ and AR) were considered. Upper bounds for che per-

formance measure of suboptimal filters with modeling errors are given in
Theorems 1, 3, and 5 and lower bounds for the optimal filters without
errors are given in Theorems 2, 4, and 6. The bounds in Theorems 3 tc 6
require knowledge of only the model matrices and the range of errors of
these matrices. Consequently, these bounds are useful in practice, as a
designer often has information on the range of modeling errors rather
than on the exact values of the error matrices.

It has been implicitly assumed in the derivation of the bounds that
stability of the system and the filter is preserved in the presence of
modeling errors AA and AH and that sign definiteness of G and R 1is
preserved in the presence of modeling errors AQ and AR. It should also
be noted that the bounds obtained in this paper may be conservative for
some systems, e.g., those with very small stability margins, and it may

be desirable to obtain tighter bounds for specific cases.

17
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8. Appendix: Inequalities for Positive Semidefinit. Matrices. Some
of the inequalities used in the proofs of the theorems presented in ti
text are proved below.

Lemma 1l: (i) If A>0 and B 2> 0, then

tr(AB) < ”A”S tr(B) < tr(A)tr(B)

(i1) If A>0 and B > 0, then

tr(B) , tr(B)

-1
tr(A”°B) 2 Al , = tr @)

Proof of Lemma 1: (i) Since A >0 and B > O, Al/2 apq Bl/2

exist; hence

tr(AI/ZBI/ZBlleI/Z)

|ar/zsi/z)2 < [la/2 ] 2)|m2/2)|2 = Al era)

tr (AB)

and since A > 0, lIAIIS < tr(A);:fhéreby completing the proof.

v

(ii) To show the second'iﬁeqﬁality, we write
l|A1/2II§ tr(A-I/ZBI/ZBIIZAfI/Z)

llAl/z'IgllA.I/ZBI/ZIIZ > |BY/2)|2 = tx(B)

IIAIIS tr(A~1B)

and since A > 0, tr(A) > I|A[fs, thereby completing the proof.

Lemma 2: If A >0 and ¢ is an n x n matrix,

n
tr(a~1oAsT) 2 [, )2 2 L [er )12
Eg% i n

Proof of Lemma 2:

tr(A”1¢AsT) = tr(A~1/2¢a1/241/24Tp-1/2)

la-1/2¢a1/2 ] 2
n

Since |[W]|? 2 Z:IAi(W)IZ for any n x n matrix W and
i=1

=1/2421/2y =
A (A71208112) =2 (9),
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n
ex(aloas) 2 T[4, (912
i=

Using Cauchy's inequality [9, p. 42], we have
n s 1 n 2
Zhwlrz g iz_lllximl
The result of the lemma then follows since
n

2 Ixim

i=1

n
2 DA (8) = tr(e)
i=)

Lemma 3; If A >0 is partitioned as
Ay A
Ay A |7
where A, > 0, then
ol Ayl 2 lagll,2

Proof of Lemma 3: Since AII exists:

r -1
L, o|la 0 I, AJlA,

T

1

A=
-1 -1
[93A1 I 0 A, - AjAT7A, 0 I,

Thezefore, A 2 0 implies that A, - AaAzlAaT 2 0. Using Weyl's inequal-

ity for eigenvalues [4, p. 157], we have
-1, T -1, T
max A(A,) - max A(A,ATIA,T) 2 min A(A, - A;AT'AST) 20

i.e.,

v

-1, T
Il A, Hs max A(AzAT1A,7)

=1/25 Ty p=1/2
max A(A71/2A,7A AT /2y

- T -
|| a7}/ 28, aA71 /2]

19



‘ Thgrefofe $

lba i Ayl 2 al/20 Iag2/2a Taaq /2 )l ad2 )]

T i
2 llag"a 0l = lla,ll 2

thereby completing the proof.

i (1]

(2]
(3]

(4]
(5]

(6]

(71

(8]

[9]
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